WorldWideScience

Sample records for hydrated soft contact

  1. Polymer-interaction driven diffusionof eyeshadow in soft contact lenses.

    Science.gov (United States)

    Tavazzi, Silvia; Rossi, Alessandra; Picarazzi, Sara; Ascagni, Miriam; Farris, Stefano; Borghesi, Alessandro

    2017-10-01

    Soft contact lenses used for the correction of ametropia are often made of hydrogel and silicone-hydrogel materials. Since they are placed directly on the surface of the eye and they are hydrated by tears, eye cosmetics can compromise the lens performance and, even worse, can be transported from an external environment to the ocular surface through the contact lens. The diffusion of the dye component of a purple eyeshadow in soft contact lenses of different materials is here evaluated. Diffusivity is found to be typically higher in silicone-hydrogels than in hydrogels. In hydrogels, diffusivity is greater in the case of lower oxygen transmissibility. Despite differences between materials, absorbed mass of dye is much larger (10-100 times) than the expected mass by simple hydration and swelling of the contact lens. The most contaminated materials are also resistant to cleaning solutions. The results indicate that, notwithstanding the complexity of contact lens networks, diffusion of dye is found to follow Fick's law and it is driven by polymer-dye interaction, which governs lens hydration and swelling. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  2. Influence of Liquid Paraffin, White Soft Paraffin and Initial Hydration ...

    African Journals Online (AJOL)

    hydrated white soft paraffin on the viscosity of a cream formulated with a corticosteroid. Methods: The formulations were prepared via homogenization with variable velocity in the range 3300 - 4000 rpm. Individual series of preparations contained the ...

  3. Soft-contact-lenses-induced complications

    Directory of Open Access Journals (Sweden)

    Suvajac Gordana

    2008-01-01

    Full Text Available Background/Aim. Soft contact lenses occupy significant place in ophthalmology, both in the correction of refraction anomalies and in the treatment of many eye diseases. The number of patients that wear soft contact lenses for the purpose of correcting ametropia is constantly increasing. Due to the increasing number of wearers, the percentage of complications that can lead to serious eye damage and serious vision loss is also increasing. The aim of this study was to point out the most common complications related to soft contact lens use. Methods. In the period from 1995−2004 this prospective study included 510 patients wearing soft contact lenses for correcting ametropia. None of the patients wore contact lenses before and none suffered from any system or local diseases that could affected the development of eventual complications. The study took seven years with the patients who wore conventional lenses and three years with those who wore replacement contact lenses. All the necessary ophthalmologic examinations were done (visual acuity, refractokeratometry, the quantity of tear film, biomicroscopic examination of anterior eye segment. All the complications were filmed by video camera. Results. Of all the patients, 19 had blepharitis, 73 suffered from “dry eye”, 57 had conjunctival hyperemia, 12 had conjunctivitis, 34 had gigantopapillary conjunctivitis (GPC, 93 had punctiform epitheliopathy, 20 had corneal infiltration, one patient had keratitis, 91 had corneal vascularisation, and 95 patients had corneal deposits. Conclusion. Both the type and frequency of complications related to soft contact lens use in our group of patients, proved to be significant. Some of this complications (keratitis can significantly damage vision and lead to loss of vision and sometimes can require operative treatment.

  4. [IOP measurement through frequent-replacement soft contact lenses].

    Science.gov (United States)

    Touboul, J

    2008-07-01

    Intraocular pressure (IOP) can be measured through soft contact lenses with an air-puff tonometer. These measurements seemed accurate for low-power negative lenses. For positive soft contact lenses, IOP is overestimated. The measurement of IOP through a soft contact lens is acceptable in clinical practice only for glaucoma screening. In glaucomatous patients or patients with ocular hypertension, IOP measurements should be performed without a contact lens. The main technique for IOP measurement remains Goldmann applanation tonometry.

  5. Compliance among soft contact lens wearers.

    Science.gov (United States)

    Kuzman, Tomislav; Kutija, Marija Barisić; Masnec, Sanja; Jandroković, Sonja; Mrazovac, Danijela; Jurisić, Darija; Skegro, Ivan; Kalauz, Miro; Kordić, Rajko

    2014-12-01

    Contact lens compliance is proven to be crucial for preventing lens wear-related complications because of the interdependence of the steps in lens care regime and their influence on lens system microbial contamination. Awareness of the patients' lens handling compliance as well as correct recognition of non-compliant behaviours is the basis for creating more targeted strategies for patient education. The aim of this study was to investigate compliance among soft contact lens (SCL) wearers in different aspects of lens care handling and wearing habits. In our research 50 asymptomatic lens wearers filled out a questionnaire containing demographic data, lens type, hygiene and wearing habits, lenses and lens care system replacement schedule and self-evaluation of contact lens handling hygiene. We established criteria of compliance according to available manufacturer's recommendations, prior literature and our clinical experience. Only 2 (4%) of patients were fully compliant SCL wearers. The most common non-compliant behaviours were insufficient lens solution soaking time (62%), followed by failure to daily exchange lens case solution and showering while wearing lenses. 44% of patients reported storing lenses in saline solution. Mean lens storage case replacement was 3.6 months, with up to 78% patients replacing lens case at least once in 3 months. Average grade in self evaluating level of compliance was very good (4 +/- 0.78) (from 1-poor level of hygiene to 5-great level of hygiene). Lens wearers who reported excessive daily lens wear and more than 10 years of lens wearing experience were also found to be less compliant with other lens system care procedures. (t = -2.99, df=47, p rate, self grading was relatively high. Therefore, these results indicate the need for patient education and encouragement of better lens wearing habits and all of the lens maintenance steps at each patient visit.

  6. Effects of material properties on soft contact dynamics

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.; Ghafoor, A.

    2009-01-01

    The superiority of deformable human fingertips as compared to hard robot gripper fingers for grasping and manipulation has led to a number of investigations with robot hands employing elastomers or materials such as fluids or powders beneath a membrane at the fingertips. In this paper, to analyze the stability of dynamic control of an object grasped between two soft fingertips through a soft interface using the viscoelastic material between the manipulating fingers and a manipulated object is modeled through bond graph method (BGM). The fingers are made viscoelastic by using springs and dampers. Detailed bond graph modeling (BGM) of the contact phenomenon with two soft-finger contacts considered to be placed against each other on the opposite sides of the grasped object as is generally the case in a manufacturing environment is presented. The stiffness of the springs is exploited in order to achieve the stability in the soft-grasping which includes friction between the soft finger contact surfaces and the object, The paper also analyses stability of dynamic control through a soft interface between a manipulating finger and a manipulated object. It is shown in the paper that the system stability depends on the visco-elastic material properties of the soft interface. Method of root locus is used to analyze this phenomenon. The paper shows how the weight of the object coming downward is controlled by the friction between the fingers and the object during the application of contact forces by varying the damping and the stiffness in the soft finger. (author)

  7. Copolymers for soft hydrophilic contact lenses: development and investigations

    International Nuclear Information System (INIS)

    Schwach, G.W.

    1978-05-01

    Low esters of methacrylic acid which may be polymerized by different methods are used predominantly for producing soft hydrophilic contact lenses. Compounds of the vinyl-type often are added to improve the optical and mechanical qualities. Composition as well as possibilities of polymerization by irradiation were tested so long until copolymers were found which finally allowed the production of soft hydrophilic contact lenses. Swelling characteristics and permeability of the different elastomeres are to be investigated in order to guarantee sufficient compatibility of contact lenses. Contamination of the lens materials by microorganisms is also a point of special interest. The effects on the hydrophilic contact lens-copolymers by different substances used for cleaning and storage solutions have been investigated as well. (author)

  8. Measurement of the refractive index of soft contact lenses during wear.

    Science.gov (United States)

    Varikooty, Jalaiah; Keir, Nancy; Woods, Craig A; Fonn, Desmond

    2010-01-01

    To determine whether the refractive index (RI) of a soft contact lens can be evaluated using refractometry while the lens remains on the eye and to compare this with more traditional ex vivo RI measurements. A slitlamp apparatus was modified to incorporate a customized Atago hand refractometer. With a double-masked study design, nine adapted symptomatic soft contact lens wearers wore a contact lens in each eye (lotrafilcon B and etafilcon A) in a randomized order. In vivo RI was determined from the relative Brix scale measurements immediately after lens insertion and after 1 and 10 hr of lens wear. Ex vivo refractometry was performed after 10 hr of lens wear for comparison. Means +/- standard errors of the means are reported. In vivo RI values at baseline were 1.422 +/- 0.0004 (lotrafilcon B) and 1.405 +/- 0.0021 (etafilcon A); after 1 hr of lens wear, values were 1.423 +/- 0.0006 and 1.408 +/- 0.0007, respectively; and after 10 hr of lens wear, values were 1.424 +/- 0.0004 and 1.411 +/- 0.0010, respectively. Ex vivo RI values at the end of the 10 hr wearing period were 1.424 +/- 0.0003 (lotrafilcon B) and 1.412 +/- 0.0017 (etafilcon A). The change in in vivo RI across the day was statistically significant for the etafilcon A lens (repeated-measures analysis of variance, P0.05). This novel adaptation of refractometry was able to measure the RI of soft contact lenses during wear (without lens removal). End of day RI measurements using in vivo and ex vivo refractometry were comparable with each other. Future work is required to determine whether this in vivo method can improve our understanding of the relationships between soft contact lens RI, hydration, on-eye lens performance, and symptomology.

  9. Frictional Compliant Haptic Contact and Deformation of Soft Objects

    Directory of Open Access Journals (Sweden)

    Naci Zafer

    2016-05-01

    Full Text Available This paper is concerned with compliant haptic contact and deformation of soft objects. A human soft fingertip model is considered to act as the haptic interface and is brought into contact with and deforms a discrete surface. A nonlinear constitutive law is developed in predicting normal forces and, for the haptic display of surface texture, motions along the surface are also resisted at various rates by accounting for dynamic Lund-Grenoble (LuGre frictional forces. For the soft fingertip to apply forces over an area larger than a point, normal and frictional forces are distributed around the soft fingertip contact location on the deforming surface. The distribution is realized based on a kernel smoothing function and by a nonlinear spring-damper net around the contact point. Experiments conducted demonstrate the accuracy and effectiveness of our approach in real-time haptic rendering of a kidney surface. The resistive (interaction forces are applied at the user fingertip bone edge. A 3-DoF parallel robotic manipulator equipped with a constraint based controller is used for the implementation. By rendering forces both in lateral and normal directions, the designed haptic interface system allows the user to realistically feel both the geometrical and mechanical (nonlinear properties of the deforming kidney.

  10. 21 CFR 886.5925 - Soft (hydrophilic) contact lens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Soft (hydrophilic) contact lens. 886.5925 Section 886.5925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... against the cornea and adjacent limbal and scleral areas of the eye to correct vision conditions or act as...

  11. Optical and visual performance of aspheric soft contact lenses.

    Science.gov (United States)

    Efron, Suzanne; Efron, Nathan; Morgan, Philip B

    2008-03-01

    This study was conducted to investigate whether aspheric design soft contact lenses reduce ocular aberrations and result in better visual acuity and subjective appreciation of clinical performance compared with spherical soft contact lenses. A unilateral, double-masked, randomized and controlled study was undertaken in which ocular aberrations and high and low contrast logMAR visual acuity were measured on myopic subjects who wore aspheric design (Biomedics 55 Evolution, CooperVision) and spherical design (Biomedics 55, CooperVision) soft contact lenses. Ten subjects who had about -2.00 D myopia wore -2.00 D lenses and 10 subjects who had about -5.00 D myopia wore -5.00 D lenses. Measurements were made under photopic and mesopic lighting conditions. Subjects were invited to grade comfort, vision in photopic and mesopic conditions, and overall impression with the two lens types on 100 unit visual analogue scales. There was no significant difference in high contrast or low contrast visual acuity between the two lens designs of either power under photopic or mesopic conditions. Both lens designs displayed lower levels of spherical aberration compared with the "no lens" condition under photopic and mesopic light levels (p designs. There were no statistically significant differences in subjective appreciation of clinical performance between lens designs or lens powers. At least with respect to the brand of lenses tested, the fitting of aspheric design soft contact lenses does not result in superior visual acuity, aberration control, or subjective appreciation compared with equivalent spherical design soft contact lenses.

  12. The Antibiofilm efficacy of nitric oxide on soft contact lenses.

    Science.gov (United States)

    Kim, Dong Ju; Park, Joo-Hee; Kim, Marth; Park, Choul Yong

    2017-11-21

    To investigate the antibiofilm efficacy of nitric oxide (NO) on soft contact lenses. Nitrite (NO precursor) release from various concentrations (0-1000 μM) of sodium nitrite (NaNO 2, NO donor) was measured by Griess Assay. Cell viability assay was performed using human corneal epithelial cell under various concentration (0-1000 μM) of NaNO 2 . Biofilm formation on soft contact lenses was achieved by adding Staphylococcus aureus or Pseudomonas aeruginosa to the culture media. Various concentrations of NaNO 2 (0-1000 μM) were added to the culture media, each containing soft contact lens. After incubation in NaNO 2 containing culture media for 1, 3, or 7 days, each contact lens was transferred to a fresh, bacteria-free media without NaNO 2 . The bacteria in the biofilm were dispersed in the culture media for planktonic growth. After reculturing the lenses in the fresh media for 24 h, optical density (OD) of media was measured at 600 nm and colony forming unit (CFU) was counted by spreading media on tryptic soy agar plate for additional 18 h. Nitrite release from NaNO 2 showed dose-dependent suppressive effect on biofilm formation. Most nitrite release from NaNO 2 tended to occur within 30 min. The viability of human corneal epithelial cells was well maintained at tested NaNO 2 concentrations. The bacterial CFU and OD showed dose-dependent decrease in the NaNO 2 treated samples on days 1, 3 and 7 for both Staphylococcus aureus and Pseudomonas aeruginosa. NO successfully inhibited the biofilm formation by Staphylococcus aureus or Pseudomonas aeruginosa on soft contact lenses in dose-dependent manner.

  13. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2016-12-01

    Full Text Available The understanding and control of early hydration of tricalcium silicate (C3S is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h and acceleration (~4 h periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H. The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.

  14. Contact microscopy with a soft x-ray laser

    International Nuclear Information System (INIS)

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab

  15. Power profiles of single vision and multifocal soft contact lenses.

    Science.gov (United States)

    Wagner, Sandra; Conrad, Fabian; Bakaraju, Ravi C; Fedtke, Cathleen; Ehrmann, Klaus; Holden, Brien A

    2015-02-01

    The purpose of this study was to investigate the optical zone power profile of the most commonly prescribed soft contact lenses to assess their potential impact on peripheral refractive error and hence myopia progression. The optical power profiles of six single vision and ten multifocal contact lenses of five manufacturers in the powers -1.00 D, -3.00 D, and -6.00 D were measured using the SHSOphthalmic (Optocraft GmbH, Erlangen, Germany). Instrument repeatability was also investigated. Instrument repeatability was dependent on the distance from the optical centre, manifesting unreliable data for the central 1mm of the optic zone. Single vision contact lens measurements of -6.00 D lenses revealed omafilcon A having the most negative spherical aberration, lotrafilcon A having the least. Somofilcon A had the highest minus power and lotrafilcon A the biggest deviation in positive direction, relative to their respective labelled powers. Negative spherical aberration occurred for almost all of the multifocal contact lenses, including the centre-distance designs etafilcon A bifocal and omafilcon A multifocal. Lotrafilcon B and balafilcon A seem to rely predominantly on the spherical aberration component to provide multifocality. Power profiles of single vision soft contact lenses varied greatly, many having a negative spherical aberration profile that would exacerbate myopia. Some lens types and powers are affected by large intra-batch variability or power offsets of more than 0.25 dioptres. Evaluation of power profiles of multifocal lenses was derived that provides helpful information for prescribing lenses for presbyopes and progressing myopes. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  16. Atomic force microscopy employed as the final imaging stage for soft x-ray contact microscopy

    International Nuclear Information System (INIS)

    Cotton, R.A.; Stead, A.D.; Ford, T.W.; Fletcher, J.H.

    1993-01-01

    Soft X-ray contact microscopy (SXCM) enables a high resolution image of a living biological specimen to be recorded in an X-ray sensitive photoresist at unity magnification. Until recently scanning electron microscopes (SEM) have been employed to obtain the final magnified image. Although this has been successful in producing many high resolution images, this method of viewing the resist has several disadvantages. Firstly, a metallic coating has to be applied to the resist surface to provide electrical conductivity, rendering further development of the resist impossible. Also, electron beam damage to the resist surface can occur, in addition to poor resolution and image quality. Atomic force microscopy (AFM) allows uncoated resists to be imaged at a superior resolution, without damage to the surface. The use of AFM is seen as a major advancement in SXCM. The advantages and disadvantages of the two technologies are discussed, with illustrations from recent studies of a wide variety of hydrated biological specimens imaged using SXCM

  17. Fluctuation in visual acuity during soft toric contact lens wear.

    Science.gov (United States)

    Chamberlain, Paul; Morgan, Philip B; Moody, Kurt J; Maldonado-Codina, Carole

    2011-04-01

    To quantify changes in visual acuity (VA) with soft toric contact lenses as a result of lens movement and/or rotational instability caused by versional eye movements. A novel chart for vision assessment at near (40 cm) for soft toric contact lenses (VANT chart),consisting of a central, color-coded logMAR panel and eight peripheral letter targets set on a white background measuring 60 × 40 cm was constructed. In the developmental phase of the work, 10 subjects (20 eyes) wore 2 toric lenses in random order, and the impact of rapid and delayed eye versions in 8 directions of gaze on VANT acuity was investigated. In phase 2, 35 subjects (68 eyes) wore 4 toric lenses in random order, and a streamlined clinical protocol using the VANT chart was implemented. Standard assessments of toric lens fit and distance VA were also performed. Testing in the first phase showed no difference for change in VA for rapid vs. delayed version movements, (p = 0.17) but acuity reduction was greater for diagonal compared with horizontal/vertical versions (p = 0.06). As such, testing in phase 2 proceeded using rapid, diagonal versions only. In this second phase, there were differences for low-contrast distance VA measures between lens types (p = 0.02) and for both VANT baseline acuity (p = 0.03) and postversion acuity (p = 0.04), but no differences were found between lenses for magnitude of vision loss (p = 0.91), which was about one line. No relationship was established between the magnitude of vision loss and measured rotational stability (p = 0.75). This work has demonstrated that conventional approaches to measuring VA do not fully replicate the "real world" experience of soft toric lens wearers. The VANT chart has shown that VA is reduced immediately after versional eye movements and suggests that more dynamic methods of assessing visual performance should be considered for soft toric contact lens wearers, especially given the apparent inability of lens stability measurements to predict

  18. Anomalies in the prescribing of soft contact lens power.

    Science.gov (United States)

    Young, Graeme; Moody, Kurt; Sulley, Anna

    2009-01-01

    To determine the proportion of prescribed soft lenses rounded to the nearest half diopter and any variations from country to country and between lens types. Marketing data were obtained for soft lenses supplied during a 1-year period for lenses representing each of the following categories: mid-water hydrogel (MWH), silicone hydrogel, daily disposable, and toric silicone hydrogel (TSH). The data were analyzed for several countries/regions. Spherical lenses were analyzed in the range 1.00 to 5.75 D for plus and minus powers, and toric lenses in the range 0.50 to 5.75 D. This ensured a similar number of lenses in full or half diopter powers were compared with quarter and three-quarter diopter powers, and that there was no enforced rounding due to nonavailability of powers. By comparing the proportion of lenses from the 2 power groups, the proportion of lenses rounded to the nearest half diopter was estimated. It was assumed that half the difference between the totals of the 2 power groups represented those lenses dispensed to the nearest half diopter and, therefore, dispensed inaccurately; this was termed the "rounding rate" (RR). The power distribution curve for the sphere powers spiked in half diopter steps, illustrated a bias toward prescribing full and half diopter powers. With all lenses, the RR varied widely between countries. For the MWH, this ranged from 1.7% (Canada) to 11.6% (Iberia). The RRs were 2 to 3 times higher for plus than minus power lenses, however, this also varied by country. Overall, the RRs were lower for the silicone hydrogel and daily disposable contact lenses compared with the MWH, in particular for France and Iberia. The TSH results showed the greatest consistency between countries, with RRs ranging from 3.9% (Germany) to 9.5% (Rest of Europe). Most countries showed similar or lower RRs for TSH compared with MWH although, for some countries (e.g., United Kingdom, Nordic), these were higher. There was less difference in RRs for TSH lenses

  19. Bacterial adherence to extended wear soft contact lenses

    International Nuclear Information System (INIS)

    Aswad, M.I.; John, T.; Barza, M.; Kenyon, K.; Baum, J.

