WorldWideScience

Sample records for hydraulic controls rapids

  1. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  2. Hydraulic system for driving control rods

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1982-01-01

    Purpose: To enable safety reactor shut down upon occurrence of an abnormal excess pressure in a hydraulic control unit. Constitution: The actuation pressure for a pressure switch that generates a scram signal is set lower than the release pressure set to a pressure release valve. Thus, if the pressure of nitrogen gas in a nitrogen container increases such as upon exposure of the hydraulic control unit to a high temperature, the pressure switch is actuated at first to generate the scram signal and a scram valve is opened to supply water at high pressure to control rod drives under the driving force of the nitrogen gas at high pressure to rapidly insert the control element into the reactor and shut down it. If the pressure of the nitrogen gas still increases after the scram, the pressure release valve is opened to release the nitrogen gas at high temperature to the atmosphere. Since the scram is attained before the actuation of the pressure release valve, safety reactor shut down can be attained and the hydraulic control unit can be protected. (Sekiya, K.)

  3. Control rod drive hydraulic device

    International Nuclear Information System (INIS)

    Takekawa, Toru.

    1994-01-01

    The device of the present invention can reliably prevent a possible erroneous withdrawal of control rod driving mechanism when the pressure of a coolant line is increased by isolation operation of hydraulic control units upon periodical inspection for a BWR type reactor. That is, a coolant line is connected to the downstream of a hydraulic supply device. The coolant line is connected to a hydraulic control unit. A coolant hydraulic detection device and a pressure setting device are disposed to the coolant line. A closing signal line and a returning signal line are disposed, which connect the hydraulic supply device and a flow rate control valve for the hydraulic setting device. In the device of the present invention, even if pressure of supplied coolants is elevated due to isolation of hydraulic control units, the elevation of the hydraulic pressure can be prevented. Accordingly, reliability upon periodical reactor inspection can be improved. Further, the facility is simplified and the installation to an existent facility is easy. (I.S.)

  4. Experimental study of the pressure discharge process for the hydraulic control rod drive system stepped cylinder

    International Nuclear Information System (INIS)

    Wang, Jinhua; Bo, Hanliang; Zheng, Wenxiang

    2002-01-01

    The pressure discharge process from the stepped cylinder of the Hydraulic Control Rod Drive System (HCRDS) was studied experimentally in the HCRDS experimental loop for the 200 MW Nuclear Heating Reactor (NHR-200). The results showed that the differential pressure between the outside and the inside of the stepped cylinder increased rapidly to the desired value so that the force induced by the differential pressure which pushes the out tube of stepped cylinder was large enough. Therefore, if the hydraulic control rod were jammed, the pressure could push the hydraulic control rod to overcome the frictional resistance to insert the control rod into the reactor core. The experimental results verified that this design would solve the problem of hydraulic control rod jamming during an accident. (author)

  5. Researching on YH100 Numerical Control Servo Press Hydraulic Control System and Control Algorithm

    Directory of Open Access Journals (Sweden)

    Kai LI

    2014-09-01

    Full Text Available In order to study the numerical control (NC servo press hydraulic control system and its control algorithm. The numerical control servo press performance and control principle of hydraulic control system are analyzed. According to the flow equation of the hydraulic control valve, hydraulic cylinder flow continuity equation and the force balance equation of the hydraulic cylinder with load press, the mathematical model of hydraulic control system is established. And the servo press hydraulic system transfer function is deduced. Introducing the suitable immune particle swarm control algorithm for servo press hydraulic system, and the control system block diagram is established. Immune algorithm is used to optimize new control parameters of the system and adopt the new optimization results to optimize the system simulation. The simulation result shows that the hydraulic system’s transition time controlled by the immune particle swarm algorithm is shorter than traditional ones, and the control performance is obviously improved. Finally it can be concluded that immune particle swarm PID control have these characteristics such as quickness, stability and accuracy. Applying this principle into application, the obtained YH100 numerical control servo press hydraulic control system meets the requirement.

  6. Underwater hydraulic shock shovel control system

    Science.gov (United States)

    Liu, He-Ping; Luo, A.-Ni; Xiao, Hai-Yan

    2008-06-01

    The control system determines the effectiveness of an underwater hydraulic shock shovel. This paper begins by analyzing the working principles of these shovels and explains the importance of their control systems. A new type of control system’s mathematical model was built and analyzed according to those principles. Since the initial control system’s response time could not fulfill the design requirements, a PID controller was added to the control system. System response time was still slower than required, so a neural network was added to nonlinearly regulate the proportional element, integral element and derivative element coefficients of the PID controller. After these improvements to the control system, system parameters fulfilled the design requirements. The working performance of electrically-controlled parts such as the rapidly moving high speed switch valve is largely determined by the control system. Normal control methods generally can’t satisfy a shovel’s requirements, so advanced and normal control methods were combined to improve the control system, bringing good results.

  7. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  8. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  9. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  10. Problems associated with the use of rapid yielding hydraulic props.

    CSIR Research Space (South Africa)

    Glisson, FJ

    1998-08-01

    Full Text Available This report deals with the factors affecting the effective use of rapid yielding hydraulic props (RYHP’s) in the South African gold mines. Wherever possible, such factors have been quantified in an attempt to provide guidelines for obtaining...

  11. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    Ishida, Kazuo.

    1990-01-01

    Discharged water after actuating control rod drives in a BWR type reactor is once discharged to a discharging header, then returned to a master control unit and, subsequently, discharged to a reactor by way of a cooling water header. The radioactive level in the discharging header and the master control unit is increased by the reactor water to increase the operator's exposure. In view of the above, a riser is disposed for connecting a hydraulic pressure control unit incorporating a directional control valve and the cooling water head. When a certain control rod is inserted, the pressurized driving water is supplied through a hydraulic pressure control unit to the control rod drives. The discharged water from the control rod drives is entered by way of the hydraulic pressure control unit into the cooling water header and then returned to the reactor by way of other hydraulic pressure control unit and the control rod drives. Thus, the reactor water is no more recycled to the master control unit to reduce the radioactive exposure. (N.H.)

  12. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  13. Design of the Driving and Clamp Rotation Hydraulic Control System for the Heavy Load Forging Manipulator

    Directory of Open Access Journals (Sweden)

    Li Geqiang

    2015-01-01

    Full Text Available The manipulator was equipped with full hydraulic drive. We designed the hydraulic systems for the driving and clamping rotation. We used a fuzzy PID control strategy to design the electro-hydraulic proportional control system. We built a united simulation model based on the co-simulation of MATLAB/Simulink and AMEsim. A mathematical model of the system was also established. We did separate simulations of the system’s dynamic characteristics for fast forging and normal forging working conditions. The parameters were optimized. The field test shows that the steady-state error of the hydraulic system is small and the system response is fast. The system’s rapid response speed, high precision, and stability under heavy load were realized.

  14. Hydraulic loop: practices using open control systems

    International Nuclear Information System (INIS)

    Carrasco, J.A.; Alonso, L.; Sanchez, F.

    1998-01-01

    The Tecnatom Hydraulic Loop is a dynamic training platform. It has been designed with the purpose of improving the work in teams. With this system, the student can obtain a full scope vision of a system. The hydraulic Loop is a part of the Tecnatom Maintenance Centre. The first objective of the hydraulic Loop is the instruction in components, process and process control using open control system. All the personal of an electric power plant can be trained in the Hydraulic Loop with specific courses. The development of a dynamic tool for tests previous to plant installations has been an additional objective of the Hydraulic Loop. The use of this platform is complementary to the use of full-scope simulators in order to debug and to analyse advanced control strategies. (Author)

  15. Multimodel Robust Control for Hydraulic Turbine

    OpenAIRE

    Osuský, Jakub; Števo, Stanislav

    2014-01-01

    The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared a...

  16. Highly reliable electro-hydraulic control system

    International Nuclear Information System (INIS)

    Mande, Morima; Hiyama, Hiroshi; Takahashi, Makoto

    1984-01-01

    The unscheduled shutdown of nuclear power stations disturbs power system, and exerts large influence on power generation cost due to the lowering of capacity ratio; therefore, high reliability is required for the control system of nuclear power stations. Toshiba Corp. has exerted effort to improve the reliability of the control system of power stations, and in this report, the electro-hydraulic control system for the turbines of nuclear power stations is described. The main functions of the electro-hydraulic control system are the control of main steam pressure with steam regulation valves and turbine bypass valves, the control of turbine speed and load, the prevention of turbine overspeed, the protection of turbines and so on. The system is composed of pressure sensors and a speed sensor, the control board containing the electronic circuits for control computation and protective sequence, the oil cylinders, servo valves and opening detectors of the valves for control, a high pressure oil hydraulic machine and piping, the operating panel and so on. The main features are the adoption of tripling intermediate value selection method, the multiplying of protection sensors and the adoption of 2 out of 3 trip logic, the multiplying of power sources, the improvement of the reliability of electronic circuit hardware and oil hydraulic system. (Kako, I.)

  17. Control rod driving hydraulic device

    International Nuclear Information System (INIS)

    Sugano, Hiroshi.

    1993-01-01

    In a control rod driving hydraulic device for an improved BWR type reactor, a bypass pipeline is disposed being branched from a scram pipeline, and a control orifice and a throttle valve are interposed to the bypass pipeline for restricting pressure. Upon occurrence of scram, about 1/2 of water quantity flowing from an accumulator of a hydraulic control unit to the lower surface of a piston of control rod drives by way of a scram pipeline is controlled by the restricting orifice and the throttle valve, by which the water is discharged to a pump suction pipeline or other pipelines by way of the bypass pipeline. With such procedures, a function capable of simultaneously conducting scram for two control rod drives can be attained by one hydraulic control unit. Further, an excessive peak pressure generated by a water hammer phenomenon in the scram pipeline or the control rod drives upon occurrence of scram can be reduced. Deformation and failure due to the excessive peak pressure can be prevented, as well as vibrations and degradation of performance of relevant portions can be prevented. (N.H.)

  18. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Bao Jishi; Qin Benke; Bo Hanliang

    2011-01-01

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  19. Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control.

  20. Nonlinear Control of Hydraulic Manipulator for Decommissioning Nuclear Reactor

    International Nuclear Information System (INIS)

    Kim, Myoung-Ho; Lee, Sung-Uk; Kim, Chang-Hoi; Choi, Byung-Seon; Moon, Jei-Kwon

    2016-01-01

    Robot technique is need to decommission nuclear reactor because of high radiation environment. Especially, Manipulator systems are useful for dismantling complex structure in a nuclear facility. In addition, Hydraulic system is applied to handle heavy duty object. Since hydraulic system can demonstrate high power. The manipulator with hydraulic power is already developed. To solve this problem, various nonlinear control method includes acceleration control. But, it is difficult because acceleration value is highly noisy. In this paper, the nonlinear control algorithm without acceleration control is studied. To verify, the hydraulic manipulator model had been developed. Furthermore, the numerical simulation is carried out. The nonlinear control without acceleration parameter method is developed for hydraulic manipulator. To verify control algorithm, the manipulator is modeled by MBD and the hydraulic servo system is also derived. In addition, the numerical simulation is also carried out. Especially, PID gain is determined though TDC algorithm. In the result of numerical simulation, tracking performance is good without acceleration control. Thus, the PID though TDC with SMC is good for hydraulic manipulator control

  1. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    Science.gov (United States)

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  2. Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen

    2005-01-01

    This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness...

  3. Hydraulically powered dissimilar teleoperated system controller design

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1996-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  4. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  5. Observer-Based Robust Control for Hydraulic Velocity Control System

    Directory of Open Access Journals (Sweden)

    Wei Shen

    2013-01-01

    Full Text Available This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on Common Pressure Rail (CPR. Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable and satisfies the disturbance attenuation level. The condition for the existence of the developed controller can by efficiently solved by using the MATLAB software. Finally, simulation results are provided to demonstrate the effectiveness of the proposed method.

  6. Modelling and LPV control of an electro-hydraulic servo system

    NARCIS (Netherlands)

    Naus, G.J.L.; Wijnheijmer, F.P.; Post, W.J.A.E.M.; Steinbuch, M.; Teerhuis, A.P.

    2006-01-01

    This paper aims to show the modelling and control of an hydraulic servo system, targeting at frequency domain based controller design and the implementation of a LPV controller. The actual set-up consists of a mass, moved by a hydraulic cylinder and an electro-hydraulic servo valve. A nonlinear

  7. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  8. Shock analysis on hydraulic drive control rod during scram

    International Nuclear Information System (INIS)

    Song Wei; Qin Benke; Bo Hanliang

    2013-01-01

    Control rod hydraulic drive mechanism (CRHDM) is a new invention of Institute of Nuclear and New Energy Technology of Tsinghua University. The hydraulic absorber buffers the control rod when it scrams. The control rod fast drop impact experiment was conducted and the key parameters of control rod hydraulic buffering performance were obtained. Based on the test results and according to D'Alembert principle, the maximum inertial impact force on the control rod during the fast drop period was applied as equivalent static load force on the control rod. The deformations and stress distributions on the control rod in this worst case were calculated by using finite element software ABAQUS. Calculation results were compared with the experiment results, and it was verified that nonlinear transient dynamics analysis in this problem can be simplified as static analysis. Damage criterion of the control rod fast drop impact process was also given. And it lays foundation for optimal design of the control rod and hydraulic absorber. (authors)

  9. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  10. Technology and control for hydraulic manipulators

    International Nuclear Information System (INIS)

    Measson, Y.; David, O.; Louveau, F.; Friconneau, J.P.

    2003-01-01

    Hydraulic manipulators are candidate for fusion reactor maintenance. Their main advantages are their large payload with respect to volume and mass, their reliability and their robustness. However, due to their force control limitations, they are disqualified for precise manipulation and are dangerous for the environment and themselves in case of unexpected collision. CEA, in collaboration with CYBERNETIX and IFREMER has developed the advanced hydraulic robot MAESTRO. Force and hybrid control has been developed in order to avoid the previous problems. Using 'pressure' control servo-valve instead of the standard 'flow' control servo-valve (standard configuration of the MAESTRO) makes a real simplification of the control loop. No more pressure sensors are needed for monitoring the hydraulic joint in force control mode and using this kind of valves makes big safety improvements. The French company IN-LHC, designed and manufactured a prototype of servo-valve that fits the performances and space constraints of the Maestro arm. A characterisation of this new product was made on a mock-up and a set of these prototypes integrated in the Maestro slave-arm. A comparison between the two actuating technologies was made and showed that the performances of the pressure servo-valves make it applicable to general application

  11. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  12. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Basher, A.M.H.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  13. Control issues for a hydraulically powered dissimilar teleoperated system

    International Nuclear Information System (INIS)

    Jansen, J.F.; Kress, R.L.

    1995-01-01

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling's Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  14. Review of fluid and control technology of hydraulic wind turbines

    Institute of Scientific and Technical Information of China (English)

    Maolin CAI; Yixuan WANG; Zongxia JIAO; Yan SHI

    2017-01-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines.The current state of hydraulic wind turbines as a new technology is described,and its basic fluid model and typical control method are expounded by comparing various study results.Finally,the advantages of hydraulic wind turbines are enumerated.Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  15. Review of fluid and control technology of hydraulic wind turbines

    Science.gov (United States)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  16. Design of Transputer Controllers for Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    The paper deals with how transputers can be applied for fast controllers for hydraulic actuator systems. A general transputer-based control systems including a data acquisition transputer subsystem is presented. An application case: development of a mechatronic test facility with a fast hydraulic...... test robot controlled by a transputer-basec controller is presented. Some experimental path-tracking results with adaptive control algorithms are presented and discussed. The results confirm that transputers have significant advantages for intelligent control of actuator systems and robots for high...

  17. Adaptive PID and Model Reference Adaptive Control Switch Controller for Nonlinear Hydraulic Actuator

    Directory of Open Access Journals (Sweden)

    Xin Zuo

    2017-01-01

    Full Text Available Nonlinear systems are modeled as piecewise linear systems at multiple operating points, where the operating points are modeled as switches between constituent linearized systems. In this paper, adaptive piecewise linear switch controller is proposed for improving the response time and tracking performance of the hydraulic actuator control system, which is essentially piecewise linear. The controller composed of PID and Model Reference Adaptive Control (MRAC adaptively chooses the proportion of these two components and makes the designed system have faster response time at the transient phase and better tracking performance, simultaneously. Then, their stability and tracking performance are analyzed and evaluated by the hydraulic actuator control system, the hydraulic actuator is controlled by the electrohydraulic system, and its model is built, which has piecewise linear characteristic. Then the controller results are compared between PID and MRAC and the switch controller designed in this paper is applied to the hydraulic actuator; it is obvious that adaptive switch controller has better effects both on response time and on tracking performance.

  18. Hydraulic oil control system for transformer stations

    International Nuclear Information System (INIS)

    Truong, P.

    2002-01-01

    'Full text:' Electrical oil control systems are commonly used to contain large volumes of spilled oil in transformer stations. Specially calibrated floats, some of which are designed to float only in oil and others only in water, are used in combination with a pump to contain oil at the catch basin below a transformer station.This electrical control system requires frequent maintenance and inspections to ensure the electrical system is not affected by any electrical surges. Also the floats need to be inspected and cleaned frequently to prevent oil or grit build up that may affect the systems' ability to contain oil.Recognizing the limitations of electrical oil control systems, Hydro One is investigating alternative control systems. A hydraulic oil control system is being investigated as an alternative which can backup oil in a containment area while allowing any water entering the containment area to pass through. Figure 1 shows a schematic of a bench-top model tested at Ryerson University. Oil and water separation occurs within the double-piped column. Oil and water are allowed to enter the external pipe column but only water is allowed to exit the internal pipe column. The internal pipe column is designed to generate enough hydrostatic pressure to ensure the oil is contained in the external pipe column.The hydraulic oil control system provides a reliable control mechanism and requires less maintenance compared to that of the electrical control system. Since the hydraulic oil control system has no moving parts, nor would any parts that require electricity, it is not affected by electrical surges such as lightening.The maintenance requirements of the hydraulic oil control system are: the removal of any oil and grit from the catch basin, and the occasional visual inspection for any crack or clogs in the system. (author)

  19. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller

    2015-01-01

    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  20. Hydraulic pressure control unit for control rod drive

    International Nuclear Information System (INIS)

    Watabe, Yukio.

    1990-01-01

    The pressure invention concerns a hydraulic pressure control unit for control rod drives in BWR type reactors. The space above a floating piston possessed by an accumulator and the housing of control rod drives are connected by means of a pipeline. The pipeline has a scram valve which is opened upon occurrence of reactor scram. A pump is disposed between the accumulator and the scram valve for communicating a discharge port to apply a high pressure water to the accumulator. According to the present invention, a control unit is disposed between the scram valve and the housing of the control rod drives in the hydraulic pressure control unit for maintaining the cross sectional area of the flow channel of the pipeline to a usual size when the pressure in a pressure vessel is under a rated operation pressure, while limiting the cross sectional area of the flow channel when the pressure is lower than that in the rated operation. Thus, whole insertion of the control rod substantially at a constant speed is enabled irrespective of the level of the pressure in the pressure vessel. (I.S.)

  1. Sliding Control with Chattering Elimination for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load characteri......This paper presents the development of a sliding mode control scheme with chattering elimination, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives. The proposed control scheme requires only common data sheet information, no knowledge on load...... controller is developed for the control derivative based on a reduced order model. Simulation results demonstrate strong robustness when subjected to parameter perturbations and that chattering is eliminated....

  2. Adaptive Non-linear Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF).......Presentation of two new developed adaptive non-liner controllers for hydraulic actuator systems to give stable operation and improved performance.Results from the IMCIA project supported by the Danish Technical Research Council (STVF)....

  3. Servo-hydraulic actuator in controllable canonical form: Identification and experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-02-01

    Hydraulic actuators have been widely used to experimentally examine structural behavior at multiple scales. Real-time hybrid simulation (RTHS) is one innovative testing method that largely relies on such servo-hydraulic actuators. In RTHS, interface conditions must be enforced in real time, and controllers are often used to achieve tracking of the desired displacements. Thus, neglecting the dynamics of hydraulic transfer system may result either in system instability or sub-optimal performance. Herein, we propose a nonlinear dynamical model for a servo-hydraulic actuator (a.k.a. hydraulic transfer system) coupled with a nonlinear physical specimen. The nonlinear dynamical model is transformed into controllable canonical form for further tracking control design purposes. Through a number of experiments, the controllable canonical model is validated.

  4. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    Science.gov (United States)

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Dynamic Characteristics of Communication Lines with Distributed Parameters to Control the Throttle-controlled Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    D. N. Popov

    2015-01-01

    Full Text Available The article considers a mathematical model of the hydraulic line for remote control of electro-hydraulic servo drive (EHSD with throttle control. This type of hydraulic lines is designed as a backup to replace the electrical connections, which are used to control EHSD being remote from the site with devices located to form the control signals of any object. A disadvantage of electric connections is that they are sensitive to magnetic fields and thereby do not provide the required reliability of the remote control. Hydraulic lines have no this disadvantage and therefore are used in aircraft and other industrial systems. However, dynamic characteristics of hydraulic systems still have been investigated insufficiently in the case of transmitting control signals at a distance at which the signal may be distorted when emerging the wave processes.The article results of mathematical simulation, which are verified through physical experimentation, largely eliminate the shortcomings of said information.The mathematical model described in the paper is based on the theory of unsteady pressure compressible fluids. In the model there are formulas that provide calculation of frequency characteristics of the hydraulic lines under hydraulic oscillations of the laminar flow parameters of viscous fluid.A real mock-up of the system under consideration and an experimental ad hoc unit are used to verify the results of mathematically simulated hydraulic systems.Calculated logarithmic amplitude and phase frequency characteristics compared with those obtained experimentally prove, under certain conditions, the proposed theoretical method of calculation. These conditions have to ensure compliance with initial parameters of fluid defined under stationary conditions. The applied theory takes into consideration a non-stationary hydraulic resistance of the line when calculating frequency characteristics.The scientific novelty in the article material is presented in

  6. TRACKING CONTROL FOR A HYDRAULIC DRIVE WITH A PRESSURE COMPENSATOR

    Directory of Open Access Journals (Sweden)

    S. V. Aranovskiy

    2015-07-01

    Full Text Available A problem of tracking control is considered for a hydraulic drive with a pressure compensator that is widespread in the equipment of heavy-duty machines. Method. The control problem is solved by means of a switching sliding-mode controller coupled with static nonlinear compensation and desired velocity feedforward. Main Results. Mathematical model of a hydraulic drive is given in view of the pressure compensator presence. Traditional model of a hydraulic drive is formulated for a system with a spool valve; purpose and principles of operation of the pressure compensator in hydraulic systems are described, and the extended model is presented illustrating compensator contribution to overall system dynamics. It is shown that the obtained model has an input static nonlinearity; the nonlinearity cancellation method is proposed giving the possibility for injection of a desired velocity feedforward term. The control law is chosen as a switching one and two chattering attenuation methods are studied: equivalent control estimation via filtering and sign function integration. Experimental studies are performed at a forestry hydraulic crane prototype and illustrate high tracking accuracy achieved for typical crane motions. Practical Significance. The results are suitable for heavy-duty hydraulic machines automation in construction, road building and forestry.

  7. Analysis of an controller design for an electro-hydraulic servo pressure regulator

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Madsen, A. M.

    2009-01-01

    Mobile hydraulics is in a transition phase, where electronic sensors and digital signal processors are starting to become standard on a high number of machines, hereby replacing hydraulic pilot lines and oering new possibilities with regard to both control and feasibility. For controlling some...... of the existing hydraulic components there are, however, still a need for being able to generate a hydraulic pilot pressure, as e.g. almost all open-circuit pumps are hydraulically controlled. The focus of the current paper is therefore on the analysis and controller design an electro-hydraulic servo pressure...... regulator, which generates a hydraulic LS-pressure based on an electrical reference, hereby synergistically integrating knowledge from all parts of the mechatronics area. The servo pressure regulator is used to generate the LS-signal for a variable displacement pump, and the paper rst presents...

  8. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn

    1998-01-01

    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...

  9. NRC Information No. 87-56: Improper hydraulic control unit installation at BWR plants

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    This information notice is being provided to alert addressees to a potential problem that could affect the ability of the hydraulic control units (HCUs) to control the positioning of the control rods in the event of an earthquake. In addition, the potential for damage to the control rod drive (CRD) system withdraw lines that exists under certain conditions could result in a small-break loss-of-coolant accident in the HCU area. The CRD system controls the position of the control rods within the reactor core either to change reactor core power or to rapidly shut down the reactor (scram). The HCU is a major component of the CRD system that incorporates all the hydraulic, electrical, and pneumatic equipment necessary to move one CRD mechanism during normal or scram operations. This equipment, which includes the accumulators, CRD insert lines, CRD withdraw lines, and scram valves, is supported by the HCU frames. If a sufficiently large number of HCU frame bolts are missing or loose, a Safe Shutdown Earthquake (SSE) could result in damage affecting the ability of the CRD system to control the positioning of the control rods. In addition, damage to a CRD withdraw line could result in a small-break loss-of-coolant accident in the area of the HCUs

  10. Dynamic Self-Adaptive Reliability Control for Electric-Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Yi Wan

    2015-02-01

    Full Text Available The high-speed electric-hydraulic proportional control is a new development of the hydraulic control technique with high reliability, low cost, efficient energy, and easy maintenance; it is widely used in industrial manufacturing and production. However, there are still some unresolved challenges, the most notable being the requirements of high stability and real-time by the classical control algorithm due to its high nonlinear characteristics. We propose a dynamic self-adaptive mixed control method based on the least squares support vector machine (LSSVM and the genetic algorithm for high-speed electric-hydraulic proportional control systems in this paper; LSSVM is used to identify and adjust online a nonlinear electric-hydraulic proportional system, and the genetic algorithm is used to optimize the control law of the controlled system and dynamic self-adaptive internal model control and predictive control are implemented by using the mixed intelligent method. The internal model and the inverse control model are online adjusted together. At the same time, a time-dependent Hankel matrix is constructed based on sample data; thus finite dimensional solution can be optimized on finite dimensional space. The results of simulation experiments show that the dynamic characteristics are greatly improved by the mixed intelligent control strategy, and good tracking and high stability are met in condition of high frequency response.

  11. Control of spool position of on/off solenoid operated hydraulic valve by sliding-mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hak; Hong, Hyun Wook; Park, Myeong Kwan [Pusan National University, Busan (Korea, Republic of); Yun, Young Won [KHPS, Busan (Korea, Republic of)

    2015-11-15

    The use of on/off solenoid operated hydraulic valves instead of proportional valves has been attracting the interest of many researchers and engineers. However, there exist difficulties in controlling the on/off valve because of highly nonlinear characteristics including hysteresis and saturation. This paper considers the application of on/off solenoid operated hydraulic valves to control position of a hydraulic cylinder with the aim of evaluating, feasibility and practicability of their implementation and understanding the potential benefits when they are used in existing hydraulic systems. Assuming that only the current is measured, a sliding mode observer is designed to estimate the spool position and velocity. To alleviate the aforementioned difficulties in controlling the spool position, a nonlinear observer-based controller of an on/off solenoid valve is designed, taking into account the estimated values, based on a nonlinear model including hysteresis and saturation. The control objective is to track a desired spool trajectory. Simulation and experimental results illustrate the efficiency of the designed controller. The proposed controller is validated again in a single-rod hydraulic actuator. Experimental results show that the fluid flow through the valve orifice by controlling the spool position was successfully controlled.

  12. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  13. Hydraulic concrete composition and properties control system

    OpenAIRE

    PSHINKO O.M.; KRASNYUK A.V.; HROMOVA O.V.

    2015-01-01

    Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings) based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canon...

  14. Project calculation of the steering mechanism hydraulic servo control in motor vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Đukan Majkić

    2013-10-01

    characteristic which is to develop the ability of the driver to feel the road configuration, especially when going around a curve. In order to achieve this, a reactive element is built into the hydraulic servo control, with a task to absorb rapidly drive wheel oscillations during the reverse inclusion of the hydraulic servo control (from the drive wheels to the steering wheel. Determination of the dimensions of reactive elements and the stiffness of centering springs Taking the results of the static analysis into account, the dependence of force and the torsional resistance in drive wheels can be obtained. From this dependence, P can be found  as a function of . Control calculation The control calculation is performed after selecting general elements of the control system and the amplifier.The control  calculation allows the reduction of amplifier dimensions through the transmission gear mechanism, by selecting the   part onto which amplifier force.is applied. Conclusion The calculation of the control system helps in determining the basic parameters of its elements and assemblies, thus providing the control over the vehicle motion. The main input data in calculating hydraulic servo control is the determination of torsional resistance in drive wheels. In order to achieve proper torque values in torsional resistance, it is necessary to take into account  the given influencing factors since this ensures, on the one hand, lower load on the control system elements and, on the other hand, easier control by reducing the force applied to the steering wheel. ECE Regulation № 79 defines the maximum force that can be applied to the steering wheel, so this paremeter of control systems must be taken into account in vehicle design. The piston stroke and the cylinder length are determined for maximum torque angles of drive wheels, followed vy the determination of the cylinder piston diameter. The tendency to reverse the action of the  hydraulic servo control would violate the basic

  15. Experimental evaluation of control strategies for hydraulic servo robot

    DEFF Research Database (Denmark)

    Bech, Michael Møller; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    In this paper different linear and non-linear controllers applied to a hydraulically driven servo robot are evaluated and validated. The task is to make the actuators of the manipulator track a position reference with minimum error. Hydraulic systems are intrinsically non-linear and using linear...... in industrial servo drives. The different controllers are compared and evaluated from simulation and experimental results....

  16. Device for controlling the hydraulic lifter of drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Kraskov, P N

    1981-04-10

    A device is suggested for controlling the hydraulic lifter of a drilling unit. It contains a throttling valve with cylinder for servocontrol, mechanism for assigning the program for lowering velocity connected to the power cylinder, and oil tank. In order to improve the reliable concentration of the drilling unit by guaranteeing possible alternation for halting descent when the string falls on a projection in the well, the device is equipped with a normally open two-position hydraulically controlled distributor with spring return connected to the working surface of the power cylinder and valve connected to it with logical function of ILI for hydraulic control of the normally opened two-position distributor. The latter connects the working cavity of the servocontrol cylinder with the oil tank.

  17. Nonlinear control for a class of hydraulic servo system.

    Science.gov (United States)

    Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong

    2004-11-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  18. TG 220 MW hydraulic control system diagnostics

    International Nuclear Information System (INIS)

    Svabcik, A.

    1996-01-01

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer's factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs

  19. TG 220 MW hydraulic control system diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Svabcik, A [Atomova Elektraren Bohunice, Jaslovske Bohunice (Slovakia)

    1997-12-31

    The TG power output control system comprises a hydraulic and an electronic part. TG speed, power output or the main steam header pressure (HPK) depend on the steam flow at the turbine inlet. The steam admission into the turbine is controlled by four control valves and one by-pass valve in case of the HP part and by four capture flap valves in case of the LP part. The task of the SKODA K-220 MW turbine protection and control systems is to provide both the turbine speed and power output control to the setpoint value. Diagnostic measurements were aimed at getting an overview of both technical and functional states of all power output control elements. Principally, it can be stated that some deficiencies of a design nature originating from the manufacturer`s factory were revealed and some other deficiencies related to hydraulic control elements functionality were identified more closely by the new method. 5 figs.

  20. Application of simple adaptive control to water hydraulic servo cylinder system

    Science.gov (United States)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  1. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    Science.gov (United States)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  2. Full-automatic Special Drill Hydraulic System and PLC Control

    Directory of Open Access Journals (Sweden)

    Tian Xue Jun

    2016-01-01

    Full Text Available A hydraulic-driven and PLC full-automatic special drill is introduced, working principle of the hydraulic system and PLC control system are analyzed and designed, this equipment has the advantages of high efficiency, superior quality and low cost etc.

  3. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator

    DEFF Research Database (Denmark)

    Irizar, Victor; Andreasen, Casper Schousboe

    2017-01-01

    Hydraulic pitch systems provide robust and reliable control of power and speed of modern wind turbines. During emergency stops, where the pitch of the blades has to be taken to a full stop position to avoid over speed situations, hydraulic accumulators play a crucial role. Their efficiency...... and capability of providing enough energy to rotate the blades is affected by thermal processes due to the compression and decompression of the gas chamber. This paper presents an in depth study of the thermodynamical processes involved in an hydraulic accumulator during operation, and how they affect the energy...

  4. Virtual Design of a Controller for a Hydraulic Cam Phasing System

    Science.gov (United States)

    Schneider, Markus; Ulbrich, Heinz

    2010-09-01

    Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.

  5. Control of a hydraulically actuated continuously variable transmission

    NARCIS (Netherlands)

    Pesgens, M.F.M.; Vroemen, B.G.; Stouten, B.; Veldpaus, F.E.; Steinbuch, M.

    2006-01-01

    Vehicular drivelines with hierarchical powertrain control require good component controller tracking, enabling the main controller to reach the desired goals. This paper focuses on the development of a transmission ratio controller for a hydraulically actuated metal push-belt continuously variable

  6. Robust sampled-data control of hydraulic flight control actuators

    OpenAIRE

    Kliffken, Markus Gustav

    1997-01-01

    In todays flight-by-wire systems the primary flight control surfaces of modern commercial and transport aircraft are driven by electro hydraulic linear actuators. Changing flight conditions as well as nonlinear actuator dynamics may be interpreted as parameter uncertainties of the linear actuator model. This demands a robust design for the controller. Here the parameter space design is used for the direct sampled-data controller synthesis. Therefore, a static output controller is choosen, the...

  7. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...... district. The case study considers a novel approach to the design of district heating systems in which the diameter of the pipes used in the system is reduced in order to reduce the heat losses in the system, thereby making it profitable to provide district heating to areas with low energy demands. The new...

  8. Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-07-01

    Full Text Available A novel electric-hydraulic hybrid drivetrain incorporating a set of hydraulic systems is proposed for application in a pure electric vehicle. Models of the electric and hydraulic components are constructed. Two control strategies, which are based on two separate rules, are developed; the maximum energy recovery rate strategy adheres to the rule of the maximization of the braking energy recovery rate, while the minimum current impact strategy adheres to the rule of the minimization of the charge current to the battery. The simulation models were established to verify the effects of these two control strategies. An ABS (Anti-lock Braking System fuzzy control strategy is also developed and simulated. The simulation results demonstrate that the developed control strategy can effectively absorb the braking energy, suppress the current impact, and assure braking safety.

  9. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  10. Researches regarding primary control in hydraulic systems

    OpenAIRE

    Tița Irina; Mardare Irina

    2017-01-01

    The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In ou...

  11. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  12. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  13. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor

    Science.gov (United States)

    Wang, Yannian; Wu, Peizhi; Liu, Chengtao

    2017-09-01

    To improve the stability of the large axial compressor, an efficient and special intelligent hydraulic servo control system is designed and implemented. The adaptive fuzzy PID control algorithm is used to control the position of the hydraulic servo cylinder steadily, which overcomes the drawback that the PID parameters should be adjusted based on the different applications. The simulation and the test results show that the system has a better dynamic property and a stable state performance.

  14. Analysis of and H∞ Controller Design For An Electro-Hydraulic Servo Pressure Regulator

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    -circuit pumps are still hydraulically controlled, there is however still a need for being able to generate a hydraulic pilot pressure. The focus of the current paper is on the analysis and controller design of an electrohydraulic servo pressure regulator, which generates a hydraulic LS-pressure for a variable...

  15. Robust hydraulic position controller by a fuzzy state controller

    International Nuclear Information System (INIS)

    Zhao, T.; Van der Wal, A.J.

    1994-01-01

    In nuclear industry, one of the most important design considerations of controllers is their robustness. Robustness in this context is defined as the ability of a system to be controlled in a stable way over a wide range of system parameters. Generally the systems to be controlled are linearized, and stability is subsequently proven for this idealized system. By combining classical control theory and fuzzy set theory, a new kind of state controller is proposed and successfully applied to a hydraulic position servo with excellent robustness against variation of system parameters

  16. Output Feedback Control of Electro-Hydraulic Cylinder Drives using the Twisting Algorithm

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    contributions in literature. This paper considers the twisting algorithm when applied directly for output feedback control, and with the design based on a reduced order model representation of an arbitrary valve driven hydraulic cylinder drive. The consequence of implementing such a controller with the well......This paper discusses the utilization of the so-called twisting algorithm when applied in output feedback position control schemes for electro-hydraulic cylinder drives. The twisting controller was the first second order sliding controller ever introduced, and can structure-wise be considered...... feedback controller may be successfully applied to hydraulic valve driven cylinder drives, with performance being on the level with a conventional surface based first order sliding mode controller....

  17. Controlling a negative loaded hydraulic cylinder using pressure feedback

    DEFF Research Database (Denmark)

    Hansen, M.R.; Andersen, T.O.

    2010-01-01

    This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly ...... in a nonlinear time domain simulation model validating the linear stability analysis....