    1990-01-01

    The authors studied the adherence of Pseudomonas aeruginosa and Staphylococcus aureus to extended wear soft contact lenses (EWSCLs) with and without focal deposits using both a radiolabeling technique and electron microscopy. P. aeruginosa showed significant adherence to contact lenses in vitro. In contrast, S. aureus failed to show significant adherence to contact lenses in vitro (i.e., the radioactive uptake was not significantly above background). The extent of adherence of Pseudomonas was proportional to the number of focal deposits on the lenses. Results of electron microscopic examination showed the bacteria to be adherent primarily to large focal deposits (greater than or equal to 150 microns). There was no pseudomonal adherence to the small focal deposits (less than or equal to 50 microns) and little adherence to the areas in between the focal deposits. The authors hypothesize that worn lenses, especially those with large focal deposits, serve as a vehicle for the transport of P. aeruginosa to the cornea. This hypothesis could be a partial explanation for the high incidence of keratitis caused by P. aeruginosa in EWSCL patients

  20. Effect of skin hydration on the dynamics of fingertip gripping contact.

    Science.gov (United States)

    André, T; Lévesque, V; Hayward, V; Lefèvre, P; Thonnard, J-L

    2011-11-07

    The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction.

  1. A study of corneal endothelial changes in soft contact lens wearers using non-contact specular microscopy

    Directory of Open Access Journals (Sweden)

    Renu M Magdum

    2013-01-01

    Full Text Available Aim: To study the corneal endothelial changes after soft contact lens wear, to correlate these changes with the duration of soft contact lens wear, and to study the pattern of use and preferences of contact lens among young adults. Materials and Methods: This observational study was carried out in 100 eyes of 50 soft contact lens users aged between 19 and 27 years. Both eyes of 50 medical students who had never worn contact lenses served as controls. Data from each subject were collected using a structured questionnaire of 24 items that included demographic profile, pattern of contact lens use, symptoms, brand name, number of years worn, and hours of daily wear. These data were analyzed using Chi square for association. Specular microscopy was done using TOPCON SP-3000P. Computerized morphometry was used to evaluate central corneal thickness, size, shape, mean cellular density, hexagonality, coefficient of variation, and polymegathism of the corneal cells . Results: It was found that central corneal thickness was 0.532 ± 0.0309 mm in lens users and 0.514 ± 0.03 mm in controls, cell density was 2570.91 ± 432.06 cells/mm 2 in lens users and 2723.17 ± 327.64 cells/mm 2 in controls, while hexagonality was 54.81 ± 39.72% in lens users and 67.65 ± 36.49% in controls. Conclusion: Despite the known effects of long duration of soft contact lens use on corneal endothelial cell morphology, this study could not draw a significant correlation between them. However, a significant difference was found in the corneal endothelial thickness, cell density, and hexagonality. Among the soft contact lens users, 62% used soft disposable type while 38% used soft extended wear contact lens. Contact lenses were preferred over spectacles for better cosmetic appearance, comfort, and wider visual field.

  2. Power Profiles of Commercial Multifocal Soft Contact Lenses.

    Science.gov (United States)

    Kim, Eon; Bakaraju, Ravi C; Ehrmann, Klaus

    2017-02-01

    To evaluate the optical power profiles of commercially available soft multifocal contact lenses and compare their optical designs. The power profiles of 38 types of multifocal contact lenses-three lenses each-were measured in powers +6D, +3D, +1D, -1D, -3D, and -6D using NIMO TR1504 (Lambda-X, Belgium). All lenses were measured in phosphate buffered saline across 8 mm optic zone diameter. Refractive index of each lens material was measured using CLR 12-70 (Index Instruments, UK), which was used for converting measured power in the medium to in-air radial power profiles. Three basic types of power profiles were identified: center-near, center-distance, and concentric-zone ring-type designs. For most of the lens types, the relative plus with respect to prescription power was lower than the corresponding spectacle add. For some lens types, the measured power profiles were shifted by up to 1D across the power range relative to their labeled power. Most of the lenses were designed with noticeable amounts of spherical aberration. The sign and magnitude of spherical aberration can either be power dependent or consistent across the power range. Power profiles can vary widely between the different lens types; however, certain similarities were also observed between some of the center-near designs. For the more recently released lens types, there seems to be a trend emerging to reduce the relative plus with respect to prescription power, include negative spherical aberration, and keep the power profiles consistent across the power range.

  3. Soft contact lens biomaterials from bioinspired phospholipid polymers.

    Science.gov (United States)

    Goda, Tatsuro; Ishihara, Kazuhiko

    2006-03-01

    Soft contact lens (SCL) biomaterials originated from the discovery of a poly(2-hydroxyethyl methacrylate) (poly[HEMA])-based hydrogel in 1960. Incorporation of hydrophilic polymers into poly(HEMA) hydrogels was performed in the 1970-1980s, which brought an increase in the equilibrium water content, leading to an enhancement of the oxygen permeability. Nowadays, the poly(HEMA)-based hydrogels have been applied in disposable SCL. At the same time, high oxygen-permeable silicone hydrogels were produced, which made it possible to continually wear SCL. Recently, numerous trials for improving the water wettability of silicone hydrogels have been performed. However, little attention has been paid to improving their anti-biofouling properties and biocompatibility. Since biomimetic phospholipid polymers possess excellent anti-biofouling properties and biocompatibility they have the potential to play a valuable role in the surface modification of the silicone hydrogel. The representative phospholipid polymers containing a 2-methacryloyloxyethyl phosphorylcholine (MPC) unit suppressed nonspecific protein adsorption, increased cell compatibility and contributed to blood compatible biomaterials. The MPC polymer coating on the silicone hydrogel improved its water wettability and biocompatibility, while maintaining high oxygen permeability compared with the original silicone hydrogel. Furthermore, the newly prepared phospholipid-type intermolecular crosslinker made it possible to synthesize a 100% phospholipid polymer hydrogel that can enhance the anti-biofouling properties and biocompatibility. In this review, the authors discuss how polymer hydrogels should be designed in order to obtain a biocompatible SCL and future perspectives.

  4. Optical performance of multifocal soft contact lenses via a single-pass method.

    Science.gov (United States)

    Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric

    2012-08-01

    A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p 4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.

  5. Microbial contamination of soft contact lenses & accessories in asymptomatic contact lens users

    Directory of Open Access Journals (Sweden)

    Deeksha V Thakur

    2014-01-01

    Full Text Available Background & objectives: With increasing use of soft contact lenses the incidence of contact lens induced infections is also increasing. This study was aimed to assess the knowledge of new and existing contact lens users about the risk of microbial contamination associated with improper use and maintenance of contact lenses, type of microbial flora involved and their potential to cause ophthalmic infections. Methods: Four samples each from 50 participants (n=200 were collected from the lenses, lens care solutions, lens care solution bottles and lens cases along with a questionnaire regarding their lens use. The samples were inoculated onto sheep blood agar, Mac Conkey′s agar and Sabouraud′s dextrose agar. Organisms were identified using standard laboratory protocols. Results: Overall rate of microbial contamination among the total samples was 52 per cent. The most and the least contaminated samples were found to be lens cases (62% and lens care solution (42%, respectively. The most frequently isolated contaminant was Staphylococcus aureus (21% followed by Pseudomonas species (19.5%. Majority (64% of the participants showed medium grade of compliance to lens cleaning practices. Rate of contamination was 100 and 93.75 per cent respectively in those participants who showed low and medium compliance to lens care practices as compared to those who had high level of compliance (43.75% ( p0 <0.05. Interpretation & conclusions: Lens care practices amongst the participants were not optimum which resulted into high level contamination. Hence, creating awareness among the users about the lens care practices and regular cleaning and replacements of lens cases are required.

  6. Characterization of nanophotonic soft contact lenses based on poly (2-hydroxyethyl methacrylate and fullerene

    Directory of Open Access Journals (Sweden)

    Debeljković Aleksandra D.

    2013-01-01

    Full Text Available This work presents comparative research of characteristics of a basic and new nanophotonic material, the latter of which was obtained by incorporation fullerene, C60, in the base material for soft contact lenses. The basic (SL38 and nanophotonic materials (SL38-A for soft contact lenses were obtained by radical polymerization of 2-hydroxyethyl methacrylate and 2-hydroxyethyl methacrylate and fullerene, which were derived by the technology in the production lab of the company Soleko (Milan, Italy. The materials were used for production of soft contact lenses in the company Optix (Belgrade, Serbia for the purposes of this research. Fullerene was used due to its apsorption transmission characteristics in ultraviolet, visible and near infrared spectrum. For the purposes of material characterization for potential application as soft contact lenses, network parameters were calculated and SEM analysis of the materials was performed while the optical properties of the soft contact lenses were measured by a Rotlex device. The values of the diffusion exponent, n, close to 0.5 indicated Fick's kinetics corresponding to diffusion. The investigated hydrogels could be classified as nonporous hydrogels. With Rotlex device, values of optical power and map of defects were showed. The obtained values of optical power and map of defects showed that the optical power of synthesized nanophotonic soft contact lens is identical to the nominal value while this was not the case for the basic lens. Also, the quality of the nanophotonic soft contact lens is better than the basic soft contact lens. Hence, it is possible to synthesize new nanophotonic soft contact lenses of desired optical characteristics, implying possibilities for their application in this field.

  7. Hydrophobins as aqueous lubricant additive for a soft sliding contact

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Røn, Troels; Pakkanen, Kirsi I.

    2015-01-01

    lubrication characteristic is dominant via ‘self-healing’ mechanism. FpHYD5 revealed a better lubrication than HFBI presumably due to the presence of glycans and improved hydration of the sliding interface. Two type II hydrophobins function more favorably compared to a synthetic amphiphilic copolymer, PEO-PPO...

  8. Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts

    Science.gov (United States)

    Skotheim, J. M.; Mahadevan, L.

    2005-09-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g., a shell) or constitutive properties (e.g., a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate, we consider both elastic and poroelastic material responses. For all these cases, we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter η =hydrodynamicpressure/elasticstiffness=surfacedeflection/gapthickness, which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.

  9. Equivalences between refractive index and equilibrium water content of conventional and silicone hydrogel soft contact lenses from automated and manual refractometry.

    Science.gov (United States)

    González-Méijome, José M; López-Alemany, Antonio; Lira, Madalena; Almeida, José B; Oliveira, M Elisabete C D Real; Parafita, Manuel A

    2007-01-01

    The purpose of the present study was to develop mathematical relationships that allow obtaining equilibrium water content and refractive index of conventional and silicone hydrogel soft contact lenses from refractive index measures obtained with automated refractometry or equilibrium water content measures derived from manual refractometry, respectively. Twelve HEMA-based hydrogels of different hydration and four siloxane-based polymers were assayed. A manual refractometer and a digital refractometer were used. Polynomial models obtained from the sucrose curves of equilibrium water content against refractive index and vice-versa were used either considering the whole range of sucrose concentrations (16-100% equilibrium water content) or a range confined to the equilibrium water content of current soft contact lenses (approximately 20-80% equilibrium water content). Values of equilibrium water content measured with the Atago N-2E and those derived from the refractive index measurement with CLR 12-70 by the applications of sucrose-based models displayed a strong linear correlation (r2 = 0.978). The same correlations were obtained when the models are applied to obtain refractive index values from the Atago N-2E and compared with those (values) given by the CLR 12-70 (r2 = 0.978). No significantly different results are obtained between models derived from the whole range of the sucrose solution or the model limited to the normal range of soft contact lens hydration. Present results will have implications for future experimental and clinical research regarding normal hydration and dehydration experiments with hydrogel polymers, and particularly in the field of contact lenses. 2006 Wiley Periodicals, Inc.

  10. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Poletti, G.; Orsini, F.; Batani, D.; Bernadinello, A.; Desai, T.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Juha, Libor; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 30, č. 2 (2004), s. 235-241 ISSN 1434-6060 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : soft X-ray Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.692, year: 2004

  11. Contact angles on a soft solid: from Young's law to Neumann's law.

    Science.gov (United States)

    Marchand, Antonin; Das, Siddhartha; Snoeijer, Jacco H; Andreotti, Bruno

    2012-12-07

    The contact angle that a liquid drop makes on a soft substrate does not obey the classical Young's relation, since the solid is deformed elastically by the action of the capillary forces. The finite elasticity of the solid also renders the contact angles differently from those predicted by Neumann's law, which applies when the drop is floating on another liquid. Here, we derive an elastocapillary model for contact angles on a soft solid by coupling a mean-field model for the molecular interactions to elasticity. We demonstrate that the limit of a vanishing elastic modulus yields Neumann's law or a variation thereof, depending on the force transmission in the solid surface layer. The change in contact angle from the rigid limit to the soft limit appears when the length scale defined by the ratio of surface tension to elastic modulus γ/E reaches the range of molecular interactions.

  12. Contact instabilities of anisotropic and inhomogeneous soft elastic films

    Science.gov (United States)

    Tomar, Gaurav; Sharma, Ashutosh

    2012-02-01

    Anisotropy plays important roles in various biological phenomena such as adhesion of geckos and grasshoppers enabled by the attachment pods having hierarchical structures like thin longitudinal setae connected with threads mimicked by anisotropic films. We study the contact instability of a transversely isotropic thin elastic film when it comes in contact proximity of another surface. In the present study we investigate the contact stability of a thin incompressible transversely isotropic film by performing linear stability analysis. Based on the linear stability analysis, we show that an approaching contactor renders the film unstable. The critical wavelength of the instability is a function of the total film thickness and the ratio of the Young's modulus in the longitudinal direction and the shear modulus in the plane containing the longitudinal axis. We also analyze the stability of a thin gradient film that is elastically inhomogeneous across its thickness. Compared to a homogeneous elastic film, it becomes unstable with a longer wavelength when the film becomes softer in going from the surface to the substrate.

  13. Soft contact lenses: Basic characteristics, advantages and complications associated with their use

    Directory of Open Access Journals (Sweden)

    Milosavljević Miloš

    2016-01-01

    Full Text Available Soft contact lenses have an important place in ophthalmology, both for the correction of refractive anomalies and tor the treatment of some eye diseases. From the moment when adequately biocompatible materials were found, for a very sensitive environment such as the human eye, from early 60s of the 20th century, starts irrepressible expansion of soft contact lenses. The reason for this expansion of soft contact lenses lies in advantages they undoubtedly have in comparison to glasses, but also in comparison to hard and semi-hard contact lenses. Unfortunately, in parallel with the increasing number of users of this type of optical aids, increases the incidence of complications that can arise. Complications can be very diverse in nature and severity, and they can be classified into three major groups: symptoms of eye dryness, infections and allergic-toxic complications. Symptoms of dry eye are very common for users of contact lenses, and their occurrence is especially provoked by certain factors, such as cigarette smoke or prolonged watching the computer screen or TV. These complications are usually not so dangerous and can easily be solved by applying artificial tears. Infections are not so common and occur as a result of inadequate maintenance of contact lenses. If the symptoms are recognized early, infections are mostly stopped at the level of conjunctivitis and are treated fairly quickly and easily. Otherwise, the infection can progress to ulcerative keratitis, the most severe complication of inadequate application of soft contact lenses, and in some cases it can even lead to blindness. Allergic-toxic complications generally occur in susceptible persons and their occurrence in most cases means contraindication for further wearing of soft contact lenses. This case report underlines possible role of rheumatoid factor in estimation of the patient's response to administered therapy.

  14. Bilateral Acanthamoeba ulcer in a user of disposable soft contact lenses: a tragic incident or a consequence of the aggressive policy of soft contact lens trading?

    Science.gov (United States)

    Sousa, Sidney Júlio de Faria E; Dias, Vanderson Glerian; Marcomini, Luís Antonio Gorla

    2008-01-01

    This is the report of a case of bilateral Acanthamoeba keratitis in a 19-year-old woman who bought a pair of disposable soft contact lenses in a boutique. She wore this same pair of lenses for 3 months daily without the appropriate care. This led to bilateral corneal transplantation with cataract extraction and also trabeculectomy in the right eye. When last seen, both grafts were crystal clear but the visual acuities were far from satisfactory. She also had bilateral secondary glaucoma, barely controlled by topical medication. Actually, the physical features and the wearing time characteristics of the disposable soft contact lenses created unprecedented difficulties to the medical surveillance of their wearers. Without the right assistance they tend to become careless regarding routine cleaning. They also feel free to buy less expensive lenses, to use saline instead of lens solutions, to violate the limits of wearing time and to extend the use over the sleeping period. Additionally, the aggressive marketing and the wide distribution of these lenses increase the chances that economically or educationally unprepared people will acquire them. The question that remains is: Is the present case an accidental event or an example of what is likely to happen in the future if the indiscriminate selling of disposable soft contact lenses continues to evolve?

  15. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power.

    Science.gov (United States)

    Dietze, Holger H; Cox, Michael J

    2003-02-01

    Soft contact lenses produce a significant level of spherical aberration affecting their power on-eye. A simple model assuming that a thin soft contact lens aligns to the cornea predicts that these effects are similar on-eye and off-eye. The wavefront aberration for 17 eyes and 33 soft contact lenses on-eye was measured with a Shack-Hartmann wavefront sensor. The Zernike coefficients describing the on-eye spherical aberration of the soft contact lens were compared with off-eye ray-tracing results. Paraxial and effective lens power changes were determined. The model predicts the on-eye spherical aberration of soft contact lenses closely. The resulting power change for a +/- 7.00 D spherical soft contact lens is +/- 0.5 D for a 6-mm pupil diameter and +/- 0.1 D for a 3-mm pupil diameter. Power change is negligible for soft contact lenses corrected for off-eye spherical aberration. For thin soft contact lenses, the level of spherical aberration and the consequent power change is similar on-eye and off-eye. Soft contact lenses corrected for spherical aberration in air will be expected to be aberration-free on-eye and produce only negligibly small power changes. For soft contact lenses without aberration correction, for higher levels of ametropia and large pupils, the soft contact lens power should be determined with trial lenses with their power and p value similar to the prescribed lens. The benefit of soft contact lenses corrected for spherical aberration depends on the level of ocular spherical aberration.

  16. Bacterial Colonization of Disposable Soft Contact Lenses Is Greater during Corneal Infiltrative Events than during Asymptomatic Extended Lens Wear

    OpenAIRE

    Sankaridurg, Padmaja R.; Sharma, Savitri; Willcox, Mark; Naduvilath, Thomas J.; Sweeney, Deborah F.; Holden, Brien A.; Rao, Gullapalli N.

    2000-01-01

    Microorganisms, especially gram-negative bacteria, are considered to play a role in the etiology of certain corneal infiltrative events (CIEs) observed during soft contact lens wear. This study explored the possibility of microbial colonization of soft contact lenses as a risk factor leading to CIEs. In a clinical trial conducted from March 1993 to January 1996, 330 subjects wore disposable soft contact lenses on a 6-night extended-wear and disposal schedule. During this period, 4,321 lenses ...

  17. Acanthamoeba Species Keratitis in a Soft Contact Lens Wearer Molecularly Linked to Well Water

    Directory of Open Access Journals (Sweden)

    Samira Mubareka

    2006-01-01

    Full Text Available Acanthamoeba species keratitis has been associated with soft contact lens wear. In the present report, an epidemiological link was established between the patient's isolate and well water from the home using molecular methods. To the authors' knowledge, this is the first case in Canada where such a link has been established. Primary care practitioners and specialists, including ophthalmologists and infectious diseases specialists, must maintain a high degree of clinical suspicion in soft contact lens wearers with keratitis unresponsive to conventional topical and systemic treatment.

  18. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.

    Science.gov (United States)

    Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung

    2018-01-01

    Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user's vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user's external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.

  19. [Effect of intraocular pressure measurement through therapeutic soft contact lenses by noncontact tonometer].

    Science.gov (United States)

    Sugimoto-Takeuchi, R; Yamamoto, R; Kuwayama, Y; Kinoshita, S

    1991-09-01

    The measurement of intraocular pressure (IOP) was compared with and without soft contact lenses by a non-contact tonometer. The soft contact lenses examined were Plano-T and Plano-B4 therapeutic contact lenses and Breath-O refractive lens. Twenty-nine eyes of 18 patients with an IOP ranging from 9 to 48mmHg were studied. The measurements of IOP were 19.7 +/- 8.6mmHg with Plano-T and 18.9 +/- 9.2mmHg with Plano-B4. Both numbers were not statistically different, when compared with controls (19.3 +/- 9.8mmHg without lens). There was, however, a significant difference significant difference with (44.7 +/- 10.7mmHg) and without the Breath-O (p less than 0.01). The results suggest that accurate IOP measurements can be obtained through therapeutic soft contact lens by a non-contact tonometer.

  20. Management of complications associated with lathe-cut soft contact lenses.

    Science.gov (United States)

    Freeman, M I

    1979-06-01

    At the present time, nine lathe-cut lenses are FDA approved and commercially available in the United States. Complications of lathe-cut soft contact lenses cover a wide spectrum of problems. Five significant complications of lathe-cut lenses and their prevention and therapeutic management are discussed.

  1. Which soft contact lens power is better for piggyback fitting in keratoconus?

    Science.gov (United States)

    Romero-Jiménez, Miguel; Santodomingo-Rubido, Jacinto; Flores-Rodríguez, Patricia; González-Méijome, Jose Manuel

    2013-02-01

    To evaluate the impact of differente soft contact lens power in the anterior corneal curvature and regularity in subjects with keratoconus. Nineteen subjects (30 eyes) with keratoconus were included in the study. Six corneal topographies were taken with Pentacam Eye System over the naked eye and successively with soft lens (Senofilcon A) powers of -3.00, -1.50, 0.00, +1.50 and +3.00 D. Corneal measurements of mean central keratometry (MCK), maximum tangential curvature (TK), maximum front elevation (MFE) and eccentricity (Ecc) at 6 and 8 mm diameters as well as anterior corneal surface high order aberrations (i.e. total RMS, spherical- and coma-like and secondary astigmatism) were evaluated. Negative- and plano-powered soft lenses flattened (ppowered lenses did not induce any significant changes (p>0.05 in all cases) in MCK in comparison to the naked eye. The TK power decreased with negative lenses (psoft lens power in comparison to the naked eye (p>0.05 in all cases). Corneal eccentricity increased at 8 mm diameter for all lens powers (p0.05). Statistically differences were found in coma-like and secondary astigmatism (both ppowered soft contact lenses provide a flatter anterior surface in comparison to positive-powered lenses in subjects with keratoconus and thus they might be more suitable for piggyback contact lens fitting. Copyright © 2012 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  2. Investigations of Caenorhabditis Elegans Using Soft X-ray Contact Microscopy

    Czech Academy of Sciences Publication Activity Database

    Desai, T.; Batani, D.; Bernardinello, A.; Poletti, G.; Orsini, F.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Mocek, Karel; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Juha, Libor; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 20, č. 3 (2004), s. 121-125 ISSN 1120-1797 R&D Projects: GA MŠk LN00A100 Keywords : C. elegans * soft X-ray contact microscopy * intense laser plasma * gold target Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.341, year: 2004

  3. Increased resistance of contact lens related bacterial biofilms to antimicrobial activity of soft contact lens care solutions

    Science.gov (United States)

    Szczotka-Flynn, Loretta B.; Imamura, Yoshifumi; Chandra, Jyotsna; Yu, Changping; Mukherjee, Pranab K.; Pearlman, Eric; Ghannoum, Mahmoud A.

    2014-01-01

    PURPOSE To determine if clinical and reference strains of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus form biofilms on silicone hydrogel contact lenses, and ascertain antimicrobial activities of contact lens care solutions. METHODS Clinical and American Type Culture Collection (ATCC) reference strains of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus were incubated with lotrafilcon A lenses under conditions that facilitate biofilm formation. Biofilms were quantified by quantitative culturing (colony forming units, CFUs), and gross morphology and architecture were evaluated using scanning electron microscopy (SEM) and confocal microscopy. Susceptibilities of the planktonic and biofilm growth phases of the bacteria to five common multipurpose contact lens care solutions and one hydrogen peroxide care solution were assessed. RESULTS P. aeruginosa, S. marcescens, and S. aureus reference and clinical strains formed biofilms on lotrafilcon A silicone hydrogel contact lenses, as dense networks of cells arranged in multiple layers with visible extracellular matrix. The biofilms were resistant to commonly used biguanide preserved multipurpose care solutions. P. aeruginosa and S. aureus biofilms were susceptible to a hydrogen peroxide and a polyquaternium preserved care solution, whereas S. marcescens biofilm was resistant to a polyquaternium preserved care solution but susceptible to hydrogen peroxide disinfection. In contrast, the planktonic forms were always susceptible. CONCLUSIONS P. aeruginosa, S. marcescens, and S. aureus form biofilms on lotrafilcon A contact lenses, which in contrast to planktonic cells, are resistant to the antimicrobial activity of several soft contact lens care products. PMID:19654521

  4. A soft-contact model for computing safety margins in human prehension.

    Science.gov (United States)

    Singh, Tarkeshwar; Ambike, Satyajit

    2017-10-01

    The soft human digit tip forms contact with grasped objects over a finite area and applies a moment about an axis normal to the area. These moments are important for ensuring stability during precision grasping. However, the contribution of these moments to grasp stability is rarely investigated in prehension studies. The more popular hard-contact model assumes that the digits exert a force vector but no free moment on the grasped object. Many sensorimotor studies use this model and show that humans estimate friction coefficients to scale the normal force to grasp objects stably, i.e. the smoother the surface, the tighter the grasp. The difference between the applied normal force and the minimal normal force needed to prevent slipping is called safety margin and this index is widely used as a measure of grasp planning. Here, we define and quantify safety margin using a more realistic contact model that allows digits to apply both forces and moments. Specifically, we adapt a soft-contact model from robotics and demonstrate that the safety margin thus computed is a more accurate and robust index of grasp planning than its hard-contact variant. Previously, we have used the soft-contact model to propose two indices of grasp planning that show how humans account for the shape and inertial properties of an object. A soft-contact based safety margin offers complementary insights by quantifying how humans may account for surface properties of the object and skin tissue during grasp planning and execution. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Clinical performance of Rose K2 soft contact lens for keratoconus

    Directory of Open Access Journals (Sweden)

    Ihsan Yilmaz

    2017-08-01

    Full Text Available AIM: To evaluate the comfort and visual performance of Rose K2 soft contact lenses in patients with keratoconus.METHODS: Fifty eyes of 50 participants were included in this cross-sectional study. Each participant received a full ophthalmologic examination involving refraction, uncorrected visual acuity(UCVA, best spectacle corrected visual acuity(BCVA, slit-lamp biomicroscopy-fundoscopy, break-up time(BUT, corneal topography, and contrast sensitivity. After contact lens was fitted best contact lens corrected visual acuity(BCLCVA, contrast sensitivity, and comfort rating via visual analogue scales(VASwere performed.RESULTS: The mean age was 26.2±6.0(range: 16 to 39y. The mean logMAR UCVA, BCVA, and BCLCVA with Rose K2 soft(in orderwere 0.61±0.37(range: 0.15-1.3, 0.42±0.32(range: 0-1.3, and 0.18±0.20(range: 0-1.3. There were significant increases in visual acuities with contact lenses(P P CONCLUSION: Rose K2 soft contact lens can improve visual acuity, contrast sensitivity with comfort in patients with keratoconus.

  6. Isolation of coagulase-negative staphylococci from extended-wear soft contact lenses in asymptomatic patients.

    Science.gov (United States)

    Faghri, Jamshid

    2008-05-01

    Coagulase-negative staphylococci and diphtheroids are normal inhabitants of the outer surface of the human eye. These microorganisms serve as part of the defense mechanism of the ocular anatomy in preventing colonization and infection by pathogenic bacteria. Nevertheless, infections associated with contaminated solutions and cases became serious problems for people who wear soft contact lenses. The aim of this study is to isolate and identify aerobic bacteria, particularly, gram-negative species associated with the use of extended-wear soft contact lenses. Extended-wear contact lenses were collected, using aseptic technique, from the eyes of individuals after 30 days of extended wear (5-7 day intermittent periods) and were examined for adhered aerobic bacteria. Coagulase-negative staphylococci were isolated from 74% of the lenses. Serratia marcescens was found at an incidence of 10% and Pseudomonas aeruginosa at an incidence of 6%. The presence of species of bacteria, including P. aeruginosa and S. marcescens, which have been associated with daily wear soft contact lenses, solutions, and cases also seem to be associated with extended-wear lenses.

  7. Evolution of real contact area under shear and the value of static friction of soft materials.

    Science.gov (United States)

    Sahli, R; Pallares, G; Ducottet, C; Ben Ali, I E; Al Akhrass, S; Guibert, M; Scheibert, J

    2018-01-16

    The frictional properties of a rough contact interface are controlled by its area of real contact, the dynamical variations of which underlie our modern understanding of the ubiquitous rate-and-state friction law. In particular, the real contact area is proportional to the normal load, slowly increases at rest through aging, and drops at slip inception. Here, through direct measurements on various contacts involving elastomers or human fingertips, we show that the real contact area also decreases under shear, with reductions as large as 30[Formula: see text], starting well before macroscopic sliding. All data are captured by a single reduction law enabling excellent predictions of the static friction force. In elastomers, the area-reduction rate of individual contacts obeys a scaling law valid from micrometer-sized junctions in rough contacts to millimeter-sized smooth sphere/plane contacts. For the class of soft materials used here, our results should motivate first-order improvements of current contact mechanics models and prompt reinterpretation of the rate-and-state parameters.

  8. Vision of low astigmats through thick and thin lathe-cut soft contact lenses.

    Science.gov (United States)

    Cho, P; Woo, G C

    2001-01-01

    Distance and near visual acuity of 13 low astigmats were determined in a double-masked experiment through thick and thin (centre thickness 0.12 mm and 0.06 mm, respectively) spherical lathe-cut soft lenses. For each lens type, distance and near LogMAR VA and over-refraction were assessed with different logMAR VA charts. For 70% of the subjects, the residual astigmatism was significantly lower than the refractive astigmatism with thicker lenses. No statistically significant differences in the distance and near logMAR VA was found between the two lens types using any of the charts used, though, in general, logMAR VA obtained through the thicker lens was better than logMAR VA through the thinner lens. The variabilities in distance and near logMAR VA between the two lens types increased with decreased contrast. The variabilities in distance logMAR VA were greater with Chinese charts than with English charts, and LogMAR VA with Chinese charts were significantly worse for both lens types. Based on the results of this study, we concluded that thicker spherical lathe-cut soft lenses provide better vision in low astigmats. The Snellen acuity test is inadequate for vision assessment of soft contact lens wearers. When a patient wearing thin soft contact lenses complains of poor vision in spite of 6/6 or 6/5 Snellen acuity, changing to thicker lenses may be considered.

  9. Efficacy of highly hydrophilic soft contact lenses for persistent corneal epithelial defects after anterior segment surgery

    Directory of Open Access Journals (Sweden)

    Zhi-Wei Peng

    2015-02-01

    Full Text Available AIM:To investigate the efficacy of highly hydrophilic soft contact lenses for persistent corneal epithelial defects.METHODS:In this retrospective case analysis, 28 patients(28 eyeswith persistent corneal epithelial defects after anterior segment surgery from January 2011 to June 2013 in our hospital were reviewed. After regular treatment for at least 2wk, the persistent corneal epithelial defects were treated with highly hydrophilic soft contact lenses, until the corneal epithelial healing. Continued to wear the same lens no more than 3wk, or in need of replacement the new one. All cases were followed up for 6mo. Key indicators of corneal epithelial healling, corneal fluorescein staining and ocular symptoms improvement were observed.RESULTS: Twenty-one eyes were cured(75.00%, markedly effective in 5 eyes(17.86%, effective in 2 eyes(7.14%, no invalid cases, the total efficiency of 100.00%. Ocular symptoms of 25 cases(89.29%relieved within 2d, the rest 3 cases(10.71%relieved within 1wk. The corneal epithelial of 6 cases(21.43%repaired in 3wk, 13 cases(46.43%in 6wk, 7 cases(25.00%in 9wk, 2 cases(7.14%over 12wk. There were no signs of secondary infection. And no evidence of recurrence in 6mo. CONCLUSION: Highly hydrophilic soft contact lenses could repair persistent corneal epithelial defects after anterior segment surgery significantly, while quickly and effectively relieve a variety of ocular irritation.

  10. Dynamic simulation of the effect of soft toric contact lenses movement on retinal image quality.

    Science.gov (United States)

    Niu, Yafei; Sarver, Edwin J; Stevenson, Scott B; Marsack, Jason D; Parker, Katrina E; Applegate, Raymond A

    2008-04-01

    To report the development of a tool designed to dynamically simulate the effect of soft toric contact lens movement on retinal image quality, initial findings on three eyes, and the next steps to be taken to improve the utility of the tool. Three eyes of two subjects wearing soft toric contact lenses were cyclopleged with 1% cyclopentolate and 2.5% phenylephrine. Four hundred wavefront aberration measurements over a 5-mm pupil were recorded during soft contact lens wear at 30 Hz using a complete ophthalmic analysis system aberrometer. Each wavefront error measurement was input into Visual Optics Laboratory (version 7.15, Sarver and Associates, Inc.) to generate a retinal simulation of a high contrast log MAR visual acuity chart. The individual simulations were combined into a single dynamic movie using a custom MatLab PsychToolbox program. Visual acuity was measured for each eye reading the movie with best cycloplegic spectacle correction through a 3-mm artificial pupil to minimize the influence of the eyes' uncorrected aberrations. Comparison of the simulated acuity was made to values recorded while the subject read unaberrated charts with contact lenses through a 5-mm artificial pupil. For one study eye, average acuity was the same as the natural contact lens viewing condition. For the other two study eyes visual acuity of the best simulation was more than one line worse than natural viewing conditions. Dynamic simulation of retinal image quality, although not yet perfect, is a promising technique for visually illustrating the optical effects on image quality because of the movements of alignment-sensitive corrections.

  11. Power profiles and short-term visual performance of soft contact lenses.

    Science.gov (United States)

    Papas, Eric; Dahms, Anne; Carnt, Nicole; Tahhan, Nina; Ehrmann, Klaus

    2009-04-01

    To investigate the manner in which contemporary soft contact lenses differ in the distribution of optical power within their optic zones and establish if these variations affect the vision of wearers or the prescribing procedure for back vertex power (BVP). By using a Visionix VC 2001 contact lens power analyzer, power profiles were measured across the optic zones of the following contemporary contact lenses ACUVUE 2, ACUVUE ADVANCE, O2OPTIX, NIGHT & DAY and PureVision. Single BVP measures were obtained using a Nikon projection lensometer. Visual performance was assessed in 28 masked subjects who wore each lens type in random order. Measurements taken were high and low contrast visual acuity in normal illumination (250 Cd/m), high contrast acuity in reduced illumination (5 Cd/m), subjective visual quality using a numerical rating scale, and visual satisfaction rating using a Likert scale. Marked differences in the distribution of optical power across the optic zone were evident among the lens types. No significant differences were found for any of the visual performance variables (p > 0.05, analysis of variance with repeated measures and Friedman test). Variations in power profile between contemporary soft lens types exist but do not, in general, result in measurable visual performance differences in the short term, nor do they substantially influence the BVP required for optimal correction.