  18. A Generic Model Based Tracking Controller for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Schmidt, Lasse; Pedersen, Henrik Clemmensen

    2016-01-01

    in the entire range of operation, rather than reducing stationary errors, and may be parameterized from the desired gain margin, as well as linear model parameters. The proposed control design approaches are evaluated in an experimentally validated, nonlinear simulation model of a hydraulic valve-cylinder drive......The control of hydraulic valve-cylinder drives is still an active subject of research, and various linear and particularly nonlinear approaches has been proposed, especially in the last two-three decades. In many cases the proposed controllers appear to produce excellent tracking ability due...... generally has failed to break through in industry. This paper discusses the dominant properties necessary to take into account when considering position tracking control of hydraulic valve-cylinder drives, and presents two generally applicable, generic control design approaches that combines non...

  19. A Design to Digitalize Hydraulic Cylinder Control of a Machine Tool ...

    African Journals Online (AJOL)

    Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC milling machine which employs a small stepping motor to digitally actuated hydraulic piston - cylinder servo drives existing on the machines Y-axis is ...

  20. Knowledge-based Adaptive Tracking Control of Electro-hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    1997-01-01

    The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF.......The paper deal with intelligent motion control and electro-hydraulic actuator systems for multiaxis machynes and robots.The research results are from the IMCIA research Programme supported by the Danish Technical Research Council, STVF....

  1. Modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    This paper presents the modeling and control of a hybrid wind-tidal turbine with hydraulic accumulator. The hybrid turbine captures the offshore wind energy and tidal current energy simultaneously and stores the excess energy in hydraulic accumulator prior to electricity generation. Two hydraulic pumps installed respectively in wind and tidal turbine nacelles are used to transform the captured mechanical energy into hydraulic energy. To extract the maximal power from wind and tidal current, standard torque controls are achieved by regulating the displacements of the hydraulic pumps. To meet the output power demand, a Proportion Integration Differentiation (PID) controller is designed to distribute the hydraulic energy between the accumulator and the Pelton turbine. A simulation case study based on combining a 5 MW offshore wind turbine and a 1 MW tidal current turbine is undertaken. Case study demonstrates that the hybrid generation system not only captures all the available wind and tidal energy and also delivers the desired generator power precisely through the accumulator damping out all the power fluctuations from the wind and tidal speed disturbances. Energy and exergy analyses show that the energy efficiency can exceed 100% as the small input speeds are considered, and the exergy efficiency has the consistent change trends with demand power. Further more parametric sensitivity study on hydraulic accumulator shows that there is an inversely proportional relationship between accumulator and hydraulic equipments including the pump and nozzle in terms of dimensions. - Highlights: • A hybrid wind-tidal turbine is presented. • Hydraulic accumulator stores/releases the surplus energy. • Standard torque controls extract the maximal power from wind and tidal. • Generator outputs meet the electricity demand precisely. • Parametric sensitivity study on accumulator is implemented.

  2. Nonlinear adaptive robust back stepping force control of hydraulic load simulator: Theory and experiments

    International Nuclear Information System (INIS)

    Yao, Jianyong; Jiao, Zongxia; Yao, Bin

    2014-01-01

    High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.

  3. Nonlinear adaptive robust back stepping force control of hydraulic load simulator: Theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianyong [Nanjing University of Science and Technology, Nanjing (China); Jiao, Zongxia [Beihang University, Beijing (China); Yao, Bin [Purdue University, West Lafayette (United States)

    2014-04-15

    High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.

  4. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  5. An electro-hydraulic servo control system research for CFETR blanket RH

    International Nuclear Information System (INIS)

    Chen, Changqi; Tang, Hongjun; Qi, Songsong; Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao

    2014-01-01

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system

  6. Research on intelligent algorithm of electro - hydraulic servo control system

    Science.gov (United States)

    Wang, Yannian; Zhao, Yuhui; Liu, Chengtao

    2017-09-01

    In order to adapt the nonlinear characteristics of the electro-hydraulic servo control system and the influence of complex interference in the industrial field, using a fuzzy PID switching learning algorithm is proposed and a fuzzy PID switching learning controller is designed and applied in the electro-hydraulic servo controller. The designed controller not only combines the advantages of the fuzzy control and PID control, but also introduces the learning algorithm into the switching function, which makes the learning of the three parameters in the switching function can avoid the instability of the system during the switching between the fuzzy control and PID control algorithms. It also makes the switch between these two control algorithm more smoother than that of the conventional fuzzy PID.

  7. Evidence for internal hydraulic control in the northern Øresund

    DEFF Research Database (Denmark)

    Nielsen, Morten Holtegaard

    2001-01-01

    are a contraction in the northern Oslashresund and the shallow Drogden sill at the entrance to the Baltic. The observations show that the two-layer flows through the contraction are often hydraulically controlled. The observations also reveal details of the transition from subcritical to supercritical flow...... to the strong influence of the Earth's rotation and the curvature of the streamlines. In the present study it is not attempted to explain these conditions, but the probable effects of rotation and curvature on the controlled flow rate are discussed briefly. Also, the possible effects of hydraulic control...

  8. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  9. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adapt......Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants...... of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence...

  10. Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Directory of Open Access Journals (Sweden)

    Han Songshan

    2015-02-01

    Full Text Available A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.

  11. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    Science.gov (United States)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  12. Adaptive Control System of Hydraulic Pressure Based on The Mathematical Modeling

    Science.gov (United States)

    Pilipenko, A. V.; Pilipenko, A. P.; Kanatnikov, N. V.

    2016-04-01

    In this paper, the authors highlight the problem of replacing an old heavy industrial equipment, and offer the replacement of obsolete control systems on the modern adaptive control system, which takes into account changes in the hydraulic system of the press and compensates them with a corrective action. The proposed system can reduce a water hammer and thereby increase the durability of the hydraulic system and tools.

  13. Rapid and long-term effects of water deficit on gas exchange and hydraulic conductance of silver birch trees grown under varying atmospheric humidity.

    Science.gov (United States)

    Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit

    2014-03-24

    Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P water deficit (ΨLwater availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.

  14. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...

  15. UIO-based Fault Diagnosis for Hydraulic Automatic Gauge Control System of Magnesium Sheet Mill

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-02-01

    Full Text Available Hydraulic automatic gauge control system of magnesium sheet mill is a complex integrated control system, which including mechanical, hydraulic and electrical comprehensive information. The failure rate of AGC system always is high, and its fault reasons are always complex. Based on analyzing the fault of main components of the automatic gauge control system, unknown input observer is used to realize fault diagnosis and isolation. Simulation results show that the fault diagnosis method based on the unknown input observer for the hydraulic automatic gauge control system of magnesium sheet mill is effective.

  16. Development of Proportional Pressure Control Valve for Hydraulic Braking Actuator of Automobile ABS

    Directory of Open Access Journals (Sweden)

    Che-Pin Chen

    2018-04-01

    Full Text Available This research developed a novel proportional pressure control valve for an automobile hydraulic braking actuator. It also analyzed and simulated solenoid force of the control valves, and the pressure relief capability test of electromagnetic thrust with the proportional valve body. Considering the high controllability and ease of production, the driver of this proportional valve was designed with a small volume and powerful solenoid force to control braking pressure and flow. Since the proportional valve can have closed-loop control, the proportional valve can replace a conventional solenoid valve in current brake actuators. With the proportional valve controlling braking and pressure relief mode, it can narrow the space of hydraulic braking actuator, and precisely control braking force to achieve safety objectives. Finally, the proposed novel proportional pressure control valve of an automobile hydraulic braking actuator was implemented and verified experimentally.

  17. Tracking control of the hydraulically actuated flexible manipulator

    International Nuclear Information System (INIS)

    Kwon, D.S.; Babcock, S.M.; Burks, B.L.; Kress, R.L.

    1995-01-01

    The remediation of single-shell radioactive waste storage tanks is one of the urgent tasks of the Department of Energy that challenge state-of-the-art equipment and methods. The use of long-reach manipulators is being seriously considered for this remediation task. Because high payload capacity and high length-to-cross-section ratio requirements, these long-reach manipulator systems are expected to use hydraulic actuators and to exhibit significant structural flexibility. The controller has been designed to compensate for the hydraulic actuator dynamics by using a load-compensated velocity feedforward loop and to increase the bandwidth by using a pressure feed backloop. Shaping filter techniques have been applied as a feedforward controller to avoid structural vibrations during operation. Among various types of shaping filter methods investigated an approach, referred to as a ''feedforward simulation filter'' that uses embedded simulation, has been presented

  18. Electro-Pneumatic Control System with Hydraulically Positioning Actuator Motor

    Directory of Open Access Journals (Sweden)

    V. N. Pilgunov

    2016-01-01

    Full Text Available A compressibility of the actuating fluid of a pneumatic drive (compressed air leads to significant landing of the pneumatic cylinder piston at the time of stop and hold of the load, a constant component of which can fluctuate significantly for the holding period.There are a lot of factors, which have a significant impact on the landing value of piston. Those are: an initial position of the piston at its stop, which determines the volume of the an active area of the piston, a value of the constant load component at the time of stop and its variation for the holding period, a transfer coefficient of the position component of the load, an active area of the pneumatic cylinder piston, as well as reduction in atmospheric pressure, which can significantly affect the operation of the control systems of small aircrafts flying at high altitudes.To reduce the landing value of piston due to changing value of the constant load component for its holding period, it is proposed to use a hydraulic positioner, which comprises a hydraulic cylinder the rod of which is rigidly connected to the rod of the pneumatic cylinder through the traverse, a cross-feed valve of the hydro-cylinder cavities with discrete electro-magnetic control, and adjustable chokes.A programmable logic controller provides the hydraulic positioner control. At the moment the piston stops and the load is held the cross-feed valve overlaps the hydro-cylinder cavities thereby locking the pneumatic cylinder piston and preventing its landing. With available pneumatic cylinder-controlled signal the cross-feed valve connects the piston and rod cavities of the positioner hydro-cylinder, the pneumatic cylinder piston is released and becomes capable of moving.A numerical estimate of landing of the pneumatic cylinder piston and its positioning quality is of essential interest. For this purpose, a technique to calculate the landing of piston has been developed taking into consideration that different

  19. Hydraulically centered control rod

    International Nuclear Information System (INIS)

    Horlacher, W.R.; Sampson, W.T.; Schukei, G.E.

    1981-01-01

    A control rod suspended to reciprocate in a guide tube of a nuclear fuel assembly has a hydraulic bearing formed at its lower tip. The bearing includes a plurality of discrete pockets on its outer surface into which a flow of liquid is continuously provided. In one embodiment the flow is induced by the pressure head in a downward facing chamber at the end of the bearing. In another embodiment the flow originates outside the guide tube. In both embodiments the flow into the pockets produces pressure differences across the bearing which counteract forces tending to drive the rod against the guide tube wall. Thus contact of the rod against the guide tube is avoided

  20. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    Science.gov (United States)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  1. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  2. Nonlinear dynamic analysis and robust controller design for Francis hydraulic turbine regulating system with a straight-tube surge tank

    Science.gov (United States)

    Liang, Ji; Yuan, Xiaohui; Yuan, Yanbin; Chen, Zhihuan; Li, Yuanzheng

    2017-02-01

    The safety and stability of hydraulic turbine regulating system (HTRS) in hydropower plants become increasingly important since the rapid development and the broad application of hydro energy technology. In this paper, a novel mathematical model of Francis hydraulic turbine regulating system with a straight-tube surge tank based on a few state-space equations is introduced to study the dynamic behaviors of the HTRS system, where the existence of possible unstable oscillations of this model is studied extensively and presented in the forms of the bifurcation diagram, time waveform plot, phase trajectories, and power spectrum. To eliminate these undesirable behaviors, a specified fuzzy sliding mode controller is designed. In this hybrid controller, the sliding mode control law makes full use of the proposed model to guarantee the robust control in the presence of system uncertainties, while the fuzzy system is applied to approximate the proper gains of the switching control in sliding mode technique to reduce the chattering effect, and particle swarm optimization is developed to search the optimal gains of the controller. Numerical simulations are presented to verify the effectiveness of the designed controller, and the results show that the performances of the nonlinear HTRS system assisted with the proposed controller is much better than that with the commonly used optimal PID controller.

  3. Evaluation of Linear and Non-Linear Control Schemes Applied to a Hydraulic Servo System

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik Clemmensen

    2005-01-01

    Due to the innovation of low-cost electronics such as sensors, microcontrollers etc., the focus on highperformance motion control is increasing. This work focuses on position control of single-input single-output hydraulic servo-systems in general. A hydraulically actuated robotic manipulator...

  4. An Analytic Approach to Cascade Control Design for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Hansen, Anders Hedegaard; Andersen, Torben O.

    2016-01-01

    , unfortunately not present in valve-operated hydraulic drives. This paper considers a cascade control approach for hydraulic valve-cylinder drives motivated by the fact that this may be applied to successfully suppress nonlinearities. The drive is pre-compensated utilizing a pressure updated inverse valve flow...

  5. Plant hydraulic controls over ecosystem responses to climate-enhanced disturbances

    Science.gov (United States)

    Mackay, D. S.; Ewers, B. E.; Reed, D. E.; Pendall, E.; McDowell, N. G.

    2012-12-01

    Climate-enhanced disturbances such as drought and insect infestation range in severity, contributing minor to severe stress to forests including forest mortality. While neither form of disturbance has been unambiguously implicated as a mechanism of mortality, both induce changes in water, carbon, and nutrient cycling that are key to understanding forest ecosystem response to, and recovery from, disturbance. Each disturbance type has different biophysical, ecohydrological, and biogeochemical signatures that potentially complicate interpretation and development of theory. Plant hydraulic function is arguably a unifying control over these responses to disturbance because it regulates stomatal conductance, leaf biochemistry, carbon (C) uptake and utilization, and nutrient cycling. We demonstrated this idea by focusing on water and C, including non-structural (NSC), resources, and nitrogen (N) uptake across a spectrum of forest ecosystems (e.g., northern temperate mixed forests, lodgepole pine forests in the Rocky Mountains, and pinon pine - juniper woodlands in New Mexico) using the Terrestrial Regional Ecosystem Exchange Simulator (TREES). TREES is grounded in the biophysics of water movement through soil and plants, respectively via hydraulic conductivity of the soil and cavitation of xylem. It combines this dynamic plant hydraulic conductance with canopy biochemical controls over photosynthesis, and the dynamics of structural and non-structural carbon through a carbon budget that responds to plant hydraulic status. As such, the model can be used to develop testable hypotheses on a multitude of disturbance and recovery responses including xylem dysfunction, stomatal and non-stomatal controls on photosynthesis and carbon allocation, respiration, and allocation to defense compounds. For each of the ecosystems we constrained and evaluated the model with allometry, sap flux and/or eddy covariance data, leaf gas exchange measurements, and vulnerability to cavitation data

  6. Engine including hydraulically actuated valvetrain and method of valve overlap control

    Science.gov (United States)

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  7. Control of flexible robots with prismatic joints and hydraulic drives

    International Nuclear Information System (INIS)

    Love, L.J.; Kress, R.L.; Jansen, J.F.

    1997-01-01

    The design and control of long-reach, flexible manipulators has been an active research topic for over 20 years. Most of the research to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long-reach systems. One example is the Modified Light Duty Utility Arm (MLDUA) designed and built by Spar Aerospace for Oak Ridge National Laboratory (ORNL). This arm operates in larger, underground waste storage tanks located at ORNL. The size and nature of the tanks require that the robot have a reach of approximately 15 ft and a payload capacity of 250 lb. In order to achieve these criteria, each joint is hydraulically actuated. Furthermore, the robot has a prismatic degree-of-freedom to ease deployment. When fully extended, the robot's first natural frequency is 1.76 Hz. Many of the projected tasks, coupled with the robot's flexibility, present an interesting problem. How will many of the existing flexure control algorithms perform on a hydraulic, long-reach manipulator with prismatic links? To minimize cost and risk of testing these algorithms on the MLDUA, the authors have designed a new test bed that contains many of the same elements. This manuscript described a new hydraulically actuated, long-reach manipulator with a flexible prismatic link at ORNL. Focus is directed toward both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  8. Robust Control of Industrial Hydraulic Cylinder Drives - with Special Reference to Sliding Mode- & Finite-Time Control

    DEFF Research Database (Denmark)

    Schmidt, Lasse

    In industry, performance requirements regarding machinery, applications etc., are constantly increasing, and with the development of reliable proportional flow control components to reasonable prices, the market is increasingly turning its attention toward controllable fluid power solutions....... For series produced systems such as presses etc., dedicated controls are often developed. However, the great majority of the hydraulic systems developed, are produced in limited numbers for specialized applications, and here stand alone economically feasible digital controllers with ease-of-use interfaces...... are widely used. Such controllers typically provide the possibility to employ traditional linear controls such as PID schemes, and variants of this, with parameters tunable via graphical user interfaces. However, due to the intrinsic nonlinearities of hydraulic systems as well as the often limited knowledge...

  9. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  10. Linear Perturbation Adaptive Control of Hydraulically Driven Manipulators

    DEFF Research Database (Denmark)

    Andersen, T.O.; Hansen, M.R.; Conrad, Finn

    2004-01-01

    control.Using the Lyapunov approach, under slowly time-varying assumptions, it is shown that the tracking error and the parameter error remain bounded. This bound is a function of the ideal parameters and a bounded disturbance. The control algorithm decouples and linearizes the manipulator so that each......A method for synthesis of a robust adaptive scheme for a hydraulically driven manipulator, that takes full advantage of any known system dynamics to simplify the adaptive control problem for the unknown portion of the dynamics is presented. The control method is based on adaptive perturbation...

  11. Active control of multi-input hydraulic journal bearing system

    Science.gov (United States)

    Chuang, Jen-Chen; Chen, Chi-Yin; Tu, Jia-Ying

    2016-09-01

    Because of the advantages of high accuracy, high capacity, and low friction, the development of hydrostatic bearing for machine tool receives significant attention in the last decades. The mechanics and mechanical design of hydrostatic journal bearing with capillary restrictors has been discussed in literature. However, pragmatically, the undesired loading effects of cutting force tend to result in resonance and instability of the rotor and damage the shaft during operation. Therefore, multi-input, active flow control using state feedback design is proposed in this paper. To this purpose, the proportional pressure valves are added to the hydraulic system as active control devices, and the linearised models of the bearing and valve are discussed and identified. Simulation and experimental work is conducted to verify the proposed active control and parameter identification techniques. The results show that the unbalance responses of the rotor are reduced by the proposed state feedback controller, which is able to regulate the flow pressure effectively, thus enhancing the stability and accuracy of the hydraulic journal bearing.

  12. Transient flow analysis of the single cylinder for the control rod hydraulic driving system

    International Nuclear Information System (INIS)

    Sun, Xinming; Qin, Benke; Bo, Hanliang

    2017-01-01

    Highlights: • The control rod hydraulic driving system(CRHDS) is a new type of built-in control rod drive technology. The hydraulic cylinder is the main component of the CRHDS. • Transient flow phenomenon in the CRHDS is studied by experiments under different working conditions. • The working mechanism of the hydraulic cylinder step motion and the key characteristic parameters are analyzed based on the experimental results. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology. In the CRHDS the pulse flow from the pump into the hydraulic cylinder of the control rod hydraulic drive mechanism (CRHDM) is regulated by the integrated valve to perform the step motion of the reactor control rod. Transient flow occurs in the CRHDS during control rod step motion process which is studied by experiments. The time-history curves of flow rate, pressure and inner cylinder displacement were analyzed, and the results show that the water hammer pressure peak during the step-up motion is high, while there are no obvious pressure fluctuations in the corresponding step-down motion. In the step-up process, the pressure fluctuation amplitude increases with the increase of CRHDS driving pressure. The step-up time and the pressure increasing time before step-up decreases with the driving pressure. The step-up pressure increases with the driving pressure. In the step-down process, the step-down time, the step-down pressure and the pressure decreasing time before step-down do not change with the increase of the driving pressure. The experimental results lay the base for the working principle and vibration reduction analysis of the CRHDS and it’s also helpful for improvement of the working performance of the key facilities and instruments of the CRHDS loop.

  13. Design and control of a point absorber wave energy converter with an open loop hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    Highlights: • Point absorber wave energy converter is presented. • Piston pump module captures and converts wave energy. • Hydraulic accumulator stores/releases the surplus energy. • Fuzzy controller adjusts the displacement of hydraulic motor. • Generator outputs meet the electricity demand precisely. - Abstract: In this paper, a point absorber wave energy converter combined with offshore wind turbine is proposed. In the system, the wave energy is captured and converted into hydraulic energy by a piston pump module, which is combined with a wind turbine floating platform, and then the hydraulic energy is converted into electricity energy by a variable displacement hydraulic motor and induction generator. In order to smooth and stabilize the captured wave energy, a hydraulic accumulator is applied to store and release the excess energy. In order to meet the demand power a fuzzy controller is designed to adjust the displacement of hydraulic motor and controlled the output power. Simulation under irregular wave condition has been carried out to verify the validity of the mathematical model and the effectiveness of the controller strategy. The results show that the wave energy converter system could deliver the required electricity power precisely as the motor output torque is controlled. The accumulator could damp out all the fluctuations in output power, so the wave energy would become a dispatchable power source.

  14. Wind power plants. Hydraulic transmission with control systems for unrestricted number of revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, R

    1976-09-01

    Basic ideas are presented for the design of a hydraulic transmission with its control system adapted to an electric generator operated by a wind turbine with unrestricted revolutions. The settlement of the principle is shown by means of commercially available parts. The relations of the installed effect, its cost and the length of operational life are discussed. The control system is directly integrated to the hydraulic circuits.

  15. A new generation drilling rig: hydraulically powered and computer controlled

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, M.; Angman, P.; Oveson, D. [Tesco Corp., Calgary, AB, (Canada)

    1999-11-01

    Development, testing and operation of a new generation of hydraulically powered and computer controlled drilling rig that incorporates a number of features that enhance functionality and productivity, is described. The rig features modular construction, a large heated common drilling machinery room, permanently-mounted draw works which, along with the permanently installed top drive, significantly reduces rig-up/rig-down time. Also featured are closed and open hydraulic systems and a unique hydraulic distribution manifold. All functions are controlled through a programmable logic controller (PLC), providing almost unlimited interlocks and calculations to increase rig safety and efficiency. Simplified diagnostic routines, remote monitoring and troubleshooting are also part of the system. To date, two rigs are in operation. Performance of both rigs has been rated as `very good`. Little or no operational problems have been experienced; downtime has averaged 0.61 per cent since August 1998 when the the first of the two rigs went into operation. The most important future application for this rig is for use with the casing drilling process which eliminates the need for drill pipe and tripping. It also reduces the drilling time lost due to unscheduled events such as reaming, fishing and taking kicks while tripping. 1 tab., 6 figs.

  16. Experimental Study of Hydraulic Control Rod Drive Mechanism for Passive IN-core Cooling System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    CAREM 25 (27 MWe safety systems using hydraulic control rod drives (CRD) studied critical issues that were rod drops with interrupted flow [3]. Hydraulic control rod drive suggested fast shutdown condition using a large gap between piston and cylinder in order to fast drop of neutron absorbing rods. A Passive IN-core Cooling system (PINCs) was suggested for safety enhancement of pressurized water reactors (PWR), small modular reactor (SMR), sodium fast reactor (SFR) in UNIST. PINCs consist of hydraulic control rod drive mechanism (Hydraulic CRDM) and hybrid control rod assembly with heat pipe combined with control rod. The schematic diagram of the hydraulic CRDM for PINCs is shown in Fig. 1. The experimental results show the steady state and transient behavior of the upper cylinder at a low pressure and low temperature. The influence of the working fluid temperature and cylinder mass are investigated. Finally, the heat removal between evaporator section and condenser section is compared with or without the hybrid control rod. Heat removal test of the hybrid heat pipe with hydraulic CRDM system showed the heat transfer coefficient of the bundle hybrid control rod and its effect on evaporator pool. The preliminary test both hydraulic CRDM and heat removal system was conducted, which showed the possibility of the in-core hydraulic drive system for application of PINCs.

  17. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  18. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  19. Internal Leakage Fault Detection and Tolerant Control of Single-Rod Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    Jianyong Yao

    2014-01-01

    Full Text Available The integration of internal leakage fault detection and tolerant control for single-rod hydraulic actuators is present in this paper. Fault detection is a potential technique to provide efficient condition monitoring and/or preventive maintenance, and fault tolerant control is a critical method to improve the safety and reliability of hydraulic servo systems. Based on quadratic Lyapunov functions, a performance-oriented fault detection method is proposed, which has a simple structure and is prone to implement in practice. The main feature is that, when a prescribed performance index is satisfied (even a slight fault has occurred, there is no fault alarmed; otherwise (i.e., a severe fault has occurred, the fault is detected and then a fault tolerant controller is activated. The proposed tolerant controller, which is based on the parameter adaptive methodology, is also prone to realize, and the learning mechanism is simple since only the internal leakage is considered in parameter adaptation and thus the persistent exciting (PE condition is easily satisfied. After the activation of the fault tolerant controller, the control performance is gradually recovered. Simulation results on a hydraulic servo system with both abrupt and incipient internal leakage fault demonstrate the effectiveness of the proposed fault detection and tolerant control method.

  20. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...

  1. A device for the hydraulic control of nuclear reactor control rods

    International Nuclear Information System (INIS)

    Frisch, Erling; Frisch, D.R.; Andrews, H.N.

    1974-01-01

    A device for driving and locking the control rods of a nuclear reactor. This device comprises a hydraulic driving piston mounted in a cylinder provided with a construction for absorbing shocks. The piston is provided, at is extremity, with a locking device adapted to engage a stationary lock, it being possible to control the latter for freeing said piston locking device; with such an arrangement, the control rod is normally maintained in position, and it can be freed only by a positive signal. Moreover, the control rod movements are slowed down, so as to prevent the gripping device from being damaged. This device can be used in the nuclear industry [fr

  2. Optimal Design and Hybrid Control for the Electro-Hydraulic Dual-Shaking Table System

    Directory of Open Access Journals (Sweden)

    Lianpeng Zhang

    2016-08-01

    Full Text Available This paper is to develop an optimal electro-hydraulic dual-shaking table system with high waveform replication precision. The parameters of hydraulic cylinders, servo valves, hydraulic supply power and gravity balance system are designed and optimized in detail. To improve synchronization and tracking control precision, a hybrid control strategy is proposed. The cross-coupled control using a novel based on sliding mode control based on adaptive reaching law (ASMC, which can adaptively tune the parameters of sliding mode control (SMC, is proposed to reduce the synchronization error. To improve the tracking performance, the observer-based inverse control scheme combining the feed-forward inverse model controller and disturbance observer is proposed. The system model is identified applying the recursive least squares (RLS algorithm and then the feed-forward inverse controller is designed based on zero phase error tracking controller (ZPETC technique. To compensate disturbance and model errors, disturbance observer is used cooperating with the designed inverse controller. The combination of the novel ASMC cross-coupled controller and proposed observer-based inverse controller can improve the control precision noticeably. The dual-shaking table experiment system is built and various experiments are performed. The experimental results indicate that the developed system with the proposed hybrid control strategy is feasible and efficient and can reduce the tracking errors to 25% and synchronization error to 16% compared with traditional control schemes.

  3. Hydraulically driven control rod concept for integral reactors: fluid dynamic simulation and preliminary test

    International Nuclear Information System (INIS)

    Ricotti, M.E.; Cammi, A.; Lombardi, C.; Passoni, M.; Rizzo, C.; Carelli, M.; Colombo, E.

    2003-01-01

    The paper deals with the preliminary study of the Hydraulically Driven Control Rod concept, tailored for PWR control rods (spider type) with hydraulic drive mechanism completely immersed in the primary water. A specific solution suitable for advanced versions of the IRIS integral reactor is under investigation. The configuration of the Hydraulic Control Rod device, made up by an external movable piston and an internal fixed cylinder, is described. After a brief description of the whole control system, particular attention is devoted to the Control Rod characterization via Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior, including dynamic equilibrium and stability properties, has been carried out. Finally, preliminary tests were performed in a low pressure, low temperature, reduced length experimental facility. The results are compared with the dynamic control model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performs correctly, allowing stable dynamic equilibrium positions for the Control Rod and stable behavior during withdrawal and insertion steps. (author)

  4. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2013-01-01

    Full Text Available This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV. Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simulink and makes a simulation analysis of the control strategy of regenerative braking. The results show that this strategy can equip the hydraulic hybrid vehicle with strong brake energy recovery power in typical urban drive state.

  5. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system.

    Science.gov (United States)

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong

    2014-11-01

    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Seismic analysis of hydraulic control rod driving system

    International Nuclear Information System (INIS)

    Zheng, Yanhua; Bo, Hanliang; Dong, Duo

    2002-01-01

    A simplified mathematical model was developed for the Hydraulic Control Rod Driving System (HCRDS) of a 200 MW nuclear heating reactor, which incorporated the design of its chamfer-hole step cylinder, to analyze its seismic response characteristics. The control rod motion was analyzed for different sine-wave vibration loadings on platform vibrator. The vibration frequency domain and the minimum acceleration amplitude of the control rod needed to cause the control rod to step to its next setting were compared with the design acceleration amplitude spectrum. The system design was found to be safety within the calculated limits. The safety margin increased with increasing frequency. (author)

  7. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  8. Research on the Robustness of the Constant Speed Control of Hydraulic Energy Storage Generation

    Directory of Open Access Journals (Sweden)

    Zengguang Liu

    2018-05-01

    Full Text Available Energy storage plays a major role in solving the fluctuation and intermittence problem of wind and the effective use of wind power. The application of the hydraulic accumulator is the most efficient and convenient way to store wind energy in hydraulic wind turbines. A hydraulic energy storage generation system (HESGS can transform hydraulic energy stored in the hydraulic accumulator into stable and constant electrical energy by controlling the variable motor, regardless of wind changes. The aim of the present study is to design a constant speed control method for the variable motor in the HESGS and investigate the influence of the controller’s main parameters on the resistance of the HESGS to external load power disturbances. Mathematical equations of all components in this system are introduced and an entire system simulation model is built. A double closed-loop control method of the variable motor is presented within this paper, which keeps the motor speed constant for the fixed frequency of electrical power generated by the HESGS. Ultimately, a series of simulations with different proportional gains and integral gains under the environment of changeless load power step are conducted. At the same time, comparison analyses of the experiment and simulation under variable load power step are performed. The results verify the correctness and the usability of the simulation model, and also indicate that the proposed control method is robust to the disturbances of changing load power.

  9. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    Science.gov (United States)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  10. the Modeling of Hydraulic Jump Generated Partially on Sloping Apron

    Directory of Open Access Journals (Sweden)

    Shaker Abdulatif Jalil

    2017-12-01

    Full Text Available Modeling aims to characterize system behavior and achieve simulation close as possible of the reality. The rapid energy exchange in supercritical flow to generate quiet or subcritical flow in hydraulic jump phenomenon is important in design of hydraulic structures. Experimental and numerical modeling is done on type B hydraulic jump which starts first on sloping bed and its end on horizontal bed.  Four different apron slopes are used, for each one of these slopes the jump is generated on different locations by controlling the tail water depth.  Modelling validation is based on 120 experimental runs which they show that there is reliability. The air volume fraction which creates in through hydraulic jump varied between 0.18 and 0.28. While the energy exchanges process take place within 6.6, 6.1, 5.8, 5.5 of the average relative jump height for apron slopes of 0.18, 0.14, 0.10, 0.07 respectively. Within the limitations of this study, mathematical prediction model for relative hydraulic jump height is suggested.The model having an acceptable coefficient of determination.

  11. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    Science.gov (United States)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and

  12. Nonlinear, Adaptive and Fault-tolerant Control for Electro-hydraulic Servo Systems

    DEFF Research Database (Denmark)

    Choux, Martin

    is designed and implemented on the test bed that successfully diagnoses internal or external leakages, friction variations in the actuator or fault related to pressure sensors. The presented algorithm uses the position and pressure measurements to detect and isolate faults, avoiding missed detection and false...... numerous attractive properties, hydraulic systems are always subject to potential leakages in their components, friction variation in their hydraulic actuators and deciency in their sensors. These violations of normal behaviour reduce the system performances and can lead to system failure...... if they are not detected early and handled. Moreover, the task of controlling electro hydraulic systems for high performance operations is challenging due to the highly nonlinear behaviour of such systems and the large amount of uncertainties present in their models. This thesis focuses on nonlinear adaptive fault...

  13. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.

    Science.gov (United States)

    Romero, Pascual; Botía, Pablo; Keller, Markus

    2017-09-01

    Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather

  14. a design to digitalize hydraulic cylinder control of a machine tool

    African Journals Online (AJOL)

    Dr Obe

    1995-09-01

    Sep 1, 1995 ... Department of Mechanical Engineering. FEDERAL UNIVERSITY OF TECHNOLOGY, OWERRI,. P.M.B. 1526, OWERRI. ABSTRACT. Conventionally hydraulic piston - cylinder servos are actuated using analogue controls for machine tool axis drives. In this paper a design of the axis control system of an NC ...

  15. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    OpenAIRE

    Liu, Tao; Zheng, Jincheng; Su, Yongmao; Zhao, Jinghui

    2013-01-01

    This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe) regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV). Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simul...

  16. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  17. Modeling and control of a hydraulically actuated flexible-prismatic link robot

    International Nuclear Information System (INIS)

    Love, L.; Kress, R.; Jansen, J.

    1996-12-01

    Most of the research related to flexible link manipulators to date has focused on single link, fixed length, single plane of vibration test beds. In addition, actuation has been predominantly based upon electromagnetic motors. Ironically, these elements are rarely found in the existing industrial long reach systems. This manuscript describes a new hydraulically actuated, long reach manipulator with a flexible prismatic link at Oak Ridge National Laboratory (ORNL). Focus is directed towards both modeling and control of hydraulic actuators as well as flexible links that have variable natural frequencies

  18. Real-time neural network-based self-tuning control of a nonlinear electro-hydraulic servomotor

    Energy Technology Data Exchange (ETDEWEB)

    Canelon, J.I.; Ortega, A.G. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Electrical Engineering; Shieh, L.S. [Houston Univ., Houston, TX (United States). Dept. of Electrical and Computer Engineering; Bastidas, J.I. [Univ. del Zulia, Maracaibo, Zulia (Venezuela, Bolivarian Republic of). School of Mechanical Engineering; Zhang, Y.; Akujuobi, C.M. [Prairie View A and M Univ., Prairie View, TX (United States). Center of Excellence for Communication Systems Technology Research and Dept. of Engineering Technology

    2010-08-13

    For high power applications, hydraulic actuators offer many advantages over electromagnetic actuators, including higher torque/mass ratios; smaller control gains; excellent torque capability; filtered high frequency noise; better heat transfer characteristics; smaller size; higher speed of response of the servomechanism; cheaper hardware; and higher reliability. Therefore, any application that requires a large force applied smoothly by an actuator is a candidate for hydraulic power. Examples of such applications include vehicle steering and braking systems; roll mills; drilling rigs; heavy duty crane and presses; and industrial robots and actuators for aircraft control surfaces such as ailerons and flaps. It is extremely important to create effective control strategies for hydraulic systems. This paper outlined the real-time implementation of a neural network-based approach, for self-tuning control of the angular position of a nonlinear electro-hydraulic servomotor. Using an online training algorithm, a neural network autoregressive moving-average model with exogenous input (ARMAX) model of the system was identified and continuously updated and an optimal linear ARMAX model was determined. The paper briefly depicted the neural network-based self-tuning control approach and a description of the experimental equipment (hardware and software) was presented including the implementation details. The experimental results were discussed and conclusions were summarized. It was found that the approach proved to be very effective in the control of this fast dynamics system, outperforming a fine tuned PI controller. Therefore, although the self-tuning approach was computationally demanding, it was feasible for real-time implementation. 22 refs., 6 figs.

  19. Thermal-Hydraulic Analysis Tasks for ANAV NPPs in Support of Plant Operation and Control

    Directory of Open Access Journals (Sweden)

    L. Batet

    2007-11-01

    Full Text Available Thermal-hydraulic analysis tasks aimed at supporting plant operation and control of nuclear power plants are an important issue for the Asociación Nuclear Ascó-Vandellòs (ANAV. ANAV is the consortium that runs the Ascó power plants (2 units and the Vandellòs-II power plant. The reactors are Westinghouse-design, 3-loop PWRs with an approximate electrical power of 1000 MW. The Technical University of Catalonia (UPC thermal-hydraulic analysis team has jointly worked together with ANAV engineers at different levels in the analysis and improvement of these reactors. This article is an illustration of the usefulness of computational analysis for operational support. The contents presented were operational between 1985 and 2001 and subsequently changed slightly following various organizational adjustments. The paper has two different parts. In the first part, it describes the specific aspects of thermal-hydraulic analysis tasks related to operation and control and, in the second part, it briefly presents the results of three examples of analyses that were performed. All the presented examples are related to actual situations in which the scenarios were studied by analysts using thermal-hydraulic codes and prepared nodalizations. The paper also includes a qualitative evaluation of the benefits obtained by ANAV through thermal-hydraulic analyses aimed at supporting operation and plant control.

  20. Monitoring Hydraulic Fracturing Using Ground-Based Controlled Source Electromagnetics

    Science.gov (United States)

    Hickey, M. S.; Trevino, S., III; Everett, M. E.

    2017-12-01

    Hydraulic fracturing allows hydrocarbon production in low permeability formations. Imaging the distribution of fluid used to create a hydraulic fracture can aid in the characterization of fracture properties such as extent of plume penetration as well as fracture azimuth and symmetry. This could contribute to improving the efficiency of an operation, for example, in helping to determine ideal well spacing or the need to refracture a zone. A ground-based controlled-source electromagnetics (CSEM) technique is ideal for imaging the fluid due to the change in field caused by the difference in the conductive properties of the fluid when compared to the background. With advances in high signal to noise recording equipment, coupled with a high-power, broadband transmitter we can show hydraulic fracture extent and azimuth with minimal processing. A 3D finite element code is used to model the complete well casing along with the layered subsurface. This forward model is used to optimize the survey design and isolate the band of frequencies with the best response. In the field, the results of the modeling are also used to create a custom pseudorandom numeric (PRN) code to control the frequencies transmitted through a grounded dipole source. The receivers record the surface voltage across two grounded dipoles, one parallel and one perpendicular to the transmitter. The data are presented as the displays of amplitude ratios across several frequencies with the associated spatial information. In this presentation, we show multiple field results in multiple basins in the United States along with the CSEM theory used to create the survey designs.

  1. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory.

    Science.gov (United States)

    Wang, Chengwen; Quan, Long; Zhang, Shijie; Meng, Hongjun; Lan, Yuan

    2017-03-01

    Hydraulic servomechanism is the typical mechanical/hydraulic double-dynamics coupling system with the high stiffness control and mismatched uncertainties input problems, which hinder direct applications of many advanced control approaches in the hydraulic servo fields. In this paper, by introducing the singular value perturbation theory, the original double-dynamics coupling model of the hydraulic servomechanism was reduced to a integral chain system. So that, the popular ADRC (active disturbance rejection control) technology could be directly applied to the reduced system. In addition, the high stiffness control and mismatched uncertainties input problems are avoided. The validity of the simplified model is analyzed and proven theoretically. The standard linear ADRC algorithm is then developed based on the obtained reduced-order model. Extensive comparative co-simulations and experiments are carried out to illustrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Researches regarding primary control in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available The technology in wind turbines has developed very rapidly but there are still a lot that can be improved also regarding new technologies. One example is wind turbine with hydraulic transmission. At the beginning low power wind turbines are in view. First of all the wind energy is meant to be used by isolated users for household and garden equipment or pumping water. Later, if results will be as expected, and wind potential satisfactory, such systems could be connected to electric grid. In our research laboratory we must build an experimental setup. The simulation for wind turbine and fixed displacement pump coupled to it will be realized using a variable displacement piston pump. As the variable wind speed has as a result variations of the pump flow, the variable displacement pump from the test rig may reproduce a similar variation law. In this paper some aspects regarding the variable displacement pump are detailed. This study is necessary for the future development of the research.

  3. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-01-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  4. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  5. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  6. On Application of Second Order Sliding Mode Control to Electro-Hydraulic Systems

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2014-01-01

    This paper discusses the application of second order mode controls to hydraulic valve-cylinder drives with a special focus on the limitations resulting from nonlinear dynamic effects in flow control valves. Second order sliding mode algorithms appear highly attractive in the successive...

  7. Development of control system of coating of rod hydraulic cylinders

    Science.gov (United States)

    Aizhambaeva, S. Zh; Maximova, A. V.

    2018-01-01

    In this article, requirements to materials of hydraulic cylinders and methods of eliminating the main factors affecting the quality of the applied coatings rod hydraulic cylinders. The chromium plating process - one of ways of increase of anti-friction properties of coatings rods, stability to the wear and corrosion. The article gives description of differences of the stand-speed chromium plating process from other types of chromium plating that determines a conclusion about cutting time of chromium plating process. Conducting the analysis of technological equipment suggested addressing the modernization of high-speed chromium plating processes by automation and mechanization. Control system developed by design of schematic block diagram of a modernized and stand-speed chromium plating process.

  8. Model-based servo hydraulic control of a continuously variable transmission

    NARCIS (Netherlands)

    Cools, S.J.M.; Veenhuizen, P.A.; Pauwelussen, J.P.

    2004-01-01

    In order to reduce the power consumption of a transmission, maximum tracking accuracy should be achieved of both ratio and pressures in the variator. A control strategy is proposed to steer a variator, actuated with a newly developed hydraulic system, of a Continuously Variable Transmission (CVT).

  9. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  10. An approach for second order control with finite time convergence for electro-hydraulic drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    algorithm parameters. However a discontinuous term internally in the control structure may excite pressures of transmission lines in hydraulic drives as the control structure strives to maintain the control error and its derivative equal to zero. In this paper a modified version of a controller based......Being a second order sliding algorithm, the super twisting algorithm is highly attractive for application in control of hydraulic drives and mechanical systems in general, as it utilizes only the control error while driving the control error as well as its derivative to zero for properly chosen...... on the super twisting algorithm is proposed, with the focus of eliminating the discontinuous term in order to achieve a more smooth control operation. The convergence properties of the proposed controller are analyzed via a conservative phase plane analysis. Furthermore, homogeneity considerations imply finite...

  11. Hydraulic system for the drive of control rod

    International Nuclear Information System (INIS)

    Niwano, Masao.

    1978-01-01

    Purpose: To remove thermal stress and improve safety by utilizing water discharged a driving device as a part of cooling water for the device upon driving of control rods. Constitution: A water drain valve is wholly closed and a flow stabilization valve is supplied with an amount of water necessary for driving control rods. Upon driving one control rod, an amount of water required for the driving is caused to flow to the relivant hydraulic control unit and the flow rate in the stabilization valve is reduced by an amount required for the driving to keep the flow rate constant in the flow control valve. Since Excess water conventionally returned to the pressure vessel is utilized as cooling water for the driving device of control rods, the pressure vessel nozzle can be saved. Accordingly, the thermal stress in the nozzle portion can be removed to significantly improve the safety. (Seki, T.)

  12. Adaptive Neural Network Control for Nonlinear Hydraulic Servo-System with Time-Varying State Constraints

    Directory of Open Access Journals (Sweden)

    Shu-Min Lu

    2017-01-01

    Full Text Available An adaptive neural network control problem is addressed for a class of nonlinear hydraulic servo-systems with time-varying state constraints. In view of the low precision problem of the traditional hydraulic servo-system which is caused by the tracking errors surpassing appropriate bound, the previous works have shown that the constraint for the system is a good way to solve the low precision problem. Meanwhile, compared with constant constraints, the time-varying state constraints are more general in the actual systems. Therefore, when the states of the system are forced to obey bounded time-varying constraint conditions, the high precision tracking performance of the system can be easily realized. In order to achieve this goal, the time-varying barrier Lyapunov function (TVBLF is used to prevent the states from violating time-varying constraints. By the backstepping design, the adaptive controller will be obtained. A radial basis function neural network (RBFNN is used to estimate the uncertainties. Based on analyzing the stability of the hydraulic servo-system, we show that the error signals are bounded in the compacts sets; the time-varying state constrains are never violated and all singles of the hydraulic servo-system are bounded. The simulation and experimental results show that the tracking accuracy of system is improved and the controller has fast tracking ability and strong robustness.

  13. Control design and optimization for the DOT500 hydraulic wind turbine

    NARCIS (Netherlands)

    Mulders, S.P.; Jager, Stéphane; Diepeveen, N.F.B.; van Wingerden, J.W.

    2017-01-01

    The drivetrain of most wind turbines currently being deployed commercially consists of a rotor-gearboxgenerator configuration in the nacelle. This abstract introduces the control system design and optimization for a wind turbine with a hydraulic drivetrain, based on the Delft Offshore Turbine (DOT)

  14. Recurrent-neural-network-based identification of a cascade hydraulic actuator for closed-loop automotive power transmission control

    International Nuclear Information System (INIS)

    You, Seung Han; Hahn, Jin Oh

    2012-01-01

    By virtue of its ease of operation compared with its conventional manual counterpart, automatic transmissions are commonly used as automotive power transmission control system in today's passenger cars. In accordance with this trend, research efforts on closed-loop automatic transmission controls have been extensively carried out to improve ride quality and fuel economy. State-of-the-art power transmission control algorithms may have limitations in performance because they rely on the steady-state characteristics of the hydraulic actuator rather than fully exploit its dynamic characteristics. Since the ultimate viability of closed-loop power transmission control is dominated by precise pressure control at the level of hydraulic actuator, closed-loop control can potentially attain superior efficacy in case the hydraulic actuator can be easily incorporated into model-based observer/controller design. In this paper, we propose to use a recurrent neural network (RNN) to establish a nonlinear empirical model of a cascade hydraulic actuator in a passenger car automatic transmission, which has potential to be easily incorporated in designing observers and controllers. Experimental analysis is performed to grasp key system characteristics, based on which a nonlinear system identification procedure is carried out. Extensive experimental validation of the established model suggests that it has superb one-step-ahead prediction capability over appropriate frequency range, making it an attractive approach for model-based observer/controller design applications in automotive systems

  15. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  16. Numerical calculation for flow field of servo-tube guided hydraulic control rod driving system

    International Nuclear Information System (INIS)

    He Keyu; Han Weishi

    2010-01-01

    A new-style hydraulic control rod driving mechanism was put forward by using servo-tube control elements for the design of control rod driving mechanism. The results of numerical simulation by CFD program Fluent for flow field of hydraulic driving cylinder indicate that the bigger the outer diameter of servo-tube, the smaller the resistance coefficient of variable throttle orifice. The zero position gap of variable throttle orifice could be determined on 0.2 mm in the design. The pressure difference between the upper and nether surfaces of piston was mainly created by the throttle function of fixed throttle orifice. It can be effectively controlled by changing the gap of variable throttle orifice. And the lift force of driving cylinder is able to meet the requirement on the design load. (authors)

  17. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    Science.gov (United States)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  18. Hydraulic lifter for an underwater drilling rig

    Energy Technology Data Exchange (ETDEWEB)

    Garan' ko, Yu L

    1981-01-15

    A hydraulic lifter is suggested for an underwater drilling rig. It includes a base, hydraulic cylinders for lifting the drilling pipes connected to the clamp holder and hydraulic distributor. In order to simplify the design of the device, the base is made with a hollow chamber connected to the rod cavities and through the hydraulic distributor to the cavities of the hydraulic cylinders for lifting the drilling pipes. The hydraulic distributor is connected to the hydrosphere through the supply valve with control in time or by remote control. The base is equipped with reverse valves whose outlets are on the support surface of the base.

  19. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...... applications and the environmental benefits are in focus, in particular in the food processing industry and in fire-fighting systems.......Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  20. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  1. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland.

    Science.gov (United States)

    Skelton, Robert P; Brodribb, Timothy J; McAdam, Scott A M; Mitchell, Patrick J

    2017-09-01

    Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. State of Art of the CAREM-25 Hydraulic Control Rod Drives Feasibility Analysis

    International Nuclear Information System (INIS)

    Mazufri, C.M; Mazzi, R.O

    2000-01-01

    The proposed design adopted for the control rod drives for the CAREM reactor is based on a hydraulic system.As any innovative device, the design process requires to obtain experimental evidence to identify the most important control parameters and to set their relationship with other design parameters, in order to guarantee its feasibility as a previous step to the design qualification tests at the working conditions at the reactor.This paper features a global evaluation of the analysis performed and experimental results obtained in a low pressure loop, design improvements, limiting phenomena identified and corrective actions analyzed or proposed.The evaluation is based on a repetitivity, sensitivity and scalability study of the control parameters and test conditions, as well as the dynamic response between rod drive and the hydraulic system and features related with the mechanical design.Obtained results show that present system has an adequate response compatible with functional and manufacturing requirements

  3. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    Science.gov (United States)

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  4. Elevator and hydraulics; Elevator to yuatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, I. [Hitachi, Ltd., Tokyo (Japan)

    1994-07-15

    A hydraulic type elevator is installed in relatively lower buildings as compared with a rope type elevator, but the ratio in the number of installation of the former elevator is increasing. This paper explains from its construction and features to especially various control systems for the riding comfort and safety. A direct push-up system with hydraulic jacks arranged beneath a car, and an indirect push-up system that has hydraulic jacks arranged on flank of a car and transmits the movement of a plunger via a rope are available. The latter system eliminates the need of large holes to embed hydraulic jacks. While the speed is controlled by controlling flow rates of high-pressure oil, the speed, position, acceleration and even time differential calculus of the acceleration must be controlled severely. The system uses two-step control for the through-speed and the landing speed. Different systems that have been realized may include compensation for temperatures in flow rate control valves, load pressures, and oil viscosity, from learning control to fuzzy control for psychological effects, or control of inverters in motors. 13 refs., 12 figs., 1 tab.

  5. Pneumatic and hydraulic microactuators: a review

    International Nuclear Information System (INIS)

    De Volder, Michaël; Reynaerts, Dominiek

    2010-01-01

    The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston–cylinder and drag-based microdevices. (topical review)

  6. Hybrid Robust Control Law with Disturbance Observer for High-Frequency Response Electro-Hydraulic Servo Loading System

    Directory of Open Access Journals (Sweden)

    Zhiqing Sheng

    2016-04-01

    Full Text Available Addressing the simulating issue of the helicopter-manipulating booster aerodynamic load with high-frequency dynamic load superimposed on a large static load, this paper studies the design of the robust controller for the electro-hydraulic loading system to realize the simulation of this kind of load. Firstly, the equivalent linear model of the electro-hydraulic loading system under assumed parameter uncertainty is established. Then, a hybrid control scheme is proposed for the loading system. This control scheme consists of a constant velocity feed-forward compensator, a robust inner loop compensator based on disturbance observer and a robust outer loop feedback controller. The constant velocity compensator eliminates most of the extraneous force at first, and then the double-loop cascade composition control strategy is employed to design the compensated system. The disturbance observer–based inner loop compensator further restrains the disturbances including the remaining extraneous force, and makes the actual plant tracking a nominal model approximately in a certain frequency range. The robust outer loop controller achieves the desired force-tracking performance, and guarantees system robustness in the high frequency region. The optimized low-pass filter Q(s is designed by using the H∞ mixed sensitivity optimization method. The simulation results show that the proposed hybrid control scheme and controller can effectively suppress the extraneous force and improve the robustness of the electro-hydraulic loading system.

  7. Water hydraulic applications in hazardous environments

    International Nuclear Information System (INIS)

    Siuko, M.; Koskinen, K.T.; Vilenius, M.J.

    1996-01-01

    Water hydraulic technology provides several advantages for devices operating in critical environment. Though water hydraulics has traditionally been used in very rough applications, gives recent strong development of components possibility to build more sophisticated applications and devices with similar capacity and control properties than those of oil hydraulics without the disadvantages of oil hydraulic systems. In this paper, the basic principles, possibilities and advantages of water hydraulics are highlighted, some of the most important design considerations are presented and recent developments of water hydraulic technology are presented. Also one interesting application area, ITER fusion reactor remote handling devices, are discussed. (Author)

  8. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation

    Science.gov (United States)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars

    2017-12-01

    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and

  9. Safety of 5 MW district heating reactor (DHR) and hydraulic dynamic pressure drive control rods

    International Nuclear Information System (INIS)

    Wu Yuanqiang; Wang Dazhong

    1991-11-01

    The principles and movement characteristic of the hydraulic dynamic pressure drive for control rods in 5 MW district heating reactor are described with stress on analysis of its effects on reactor safety features. The drive is different from electric-magnetic drive for PWR or hydraulic drive for BWR. The drive cylinder is driven by dynamic pressure. In the new drive system, the reactor coolant (water) used as actuating medium is pressed by pump, then injected into a step cylinder which is set in the reactor core. The cylinder will move step by step by controlling flow, then the cylinder drives the neutron absorber and controls nuclear reaction. The drive is characterized by simplicity in structure, high reliability, inherent safety, reduction in reactor height, economy, etc

  10. Using Feedback Error Learning for Control of Electro Hydraulic Servo System by Laguerre

    Directory of Open Access Journals (Sweden)

    Amir Reza Zare Bidaki

    2014-01-01

    Full Text Available In this paper, a new Laguerre controller is proposed to control the electro hydraulic servo system. The proposed controller uses feedback error learning method and leads to significantly improve performance in terms of settling time and amplitude of control signal rather than other controllers. All derived results are validated by simulation of nonlinear mathematical model of the system. The simulation results show the advantages of the proposed method for improved control in terms of both settling time and amplitude of control signal.

  11. Non Linear Modelling and Control of Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    B. Šulc

    2002-01-01

    Full Text Available This paper deals with non-linear modelling and control of a differential hydraulic actuator. The nonlinear state space equations are derived from basic physical laws. They are more powerful than the transfer function in the case of linear models, and they allow the application of an object oriented approach in simulation programs. The effects of all friction forces (static, Coulomb and viscous have been modelled, and many phenomena that are usually neglected are taken into account, e.g., the static term of friction, the leakage between the two chambers and external space. Proportional Differential (PD and Fuzzy Logic Controllers (FLC have been applied in order to make a comparison by means of simulation. Simulation is performed using Matlab/Simulink, and some of the results are compared graphically. FLC is tuned in a such way that it produces a constant control signal close to its maximum (or minimum, where possible. In the case of PD control the occurrence of peaks cannot be avoided. These peaks produce a very high velocity that oversteps the allowed values.

  12. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  13. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    International Nuclear Information System (INIS)

    Kim, Gi-Woo; Wang, K W

    2009-01-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1→2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements

  14. Robust H(∞) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.

    Science.gov (United States)

    Guo, Qing; Yu, Tian; Jiang, Dan

    2015-11-01

    In this paper an H∞ positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H∞ sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. A Computational Model of Hydraulic Volume Displacement Drive

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2014-01-01

    Full Text Available The paper offers a computational model of industrial-purpose hydraulic drive with two hydraulic volume adjustable working chamber machines (pump and motor. Adjustable pump equipped with the pressure control unit can be run together with several adjustable hydraulic motors on the principle of three-phase hydraulic socket-outlet with high-pressure lines, drain, and drainage system. The paper considers the pressure-controlled hydrostatic transmission with hydraulic motor as an output link. It shows a possibility to create a saving hydraulic drive using a functional tie between the adjusting parameters of the pump and hydraulic motor through the pressure difference, torque, and angular rate of the hydraulic motor shaft rotation. The programmable logic controller can implement such tie. The Coulomb and viscous frictions are taken into consideration when developing a computational model of the hydraulic volume displacement drive. Discharge balance considers external and internal leakages in equivalent clearances of hydraulic machines, as well as compression loss volume caused by hydraulic fluid compressibility and deformation of pipe walls. To correct dynamic properties of hydraulic drive, the paper offers that in discharge balance are included the additional regulated external leakages in the open circuit of hydraulic drive and regulated internal leakages in the closed-loop circuit. Generalized differential equations having functional multipliers and multilinked nature have been obtained to describe the operation of hydraulic positioning and speed drive with two hydraulic volume adjustable working chamber machines. It is shown that a proposed computational model of hydraulic drive can be taken into consideration in development of LS («Load-Sensing» drives, in which the pumping pressure is tuned to the value required for the most loaded slave motor to overcome the load. Results attained can be used both in designing the industrial-purpose heavy

  16. Turbogas control unit using a hydraulic interface; Control de una unidad turbogas usando una interfase hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Palacios, Ignacio Ramon; Castelo Cuevas, Luis [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: irrp@iie.org.mx; lcastelo@iie.org.mx; Escarcega Navarrete, Luis [Servi-Control Monterrey S.A. de C.V., Monterrey, Nuevo Leon (Mexico)]. E-mail: lescarcega@servicontrol.com

    2010-11-15

    This paper presents the design and implementation of the control system of the Turbo Generator Unit (TGU) GE 5001, placed in Laguna Chavez power generation facility in Gomez Palacio, Dgo., Mexico. This TGU had been operating with an old control system, back to the 70's. The positioning of the control valves was carried out using a complex electro-hydraulic system. For the modernization of the control system, we use latest PLC technology and a current to pressure converter to communicate the PLC with the hydraulic control valves. The new control system helped us to obtain a best response at the start and generation phases, as well as an increase in the availability of the unit. We show the old and the new control architectures besides plot results obtained at the different operation points. [Spanish] En este articulo se presenta la implementacion y diseno del sistema de control de una Unidad Turbogas (UTG) GE-5001 de la Central Turbogas Laguna Chavez de CFE ubicada en Gomez Palacio, Durango, la cual originalmente era controlada mediante un sistema de control con tecnologia de los anos 70's. El posicionamiento de las valvulas de control se realizaba mediante un sistema electro-hidraulico complejo. Para la modernizacion del sistema de control a uno con tecnologia de punta fue necesario utilizar una interfase hidraulica por medio de un convertidor de corriente/presion (I/P) para el posicionamiento de las valvulas originales. Con la modernizacion se mejoro la respuesta del control asi como el incremento de la disponibilidad de la unidad. Se presentan la arquitectura anterior y actual de sistema de control asi como graficas de los resultados obtenidos en diferentes puntos de operacion de la UTG.

  17. Intelligent Materials Used in Hydraulic, Fuel, and Rudder Control Systems of Aircrafts

    Directory of Open Access Journals (Sweden)

    D. B. Chernov

    2017-01-01

    Full Text Available The device is really intelligent, only if it is capable to respond to changing external conditions. The devices, which "feel" the external environment and can change their characteristics, have many advantages compared to the conventional devices: they are more efficient, wear out more slowly, and have lower operating costs.The scope of smart products is truly infinite. Alloys with memory effect also apply to intellectual content. Natural piezoelectric crystals such as silicon dioxide (intellectual material have been known for over a hundred years. They have greater stiffness and can be used at high operating frequencies. Due to the direct piezoelectric effect, they have been successfully used as a strain gage. Later came artificial ceramic piezoelectric materials; they are used as mechanical transducers. Thus, an inverse piezoelectric effect is usually used. It consists in the change of dimensions when an electric field is applied. Control of intellectual structure can be provided by heat fluxes, electromagnetic, hydraulic or piezoelectric forces and through application of electro-rheological, and magneto-rheological fluids. The article examines the intellectual materials and technologies that are already in place or will find its application in aviation hydraulic and fuel systems and control systems of rudders (CSR of aircrafts in the near future.The paper considers in detail the shape memory effect alloys (SMEA as "intelligent" materials. Actuators made from SMEA have a number of advantages: high working power; large recoverable deformation; different types of strain (tensile, compressive, bending and torsional; most specific value of the work per unit mass. All the SMEA advantages may be well used for the so-called thermo-mechanical connections (TMС of pipelines where SMEA drawbacks in this application, practically, do not affect the quality of TMC. In aircraft engineering the TMC were first used in hydraulic systems of the aircraft TU204

  18. Performance-oriented asymptotic tracking control of hydraulic systems with radial basis function network disturbance observer

    Directory of Open Access Journals (Sweden)

    Jian Hu

    2016-05-01

    Full Text Available Uncertainties, including parametric uncertainties and uncertain nonlinearities, always exist in positioning servo systems driven by a hydraulic actuator, which would degrade their tracking accuracy. In this article, an integrated control scheme, which combines adaptive robust control together with radial basis function neural network–based disturbance observer, is proposed for high-accuracy motion control of hydraulic systems. Not only parametric uncertainties but also uncertain nonlinearities (i.e. nonlinear friction, external disturbances, and/or unmodeled dynamics are taken into consideration in the proposed controller. The above uncertainties are compensated, respectively, by adaptive control and radial basis function neural network, which are ultimately integrated together by applying feedforward compensation technique, in which the global stabilization of the controller is ensured via a robust feedback path. A new kind of parameter and weight adaptation law is designed on the basis of Lyapunov stability theory. Furthermore, the proposed controller obtains an expected steady performance even if modeling uncertainties exist, and extensive simulation results in various working conditions have proven the high performance of the proposed control scheme.

  19. Rapid-action valve especially for liquid metal

    International Nuclear Information System (INIS)

    Velek, V.; Cejka, J.; Jakl, J.

    1976-01-01

    A rapid-action large-diameter valve and control fitting was designed for cooling circuits of nuclear power plants with fast liquid metal cooled reactors, namely sodium cooled. The design meets the requirements for axial symmetry about the flow axis and secures the equilibrium of hydraulic and hydrodynamic forces observing the uniformity of the thickness of the fitting walls which is a pre-requisite for good resistance to thermal shock. (F.M.)

  20. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  1. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  2. Experimental study on performance characteristics of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Zhou Jie; Liu Chunyu; Yang Zhida; Wang Ge

    2014-01-01

    An experimental study on the performance characteristics of the servo-piston hydraulic control rod driving mechanism is carried out, the dynamic processes of the driving mechanism are obtained through the experiments in different working conditions. Combined with the structure characteristics of the driving mechanism, the change rule between the characteristics parameters and the working condition is analyzed. The results indicate that the traction of the servo-tube decreases quickly at first, then slowly and finally trends to be a constant with the working pressure increasing, the tractions are the largest in the startup and deboost phases. The under pressure of the drive cylinder rises slowly and the upper pressure decreases rapidly at the beginning of the rise, the variation trend is opposite in the falling stage. There exists quick and clear flow change processes in the startup and deboost phases, the flow mutation value reduces and the mutation time changes a little with the working pressure increasing. The driving mechanism runs stable and has high sensitivity precision, the load does not vibrate at all when working conditions has small disturbance, a steady transform can be realized among every condition. (authors)

  3. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  4. A study on reliability of electro-hydraulic governor control system for large steam turbine in power plant

    International Nuclear Information System (INIS)

    Kang, Gu Hwa; Lee, Tae Hoon; Moon, Seung Jae; Lee, Jae Heon; Yoo, Ho Seon

    2008-01-01

    In this work, the right management procedure for hydraulic power oil will be discussed and suggested. A thermal power plant turbine should respond to the change of load status. However, to satisfy the frequency of alternating current, the revolution per minute should be kept constant. Therefore, by controlling the flow rate of the steam to the turbine, the governor satisfies the load variation without alternating the revolution per minutes of the turbine. To protect the governor, the hydraulic power unit should be managed carefully by controlling the quality and the flow rate of the oil

  5. Fish pass assessment by remote control: a novel framework for quantifying the hydraulics at fish pass entrances

    Science.gov (United States)

    Kriechbaumer, Thomas; Blackburn, Kim; Gill, Andrew; Breckon, Toby; Everard, Nick; Wright, Ros; Rivas Casado, Monica

    2014-05-01

    Fragmentation of aquatic habitats can lead to the extinction of migratory fish species with severe negative consequences at the ecosystem level and thus opposes the target of good ecological status of rivers defined in the EU Water Framework Directive (WFD). In the UK, the implementation of the EU WFD requires investments in fish pass facilities of estimated 532 million GBP (i.e. 639 million Euros) until 2027 to ensure fish passage at around 3,000 barriers considered critical. Hundreds of passes have been installed in the past. However, monitoring studies of fish passes around the world indicate that on average less than half of the fish attempting to pass such facilities are actually successful. There is a need for frameworks that allow the rapid identification of facilities that are biologically effective and those that require enhancement. Although there are many environmental characteristics that can affect fish passage success, past research suggests that variations in hydrodynamic conditions, reflected in water velocities, velocity gradients and turbulences, are the major cues that fish use to seek migration pathways in rivers. This paper presents the first steps taken in the development of a framework for the rapid field-based quantification of the hydraulic conditions downstream of fish passes and the assessment of the attractivity of fish passes for salmonids and coarse fish in UK rivers. For this purpose, a small-sized remote control platform carrying an acoustic Doppler current profiler (ADCP), a GPS unit, a stereo camera and an inertial measurement unit has been developed. The large amount of data on water velocities and depths measured by the ADCP within relatively short time is used to quantify the spatial and temporal distribution of water velocities. By matching these hydraulic features with known preferences of migratory fish, it is attempted to identify likely migration routes and aggregation areas at barriers as well as hydraulic features that

  6. Control system developments for a range of kinematically redundant hydraulic manipulators

    International Nuclear Information System (INIS)

    Smith, A.L.; Rice, P.S.; Thiruarooran, C.

    2000-01-01

    This paper describes a range of control system improvements developed and implemented for in-reactor use during the last three years. Novel control techniques have been developed to provide accurate closed-loop velocity control of pumped hydraulic manipulator joints under a wide range of operating conditions. As a result the supervisory computer system can provide accurate trajectory following, even when more than ten joints are required to move simultaneously. Accurately coordinated motion has given rise to some spectacular gains in in-reactor performance in terms of deployment time, safety and accessibility. The same low-level control improvements have made it feasible to integrate and use the 'geometric controller' to provide accurate resolved motion control of a kinematically redundant manipulator. Examples of recent in-reactor use of all these techniques are given. (author)

  7. A hydraulic hybrid propulsion method for automobiles with self-adaptive system

    International Nuclear Information System (INIS)

    Wu, Wei; Hu, Jibin; Yuan, Shihua; Di, Chongfeng

    2016-01-01

    A hydraulic hybrid vehicle with the self-adaptive system is proposed. The mode-switching between the driving mode and the hydraulic regenerative braking mode is realised by the pressure cross-feedback control. Extensive simulated and tested results are presented. The control parameters are reduced and the energy efficiency can be increased by the self-adaptive system. The mode-switching response is fast. The response time can be adjusted by changing the controlling spool diameter of the hydraulic operated check valve in the self-adaptive system. The closing of the valve becomes faster with a smaller controlling spool diameter. The hydraulic regenerative braking mode can be achieved by changing the hydraulic transformer controlled angle. Compared with the convention electric-hydraulic system, the self-adaptive system for the hydraulic hybrid vehicle mode-switching has a higher reliability and a lower cost. The efficiency of the hydraulic regenerative braking is also increased. - Highlights: • A new hybrid system with a self-adaptive system for automobiles is presented. • The mode-switching is realised by the pressure cross-feedback control. • The energy efficiency can be increased with the self-adaptive system. • The control parameters are reduced with the self-adaptive system.

  8. Control rod drive

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1988-01-01

    Purpose: To provide a simple and economical control rod drive using a control circuit requiring no pulse circuit. Constitution: Control rods in a BWR type reactor are driven by hydraulic pressure and inserted or withdrawn in the direction of applying the hydraulic pressure. The direction of the hydraulic pressure is controlled by a direction control valve. Since the driving for the control rod is extremely important in view of the operation, a self diagnosis function is disposed for rapid inspection of possible abnormality. In the present invention, two driving contacts are disposed each by one between the both ends of a solenoid valve of the direction control valve for driving the control rod and the driving power source, and diagnosis is conducted by alternately operating them. Therefore, since it is only necessary that the control circuit issues a driving instruction only to one of the two driving contacts, the pulse circuit is no more required. Further, since the control rod driving is conducted upon alignment of the two driving instructions, the reliability of the control rod drive can be improved. (Horiuchi, T.)

  9. Design of The Test Stand for Hydraulic Active Heave Compensation System

    Directory of Open Access Journals (Sweden)

    Jakubowski Arkadiusz

    2017-01-01

    Full Text Available The article presented here described the design of a test stand for hydraulic active heave compensation system. The simulation of sea waves is realized by the use of hydraulic cylinder. A hydraulic motor is used for sea waves compensation. The hydraulic cylinder and the hydraulic motor are controlled by electrohydraulic servo valves. For the measurements Authors used displacement sensor and incremental encoder. Control algorithm is implemented on the PLC. The performed tests included hydraulic actuator and hydraulic motor step responses.

  10. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  11. Hydraulic hoisting and backfilling

    Science.gov (United States)

    Sauermann, H. B.

    In a country such as South Africa, with its large deep level mining industry, improvements in mining and hoisting techniques could result in substantial savings. Hoisting techniques, for example, may be improved by the introduction of hydraulic hoisting. The following are some of the advantages of hydraulic hoisting as against conventional skip hoisting: (1) smaller shafts are required because the pipes to hoist the same quantity of ore hydraulically require less space in the shaft than does skip hoisting equipment; (2) the hoisting capacity of a mine can easily be increased without the necessity of sinking new shafts. Large savings in capital costs can thus be made; (3) fully automatic control is possible with hydraulic hoisting and therefore less manpower is required; and (4) health and safety conditions will be improved.

  12. 1st International Conference on Hydraulic Design in Water Resources Engineering : Channels and Channel Control Structures

    CERN Document Server

    1984-01-01

    The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering sc...

  13. FEEDBACK LINEARISATION APPLIED ON A HYDRAULIC

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.

    2005-01-01

    is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results.......Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focus...

  14. Optimal Control of Nonlinear Hydraulic Networks in the Presence of Disturbance

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Leth, John-Josef; Kallesøe, Carsten

    2014-01-01

    Water leakage is an important component of water loss. Many methods have emerged from urban water supply systems for leakage control, but it still remains a challenge in many countries. Pressure management is an effective way to reduce the leakage in a system. It can also reduce the power...... consumption. To this end, an optimal control strategy is proposed in this paper. In the water supply system model, the hydraulic resistance of the valve is estimated by the real data from a water supply system and it is considered to be a disturbance. The method which is used to solve the nonlinear optimal...

  15. Control rod driving hydraulic pressure device

    International Nuclear Information System (INIS)

    Ogawa, Masahide.

    1993-01-01

    The present invention concerns a control rod driving hydraulic device of a BWR type reactor, and provides an improvement for a means for supplying mechanical seal flashing water of a pump. That is, a mechanical seal flashing pipeline is branched at the downstream of a pressure-reducing orifice and connected to a minimum flow pipeline. With such a constitution, the minimum flow pipeline is connected to a minimum flow pipeline of an auxiliary pump at the downstream of the pressure-reducing orifice and returned to a suction pipeline of the pump. Pressure at the downstream of the pressure-reducing orifice is set, in the orifice, to a pressure required for mechanical seal flashing. Accordingly, the mechanical seal flashing pipeline is connected and a part of minimum flow rate is utilized, thereby enabling to cool mechanical seals. As a result, flow rate of the mechanical flashing water which has been flown out can be saved. The exhaustion amount from the pump can be reduced, to decrease the shaft power and reduce the capacity of the motor. (I.S.)

  16. Teaching Thermal Hydraulics & Numerical Methods: An Introductory Control Volume Primer

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Lucas

    2004-10-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com.

  17. Extended state observer–based fractional order proportional–integral–derivative controller for a novel electro-hydraulic servo system with iso-actuation balancing and positioning

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2015-12-01

    Full Text Available Aiming at balancing and positioning of a new electro-hydraulic servo system with iso-actuation configuration, an extended state observer–based fractional order proportional–integral–derivative controller is proposed in this study. To meet the lightweight requirements of heavy barrel weapons with large diameters, an electro-hydraulic servo system with a three-chamber hydraulic cylinder is especially designed. In the electro-hydraulic servo system, the balance chamber of the hydraulic cylinder is used to realize active balancing of the unbalanced forces, while the driving chambers consisting of the upper and lower chambers are adopted for barrel positioning and dynamic compensation of external disturbances. Compared with conventional proportional–integral–derivative controllers, the fractional order proportional–integral–derivative possesses another two adjustable parameters by expanding integer order to arbitrary order calculus, resulting in more flexibility and stronger robustness of the control system. To better compensate for strong external disturbances and system nonlinearities, the extended state observer strategy is further introduced to the fractional order proportional–integral–derivative control system. Numerical simulation and bench test indicate that the extended state observer–based fractional order proportional–integral–derivative significantly outperforms proportional–integral–derivative and fractional order proportional–integral–derivative control systems with better control accuracy and higher system robustness, well demonstrating the feasibility and effectiveness of the proposed extended state observer–based fractional order proportional–integral–derivative control strategy.

  18. Fast-acting nuclear reactor control device

    International Nuclear Information System (INIS)

    Kotlyar, O.M.; West, P.B.

    1993-01-01

    A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position

  19. Sustainable hydraulic engineering through building with nature

    NARCIS (Netherlands)

    de Vriend, Huib J.; van Koningsveld, M.; Aarninkhof, S.G.J.; de Vries, Mindert; Baptist, M.J.

    2015-01-01

    Hydraulic engineering infrastructures are of concern to many people and are likely to interfere with the environment. Moreover, they are supposed to keep on functioning for many years. In times of rapid societal and environmental change this implies that sustainability and adaptability are important

  20. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren

    2006-01-01

    of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences....... Optimising a matching factor (k0) improved the fit considerably whereas optimising the l-parameter in the vGM model improved the fit only slightly. The vGM was improved with an empirical scaling function to account for the rapid increase in conductivity near saturation. Using the improved models...

  1. Estimating Hydraulic Resistance for Floodplain Mapping and Hydraulic Studies from High-Resolution Topography: Physical and Numerical Simulations

    Science.gov (United States)

    Minear, J. T.