  12. Microbiologic study of soft contact lenses after laser subepithelial keratectomy for myopia.

    Science.gov (United States)

    Hondur, Ahmet; Bilgihan, Kamil; Cirak, Meltem Yalinay; Dogan, Ozgur; Erdinc, Alper; Hasanreisoglu, Berati

    2008-01-01

    To evaluate the extent and agents of bacterial contamination of bandage disposable soft contact lenses after laser subepithelial keratectomy (LASEK) and to correlate the findings with clinical data. Disposable soft contact lenses were collected from 52 eyes of 26 consecutive patients treated with LASEK for myopia. The patients were treated with a fixed combination of tobramycin and diclofenac until epithelial closure. The lenses were removed on the fourth or fifth postoperative day with sterile forceps and immediately placed in sterile tubes containing culture media brain-heart infusion broth. The lenses were evaluated for microbial colonization. Of the 52 contact lenses analyzed, six (11.5%) had positive cultures. However, no clinical finding of infection was noted. Isolated microorganisms were coagulase-negative staphylococci (two lenses), Stenotrophomonas maltophilia (two lenses), Acinetobacter species (one lens), and Aeromonas hydrophila (one lens). Except for one case, the microorganisms were sensitive to the administered antibiotic. The risk of infectious keratitis after LASEK seems to be low. Except for staphylococci, the isolated microorganisms have not been previously reported to colonize the ocular surface or cause keratitis after refractive surgery. These findings may suggest a changing trend of potentially infectious agents after surface ablation.

  13. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Directory of Open Access Journals (Sweden)

    Khaled Elgeneidy

    2018-02-01

    Full Text Available This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices.

  14. Compliance and hygiene behaviour among soft contact lens wearers in the Maldives.

    Science.gov (United States)

    Gyawali, Rajendra; Nestha Mohamed, Fathimath; Bist, Jeewanand; Kandel, Himal; Marasini, Sanjay; Khadka, Jyoti

    2014-01-01

    Significant levels of non-compliance and poor hygiene among contact lens wearers have been reported previously from different parts of the world. This survey aimed at identifying the scope of hygiene and non-compliant behaviour of soft contact lens wearers in the Maldives. Established soft lens wearers attending two eye clinics in Male' city, were interviewed in office or via telephone. A set of interviewer-administered questions was used to access the subjective response on compliance and hygiene behaviour (hand and lens case hygiene, water exposure, adherence to lens replacement schedule, dozing and overnight wear, awareness of aftercare visits and reuse of disinfecting solution). Participants were also asked to rate themselves as a contact lens user based on their perceived compliance and hygiene practices. Out of 107 participants, 79 (74.8 per cent) were interviewed in the office and the rest via telephone. The majority of lens wearers were female, office workers and students, with a mean age of 20.64 ± 4.4 years. Mean duration of lens wear was 28.04 ± 8.36 months. Most of them were using spherical lenses (86.9 per cent) on a daily wear basis (96.3 per cent). Major reported forms of non-compliance were poor hand hygiene (60.7 per cent), lack of aftercare awareness (39.3 per cent), water exposure (35.5 per cent) and over-use of lenses (24.3 per cent). While females were more likely to overuse their lenses than males (p hygienic behaviour. A significant number of Maldivian contact lens wearers exhibited poor levels of hygiene and compliance with contact lenses and lens care systems. An effective educational reinforcement strategy needs to be developed to modify lens wearers' non-compliance. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  15. Phospholipids and their degrading enzyme in the tears of soft contact lens wearers.

    Science.gov (United States)

    Yamada, Masakazu; Mochizuki, Hiroshi; Kawashima, Motoko; Hata, Seiichiro

    2006-12-01

    Low tear phospholipids levels are associated with tear film instability in soft contact lens wearers. We assayed levels of phospholipids and their degrading enzyme secretory phospholipase A2 (sPLA2) both in tears and deposited on contact lenses composed of 2 hydrophilic materials after 1 day of routine use. Polymacon (Medalist; FDA group 1, low water/nonionic) and Etafilcon A (One Day Acuvue; group 4, high water/ionic) contact lenses were worn for 12 hours by 16 experienced contact lens wearers. Phospholipids in tear fluids and deposited on contact lenses were estimated by phosphorus determination with ammonium molybdate through enzymatic digestion. Double-antibody sandwich ELISA was used to determine group IIa sPLA2 concentrations, and sPLA2 activity was assayed using 1,2-diheptanoyl thio-phosphatidylcholine as substrate. Phospholipids concentrations in tears with Polymacon and Etafilcon A were 186 +/- 39 and 162 +/- 33 microg/mL, respectively. The latter concentration was significantly lower than that observed in the same subjects when not wearing contact lenses (P = 0.0023). In tears, both group IIa sPLA2 concentrations and enzymatic activity remained unchanged, regardless of lens wearing. However, Etafilcon A (0.57 +/- 0.09 microg/lens) showed more group IIa sPLA2 deposition than Polymacon (0.01 +/- 0.01 microg/lens; P < 0.001). Furthermore, group IIa sPLA2 deposited on Etafilcon A but not on Polymacon lenses retained its enzymatic activity. Significant differences of group IIa sPLA2 deposition were found in the 2 lenses tested. Such deposition might induce phospholipid hydrolysis in tears and thereby promote tear film instability in hydrophilic contact lens wearers.

  16. Steady-State Diffusion of Water through Soft-Contact LensMaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.

    2005-01-31

    Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.

  17. Opto-thermal transient emission radiometry for rapid, non-destructive and non-contact determination of hydration and hydration depth profile in the skin of a grape

    NARCIS (Netherlands)

    Guo, X.; Bicanic, D.D.; Keijser, K.; Imhof, R.

    2003-01-01

    .The concept of optothermal transient emission radiometry at a wavelength of 2.94 µm was applied to non-destructively determine the level of hydration and the profile of hydration in the skin of intact fresh grapes taken from top and bottom sections of the same bunch.

  18. Castor oil and mineral oil nanoemulsion: development and compatibility with a soft contact lens.

    Science.gov (United States)

    Katzer, Tatiele; Chaves, Paula; Bernardi, Andressa; Pohlmann, Adriana R; Guterres, Silvia S; Beck, Ruy C R

    2014-03-01

    The non-invasive ophthalmic therapy has a drawback: low residence time in the eye socket. Nanoparticles and contact lenses have been studied as promising ocular drug delivery systems. To develop a nanoemulsion and evaluate its compatibility with a soft contact lens as a potential strategy for ocular delivery. The formulations were developed by spontaneous emulsification and fully characterized. Two drops of nanoemulsion were instilled on the surface of a commercial contact lens and its transparency was measured using a UV-Vis spectrophotometer. Before and after the instillation of the drops, the morphology (scanning electron microscopy - SEM) and ion permeability of the lenses were analyzed. The formulations had a mean particle size of 234 nm, polydispersity below 0.16, zeta potential of -8.56 ± 3.49 mV, slightly acid pH, viscosity ≈1.2 mPa s(-1) and spherical-shaped particles. Nanoemulsion was non-irritant (hen's egg test-chorioallantoic membrane), which was confirmed by the cytotoxicity studies in the SIRC cell cultures. After instillation, SEM analysis showed nanodroplets inside and on the surface of the lenses, although their transparency remained near 100%. No significant differences were found between lens ion permeability coefficients before and after instillation. Formulations presented appropriate physicochemical characteristics and suitability for ocular application. The contact lens remained transparent and ion-permeable after association with the formulation.

  19. Acute irritant threshold correlates with barrier function, skin hydration and contact hypersensitivity in atopic dermatitis and rosacea.

    Science.gov (United States)

    Darlenski, Razvigor; Kazandjieva, Jana; Tsankov, Nikolai; Fluhr, Joachim W

    2013-11-01

    The aim of the study was to disclose interactions between epidermal barrier, skin irritation and sensitization in healthy and diseased skin. Transepidermal water loss (TEWL) and stratum corneum hydration (SCH) were assessed in adult patients with atopic dermatitis (AD), rosacea and healthy controls. A 4-h patch test with seven concentrations of sodium lauryl sulphate was performed to determine the irritant threshold (IT). Contact sensitization pattern was revealed by patch testing with European baseline series. Subjects with a lower IT had higher TEWL values and lower SCH. Subjects with positive allergic reactions had significantly lower IT. In AD, epidermal barrier deterioration was detected on both volar forearm and nasolabial fold, while in rosacea, impeded skin physiology parameters were observed on the facial skin only, suggesting that barrier impediment is restricted to the face in rosacea, in contrast with AD where the abnormal skin physiology is generalized. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A soft-rigid contact model of MPM for granular flow impact on retaining structures

    Science.gov (United States)

    Li, Xinpo; Xie, Yanfang; Gutierrez, Marte

    2018-02-01

    Protective measures against hazards associated with rapid debris avalanches include a variety of retaining structures such as rock/boulder fences, gabions, earthfill barriers and retaining walls. However, the development of analytical and numerical methods for the rational assessment of impact force generated by granular flows is still a challenge. In this work, a soft-rigid contact model is built under the coding framework of MPM which is a hybrid method with Eulerian-Lagrangian description. The soft bodies are discretized into particles (material points), and the rigid bodies are presented by rigid node-based surfaces. Coulomb friction model is used to implement the modeled contact mechanics, and a velocity-dependent friction coefficient is coupled into the model. Simulations of a physical experiment show that the peak and residual value of impact forces are well captured by the MPM model. An idealized scenario of debris avalanche flow down a hillslope and impacting on a retaining wall are analyzed using the MPM model. The calculated forces can provide a quantitative estimate from which mound design could proceed for practical implementation in the field.

  1. Real-time simulation of contact and cutting of heterogeneous soft-tissues.

    Science.gov (United States)

    Courtecuisse, Hadrien; Allard, Jérémie; Kerfriden, Pierre; Bordas, Stéphane P A; Cotin, Stéphane; Duriez, Christian

    2014-02-01

    This paper presents a numerical method for interactive (real-time) simulations, which considerably improves the accuracy of the response of heterogeneous soft-tissue models undergoing contact, cutting and other topological changes. We provide an integrated methodology able to deal both with the ill-conditioning issues associated with material heterogeneities, contact boundary conditions which are one of the main sources of inaccuracies, and cutting which is one of the most challenging issues in interactive simulations. Our approach is based on an implicit time integration of a non-linear finite element model. To enable real-time computations, we propose a new preconditioning technique, based on an asynchronous update at low frequency. The preconditioner is not only used to improve the computation of the deformation of the tissues, but also to simulate the contact response of homogeneous and heterogeneous bodies with the same accuracy. We also address the problem of cutting the heterogeneous structures and propose a method to update the preconditioner according to the topological modifications. Finally, we apply our approach to three challenging demonstrators: (i) a simulation of cataract surgery (ii) a simulation of laparoscopic hepatectomy (iii) a brain tumor surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Common symptoms of Nepalese soft contact lens wearers: A pilot study.

    Science.gov (United States)

    Sapkota, Kishor; Martin, Raul; Franco, Sandra; Lira, Madalena

    2015-01-01

    To determine the common symptoms in current soft contact lens (CL) wearers and their association with other factors among Nepalese population. All the current CL wearers who started to wear soft CL in Nepal Eye Hospital between July 2007 and June 2012 were invited for the participation. Frequency of the ten most common symptoms, divided into never, occasionally, frequently and consistent were recorded. Association between degree of symptoms with other factors, e.g. age, gender, profession, cigarette smoking, ethnicity, level of education and duration and wearing modality of CL wear were analyzed. Out of 129 subjects participated in this study, 67% were female; the mean age of the subjects was 23.9±4.3 years. Ninety seven percent of them had at least one symptom occasionally or frequently or consistently. Discomfort was found in 88.4% of the total subjects. Other common symptoms were foreign body sensation in 73.6%, redness in 65.9%, reduced wearing time in 63.6% and dryness in 62.8%. Symptoms were found occasionally in the majority of subjects. Degree of symptoms was not associated with age, gender, profession, education status, ethnicity of subjects and duration or modality of lens wear (p>0.05) but was positively associated with passive cigarette smoking (p<0.001). Almost all of the Nepalese soft CL wearers had some types of symptoms at least occasionally. Discomfort was the most common symptom. Degree of symptoms was associated with the passive smoking but not with other factors like age, sex, profession and duration of lens wear. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  3. Intraocular pressure readings obtained through soft contact lenses using four types of tonometer

    Directory of Open Access Journals (Sweden)

    Takenaka J

    2015-10-01

    Full Text Available Joji Takenaka,1 Eriko Kunihara,1 Ulfah Rimayanti,2 Junko Tanaka,3 Makoto Kaneko,4 Yoshiaki Kiuchi1 1Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan; 2Faculty of Medicine and Health Sciences, UIN Alauddin Makassar, South Sulawesi, Indonesia; 3Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan; 4Graduate School of Engineering, Osaka University, Osaka, Japan Purpose: To compare the reliability and accuracy of intraocular pressure (IOP measured while wearing soft contact lenses (SCLs using a non-contact tonometer (NCT, Goldmann applanation tonometer (GAT, iCare rebound tonometer (RBT and the Tono-Pen XL.Methods: Twenty-six healthy subjects were examined. The IOP was measured using NCT, GAT, RBT, and the Tono-Pen XL, while the subjects wore SCLs -5.00 D, -0.50 D and +5.00 D. Bland–Altman plots and a regression analysis were used to compare the IOPs obtained with those instruments and the IOPs of the naked eyes measured using GAT (the standard IOPs in this study.Results: The IOPs obtained by the Tono-Pen XL while the subjects were wearing -5.00 D, -0.50 D, and +5.00 D SCLs were significantly higher than those of the naked eyes obtained using GAT. RBT showed that the IOPs were similar to the GAT standard IOPs under all conditions. The IOPs measured with NCT and GAT while the subjects were wearing -5.00 D and -0.50 D SCLs were similar to the GAT standard IOPs. The IOPs obtained with RBT and NCT while the subjects were wearing -5.00 D and -0.50 D SCLs exhibited a good correlation with the standard IOPs.Conclusion: The NCT and RBT are best when measuring IOP through hydrogel SCLs. Keywords: soft contact lens, intraocular pressure, rebound tonometer, non-contact tonometer

  4. Oxygen transport through soft contact lens and cornea: Lens characterization and metabolic modeling

    Science.gov (United States)

    Chhabra, Mahendra

    The human cornea requires oxygen to sustain metabolic processes critical for its normal functioning. Any restriction to corneal oxygen supply from the external environment (e.g., by wearing a low oxygen-permeability contact lens) can lead to hypoxia, which may cause corneal edema (swelling), limbal hyperemia, neovascularization, and corneal acidosis. The need for adequate oxygen to the cornea is a major driving force for research and development of hypertransmissible soft contact lenses (SCLs). Currently, there is no standard technique for measuring oxygen permeability (Dk) of hypertransmissible silicone-hydrogel SCLs. In this work, an electrochemistry-based polarographic apparatus was designed, built, and operated to measure oxygen permeability in hypertransmissible SCLs. Unlike conventional methods where a range of lens thickness is needed for determining oxygen permeabilities of SCLs, this apparatus requires only a single lens thickness. The single-lens permeameter provides a reliable, efficient, and economic tool for measuring oxygen permeabilities of commercial hypertransmissible SCLs. The single-lens permeameter measures not only the product Dk, but, following modification, it measures separately diffusivity, D, and solubility, k, of oxygen in hypertransmissible SCLs. These properties are critical for designing better lens materials that ensure sufficient oxygen supply to the cornea. Metabolism of oxygen in the cornea is influenced by contact-lens-induced hypoxia, diseases such as diabetes, surgery, and drug treatment, Thus, estimation of the in-vivo corneal oxygen consumption rate is essential for gauging adequate oxygen supply to the cornea. Therefore, we have developed an unsteady-state reactive-diffusion model for the cornea-contact-lens system to determine in-vivo human corneal oxygen-consumption rate. Finally, a metabolic model was developed to determine the relation between contact-lens oxygen transmissibility (Dk/L) and corneal oxygen deficiency. A

  5. Intraocular pressure readings obtained through soft contact lenses using four types of tonometer.

    Science.gov (United States)

    Takenaka, Joji; Kunihara, Eriko; Rimayanti, Ulfah; Tanaka, Junko; Kaneko, Makoto; Kiuchi, Yoshiaki

    2015-01-01

    To compare the reliability and accuracy of intraocular pressure (IOP) measured while wearing soft contact lenses (SCLs) using a non-contact tonometer (NCT), Goldmann applanation tonometer (GAT), iCare rebound tonometer (RBT) and the Tono-Pen XL. Twenty-six healthy subjects were examined. The IOP was measured using NCT, GAT, RBT, and the Tono-Pen XL, while the subjects wore SCLs -5.00 D, -0.50 D and +5.00 D. Bland-Altman plots and a regression analysis were used to compare the IOPs obtained with those instruments and the IOPs of the naked eyes measured using GAT (the standard IOPs in this study). The IOPs obtained by the Tono-Pen XL while the subjects were wearing -5.00 D, -0.50 D, and +5.00 D SCLs were significantly higher than those of the naked eyes obtained using GAT. RBT showed that the IOPs were similar to the GAT standard IOPs under all conditions. The IOPs measured with NCT and GAT while the subjects were wearing -5.00 D and -0.50 D SCLs were similar to the GAT standard IOPs. The IOPs obtained with RBT and NCT while the subjects were wearing -5.00 D and -0.50 D SCLs exhibited a good correlation with the standard IOPs. The NCT and RBT are best when measuring IOP through hydrogel SCLs.

  6. Microbiological study of therapeutic soft contact lenses used in the treatment of recurrent corneal erosion syndrome.

    Science.gov (United States)

    Park, Young Min; Kwon, Han Jo; Lee, Jong Soo

    2015-03-01

    To determine the bacteriological spectrum of the removed therapeutic soft contact lenses (TSCLs) and to establish efficacy of prophylactic antibiotics on TSCLs used for 2 weeks for treatment of patients with recurrent corneal erosion syndrome (RCES). This study included idiopathic RCES treated using highly oxygen-permeable silicone hydrogel contact lenses (CLs), and treated 4 times per day with topical tobramycin 3% for 2 weeks. After TSCLs were applied for 2 weeks, the lenses were removed with sterile forceps under which a speculum was inserted, and placed on blood agar with the inner face down. The TSCLs were analyzed for bacterial colonization, and antibiotic susceptibility tests were performed for the isolates, using disk diffusion. Of the 40 lenses analyzed, 9 (22.5%) yielded positive cultures. Staphylococcus epidermidis was the most commonly isolated microorganism; there were five methicillin-sensitive coagulase-negative staphylococci and two methicillin-resistant coagulase-negative staphylococci. Furthermore, we found two lenses that were colonized by Enterobacter gergoviae and Citrobacter freundii. All cultured bacteria showed intermediate or complete sensitivity to ciprofloxacin, tigecycline, and tobramycin. Despite bacterial colonization in 9 CLs, no clinical signs of infectious keratitis were found in any of the patients with prophylactic topical tobramycin 3%. In case of using TSCLs for 2 weeks, tobramycin or ciprofloxacin may be useful as prophylactic topical antibiotics for preventing secondary corneal infections. Considering currently growing incidence of ciprofloxacin-resistant ocular isolates, tobramycin seems to be a reasonable prophylactic topical antibiotic susceptible broad spectrum of bacteria in clinics.

  7. Is purchasing lenses from the prescriber associated with better habits among soft contact lens wearers?

    Science.gov (United States)

    Chalmers, Robin L; Wagner, Heidi; Kinoshita, Beth; Sorbara, Luigina; Mitchell, G Lynn; Lam, Dawn; Richdale, Kathryn; Zimmerman, Aaron

    2016-12-01

    To compare the habits of United States (US) soft contact lens (SCL) wearers who bought SCLs from their eye care practitioner (ECP), on the internet/telephone, or at retail (not where they were examined) to test the effect of proximity to the prescriber on SCL wear and care practices. Adult SCL wearers completed an adapted Contact Lens Risk Survey (CLRS) online that queried items related to risk factors for SCL-related complications. Responses from subjects who purchased at the ECP, via the internet/telephone, or at a retail store were compared (Chi-Square). Purchase sources were: ECP 646 (67%, 44±12 yrs, 17% male), Retail 104 (11%, 45±13 yrs, 28% male), and Internet/telephone 218 (23%, 45±12 yrs, 18% male); age (p=0.51), gender (p=0.021). Internet purchasers had fewer annual eye exams (79% ECP, 83% retail, 66% internet/telephone, p=0.007), purchased more hydrogel SCLs (34% ECP, 29% retail, 45% internet/telephone, p=0.0034), and paid for SCLs with insurance less often (39% ECP, 29% retail, 19% internet/telephone, p0.05). In this sample, the purchase location of SCL wearers had limited impact on known risk factors for SCL-related complications. Internet purchasers reported less frequent eye exams and were more likely to be wearing hydrogel SCLs. Closer access to the ECP through in-office SCL purchase did not improve SCL habits or reduce the prevalence of risk behaviors. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. Intraocular pressure measurement with the noncontact tonometer through soft contact lenses.

    Science.gov (United States)

    Liu, Yi-Chun; Huang, Jehn-Yu; Wang, I-Jong; Hu, Fung-Rong; Hou, Yu-Chih

    2011-03-01

    To assess the accuracy of measuring intraocular pressure (IOP) through a soft contact lens (SCL) with different refractive powers using a noncontact tonometer (NCT). Thirty-two healthy adult volunteers free of glaucoma or corneal disease participated in this study. IOP was measured in the right eyes without SCLs and with different lens powers, from -3.0 to -12.0 D as measured by NCT. IOP of the left eyes was also measured, as an internal control. Corneal curvature was measured in both eyes using an autokeratometer. Sixteen volunteers wore one brand of SCL (group A) and the other 16 wore a different brand, with 2 different curvatures (groups B and C). Statistical data were analyzed by SPSS using the Wilcoxon signed rank test for comparison of IOP readings and multiple linear regression analysis for the relationship among power of contact lenses, corneal power, and difference in IOP measurements. The difference in mean IOP between eyes without lenses and those with lenses was statistically significant in lens with -6.0 D and below in all 3 groups. The decrease in IOP significantly correlated with the refractive power of contact lenses in all 3 groups. The difference in IOP measurements was influenced by the mean K in group A but not in group B or C. There was no statistically significant difference in the IOP measurements in the left eyes or in the mean K between the right and left eyes. IOP measurement through myopic SCLs by NCT may be inaccurate and tends toward underestimation, especially in high myopic lenses. A strong relationship exists between IOP reduction and myopic lens power.

  9. Bacterial Colonization of Disposable Soft Contact Lenses Is Greater during Corneal Infiltrative Events than during Asymptomatic Extended Lens Wear

    Science.gov (United States)

    Sankaridurg, Padmaja R.; Sharma, Savitri; Willcox, Mark; Naduvilath, Thomas J.; Sweeney, Deborah F.; Holden, Brien A.; Rao, Gullapalli N.

    2000-01-01

    Microorganisms, especially gram-negative bacteria, are considered to play a role in the etiology of certain corneal infiltrative events (CIEs) observed during soft contact lens wear. This study explored the possibility of microbial colonization of soft contact lenses as a risk factor leading to CIEs. In a clinical trial conducted from March 1993 to January 1996, 330 subjects wore disposable soft contact lenses on a 6-night extended-wear and disposal schedule. During this period, 4,321 lenses (118 during CIEs; 4,203 during asymptomatic lens wear) were recovered aseptically and analyzed for microbial colonization. A greater percentage of lenses were free from microbial colonization during asymptomatic wear than during CIEs (42 versus 23%; P bacteria, gram-negative bacteria and fungi was greater during CIEs than during asymptomatic lens wear (P bacteria were isolated most frequently and were usually normal external ocular microbiota. Of the gram-positive bacteria, the incidence of Streptococcus pneumoniae was greater during CIE than during asymptomatic wear (7.6 versus 0.6%; P bacteria were seen in few cases during asymptomatic wear, their incidence during CIE in comparison to asymptomatic wear was substantial and significant (23.7 versus 3.8%; P bacteria or S. pneumoniae. Colonization of soft contact lenses with pathogenic bacteria, especially gram-negative bacteria and S. pneumoniae, appears to be a significant risk factor leading to CIE. PMID:11101574

  10. Engineering interfacial properties of organic semiconductors through soft-contact lamination and surface functionalization

    Science.gov (United States)

    Shu, Andrew Leo

    Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of

  11. Broadband Loop Antenna on Soft Contact Lens for Wireless Ocular Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    Ssu-Han Ting

    2014-01-01

    Full Text Available This paper presents a novel loop antenna with broadband for wireless ocular physiological monitoring (WOPM. The antenna is fabricated on a thin-film poly-para-xylylene C (parylene C substrate with a small thickness of 11 μm and dimension of π×6.5×6.5 mm2. With the advantage of small size, the proposed antenna is suitable to apply to the soft contact lens and transmit the signal in microelectromechanical Systems (MEMS. Because the pig's eye and human's eye have similar parameters of conductivity and permittivity, the experimental results are obtained by applying the proposed antenna on the pig's eye and cover from 1.54 to 6 GHz for ISM band (2.4 and 5.8 GHz applications. The measured antenna radiation patterns, antenna gains, and radiation efficiency will be demonstrated in this paper, which are suitable for application of wireless ocular physiological monitoring.

  12. The determination of static pressures in contact zones between hard and soft bodies

    International Nuclear Information System (INIS)

    Kanval, J.

    1997-10-01

    This thesis describes the development of a measuring device for the measurement of detailed contours of pressure between hard and soft surfaces, surfaces which vary from being small to relatively large. The techniques are based on the mathematical reconstruction of pressures on the contact patch on one side of the surface using experimental measurements of strain on the reverse side. The work has been geared towards a 'force-plate' made up of a closely-grouped nest of individual beams bending under the loading. The work in this thesis deals with the simple structure of one such simply supported beam. The work on one beam highlights significant difficulties in reconstructing profiles of pressures along one side of a beam in 'reverse calculation' using the distribution of strain on the underside. These difficulties are mathematical rather than physical in nature, the mathematical process of reverse calculation being an inverse problem. Considerable efforts in obtaining a regularisation method appropriate to the beam problem have proved successful in reconstructing actual loads in the form of known noise-roughened theoretical test loadings and experimental loadings. The mathematical problem of reconstruction is an inverse one for which a method has been developed based on the non-negativeness of the pressure distribution and the consequent convexity of the bending moment along the beam and on the known value of the total load. The problem is formulated as a Fredholm integral equation of the first kind for the pressure distribution and this is expressed as a convex combination of appropriate basis functions, the coefficients of which are determined from a constrained least-square problem. Suitable basis functions are Bernstein polynomials and B-splines. The method has been shown to be a regularisation one related to the projection methods for Inverse problems and because of convexity the method is successful with noise. The problem of determining the number of basis

  13. Optical design of soft multifocal contact lens with uniform optical power in center-distance zone with optimized NURBS.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Yu, Chia-Wei

    2018-02-05

    This study aims to develop a new optical design method of soft multifocal contact lens (CLs) to obtain uniform optical power in large center-distance zone with optimized Non-Uniform Rational B-spline (NURBS). For the anterior surface profiles of CLs, the NURBS design curves are optimized to match given optical power distributions. Then, the NURBS in the center-distance zones are fitted in the corresponding spherical/aspheric curves for both data points and their centers of curvature to achieve the uniform power. Four cases of soft CLs have been manufactured by casting in shell molds by injection molding and then measured to verify the design specifications. Results of power profiles of these CLs are concord with the given clinical requirements of uniform powers in larger center-distance zone. The developed optical design method has been verified for multifocal CLs design and can be further applied for production of soft multifocal CLs.

  14. Efficacy of two-month treatment with Xiloial eyedrops for discomfort from disposable soft contact lenses.

    Science.gov (United States)

    Versura, Piera; Profazio, Vincenzo; Balducci, Nicole; Campos, Emilio C

    2010-09-20

    To evaluate the efficacy and tolerability of Xiloial(®) monodose eyedrops in the treatment of patients suffering from subjective symptoms of discomfort related to disposable soft contact lens (dSCL) wear. Fifteen (12 female, three male, medium age 39 ± 9 years) dSCL wearers were enrolled. Inclusion criteria were Ocular Surface Disease Index (ODSI) symptom questionnaire score >12, tear film break-up time (TFBUT) 10 mm over five minutes, mild punctuate keratopathy, and conjunctival staining (Oxford grading ≤4). Monodose Xiloial eyedrops were administered three times daily for a two-month period. Patients were evaluated at enrollment, after three days of washout (baseline), and after one and two months of treatment, by OSDI score, Schirmer test I, TFBUT, ferning test, ocular surface damage (Oxford grade), and serum albumin in tears (index of passive exudation related to serum leakage). At endpoint versus baseline, respectively, the mean ± standard deviation of all variables improved as follows: OSDI (8.5 ± 3 versus 20.2 ± 1.6); TFBUT (9.6 ± 1.1 versus 7.1 ± 1.0); Oxford grading (0.5 ± 0.1 versus 3.6 ± 0.8); ferning test (2 ± 1 versus 2.4 ± 0.5); and Schirmer test I (14.6 ± 1.1 versus 12 ± 2.1), with P < 0.05 for all variables (Friedman and Wilcoxon tests). Tolerability was high, with no adverse events noted. A two-month treatment with Xiloial showed good tolerance and appeared to reduce ocular surface damage and symptoms of discomfort.

  15. The effects of the modulus of the lens material on intraocular pressure measurement through soft contact lenses.

    Science.gov (United States)

    Boyraz, S; Güngör, I

    2013-09-01

    To investigate the effects of the modulus of the lens material on the intraocular pressure measurement using the Tono-Pen XL applanation tonometer through soft contact lenses. Thirty eyes of 15 patients with myopia were evaluated. Intraocular pressure (IOP) measurements were performed using Tono-Pen XL directly over cornea, and subsequently through three soft contact lenses made up of different lens materials. All were -3.00 diopter soft contact lenses: lotrafilcon A with a low water content (24%) and high modulus (1.4 MPa) (CL-I), balafilcon A with a moderate water content (36%) and moderate modulus (1.1 MPa) (CL-II), and vifilcon A with a moderate water content (55%) and low modulus (0.79 MPa) (CL-III). IOP measurements through contact lenses were compared with each other, and with direct corneal measurements. The mean age of the patients (11 males and 4 females) was 26.86±5.62 years. All measurements obtained through CLs were significantly higher than the direct corneal measurements. The measurements through CLs differed by 4.61±0.54 mmHg (P=0,001), 2.9±0.46 mmHg (P=0.001), and 1.94±0.51 mmHg (P=0,003) for CL-I, CL-II and CL-III, respectively. In the paired comparisons of measurements through CLs, all comparisons were significant except the comparison of measurements through CL-II and CL-III (P=0.128). IOP measurements through silicone-hydrogel contact lenses with a high modulus and low water content were higher compared to the other contact lenses. While measuring IOP through CLs, the clinicians should consider the effect of the lens material and the features of the device used.

  16. Demodex sp. as a Potential Cause of the Abandonment of Soft Contact Lenses by Their Existing Users

    Directory of Open Access Journals (Sweden)

    Witold Tarkowski

    2015-01-01

    Full Text Available Demodex mites may be a potential etiological factor in the development of various eye and skin disorders. The aim of the study was to investigate the presence of Demodex in the hair follicles of eyelashes and their potential influence on abandoning soft contact lenses which had been previously well tolerated by their users. A group of 62 users of contact lenses (28 with emerging discomfort and 34 without discomfort were examined. There is a need to check the existence of a relationship between D. folliculorum or/and D. brevis infestation and the emergence of intolerance to the presence of soft contact lenses. The removed lashes were examined under light microscopy, applying standard parasitological methods if demodicosis is suspected. A positive result was assumed if at least one adult stage, larva, protonymph/nymph, or egg of D. folliculorum and/or D. brevis was present. A positive correlation was observed between the presence of Demodex and intolerance to contact lenses by their existing users p<0.05, and Demodex sp. infections were observed in 92.86% of patients with intolerance to contact lenses. Our results provide further evidence for the pathogenic role played by the mites in the development of eye diseases.

  17. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Energy Technology Data Exchange (ETDEWEB)

    Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)

    2016-07-25

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  18. Characterization of Soft Contact Lens Edge Fitting during Daily Wear Using Ultrahigh-Resolution Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Lele Cui

    2018-01-01

    Full Text Available Purpose. To determine conjunctival overlap over the edge of soft contact lens and to visualize the peripheral postlens tear film (PoLTF underneath soft contact lenses using ultrahigh-resolution optical coherence tomography (UHR-OCT. Methods. Twenty participants (4 males and 16 females, 23.0 ± 3.7 years were fitted with two different types of soft contact lenses randomly. The limbus with lens was imaged with the UHR-OCT at the horizontal meridian every two hours up to 6 hours during lens wear. The conjunctival overlap was ranked as the percentage of the edge covered by the conjunctiva. The frequency of occurrence for visualized peripheral PoLTF was determined. Results. The average conjunctival overlaps at insertion were 49% and 73% for galyfilcon A and balafilcon A lenses and increased significantly to 84% and 90% by 6 hours of lens wear (P<0.001. Lenses with rounded edges had more conjunctival overlap than the lenses with angled edges (P=0.014. There were significant decreases for PoLTF on the conjunctiva (P=0.014 and peripheral cornea (P=0.004 over the study period compared to insertion. The percentage of subjects with PoLTF on the conjunctiva (32.5% and peripheral cornea (36% were greater in subjects wearing balafilcon A lenses (P=0.017. Conclusions. Increased conjunctival overlap over the lens edges and reduced PoLTF underneath the peripheral region of soft contact lenses were shown during lens daily wear. The lens edge configuration may play a role in conjunctival response and peripheral PoLTF.

  19. Original Article Effect of Soft Contact Lens Materials on Tear Film ...

    African Journals Online (AJOL)

    problems, results in intolerance of contact lens wear and damage (Foulks, ... reported that contact lens-related dry eye may be ... eliminating or modifying the refractive error ..... risk of eye infection, easier handling due to ... Adv Exp Med Biol.

  20. Intraocular pressure measurements in relation to head position and through soft contact lenses: comparison of three portable instruments.

    Science.gov (United States)

    Klein, Ainat; Shemesh, Gabi; Loewenstein, Anat; Kurtz, Shimon

    2011-01-01

    to compare the reproducibility of three portable instruments-the Tono-Pen tonometer (Reichert Ophthalmic Instruments, Depew, NY), the Phosphene tonometer (Bausch & Lomb, Rochester, NY), and the TERT (Through Eyelid Russian Tonometer; Rjazan State Instrument Making, Rjazan, Russia)-in the measurement of intraocular pressure (IOP) with and without soft contact lenses and in different head positions. twenty-six eyes of healthy volunteers were examined by the three instruments while the subjects were sitting, recumbent, and hyperextending their heads, and with and without contact lenses. IOP measurements were compared and the effects of head position and presence of contact lenses on the resultant values were analyzed. the average difference between the recumbent and sitting positions was 3.56, 2.68, and 2.62 mm Hg for the Tono-Pen tonometer, Phosphene tonometer, and TERT, respectively. There was an increase of 5.60, 2.78, and 2.63 mm Hg in hyperextension compared to sitting for the Tono-Pen tonometer, Phosphene tonometer, and TERT, respectively. The difference in the IOP values obtained in the presence and absence of therapeutic contact lens for the three instruments in the three positions was between -1.23 and +1.47 mm Hg. IOP measurements of bedridden patients are only slightly higher than those of sitting patients except for the Tono-Pen tonometer in the hyperextension position. The presence of contact lenses does not affect IOP values obtained by the three evaluated instruments.