    2017-12-01

    One of the primary unknown variables in hydraulic analyses is hydraulic resistance, values for which are typically set using broad assumptions or calibration, with very few methods available for independent and robust determination. A better understanding of hydraulic resistance would be highly useful for understanding floodplain processes, forecasting floods, advancing sediment transport and hydraulic coupling, and improving higher dimensional flood modeling (2D+), as well as correctly calculating flood discharges for floods that are not directly measured. The relationship of observed features to hydraulic resistance is difficult to objectively quantify in the field, partially because resistance occurs at a variety of scales (i.e. grain, unit and reach) and because individual resistance elements, such as trees, grass and sediment grains, are inherently difficult to measure. Similar to photogrammetric techniques, Terrestrial Laser Scanning (TLS, also known as Ground-based LiDAR) has shown great ability to rapidly collect high-resolution topographic datasets for geomorphic and hydrodynamic studies and could be used to objectively quantify the features that collectively create hydraulic resistance in the field. Because of its speed in data collection and remote sensing ability, TLS can be used both for pre-flood and post-flood studies that require relatively quick response in relatively dangerous settings. Using datasets collected from experimental flume runs and numerical simulations, as well as field studies of several rivers in California and post-flood rivers in Colorado, this study evaluates the use of high-resolution topography to estimate hydraulic resistance, particularly from grain-scale elements. Contrary to conventional practice, experimental laboratory runs with bed grain size held constant but with varying grain-scale protusion create a nearly twenty-fold variation in measured hydraulic resistance. The ideal application of this high-resolution topography

  2. TOPICAL REVIEW: Pneumatic and hydraulic microactuators: a review

    Science.gov (United States)

    De Volder, Michaël; Reynaerts, Dominiek

    2010-04-01

    The development of MEMS actuators is rapidly evolving and continuously new progress in terms of efficiency, power and force output is reported. Pneumatic and hydraulic are an interesting class of microactuators that are easily overlooked. Despite the 20 years of research, and hundreds of publications on this topic, these actuators are only popular in microfluidic systems. In other MEMS applications, pneumatic and hydraulic actuators are rare in comparison with electrostatic, thermal or piezo-electric actuators. However, several studies have shown that hydraulic and pneumatic actuators deliver among the highest force and power densities at microscale. It is believed that this asset is particularly important in modern industrial and medical microsystems, and therefore, pneumatic and hydraulic actuators could start playing an increasingly important role. This paper shows an in-depth overview of the developments in this field ranging from the classic inflatable membrane actuators to more complex piston-cylinder and drag-based microdevices.

  3. System Design and Performance Test of Hydraulic Intensifier

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Eui; Lee, Gi Chun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jae Hoon [Chungnam National University, Daejeon (Korea, Republic of)

    2010-07-15

    Components such as pressure vessel, hydraulic hose assembly, accumulator, hydraulic cylinder, hydraulic valve, pipe, etc., are tested under the impulse-pressure conditions prescribed in ISO and SAE standards. The impulse pressure test machine needs to have a high pressure, a precise control system and a long life. It should satisfy the requirements for fabrication of the impulse tester to generate ultra high pressure in the hydraulic system. In the impulse tester, a servo-valve control system is adopted; although the control application is convenient, it is expensive owing to the cost of developing the system. The type of the control system determines the pressure wave, which affects the components that are tested. In this study, the manufacturing process and the intensifier system design related to the flow, pressure, and the increasing rate of pressure are investigated. The results indicate the ultra high pressure waves in the system.

  4. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  5. Instrumentation and Control Systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeong Yeon; Kim, Hyung Mo; Cho, Youn Gil; Kim, Jong Man; Ko, Yung Joo; Kang, Byeong Su; Jung, Min Hwan; Jeong, Ji Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A forced-draft sodium-to-air heat exchanger (FHX) is a part of decay heat removal system (DHRS) in Prototype Gen-IV Sodium-cooled fast reactor (PGSFR), which is being developed at Korea Atomic Energy Research Institute (KAERI). Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA) is a test facility for verification and validation of the design code for a forced-draft sodium-to-air heat exchanger (FHX). In this paper, we have provided design and fabrication features for the instrumentation and control systems of SELFA. In general, the instrumentation systems and control systems are coupled for measurement and control of process variables. Instrumentation systems have been designed for investigating thermal-hydraulic characteristics of FHX and control systems have been designed to control the main components (e.g. electromagnetic pumps, heaters, valves etc.) required for test in SELFA. In this paper, we have provided configurations of instrumentation and control systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA). The instrumentation and control systems of SELFA have been implemented based on the expected operation ranges and lesson learned from operational experience of 'Sodium integral effect test loop for safety simulation and assessment-1' (STELLA-1)

  6. Combined hydraulic and regenerative braking system

    Science.gov (United States)

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  7. Robust Non-Chattering Observer Based Sliding Control Concept for Electro-Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents an observer-based sliding mode control concept with chattering reduction, generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD's). The proposed control concept requires only common data sheet information and no knowledge on load...... extensive knowledge on system parameters nor advanced control theory. In order to accomplish this task, an integral sliding mode controller designed for the control derivative employing state observation is proposed, based on a generalized reduced order model structure of a VCD with unmatched valve ow......- and cylinder asymmetries. It is shown that limited attention can be given to bounds on parameter estimates, that chattering is reduced and the number of tuning parameters is reduced to the level seen in conventional PID schemes. Furthermore, simulation results demonstrate a high level of robustness when...

  8. IT-Tools Concept for Simulation and Design of Water Hydraulic Mechatronic Test Facilities for Motion Control and Operation in Environmentally Sensitive Application Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2004-01-01

    This paper presents a proposed IT-Tools concept for modeling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The designed test rigs have tap water hydraulic components of the Danfoss Nessie® product family and equipped...... with a measurement and data acquisition system. Results of the mathematical modeling, simulation and design of the motion control test rigs are presented. Furthermore, the paper presents selected experimental and identifying test results for the water hydraulic test rigs....

  9. Hydraulic actuators for flexible robots : a flatness based approach for tracking and vibration control

    NARCIS (Netherlands)

    Wey, T.; Lemmen, M.; Bernzen, W.; Wey, T.

    1999-01-01

    This paper deals with an application of the differential algebraic flatness approach to hydraulic drives. Here, an elastic robot arm driven by a differential cylinder is investigated. The task is to design a suitable control law which not only tracks a given trajectory but also allows the damping of

  10. Experimental-based Modelling and Simulation of Water Hydraulic Mechatronics Test Facilities for Motion Control and Operation in Environmental Sensitive Applications` Areas

    DEFF Research Database (Denmark)

    Conrad, Finn; Pobedza, J.; Sobczyk, A.

    2003-01-01

    The paper presents experimental-based modelling, simulation, analysis and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. The contributions includes results from on-going research projects on fluid power and mechatronics based on tap water hydraulic...

  11. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    1991-01-01

    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  12. Thermal hydraulics of the impurity control system for FED/INTOR

    International Nuclear Information System (INIS)

    Cha, Y.S.; Mattas, R.F.; Abdou, M.A.; Haines, J.R.

    1983-01-01

    This paper addresses two important aspects of thermal hydraulics related to the design of the impurity control system (limiter and divertor) of the Fusion Engineering Device (FED) and the International Tokamak Reactor (INTOR). The first part of the paper is devoted to the determination of temperature distributions in various combinations of the coating/structural materials proposed for the limiter/divertor of FED and INTOR. The second part of the paper describes the analysis of the tangential motion of the melt layer under the influence of magnetic force during plasma disruption. The results of both analysis provide inputs to the determination of the life time of the limiter (or divertor) which is the most critical problem for the impurity control system as far as engineering and materials consideration is concerned

  13. Proceedings of the 1991 national conference on hydraulic engineering

    International Nuclear Information System (INIS)

    Shane, R.M.

    1991-01-01

    This book contains the proceedings of the 1991 National Conference of Hydraulic Engineering. The conference was held in conjunction with the International Symposium on Ground Water and a Software Exchange that facilitated exchange of information on recent software developments of interest to hydraulic engineers. Also included in the program were three mini-symposia on the Exclusive Economic Zone, Data Acquisition, and Appropriate Technology. Topics include sedimentation; appropriate technology; exclusive economic zone hydraulics; hydraulic data acquisition and display; innovative hydraulic structures and water quality applications of hydraulic research, including the hydraulics of aerating turbines; wetlands; hydraulic and hydrologic extremes; highway drainage; overtopping protection of dams; spillway design; coastal and estuarine hydraulics; scale models; computation hydraulics; GIS and expert system applications; watershed response to rainfall; probabilistic approaches; and flood control investigations

  14. Response time verification of in situ hydraulic pressure sensors in a nuclear reactor

    International Nuclear Information System (INIS)

    Foster, C.G.

    1978-01-01

    A method and apparatus for verifying response time in situ of hydraulic pressure and pressure differential sensing instrumentation in a nuclear circuit is disclosed. Hydraulic pressure at a reference sensor and at an in situ process sensor under test is varied according to a linear ramp. Sensor response time is then determined by comparison of the sensor electrical analog output signals. The process sensor is subjected to a relatively slowly changing and a relatively rapidly changing hydraulic pressure ramp signal to determine an upper bound for process sensor response time over the range of all pressure transients to which the sensor is required to respond. Signal linearity is independent of the volumetric displacement of the process sensor. The hydraulic signal generator includes a first pressurizable gas reservoir, a second pressurizable liquid and gas reservoir, a gate for rapidly opening a gas communication path between the two reservoirs, a throttle valve for regulating rate of gas pressure equalization between the two reservoirs, and hydraulic conduit means for simultaneously communicating a ramp of hydraulic pressure change between the liquid/gas reservoir and both a reference and a process sensor. By maintaining a sufficient pressure differential between the reservoirs and by maintaining a sufficient ratio of gas to liquid in the liquid/gas reservoir, excellent linearity and minimal transient effects can be achieved for all pressure ranges, magnitudes, and rates of change of interest

  15. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Lee, Jong Jik

    2016-01-01

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  16. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, Jong Jik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-06-15

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  17. How far can various control options take us in terms of increased hydraulic capacity under wet weather conditions?

    DEFF Research Database (Denmark)

    Sharma, Anitha Kumari; Guildal, T.; Thomsen, H. A. R.

    Many modelling studies have demonstrated that the hydraulic capacity of the WWTP can be improved by introducing various real time control options, however few studies have demonstrated how effective these controls are in the real world....

  18. Education for hydraulics and pnuematics in Department of Computer Science, Faculty of Information Sciences, Hiroshima City University; Hiroshima shiritsudaigaku ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Sano, M. [Hiroshima City University, Hiroshima (Japan)

    2000-03-15

    Described herein is education of hydraulics and pneumatics in Hiroshima City University. Department of Computer Science is responsible for the education, covering a wide educational range from basics of information processing methodology to application of mathematical procedures. This university provides no subject directly related to hydraulics and pneumatics, which, however, can be studied by the courses of control engineering or modern control theories. These themes are taken up for graduation theses for bachelors and masters; 2 for dynamic characteristics of pneumatic cylinders, and one for pneumatic circuit simulation. Images of the terms hydraulics and pneumatics are outdated for students of information-related departments. Hydraulics and pneumatics are being forced to rapidly change, like other branches of science, and it may be time to make a drastic change from hardware to software, because their developments have been excessively oriented to hardware. It is needless to say that they are based on hardware, but it may be worthy of drastically changing these branches of science by establishing virtual fluid power systems. It is also proposed to introduce the modern multi-media techniques into the education of hydraulics and pneumatics. (NEDO)

  19. Teaching Thermal Hydraulics and Numerical Methods: An Introductory Control Volume Primer

    International Nuclear Information System (INIS)

    D. S. Lucas

    2004-01-01

    A graduate level course for Thermal Hydraulics (T/H) was taught through Idaho State University in the spring of 2004. A numerical approach was taken for the content of this course since the students were employed at the Idaho National Laboratory and had been users of T/H codes. The majority of the students had expressed an interest in learning about the Courant Limit, mass error, semi-implicit and implicit numerical integration schemes in the context of a computer code. Since no introductory text was found the author developed notes taught from his own research and courses taught for Westinghouse on the subject. The course started with a primer on control volume methods and the construction of a Homogeneous Equilibrium Model (HEM) (T/H) code. The primer was valuable for giving the students the basics behind such codes and their evolution to more complex codes for Thermal Hydraulics and Computational Fluid Dynamics (CFD). The course covered additional material including the Finite Element Method and non-equilibrium (T/H). The control volume primer and the construction of a three-equation (mass, momentum and energy) HEM code are the subject of this paper . The Fortran version of the code covered in this paper is elementary compared to its descendants. The steam tables used are less accurate than the available commercial version written in C Coupled to a Graphical User Interface (GUI). The Fortran version and input files can be downloaded at www.microfusionlab.com

  20. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  1. Hydraulic Function in Australian Tree Species during Drought-Induced Mortality

    Science.gov (United States)

    Tissue, D.; Maier, C.; Creek, D.; Choat, B.

    2016-12-01

    Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.

  2. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  3. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  4. Hydraulic Theory and Hydraulic Engineering Projects of the Wusong River (吳淞江 Basin Between the Sixteenth and Nineteenth Centuries

    Directory of Open Access Journals (Sweden)

    Chulwoong Chung

    2015-02-01

    Full Text Available This paper attempts to explore the significance of the overall water control system and numerous water control projects in the Jiangnan region. Through a series of large-scale dredging projects, the Ming and Qing Dynasties attempted to achieve the goals of securing national tax revenue and guaranteeing the production activity for the farmers. However, due to the weakened hydraulic system, excessive expenses, and interests on various levels, large-scale hydraulic engineering projects were unable to achieve their original goals. Starting in the sixteenth century already, interests about practical one-time hydraulic engineering projects on a small scale began to surface. Meanwhile, in the Qing Dynasty, when the socio-economic transformation developed more, a new awareness of hydraulics surfaced due to the expansion of commercial cultivation over a large amount of land in the Jiangnan region. This was the result of an attempt to break away from the heavy dependence on water control facilities that had little room for improvement by growing a variety of plants and crops instead of focusing solely on simple grain production. Therefore the cultivation of a variety of commercial crops and plants and the development of the handicraft industry in the Jiangnan region since the sixteenth century are two aspects of Chinese society that resulted from ineffective water control facilities. However, despite these limitations and failures, large-scale hydraulic engineering projects were carried out repeatedly due to the economic importance of the Jiangnan region and to the efforts to achieve the ideals of flood control.

  5. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink

    Science.gov (United States)

    Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan

    2005-05-01

    This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.

  6. ITHNA.SYS: An Integrated Thermal Hydraulic and Neutronic Analyzer SYStem for NUR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mazidi, S., E-mail: samirmazidi@gmail.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Meftah, B., E-mail: b_meftah@yahoo.com [Division Physique et Applications Nucléaires, Centre de Recherche Nucléaire de Draria (CRND), BP 43 Sebala, Draria, Alger (Algeria); Belgaid, M., E-mail: belgaidm@yahoo.com [Faculté de Physique, Université Houari Boumediene, USTHB, BP 31, Bab Ezzouar, Alger (Algeria); Letaim, F., E-mail: fletaim@yahoo.fr [Faculté des Sciences et Technologies, Université d’El-oued, PO Box 789, El-oued (Algeria); Halilou, A., E-mail: hal_rane@yahoo.fr [Division Réacteur NUR, Centre de Recherche Nucléaire de Draria, BP 43 Sebala, Draria, Alger (Algeria)

    2015-08-15

    Highlights: • We develop a neutronic and thermal hydraulic MTR reactor analyzer. • The analyzer allows a rapid determination of the reactor core parameters. • Some NUR reactor parameters have been analyzed. - Abstract: This paper introduces the Integrated Thermal Hydraulic and Neutronic Analyzer SYStem (ITHNA.SYS) that has been developed for the Algerian research reactor NUR. It is used both as an operating aid tool and as a core physics engineering analysis tool. The system embeds three modules of the MTR-PC software package developed by INVAP SE: the cell calculation code WIMSD, the core calculation code CITVAP and the program TERMIC for thermal hydraulic analysis of a material testing reactor (MTR) core in forced convection. ITHNA.SYS operates both in on-line and off-line modes. In the on-line mode, the system is linked, via the computer parallel port, to the data acquisition console of the reactor control room and allows a real time monitoring of major physical and safety parameters of the NUR core. PC-based ITHNA.SYS provides a viable and convenient way of using an accumulated and often complex reactor physics stock of knowledge and frees the user from the intricacy of adequate reactor core modeling. This guaranties an accurate, though rapid, determination of a variety of neutronic and thermal hydraulic parameters of importance for the operation and safety analysis of the NUR research reactor. Instead of the several hours usually required, the processing time for the determination of such parameters is now reduced to few seconds. Validation of the system was performed with respect to experimental measurements and to calculations using reference codes. ITHNA.SYS can be easily adapted to accommodate other kinds of MTR reactors.

  7. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    Directory of Open Access Journals (Sweden)

    C. Velescu

    2015-01-01

    Full Text Available We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids’ motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i velocity and pressure distributions, (ii average velocity, (iii volume flow rate of the liquid, (iv pressures difference, and (v radial clearance.

  8. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  9. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui; Yang Lifu; Junqing Jing; Yanling Luo [Jiangsu Xuzhou Construction Machinery Research Institute, Jiangsu (China)

    2011-01-15

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range. (author)

  10. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  11. Global asymptotic stabilization of large-scale hydraulic networks using positive proportional controls

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard; Wisniewski, Rafal

    2014-01-01

    An industrial case study involving a large-scale hydraulic network underlying a district heating system subject to structural changes is considered. The problem of controlling the pressure drop across the so-called end-user valves in the network to a designated vector of reference values under...... directional actuator constraints is addressed. The proposed solution consists of a set of decentralized positively constrained proportional control actions. The results show that the closed-loop system always has a globally asymptotically stable equilibrium point independently on the number of end......-users. Furthermore, by a proper design of controller gains the closed-loop equilibrium point can be designed to belong to an arbitrarily small neighborhood of the desired equilibrium point. Since there exists a globally asymptotically stable equilibrium point independently on the number of end-users in the system...

  12. Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.

    Science.gov (United States)

    Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo

    2008-08-01

    We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in

  13. Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes

    Directory of Open Access Journals (Sweden)

    Petr KOŇAŘÍK

    2009-06-01

    Full Text Available Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cylinder. Presented paper deal with development of extended form of analytic linear model of single piston rod hydraulic cylinder which respects different action piston areas and volumes inside of chambers of hydraulic cylinder and also two different input flows of hydraulic cylinder. In extended model are also considered possibilities of different dead volumes in hoses and intake parts of hydraulic cylinder. Dead volume has impact on damping of hydraulic cylinder. Because the system of hydraulic cylinder is generally presented as a integrative system with inertia of second order: eq , we can than obtain time constants and damping of hydraulic cylinder for each of analytic form model. The model has arisen for needs of model fractionation on two parts. Part of behaviour of chamber A and part of behaviour of chamber B of cylinder. It was created for the reason of analysis and synthesis of control parameters of regulation circuit of multivalve control concept of hydraulic drive with separately controlled chamber A and B which could be then used for.

  14. Use of Plant Hydraulic Theory to Predict Ecosystem Fluxes Across Mountainous Gradients in Environmental Controls and Insect Disturbances

    Science.gov (United States)

    Ewers, B. E.; Pendall, E.; Reed, D. E.; Barnard, H. R.; Whitehouse, F.; Frank, J. M.; Massman, W. J.; Brooks, P. D.; Biederman, J. A.; Harpold, A. A.; Naithani, K. J.; Mitra, B.; Mackay, D. S.; Norton, U.; Borkhuu, B.

    2011-12-01

    While mountainous areas are critical for providing numerous ecosystem benefits at the regional scale, the strong gradients in environmental controls make predictions difficult. A key part of the problem is quantifying and predicting the feedback between mountain gradients and plant function which then controls ecosystem cycling. The emerging theory of plant hydraulics provides a rigorous yet simple platform from which to generate testable hypotheses and predictions of ecosystem pools and fluxes. Plant hydraulic theory predicts that plant controls over carbon, water, energy and nutrient fluxes can be derived from the limitation of plant water transport from the soil through xylem and out of stomata. In addition, the limit to plant water transport can be predicted by combining plant structure (e.g. xylem diameters or root-to-shoot ratios) and plant function (response of stomatal conductance to vapor pressure deficit or root vulnerability to cavitation). We evaluate the predictions of the plant hydraulic theory by testing it against data from a mountain gradient encompassing sagebrush steppe through subalpine forests (2700 to 3400 m). We further test the theory by predicting the carbon, water and nutrient exchanges from several coniferous trees in the same gradient that are dying from xylem dysfunction caused by blue-stain fungi carried by bark beetles. The common theme of both of these data sets is a change in water limitation caused by either changing precipitation along the mountainous gradient or lack of access to soil water from xylem-occluding fungi. Across all of the data sets which range in scale from individual plants to hillslopes, the data fit the predictions of plant hydraulic theory. Namely, there was a proportional tradeoff between the reference canopy stomatal conductance to water vapor and the sensitivity of that conductance to vapor pressure deficit that quantitatively fits the predictions of plant hydraulic theory. Incorporating this result into

  15. Trends in hydraulics laboratory research in the Netherlands

    NARCIS (Netherlands)

    Van de Wel, J.; Prins, J.E.; De Vries, M.; Paape, A.; Abraham, G.; Hoekstra, A.J.; Wijdieks, J.; Diephuis, J.G.H.R.; Reinalda, R.; Bijker, E.W.; Schoemaker, H.J.

    1963-01-01

    Scope and aims in model techniques, instrumental aids for hydraulic model studies,investigations of structures for flow control, river studies, model investigations on local scour, problems connected with flows due to differences in density, from Spaarndam to Veersche Gat, hydraulic refinement of

  16. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  17. Hydraulic considerations in deigning an oil spill control system for stormwater outfall

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Chui, J. [Ryerson University, Dept. of Civil Engineering, Toronto, ON (Canada)

    2004-09-01

    An oil spill control system, consisting of an on-line triangular lateral diversion channel and an off-line tilted-plate oil-water separator, installed in the Humber Creek sub-watershed in Toronto, Ontario, is described. The area, which rims the shore of Lake Ontario from the Niagara Peninsula to Oshawa, is heavily industrialized, and is home to some 5.6 million people. During the 1990s an estimated average of 1050 litre/day of petroleum products have escaped into the environment; soil contamination occurred in 55 per cent of the cases, and water-course pollution in 31 per cent. A physical model study was conducted at the National Water Research Institute's Hydraulic Laboratory in Burlington, Ontario, to investigate the hydraulic behaviour of the spill control system under different flow conditions. Results of the investigation confirmed the design conveyance capacity of the lateral diversion channel; it also confirmed that floating objects and settleable solids could be trapped inside the oil-water separator under various flow conditions. Because the angled diversion channel was observed to cause a vortex action inside the first and second chambers of the separator and increase the potential for trapped oil to be flushed out, it is recommended that the final design of the spill control system pay special attention to the vortex problem. One potential solution for this problem may be the installation of baffles at the second chamber of the oil-water separator. It was further recommended that the design should also address the flushing of trapped oil during wet weather conditions. 23 refs., 2 tabs., 10 figs.

  18. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin-Laguna, A.

    2014-01-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near

  19. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  20. Hydraulic Pump Fault Diagnosis Control Research Based on PARD-BP Algorithm

    Directory of Open Access Journals (Sweden)

    LV Dongmei

    2014-12-01

    Full Text Available Combining working principle and failure mechanism of RZU2000HM hydraulic press, with its present fault cases being collected, the working principle of the oil pressure and faults phenomenon of the hydraulic power unit –swash-plate axial piston pump were studied with some emphasis, whose faults will directly affect the dynamic performance of the oil pressure and flow. In order to make hydraulic power unit work reliably, PARD-BP (Pruning Algorithm based Random Degree neural network fault algorithm was introduced, with swash-plate axial piston pump’s vibration fault sample data regarded as input, and fault mode matrix regarded as target output, so that PARD-BP algorithm could be trained. In the end, the vibration results were verified by the vibration modal test, and it was shown that the biggest upward peaks of vacuum pump in X-direction, Y-direction and Z- direction have fallen by 30.49 %, 21.13 % and 18.73 % respectively, so that the reliability of the fact that PARD-BP algorithm could be used for the online fault detection and diagnosis of the hydraulic pump was verified.

  1. CRAB-II: a computer program to predict hydraulics and scram dynamics of LMFBR control assemblies and its validation

    International Nuclear Information System (INIS)

    Carelli, M.D.; Baker, L.A.; Willis, J.M.; Engel, F.C.; Nee, D.Y.

    1982-01-01

    This paper presents an analytical method, the computer code CRAB-II, which calculates the hydraulics and scram dynamics of LMFBR control assemblies of the rod bundle type and its validation against prototypic data obtained for the Clinch River Breeder Reactor (CRBR) primary control assemblies. The physical-mathematical model of the code is presented, followed by a description of the testing of prototypic CRBR control assemblies in water and sodium to characterize, respectively, their hydraulic and scram dynamics behavior. Comparison of code predictions against the experimental data are presened in detail; excellent agreement was found. Also reported are experimental data and empirical correlations for the friction factor of the absorber bundle in the entire flow range (laminar to turbulent) which represent an extension of the state-of-the-art, since only fuel and blanket assemblies friction factor correlations were previously reported in the open literature

  2. Intelligent Hydraulic Actuator and Exp-based Modelling of Losses in Pumps and .

    DEFF Research Database (Denmark)

    Zhang, Muzhi

    A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed.......A intelligent fuzzy logic self-organising PD+I controller for a gearrotor hydraulic motor was developed and evaluated. Furthermore, a experimental-based modelling methods with a new software tool 'Dynamodata' for modelling of losses in hydraulic motors and pumps was developed....

  3. A switched energy saving position controller for variable-pressure electro-hydraulic servo systems.

    Science.gov (United States)

    Tivay, Ali; Zareinejad, Mohammad; Rezaei, S Mehdi; Baghestan, Keivan

    2014-07-01

    The electro-hydraulic servo system (EHSS) demonstrates a relatively low level of efficiency compared to other available actuation methods. The objective of this paper is to increase this efficiency by introducing a variable supply pressure into the system and controlling this pressure during the task of position tracking. For this purpose, an EHSS structure with controllable supply pressure is proposed and its dynamic model is derived from the basic laws of physics. A switching control structure is then proposed to control both the supply pressure and the cylinder position at the same time, in a way that reduces the overall energy consumption of the system. The stability of the proposed switching control system is guaranteed by proof, and its performance is verified by experimental testing. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Education for hydraulics and pneumatics in Nihon University; Nihon Daigaku ni okeru yukuatsu kyoiku

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, M. [Nihon Univ., Chiba (Japan). Coll. of Industrial Technology

    2000-03-15

    Described herein is education of hydraulics and pneumatics in Nihon University. Department of Mechanical Engineering of Faculty of Production Engineering has been holding up the educational aims of bringing up engineers and researchers who have ability and intelligence to cope with internationalization and contribute to society, and of bringing about creativity, among others. Control equipment is an optional subject for the sophomore class in the second semester, and is centered by mechatronics, including hydraulic and pneumatic control systems and equipment. The related subjects include fluid dynamics, control engineering, system controlling, hydraulic machines, robotics and automobile engineering. The drill course includes disassembling and assembling gear pumps, drills on pneumatic devices, system behavior and mechatronics, experiments on fan and hydraulic control circuits and on servo mechanisms, and machinery designs and drawings. Seminars are led by full-time or part-time lecturers for the themes related to hydraulic power. Many students are interested in hydraulic and pneumatic themes for their graduation theses, because of their relations with control, environments, energy saving and so on. We are now in the age of composite technologies, and hydraulic power basics are prerequisite for engineers, and important for education of students. (NEDO)

  5. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    by active control of a hydraulic yaw system. The control is based on a non-linear and linear model derived based on a concept yaw system for the NREL 5MW wind turbine. The control strategies show a reduction in pressure pulsations under load and it is concluded that the strategie including high......As wind turbines increase in size and the demands for lifetime also increases, new methods of load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and wereby dampen the loads to the system. This paper presents work done on dampening of these loads...

  6. Inherent Limitations of Hydraulic Tomography

    Science.gov (United States)

    Bohling, Geoffrey C.; Butler, J.J.

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  7. Hydraulic Properties related to Stream Reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  8. Hydraulic properties related to stream reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  9. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  10. Hydraulic Arm Modeling via Matlab SimHydraulics

    Czech Academy of Sciences Publication Activity Database

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    Roč. 16, č. 4 (2009), s. 287-296 ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : simulatin modeling * hydraulics * SimHydraulics Subject RIV: JD - Computer Applications, Robotics

  11. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  12. Novel electro-hydraulic position control system for primary mirror supporting system

    Directory of Open Access Journals (Sweden)

    Xiongbin Peng

    2016-05-01

    Full Text Available In the field of modern large-scale telescope, primary mirror supporting system technology faces the difficulties of theoretically uniform output force request and bias compensation. Therefore, a novel position control system combining hydraulic system with servo motor system is introduced. The novel system ensures uniform output force on supporting points without complicating the mechanical structure. The structures of both primary mirror supporting system and novel position system are described. Then, the mathematical model of novel position control system is derived for controller selection. A proportional–derivative controller is adopted for simulations and experiments of step response and triangle path tracking. The results show that proportional–derivative controller guarantees the system with micrometer-level positioning ability. A modified proportional–derivative controller is utilized to promote system behavior with faster response overshoot. The novel position control system is then applied on primary mirror supporting system. Coupling effect is observed among actuator partitions, and relocation of virtual pivot supporting point is chosen as the decoupling measurement. The position keeping ability of the primary mirror supporting system is verified by rotating the mirror cell at a considerably high rate. The experiment results show that the decoupled system performs better with smaller bias and shorter recovery time.

  13. Containment wells to form hydraulic barriers along site boundaries

    International Nuclear Information System (INIS)

    Vo, D.; Ramamurthy, A.S.; Qu, J.; Zhao, X.P.

    2008-01-01

    In the field, aquifer remediation methods include pump and treat procedures based on hydraulic control systems. They are used to reduce the level of residual contamination present in the soil and soil pores of aquifers. Often, physical barriers are erected along the boundaries of the target (aquifer) site to reduce the leakage of the released soil contaminant to the surrounding regions. Physical barriers are expensive to build and dismantle. Alternatively, based on simple hydraulic principles, containment wells or image wells injecting clear water can be designed and built to provide hydraulic barriers along the contaminated site boundaries. For brevity, only one pattern of containment well system that is very effective is presented in detail. The study briefly reports about the method of erecting a hydraulic barrier around a contaminated region based on the simple hydraulic principle of images. During the clean-up period, hydraulic barriers can considerably reduce the leakage of the released contaminant from the target site to surrounding pristine regions. Containment wells facilitate the formation of hydraulic barriers. Hence, they control the movement of contaminants away from the site that is being remedied. However, these wells come into play, only when the pumping operation for cleaning up the site is active. After operation, they can be filled with soil to permit the natural ground water movement. They can also be used as monitoring wells

  14. Research on a Nonlinear Robust Adaptive Control Method of the Elbow Joint of a Seven-Function Hydraulic Manipulator Based on Double-Screw-Pair Transmission

    Directory of Open Access Journals (Sweden)

    Gaosheng Luo

    2014-01-01

    Full Text Available A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1 the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2 the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.

  15. The hydraulics of the pressurized water reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Barbier, D.; Caruso, A.

    1999-01-01

    The SFEN organized, the 10 june 1999 at Paris, a meeting in the domain of the PWR hydraulics and in particular the hydraulic phenomena concerning the vessel and the vapor generators. The papers presented showed the importance of the industrial stakes with their associated phenomena: cores performance and safety with the more homogenous cooling system, the rods and the control rods wear, the temperature control, the fluid-structure interactions. A great part was also devoted to the progresses in the domain of the numerical simulation and the models and algorithms qualification. (A.L.B.)

  16. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

    2014-01-01

    An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

  17. The Benefits and Limitations of Hydraulic Modeling for Ordinary High Water Mark Delineation

    Science.gov (United States)

    2016-02-01

    between two cross sections, the HEC-RAS model will not show it. If there is a sudden drop in the channel, such as a waterfall or steep rapids, the...ER D C/ CR RE L TR -1 6- 1 Wetland Regulatory Assistance Program (WRAP) The Benefits and Limitations of Hydraulic Modeling for Ordinary...client/default. Wetland Regulatory Assistance Program (WRAP) ERDC/CRREL TR-16-1 February 2016 The Benefits and Limitations of Hydraulic Modeling

  18. Internal coordination between hydraulics and stomatal control in leaves.

    Science.gov (United States)

    Brodribb, Tim J; Jordan, Gregory J

    2008-11-01

    The stomatal response to changing leaf-atmospheric vapour pressure gradient (D(l)) is a crucial yet enigmatic process that defines the daily course of leaf gas exchange. Changes in the hydration of epidermal cells are thought to drive this response, mediated by the transpiration rate and hydraulic conductance of the leaf. Here, we examine whether species-specific variation in the sensitivity of leaves to perturbation of D(l) is related to the efficiency of water transport in the leaf (leaf hydraulic conductivity, K(leaf)). We found good correlation between maximum liquid (K(leaf)) and gas phase conductances (g(max)) in leaves, but there was no direct correlation between normalized D(l) sensitivity and K(leaf). The impact of K(leaf) on D(l) sensitivity in our diverse sample of eight species was important only after accounting for the strong relationship between K(leaf) and g(max). Thus, the ratio of g(max)/K(leaf) was strongly correlated with stomatal sensitivity to D(l). This ratio is an index of the degree of hydraulic buffering of the stomata against changes in D(l), and species with high g(max) relative to K(leaf) were the most sensitive to D(l) perturbation. Despite the potentially high adaptive significance of this phenomenon, we found no significant phylogenetic or ecological trend in our species.

  19. Small hydraulic turbine drives

    Science.gov (United States)

    Rostafinski, W. A.

    1970-01-01

    Turbine, driven by the fluid being pumped, requires no external controls, is completely integrated into the flow system, and has bearings which utilize the main fluid for lubrication and cooling. Torque capabilities compare favorably with those developed by positive displacement hydraulic motors.

  20. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  1. Optimization of hydraulic turbine governor parameters based on WPA

    Science.gov (United States)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  2. Research Based on AMESim of Electro-hydraulic Servo Loading System

    Science.gov (United States)

    Li, Jinlong; Hu, Zhiyong

    2017-09-01

    Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.

  3. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality.

    Science.gov (United States)

    Mitchell, Patrick J; O'Grady, Anthony P; Tissue, David T; White, Donald A; Ottenschlaeger, Maria L; Pinkard, Elizabeth A

    2013-02-01

    Plant survival during drought requires adequate hydration in living tissues and carbohydrate reserves for maintenance and recovery. We hypothesized that tree growth and hydraulic strategy determines the intensity and duration of the 'physiological drought', thereby affecting the relative contributions of loss of hydraulic function and carbohydrate depletion during mortality. We compared patterns in growth rate, water relations, gas exchange and carbohydrate dynamics in three tree species subjected to prolonged drought. Two Eucalyptus species (E. globulus, E. smithii) exhibited high growth rates and water-use resulting in rapid declines in water status and hydraulic conductance. In contrast, conservative growth and water relations in Pinus radiata resulted in longer periods of negative carbon balance and significant depletion of stored carbohydrates in all organs. The ongoing demand for carbohydrates from sustained respiration highlighted the role that duration of drought plays in facilitating carbohydrate consumption. Two drought strategies were revealed, differentiated by plant regulation of water status: plants maximized gas exchange, but were exposed to low water potentials and rapid hydraulic dysfunction; and tight regulation of gas exchange at the cost of carbohydrate depletion. These findings provide evidence for a relationship between hydraulic regulation of water status and carbohydrate depletion during terminal drought. © 2012 CSIRO. New Phytologist © 2012 New Phytologist Trust.

  4. Hydraulic turbines

    International Nuclear Information System (INIS)

    Meluk O, G.

    1998-01-01

    The hydraulic turbines are defined according to the specific speed, in impulse turbines and in reaction turbines. Currently, the Pelton turbines (of impulse) and the Francis and Kaplan turbines (of reaction), they are the most important machines in the hydroelectric generation. The hydraulic turbines are capable of generating in short times, large powers, from its loads zero until the total load and reject the load instantly without producing damages in the operation. When the hydraulic resources are important, the hydraulic turbines are converted in the axle of the electric system. Its combination with thermoelectric generation systems, it allow the continuing supply of the variations in demand of energy system. The available hydraulic resource in Colombia is of 93085 MW, of which solely 9% is exploited, become 79% of all the electrical country generation, 21% remaining is provided by means of the thermoelectric generation

  5. Design of An Energy Efficient Hydraulic Regenerative circuit

    Science.gov (United States)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar

    2018-02-01

    Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.

  6. An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.

    Science.gov (United States)

    Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad

    2015-11-01

    The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... the full turbine code in FAST, and the mathematical model of the hydraulic yaw system in Matlab/Simulink and Amesim is developed in order to analyze a full scale model of the hydraulic yaw system in combination with the implemented friction model for the yaw system. These results are also promising...