  1. Changes in corneal structure with continuous wear of high-Dk soft contact lenses: a pilot study.

    Science.gov (United States)

    González-Méijome, J M; González-Pérez, J; Cerviño, A; Yebra-Pimentel, E; Parafita, M A

    2003-06-01

    Despite numerous studies that have considered the effects of extended wear of high-Dk soft contact lenses on ocular physiology, little attention has been paid to the impact of such lenses on central or peripheral corneal thickness and curvature. The present study aims to report the time course of changes in corneal thickness and curvature that accompanies the 30-night continuous wear of new silicone hydrogel soft contact lenses in a neophyte population in a longitudinal study. Six subjects wore high-Dk lotrafilcon (Dk = 140) on a 30-night replacement schedule for 12 months. Only measurements from the right eye were considered for analysis. Topographical measurements of corneal thickness and curvature were taken. The same parameters were monitored for an additional period of 3 months after lens removal. An almost homogenous increase in corneal radius of curvature was detected for all the locations studied, being statistically significant for the 4-mm cord diameter area. This effect was associated with a progressive thinning effect for the central cornea, whereas midperipheral and peripheral areas did not display such a thinning effect during continuous wear. These effects were still evident for the central cornea 3 months after contact lens wear discontinuation. Continuous wear of high-Dk silicone hydrogel contact lenses is associated with clinically appreciable changes in topographical corneal curvature, whereas only a reduction in corneal thickness is appreciated in the central area. This effect seems to be a result of mechanical pressure induced by these hybrid hyperpermeable materials, characterized by a higher modulus of elasticity. The small sample size compromises the conclusions addressed from this study, and further work will be necessary to confirm the present results.

  2. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    Science.gov (United States)

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  3. Intraocular pressure measurement over soft contact lens by rebound tonometer: a comparative study.

    Science.gov (United States)

    Nacaroglu, Senay Asik; Un, Emine Seker; Ersoz, Mehmet Giray; Tasci, Yelda

    2015-01-01

    To evaluate the intraocular pressure (IOP) measurements by Icare rebound tonometer over a contact lens in comparison with Goldmann applanation tonometry (GAT). Fifty patients using contact lens were included in this study. One of the eyes of the patients was selected randomly and their IOP were measured by rebound tonometer with and without contact lens (RTCL, RT respectively) and by GAT, as well as their central corneal thickness (CCT) by optical pachymeter. The results of both methods were compared by correlation analysis, general linear method repeated measure and Bland-Altman analysis. Mean IOP values measured by RTCL, RT and GAT were 15.68±3.7, 14.50±3.4 and 14.16±2.8 (Pcontact lens by rebound tonometer was found to be higher than what was measured by GAT. Although this difference is statistically significant, it may be clinically negligible in the normal population.

  4. Study on flow and mass transport through fractured soft sedimentary rocks (Contact research)

    International Nuclear Information System (INIS)

    Shimo, Michito; Kumamoto, Sou; Maekawa, Keisuke

    2007-03-01

    It is important for safety assessment of HLW geological disposal to evaluate groundwater flow and mass transport in deep underground accurately. Though it is considered that the mass transport in sedimentary rock occurs in pores between grains mainly, fractures of sedimentary rock can be main paths. The objective of this study is to establish a conceptual model for flow and mass transport in fractured soft sedimentary rock. In previous study, a series of laboratory hydraulic and tracer tests and numerical analyses were carried out using sedimentary rock specimens obtained from Koetoi and Wakkanai formation. Single natural fractured cores and rock block specimen were used for the tests and analyses. The results indicated that the matrix diffusion played an important role for mass transport in the fractured soft sedimentary rocks. In this study, the following two tasks were carried out: (1) laboratory hydraulic and tracer experiments of rock cores of Koetoi and Wakkanai formation obtained at HDB-9, HDB-10 and HDB-11 boreholes and a rock block specimen, Wakkanai formation, obtained at an outcrop in the Horonobe area, (2) a numerical study on the conceptual model of flow and mass transport through fractured soft sedimentary rocks. Non-sorbing tracer experiments using naturally fractured cores and rock block specimens were carried out. Pottasium iodide was used as a tracer. The obtained breakthrough curves were interpreted and fitted by using a numerical simulator, and mass transport parameters, such as longitudinal dispersivity, matrix diffusion coefficient, transport aperture, were obtained. Mass transport simulations using a fracture network model, a continuum model and a double porosity model were performed to study the applicability of continuum model and double porosity model for transport in fractured sedimentary rock. (author)

  5. The measurement of intraocular pressure over positive soft contact lenses by rebound tonometry

    Directory of Open Access Journals (Sweden)

    Fabrizio Zeri

    2016-07-01

    Conclusions: Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result did not change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses.

  6. [Skin hydration and hydrating products].

    Science.gov (United States)

    Duplan, H; Nocera, T

    2018-05-01

    One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.

  7. Aspects Concerning Modelling Contact Pressure of Polymeric Materials Used in Robotic Soft Elements

    Directory of Open Access Journals (Sweden)

    Florina-Carmen Ciornei

    2015-06-01

    Full Text Available Compliant materials are used in applications of robotics for final elements of robotic systems. Contact pressure between a spherical indenter and a linear viscoelastic halfspace is modeled for a cosine normal load. The Maxwell viscoelastic halfspace is described by relaxation function and creep function. For the working frequency domain, the material does not present obvious relaxation. Only for very low frequencies, the pressure variation presents a maximum during approaching delayed with respect to maximum force

  8. Intraocular pressure measurement over soft contact lens by rebound tonometer:a comparative study

    Directory of Open Access Journals (Sweden)

    Senay Asik Nacaroglu

    2015-06-01

    Full Text Available AIM: To evaluate the intraocular pressure (IOP measurements by Icare rebound tonometer over a contact lens in comparison with Goldmann applanation tonometry (GAT.METHODS: Fifty patients using contact lens were included in this study. One of the eyes of the patients was selected randomly and their IOP were measured by rebound tonometer with and without contact lens (RTCL, RT respectively and by GAT, as well as their central corneal thickness (CCT by optical pachymeter. The results of both methods were compared by correlation analysis, general linear method repeated measure and Bland-Altman analysis.RESULTS: Mean IOP values measured by RTCL, RT and GAT were 15.68±3.7, 14.50±3.4 and 14.16±2.8 (P<0.001, respectively. Mean IOP by RTCL was significantly higher than the measurements implemented by RT and GAT (P<0.001, while there was no difference between the measurements by GAT and RT (P=0.629. There was a good level of positive correlation between GAT and RTCL as well as RT (r=0.786 P<0.001, r=0.833 P<0.001, respectively. We have observed that CCT increase did not show any correlation with the differences of the measurements between RTCL and RT (P=0.329, RTCL and GAT (P=0.07 as well as RT and GAT (P=0.189 in linear regression model.CONCLUSION: The average of the measurements over contact lens by rebound tonometer was found to be higher than what was measured by GAT. Although this difference is statistically significant, it may be clinically negligible in the normal population.

  9. The measurement of intraocular pressure over positive soft contact lenses by rebound tonometry.

    Science.gov (United States)

    Zeri, Fabrizio; De Cusatis, Mario; Lupelli, Luigi; Swann, Peter Graham

    2016-01-01

    To investigate if the accuracy of intraocular pressure (IOP) measurements using rebound tonometry over disposable hydrogel (etafilcon A) contact lenses (CL) is affected by the positive power of the CLs. The experimental group comprised 26 subjects, (8 male, 18 female). IOP measurements were undertaken on the subjects' right eyes in random order using a Rebound Tonometer (ICare). The CLs had powers of +2.00D and +6.00D. Measurements were taken over each contact lens and also before and after the CLs had been worn. The IOP measure obtained with both CLs was significantly lower compared to the value without CLs (t test; p<0.001) but no significant difference was found between the two powers of CLs. Rebound tonometry over positive hydrogel CLs leads to a certain degree of IOP underestimation. This result did not change for the two positive lenses used in the experiment, despite their large difference in power and therefore in lens thickness. Optometrists should bear this in mind when measuring IOP with the rebound tonometer over plus power contact lenses. Copyright © 2016 The Authors. Published by Elsevier Espana.. All rights reserved.

  10. 3D reconstruction of pentacene structural organization in top-contact OTFTs via resonant soft X-ray reflectivity

    Science.gov (United States)

    Capelli, Raffaella; Nardi, Marco Vittorio; Toccoli, Tullio; Verucchi, Roberto; Dinelli, Franco; Gelsomini, Carolina; Koshmak, Konstantin; Giglia, Angelo; Nannarone, Stefano; Pasquali, Luca

    2018-01-01

    Herein, we describe the use of soft X-ray reflectivity at the carbon K-edge to study the molecular organization (orientation, structure, and morphology) of pentacene active films in a top-contact transistor geometry. This technique is not affected by sample charging, and it can be applied in the case of insulating substrates. In addition, the sampling depth is not limited to the near-surface region, giving access to buried device interfaces (metal/organic and dielectric/organic). Spectral lineshape simulations, based on ab-initio calculations using a realistic 3D layer-by-layer model, allow us to unravel the details of the molecular organization in all the specific and crucial areas of the active film, overcoming the limitations of conventional approaches. The tilt angle of the long molecular axis in the whole film is found to progressively decrease with respect to the substrate normal from 25° to 0° with the increasing film thickness. A full vertical alignment, optimal for in-plane charge hopping, is reached only after the complete formation of the first five monolayers. Remarkably, starting from the first one in contact with the dielectric substrate, all the monolayers in the stack show a change in orientation with the increasing thickness. On the other hand, at the buried interface with a gold top-contact, the molecules assume a flat orientation that only propagates for two or three monolayers into the organic film. Top-contact devices with the highest performances can thus be obtained using films of at least ten monolayers. This explains the observed thickness dependence of charge mobility in pentacene transistors.

  11. Oxygen, water, and sodium chloride transport in soft contact lenses materials.

    Science.gov (United States)

    Gavara, Rafael; Compañ, Vicente

    2017-11-01

    Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.

  12. A meta-analysis of studies on cosmetically tinted soft contact lenses

    Directory of Open Access Journals (Sweden)

    Rah MJ

    2013-10-01

    Full Text Available Marjorie J Rah,1 Jeffery Schafer,1 Lening Zhang,1 Osbert Chan,2 Lipika Roy,3 Joseph T Barr11Bausch & Lomb Incorporated, Rochester, NY, USA; 2Bausch & Lomb Incorporated, Asia Pacific Medical Affairs, Hong Kong; 3Bausch & Lomb Incorporated, Asia Pacific Medical Affairs, Singapore, MalaysiaBackground: Concerns regarding the safety of cosmetically tinted contact lenses have been reported in the literature. The purpose of this paper is to evaluate the safety of cosmetically tinted contact lenses in a large number of patients across six clinical trials that varied from 1 week to 3 months in duration.Methods: Lenses tested included: Naturelle limbal ring daily disposable, Lacelle limbal ring daily disposable, Lacelle colored cosmetic daily disposable, Lacelle limbal ring planned replacement at 2 weeks, and Alamode traditional/annual colored cosmetic lens. The primary safety outcome was slit-lamp examination, including epithelial edema, epithelial microcysts, corneal staining, bulbar injection, limbal injection, upper lid tarsal conjunctival abnormalities, corneal neovascularization, and corneal infiltrates. High contrast logMAR visual acuity with lenses, and lens wearing time, movement, and centration, are also presented.Results: A total of 871 subjects (1,742 eyes and 23 clinical investigators participated in the six studies, with an average completion rate of 96.4% across all studies. The mean age of the patients was 26.8 ± 6.6 years, and 86.7% of participants were female. The total number of slit-lamp examinations across the six studies was 2,456 visits by eye (1,228 visits by patient. There were no slit-lamp signs > grade 2 for any finding, with the exception of corneal staining in one study. In this study, grade 3 corneal staining was noted in one eye (0.1% at follow-up visit 1 and four (0.6% of all eligible dispensed eyes at follow-up visit 2, with no eyes requiring medical treatment. No adverse events were reported during any of the trials

  13. Adaptação de lente de contato gelatinosa especial para ceratocone Keratoconus special soft contact lens fitting

    Directory of Open Access Journals (Sweden)

    Ester Sakae Yamazaki

    2006-08-01

    Full Text Available OBJETIVO: Relatar a experiência inicial com o uso de lentes de contato gelatinosas especiais para ceratocone. MÉTODOS: Estudo retrospectivo de 80 olhos de 66 pacientes usuários de lentes de contato gelatinosas especial para ceratocone, no Setor de Lentes de Contato da UNIFESP e em clínicas particulares. Os pacientes foram classificados de acordo com o grau de gravidade da doença pela avaliação ceratométrica. Foram coletados os seguintes dados: idade, sexo, diagnóstico, ceratometria, acuidade visual com a lente, equivalente esférico (ES, curvatura da lente e indicação para o seu uso. RESULTADOS: Foram estudados 80 olhos de 66 pacientes usuários de lente gelatinosa para ceratocone. A média de idade foi de 29 anos, sendo 51,5% homens e 48,5% de mulheres. De acordo com os grupos: incipiente: 15,0%, moderado: 53,7%, avançado: 26,3%, grave: 5,0%. A maioria dos olhos estudados (91,25% apresentou acuidade visual melhor que 20/40 com a lente. Foram adaptadas 58% lentes de poder esférico (média de -5,45 dioptrias e 41% lentes com grau esferocilíndrico (variando de -0,50 a -5,00 dioptrias cilíndricas. A curva esférica mais utilizada foi de 7,6 mm (61% dos olhos. As principais razões para a escolha e adaptação desta lente foram devido à intolerância e ao padrão de adaptação insatisfatório com outras lentes. CONCLUSÃO: A lente gelatinosa para ceratocone pode ser usada em casos de difícil adaptação, como uma opção para melhorar o conforto e possibilitar a reabilitação visual em pacientes que não obtiveram alternativas a não ser algum procedimento cirúrgico.PURPOSE: To evaluate the fitting and use of a soft contact lens in keratoconic patients. METHODS: Retrospective study on 80 eyes of 66 patients, fitted with a special soft contact lens for keratoconus, at the Contact Lens Section of UNIFESP and private clinics. Keratoconus was classified according to degrees of disease severity by keratometric pattern. Age, gender

  14. Cosmetic Cleansing Oil Absorption by Soft Contact Lenses in Dry and Wet Conditions.

    Science.gov (United States)

    Tsukiyama, Junko; Miyamoto, Yuko; Kodama, Aya; Fukuda, Masahiko; Shimomura, Yoshikazu

    2017-09-01

    Previous reports showed that cosmetic cleansing oil for removing makeup, which contains mineral oil and surfactant, can deform some silicone hydrogel contact lenses (SHCLs) when applied directly to the lenses, although plasma-coated SHCLs (lotrafilcon A and B) were not affected. In the present study, we investigated hydrogel lenses and SHCLs in both wet and dry conditions. Several brands of hydrogel and SHCLs were immersed in a cleansing oil solution containing Sudan Black B for 5 min under wet and dry conditions. The lenses under the wet condition were simply picked up from the saline, whereas those under the dry condition were blotted with paper wipes. After immersing, the excess solution remaining on the lenses was removed by finger rubbing with a multipurpose solution. The lenses were then examined using a stereomicroscope, and their mean brightness was measured and compared. The cosmetic cleansing oil was not absorbed by the hydrogel lenses under wet or dry conditions. However, four of seven brands of SHCLs absorbed the cosmetic cleansing oil under both conditions (dry and wet), whereas asmofilcon A absorbed it only under the dry condition. Lotrafilcon B and delefilcon A did not absorb cleansing oil even under the dry condition. Hydrogel lenses resist cosmetic cleansing oil. However, SHCLs have different degrees of resistance depending on the lens material. Some SHCLs absorbed cosmetic cleansing oil more under dry conditions than under wet conditions.

  15. Efficacy of two-month treatment with Xiloial® eyedrops for discomfort from disposable soft contact lenses

    Directory of Open Access Journals (Sweden)

    Piera Versura

    2010-09-01

    Full Text Available Piera Versura, Vincenzo Profazio, Nicole Balducci, Emilio C CamposOphthalmology Unit, Alma Mater Studiorum University of Bologna, Bologna, ItalyPurpose: To evaluate the efficacy and tolerability of Xiloial® monodose eyedrops in the treatment of patients suffering from subjective symptoms of discomfort related to disposable soft contact lens (dSCL wear.Methods: Fifteen (12 female, three male, medium age 39 ± 9 years dSCL wearers were enrolled. Inclusion criteria were Ocular Surface Disease Index (ODSI symptom questionnaire score >12, tear film break-up time (TFBUT <10 sec, Schirmer test I >10 mm over five minutes, mild punctuate keratopathy, and conjunctival staining (Oxford grading ≤4. Monodose Xiloial eyedrops were administered three times daily for a two-month period. Patients were evaluated at enrollment, after three days of washout (baseline, and after one and two months of treatment, by OSDI score, Schirmer test I, TFBUT, ferning test, ocular surface damage (Oxford grade, and serum albumin in tears (index of passive exudation related to serum leakage.Results: At endpoint versus baseline, respectively, the mean ± standard deviation of all variables improved as follows: OSDI (8.5 ± 3 versus 20.2 ± 1.6; TFBUT (9.6 ± 1.1 versus 7.1 ± 1.0; Oxford grading (0.5 ± 0.1 versus 3.6 ± 0.8; ferning test (2 ± 1 versus 2.4 ± 0.5; and Schirmer test I (14.6 ± 1.1 versus 12 ± 2.1, with P < 0.05 for all variables (Friedman and Wilcoxon tests. Tolerability was high, with no adverse events noted.Conclusions: A two-month treatment with Xiloial showed good tolerance and appeared to reduce ocular surface damage and symptoms of discomfort.Keywords: discomfort, dry eye, disposable contact lens, biopolymer tamarind seed polysaccharide–hyaluronic acid

  16. Ultrastructural imaging and molecular modeling of live bacteria using soft x-ray contact microscopy with nanoseconds laser plasma radiation

    International Nuclear Information System (INIS)

    Kado, M.; Richardson, M.C.; Gabel, K.; Torres, D.; Rajyaguru, J.; Muszynski, M.J.

    1995-01-01

    Detection for clinical diagnosis and study of microbial cell is performed by a combination of low magnification optical microscopy and direct and indirect labeling techniques. Visual ultrastructural studies on subcellular organelles are possible with variations of electron microscopy (thin section, scanning and freeze fracture), although specimen preparation steps such as fixation, dehydration, resin embedding, ultra-thin sectioning, coating and staining are very specialized, extensive and may introduce artifacts in the original sample. The development of high resolution x-ray microscopy is a new technique well suited to observe the intact structure of a biological specimen at high resolution without any artifacts. Here, x ray images of the various live bacteria, such as Staphylococcus and Streptococcus, and micromolecule such as chromosomal DNA from Escherichia coli, and Lipopolysaccharide from Burkholderia cepacia, are obtained with soft x-ray contact microscopy. A compact tabletop type glass laser system is used to produce x rays from Al, Si, and Au targets. The PMMA photoresists are used to record x-ray images. An AFM (atomic force microscope) is used to reproduce the x-ray images from the developed photoresists. The performance of the 50 nm spatial resolutions are achieved and images are able to be discussed on the biological view

  17. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  18. Ultra-thin, conformal, and hydratable color-absorbers using silk protein hydrogel

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Jo, Minsik; Kim, Sunghwan

    2018-06-01

    Planar and multilayered photonic devices offer unprecedented opportunities in biological and chemical sensing due to strong light-matter interactions. However, uses of rigid substances such as semiconductors and dielectrics confront photonic devices with issues of biocompatibility and a mechanical mismatch for their application on humid, uneven, and soft biological surfaces. Here, we report that favorable material traits of natural silk protein led to the fabrication of an ultra-thin, conformal, and water-permeable (hydratable) metal-insulator-metal (MIM) color absorber that was mapped on soft, curved, and hydrated biological interfaces. Strong absorption was induced in the MIM structure and could be tuned by hydration and tilting of the sample. The transferred MIM color absorbers reached the exhibition of a very strong resonant absorption in the visible and near infra-red ranges. In addition, we demonstrated that the conformal resonator could function as a refractometric glucose sensor applied on a contact lens.

  19. Medindo o poder refrativo de lentes de contato gelatinosas personalizadas Measuring the refractive power of customized soft contact lenses

    Directory of Open Access Journals (Sweden)

    Luis Alberto Vieira de Carvalho

    2007-02-01

    tecnologia é importante para o desenvolvimento de novos métodos para correção de aberrações de pacientes que normalmente não podem passar por cirurgia refrativa e ao mesmo tempo estão insatisfeitos com os óculos de grau convencionais. Entre estes pacientes, podemos citar aqueles portadores de ceratocone ou que tenham sido submetidos ao transplante de córnea.PURPOSE: Soft contact lenses with spherical base curves have been used for many years. The computation of the refractive powers of these lenses is easy, requiring only that one uses the lens maker equation for thick lenses. Nevertheless, for customized contact lenses, there is yet no reliable method for measuring the higher order optical aberrations. In this study we have developed in the Center for Visual Sciences of the University of Rochester an optical apparatus that allows for precise measurement of low and high order aberrations of customized soft contact lenses. METHODS: An optical apparatus was mounted on a conventional optical bench. This apparatus consists of a wet cell where the contact lenses are placed, a series of relay lenses, mirrors, beam splitters, and a Hartmann-Shack sensor. Bausch & Lomb manufactured the lenses used in this study. RESULTS: The root mean square error (RMSE of the instrument was 0.04 microns. Given that the RMSE of the customized lens is between 4 and 6 microns, i.e., the precision of the instrument is approximately 1%. This precision is more than sufficient for the type of measurements necessary for manufacturing customized contact lenses. CONCLUSION: The instrument developed is extremely precise for measuring high order aberrations - up to the 10th order Zernike polynomials, that is, up to the 66th term. This technology is important for the development of new methods of optical corrections for patients that usually do not adapt to normal sphere-cylinder spectacles or that cannot undergo refractive surgery, such as those which have keratoconus, for example.

  20. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.

    Science.gov (United States)

    García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier

    2015-06-20

    This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.

  1. Comparative measurement of intraocular pressure by Icare tonometry and Airpuff tonometry in healthy subjects and patients wearing therapeutic soft contact lenses.

    Science.gov (United States)

    Anton, Alexandra; Neuburger, Matthias; Böhringer, Daniel; Jordan, Jens F

    2013-07-01

    The aim of the present study was to compare the measurement of intraocular pressure (IOP) through a therapeutic soft contact lens with the "native" measurement. We additionally investigate whether a rebound tonometer (RT) or non-contact tonometer (NCT) is more suitable to measure IOP through a bandage contact lens. The IOP was determined using each of the two methods, three times successively with (lens measurement) and without (native measurement) a soft contact lens. The Icare tonometer (Icare® TA01i, Icare Finland Oy, 23 subjects) and the Airpuff tonometer (Nidek NT 53OP, Nidek CO., LTD, Hiroishi Gamagori, Aichi, Japan, 16 subjects) were used. We compared the mean values (validity parameter) and standard deviation (precision parameter) of the three individual measurements in each case using the paired t-test. In addition, we conducted a power analysis to estimate the maximum error in the measurement caused by the contact lens (power level set to 0.8). With the Airpuff tonometer we detected no statistically significant between the lens and the native measurement (15.6 ± 2.6 vs. 15.3 ± 2.6 mmHg; p = 0.42). The power analysis revealed that the maximum error caused by the contact lens was 1.2 mmHg. The Icare tonometry, however, trended toward higher values in the contact lens measurements (17.5 ± 4.3 vs. 16.4 ± 3.5 mmHg in the native measurements; p = 0.05). Interestingly, this difference exhibited a statistically significant correlation with the corneal thickness (0.03 mmHg per μm corneal thickness; p = 0.04). The use of NCT and RT for IOP measurement over a soft contact lens is feasible. The accuracy appears to be sufficient for the most common clinical applications.

  2. Corneal swelling caused by conventional and new-design low-Dk soft contact lenses following a 10-day daily wear trial regime.

    Science.gov (United States)

    Rho, Chang Rae; Pandey, Chitra; Kim, Su Young; Kim, Man Soo

    2014-02-01

    To investigate the efficacy and safety of a fenestrated and channelled soft contact lens (F-SCL) compared to a standard and non-fenestrated soft contact lens (S-SCL) in experienced soft contact lens (SCL) wearers. This was a randomised, crossover, single-blinded (subject), and multicentre clinical trial. Sixteen experienced SCL wearers were randomly divided into two groups (FS and SF). The FS group first wore F-SCLs followed by S-SCLs, each for 10 days, separated by a 1-week washout period, whereas the SF group wore the S-SCLs first and crossed over to F-SCLs in the same manner. The F-SCLs were designed with three equally spaced, symmetrical fenestrations and a partial-thickness, connecting, circumferential channel on the back surface of the mid-periphery of the lens. Measurement of central corneal thickness using ultrasonic pachymetry was performed on the day of screening, after the 1-week washout period, and after 10 days of wearing each kind of lens, based on which central corneal swelling was calculated and compared. One eye in each subject was chosen at random for analysis. Central corneal swelling was 1.92±1.73% vs. 5.26±2.14% in F-SCLs vs. S-SCLs wearers, which was statistically significant (P<0.001). There was no significant difference between the groups in terms of SCL-corrected visual acuity or SCL-related adverse events. The use of F-SCLs led to reduced corneal swelling compared to S-SCLs. The newly incorporated features appear to improve tear mixing and thereby the oxygen supply to the cornea, which results in reduced corneal oedema. Copyright © 2013 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  3. A class I (Senofilcon A) soft contact lens prevents UVB-induced ocular effects, including cataract, in the rabbit in vivo.

    Science.gov (United States)

    Giblin, Frank J; Lin, Li-Ren; Leverenz, Victor R; Dang, Loan

    2011-06-01

    UVB radiation from sunlight is known to be a risk factor for human cataract. The purpose in this study was to investigate the ability of a class I UV-blocking soft contact lens to protect against UVB-induced effects on the ocular tissues of the rabbit in vivo. Eyes of rabbits were exposed to UVB light for 30 minutes (270-360 nm, peak at 310 nm, 1.7 mW/cm(2) on the cornea). Eyes were irradiated in the presence of either a UV-blocking senofilcon A contact lens, a minimally UV-blocking lotrafilcon A contact lens, or no contact lens at all. Effects on the cornea and lens were evaluated at various times after exposure. Eyes irradiated with no contact lens protection showed corneal epithelial cell loss plus lens epithelial cell swelling, vacuole formation, and DNA single-strand breaks, as well as lens anterior subcapsular opacification. The senofilcon A lens protected nearly completely against the UVB-induced effects, whereas the lotrafilcon A lens showed no protection. The results indicate that use of a senofilcon A contact lens is beneficial in protecting ocular tissues of the rabbit against the harmful effects of UVB light, including photokeratitis and cataract.

  4. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    , not all of them are white like snow. Some hydrates from the deep Gulf of Mexico are richly colored in shades of yellow, orange, or even red. The ice-like masses are beautiful, and contrast with the dull gray of deep sea muds. Hydrates from the Blake... volcanoes and associated gas hydrates: Marine Geology, v. 167, p. 29-42. Milkov, A.V. and R. Sassen, 2001a, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope: Marine Geology, v. 179, pp. 71-83. Milkov, A.V., Sassen, R...

  5. Soft lubrication

    Science.gov (United States)

    Skotheim, Jan; Mahadevan, Laksminarayanan

    2004-11-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g a shell) or constitutive properties (e.g. a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving tangentially to a soft layer coating a rigid substrate; a soft cylinder moving tangentially to a rigid substrate; a cylindrical shell moving tangentially to a rigid substrate; and finally a journal bearing coated with a thin soft layer, which being a conforming contact allows us to gauge the influence of contact geometry. In addition, for the particular case of a soft layer coating a rigid substrate we consider both elastic and poroelastic material responses. Finally, we consider the role of contact geometry in the context of the journal bearing, a conforming contact. For all these cases we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness.

  6. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    Directory of Open Access Journals (Sweden)

    Luis F. Del Castillo

    2015-01-01

    Conclusion: Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility.

  7. Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries

    Science.gov (United States)

    Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-11-01

    Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.

  8. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  9. Accuracy of intraocular pressure measurements in dogs using two different tonometers and plano therapeutic soft contact lenses.

    Science.gov (United States)

    Ahn, Jeong-Taek; Jeong, Man-Bok; Park, Young-Woo; Kim, Se-Eun; Ahn, Jae-Sang; Lee, Yes-Ran; Lee, Eui-Ri; Seo, Kangmoon

    2012-03-01

    To compare and evaluate the accuracy of intraocular pressure (IOP) measured through a therapeutic contact lens, using applanation (TonoPen XL(®)) and rebound (TonoVet(®)) tonometers in enucleated dog eyes. A total of 30 enucleated eyes from 15 beagle dogs. To measure accurate IOP, the anterior chamber of each enucleated eye was cannulated with two 26-gauge needles and two polyethylene tubes were connected vertically to an adjustable reservoir bag of normal saline and a pressure transducer. IOP was measured by the TonoPen XL(®) followed by the TonoVet(®) without a contact lens. After a contact lens was applied to the cornea, IOP was re-measured in the same order. Three consecutive IOP measurements were performed using both tonometers. Without the contact lens, the IOP values obtained by both tonometers correlated well according to the regression analysis (TonoVet(®): γ(2) = 0.98, TonoPen XL(®): γ(2) = 0.97, P contact lens was applied to the cornea. Bland-Altman analysis was used to determine the lower and upper limits of agreement (TonoVet(®): -29.7 and +21.1 mmHg, TonoPen XL(®): -3.9 and +3.6 mmHg) between the two devices. This study suggests that the TonoPen XL(®) is a useful tonometer for dogs wearing therapeutic contact lenses, and importantly, contact lenses would not need to be removed prior to IOP measurement. © 2012 American College of Veterinary Ophthalmologists.

  10. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  11. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  12. Coagulase-negative staphylococci isolated from ocular wound infections after laser refractive surgery: attachment to and accumulation on soft contact lenses.

    Science.gov (United States)

    Faghri, Jamshid; Razavi, Mohamad Reza

    2009-03-01

    Disposable soft contact lenses that are commonly used after laser refractive surgery are known to be colonized by bacteria and play a key role in Bacterial Keraitis (BK) pathogenesis. Coagulase-negative staphylococci (CoNS) have been found to be the most common pathogen involved in this postoperative infection. In this study a rapid and a simple assay was developed for studying attachment and accumulation of CoNS on soft contact lenses in vitro using [3H] thymidine. Thirty-five isolates of CoNS were obtained from 27 laser refractive surgery patients. Twenty-five of these thirty-five CoNS were isolated in multiple cultures. Ten CoNS were isolated in cultures from patients who underwent reoperation. The assay was optimized using a biofilm-producing strain, S. epidermidis RP62A, which was subcultured overnight at 37 degrees C on blood agar medium. Quantitative determination of biofilm production was tested. Presence of the genes icaADB and icaD was determined in all isolates. All isolates were biochemically analyzed using the Phene Plate (PhP) system modified for typing of CoNS. The CoNS isolates were further characterized to species level using ID32Staph.Mann-Whitney rank sum test and chi-square test were used to identify statistical differences in adherence, index, antibiotic susceptibility patterns, and biofilm production or presence of the ica operon between clinically significant isolates and non-postoperative BK isolates. No differences in attachment and accumulation were found between isolates causing BK after laser refractive surgery and contaminant isolates. In addition, there were no differences in the distribution of the ica operon between the two groups, as determined by polymerase chain reaction. Nevertheless, the ability to produce biofilm was found to be present significantly more frequently among BK isolates than among non-postoperative BK isolates. This study shows that the method using radioactive thymidine to analyze adherence of CoNS to soft

  13. The effect of octylglucoside and sodium cholate in Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion to soft contact lenses.

    Science.gov (United States)

    Santos, Lívia; Rodrigues, Diana; Lira, Madalena; Oliveira, Rosario; Real Oliveira, M Elisabete C D; Vilar, Eva Yebra-Pimentel; Azeredo, Joana

    2007-05-01

    In this study, the effect of the natural surfactants octylglucoside and sodium cholate in inhibiting Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion to conventional and silicone-hydrogel contact lenses (CL) was assessed. Hydrophobicity was also evaluated to conditioned and nonconditioned CL. The inhibiting effect of the tested surfactants was determined through "in vitro" adhesion studies to conditioned and nonconditioned CL followed by image acquisition and cell enumeration. Hydrophobicity was evaluated through contact angle measurements using the advancing type technique on air. Sodium cholate exhibits a very low capability to inhibit microbial adhesion. Conversely, octylglucoside effectively inhibited microbial adhesion in both types of lenses. This surfactant exhibited an even greater performance than a multipurpose lens care solution used as control. Octylglucoside was the only tested surfactant able to lower the hydrophobicity of all CL, which can explain its high performance. The results obtained in this study point out the potential of octylglucoside as a conditioning agent to prevent microbial colonization.

  14. How soft is that pillow? The perceptual localization of the hand and the haptic assessment of contact rigidity.

    Science.gov (United States)

    Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A

    2011-04-27

    A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support for the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one's tactile perception of the environment mechanics? In a simple estimation process, human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object's rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object's boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects' reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand.

  15. Ex vivo evaluation of super pulse diode laser system with smart temperature feedback for contact soft-tissue surgery

    Science.gov (United States)

    Yaroslavsky, Ilya; Boutoussov, Dmitri; Vybornov, Alexander; Perchuk, Igor; Meleshkevich, Val; Altshuler, Gregory

    2018-02-01

    Until recently, Laser Diodes (LD) have been limited in their ability to deliver high peak power levels, which, in turn, limited their clinical capabilities. New technological developments made possible advent of "super pulse" LD (SPLD). Moreover, advanced means of smart thermal feedback enable precise control of laser power, thus ensuring safe and optimally efficacious application. In this work, we have evaluated a prototype SPLD system ex vivo. The device provided up to 25 W average and up to 150 W pulse power at 940 nm wavelength. The laser was operated in the thermal feedback-controlled mode, where power of the laser was varied automatically as a function of real-time thermal feedback to maintain constant tip temperature. The system was also equipped with a fiber tip initiated with advanced TiO2 /tungsten technique. Evaluation methods were designed to assess: 1) Speed and depth of cutting; 2) Dimensions of coagulative margin. The SPLD system was compared with industry-leading conventional diode and CO2 devices. The results indicate that the SPLD system provides increase in speed of controlled cutting by a factor of >2 in comparison with the conventional diode laser and approaching that of CO2 device. The produced ratio of the depth of cut to the thermal damage margin was significantly higher than conventional diodes and close to that of the CO2 system, suggesting optimal hemostasis conditions. SPLD technology with real-time temperature control has a potential for creating a new standard of care in the field of precision soft tissue surgery.

  16. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  17. A Class I UV-Blocking (senofilcon A) Soft Contact Lens Prevents UVA-induced Yellow Fluorescence and NADH loss in the Rabbit Lens Nucleus in vivo

    Science.gov (United States)

    Giblin, Frank J.; Lin, Li-Ren; Simpanya, Mukoma F.; Leverenz, Victor R.; Fick, Catherine E.

    2012-01-01

    It is known that fluorescence, much of it caused by UVA light excitation, increases in the aging human lens, resulting in loss of sharp vision. This study used an in vivo animal model to investigate UVA-excited fluorescence in the rabbit lens, which contains a high level of the UVA chromophore NADH, existing both free and bound to λ-crystallin. Also, the ability of a Class I (senofilcon A) soft contact lens to protect against UVA-induced effects on the rabbit lens was tested. Rabbit eyes were irradiated with UVA light in vivo (100 mW/cm2 on the cornea) for 1 hour using monochromatic 365 nm light. Irradiation was conducted in the presence of either a senofilcon A contact lens, a minimally UV-absorbing lotrafilcon A contact lens, or no contact lens at all. Eyes irradiated without a contact lens showed blue 365 nm-excited fluorescence initially, but this changed to intense yellow fluorescence after 1 hour. Isolated, previously irradiated lenses exhibited yellow fluorescence originating from the lens nucleus when viewed under 365 nm light, but showed normal blue fluorescence arising from the cortex. Previously irradiated lenses also exhibited a faint yellow color when observed under visible light. The senofilcon A contact lens protected completely against the UVA-induced effects on fluorescence and lens yellowing, whereas the lotrafilcon A lens showed no protection. The UVA-exposure also produced a 53% loss of total NADH (free plus bound) in the lens nucleus, with only a 13% drop in the anterior cortex. NADH loss in the nucleus was completely prevented with use of a senofilcon A contact lens, but no significant protection was observed with a lotrafilcon A lens. Overall, the senofilcon A lens provided an average of 67% protection against UVA-induced loss of four pyridine nucleotides in four different regions of the lens. HPLC analysis with fluorescence detection indicated a nearly six-fold increase in 365 nm-excited yellow fluorescence arising from lens nuclear

  18. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  19. A comparison of in-air and in-saline focimeter measurement of the back vertex power of spherical soft contact lenses.