  8. Modeling and Experimental Tests on the Hydraulically Driven Control Rod option for IRIS Reactor

    International Nuclear Information System (INIS)

    Cammi, Antonio; Ricotti, Marco E.; Vitulo, Alessia

    2004-01-01

    The adoption of Internal Control Rod Drive Mechanisms (ICRDMs) represents a valuable alternative to classical, external CRDMs based on electro-magnetic devices, as adopted in current PWRs. The advantages on the safety features of the reactor are apparent: inherent elimination of the Rod Ejection accidents and of possible concerns about the vessel head penetrations. A further positive feedback on the design is the reduction of the primary system overall dimensions. Within the frame of the ICRDM concepts, the Hydraulically Driven Control Rod solution is investigated as a possible option for the IRIS integral reactor. After a brief comparison of the solutions currently proposed for integral reactors, the configuration of the Hydraulic Control Rod device for IRIS, made up by an external movable piston and an internal fixed cylinder, is described. A description of the whole control system is reported as well. Particular attention is devoted to the Control Rod profile characterization, performed by means of a Computational Fluid Dynamics (CFD) analysis. The investigation of the system behavior has been carried out, including the dynamic equilibrium and its stability properties, the withdrawal and insertion step movement and the sensitivity study on command time periods. A suitable dynamic model has been set up for the mentioned purposes: the models corresponding to the various Control Rod system devices have been written in an Object-Oriented language (Modelica), thus allowing an easy implementation of such a system into the simulator for the whole reactor. Finally, a preliminary low pressure, low temperature, reduced length experimental facility has been built. Tests on HDCR stability and operational transients have been performed. The results are compared with the dynamic system model and CFD simulation model, showing good agreement between simulations and experimental data. During these preliminary tests, the control system performed correctly, allowing stable dynamic

  9. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew

    2011-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. Such movements and manipulations are frequently accomplished by means of devices driven by liquids (hydraulics) or air (pneumatics), the subject of this book. Hydraulics and Pneumatics is written by a practicing process control engineer as a guide to the successful operation of hydraulic and pneumatic systems for all engineers and technicians working with them. Keeping mathematics and theory to a minimum, this practical guide is thorough but accessible to technicians without a

  10. Concrete decontamination by Electro-Hydraulic Scabbling (EHS). Topical report

    International Nuclear Information System (INIS)

    1996-01-01

    Electro-Hydraulic Scabbling (EHS) technology and equipment for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals is being developed by Textron Systems Division (TSD). This wet scabbling technique involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface. The high pressure impulse results in stresses which crack and peel off a concrete layer of a controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. This new technology is being developed under Contract No. DE-AC21-93MC30164. The project objective is to develop and demonstrate a cost-efficient, rapid, controllable process to remove the surface layer of contaminated concrete while generating minimal secondary waste. The primary target of this program is uranium-contaminated concrete floors which constitute a substantial part of the contaminated area at DOE weapon facilities

  11. Rapid control prototyping - new technologies and tools; Rapid Control Prototyping - neue Moeglichkeiten und Werkzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Otterbach, R.; Eckmann, M.; Mertens, F. [dSPACE GmbH, Paderborn (Germany)

    2004-06-01

    The paper presents the status quo in rapid control prototyping (RCP) and discusses further developments of this technology. The complete functional chain, from sensors to data preprocessing and the real-time processor, right through to control of the actuators, is created as an integrated hardware and software solution. The greatest flexibility and configurability are achieved with a modular platform concept that includes signal conditioning and power stages. The architecture of modern microcontrollers and electronic control units (ECUs) result in new requirements in the field of bypassing. These are fulfilled by appropriate solutions based on on-chip debug interfaces and standardized data protocols on serial busses. RCP support for developing networked, time-triggered vehicle systems, and the particular requirements for the tool environment, are described using FlexRay as an example. (orig.)

  12. Chlorine decay under steady and unsteady-state hydraulic conditions

    DEFF Research Database (Denmark)

    Stoianov, Ivan; Aisopou, Angeliki

    2014-01-01

    This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....

  13. Boosted PWM open loop control of hydraulic proportional valves

    International Nuclear Information System (INIS)

    Amirante, R.; Innone, A.; Catalano, L.A.

    2008-01-01

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots

  14. Boosted PWM open loop control of hydraulic proportional valves

    Energy Technology Data Exchange (ETDEWEB)

    Amirante, R.; Catalano, L.A. [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy); Innone, A. [Universita degli Studi di Foggia, via Napoli, 25 Foggia (Italy)

    2008-08-15

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots. (author)

  15. Improving actuation efficiency through variable recruitment hydraulic McKibben muscles: modeling, orderly recruitment control, and experiments.

    Science.gov (United States)

    Meller, Michael; Chipka, Jordan; Volkov, Alexander; Bryant, Matthew; Garcia, Ephrahim

    2016-11-03

    Hydraulic control systems have become increasingly popular as the means of actuation for human-scale legged robots and assistive devices. One of the biggest limitations to these systems is their run time untethered from a power source. One way to increase endurance is by improving actuation efficiency. We investigate reducing servovalve throttling losses by using a selective recruitment artificial muscle bundle comprised of three motor units. Each motor unit is made up of a pair of hydraulic McKibben muscles connected to one servovalve. The pressure and recruitment state of the artificial muscle bundle can be adjusted to match the load in an efficient manner, much like the firing rate and total number of recruited motor units is adjusted in skeletal muscle. A volume-based effective initial braid angle is used in the model of each recruitment level. This semi-empirical model is utilized to predict the efficiency gains of the proposed variable recruitment actuation scheme versus a throttling-only approach. A real-time orderly recruitment controller with pressure-based thresholds is developed. This controller is used to experimentally validate the model-predicted efficiency gains of recruitment on a robot arm. The results show that utilizing variable recruitment allows for much higher efficiencies over a broader operating envelope.

  16. The application of hydraulics in the 2,000 kW wind turbine generator

    Science.gov (United States)

    Onufreiczuk, S.

    1978-01-01

    A 2000 kW turbine generator using hydraulic power in two of its control systems is being built under the management of NASA Lewis Research Center. The hydraulic systems providing the control torques and forces for the yaw and blade pitch control systems are discussed. The yaw-drive-system hydraulic supply provides the power for positioning the nacelle so that the rotary axis is kept in line with the direction of the prevailing wind, as well as pressure to the yaw and high speed shaft brakes. The pitch-change-mechanism hydraulic system provides the actuation to the pitch change mechanism and permits feathering of the blades during an emergency situation. It operates in conjunction with the overall windmill computer system, with the feather control permitting slewing control flow to pass from the servo valve to the actuators without restriction.

  17. Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis

    International Nuclear Information System (INIS)

    Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika

    2016-01-01

    Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.

  18. Spatio-temporal evolution of apparent resistivity during coal-seam hydraulic flushing

    Science.gov (United States)

    Li, Dexing; Wang, Enyuan; Song, Dazhao; Qiu, Liming; Kong, Xiangguo

    2018-06-01

    Hydraulic flushing in gas predrainage is widely used, but the hydraulic-flushing effect is evaluated in a traditional way, by determining the desorption volume, moisture content, gas drainage rate and other conventional indices. To verify the rationality and feasibility of the multielectrode resistivity method in the evaluation of coal-seam hydraulic flushing and to research the spatio-temporal evolution of apparent resistivity during hydraulic flushing, a field test was conducted in 17# coal seam at Nuodong Mine, Guizhou. During hydraulic flushing, four stages were defined according to the variation in coal rock resistivity with time, namely, the preparation stage, the sharply decreasing stage, the rapidly increasing stage and the steady stage. The apparent resistivity of the coal rock mass is affected mainly by its own degree of fragmentation and flushing volume. A more serious rupture and a greater flushing volume yield a smaller apparent resistivity during the sharply decreasing stage and a higher resistivity during the stable stage. After three months of gas predrainage, the residual gas content and the gas pressure at different points in the expected affected area decrease below the critical value. Changes in the residual gas content and gas pressure at these points are consistent with the apparent resistivity, which validates the rationality and feasibility of the multielectrode resistivity method in evaluating coal-seam hydraulic flushing.

  19. Identification of static characteristics of a hydraulic elevator with an airlift pump

    Energy Technology Data Exchange (ETDEWEB)

    Geier, V.G.; Gruba, V.I.; Dekanenko, V.N.

    1982-09-01

    Control parameters of an airlift pump as used in hydraulic mining of coal are found with the object of establishing its optimal control regime for maintaining constant hydro-mixture level in the sump of the hydraulic elevator. Copious measurement data were interpreted by statistical methods to obtain control coefficients which were used in the design of the automatic controller. (9 refs.)

  20. Testing a hydraulic trait based model of stomatal control: results from a controlled drought experiment on aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas)

    Science.gov (United States)

    Love, D. M.; Venturas, M.; Sperry, J.; Wang, Y.; Anderegg, W.

    2017-12-01

    Modeling approaches for tree stomatal control often rely on empirical fitting to provide accurate estimates of whole tree transpiration (E) and assimilation (A), which are limited in their predictive power by the data envelope used to calibrate model parameters. Optimization based models hold promise as a means to predict stomatal behavior under novel climate conditions. We designed an experiment to test a hydraulic trait based optimization model, which predicts stomatal conductance from a gain/risk approach. Optimal stomatal conductance is expected to maximize the potential carbon gain by photosynthesis, and minimize the risk to hydraulic transport imposed by cavitation. The modeled risk to the hydraulic network is assessed from cavitation vulnerability curves, a commonly measured physiological trait in woody plant species. Over a growing season garden grown plots of aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas) were subjected to three distinct drought treatments (moderate, severe, severe with rehydration) relative to a control plot to test model predictions. Model outputs of predicted E, A, and xylem pressure can be directly compared to both continuous data (whole tree sapflux, soil moisture) and point measurements (leaf level E, A, xylem pressure). The model also predicts levels of whole tree hydraulic impairment expected to increase mortality risk. This threshold is used to estimate survivorship in the drought treatment plots. The model can be run at two scales, either entirely from climate (meteorological inputs, irrigation) or using the physiological measurements as a starting point. These data will be used to study model performance and utility, and aid in developing the model for larger scale applications.

  1. The electronic encapsulation of knowledge in hydraulics, hydrology and water resources

    Science.gov (United States)

    Abbott, Michael B.

    The rapidly developing practice of encapsulating knowledge in electronic media is shown to lead necessarily to the restructuring of the knowledge itself. The consequences of this for hydraulics, hydrology and more general water-resources management are investigated in particular relation to current process-simulation, real-time control and advice-serving systems. The generic properties of the electronic knowledge encapsulator are described, and attention is drawn to the manner in which knowledge 'goes into hiding' through encapsulation. This property is traced in the simple situations of pure mathesis and in the more complex situations of taxinomia using one example each from hydraulics and hydrology. The consequences for systems architectures are explained, pointing to the need for multi-agent architectures for ecological modelling and for more general hydroinformatics systems also. The relevance of these developments is indicated by reference to ongoing projects in which they are currently being realised. In conclusion, some more general epistemological aspects are considered within the same context. As this contribution is so much concerned with the processes of signification and communication, it has been partly shaped by the theory of semiotics, as popularised by Eco ( A Theory of Semiotics, Indiana University, Bloomington, 1977).

  2. Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes

    OpenAIRE

    Petr KOŇAŘÍK

    2009-01-01

    Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod) and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cyl...

  3. Effectiveness Using Circular Fibre Steel Flap Gate As a Control Structure Towards the Hydraulic Characteristics in Open Channel

    Science.gov (United States)

    Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.

    2016-07-01

    Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.

  4. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    International Nuclear Information System (INIS)

    Shi, Q

    2010-01-01

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  5. Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Q, E-mail: qhshi@dfem.com.c [Dong Fang Electrical Machinery Co., Ltd., DEC 188, Huanghe West Road, Deyang, 618000 (China)

    2010-08-15

    This paper presents the hydraulic design of Three Gorges Right Bank Powerhouse turbine for improvement of hydraulic stability. The technical challenges faced in the hydraulic design of the turbine are given. The method of hydraulic design for improving the hydraulic stability and particularly for eliminating the upper part load pressure pulsations is clarified. The final hydraulic design results of Three Gorges Right Bank Powerhouse turbine based on modern hydraulic design techniques are presented.

  6. Fixed-Time Stability of the Hydraulic Turbine Governing System

    Directory of Open Access Journals (Sweden)

    Caoyuan Ma

    2018-01-01

    Full Text Available This paper studies the problem of fixed-time stability of hydraulic turbine governing system with the elastic water hammer nonlinear model. To control and improve the quality of hydraulic turbine governing system, a new fixed-time control strategy is proposed, which can stabilize the water turbine governing system within a fixed time. Compared with the finite-time control strategy where the convergence rate depends on the initial state, the settling time of the fixed-time control scheme can be adjusted to the required value regardless of the initial conditions. Finally, we numerically show that the fixed-time control is more effective than and superior to the finite-time control.

  7. Developing a Tool Point Control Scheme for a Hydraulic Crane Using Interactive Real-time Dynamic Simulation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Hansen, Michael Rygaard; Ballebye, Morten

    2010-01-01

    This paper describes the implementation of an interactive real-time dynamic simulation model of a hydraulic crane. The user input to the model is given continuously via joystick and output is presented continuously in a 3D animation. Using this simulation model, a tool point control scheme...... is developed for the specific crane, considering the saturation phenomena of the system and practical implementation....

  8. Application of second order sliding mode algorithms for output feedback control in hydraulic cylinder drives with profound valve dynamics

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.

    2016-01-01

    The application of second order sliding mode algorithms for output feedback control in hydraulic valve-cylinder drives appear attractive due to their simple realization and parametrization, and strong robustness toward bounded parameter variations and uncertainties. However, intrinsic nonlinear...

  9. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  10. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  11. A Robust Control Concept for Hydraulic Drives Based on Second Order Sliding Mode Disturbance Compensation

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.; Johansen, Per

    2017-01-01

    , the successful implementation relies heavily on the low-pass filter design where the drive dynamics, sample rate etc. play a significant role. In this paper the utilization of the super twisting algorithm for disturbance compensation is considered. The fact that the discontinuity here is nested in an integral......The application of sliding mode algorithms for control of hydraulic drives has gained increasing interest in recent years due to algorithm simplicity, low number of parameters and possible excellent control performance. Both application of firstand higher order sliding mode control algorithms...... observer based control etc., and several examples of such approaches have been presented in literature. The latter case appear especially interesting as a sliding mode actually takes place, but only the low-pass filtered sliding mode algorithm output is used in the actual control input. However...

  12. The influence of thermodynamic state of mineral hydraulic oil on flow rate through radial clearance at zero overlap inside the hydraulic components

    Directory of Open Access Journals (Sweden)

    Knežević Darko M.

    2016-01-01

    Full Text Available In control hydraulic components (servo valves, LS regulators, etc. there is a need for precise mathematical description of fluid flow through radial clearances between the control piston and body of component at zero overlap, small valve opening and small lengths of overlap. Such a mathematical description would allow for a better dynamic analysis and stability analysis of hydraulic systems. The existing formulas in the literature do not take into account the change of the physical properties of the fluid with a change of thermodynamic state of the fluid to determine the flow rate through radial clearances in hydraulic components at zero overlap, a small opening, and a small overlap lengths, which leads to the formation of insufficiently precise mathematical models. In this paper model description of fluid flow through radial clearances at zero overlap is developed, taking into account the changes of physical properties of hydraulic fluid as a function of pressure and temperature. In addition, the experimental verification of the mathematical model is performed.

  13. Novel flood risk assessment framework for rapid decision making

    Science.gov (United States)

    Valyrakis, Manousos; Koursari, Eftychia; Solley, Mark

    2016-04-01

    The impacts of catastrophic flooding, have significantly increased over the last few decades. This is due to primarily the increased urbanisation in ever-expanding mega-cities as well as due to the intensification both in magnitude and frequency of extreme hydrologic events. Herein a novel conceptual framework is presented that incorporates the use of real-time information to inform and update low dimensionality hydraulic models, to allow for rapid decision making towards preventing loss of life and safeguarding critical infrastructure. In particular, a case study from the recent UK floods in the area of Whitesands (Dumfries), is presented to demonstrate the utility of this approach. It is demonstrated that effectively combining a wealth of readily available qualitative information (such as crowdsourced visual documentation or using live data from sensing techniques), with existing quantitative data, can help appropriately update hydraulic models and reduce modelling uncertainties in future flood risk assessments. This approach is even more useful in cases where hydraulic models are limited, do not exist or were not needed before unpredicted dynamic modifications to the river system took place (for example in the case of reduced or eliminated hydraulic capacity due to blockages). The low computational cost and rapid assessment this framework offers, render it promising for innovating in flood management.

  14. REVIEW OF ENERGY-SAVING TECHNOLOGIES IN MODERN HYDRAULIC DRIVES

    Directory of Open Access Journals (Sweden)

    Mykola Karpenko

    2017-12-01

    Full Text Available This paper focuses on review of modern energy­saving technologies in hydraulic drives. Described main areas of energy conservation in hydraulic drive (which in turn are divided into many under the directions and was established the popularity of them. Reviewed the comparative analysis of efficiency application of various strategies for energy saving in a hydraulic drive. Based on the review for further research a combined method of real­time control systems with energy­saving algorithms and regeneration unit – selected for maxing efficiency in hydraulic drive. Scientific papers (40 papers, what introduced in review, is not older than 15 years in the databases “Sciencedirect” and “Scopus”.

  15. Neuromuscular Control of Rapid Linear Accelerations in Fish

    Science.gov (United States)

    2016-06-22

    sunfish, Lepomis macrochirus. Animals with flexible bodies, like fishes , face a tradeoff for rapid movements. To produce high forces, they must...2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 swimming, acceleration, fish , muscle, stiffness REPORT DOCUMENTATION PAGE 11. SPONSOR

  16. Chapter 2. Mode-switching in Hydraulic Actuator Systems - An Experiment

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Conrad, Finn; Ravn, Anders P.

    1996-01-01

    Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF.......Experiments with mode-switching adaptive control of actuators to drive a hydraulic test robot.The research is a cooperation with IT, DTU within the IMCIA Research Programme supported by the Danish Technical Research Council, STVF....

  17. Quantifying Water-Rock Interactions during Hydraulic Fracturing from the Analysis of Flowback Water

    Science.gov (United States)

    Osselin, F.; Nightingale, M.; Kloppmann, W.; Gaucher, E.; Clarkson, C.; Mayer, B.

    2017-12-01

    Hydraulic fracturing technologies have facilitated the rapid development of shale gas and other unconventional resources throughout the world. In order to get sufficient access to the trapped hydrocarbon, it is necessary to fracture the bedrock and increase its permeability. Fracturing fluids are usually composed of tens of thousand of cubic meters of low salinity water with numerous additives, such as viscosity agent or breakers. The objective of this study was to investigate and quantify the water-rock interactions during hydraulic fracturing. This study was based on repeated sampling of flowback water from a hydraulically fractured well in Alberta, Canada. The flowback water was sampled 24 times during the first week and one last time after one, and analyzed for major ions and trace elements, as well as stable isotopes of sulfate and water among others. Results showed that salinity rapidly increases up to 100 000 mg/L at the end of the first week. We demonstrate that conservative species such as Na and Cl follow a clear two end-members mixing line, while some species including sulfate had much higher concentrations (8 times higher than the expected value from the mixing line). This indicates that the rapid increase of salinity in flowback water is caused by both mixing with formation water initially present in the shale formation, and from water-rock interactions triggered by the fracturing fluid and in some cases by the additives. Stable isotope data suggest that additional sulfate is mobilized as a consequence of pyrite oxidation, releasing sulfate, iron and potentially other heavy metals into the flowback water. This release of excess sulfate can be detrimental because it has the potential to promote scaling of sulfate minerals. Moreover, pyrite oxidation is a highly acidifying reaction and this may decrease the effectiveness of other additives, and promote carbonate minerals dissolution enhancing further scaling. We propose that a better control of the

  18. Power management in hydraulically actuated mobile equipment

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    The focus of the current paper is on the control of hydraulic systems when utilizing the advances that electronic control may bring with regard to power management, prioritized flow sharing and anti-stall, arising from being able to control both pump, valves and engine electronically. A simple mo...

  19. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    International Nuclear Information System (INIS)

    Kerschberger, P; Gehrer, A

    2010-01-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  20. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  1. Quasi-open loop hydraulic ram incremental actuator with power conserving properties

    International Nuclear Information System (INIS)

    Raymond, E.T.; Robinson, C.W.

    1982-01-01

    An electric stepping motor, operated by command signals from a computer or a microprocessor, rotates a rotary control member of a distributor valve, for sequencing hydraulic pressure and hence flow to the cylinders of an axial piston hydraulic machine. A group of the cylinders are subjected to pressure and flow and the remaining cylinders are vented to a return line. Rotation of the rotary control valve member sequences pressurization by progressively adding a cylinder to the forward edge to the pressurized group and removing a cylinder from the trailing edge of the pressurized group. The double ended pistons of each new pressurized group function to drive a wobble plate into a new position of equilibrium and then hold it in such position until another change in the makeup of the pressurized group. These pistons also displace hydraulic fluid from the opposite cylinder head which serves as the output of a pumping element. An increment of displacement of the wobble plate occurs in direct response to each command pulse that is received by the stepping motor. Wobble plate displacement drives the rotary valve of the hydraulic power transfer unit, causing it to transfer hydraulic fluid from a first expansible chamber on one side of a piston in a hydraulic ram to a second expansible chamber on the opposite side of the piston. Reverse drive of the hydraulic power transfer unit reverses the direction of transfer of hydraulic fluid between the two expansible chambers

  2. Impact of soil texture and water availability on the hydraulic control of plant and grape-berry development

    Science.gov (United States)

    Sara Tramontini; Cornelis van Leeuwen; Jean-Christophe Domec; Agnès Destrac-Irvine; Cyril Basteau; Marco Vitali; Olaf Mosbach-Schulz; Claudio Lovisolo

    2013-01-01

    All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes...

  3. The safety feature of hydraulic driving system of control rod for 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    Chi Zongbo; Wu Yuanqiang

    1997-01-01

    The hydraulic driving system of control rod is used as control rod drive mechanism in 200 MW nuclear heating reactor. Design of this system is based on passive system, integrating drive and guide of control rod. The author analyzes the inherent safety and the design safety of this system, with mechanism of control rod not ejecting when the pressure of pressure vessel is lost, and calculating result of core not exposing when the amount of coolant is drained by broken pipe. The results indicate that this system has good safety feature, and assures reactor safety under any accident conditions, providing important technology support for 200 MW nuclear heating reactor with inherent safety feature

  4. A Model Predictive Control Approach for Fuel Economy Improvement of a Series Hydraulic Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    Tri-Vien Vu

    2014-10-01

    Full Text Available This study applied a model predictive control (MPC framework to solve the cruising control problem of a series hydraulic hybrid vehicle (SHHV. The controller not only regulates vehicle velocity, but also engine torque, engine speed, and accumulator pressure to their corresponding reference values. At each time step, a quadratic programming problem is solved within a predictive horizon to obtain the optimal control inputs. The objective is to minimize the output error. This approach ensures that the components operate at high efficiency thereby improving the total efficiency of the system. The proposed SHHV control system was evaluated under urban and highway driving conditions. By handling constraints and input-output interactions, the MPC-based control system ensures that the system operates safely and efficiently. The fuel economy of the proposed control scheme shows a noticeable improvement in comparison with the PID-based system, in which three Proportional-Integral-Derivative (PID controllers are used for cruising control.

  5. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Mine drivage in hydraulic mines

    Energy Technology Data Exchange (ETDEWEB)

    Ehkber, B Ya

    1983-09-01

    From 20 to 25% of labor cost in hydraulic coal mines falls on mine drivage. Range of mine drivage is high due to the large number of shortwalls mined by hydraulic monitors. Reducing mining cost in hydraulic mines depends on lowering drivage cost by use of new drivage systems or by increasing efficiency of drivage systems used at present. The following drivage methods used in hydraulic mines are compared: heading machines with hydraulic haulage of cut rocks and coal, hydraulic monitors with hydraulic haulage, drilling and blasting with hydraulic haulage of blasted rocks. Mining and geologic conditions which influence selection of the optimum mine drivage system are analyzed. Standardized cross sections of mine roadways driven by the 3 methods are shown in schemes. Support systems used in mine roadways are compared: timber supports, roof bolts, roof bolts with steel elements, and roadways driven in rocks without a support system. Heading machines (K-56MG, GPKG, 4PU, PK-3M) and hydraulic monitors (GMDTs-3M, 12GD-2) used for mine drivage are described. Data on mine drivage in hydraulic coal mines in the Kuzbass are discussed. From 40 to 46% of roadways are driven by heading machines with hydraulic haulage and from 12 to 15% by hydraulic monitors with hydraulic haulage.

  7. Global Energy-Optimal Redundancy Resolution of Hydraulic Manipulators: Experimental Results for a Forestry Manipulator

    Directory of Open Access Journals (Sweden)

    Jarmo Nurmi

    2017-05-01

    Full Text Available This paper addresses the energy-inefficiency problem of four-degrees-of-freedom (4-DOF hydraulic manipulators through redundancy resolution in robotic closed-loop controlled applications. Because conventional methods typically are local and have poor performance for resolving redundancy with respect to minimum hydraulic energy consumption, global energy-optimal redundancy resolution is proposed at the valve-controlled actuator and hydraulic power system interaction level. The energy consumption of the widely popular valve-controlled load-sensing (LS and constant-pressure (CP systems is effectively minimised through cost functions formulated in a discrete-time dynamic programming (DP approach with minimum state representation. A prescribed end-effector path and important actuator constraints at the position, velocity and acceleration levels are also satisfied in the solution. Extensive field experiments performed on a forestry hydraulic manipulator demonstrate the performance of the proposed solution. Approximately 15–30% greater hydraulic energy consumption was observed with the conventional methods in the LS and CP systems. These results encourage energy-optimal redundancy resolution in future robotic applications of hydraulic manipulators.

  8. Determination of the performance of the Kaplan hydraulic turbines through simplified procedure

    Science.gov (United States)

    Pădureanu, I.; Jurcu, M.; Campian, C. V.; Haţiegan, C.

    2018-01-01

    A simplified procedure has been developed, compared to the complex one recommended by IEC 60041 (i.e. index samples), for measurement of the performance of the hydraulic turbines. The simplified procedure determines the minimum and maximum powers, the efficiency at maximum power, the evolution of powers by head and flow and to determine the correct relationship between runner/impeller blade angle and guide vane opening for most efficient operation of double-regulated machines. The simplified procedure can be used for a rapid and partial estimation of the performance of hydraulic turbines for repair and maintenance work.

  9. Simulation of the electro-hydraulic control system of a BWR-5

    International Nuclear Information System (INIS)

    Acosta, M.; Montoya, J.; Chavez, H.

    1986-01-01

    The methodology used to develop the mathematical models for the simulation of the principal turbine electro-hydraulic control of the Laguna Verde Nuclear Plant (LVNP) is presented in this report. The development of the systems mathematical model is based on the response curves of each of its elements. Therefore, little error is expected with respect to real results. On the other hand, due to the fact that the greater part of the systems dynamics is governed by first order differential equations the explicit solution method is used allowing to solve the equations algebraically. The model is validated by comparing real valves and the ones obtained through our model. The analogical and logical parts will be tested considering transitory and steady state situations. The results are presented as computer graphs

  10. Control of a hydraulic system by means of a fuzzy approach

    Directory of Open Access Journals (Sweden)

    Mohamed Ksantini

    2013-07-01

    Full Text Available Non linear models can be represented conveniently by Takagi-Sugeno fuzzy models when nonlinearities are bounded. This approach uses a collection of linear models which are interpolated by non linear functions. Then the global control law is the interpolation by the same functions of each feedback associated to each linear model. A Lyapunov approach enables to compute these feedback gains. The number of linear models depends directly on the number of nonlinearities the system has. The more models there are, the more difficult it is to guarantee the stability of the closed loop. This paper proposes a method to reduce the number of linear models by assuming a number of nonlinearities considered as uncertainties and to guarantee the global exponential stability of the system. This method is applied on a hydraulic system.

  11. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  12. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    Science.gov (United States)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  13. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  14. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    International Nuclear Information System (INIS)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  15. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  16. Modified hydraulic braking system limits angular deceleration to safe values

    Science.gov (United States)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  17. Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance

    Science.gov (United States)

    Frederick C. Meinzer; Daniel M. Johnson; Barbara Lachenbruch; Katherine A. McCulloh; David R. Woodruff

    2009-01-01

    The xylem pressure inducing 50% loss of hydraulic conductivity due to embolism (P50) is widely used for comparisons of xylem vulnerability among species and across aridity gradients. However, despite its utility as an index of resistance to catastrophic xylem failure under extreme drought, P50 may have no special...

  18. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    Johnston, R.P.; Bennett, A.; Emigh, S.G.; Griffith, W.R.; Noble, J.E.; Perrone, R.E.; White, M.A.; Martini, W.R.; Alexander, J.E.

    1977-01-01

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  19. Reactor Shutdown Mechanism by Top-mounted Hydraulic System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Haun; Cho, Yeong Garp; Choi, Myoung Hwan; Lee, Jin Haeng; Huh, Hyung; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    There are two types of reactor shutdown mechanisms in HANARO. One is the mechanism driven by a hydraulic system, and the other is driven by a stepping motor. In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The rods in CRDMs also drop by gravity together as a redundant shutdown mechanism. When a trip is commended by the reactor regulating system (RRS), the absorber rods of CRDM only drop; while the absorber rods of SO units stay at the top of the core by the hydraulic system. The reactivity control mechanisms of in JRTR, one of the new research reactor with plate type fuels, consist of four CRDMs driven by an individual step motor and two second shutdown drive mechanisms (SSDMs) driven by an individual hydraulic system as shown in Fig. 1. The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the introduction of the SSDM in the process of the basic design. The major differences of the shutdown mechanisms by the hydraulic system are compared between HANARO and JRTR, and the design features, system, structure and

  20. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  1. Hydraulic control of tuna fins: A role for the lymphatic system in vertebrate locomotion.

    Science.gov (United States)

    Pavlov, Vadim; Rosental, Benyamin; Hansen, Nathaniel F; Beers, Jody M; Parish, George; Rowbotham, Ian; Block, Barbara A

    2017-07-21

    The lymphatic system in teleost fish has genetic and developmental origins similar to those of the mammalian lymphatic system, which is involved in immune response and fluid homeostasis. Here, we show that the lymphatic system of tunas functions in swimming hydrodynamics. Specifically, a musculo-vascular complex, consisting of fin muscles, bones, and lymphatic vessels, is involved in the hydraulic control of median fins. This specialization of the lymphatic system is associated with fish in the family Scombridae and may have evolved in response to the demand for swimming and maneuvering control in these high-performance species. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Dictionary of control technology. Pneumatics, hydraulics, electronics. English-German, German-English. Woerterbuch der Steuerungstechnik. Pneumatik, Hydraulik, Elektronik. Deutsch-Englisch, Englisch-Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Budd, F

    1988-01-01

    The English-German/German-English dictionary covers the complete field of control technology present in industry today. The subjects represent appropriate terms from hydraulics, pneumatics, electrical engineering, electronics, data processing, administration, and training. (DG).

  3. Method for achieving hydraulic balance in typical Chinese building heating systems by managing differential pressure and flow

    DEFF Research Database (Denmark)

    Zhang, Lipeng; Xia, Jianjun; Thorsen, Jan Eric

    2017-01-01

    to a lack of pressure and flow control. This study investigated using pre-set radiator valves combined with differential pressure (DP) controllers to achieve hydraulic balance in building distribution systems, and consequently save energy and reduce the emissions. We considered a multi-storey building......Hydraulic unbalance is a common problem in Chinese district heating (DH) systems. Hydraulic unbalance has resulted in poor flow distribution among heating branches and overheating of apartments. Studies show that nearly 30% of the total heat supply is being wasted in Chinese DH systems due...... modelled in the IDA-ICE software, along with a self-developed mathematical hydraulic model to simulate its heat performance and hydraulic performance with various control scenarios. In contrast to the situation with no pressure or flow control, this solution achieves the required flow distribution...

  4. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  5. Design, manufacture and performance research of double acting hydraulic press

    OpenAIRE

    Koc, Erdem; Unver, Ertu; Ozturk, Hidayet

    1990-01-01

    This research presents the design and production of a double acting 40 tons capacity hydraulic press. The issues in the design, engineering manufacturing of the hydraulic press are reported specifically on both cylinders generating the same pressure and velocity using a solenoid directional control valve and a flow separating valve. (In Turkish)

  6. Fluid Temperature of Aero Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available In modern supersonic aircrafts due to aerodynamic skin heating a temperature of hydraulics environment significantly exceeds that of permissible for fluids used. The same problem exists for subsonic passenger aircrafts, especially for Airbuses, which have hydraulics of high power where convective heat transfer with the environment is insufficient and there is no required temperature control of fluid. The most significant in terms of heat flow is the flow caused by the loss of power to the pump and when designing the hydraulic system (HS it is necessary to pay very serious attention to it. To use a constant capacity pump is absolutely unacceptable, since HS efficiency in this case is extremely low, and the most appropriate are variable-capacity pumps, cut-off pumps, dual-mode pumps. The HS fluid cooling system should provide high reliability, lightweight, simple design, and a specified heat transfer in all flight modes.A system cooling the fluid by the fuel of feeding lines of the aircraft engines is the most effective, and it is widely used in supersonic aircrafts, where power of cooling system is essential. Subsonic aircrafts widely use convective heat exchangers. In thermal design of the aircraft hydraulics, the focus is generally given to the maximum and minimum temperatures of the HS fluid, the choice of the type of heat exchanger (convective or flow-through, the place of its installation. In calculating the operating temperature of a hydraulic system and its cooling systems it is necessary to determine an increase of the working fluid temperature when throttling it. There are three possible formulas to calculate the fluid temperature in throttling, with the error of a calculated temperature drop from 30% to 4%.The article considers the HS stationary and noon-stationary operating conditions and their calculation, defines temperatures of fluid and methods to control its specified temperature. It also discusses various heat exchanger schemes

  7. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    Directory of Open Access Journals (Sweden)

    Jiangang Chen

    2014-01-01

    Full Text Available With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  8. Hydraulic fracturing: paving the way for a sustainable future?

    Science.gov (United States)

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  9. Program ELM: A tool for rapid thermal-hydraulic analysis of solid-core nuclear rocket fuel elements

    International Nuclear Information System (INIS)

    Walton, J.T.

    1992-11-01

    This report reviews the state of the art of thermal-hydraulic analysis codes and presents a new code, Program ELM, for analysis of fuel elements. ELM is a concise computational tool for modeling the steady-state thermal-hydraulics of propellant flow through fuel element coolant channels in a nuclear thermal rocket reactor with axial coolant passages. The program was developed as a tool to swiftly evaluate various heat transfer coefficient and friction factor correlations generated for turbulent pipe flow with heat addition which have been used in previous programs. Thus, a consistent comparison of these correlations was performed, as well as a comparison with data from the NRX reactor experiments from the Nuclear Engine for Rocket Vehicle Applications (NERVA) project. This report describes the ELM Program algorithm, input/output, and validation efforts and provides a listing of the code

  10. Dynamic Analysis & Characterization of Conventional Hydraulic Power Supply Units

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Liedhegener, Michael; Bech, Michael Møller

    2016-01-01

    Hydraulic power units operated as constant supply pres-sure systems remain to be widely used in the industry, to supply valve controlled hydraulic drives etc., where the hydraulic power units are constituted by variable pumps with mechanical outlet pressure control, driven by induction motors....... In the analysis of supplied drives, both linear and rotary, emphasis is commonly placed on the drives themselves and the related loads, and the supply system dynamics is often given only little attention, and usually neglected or taken into account in a simplified fashion. The simplified supply system dynamics...... and drives will reduce the flow-to-pressure gain of the supply system, and hence increase the time constant of the sup-ply pressure dynamics. A consequence of this may be large vari-ations in the supply pressure, hence large variations in the pump shaft torque, and thereby the induction motor load torque...

  11. Rapid-L Operator-Free Fast Reactor Concept Without Any Control Rods

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Tsunoda, Hirokazu; Mishima, Kaichiro; Iwamura, Takamichi

    2003-01-01

    The 200-kW(electric) uranium-nitride-fueled lithium-cooled fast reactor concept 'RAPID-L' to achieve highly automated reactor operation has been demonstrated. RAPID-L is designed for a lunar base power system. It is one of the variants of the RAPID (Refueling by All Pins Integrated Design) fast reactor concept, which enables quick and simplified refueling. The essential feature of the RAPID concept is that the reactor core consists of an integrated fuel assembly instead of conventional fuel subassemblies. In this small-size reactor core, 2700 fuel pins are integrated and encased in a fuel cartridge. Refueling is conducted by replacing a fuel cartridge. The reactor can be operated without refueling for up to 10 yr.Unique challenges in reactivity control systems design have been addressed in the RAPID-L concept. The reactor has no control rod but involves the following innovative reactivity control systems: lithium expansion modules (LEM) for inherent reactivity feedback, lithium injection modules (LIM) for inherent ultimate shutdown, and lithium release modules (LRM) for automated reactor startup. All these systems adopt 6 Li as a liquid poison instead of B 4 C rods. In combination with LEMs, LIMs, and LRMs, RAPID-L can be operated without an operator. This reactor concept is also applicable to the terrestrial fast reactors. In this paper, the RAPID-L reactor concept and its transient characteristics are presented

  12. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  13. The effect of hydraulic bed movement on the quality of chest compressions.

    Science.gov (United States)

    Park, Maeng Real; Lee, Dae Sup; In Kim, Yong; Ryu, Ji Ho; Cho, Young Mo; Kim, Hyung Bin; Yeom, Seok Ran; Min, Mun Ki

    2017-08-01

    The hydraulic height control systems of hospital beds provide convenience and shock absorption. However, movements in a hydraulic bed may reduce the effectiveness of chest compressions. This study investigated the effects of hydraulic bed movement on chest compressions. Twenty-eight participants were recruited for this study. All participants performed chest compressions for 2min on a manikin and three surfaces: the floor (Day 1), a firm plywood bed (Day 2), and a hydraulic bed (Day 3). We considered 28 participants of Day 1 as control and each 28 participants of Day 2 and Day 3 as study subjects. The compression rates, depths, and good compression ratios (>5-cm compressions/all compressions) were compared between the three surfaces. When we compared the three surfaces, we did not detect a significant difference in the speed of chest compressions (p=0.582). However, significantly lower values were observed on the hydraulic bed in terms of compression depth (p=0.001) and the good compression ratio (p=0.003) compared to floor compressions. When we compared the plywood and hydraulic beds, we did not detect significant differences in compression depth (p=0.351) and the good compression ratio (p=0.391). These results indicate that the movements in our hydraulic bed were associated with a non-statistically significant trend towards lower-quality chest compressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A hydraulic device for unloading coke

    Energy Technology Data Exchange (ETDEWEB)

    Kretinin, M.V.; Abizgildin, U.M.; Kirillov, T.S.; Makarov, M.I.; Prokopov, O.I.; Solov' ev, A.M.

    1979-07-15

    A hydraulic device for unloading petroleum coke from slow carbonization chambers is characterized by an arrangement whereby in order to increase the output of large size coke by controlling the increment of the cutting line of the coke, the mechanism used to move the rod in the hydraulic cutter is built in the form of a rod rotation rotor; a gear wheel is mounted on the immobile section of this rotor, and on the mobile section a multi-stage regulator is installed. The drive gear of the regulator is engaged with the gear wheel, while the driven gear is connected to the rack, which is fastened to the rod.

  15. Influence factors of sand-bentonite mixtures on hydraulic conductivity

    International Nuclear Information System (INIS)

    Chen Yonggui; Ye Weimin; Chen Bao; Wan Min; Wang Qiong

    2008-01-01

    Buffer material is a very important part of the engineering barrier for geological disposal of high-level radioactive nuclear waste. Compacted bentonite is attracting greater attention as buffer and backfill material because it offer impermeability and swelling properties, but the pure compacted bentonite strength decreases with increasing hydration and these will reduce the buffer capability. To solve this problem, sand is often used to form compacted sand-bentonite mixtures (SBMs) providing high thermal conductivity, excellent compaction capacity, long-time stability, and low engineering cost. As to SBMs, hydraulic conductivity is a important index for evaluation barrier capability. Based on the review of research results, the factors affecting the hydraulic conductivity of SBMs were put forward including bentonite content, grain size distribution, moisture content, dry density, compacting method and energy, and bentonite type. The studies show that the hydraulic conductivity of SBMs is controlled by the hydraulic conductivity of the bentonite, it also decreases as dry density and bentonite content increase, but when the bentonite content reach a critical point, the influence of increasing bentonite to decrease the hydraulic conductivity is limited. A fine and well-graded SBMs is likely to have a lower hydraulic conductivity than a coarse and poorly graded material. The internal erosion or erodibility based on the grain size distribution of the SBMs has a negative effect on the final hydraulic conductivity. The lowest hydraulic conductivity is gained when the mixtures are compacted close to optimum moisture content. Also, the mixtures compacted at moisture contents slightly above optimum values give lower hydraulic conductivity than when compacted at slightly under the optimum moisture content. Finally, discussion was brought to importance of compaction method, compacting energy, and bentonite type to the hydraulic conductivity of SBMs. (authors)

  16. Hydraulics calculation in drilling simulator

    Science.gov (United States)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  17. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  18. Kinematic and Dynamic Simulation Analysis of Hydraulic Excavator’s Working Equipment based on ADAMS

    Directory of Open Access Journals (Sweden)

    Yu Hong Yan

    2016-01-01

    Full Text Available This paper establishes the 3D excavator model according to the actual size in UG firstly. Then based on the virtual simulation software ADAMS, the virtual prototype of the working device is built by adding interrelated constraints(kinematic pair and hydraulic cylinder driving function and load secondly. This paper gets the main parameters of the excavator working scope and the pressure situation change curves of point of each hydraulic cylinder by making kinematic and dynamic simulation analysis of hydraulic excavator’s working equipment at last. The conclusion providing design theory and improvement for the excavator’s working device, which also play an important role in improving the level of China’s excavator design, enhancing excavator’s performance and promoting the rapid development of excavator industry.

  19. Influence of Drought on the Hydraulic Efficiency and the Hydraulic Safety of the Xylem - Case of a Semi-arid Conifer.

    Science.gov (United States)

    Gentine, P.; Guerin, M. F.; von Arx, G.; Martin-Benito, D.; Griffin, K. L.; McDowell, N.; Pockman, W.; Andreu-Hayles, L.

    2017-12-01

    Recent droughts in the Southwest US have resulted in extensive mortality in the pinion pine population (Pinus Edulis). An important factor for resiliency is the ability of a plant to maintain a functional continuum between soil and leaves, allowing water's motion to be sustained or resumed. During droughts, loss of functional tracheids happens through embolism, which can be partially mitigated by increasing the hydraulic safety of the xylem. However, higher hydraulic safety is usually achieved by building narrower tracheids with thicker walls, resulting in a reduction of the hydraulic efficiency of the xylem (conductivity per unit area). Reduced efficiency constrains water transport, limits photosynthesis and might delay recovery after the drought. Supporting existing research on safety-efficiency tradeoff, we test the hypothesis that under dry conditions, isohydric pinions grow xylem that favor efficiency over safety. Using a seven-year experiment with three watering treatments (drought, control, irrigated) in New Mexico, we investigate the effect of drought on the xylem anatomy of pinions' branches. We also compare the treatment effect with interannual variations in xylem structure. We measure anatomical variables - conductivities, cell wall thicknesses, hydraulic diameter, cell reinforcement and density - and preliminarily conclude that treatment has little effect on hydraulic efficiency while hydraulic safety is significantly reduced under dry conditions. Taking advantage of an extremely dry year occurrence during the experiment, we find a sharp increase in vulnerability for xylem tissues built the same year.

  20. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  1. The hydraulic wheel

    International Nuclear Information System (INIS)

    Alvarez Cardona, A.

    1985-01-01

    The present article this dedicated to recover a technology that key in disuse for the appearance of other techniques. It is the hydraulic wheel with their multiple possibilities to use their energy mechanical rotational in direct form or to generate electricity directly in the fields in the place and to avoid the high cost of transport and transformation. The basic theory is described that consists in: the power of the currents of water and the hydraulic receivers. The power of the currents is determined knowing the flow and east knowing the section of the flow and its speed; they are given you formulate to know these and direct mensuration methods by means of floodgates, drains and jumps of water. The hydraulic receivers or properly this hydraulic wheels that are the machines in those that the water acts like main force and they are designed to transmit the biggest proportion possible of absolute work of the water, the hydraulic wheels of horizontal axis are the common and they are divided in: you rotate with water for under, you rotate with side water and wheels with water for above. It is analyzed each one of them, their components are described; the conditions that should complete to produce a certain power and formulate them to calculate it. There are 25 descriptive figures of the different hydraulic wheels

  2. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Grønkjær, Morten; Pedersen, Henrik Clemmensen

    2017-01-01

    , and various approaches have been proposed by research communities as well as the industry. Recently, a so-called Speed-variable Switched Differential Pump was proposed for direct drive of hydraulic differential cylinders. The main idea with this drive is to utilize an electric rotary drive with the shaft...

  3. Experimental validation of microseismic emissions from a controlled hydraulic fracture in a synthetic layered medium

    Science.gov (United States)

    Roundtree, Russell

    A controlled hydraulic fracture experiment was performed on two medium sized (11" x 11" x 15") synthetic layered blocks of low permeability, low porosity Lyons sandstone sandwiched between cement. The purpose of the research was to better understand and characterize the fracture evolution as the fracture tip impinged upon the layer boundaries between the well bonded layers. It is also one of the first documented uses of passive microseismic used in a laboratory environment to characterize hydraulic fracturing. A relatively low viscosity fluid of 1000 centipoise, compared to properly scaled previous work (Casas 2005, and Athavale 2007), was pumped at a constant rate of 10 mL/minute through a steel cased hole landed and isolated in the sandstone layer. Efforts were made to contain the hydraulic fracture within the confines of the rock specimen to retain the created hydraulic fracture geometry. Two identical samples and treatment schedules were created and differed only in the monitoring system used to characterize the microseismic activity during the fracture treatment. The first block had eight embedded P-wave transducers placed in the sandstone layer to record the passive microseismic emissions and localize the location and time of the acoustic event. The second block had six compressional wave transducers and twelve shear wave transducers embedded in the sandstone layer of the block. The intention was to record and process the seismic data using conventional P-wave to S-wave difference timing techniques well known in industry. While this goal ultimately not possible due to the geometry of the receiver placements and the limitations of the Vallene acquisition processing software, the data received and the events localized from the 18 transducer test were of much higher numbers and quality than on the eight transducer test. This experiment proved conclusively that passive seismic emission recording can yield positive results in the laboratory. Just as in the field

  4. Effect of gravel on hydraulic conductivity of compacted soil liners

    International Nuclear Information System (INIS)

    Shelley, T.L.; Daniel, D.E.

    1993-01-01

    How much gravel should be allowed in low-hydraulic-conductivity, compacted soil liners? To address this question, two clayey soils are uniformly mixed with varying percentages of gravel that, by itself, has a hydraulic conductivity of 170 cm/s. Soil/gravel mixtures are compacted and then permeated. Hydraulic conductivity of the compacted gravel/soil mixtures is less than 1 x 10 -7 cm/s for gravel contents as high as 50-60%. For gravel contents ≤ 60%, gravel content is not important: all test specimens have a low hydraulic conductivity. For gravel contents > 50-60%, the clayey soils does not fill voids between gravel particles, and high hydraulic conductivity results. The water content of the nongravel fraction is found to be a useful indicator of proper moisture conditions during compaction. From these experiments in which molding water content and compactive energy are carefully controlled, and gravel is uniformly mixed with the soil, it is concluded that the maximum allowable gravel content is approximately 50%

  5. Development of a quality management system for borehole investigations. (1) Quality assurance and quality control methodology for hydraulic packer testing

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Kunimaru, Takanori; Ota, Kunio; Frieg, Bernd

    2011-01-01

    A quality assurance and quality control (QA/QC) system for the hydraulic packer tests has been established based on the surface-based investigations at JAEA's underground research laboratories in Mizunami and Horonobe. The established QA/QC system covers field investigations (data acquisition) and data analysis. For the field investigations, the adopted procedure is selection of a test section based on a detail fluid logging and checking with tally list, followed by inspection of test tools such as pressure transducers and shut-in valves, etc., test method selection using a 'sequential hydraulic test' for deciding appropriate method, and finally data quality confirmation by pressure changes and derivatives on a log-log plots during testing. Test event logs should also be described during testing for traceability. For the test data analysis, a quick analysis for rough estimation of hydraulic parameters, and a detailed analysis using type curve and/or numerical analyses are conducted stepwise. The established QA/QC system has been applied to the recent borehole investigations and its efficiency has been confirmed. (author)

  6. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  7. Experience curve for natural gas production by hydraulic fracturing

    International Nuclear Information System (INIS)

    Fukui, Rokuhei; Greenfield, Carl; Pogue, Katie; Zwaan, Bob van der

    2017-01-01

    From 2007 to 2012 shale gas production in the US expanded at an astounding average growth rate of over 50%/yr, and thereby increased nearly tenfold over this short time period alone. Hydraulic fracturing technology, or “fracking”, as well as new directional drilling techniques, played key roles in this shale gas revolution, by allowing for extraction of natural gas from previously unviable shale resources. Although hydraulic fracturing technology had been around for decades, it only recently became commercially attractive for large-scale implementation. As the production of shale gas rapidly increased in the US over the past decade, the wellhead price of natural gas dropped substantially. In this paper we express the relationship between wellhead price and cumulative natural gas output in terms of an experience curve, and obtain a learning rate of 13% for the industry using hydraulic fracturing technology. This learning rate represents a measure for the know-how and skills accumulated thus far by the US shale gas industry. The use of experience curves for renewable energy options such as solar and wind power has allowed analysts, practitioners, and policy makers to assess potential price reductions, and underlying cost decreases, for these technologies in the future. The reasons for price reductions of hydraulic fracturing are fundamentally different from those behind renewable energy technologies – hence they cannot be directly compared – and hydraulic fracturing may soon reach, or maybe has already attained, a lower bound for further price reductions, for instance as a result of its water requirements or environmental footprint. Yet, understanding learning-by-doing phenomena as expressed by an industry-wide experience curve for shale gas production can be useful for strategic planning in the gas sector, as well as assist environmental policy design, and serve more broadly as input for projections of energy system developments. - Highlights: • Hydraulic

  8. Assessment of a water hydraulics joint for RH operations in the divertor region

    International Nuclear Information System (INIS)

    Dubus, G.; David, O.; Measson, Y.; Friconneau, J.P.

    2007-01-01

    Due to the high level of radiations, all the nominal maintenance in the divertor region of ITER will be carried out with help of robotic means. In reduced volumes, hydraulic applications can provide powerful actuators. They become an interesting technology to build a heavy duty manipulator for operations in space constrained areas. Oil hydraulics can not ensure the cleanliness level required for all maintenance operations in the vacuum vessel. Therefore, pure water hydraulics proposes a good alternative to oil and developments are today focusing on that direction. Although basic hydraulic elements like pumps, on-off valves, filters running with pure water are already available on the market, actuators are not so many and generally limited to linear motions. Fine control of the joint is achieved with help of servovalves. Today's off the shelf products are only adaptations from standard oil servovalves and are not specifically designed for water use. Operational experience for these products shows short lifetime expectancy and could not last a complete shutdown. Starting from the oil hydraulic version CEA with help of Cybernetix redesigned for water applications the elbow vane actuator of a Maestro arm, a six-degrees-of-freedom hydraulic manipulator used in decommissioning activities. In parallel with help of In-LHC, CEA developed a servovalve for water hydraulic applications that fits the space constraints of a Maestro manipulator. This prototype is a pressure-control valve. To a current input this servovalve supplies a very accurate pressure difference output instead of a flow rate in the case of flow control servovalve that are generally used in that kind of applications. The advantage is the improvement of the performances and stability of the force control loop. This paper presents the performances of the modified vane actuator and its servovalve. Both static and dynamic responses of the servovalve prototype with and without actuator are presented. Position and

  9. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  10. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    Science.gov (United States)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist

  11. Operation of a hydraulic elevator system

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, G.A.; Li, Yu.V.; Bezuglov, N.N.

    1983-03-01

    The paper describes the hydraulic elevator system in the im. 50-letiya Oktyabr'skoi Revolutsii mine in the Karaganda basin. The system removes water and coal from the sump of a skip mine shaft. Water influx rate per day to the sump does not exceed 120 m/sup 3/, weight of coal falling from the skip is about 5,000 kg per day. The sump, 85 m deep, is closed by a screen. The elevator system consists of two pumps (one is used as a reserve pump) with a capacity of 300 m/sup 3/h. When water level exceeds the maximum permissive limit the pump is activated by an automatic control system. The coal and water mixture pumped from the sump bottom is directed to a screen which separates coal from water. Coal is fed to a coal hopper and water is pumped to a water tank. The hydraulic elevator has a capacity of 80 m/sup 3/ of mixture per hour. The slurry is tranported by a pipe of 175 mm diameter. Specifications of the pumps and pipelines are given. A scheme of the hydraulic elevator system is also shown. Economic aspects of hydraulic elevator use for removal of water and coal from deep sumps of skip shafts in the Karaganda basin also are discussed.

  12. BWR 9 X 9 Fuel Assembly Thermal-Hydraulic Tests (2): Hydraulic Vibration Test

    International Nuclear Information System (INIS)

    Yoshiaki Tsukuda; Katsuichiro Kamimura; Toshiitsu Hattori; Akira Tanabe; Noboru Saito; Masahiko Warashina; Yuji Nishino

    2002-01-01

    Nuclear Power Engineering Corporation (NUPEC) conducted thermal-hydraulic projects for verification of thermal-hydraulic design reliability for BWR high-burnup 8 x 8 and 9 x 9 fuel assemblies, entrusted by the Ministry of Economy, Trade and Industry (METI). As a part of the NUPEC thermal-hydraulic projects, hydraulic vibration tests using full-scale test assemblies simulating 9 x 9 fuel assemblies were carried out to evaluate BWR fuel integrity. The test data were applied to development of a new correlation for the estimation of fuel rod vibration amplitude. (authors)

  13. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  14. Modal space three-state feedback control for electro-hydraulic servo plane redundant driving mechanism with eccentric load decoupling.

    Science.gov (United States)

    Zhao, Jinsong; Wang, Zhipeng; Zhang, Chuanbi; Yang, Chifu; Bai, Wenjie; Zhao, Zining

    2018-06-01

    The shaking table based on electro-hydraulic servo parallel mechanism has the advantage of strong carrying capacity. However, the strong coupling caused by the eccentric load not only affects the degree of freedom space control precision, but also brings trouble to the system control. A novel decoupling control strategy is proposed, which is based on modal space to solve the coupling problem for parallel mechanism with eccentric load. The phenomenon of strong dynamic coupling among degree of freedom space is described by experiments, and its influence on control design is discussed. Considering the particularity of plane motion, the dynamic model is built by Lagrangian method to avoid complex calculations. The dynamic equations of the coupling physical space are transformed into the dynamic equations of the decoupling modal space by using the weighted orthogonality of the modal main mode with respect to mass matrix and stiffness matrix. In the modal space, the adjustments of the modal channels are independent of each other. Moreover, the paper discusses identical closed-loop dynamic characteristics of modal channels, which will realize decoupling for degree of freedom space, thus a modal space three-state feedback control is proposed to expand the frequency bandwidth of each modal channel for ensuring their near-identical responses in a larger frequency range. Experimental results show that the concept of modal space three-state feedback control proposed in this paper can effectively reduce the strong coupling problem of degree of freedom space channels, which verify the effectiveness of the proposed model space state feedback control strategy for improving the control performance of the electro-hydraulic servo plane redundant driving mechanism. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  16. New method to improve dynamic stiffness of electro-hydraulic servo systems

    Science.gov (United States)

    Bai, Yanhong; Quan, Long

    2013-09-01

    Most current researches working on improving stiffness focus on the application of control theories. But controller in closed-loop hydraulic control system takes effect only after the controlled position is deviated, so the control action is lagged. Thus dynamic performance against force disturbance and dynamic load stiffness can’t be improved evidently by advanced control algorithms. In this paper, the elementary principle of maintaining piston position unchanged under sudden external force load change by charging additional oil is analyzed. On this basis, the conception of raising dynamic stiffness of electro hydraulic position servo system by flow feedforward compensation is put forward. And a scheme using double servo valves to realize flow feedforward compensation is presented, in which another fast response servo valve is added to the regular electro hydraulic servo system and specially utilized to compensate the compressed oil volume caused by load impact in time. The two valves are arranged in parallel to control the cylinder jointly. Furthermore, the model of flow compensation is derived, by which the product of the amplitude and width of the valve’s pulse command signal can be calculated. And determination rules of the amplitude and width of pulse signal are concluded by analysis and simulations. Using the proposed scheme, simulations and experiments at different positions with different force changes are conducted. The simulation and experimental results show that the system dynamic performance against load force impact is largely improved with decreased maximal dynamic position deviation and shortened settling time. That is, system dynamic load stiffness is evidently raised. This paper proposes a new method which can effectively improve the dynamic stiffness of electro-hydraulic servo systems.

  17. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    authors developed the information-measuring system that improves the hydraulic transmission test process by automating and increasing the accuracy of measurements of control parameters. The measurement results are initial data for carrying out further studies to determine the technical condition of the hydraulic transmission UGP750-1200 during the plant post-repair tests. Practical value. The paper proposed the alternate design of microprocessor hydraulic transmission test system for diesel locomotives, which has no analogues in Ukraine. Automated data collection during the tests will allow capturing the fast processes to determine the technical condition of hydraulic transmission.

  18. Computer-controlled system for rapid soil analysis of 226Ra

    International Nuclear Information System (INIS)

    Doane, R.W.; Berven, B.A.; Blair, M.S.

    1984-01-01

    A computer-controlled multichannel analysis system has been developed by the Radiological Survey Activities Group at Oak Ridge National Laboratory (ORNL) for the Department of Energy (DOE) in support of the DOE's remedial action programs. The purpose of this system is to provide a rapid estimate of the 226 Ra concentration in soil samples using a 6 x 9-in. NaI(Tl) crystal containing a 3.25-in. deep by 3.5-in. diameter well. This gamma detection system is controlled by a mini-computer with a dual floppy disk storage medium. A two-chip interface was also designed at ORNL which handles all control signals generated from the computer keyboard. These computer-generated control signals are processed in machine language for rapid data transfer and BASIC language is used for data processing

  19. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen

    2004-01-01

    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency, but ...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}......Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...

  20. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  1. The Hydraulic Mission and the Mexican Hydrocracy: Regulating and Reforming the Flows of Water and Power

    NARCIS (Netherlands)

    Wester, P.; Rap, E.R.; Vargas-Velázquez, S.

    2009-01-01

    In Mexico, the hydraulic mission, the centralisation of water control, and the growth of the federal hydraulic bureaucracy (hydrocracy) recursively shaped and reinforced each other during the 20th century. The hydraulic mission entails that the state, embodied in an autonomous hydrocracy, takes the

  2. Hydraulic lifter of a drilling unit

    Energy Technology Data Exchange (ETDEWEB)

    Velikovskiy, L S; Demin, A V; Shadchinov, L M

    1979-01-08

    The invention refers to drilling equipment, in particular, devices for lowering and lifting operations during drilling. A hydraulic lifter of the drilling unit is suggested which contains a hydraulic cylinder, pressure line and hollow plunger whose cavities are hydraulically connected. In order to improve the reliability of the hydraulic lifter by balancing the forces of compression in the plunger of the hydraulic cylinder, a closed vessel is installed inside the plunger and rigidly connected to its ends. Its cavity is hydraulically connected to the pressure line.

  3. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  4. Hydraulic bilateral construction robot; Yuatsushiki bilateral kensetsu robot

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, K.; Mori, N. [Kayaba Industry Co. Ltd., Tokyo (Japan)

    1999-05-15

    Concerning a hydraulic bilateral construction robot, its system constitution, structures and functions of important components, and the results of some tests are explained, and the researches conducted at Gifu University are described. The construction robot in this report is a servo controlled system of a version developed from the mini-shovel now available in the market. It is equipped, in addition to an electrohydraulic servo control system, with various sensors for detecting the robot attitude, vibration, and load state, and with a camera for visualizing the surrounding landscape. It is also provided with a bilateral joy stick which is a remote control actuator capable of working sensation feedback and with a rocking unit that creates robot movements of rolling, pitching, and heaving. The construction robot discussed here, with output increased and response faster thanks to the employment of a hydraulic driving system for the aim of building a robot system superior in performance to the conventional model designed primarily for heavy duty, proves after tests to be a highly sophisticated remotely controlled robot control system. (NEDO)

  5. Influence of structure improvement of guide tubes and bundles in pressurized water reactor (PWR) on drop of control rods

    International Nuclear Information System (INIS)

    Shen Xiuzhong; Yu Pingan; Yang Guanyue

    1996-01-01

    In order to alleviate the cross hydraulic load on control rod guide tubes and bundles, some protective sleeves are added to those near the upper plenum outlet nozzles (4 symmetric bundles: 02-26, 03-25, 11-29, 12-28). In a 1/4 scale transparent model of the PWR upper plenum of Qinshan Nuclear Power Station, water was chosen as the fluid and hydraulic experiments with improved control rod guide tubes and bundles were carried out. The results were carefully compared with those of the experiments with unimproved control rod guide tubes and bundles. It is concluded that adding protective sleeves to the control rod guide tubes and bundles near the outlet nozzles will help to lighten the hydraulic load on them and make certain of the free movement and rapid dropping of control rods in the tubes and bundles in emergency by order

  6. Evaluation of Hydraulic Parameters Obtained by Different Measurement Methods for Heterogeneous Gravel Soil

    Directory of Open Access Journals (Sweden)

    Chen Zeng

    2012-01-01

    Full Text Available Knowledge of soil hydraulic parameters for the van Genuchten function is important to characterize soil water movement for watershed management. Accurate and rapid prediction of soil water flow in heterogeneous gravel soil has become a hot topic in recent years. However, it is difficult to precisely estimate hydraulic parameters in a heterogeneous soil with rock fragments. In this study, the HYDRUS-2D numerical model was used to evaluate hydraulic parameters for heterogeneous gravel soil that was irregularly embedded with rock fragments in a grape production base. The centrifugal method (CM, tensiometer method (TM and inverse solution method (ISM were compared for various parameters in the van Genuchten function. The soil core method (SCM, disc infiltration method (DIM and inverse solution method (ISM were also investigated for measuring saturated hydraulic conductivity. Simulation with the DIM approach revealed a problem of overestimating soil water infiltration whereas simulation with the SCM approach revealed a problem of underestimating water movement as compared to actual field observation. The ISM approach produced the best simulation result even though this approach slightly overestimated soil moisture by ignoring the impact of rock fragments. This study provides useful information on the overall evaluation of soil hydraulic parameters attained with different measurement methods for simulating soil water movement and distribution in heterogeneous gravel soil.

  7. Control system for the feed of pressurized fluid in a hydraulic circuit as a function of the state of the locking or unlocking of two mechanical organs

    International Nuclear Information System (INIS)

    Huet, Y.; Perichon, C.

    1985-01-01

    The control system comprises two hydraulic cylinders of which rods are integral with the mechanical organs. The piston of the first cylinder separates the chamber of this one in two parts. The piston of the second cylinder separates its chamber in three parts. The inlet chamber of the two cylinders are connected to pressurized fluid feed pipes, and the outlet chambers to a depressurization pipe. According to the position of the piston depending itself on the state of locking or unlocking of the rods, an interconnection pipe and a feed pipe of the pressurized fluid hydraulic circuit communicate with a chamber or another one. The feed of the hydraulic circuit is possible only the two rods are unlocked. The invention applies more particularly to the feed of the control circuit of an emergency seal of the primary pump of a pressurized water nuclear reactor [fr

  8. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    Wang, G.Y.; Shin, Y.W.; Moody, F.J.

    1991-01-01

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  9. Hydraulic Structures : Caissons

    NARCIS (Netherlands)

    Voorendt, M.Z.; Molenaar, W.F.; Bezuyen, K.G.

    These lecture notes on caissons are part of the study material belonging to the course 'Hydraulic Structures 1' (code CTB3355), part of the Bachelor of Science education and the Hydraulic Engineering track of the Master of Science education for civil engineering students at Delft University of

  10. Assessment of a water hydraulics joint for RH operations in the divertor region

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, G.; David, O.; Measson, Y.; Friconneau, J.P. [CEA LIST, Interactive Robotics Unit (France)

    2007-07-01

    Due to the high level of radiations, all the nominal maintenance in the divertor region of ITER will be carried out with help of robotic means. In reduced volumes, hydraulic applications can provide powerful actuators. They become an interesting technology to build a heavy duty manipulator for operations in space constrained areas. Oil hydraulics can not ensure the cleanliness level required for all maintenance operations in the vacuum vessel. Therefore, pure water hydraulics proposes a good alternative to oil and developments are today focusing on that direction. Although basic hydraulic elements like pumps, on-off valves, filters running with pure water are already available on the market, actuators are not so many and generally limited to linear motions. Fine control of the joint is achieved with help of servovalves. Today's off the shelf products are only adaptations from standard oil servovalves and are not specifically designed for water use. Operational experience for these products shows short lifetime expectancy and could not last a complete shutdown. Starting from the oil hydraulic version CEA with help of Cybernetix redesigned for water applications the elbow vane actuator of a Maestro arm, a six-degrees-of-freedom hydraulic manipulator used in decommissioning activities. In parallel with help of In-LHC, CEA developed a servovalve for water hydraulic applications that fits the space constraints of a Maestro manipulator. This prototype is a pressure-control valve. To a current input this servovalve supplies a very accurate pressure difference output instead of a flow rate in the case of flow control servovalve that are generally used in that kind of applications. The advantage is the improvement of the performances and stability of the force control loop. This paper presents the performances of the modified vane actuator and its servovalve. Both static and dynamic responses of the servovalve prototype with and without actuator are presented. Position

  11. Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae.

    Science.gov (United States)

    Males, Jamie; Griffiths, Howard

    2018-01-01

    Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C 3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  12. Spanish experience in the use of synthetic geo membranes for hydraulic works

    International Nuclear Information System (INIS)

    Blanco Fernandez, M.; Leiro Lopez, A.

    2014-01-01

    The Spanish institution Centro de Estudios y Experimentacion de Obras Publicas (CEDEX) has studied for decades the behaviour of geosynthetic products, specially the polymeric geosynthetic barriers used as waterprofing systems of different hydraulic works, mainly in reservoirs. Both in geotextiles or related products and in geomembranes, initial characteristics are determined; besides of that, periodic controls along the service life are performers in geomembranes. The monitoring of more than two hundred hydraulic structure hydraulic structures requires technical inspection, taking samples and replacing them, experimental tests and recommendations, with the purpose of increasing security and durability in hydraulic structures. Because of that, the Spanish experience in this field of technology is presented along this paper. (Author)

  13. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.

    2017-08-01

    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  14. Rapid Active Power Control of Photovoltaic Systems for Grid Frequency Support

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta; Muljadi, Eduard; Maksimovic, Dragan

    2017-01-01

    As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events, including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).

  15. The development of radiation hardened robot for nuclear facility - Development of embedded controller for hydraulic robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Kook; Kim, Jae Kwon [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    We designed and implemented a reliable hierarchical control system for hydraulic robots for nuclear power plant maintenance. In hazardous environments such as nuclear power plants, robot systems or automated equipment should be used instead of human being for maintenance and repair. Such robot should guarantee high reliability in hazardous environments such as high radiation or high temperature. The overall system is composed of three hierarchical subsystems: i) supervisory controller in safe zone for operator interaction with monitoring and commanding and graphic user interface, ii) master controller in semi-hazardous zone for control function, and iii) slave controller in hazardous zone for sensing and actuation. These subsystems are connected with suitable communication channels: a) master-slave communication channel implemented with CAN (Control Area Network) and b) supervisory-master communication with Ethernet. The master and the slave controllers construct a feedback closed-loop control system. In order to improve reliability, the slave controller is duplicated using cold-standby scheme, and master-slave communication channel is also duplicated. The overall system is implemented harmonically, and we obtained fast control interval of 1msec, which is sufficient for high-performance real-time control. 12 refs., 58 figs., 13 tabs. (Author)

  16. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, Yajun; Mu, Anle; Ma, Tao

    2016-01-01

    Highlights: • Hydraulic offshore wind turbine is capable of outputting near constant power. • Open loop hydraulic transmission uses seawater as the working fluid. • Linear control strategy distributes total flow according to demand and supply. • Constant pressure hydraulic accumulator stores/releases the surplus energy. • Simulations show the dynamic performance of the hybrid system. - Abstract: A novel offshore wind turbine comprising fluid power transmission and energy storage system is proposed. In this wind turbine, the conventional mechanical transmission is replaced by an open-loop hydraulic system, in which seawater is sucked through a variable displacement pump in nacelle connected directly with the rotor and utilized to drive a Pelton turbine installed on the floating platform. Aiming to smooth and stabilize the output power, an energy storage system with the capability of flexible charging and discharging is applied. The related mathematical model is developed, which contains some sub-models that are categorized as the wind turbine rotor, hydraulic pump, transmission pipeline, proportional valve, accumulator and hydraulic turbine. A linear control strategy is adopted to distribute the flow out of the proportional valve through comparing the demand power with captured wind energy by hydraulic pump. Ultimately, two time domain simulations demonstrate the operation of the hybrid system when the hydraulic accumulator is utilized and show how this system can be used for load leveling and stabilizing the output power.

  17. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  18. Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation

    Directory of Open Access Journals (Sweden)

    Keming Sun

    2016-03-01

    Full Text Available Shale gas reservoirs are different from conventional ones in terms of their bedding architectures, so their hydraulic fracturing rules are somewhat different. In this paper, shale hydraulic fracturing tests were carried out by using the triaxial hydraulic fracturing test system to identify the effects of natural bedding directions on the crack propagation in the process of hydraulic fracturing. Then, the fracture initiation criterion of hydraulic fracturing was prepared using the extended finite element method. On this basis, a 3D hydraulic fracturing computation model was established for shale gas reservoirs. And finally, a series of studies were performed about the effects of bedding directions on the crack propagation created by hydraulic fracturing in shale reservoirs. It is shown that the propagation rules of hydraulically induced fractures in shale gas reservoirs are jointly controlled by the in-situ stress and the bedding plane architecture and strength, with the bedding direction as the main factor controlling the crack propagation directions. If the normal tensile stress of bedding surface reaches its tensile strength after the fracturing, cracks will propagate along the bedding direction, and otherwise vertical to the minimum in-situ stress direction. With the propagating of cracks along bedding surfaces, the included angle between the bedding normal direction and the minimum in-situ stress direction increases, the fracture initiation and propagation pressures increase and the crack areas decrease. Generally, cracks propagate in the form of non-plane ellipsoids. With the injection of fracturing fluids, crack areas and total formation filtration increase and crack propagation velocity decreases. The test results agree well with the calculated crack propagation rules, which demonstrate the validity of the above-mentioned model.

  19. Cradle modification for hydraulic ram

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70 degrees and 90 degrees)

  20. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    Science.gov (United States)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  1. Multi-objective optimization of the control strategy of electric vehicle electro-hydraulic composite braking system with genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fengjiao

    2015-03-01

    Full Text Available Optimization of the control strategy plays an important role in improving the performance of electric vehicles. In order to improve the braking stability and recover the braking energy, a multi-objective genetic algorithm is applied to optimize the key parameters in the control strategy of electric vehicle electro-hydraulic composite braking system. Various limitations are considered in the optimization process, and the optimization results are verified by a software simulation platform of electric vehicle regenerative braking system in typical brake conditions. The results show that optimization objectives achieved a good astringency, and the optimized control strategy can increase the brake energy recovery effectively under the condition of ensuring the braking stability.

  2. Output regulation of large-scale hydraulic networks with minimal steady state power consumption

    NARCIS (Netherlands)

    Jensen, Tom Nørgaard; Wisniewski, Rafał; De Persis, Claudio; Kallesøe, Carsten Skovmose

    2014-01-01

    An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact that the

  3. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT X, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEMS (PART II).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF MAINTENANCE PROCEDURES FOR AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) CHECKING THE HYDRAULIC SYSTEM, (2) SERVICING THE HYDRAULIC SYSTEM, (3) EXAMINING THE RANGE CONTROL VALVE, (4) EXAMINING THE LOCK-UP AND FLOW VALVE, (5) EXAMINING THE MAIN REGULATOR…

  4. Nonlinear stability research on the hydraulic system of double-side rolling shear

    Science.gov (United States)

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.

  5. Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Matray, J.-M. [Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, (France); Yu, C.; Gonçalvès, J. [Aix Marseille Université UMR 6635 CEREGE Technopôle Environnement Arbois-Méditerranée Aix-en-Provence, Cedex 4 (France); and others

    2017-04-15

    The deep borehole (DB) experiment gave the opportunity to acquire hydraulic parameters in a hydraulically undisturbed zone of the Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Three methods were used to estimate hydraulic conductivity and specific storage values of the Opalinus Clay formation and its bounding formations through the 248 m deep borehole BDB-1: application of a Poiseuille-type law involving petrophysical measurements, spectral analysis of pressure time series and in situ hydraulic tests. The hydraulic conductivity range in the Opalinus Clay given by the first method is 2 × 10{sup -14}-6 × 10{sup -13} m s{sup -1} for a cementation factor ranging between 2 and 3. These results show low vertical variability whereas in situ hydraulic tests suggest higher values up to 7 × 10{sup -12} m s{sup -1}. Core analysis provides economical estimates of the homogeneous matrix hydraulic properties but do not account for heterogeneities at larger scale such as potential tectonic conductive features. Specific storage values obtained by spectral analysis are consistent and in the order of 10{sup -6} m{sup -1}, while formulations using phase shift and gain between pore pressure signals were found to be inappropriate to evaluate hydraulic conductivity in the Opalinus Clay. The values obtained are globally in good agreement with the ones obtained previously at the rock laboratory. (authors)

  6. Research on control system of truck-mounted rig for coalbed methane

    Directory of Open Access Journals (Sweden)

    Wang Hejian

    2018-01-01

    Full Text Available The coal-bed methane (CBM as a kind energy is clean and efficient, also it can become a security risk in mining process if it could not get out of the coal seam. In view of the current large-scale exploitation of coal-bed methane resources, the development of drilling rig for CBM drilling is needed. The parameters and structures were introduced in the paper. The rig uses a highly integrated approach that integrates the required functions on the chassis of the vehicle to meet the needs of rapid installation and transportation. Drilling control system uses hydraulic control and electro-hydraulic control dual control mode, can achieve short-range and remote control operations. The control system include security circuits and electric control system. Through the field trial, it is shown that the rig can meet the construction of the majority of coalbed methane drilling in the country and the performance is stable and the operation is simple.

  7. Design and Optimization of Fast Switching Valves for Large Scale Digital Hydraulic Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck

    The present thesis is on the design, analysis and optimization of fast switching valves for digital hydraulic motors with high power ratings. The need for such high power motors origins in the potential use of hydrostatic transmissions in wind turbine drive trains, as digital hydraulic machines...... have been shown to improve the overall efficiency and efficient operation range compared to traditional hydraulic machines. Digital hydraulic motors uses electronically controlled independent seat valves connected to the pressure chambers, which must be fast acting and exhibit low pressure losses...... to enable efficient operation. These valves are complex components to design, as multiple design aspects are present in these integrated valve units, with conflicting objectives and interdependencies. A preliminary study on a small scale single-cylinder digital hydraulic pump has initially been conducted...

  8. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    Science.gov (United States)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  9. The optimal control of ITU TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Can, Burhanettin

    2008-01-01

    In this study, optimal control of ITU TRIGA Mark-II Reactor is discussed. A new controller has been designed for ITU TRIGA Mark-II Reactor. The controller consists of main and auxiliary controllers. The form is based on Pontragyn's Maximum Principle and the latter is based on PID approach. For the desired power program, a cubic function is chosen. Integral Performance Index includes the mean square of error function and the effect of selected period on the power variation. YAVCAN2 Neutronic - Thermal -Hydraulic code is used to solve the equations, namely 11 equations, dealing with neutronic - thermal - hydraulic behavior of the reactor. For the controller design, a new code, KONTCAN, is written. In the application of the code, it is seen that the controller controls the reactor power to follow the desired power program. The overshoot value alters between 100 W and 500 W depending on the selected period. There is no undershoot. The controller rapidly increases reactivity, then decreases, after that increases it until the effect of temperature feedback is compensated. Error function varies between 0-1 kW. (author)

  10. Hydraulic Shearing and Hydraulic Jacking Observed during Hydraulic Stimulations in Fractured Geothermal Reservoir in Pohang, Korea

    Science.gov (United States)

    Min, K. B.; Park, S.; Xie, L.; Kim, K. I.; Yoo, H.; Kim, K. Y.; Choi, J.; Yoon, K. S.; Yoon, W. S.; Lee, T. J.; Song, Y.

    2017-12-01

    Enhanced Geothermal System (EGS) relies on sufficient and irreversible enhancement of reservoir permeability through hydraulic stimulation and possibility of such desirable change of permeability is an open question that can undermine the universality of EGS concept. We report results of first hydraulic stimulation campaign conducted in two deep boreholes in fractured granodiorite geothermal reservoir in Pohang, Korea. Borehole PX-1, located at 4.22 km, was subjected to the injection of 3,907 m3 with flow rate of up to 18 kg/s followed by bleeding off of 1,207 m3. The borehole PX-2, located at 4.35 km, was subjected to the injection of 1,970 m3 with flow rate of up to 46 kg/sIn PX-1, a sharp distinct decline of wellhead pressure was observed at around 16 MPa of wellhead pressure which was similar to the predicted injection pressure to induce hydraulic shearing. Injectivity interpretation before and after the hydraulic shearing indicates that permanent increase of permeability was achieved by a factor of a few. In PX-2, however, injectivity was very small and hydraulic shearing was not observed due possibly to the near wellbore damage made by the remedying process of lost circulation such as using lost circulation material during drilling. Flow rate of larger than 40 kg/s was achieved at very high well head pressure of nearly 90 MPa. Hydraulic jacking, that is reversible opening and closure of fracture with change of injection pressure, was clearly observed. Although sharp increase of permeability due to fracture opening was achieved with elevated injection pressure, the increased permeability was reversed with decreased injection pressure.Two contrasting response observed in the same reservoir at two different boreholes which is apart only 600 m apart provide important implication that can be used for the stimulation strategy for EGS.This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology

  11. MAESTRO, a hydraulic manipulator for maintenance and decommissioning applications

    International Nuclear Information System (INIS)

    Olivier David; Yvan Measson; Catherine Bidard; Christine Libersa

    2006-01-01

    Compared to electric technology payload of hydraulic manipulators is very high with respect to their volume and mass. However, due to their force control limitations they were usually disqualified for precise manipulation. CEA, in collaboration with CYBERNETIX developed a complete remote handling system around the advanced hydraulic robotic arm MAESTRO. Requirements and specifications of the system were defined according to the needs of decommissioning activities in existing nuclear facilities and maintenance scenarios of the next step fusion reactor ITER. Using TAO2000 CEA controller, CEA developed specific force control loops to improve the performances of the manipulator and reach a level where the MAESTRO can be used like a traditional tele-operation master/slave system with force feedback. The complete system is composed of a 2 m long 100 kg payload 6 degrees of freedom slave hydraulic manipulator. The manipulator is mounted on an embedded unit made of a 210 bars hydraulic power pack and a 10 kGy rad hardened slave controller. The master station is made of the new generation Virtuose V6D-40-40 master arm with its TAO2000 controller. The graphical supervisor Magritte gives the operator an additional interface to manage and monitor the system. Repetitive tasks like tool picking can therefore be left to the system while the operator keeps his concentration on the main task. Thanks to the collision detection algorithm, Magritte warns the operator when the tool or any part of the Maestro arm comes too close to a delicate unit. Operational experience gained through test campaigns was gathered in an upgrade study to propose a new version of the manipulator that successfully ran through a 1000 hour endurance test. Rad-hardened components were selected and tested in nuclear facilities. Attention was paid to provide a design in which contamination is easily removed and to ease the maintenance when performed by an operator in suit. To be quickly adapted to new tasks, the

  12. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan

    2005-01-01

    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  13. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  14. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested.

  15. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

    International Nuclear Information System (INIS)

    Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol

    2014-01-01

    The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested

  16. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  17. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  18. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study...

  19. Hydraulic failure defines the recovery and point of death in water-stressed conifers.

    Science.gov (United States)

    Brodribb, Tim J; Cochard, Hervé

    2009-01-01

    This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Psileaf) were monitored. Stomatal responses to Psileaf were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and >100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (r2 = 0.70 across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to 50% loss of Kleaf. Maximum recoverable water stress (Psimin) corresponded to a 95% loss of Kleaf. Thus, we conclude that xylem hydraulics represents a direct limit to the drought tolerance of these conifer species.

  20. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  1. Hydraulic Apparatus for Mechanical Testing of Nuts

    Science.gov (United States)

    Hinkel, Todd J.; Dean, Richard J.; Hacker, Scott C.; Harrington, Douglas W.; Salazar, Frank

    2004-01-01

    The figure depicts an apparatus for mechanical testing of nuts. In the original application for which the apparatus was developed, the nuts are of a frangible type designed for use with pyrotechnic devices in spacecraft applications in which there are requirements for rapid, one-time separations of structures that are bolted together. The apparatus can also be used to test nonfrangible nuts engaged without pyrotechnic devices. This apparatus was developed to replace prior testing systems that were extremely heavy and immobile and characterized by long setup times (of the order of an hour for each nut to be tested). This apparatus is mobile, and the setup for each test can now be completed in about five minutes. The apparatus can load a nut under test with a static axial force of as much as 6.8 x 10(exp 5) lb (3.0 MN) and a static moment of as much as 8.5 x 10(exp 4) lb in. (9.6 x 10(exp 3) N(raised dot)m) for a predetermined amount of time. In the case of a test of a frangible nut, the pyrotechnic devices can be exploded to break the nut while the load is applied, in which case the breakage of the nut relieves the load. The apparatus can be operated remotely for safety during an explosive test. The load-generating portion of the apparatus is driven by low-pressure compressed air; the remainder of the apparatus is driven by 110-Vac electricity. From its source, the compressed air is fed to the apparatus through a regulator and a manually operated valve. The regulated compressed air is fed to a pneumatically driven hydraulic pump, which pressurizes oil in a hydraulic cylinder, thereby causing a load to be applied via a hydraulic nut (not to be confused with the nut under test). During operation, the hydraulic pressure is correlated with the applied axial load, which is verified by use of a load cell. Prior to operation, one end of a test stud (which could be an ordinary threaded rod or bolt) is installed in the hydraulic nut. The other end of the test stud passes

  2. On Energy Efficient Mobile Hydraulic Systems : with Focus on Linear Actuation

    OpenAIRE

    Heybroek, Kim

    2017-01-01

    In this dissertation, energy efficient hydraulic systems are studied. The research focuses on solutions for linear actuators in mobile applications, with emphasis on construction machines. Alongside the aspect of energy efficiency, the thesis deals with competing aspects in hydraulic system design found in the development of construction machines. Simulation models and controls for different concepts are developed, taking the whole machine into account. In line with this work, several proof o...

  3. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    International Nuclear Information System (INIS)

    WITTEKIND WD

    2007-01-01

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% 239 Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: (sm b ullet)bare, (sm b ullet)1 inch of hydraulic fluid, or (sm b ullet)12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection

  4. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  5. Relations between soil hydraulic properties and burn severity

    NARCIS (Netherlands)

    Moody, J.A.; Ebel, B.A.; Stoof, C.R.; Nyman, P.; Martin, D.A.; McKinley, R.

    2016-01-01

    Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory

  6. Numerical simulation of temperature's sensitivity of chamfer hole's resistance on hydraulic step cylinder

    International Nuclear Information System (INIS)

    Jinhua, Wang; Hanliang, Bo; Wenxiang, Zheng; Jinnong, Yang

    2003-01-01

    The control rod drive is a very important device for controlling nuclear reactor startup, operation, shut down, and power change. The ability of the control rod drive to move safely and reliably directly relates to reactor safety. The Hydraulic Control Rod Drive System (HCRDS) is a new type of control rod drive system developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University for Nuclear Heating Reactors. The HCRDS, designed using the hydrodynamic principle, has many advantages, including having the structure complete in the vessel, no possible ejection accident, short drive line, simple movable parts structure and safe shutdown during accidents. The hydraulic step cylinder is the key part for the HCRDS. In the process of reactor startup, the variation of temperature could make the water's density and viscosity change, and the force from the water flow would change accordingly. These factors could influence the performance of the hydraulic step cylinder. In this paper, the temperature sensitivity of the chamfer hole's resistance in the hydraulic step cylinder was studied with the Computational Fluid Dynamics (CFD) program CFX5.5. The results were satisfactory: the discipline of variation of the chamfer hole's resistance with the outer tube's position was the same at different temperatures, the discrepancy of the chamfer hole's resistance was small for the same position at different temperatures, the chamfer hole's resistance decreased gradually with the increase of temperature, and the decrease extent was relatively small

  7. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Boe-Hansen, Rasmus; Musovic, Sanin

    2014-01-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification...... operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal...... rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot...

  8. Development of semi-active hydraulic damper as active interaction ...

    Indian Academy of Sciences (India)

    Semi-auto controller; displacement semi-active hydraulic damper; ... 2000), and Magnetorheological Damper (Dyke et al 1998) were widely discussed or used. ... driving force provided by electrical motor causes the subordinate structure to ...

  9. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    Science.gov (United States)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  10. Hydraulic Hybrid Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Vehicle Publications Hydraulic Hybrid Vehicle Publications The following technical papers and fact sheets provide information about NREL's hydraulic hybrid fleet vehicle evaluations . Refuse Trucks Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles. Bob

  11. The Hydraulic Mission and the Mexican Hydrocracy: Regulating and Reforming the Flows of Water and Power

    Directory of Open Access Journals (Sweden)

    Philippus Wester

    2009-10-01

    Full Text Available In Mexico, the hydraulic mission, the centralisation of water control, and the growth of the federal hydraulic bureaucracy (hydrocracy recursively shaped and reinforced each other during the 20th century. The hydraulic mission entails that the state, embodied in an autonomous hydrocracy, takes the lead in water resources development to capture as much water as possible for human uses. The hydraulic mission was central to the formation of Mexico’s hydrocracy, which highly prized its autonomy. Bureaucratic rivals, political transitions, and economic developments recurrently challenged the hydrocracy’s degree of autonomy. However, driven by the argument that a single water authority should regulate and control the nation’s waters, the hydrocracy consistently managed to renew its, always precarious, autonomy at different political moments in the country’s history. The legacy of the hydraulic mission continues to inform water reforms in Mexico, and largely explains the strong resilience of the Mexican hydrocracy to 'deep' institutional change and political transitions. While the emphasis on infrastructure has lessened, the hydrocracy has actively renewed its control over water decisions and budgets and has played a remarkably constant, hegemonic role in defining and shaping Mexico’s water laws, policies and institutions.

  12. Combined Hydrologic (AGWA-KINEROS2) and Hydraulic (HEC2) Modeling for Post-Fire Runoff and Inundation Risk Assessment through a Set of Python Tools

    Science.gov (United States)

    Barlow, J. E.; Goodrich, D. C.; Guertin, D. P.; Burns, I. S.

    2016-12-01

    Wildfires in the Western United States can alter landscapes by removing vegetation and changing soil properties. These altered landscapes produce more runoff than pre-fire landscapes which can lead to post-fire flooding that can damage infrastructure and impair natural resources. Resources, structures, historical artifacts and others that could be impacted by increased runoff are considered values at risk. .The Automated Geospatial Watershed Assessment tool (AGWA) allows users to quickly set up and execute the Kinematic Runoff and Erosion model (KINEROS2 or K2) in the ESRI ArcMap environment. The AGWA-K2 workflow leverages the visualization capabilities of GIS to facilitate evaluation of rapid watershed assessments for post-fire planning efforts. High relative change in peak discharge, as simulated by K2, provides a visual and numeric indicator to investigate those channels in the watershed that should be evaluated for more detailed analysis, especially if values at risk are within or near that channel. Modeling inundation extent along a channel would provide more specific guidance about risk along a channel. HEC-2 and HEC-RAS can be used for hydraulic modeling efforts at the reach and river system scale. These models have been used to address flood boundaries and, accordingly, flood risk. However, data collection and organization for hydraulic models can be time consuming and therefore a combined hydrologic-hydraulic modeling approach is not often employed for rapid assessments. A simplified approach could streamline this process and provide managers with a simple workflow and tool to perform a quick risk assessment for a single reach. By focusing on a single reach highlighted by large relative change in peak discharge, data collection efforts can be minimized and the hydraulic computations can be performed to supplement risk analysis. The incorporation of hydraulic analysis through a suite of Python tools (as outlined by HEC-2) with AGWA-K2 will allow more rapid

  13. Full vessel CFD analysis on thermal-hydraulic characteristics of CPR1000 PWR

    International Nuclear Information System (INIS)

    Chao Yanmeng; Yang Lixin; Zhang Mingqian

    2014-01-01

    To obtain flow distributions and thermal-hydraulic properties in a full vessel PWR under limited computation ability and time, a full vessel simulation model of CPR1000 was built based on two simplification methods. One simplified the inner geometry of the control rod guide tubes using equivalent flow area. Another substituted the core by a porous domain to maintain the pressure drop and temperature rise. After the computation, global and localized flow distributions, hydraulic loads of some main assemblies were obtained, as well as other thermal-hydraulic properties. The results indicate the flow distribution in the full vessel is asymmetrical. Therefore it is essential to use the full vessel model to simulate. The calculated thermal-hydraulic characteristics agree well with the operation statistics, providing the reference data for the reactor safety operation. (authors)

  14. Implementation of knowledge-based engineering methodology in hydraulic generator design

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2015-05-01

    Full Text Available Hydraulic generator design companies are always being exhorted to become more competitive by reducing the lead time and costs for their products for survival. Knowledge-based engineering technology is a rapidly developing technology with competitive advantage for design application to reduce time and cost in product development. This article addresses the structure of the hydraulic generator design system based on the knowledge-based engineering technology in detail. The system operates by creating a unified knowledge base to store the scattered knowledge among the whole life of the design process, which was contained in the expert’s brain and technical literature. It helps designers to make appropriate decisions by supplying necessary information at the right time through query and inference engine to represent the knowledge within the knowledge-based engineering application framework. It also integrates the analysis tools into one platform to help achieve global optimum solutions. Finally, an example of turbine-type selection was given to illustrate the operation process and prove its validity.

  15. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe

    1998-01-01

    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  16. Rapid Automatized Naming in Children with Dyslexia: Is Inhibitory Control Involved?

    Science.gov (United States)

    Bexkens, Anika; van den Wildenberg, Wery P M; Tijms, Jurgen

    2015-08-01

    Rapid automatized naming (RAN) is widely seen as an important indicator of dyslexia. The nature of the cognitive processes involved in rapid naming is however still a topic of controversy. We hypothesized that in addition to the involvement of phonological processes and processing speed, RAN is a function of inhibition processes, in particular of interference control. A total 86 children with dyslexia and 31 normal readers were recruited. Our results revealed that in addition to phonological processing and processing speed, interference control predicts rapid naming in dyslexia, but in contrast to these other two cognitive processes, inhibition is not significantly associated with their reading and spelling skills. After variance in reading and spelling associated with processing speed, interference control and phonological processing was partialled out, naming speed was no longer consistently associated with the reading and spelling skills of children with dyslexia. Finally, dyslexic children differed from normal readers on naming speed, literacy skills, phonological processing and processing speed, but not on inhibition processes. Both theoretical and clinical interpretations of these results are discussed. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Hydraulic Yaw System for Wind Turbines with New Compact Hydraulic Motor Principle

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Mørk; Hansen, Michael Rygaard; Mouritsen, Ole Ø.

    2011-01-01

    This paper presents a new hydraulic yaw system for wind turbines. The basic component is a new type of hydraulic motor characterized by an extraordinary high specific displacement yielding high output torque in a compact form. The focus in the paper is the volumetric efficiency of the motor, which...

  18. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor

    International Nuclear Information System (INIS)

    Vaiana, F.

    2009-11-01

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  19. Numerical calculation of three-dimensional flow field of servo-piston hydraulic control rod driving mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    Servo-piston hydraulic control rod driving mechanism is a new type built-in driving mechanism which is suitable for integrated reactor and it can be moved continuously. The numerical calculation and analysis of the internal three-dimensional flow field inside the driving mechanism were carried out by the computational fluid dynamics software FLUENT. The result shows that the unique pressure mutation area of flow field inside the driving mechanism is at the place of the servo variable throttle orifice. The differential pressure of the piston can be effectively controlled by changing the gap of variable throttle orifice. When the gap changes within 0.5 mm, the differential pressure can be greatly changed, and then the driving mechanism motion state would be changed too. When the working pressure is 0.1 MPa, the hoisting capacity of the driving mechanism can meet the design requirements, and the flow rate is small. (authors)

  20. Hydrodynamic conditions on the slope apron of a rapid hydraulic structure (RHS) and within the influence of it - an example from the Czarny Dunajec River, Polish Carpathians.

    Science.gov (United States)

    Plesiński, Karol; Radecki-Pawlik, Artur

    2013-04-01

    The paper focuses on understanding some basic hydrodynamic conditions along a regulated river engineered with rapid hydraulic structures (RHS) - the modern hydraulic structure used in river engineering works, to reduce slope of the river bed, stabilize it and reducing river channel bed erosion, at the same time structures being friendly to river environment, allowing fish and invertebrate to migrate and built according the expectations of River Framework Directive EU. The measurements were performed upstream and downstream of RHS within the influence of the structure as well as on the slope apron of the structure where the artificial roughness is created by fixing along all the apron very coarse gravel and small boulders to make the RHS similar to natural rapids in a gravel river. It the field, we measured water depth h, average velocity Va, maximum velocity Vm for different discharges, near bed velocities and all geometry of the RHS. The value of these parameters were used to calculate the shear velocity V*, shear stresses ?, Reynolds number and Froude number. Using our results, we observed that there is a greater range of the values of hydrodynamic parameters downstream of the RHS, where braids and small channels are formed, although this section of a river was engineered. The values of velocities were varied here as follows: Va = 0.194 - 2.210 m s-1 for a high water level and Va = 0.104 - 1.720 m s-1 for a low water level. Consequently, the values of shear stresses were varied here between ? = 0.106 - 4.720 N m-2and ? = 0.013 - 6.084 N m-2 respectively for a high and a low water level. Then, upstream of the RHS, the values of these parameters were comparable. The values of velocities were here as follows: Va = 0.264 - 0.590 m s-1 for a high water level and Va = 0.066 - 0.346 m s-1 for a low water level. And, the values of shear stresses were noticed here as: ? = 0.067 - 0.660 N m-2 and ? = 0.009 - 0.269 N m-2 respectively for high and low water level. Downstream

  1. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

    Science.gov (United States)

    Sevanto, Sanna; Mcdowell, Nate G; Dickman, L Turin; Pangle, Robert; Pockman, William T

    2014-01-01

    Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity. PMID:23730972

  2. Micro Mechanics and Microstructures of Major Subsurface Hydraulic Barriers: Shale Caprock vs Wellbore Cement

    Science.gov (United States)

    Radonjic, M.; Du, H.

    2015-12-01

    Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to

  3. Homeostasis in leaf water potentials on leeward and windward sides of desert shrub crowns: water loss control vs. high hydraulic efficiency.

    Science.gov (United States)

    Iogna, Patricia A; Bucci, Sandra J; Scholz, Fabián G; Goldstein, Guillermo

    2013-11-01

    Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.

  4. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  5. Subsea Hydraulic Leakage Detection and Diagnosis

    OpenAIRE

    Stavenes, Thomas

    2010-01-01

    The motivation for this thesis is reduction of hydraulic emissions, minimizing of process emergency shutdowns, exploitation of intervention capacity, and reduction of costs. Today, monitoring of hydraulic leakages is scarce and the main way to detect leakage is the constant need for filling of hydraulic fluid to the Hydraulic Power Unit (HPU). Leakage detection and diagnosis has potential, which would be adressed in this thesis. A strategy towards leakage detection and diagnosis is given....

  6. Countermeasures for electrolytic corrosion - Part II: Implementation of a rapid potential-controlled rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae-Hyun; Kim, Dae-Kyeong; Lee, Hyun-Goo; Ha, Yoon-Cheol; Bae, Jeong-Hyo [Underground Systems Group, Korea Electrotechnology Research Institute, 28-1 Sungju-dong, Changwon, 641-120 (Korea)

    2004-07-01

    In electrolytic interference circumstances such as underground pipelines in the vicinity of DC electrified railroads, drainage method or impressed current cathodic protection method has been widely used as a countermeasure for the electrolytic corrosion. In the former method, forced or polarized drainage is commonly adopted and in the latter, the phase-controlled rectifier with thyristor is in common use. Both methods, however, does not show as the optimal measure for the integrity of the pipeline, since the pipe-to-soil potential fluctuates highly positive to the cathodic protection criterion. In particular, as the potential of the pipeline near the railroad varies rapidly, a new rapidly responding countermeasure is necessary. In this paper, we introduce a new rapid potential controlled rectifier and report the result in field tests. Comparison with the existing forced drainage method is also made. The pipe-to-soil potential data show the effectiveness of the rapid potential-controlled rectifier. (authors)

  7. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    Directory of Open Access Journals (Sweden)

    Cristian Bazán-Orobio

    2013-06-01

    Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.

  8. Analysis of core physics and thermal-hydraulics results of control rod withdrawal experiments in the LOFT facility

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Chen, T.H.; Harvego, E.A.; Ollikkala, H.

    1983-01-01

    Two anticipated transient experiments simulating an uncontrolled control rod withdrawal event in a pressurized water reactor (PWR) were conducted in the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The scaled LOFT 50-MW(t) PWR includes most of the principal features of larger commercial PWRs. The experiments tested the ability of reactor analysis codes to accurately calculate core reactor physics and thermal-hydraulic phenomena in an integral reactor system. The initial conditions and scaled operating parameters for the experiments were representative of those expected in a commercial PWR. In both experiments, all four LOFT control rod assemblies were withdrawn at a reactor power of 37.5 MW and a system pressure of 14.8 MPa

  9. Computer Simulation of Hydraulic Systems with Typical Nonlinear Characteristics

    Directory of Open Access Journals (Sweden)

    D. N. Popov

    2017-01-01

    Full Text Available The task was to synthesise an adjustable hydraulic system structure, the mathematical model of which takes into account its inherent nonlinearity. Its solution suggests using a successive computer simulations starting with a structure of the linearized stable hydraulic system, which is then complicated by including the essentially non-linear elements. The hydraulic system thus obtained may be unable to meet the Lyapunov stability criterion and be unstable. This can be eliminated through correcting elements. Control of correction results is provided according to the form of transition processes due to stepwise variation of the control signal.Computer simulation of a throttle-controlled electrohydraulic servo drive with the rotary output element illustrates the proposed method application. A constant pressure power source provides fluid feed for the drive under pressure.For drive simulation the following models were involved: the linear model, the model taking into consideration a non-linearity of the flow-dynamic characteristics of a spool-type valve, and the non-linear models that take into account the dry friction in the spool-type valve, the backlash in the steering angle sensor of the motor shaft.The paper shows possibility of damping oscillation caused by variable hydrodynamic forces through introducing a correction device.The list of references attached contains 16 sources, which were used to justify and explain certain factors of the automatic control theory and the fluid mechanics of unsteady flows.The article presents 6 block-diagrams of the electrohydraulic servo drive and their appropriate transition processes, which have been studied.

  10. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    Science.gov (United States)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the

  11. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG

    2016-02-01

    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  12. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)

    Science.gov (United States)

    Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem

    2015-10-01

    Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

  13. Development, field testing and implementation of automated hydraulically controlled, variable volume loading systems for reciprocating compressors

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, Dwayne A. [ACI Services, Inc., Cambridge, OH (United States); Slupsky, John [Kvaerner Process Systems, Calgary, Alberta (Canada); Chrisman, Bruce M.; Hurley, Tom J. [Cooper Energy Services, Oklahoma City, OK (United States). Ajax Division

    2003-07-01

    Automated, variable volume unloaders provide the ability to smoothly load/unload reciprocating compressors to maintain ideal operations in ever-changing environments. Potential advantages provided by this load control system include: maximizing unit capacity, optimizing power economy, maintaining low exhaust emissions, and maintaining process suction and discharge pressures. Obstacles foreseen include: reliability, stability, serviceability and automation integration. Results desired include: increased productivity for the compressor and its operators, increased up time, and more stable process control. This presentation covers: system design features with descriptions of how different types of the devices were developed, initial test data, and how they can be effectively operated; three actual-case studies detailing the reasons why automated, hydraulically controlled, variable volume, head-end unloaders were chosen over other types of unloading devices; sophisticated software used in determining the device sizing and predicted performance; mechanical and field considerations; installation, serviceability and operating considerations; device control issues, including PC and PLC considerations; monitoring of actual performance and comparison of such with predicted performance; analysis of mechanical reliability and stability; and preliminary costs versus return on investment analysis. (author)

  14. Improving the support characteristics of hydraulic fill

    Energy Technology Data Exchange (ETDEWEB)

    Corson, D. R.; Dorman, K. R.; Sprute, R. H.

    1980-05-15

    Extensive laboratory and field testing has defined the physical properties of hydraulic fill. Effect of void ratio on percolation rate has been quantified, and tests were developed to estimate waterflow through fill material in a given state underground. Beneficial effect on fill's support capability through addition of cement alone or in conjunction with vibratory compaction has been investigated. Two separate field studies in operating cut-and-fill mines measured vein-wall deformation and loads imposed on backfilled stopes. Technology has been developed that will effectively and efficiently dewater and densify ultra-fine-grained slurries typical of metal mine hydraulic backfill. At least two operators are using this electrokinetic technique to dewater slimes collected in underground sumps or impoundments. This technique opens up the possibility of using the total unclassified tailings product as a hydraulic backfill. Theoretical enhancement of ground support and rock-burst control through improved support capability will be tested in a full-scale mine stope installation. Both a horizontal layer and a vertical column of high modulus fill will be placed in an attempt to reduce stope wall closure, support more ground pressure, and lessen rock-burst occurrence.

  15. Synthesis of Servo Pneumatic/Hydraulic Drive

    Directory of Open Access Journals (Sweden)

    K D. Efremova

    2017-01-01

    Full Text Available Servo pneumatic and / or hydraulic drives are widely used in modern engineering and process control. The efficiency of using pneumatic / hydraulic drives depends on their parameters and characteristics. To select the optimal drive parameters, various methods are used, based on finding the minimum of the target (target or criteria function.The objective of this paper was to apply one crucial criterion (target function that provides determination of optimal parameters of the pneumatic / hydraulic drive with the translational motion of the end-effector as well as its use in the synthesis of the servo pneumatic cylinder. The article shows the form of the target function representing a set of drive parameters that do not have direct relationships with each other in a dimensionless form for the pneumatic / hydraulic drive with the translational motion of the end-effector. To calculate the parameters of the servo drive close to the optimal ones, a two-criteria LPτ search was used. As criteria, were used the decisive criterion - the proposed target function, and the power developed by the actuator of the pneumatic / hydraulic drive, which were presented in a dimensionless form. It is shown that the criterion for solution optimality is the minimum distance of the selected point in the space of the normalized criteria from the origin. This point was determined. In addition to the proposed criteria, non-formalised requirements were taken into account: actual and mass-produced components of drive, in terms of which its parameters close to the optimal ones were determined, and the maximum relative error of the obtained useful power value of the servo pneumatic drive was estimated. The paper presents design features of two types of the servo pneumatic drive created, taking into account the proposed target function, implemented according to the schemes "hidden" and "spaced apart". The experimental static characteristic of the servo pneumatic drive is

  16. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  17. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

    OpenAIRE

    Hao Liu; Hongguang Zhang; Zhicheng Shi; Haitao Lu; Guangyao Zhao; Baofeng Yao

    2014-01-01

    A rapid compression machine (RCM) test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution ratio of 35% to 65%. A new type of hydraulic piston is used to address the problem in which the hydraul...

  18. 46 CFR 112.50-3 - Hydraulic starting.

    Science.gov (United States)

    2010-10-01

    ... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping...

  19. Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery.

    Science.gov (United States)

    Chen, Jun-Wen; Zhang, Qiang; Li, Xiao-Shuang; Cao, Kun-Fang

    2010-07-01

    The response of plants to drought has received significant attention, but far less attention has been given to the dynamic response of plants during recovery from drought. Photosynthetic performance and hydraulic capacity were monitored in seedlings of Hevea brasiliensis under water stress and during recovery following rewatering. Leaf water relation, gas exchange rate and hydraulic conductivity decreased gradually after water stress fell below a threshold, whereas instantaneous water use efficiency and osmolytes increased significantly. After 5 days of rewatering, leaf water relation, maximum stomatal conductance (g(s-max)) and plant hydraulic conductivity had recovered to the control levels except for sapwood area-specific hydraulic conductivity, photosynthetic assimilation rate and osmolytes. During the phase of water stress, stomata were almost completely closed before water transport efficiency decreased substantially, and moreover, the leaf hydraulic pathway was more vulnerable to water stress-induced embolism than the stem hydraulic pathway. Meanwhile, g(s-max) was linearly correlated with hydraulic capacity when water stress exceeded a threshold. In addition, a positive relationship was shown to occur between the recovery of g(s-max) and of hydraulic capacity during the phase of rewatering. Our results suggest (i) that stomatal closure effectively reduces the risk of xylem dysfunction in water-stressed plants at the cost of gas exchange, (ii) that the leaf functions as a safety valve to protect the hydraulic pathway from water stress-induced dysfunction to a larger extent than does the stem and (iii) that the full drought recovery of gas exchange is restricted by not only hydraulic factors but also non-hydraulic factors.

  20. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  1. Operating problem of low specific speed pumps operating in closed hydraulic loop

    International Nuclear Information System (INIS)

    Rajput, A.K.

    1979-01-01

    Results of the studies of pressure pulsations caused by the centrifugal pump driving a typical sodium test loop are presented. The method of characteristics has been used for solving the equations of unsteady fluid flow in closed hydraulic loops with various boundary points, important of which are pump, control valve and heater tank (acting hydraulically as surge tank). Mathematical and computational models used for calculations are described. (M.G.B.)

  2. Pilot testing of a hydraulic bridge exciter

    Directory of Open Access Journals (Sweden)

    Andersson Andreas

    2015-01-01

    Full Text Available This paper describes the development of a hydraulic bridge exciter and its first pilot testing on a full scale railway bridge in service. The exciter is based on a hydraulic load cylinder with a capacity of 50 kN and is intended for controlled dynamic loading up to at least 50 Hz. The load is applied from underneath the bridge, enabling testing while the railway line is in service. The system is shown to produce constant load amplitude even at resonance. The exciter is used to experimentally determine frequency response functions at all sensor locations, which serve as valuable input for model updating and verification. An FE-model of the case study bridge has been developed that is in good agreement with the experimental results.

  3. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield.

    Science.gov (United States)

    Kuruti, Kranti; Begum, Sameena; Ahuja, Shruti; Anupoju, Gangagni Rao; Juntupally, Sudharshan; Gandu, Bharath; Ahuja, Devender Kumar

    2017-02-01

    The aim of the present work was to study and infer a full scale experience on co-digestion of 1000kg of FW (400kg cooked food waste and 600kg uncooked food waste) and 2000L of rice gruel (RG) on daily basis based on a high rate biomethanation technology called "Anaerobic gas lift reactor" (AGR). The pH of raw substrate was low (5.2-5.5) that resulted in rapid acidification phenomena with in 12h in the feed preparation tank that facilitated to obtain a lower hydraulic residence time (HRT) of 10days. At full load, AGR was fed with 245kg of total solids, 205kg of volatile solids (167kg of organic matter in terms of chemical oxygen demand) which resulted in the generation of biogas and bio manure of 140m 3 /day and 110kg/day respectively. The produced biogas replaced 60-70kg of LPG per day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hydraulic design development of Xiluodu Francis turbine

    International Nuclear Information System (INIS)

    Wang, Y L; Li, G Y; Shi, Q H; Wang, Z N

    2012-01-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  5. Dynamics Of Karstification: A Model Applied To Hydraulic Structures In Karst Terranes

    Science.gov (United States)

    Dreybrodt, W.

    1992-01-01

    To model the development of karst channels from primary fissures in limestone, a computer simulation of solutional widening of a fracture by calcite agressive water is proposed. The parameters defining the problem are the initial width a0 of the fracture, its length l, and the hydraulic gradient i driving water through it. The dissolution rates limestone determine how fast enlargement of the fractures proceeds. At a calcite concentration, c, far from equilibrium, the dissolution follows a first-order rate law, F(1)=α0(ceq-c); close to the equilibrium concentration, ceq, a slow fourth-order rate law F(4)=β0(ceq-c)4 is valid. The results show that, at the time of initiation, the water flow through the karst channels increases slowly in time until an abrupt increase occurs. After this moment of breakthrough, the channel enlarges rapidly and evenly over its entire length by first-order kinetics. Breakthrough times have been calculated for karstification under natural conditions for low hydraulic gradients as functions of a0, l, and i. Special attention is given to karstification in the vicinity of hydraulic structures where hydraulic gradients are high (>0.5) and channel lengths are below 200 m. We find that the breakthrough event will occur in less than 100 years, if: (i/l) > (5.3·10-8a0 -2.63PCO2 -0.77) where l is in m and a0 is in cm, (i/l) is given in m-1, and PCO2[atm] is the CO2 pressure of the water entering the fracture. After this event, the channels will widen to a width of about 1 cm within only 10 years, which can cause considerable leakage near or through hydraulic structures. Finally, critical values of the parameters i, l, a0, which give the conditions of failure in various types of hydraulic structures are discussed.

  6. Informational Entropy and Bridge Scour Estimation under Complex Hydraulic Scenarios

    Science.gov (United States)

    Pizarro, Alonso; Link, Oscar; Fiorentino, Mauro; Samela, Caterina; Manfreda, Salvatore

    2017-04-01

    Bridges are important for society because they allow social, cultural and economic connectivity. Flood events can compromise the safety of bridge piers up to the complete collapse. The Bridge Scour phenomena has been described by empirical formulae deduced from hydraulic laboratory experiments. The range of applicability of such models is restricted by the specific hydraulic conditions or flume geometry used for their derivation (e.g., water depth, mean flow velocity, pier diameter and sediment properties). We seek to identify a general formulation able to capture the main dynamic of the process in order to cover a wide range of hydraulic and geometric configuration, allowing to extend our analysis in different contexts. Therefore, exploiting the Principle of Maximum Entropy (POME) and applying it on the recently proposed dimensionless Effective flow work, W*, we derived a simple model characterized by only one parameter. The proposed Bridge Scour Entropic (BRISENT) model shows good performances under complex hydraulic conditions as well as under steady-state flow. Moreover, the model was able to capture the evolution of scour in several hydraulic configurations even if the model contains only one parameter. Furthermore, results show that the model parameter is controlled by the geometric configurations of the experiment. This offers a possible strategy to obtain a priori model parameter calibration. The BRISENT model represents a good candidate for estimating the time-dependent scour depth under complex hydraulic scenarios. The authors are keen to apply this idea for describing the scour behavior during a real flood event. Keywords: Informational entropy, Sediment transport, Bridge pier scour, Effective flow work.

  7. Structural Integrity Assessment for SSDM Hydraulic Cylinder of JRTR

    International Nuclear Information System (INIS)

    Kim, Sanghaun; Lee, Jin Haeng; Cho, Yeonggarp; Yoo, Yeonsik

    2014-01-01

    In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the structural integrity assessment for SSDM hydraulic cylinder which is designed on the basis of the SO unit of HANARO but optimized with the new core environment (i. e., geometrical, physical, etc.) of JRTR. A stress analysis of the hydraulic cylinder for the SSDM used in JRTR has been performed through the conservative approach with the uncertainties in the system design step. The crank's pinch load with no slip between the bearing (stiffener) plate of hydraulic cylinder and base plate of mount bracket during SSE has been calculated by considering the design and seismic load combination. The stress by the load combination satisfies the Class 3 criteria given Table NG-3325 of Section III of the ASME Code. The maximum stresses are at the clamp contact region in the cylinder

  8. Application of Self Cleaning Rapid Sand Filter in Water Treatment

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2005-08-01

    Full Text Available Rapid sand filter is one of the most important units in the water treatment plants. It has some difficulties in operation such as backwashing. For the solving of this problem a rapid sand filter has designed and built with the self-cleaning backwashing system. This system consist of 3 main constituents; one galvanized siphon and two galvanized steel tanks. One of them is used for filtration and the other used for the storage of filtrated water in elevation for backwashing the system. Water enter from upside of the filter through the inlet pipe, and collected from the under drainage pipe. Then filter water conduct to the storage tank and exit from outlet pipe. In the beginning, the head loss was low, but because of bed clogging by suspended solids, it increases gradually to the designed head loss (1.2m. Then the system is outed of the service automatically and the backwash is began. The main data for the design of system selected from the hydraulic rules of siphons and rapid sand filter criteria. After essential calculations it was constructed and was started operation. For the hydraulic studies a known volume of storage tank was selected and the time needed for the fill (in filtration stage and empty (in backwash stage of water volume with volumetric method were measured. In hydraulic studies the filter surface rate (SOR was selected about 5-7.5m3/m2/hr (1.39-2.08 lit/sec and the flow of water in siphon, during the backwashing was measured 8.7 lit/sec. It can be seen that the siphon passes 4-6 times the inlet raw water thus a negative pressure will created in the siphon which causes the water above the sand bed to be discharged automatically and rinse water from elevated tank flow under the sand bed and back wash it. So according to this study self cleaning rapid sand filter is very useful for water filtration, especially in small population community. The construction of system is rapid, simple and economic.

  9. Optimisation of Working Areas in Discrete Hydraulic Power Take off-system for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Hansen, Rico Hjerm; Pedersen, Henrik C.

    2012-01-01

    Fluid power is the leading technology in Power Take Off(PTO) systems in Wave Energy Converters(WEC’s), due to the capability of generating high force at low velocity. However, as hydraulic force controlling system may suffer from large energy losses the efficiency of the hydraulic PTO systems may...

  10. Optimization and performance characteristics of servo-piston hydraulic control rod drive mechanism

    International Nuclear Information System (INIS)

    Yu Mingrui; Han Weishi; Wang Ge

    2014-01-01

    This paper introduces the structure and working principles of the servo-piston hydraulic control rod drive mechanism (SHCM), which can be moved continuously and has self-lock capacity. The steady state characteristics of SHCM are simulated using FLUENT codes. Based on comparison with the experimental results, the simulation is proven to be credible as a tool to describe the steady state characteristics. Finally, the influence of structural parameters is analyzed to obtain an optimal design. The experimental results indicate that the traction of the servo-tube is larger in the starting and braking stages. The resistance coefficient of SHCM increases gradually in the starting and lifting stage, and then tends to be stable. This coefficient has a maximum value while the inlet pressure is low. Performance norms of SHCM, such as the anti-disturbance ability and positioning accuracy, are tested, the anti-disturbance ability of the actuator is strong while the inlet pressure is fluctuating. The positioning accuracy is high regardless of the action process (lifting or not). (author)

  11. Development and control towards a parallel water hydraulic weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Pessi, Pekka; Kilkki, Juha; Jones, Lawrence

    2005-01-01

    This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel (VV), consisting of a five degree-of-freedom parallel mechanism, mounted on a carriage driven by two electric motors on a rack. The kinematic design of the robot has been optimised for ITER access and a hydraulically actuated pre-prototype built. A hybrid controller is designed for the robot, including position, speed and pressure feedback loops to achieve high accuracy and high dynamic performances. Finally, the experimental tests are given and discussed

  12. Uncertainty in hydraulic tests in fractured rock

    International Nuclear Information System (INIS)

    Ji, Sung-Hoon; Koh, Yong-Kwon

    2014-01-01

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  13. Hydraulic adjustments underlying drought resistance of Pinus halepensis.

    Science.gov (United States)

    Klein, Tamir; Cohen, Shabtai; Yakir, Dan

    2011-06-01

    Drought-induced tree mortality has increased over the last decades in forests around the globe. Our objective was to investigate under controlled conditions the hydraulic adjustments underlying the observed ability of Pinus halepensis to survive seasonal drought under semi-arid conditions. One hundred 18-month saplings were exposed in the greenhouse to 10 different drought treatments, simulating combinations of intensities (fraction of water supply relative to control) and durations (period with no water supply) for 30 weeks. Stomata closed at a leaf water potential (Ψ(l)) of -2.8 MPa, suggesting isohydric stomatal regulation. In trees under extreme drought treatments, stomatal closure reduced CO(2) uptake to -1 µmol m(-2) s(-1), indicating the development of carbon starvation. A narrow hydraulic safety margin of 0.3 MPa (from stomatal closure to 50% loss of hydraulic conductivity) was observed, indicating a strategy of maximization of CO2 uptake in trees otherwise adapted to water stress. A differential effect of drought intensity and duration was observed, and was explained by a strong dependence of the water stress effect on the ratio of transpiration to evapotranspiration T/ET and the larger partitioning to transpiration associated with larger irrigation doses. Under intense or prolonged drought, the root system became the main target for biomass accumulation, taking up to 100% of the added biomass, while the stem tissue biomass decreased, associated with up to 60% reduction in xylem volume.

  14. Identification of Physical Parameters for A Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application of the laws of physics...

  15. Controlled cooling versus rapid freezing of teratozoospermic semen samples: Impact on sperm chromatin integrity

    Directory of Open Access Journals (Sweden)

    Shivananda N Kalludi

    2011-01-01

    Full Text Available Aim: The present study evaluates the impact of controlled slow cooling and rapid freezing techniques on the sperm chromatin integrity in teratozoospermic and normozoospermic samples. Setting: The study was done in a university infertility clinic, which is a tertiary healthcare center serving the general population. Design: It was a prospective study designed in vitro. Materials and Methods: Semen samples from normozoospermic (N=16 and teratozoospermic (N=13 infertile men were cryopreserved using controlled cooling and rapid freezing techniques. The sperm chromatin integrity was analyzed in fresh and frozen-thawed samples. Statistical Analysis Used: Data were reported as mean and standard error (mean ± SEM of mean. The difference between two techniques was determined by a paired t-test. Results: The freeze-thaw induced chromatin denaturation was significantly (P<0.01 elevated in the post-thaw samples of normozoospermic and teratozoospermic groups. Compared to rapid freezing, there was no difference in the number of red sperms (with DNA damage by the controlled slow cooling method in both normozoospermic and teratozoospermic groups. Freeze-thaw induced sperm chromatin denaturation in teratozoospermic samples did not vary between controlled slow cooling and rapid freezing techniques. Conclusions: Since the controlled slow cooling technique involves the use of expensive instrument and is a time consuming protocol, rapid freezing can be a good alternative technique for teratozoospermic and normozoospermic samples when sperm DNA damage is a concern.

  16. Effects of turbine's selection on hydraulic transients in the long pressurized water conveyance system

    International Nuclear Information System (INIS)

    Zhou, J X; Hu, M; Cai, F L; Huang, X T

    2014-01-01

    For a hydropower station with longer water conveyance system, an optimum turbine's selection will be beneficial to its reliable and stable operation. Different optional turbines will result in possible differences of the hydraulic characteristics in the hydromechanical system, and have different effects on the hydraulic transients' analysis and control. Therefore, the premise for turbine's selection is to fully understand the properties of the optional turbines and their effects on the hydraulic transients. After a brief introduction of the simulation models for hydraulic transients' computation and stability analysis, the effects of hydraulic turbine's characteristics at different operating points on the hydro-mechanical system's free vibration analysis were theoretically investigated with the hydraulic impedance analysis of the hydraulic turbine. For a hydropower station with long water conveyance system, based on the detailed hydraulic transients' computation respectively for two different optional turbines, the effects of the turbine's selection on hydraulic transients were analyzed. Furthermore, considering different operating conditions for each turbine and the similar operating conditions for these two turbines, free vibration analysis was comprehensively carried out to reveal the effects of turbine's impedance on system's vibration characteristics. The results indicate that, respectively with two different turbines, most of the controlling parameters under the worst cases have marginal difference, and few shows obvious differences; the turbine's impedances under different operating conditions have less effect on the natural angular frequencies; different turbine's characteristics and different operating points have obvious effects on system's vibration stability; for the similar operating conditions of these two turbines, system's vibration characteristics are basically consistent with

  17. Characterization of unsaturated hydraulic parameters for homogeneous and heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Wildenschild, Dorthe

    1997-09-01

    Application of numerical models for predicting future spreading of contaminants into ground water aquifers is dependent on appropriate characterization of the soil hydraulic properties controlling flow and transport in the unsaturated zone. This thesis reviews the current knowledge on two aspects of characterization of unsaturated hydraulic parameters; estimation of the basic hydraulic parameters for homogeneous soils and statistical representation of heterogeneity for spatially variable soils. The retention characteristic is traditionally measured using steady-state procedures, but new ideas based on dynamic techniques have been developed that reduce experimental efforts and that produce retention curves which compare to those measured by traditional techniques. The unsaturated hydraulic conductivity is difficult to establish by steady-state procedures, and extensive research efforts have been focused on alternative methods that are based on inverse estimation. The inverse methods have commonly been associated with problems of numerical instability and ill-posedness of the parameter estimates, but recent investigations have shown that the uniqueness of parameter estimates can be improved by including additional, independent information on, for instance, the retention characteristic. Also, uniqueness may be improved by careful selection of experimental conditions are parametric functions. (au) 234 refs.

  18. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  19. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  20. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  1. Selective perceptions of hydraulic fracturing.

    Science.gov (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  2. Birth of a hydraulic jump

    Science.gov (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  3. Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange.

    Science.gov (United States)

    Nardini, Andrea; Salleo, Sebastiano

    2005-12-01

    The hydraulic architecture, water relationships, and gas exchange of leaves of sunflower plants, grown under different levels of water stress, were measured. Plants were either irrigated with tap water (controls) or with PEG600 solutions with osmotic potential of -0.4 and -0.8 MPa (PEG04 and PEG08 plants, respectively). Mature leaves were measured for hydraulic resistance (R(leaf)) before and after making several cuts across minor veins, thus getting the hydraulic resistance of the venation system (R(venation)). R(leaf) was nearly the same in controls and PEG04 plants but it was reduced by about 30% in PEG08 plants. On the contrary, R(venation) was lowest in controls and increased in PEG04 and PEG08 plants as a likely result of reduction in the diameter of the veins' conduits. As a consequence, the contribution of R(venation) to the overall R(leaf) markedly increased from controls to PEG08 plants. Leaf conductance to water vapour (g(L)) was highest in controls and significantly lower in PEG04 and PEG08 plants. Moreover, g(L) was correlated to R(venation) and to leaf water potential (psi(leaf)) with highly significant linear relationships. It is concluded that water stress has an important effect on the hydraulic construction of leaves. This, in turn, might prove to be a crucial factor in plant-water relationships and gas exchange under water stress conditions.

  4. Experimental Determination of Hydraulic Properties of Unsaturated Calcarenites

    Science.gov (United States)

    Turturro, Antonietta Celeste; Andriani, Gioacchino Francesco; Clementina Caputo, Maria; Maggi, Sabino

    2013-04-01

    Understanding hydraulic properties is essential in the modeling of flow and solute transport through the vadose zone, to which problems of soil and groundwater pollution are related. The vadose zone, in fact, is of great importance in controlling groundwater recharge and transport of contaminants into and through the subsoil. The aim of this work is to determine experimentally in laboratory the hydraulic properties of unsaturated calcarenites using an approach including petrophysical determinations and methods for measuring water retention. For this purpose, samples of calcarenites belonging to the Calcarenite di Gravina Fm.(Pliocene-early Pleistocene), came from two different quarry districts located in Southern Italy (Canosa di Puglia and Massafra), were utilized. The water retention function, θ(h), which binds the water content, θ, to water potential, h, was determined in the laboratory by means two different experimental methods: the WP4-T psychrometer and the suction table. At last, a simple mathematical equation represented by van Genuchten's model is fitted to the experimental data and the unknown empirical parameters of this model are determined. Textural analysis on thin sections using optical petrographic microscopy and evaluation of total and effective porosity by means of standard geotechnical laboratory tests, mercury intrusion porosimetry and image analysis were also performed. In particular, a comparison between mercury porosimetry data and results of photomicrograph computer analysis through the methods of quantitative stereology was employed for providing pore size distributions. The results of this study identify the relationship between the hydraulic behavior, described by the water retention function, and pore size distribution for the calcarenites that are not easy to hydraulically characterize. This relationship could represent a useful tool to infer the unsaturated hydraulic properties of calcarenites and in general this approach could be

  5. Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL

    Science.gov (United States)

    Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would -pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure

  6. Physical simulation study on the hydraulic fracture propagation of coalbed methane well

    Science.gov (United States)

    Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei

    2018-03-01

    As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.

  7. Transient performance analysis of the master cylinder hydraulic system of a 6.3 MN fineblanking press

    Science.gov (United States)

    Yi, Guodong; Li, Jin

    2018-03-01

    The master cylinder hydraulic system is the core component of the fineblanking press that seriously affects the machine performance. A key issue in the design of the master cylinder hydraulic system is dealing with the heavy shock loads in the fineblanking process. In this paper, an equivalent model of the master cylinder hydraulic system is established based on typical process parameters for practical fineblanking; then, the response characteristics of the master cylinder slider to the step changes in the load and control current are analyzed, and lastly, control strategies for the proportional valve are studied based on the impact of the control parameters on the kinetic stability of the slider. The results show that the kinetic stability of the slider is significantly affected by the step change of the control current, while it is slightly affected by the step change of the system load, which can be improved by adjusting the flow rate and opening time of the proportional valve.

  8. The quest for performance-related specifications for hydraulic cement concrete.

    Science.gov (United States)

    1982-01-01

    This paper reviews some of the problems associated with quality assurance for hydraulic cement concrete and the difficulties of relating the results of quality control and acceptance testing to the performance of the concrete facility. The importance...

  9. Coupled thermal-hydraulic and neutronic simulations of Phenix control rod withdrawal tests with SIMMER-IV

    International Nuclear Information System (INIS)

    Kriventsev, Vladimir; Gabrielli, Fabrizio; Rineiski, Andrei

    2014-01-01

    The “end-of-life” tests performed in the Phenix reactor before its final shutdown in 2009, in particular the Control Rod (CR) withdrawal experiments provide an excellent opportunity for the validation and verification of the reactor physics computer codes and modeling approaches. SIMMER-IV, a modern three-dimensional reactor safety code, has been recently employed at Karlsruhe Institute of Technology (KIT) for simulating Phenix experiments in the framework of a benchmark exercise organized under the IAEA project. In this paper, we report and discuss main results obtained with SIMMER-IV at KIT. Particular attention is devoted to the coupling features of thermal-hydraulics and neutronics and their mutual influences. The reactor reactivity, power and neutron flux distributions calculated with SIMMER-IV are in good agreement both with experimental results and with calculations with advanced neutronics codes, such as ERANOS, while the CR reactivity worth is overestimated due to neglecting heterogeneity effects. Because of its multi-physics capabilities SIMMER also calculates the temperature distributions which are in a good agreement with the experimental test results. In this work we describe the improvements in SIMMER neutronics model by employing a correction that is based on the results of cell calculations performed with ERANOS. The study confirms that the 3D SIMMER-IV code can accurately predict major fast reactor neutronics and thermal hydraulic parameters, provided that a special treatment is employed for CR modeling. The results of calculations are analyzed in frames of SIMMER-IV validation and verification assessment. (author)

  10. Thermal-hydraulic unreliability of passive systems

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Saltos, N.T.

    1995-01-01

    Advanced light water reactor designs like AP600 and the simplified boiling water reactor (SBWR) use passive safety systems for accident prevention and mitigation. Because these systems rely on natural forces for their operation, their unavailability due to hardware failures and human error is significantly smaller than that of active systems. However, the coolant flows predicted to be delivered by these systems can be subject to significant uncertainties, which in turn can lead to a significant uncertainty in the predicted thermal-hydraulic performance of the plant under accident conditions. Because of these uncertainties, there is a probability that an accident sequence for which a best estimate thermal-hydraulic analysis predicts no core damage (success sequence) may actually lead to core damage. For brevity, this probability will be called thermal-hydraulic unreliability. The assessment of this unreliability for all the success sequences requires very expensive computations. Moreover, the computational cost increases drastically as the required thermal-hydraulic reliability increases. The required computational effort can be greatly reduced if a bounding approach can be used that either eliminates the need to compute thermal-hydraulic unreliabilities, or it leads to the analysis of a few bounding sequences for which the required thermal-hydraulic reliability is relatively small. The objective of this paper is to present such an approach and determine the order of magnitude of the thermal-hydraulic unreliabilities that may have to be computed

  11. Tune-control improvements on the rapid-cycling synchrotron

    International Nuclear Information System (INIS)

    Potts, C.; Faber, M.; Gunderson, G.; Knott, M.; Voss, D.

    1981-01-01

    The as-built lattice of the Rapid-Cycling Synchrotron (RCS) had two sets of correction sextupoles and two sets of quadrupoles energized by dc power supplies to control the tune and the tune tilt. With this method of powering these magnets, adjustment of tune conditions during the accelerating cycle as needed was not possible. A set of dynamically programmable power supplies has been built and operated to provide the required chromaticity adjustment. The short accelerating time (16.7 ms) of the RCS and the inductance of the magnets dictated large transistor amplifier power supplies. The required time resolution and waveform flexibility indicated the desirability of computer control. Both the amplifiers and controls are described, along with resulting improvements in the beam performance. A set of octupole magnets and programmable power supplies with similar dynamic qualities have been constructed and installed to control the anticipated high-intensity transverse instability. This system will be operational in the spring of 1981

  12. A Novel Pitch Control System of a Large Wind Turbine Using Two-Degree-of-Freedom Motion Control with Feedback Linearization Control

    Directory of Open Access Journals (Sweden)

    Ching-Sung Wang

    2016-09-01

    Full Text Available Pitch Control plays a significant role for a large wind turbine. This study investigates a novel robust hydraulic pitch control system of a large wind turbine. The novel hydraulic pitch control system is driven by a novel high efficiency and high response hydraulic servo system. The pitch controller, designed by two degree-of-freedom (2-DOF motion control with feedback linearization, is developed to enhance the controllability and stability of the pitch control system. Furthermore, the full-scale testbed of the hydraulic pitch control system of a large wind turbine is developed for practically experimental verification. Besides, the wind turbine simulation software FAST is used to analyze the motion of the blade which results are given to the testbed as the disturbance load command. The 2-DOF pitch controller contains a feedforward controller with feedback linearization theory to overcome the nonlinearities of the system and a feedback controller to improve the system robustness for achieving the disturbance rejection. Consequently, the novel hydraulic pitch control system shows excellent path tracking performance in the experiments. Moreover, the robustness test with a simulated disturbance load generated by FAST is performed to validate the reliability of the proposed pitch control system.

  13. ATWS thermal-hydraulic analysis for Krsko Full Scope Simulator validation

    International Nuclear Information System (INIS)

    Parzer, I.; Kljenak, I.

    2005-01-01

    The purpose of this analysis was to simulate Anticipated Transient without Scram transient for Krsko NPP. The results of these calculations were used for annual ANSI/ANS validation of reactor coolant system thermal-hydraulic response predicted by Krsko Full Scope Simulator. For the thermal-hydraulic analyses the RELAP5/MOD3.3 code and the input model for NPP Krsko, delivered by NPP Krsko, was used. In the presented paper the most severe ATWS scenario has been analyzed, starting with the loss of Main Feedwater at both steam generators. Thus, gradual loss of secondary heat sink occurred. On top of that, control rods were not supposed to scram, leaving the chain reaction to be controlled only by inherent physical properties of the fuel and moderator and eventual actions of the BOP system. The primary system response has been studied assuming AMSAC availability. (author)

  14. Characteristics of Air Entrainment in Hydraulic Jump

    Science.gov (United States)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  15. Mid-sized omnidirectional robot with hydraulic drive and steering

    Science.gov (United States)

    Wood, Carl G.; Perry, Trent; Cook, Douglas; Maxfield, Russell; Davidson, Morgan E.

    2003-09-01

    Through funding from the US Army-Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program, Utah State University's (USU) Center for Self-Organizing and Intelligent Systems (CSOIS) has developed the T-series of omni-directional robots based on the USU omni-directional vehicle (ODV) technology. The ODV provides independent computer control of steering and drive in a single wheel assembly. By putting multiple omni-directional (OD) wheels on a chassis, a vehicle is capable of uncoupled translational and rotational motion. Previous robots in the series, the T1, T2, T3, ODIS, ODIS-T, and ODIS-S have all used OD wheels based on electric motors. The T4 weighs approximately 1400 lbs and features a 4-wheel drive wheel configuration. Each wheel assembly consists of a hydraulic drive motor and a hydraulic steering motor. A gasoline engine is used to power both the hydraulic and electrical systems. The paper presents an overview of the mechanical design of the vehicle as well as potential uses of this technology in fielded systems.

  16. Hydraulic gradients in rock aquifers

    International Nuclear Information System (INIS)

    Dahlblom, P.

    1992-05-01

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)

  17. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    Science.gov (United States)

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.

  18. 14 CFR 33.72 - Hydraulic actuating systems.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic actuating systems. Each hydraulic actuating system must function properly under all conditions in which the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic actuating systems. 33.72 Section...

  19. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    Science.gov (United States)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  20. Thermo-hydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2003-01-01

    In nuclear reactors of the magnox or advanced gas cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accidents using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear electric . The tests were carried out on the thermal hydraulics experimental research assembly (THERA) loop at manchester university. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 k, 50 k, and 100 k was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s

  1. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  2. Aircraft Hydraulic System Leakage Detection and Servicing Recommendations Method

    Science.gov (United States)

    2014-10-02

    ITA), Brazil. He is with Empresa Brasileira de Aeronáutica S.A (EMBRAER), São José dos Campos, SP, Brazil, since 2007. He works as a Development...degree in Control Engineering from Universidade Estadual de Campinas (Unicamp, 2004), Brazil, and a Master Degree in Aeronautical Engineering from...accumulators, filters, and consumers, that include all the actuators connected to the hydraulic power such as flight controls , brake and landing

  3. Nonlinear Model-Based Fault Detection for a Hydraulic Actuator

    NARCIS (Netherlands)

    Van Eykeren, L.; Chu, Q.P.

    2011-01-01

    This paper presents a model-based fault detection algorithm for a specific fault scenario of the ADDSAFE project. The fault considered is the disconnection of a control surface from its hydraulic actuator. Detecting this type of fault as fast as possible helps to operate an aircraft more cost

  4. Risks to Water Resources from Shale Gas Development and Hydraulic Fracturing in the United States

    Science.gov (United States)

    Vengosh, Avner; Jackson, Robert B.; Warner, Nathaniel; Darrah, Thomas H.; Kondash, Andrew

    2014-05-01

    The rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded oil and gas exploration in the USA. The rapid rate of shale gas exploration has triggered an intense public debate regarding the potential environmental and human health effects. A review of the updated literature has identified four potential risks for impacts on water resources: (1) stray gas contamination of shallow aquifers near shale gas sites; (2) contamination of surface water and shallow groundwater from spills, leaks, and disposal of inadequately treated wastewater or hydraulic fracturing fluids; (3) accumulation of toxic and radioactive residues in soil or stream sediments near disposal or spill sites; and (4) over-extraction of water resources for drilling and hydraulic fracturing that could induce water shortages and conflicts with other water users, particularly in water-scarce areas. As part of a long-term research on the potential water contamination associated with shale gas development, new geochemical and isotopic techniques have been developed for delineating the origin of gases and contaminants in water resource. In particular, multiple geochemical and isotopic (carbon isotopes in hydrocarbons, noble gas, strontium, boron, radium isotopes) tracers have been utilized to distinguish between naturally occurring dissolved gas and salts in water and contamination directly induced from shale gas drilling and hydraulic fracturing operations.

  5. Rapid formation of a modern bedrock canyon by a single flood event

    Science.gov (United States)

    Lamb, Michael P.; Fonstad, Mark A.

    2010-07-01

    Deep river canyons are thought to form slowly over geological time (see, for example, ref. 1), cut by moderate flows that reoccur every few years. In contrast, some of the most spectacular canyons on Earth and Mars were probably carved rapidly during ancient megaflood events. Quantification of the flood discharge, duration and erosion mechanics that operated during such events is hampered because we lack modern analogues. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood. The event offers a rare opportunity to analyse canyon formation and test palaeo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use digital topographic models and visible/near-infrared aerial images from before and after the flood, discharge measured during the event, field measurements and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated ~7m of limestone and transformed a soil-mantled valley into a bedrock canyon in just ~3days. We find that canyon morphology is strongly dependent on rock type: plucking of limestone blocks produced waterfalls, inner channels and bedrock strath terraces, whereas abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment. We suggest that our results might improve hydraulic reconstructions of similar megafloods on Earth and Mars.

  6. Adaptive multiparameter control: application to a Rapid Thermal Processing process; Commande Adaptative Multivariable: Application a un Procede de Traitement Thermique Rapide

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mago, S J

    1995-12-20

    In this work the problem of temperature uniformity control in rapid thermal processing is addressed by means of multivariable adaptive control. Rapid Thermal Processing (RTP) is a set of techniques proposed for semiconductor fabrication processes such as annealing, oxidation, chemical vapour deposition and others. The product quality depends on two mains issues: precise trajectory following and spatial temperature uniformity. RTP is a fabrication technique that requires a sophisticated real-time multivariable control system to achieve acceptable results. Modelling of the thermal behaviour of the process leads to very complex mathematical models. These are the reasons why adaptive control techniques are chosen. A multivariable linear discrete time model of the highly non-linear process is identified on-line, using an identification scheme which includes supervisory actions. This identified model, combined with a multivariable predictive control law allows to prevent the controller from systems variations. The control laws are obtained by minimization of a quadratic cost function or by pole placement. In some of these control laws, a partial state reference model was included. This reference model allows to incorporate an appropriate tracking capability into the control law. Experimental results of the application of the involved multivariable adaptive control laws on a RTP system are presented. (author) refs

  7. Applicability estimation of flowmeter logging for detecting hydraulic pass

    International Nuclear Information System (INIS)

    Miyakawa, Kimio; Tanaka, Yasuji; Tanaka, Kazuhiro

    1997-01-01

    Estimation of the hydraulic pass governing hydrogeological structure contributes significantly to the siting HLW repository. Flowmeter logging can detect hydraulic passes by measuring vertical flow velocity of groundwater in the borehole. We reviewed application of this logging in situ. The hydraulic pass was detected with combination of ambient flow logging, with pumping and/or injecting induced flow logging. This application showed that the flowmeter logging detected hydraulic passes conveniently and accurately compared with other hydraulic tests. Hydraulic conductivity by using flowmeter logging was assessed above 10 -6 m/sec and within one order from comparison with injection packer tests. We suggest that appropriate application of the flowmeter logging for the siting is conducted before hydraulic tests because test sections and monitoring sections are decided rationally for procurement of quantitative hydraulic data. (author)

  8. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    Science.gov (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  9. Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought.

    Science.gov (United States)

    Plaut, Jennifer A; Yepez, Enrico A; Hill, Judson; Pangle, Robert; Sperry, John S; Pockman, William T; McDowell, Nate G

    2012-09-01

    Drought-related tree mortality occurs globally and may increase in the future, but we lack sufficient mechanistic understanding to accurately predict it. Here we present the first field assessment of the physiological mechanisms leading to mortality in an ecosystem-scale rainfall manipulation of a piñon-juniper (Pinus edulis-Juniperus monosperma) woodland. We measured transpiration (E) and modelled the transpiration rate initiating hydraulic failure (E(crit) ). We predicted that isohydric piñon would experience mortality after prolonged periods of severely limited gas exchange as required to avoid hydraulic failure; anisohydric juniper would also avoid hydraulic failure, but sustain gas exchange due to its greater cavitation resistance. After 1 year of treatment, 67% of droughted mature piñon died with concomitant infestation by bark beetles (Ips confusus) and bluestain fungus (Ophiostoma spp.); no mortality occurred in juniper or in control piñon. As predicted, both species avoided hydraulic failure, but safety margins from E(crit) were much smaller in piñon, especially droughted piñon, which also experienced chronically low hydraulic conductance. The defining characteristic of trees that died was a 7 month period of near-zero gas exchange, versus 2 months for surviving piñon. Hydraulic limits to gas exchange, not hydraulic failure per se, promoted drought-related mortality in piñon pine. © 2012 Blackwell Publishing Ltd.

  10. Performance and efficiency of a hydraulic hybrid powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Karbaschian, Mohammad Ali [Duisburg-Essen Univ. (Germany). Faculty of Engineering

    2012-11-01

    Hydraulic hybrid powertrains are considered to be a promising technology to save energy and reduce emission in specific automotive fields because of their high power density, components lifetime, and long lasting experience in industries compared to electric hybrid powertrains. Within the first part of the paper, a very brief literature survey on hydraulic hybrid vehicle systems (HHVS) and the related dynamical behaviour is given. No specific activities to improve the efficiency of these systems were detected. Related literature with respect to optimization mainly deals with the management of the system's energy flows trying to control the engine operation point and the high pressure in the system. In the second part, a small simulation study is presented. Therefore, hybrid systems are generally assumed as a Multi-Input-Multi-Output (MIMO) system. The effect of key variables (i.e. accumulator size and pressure, pump/motor displacement and efficiency, valve dynamics) on the system is discussed. The results show that the volume displacement of pump and motor, the performance of the engine, and the state of charge of the accumulator are the most important parameters to specify the efficiency and performance of the hydraulic hybrid powertrain. Additionally, a hybrid hydraulic powertrain with an adjustable state of charge accumulator is compared with one whose state of charge is constant. The result shows the improvement of braking performance and fuel savings. The goal is to optimize the parameters of the system based on the simultaneous consideration of the three (or more) variables for a given load profile with respect to given objectives. (orig.)

  11. Advantages of Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  12. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2001-01-01

    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces to a co...... to a continous rotation of an electric generator. The experiments document efficiencies and losses for the conversion process. The experiments are used for verification and update of a computer model.......Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  13. Effect of polyacrylamide on soil physical and hydraulic properties

    Science.gov (United States)

    Albalasmeh, Ammar; Gharaibeh, Mamoun; Hamdan, Enas

    2017-04-01

    The effect of polyacrylamide (PAM), as a soil conditioner, on selected soil physical and hydraulic properties (infiltration rate (f(t)), hydraulic conductivity (HC), soil moisture content, aggregate stability (AS), and soil aggregation) was studied. Two types of anionic PAM were used: Low molecular weight (LPAM) (1×105 g/mol) with medium charge density (33-43) and high molecular weight (HPAM) (1-6×106 g/mol) with medium charge density (33-43). Sandy loam soil was packed into plastic columns; PAM solutions at different concentrations (100, 250, 500, and 1000 mg L-1) were used every two weeks in four wetting and drying cycles. The highest infiltration rate value was 0.16 mm s-1 at 1000 mg/L low molecular weight PAM while the highest value of infiltration rate in high PAM molecular weight was 0.11 mm s-1 compared to the control (0.01 mm s-1). Soil HC was about 3.00 cm h-1 for LPAM at 1000 mg L-1 PAM, while the highest value for HPAM was about 2 cm h-1 for the same concentration, compared to the control. The amount of water that can be held by soil increased with the addition of PAM compared to the control. Differences in water content were more pronounced in LPAM compared to HPAM. The addition of LPAM increased aggregate stability proportional to PAM concentration. Moreover, 1000 mg L-1 produced the highest aggregate stability (19{%}) compared to HPAM and control (7{%} and 5{%}), respectively. As PAM concentration increased, the geometric mean diameter (GMD) increased for both PAM molecular weights compared to control (0.4 mm). At 1000 mg L-1 the GMD values were 0.88 mm and 0.79 mm for LPAM and HPAM, respectively. The addition of PAM improved soil physical and hydraulic properties, with an advantage to LPAM owing that to its ability to penetrate soil aggregates and therefore stabilizing them.

  14. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  15. Effect of stiffness and movement speed on selected dynamic torque characteristics of hydraulic-actuation joystick controls for heavy vehicles.

    Science.gov (United States)

    Oliver, Michele; Rogers, Robert; Rickards, Jeremy; Tingley, Maureen; Biden, Edmund

    2006-02-22

    The purpose of this work was to quantify the effects of joystick stiffness and movement speed on the dynamic torque characteristics of hydraulic-actuation joystick controls, as found in off-road vehicles, as one of the initial steps towards the development of a joystick design protocol. Using a previously developed mathematical model in which a hydraulic-actuation joystick is assumed to rotate about two axes where the rotation origin is a universal joint, the dynamic torque characteristics incurred by an operator were predicted. Utilizing a laboratory mock-up of an excavator cab environment, three actuation torque characteristics (peak torque, angular impulse and deceleration at the hard endpoint) were quantified for nine unskilled joystick operators during the use of a commonly used North American hydraulic-actuation joystick. The six different experimental conditions included combinations of three joystick stiffnesses and two movement speeds. The highest instantaneous input torque over the course of the joystick movement (not including the hard endpoint) was evaluated using the peak torque value. Angular impulse provided an indication of the sustained exposure to force. The third indicator, deceleration at the hard endpoint, was included to provide a description of impact loading on the hand as the joystick came to a sudden stop. The most important result of this work is that the dynamic torque characteristics incurred during hydraulic-actuation joystick use are substantial. While the peak torque values were not very different between the fast and slow motion conditions, the high decelerations even for slow movements observed at maximum excursion of the joystick indicate that the dynamics do matter. On the basis of deceleration at the hard endpoint and peak torque, the joystick movements that require the highest values for a combination of torque variables are the side-to-side ones. This suggests that less stiff balance and return springs should be considered for

  16. Design of rapid prototype of UAV line-of-sight stabilized control system

    Science.gov (United States)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  17. Process of preparing hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-12-11

    A process of preparing hydraulic cement from oil shale or shale coke is characterized in that the oil shale or shale coke after the distillation is burned long and hot to liberate the usual amount of carbonic acid and then is fine ground to obtain a slow hardening hydraulic cement.

  18. The hydraulics of the pressurized water reactors; L'hydraulique des reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Bouchter, J.C. [CEA Cadarache, SMET, 13 - Saint-Paul-lez-Durance (France); Barbier, D. [CEA/Grenoble, Dept. de Thermohydraulique et de Physique, DTP/SH2C, 38 (France); Caruso, A. [Electricite de France, Service Etudes et Projets Thermiques et Nucleaires, 75 - Paris (France)] [and others

    1999-07-02

    The SFEN organized, the 10 june 1999 at Paris, a meeting in the domain of the PWR hydraulics and in particular the hydraulic phenomena concerning the vessel and the vapor generators. The papers presented showed the importance of the industrial stakes with their associated phenomena: cores performance and safety with the more homogenous cooling system, the rods and the control rods wear, the temperature control, the fluid-structure interactions. A great part was also devoted to the progresses in the domain of the numerical simulation and the models and algorithms qualification. (A.L.B.)

  19. Computational Fluid Dynamics Modelling of Hydraulics and Sedimentation in Process Reactors During Aeration Tank Settling

    DEFF Research Database (Denmark)

    Dam Jensen, Mette; Ingildsen, Pernille; Rasmussen, Michael R.

    2005-01-01

    Aeration Tank Settling is a control method alowing settling in the process tank during high hydraulic load. The control method is patented. Aeration Tank Settling has been applied in several waste water treatment plant's using present design of the process tanks. Some process tank designs have...... shown to be more effective than others. To improve the design of less effective plants Computational Fluid Dynamics (CFD) modelling of hydraulics and sedimentation has been applied. The paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet...

  20. Hydraulics submission for Middlesex County, NJ

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating base flood elevation for a flood insurance...