    Science.gov (United States)

    Pearson, Richard M; Evans, Bruce J W

    2012-11-01

    To compare the repeatability and validity of measurements of the back vertex power (BVP) of spherical soft contact lenses made in-air using the method specified in the International Standard (ISO 18369-3:2006) with the corresponding values when BVP was calculated from measurements made using a wet cell and focimeter method that is not approved by this Standard. The BVP of 20 hydrogel and 20 silicone hydrogel lenses, with labelled powers ranging from +8.00 to -12.00 D, were measured with a focimeter by two operators on two occasions in-air in accordance with the relevant International Standard. Equivalent sets of measurements were made with the lenses immersed in-saline within a wet cell and their BVPs in-air were calculated. The validity of each method was assessed by comparing their results with an instrument that used the Hartmann method. The reliability results were generally a little better for the in-saline measurements than for the in-air measurements, although all reliability data demonstrated absolute values of mean errors (inter-operator and inter-session) that were power of high plus and high minus lenses compared with the Hartmann instrument) and possibly a more complex relationship for the in-saline data. The 95% limits of agreement indicate better agreement for the in-saline validity data (-0.55 to +0.48 D for hydrogel lenses and -0.42 to +0.54 D for silicone hydrogel lenses) than those obtained in-air (-0.64 to +0.68 D for hydrogel lenses and -0.57 to +0.44 D for silicone hydrogel lenses). Using equipment readily available in a clinical setting, the wet cell method of measurement of the BVP of spherical soft contact lenses has been shown to provide results for reliability and validity that were at least as good as those obtained with the in-air method approved by the International Standard. Ophthalmic & Physiological Optics © 2012 The College of Optometrists.

  20. Novel Anti-Biofouling Soft Contact Lens: l-Cysteine Conjugated Amphiphilic Conetworks via RAFT and Thiol-Ene Click Chemistry.

    Science.gov (United States)

    Zhang, Chengfeng; Liu, Ziyuan; Wang, Haiye; Feng, Xiaofeng; He, Chunju

    2017-07-01

    A unique l-cysteine conjugated antifouling amphiphilic conetwork (APCN) is synthesized through end-crosslinking of well-defined triblock copolymers poly(allyl methacrylate)-b-poly(ethylene glycol)-b-poly(allyl methacrylate) via a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and thiol-ene "click" chemistry. The synthesized poly(ethylene glycol) macro-RAFT agent initiates the polymerization of allyl methacrylate in a controlled manner. The vinyl pendant groups of the precursor partially conjugate with l-cysteine and the rest fully crosslink with mercaptopropyl-containing siloxane via thiol-ene click chemistry under UV irradiation into APCNs, which show distinguished properties, that is, excellent biocompatibility, more than 39.6% water content, 101 barrers oxygen permeability, optimized mechanical properties, and more than 93% visible light transmittance. What's more, the resultant APCNs exhibit eminent resistance to protein adsorption, where the bovine serum albumin and lysozyme adsorption are decreased to 12 and 21 µg cm -2 , respectively. The outstanding properties of APCNs depend on the RAFT controlled method, which precisely designs the hydrophilic/hydrophobic segments and eventually greatly improves the crosslinking efficiency and homogeneity. Meantime, the l-cysteine monolayer can effectively reduce the surface hydrophobicity and prevent protein adsorption, which exhibits the viability for antifouling surface over and under ophthalmic devices, suggesting a promising soft contact lens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Efeito do filtro de ultravioleta em lentes de contato hidrofílicas de alta hidratação Ultraviolet filter effect on hydrophilic high hydrated contact lenses

    Directory of Open Access Journals (Sweden)

    Arlindo José Freire Portes

    2008-06-01

    to estimate the efficacy of ultraviolet contact lenses with high hydration. METHODS: Six types of high hydrated contact lenses from different brands with three new equal units were evaluated, observing the transmittance rates of light energy in the wave bands between 200 to 400 nm measured with spectrophotometer. RESULTS: Three groups that had ultraviolet filters blocked sharply the Uv transmittance from 400 nm to 340 nm. There was an increase in Uv transmittance between 240 nm to 300 nm up to 45%. Below 240 nm and between 300 nm and 320 nm there was a complete Uv block. The three contact lenses types that didn't have ultraviolet filters block sharply Uv radiation below 240 nm and below 220 nm there was a complete Uv block . CONCLUSION: Contact lenses that diddn't have UV filter didin't block efficaciously Uv-A, Uv-B or Uv-C. The ultraviolet filter have blocked the Uv-B radiation almost completely, and partially the Uv-A and Uv-c.

  2. Determination of the total attenuation coefficient for six contact lens materials using the Beer-Lambert law.

    Science.gov (United States)

    Hull, C C; Crofts, N C

    1996-03-01

    The Beer-Lambert law has been used to determine the total attenuation coefficient, mu t, of three hard and three soft contact lens materials. The three hard contact lens materials were PMMA, Polycon II and Boston IV whereas the 3 soft materials were chosen with differing water contents of 38, 55 and 70%, respectively. The total attenuation coefficients of all six materials were obtained from measurements of the axial transmission at 632.8 nm of a series of plano powered lenses varying in axial thickness from 0.5 to 3.5 mm. The value of the total attenuation coefficient depends on both scattering and absorption and hence PMMA and Boston IV, which both incorporated a handling tint, showed significantly higher values (P 0.5) was found between any of the hydrated soft contact lens materials tested.

  3. Microstructure of natural hydrate host sediments

    International Nuclear Information System (INIS)

    Jones, K.W.; Kerkar, P.B.; Mahajan, D.; Lindquist, W.B.; Feng, H.

    2007-01-01

    There is worldwide interest in the study of natural gas hydrate because of its potential impact on world energy resources, control on seafloor stability, significance as a drilling hazard and probable impact on climate as a reservoir of a major greenhouse gas. Gas hydrates can (a) be free floating in the sediment matrix (b) contact, but do not cement, existing sediment grains, or (c) actually cement and stiffen the bulk sediment. Seismic surveys, often used to prospect for hydrates over a large area, can provide knowledge of the location of large hydrate concentrations because the hydrates within the sediment pores modify seismic properties. The ability to image a sample at the grain scale and to determine the porosity, permeability and seismic profile is of great interest since these parameters can help in determining the location of hydrates with certainty. We report here on an investigation of the structure of methane hydrate sediments at the grain-size scale using the synchrotron radiation-based computed microtomography (CMT) technique. Work has started on the measurements of the changes occurring as tetrahydrofuran hydrate, a surrogate for methane hydrate, is formed in the sediment

  4. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    Science.gov (United States)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  5. Epidermal differential impedance sensor for conformal skin hydration monitoring.

    Science.gov (United States)

    Huang, Xian; Yeo, Woon-Hong; Liu, Yuhao; Rogers, John A

    2012-12-01

    We present the design and use of an ultrathin, stretchable sensor system capable of conformal lamination onto the skin, for precision measurement and spatial mapping of levels of hydration. This device, which we refer to as a class of 'epidermal electronics' due to its 'skin-like' construction and mode of intimate integration with the body, contains miniaturized arrays of impedance-measurement electrodes arranged in a differential configuration to compensate for common-mode disturbances. Experimental results obtained with different frequencies and sensor geometries demonstrate excellent precision and accuracy, as benchmarked against conventional, commercial devices. The reversible, non-invasive soft contact of this device with the skin makes its operation appealing for applications ranging from skin care, to athletic monitoring to health/wellness assessment.

  6. Morphology studies on gas hydrates interacting with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering

    2008-07-01

    Clathrate hydrates or gas hydrates are non-stoichiometric, crystalline compounds that form when small molecules come in contact with water at certain temperatures and pressures. Natural gas hydrates are found in the ocean bottom and in permafrost regions. It is thought that the amount of energy stored in natural hydrates is at least twice that of all other fossil fuels combined. In addition, trapping carbon dioxide as a hydrate in the bottom of the ocean has been suggested as an alternative means of reducing atmospheric carbon dioxide levels. Naturally occurring clathrates are found in close interaction with fine grained particles of very small mean pore diameters. Even though an increasing amount of hydrate equilibrium data for small diameter porous media has become available, the morphological behavior of hydrates subject to such conditions is yet to be explored. This paper presented a study that visually examined hydrate formation and decomposition of gas hydrates while interacting with fine grains of silica gel. The study showed still frames from high-resolution video recordings for hydrate formation and decomposition. The paper discussed the experiment including the apparatus as well as the results of hydrate formation and hydrate dissociation. This study enabled for the first time to observe clathrate morphology while hydrates interacted closely with fine grain particles with small mean pore diameters. 9 refs., 8 figs.

  7. Determining biological fine structure by differential absorption of soft x-rays

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.; Warren, J.B.

    1979-06-01

    The use of soft x-ray contact microscopy in examining histochemically treated human tissue embedded in plastic and exposed as unstained thin sections is demonstrated. When our preliminary data revealed that we could clearly image not only the histochemical reaction product, but the unstained biological fine structure of the surrounding tissues, we decided to test our hypothesis further and see if we could image unstained biological molecular aggregates as well. For this part of the investigation, we chose to examine hydrated proteoglycan aggregates. Proteoglycans are an essential component of the organic matrix of cartilage, and play a primary role in the retention and maintenance of extracellular water. To avoid any artifacts due to the introduction of exogeneous materials, and examine the proteoglycan aggregates in their hydrated, natural configuration, we made contact x-ray images of isolated proteoglycan aggregates in water

  8. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  9. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  10. Hydrates on tap: scientists say natural gas hydrates may be tough nut to crack

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-12-01

    Gas hydrates are methane molecules trapped in cages of water molecules, yielding a substance with a slushy, sherbet-like consistency. Drilling for hydrates is similar to conventional oil and gas drilling, however, the secret to economic production still remains hidden. Hydrates exist in abundance in such places as deep ocean floor and below ground in some polar regions. The real challenge lies in producing gas from this resource, inasmuch as there is no existing technology for production of gas specifically from methane hydrates. This paper describes an international research program, involving a five-country partnership to spud the first of three wells into the permafrost of the Mackenzie River Delta in the Northwest Territories. The project, worth about $15 million, has brought together public funding and expertise from Japan, Germany, India as well as the Canadian and US Geological Surveys and the US Dept. of Energy in an effort to gain information on the production response of gas hydrates. The operator of the project is Japan Petroleum Exploration Company of Canada, a subsidiary of Japan National Oil Corporation. Since Japan is poor in domestic hydrocarbon resources, but is surrounded by deep water that contains potential for gas hydrates, Japan has a great deal riding on the success of this project. Germany and the United States are also very much interested. Current thinking is that gas is in contact with the hydrates and that it should be possible to develop a free gas reservoir as if it were a conventional deposit. As the free gas is drawn off, the pressure is reduced on the hydrates in contact with it , the hydrates dissociate from the gas and replenish the conventional reservoir. So far this is still only a theory, but it appears to be a sensible approach to hydrate production. 1 photo.

  11. Avaliação da qualidade óptica de lentes de contato gelatinosas na correção de miopia Evaluation of optical performance of soft contact lenses in myopic correction

    Directory of Open Access Journals (Sweden)

    Marcelo Weslley Dalcoll

    2008-12-01

    ções de acuidade visual logMAR de baixo contraste, sensibilidade ao contraste, índice de Strehl, MTF e das aberrações de alta ordem.PURPOSE: To evaluate the optical performance of eyes fitted with two different soft contact lenses: Acuvue® 2 (Vistacon J&J Vision Care Inc., USA and World Vision Disposable Asférica Wave Front® (World Vision Ophthalmic, Brazil. METHODS: An interventional prospective clinical trial studied a sample of 40 myopic patients (-0.75D to -4.50D, with or without astigmatism up to -0.75D. Each patient had one eye randomized to visual performance evaluation including high and low contrast visual acuities, wavefront analysis and contrast sensitivity. RESULTS: The Nidek OPD Scan detected a residual refraction (hypercorrection for both contact lenses. High contrast visual acuity was significantly higher for World Vision soft contact lenses. Low contrast visual acuity was similar for both soft contact lenses. Contrast sensitivity improved significantly at 1.5; 3; 6 e 18 spatial frequencies for both soft contact lenses, but no difference was found between them. Regarding wavefront analysis, no difference was found between both soft contact lenses. There were not significantly differences in the Strehl indices and MTF for both soft contact lenses. CONCLUSION: World Vision Disposable Asférica Wave Front® soft contact lenses had a better performance regarding high contrast visual acuity. However, low contrast visual acuity, wavefront analysis and contrast sensitivity were similar for both soft contact lenses.

  12. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  13. Development of a CB Resistant Durable, Flexible Hydration System

    National Research Council Canada - National Science Library

    Hall, Peyton W; Zeller, Frank T; Bulluck, John W; Dingus, Michael L

    2002-01-01

    A durable, flexible hydration system resistant to contamination by contact with VX, GD, and HD chemical agents, as well as damage by the decontaminants sodium hypochlorite and DS-2 is being developed for aviator use...

  14. Desempenho visual na correção de miopia com óculos e lentes de contato gelatinosas Visual performance in myopic correction with spectacles and soft contact lenses

    Directory of Open Access Journals (Sweden)

    Breno Barth

    2008-02-01

    with three different soft contact lenses [Acuvue® 2 (Vistacon J&J Vision Care Inc., USA, Biomedics® 55 (Ocular Science, USA, and Focus® 1-2 week (Ciba Vision Corporation, USA]. METHODS: An interventional prospective clinical trial studied a sample of 40 myopic patients (-1.00 to -4.50 sph, with or without astigmatism up to -0.75 cyl. Each patient had one eye randomized to visual performance evaluation. RESULTS: The Zywave aberrometer detected a over refraction and significant difference between Acuvue® 2 and Biomedics® 55 regarding spheric refractive components and spheric equivalent. Both soft contact lenses showed hypercorrection as compared to Focus® 1-2 week. Visual performance was not significantly different with spectacles and the three soft contact lenses in visual acuity and contrast sensitivity measurements. The wavefront analysis detected a significant difference in a third order aberration with and without soft contact lenses, with better visual performance with Acuvue® 2 and Biomedics® 55. CONCLUSION: In visual performance evaluation with spectacles and soft contact lenses the wavefront analysis was a more sensible measurement of visual function when compared to high contrast visual acuity and contrast sensitivity. The evaluation model of visual performance with wavefront analysis developed in this investigation may be useful for further similar studies.

  15. Contact mechanics: contact area and interfacial separation from small contact to full contact

    International Nuclear Information System (INIS)

    Yang, C; Persson, B N J

    2008-01-01

    We present a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. The numerical calculations mainly focus on the contact area and the interfacial separation from small contact (low load) to full contact (high load). For a small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For a high load the contact area approaches the nominal contact area (i.e. complete contact), and the interfacial separation approaches zero. The numerical results have been compared with analytical theory and experimental results. They are in good agreement with each other. The present findings may be very important for soft solids, e.g. rubber, or for very smooth surfaces, where complete contact can be reached at moderately high loads without plastic deformation of the solids

  16. Phthalates in soft PVC products used in food production equipment and in other food contact materials on the Danish and the Nordic Market 2013-2014

    DEFF Research Database (Denmark)

    Petersen, Jens Højslev; Jensen, Lisbeth Krüger

    2016-01-01

    they were well-known endocrine disruptors. Results of the Danish Food Authorities control in 2008 and 2009 showed 23 % non-compliant samples. Critical FCMs turned out to be those made from plasticised PVC and sold as suitable for contact with fatty foodstuffs. Targeted follow up control campaigns were...

  17. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  18. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  19. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  20. Study on Prevalence, Antibiotic Susceptibility, and tuf Gene Sequence-Based Genotyping of Species-Level of Coagulase-Negative Staphylococcus Isolated From Keratitis Caused by Using Soft Contact Lenses.

    Science.gov (United States)

    Faghri, Jamshid; Zandi, Alireza; Peiman, Alireza; Fazeli, Hossein; Esfahani, Bahram Nasr; Safaei, Hajieh Ghasemian; Hosseini, Nafiseh Sadat; Mobasherizadeh, Sina; Sedighi, Mansour; Burbur, Samaneh; Oryan, Golfam

    2016-03-01

    To study on antibiotic susceptibility and identify coagulase-negative Staphylococcus (CoNS) species based on tuf gene sequencing from keratitis followed by using soft contact lenses in Isfahan, Iran, 2013. This study examined 77 keratitis cases. The samples were cultured and the isolation of CoNS was done by phenotypic tests, and in vitro sensitivity testing was done by Kirby-Bauer disk diffusion susceptibility method. Thirty-eight of isolates were conveniently identified as CoNS. In this study, 27 (71.1%), 21 (55.3%), and 16 (42.1%) were resistant to penicillin, erythromycin, and tetracycline, respectively. One hundred percent of isolates were sensitive to gentamicin, and 36 (94.7%) and 33 (86.8%) of isolates were sensitive to chloramphenicol and ciprofloxacin, respectively. Also, resistances to cefoxitin were 7 (18.4%). Analysis of tuf gene proved to be discriminative and sensitive in which all the isolates were identified with 99.0% similarity to reference strains, and Staphylococcus epidermidis had the highest prevalence among other species. Results of this study showed that CoNS are the most common agents causing contact lens-associated microbial keratitis, and the tuf gene sequencing analysis is a reliable method for distinguishing CoNS species. Also gentamycin, chloramphenicol, and ciprofloxacin are more effective than the other antibacterial agents against these types of bacteria.

  1. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    Science.gov (United States)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  2. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  3. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  4. A Class I UV-blocking (senofilcon A) soft contact lens prevents UVA-induced yellow fluorescence and NADH loss in the rabbit lens nucleus in vivo.

    Science.gov (United States)

    Giblin, Frank J; Lin, Li-Ren; Simpanya, Mukoma F; Leverenz, Victor R; Fick, Catherine E

    2012-09-01

    It is known that fluorescence, much of it caused by UVA light excitation, increases in the aging human lens, resulting in loss of sharp vision. This study used an in vivo animal model to investigate UVA-excited fluorescence in the rabbit lens, which contains a high level of the UVA chromophore NADH, existing both free and bound to λ-crystallin. Also, the ability of a Class I (senofilcon A) soft contact lens to protect against UVA-induced effects on the rabbit lens was tested. Rabbit eyes were irradiated with UVA light in vivo (100 mW/cm(2) on the cornea) for 1 h using monochromatic 365 nm light. Irradiation was conducted in the presence of either a senofilcon A contact lens, a minimally UV-absorbing lotrafilcon A contact lens, or no contact lens at all. Eyes irradiated without a contact lens showed blue 365 nm-excited fluorescence initially, but this changed to intense yellow fluorescence after 1 h. Isolated, previously irradiated lenses exhibited yellow fluorescence originating from the lens nucleus when viewed under 365 nm light, but showed normal blue fluorescence arising from the cortex. Previously irradiated lenses also exhibited a faint yellow color when observed under visible light. The senofilcon A contact lens protected completely against the UVA-induced effects on fluorescence and lens yellowing, whereas the lotrafilcon A lens showed no protection. The UVA-exposure also produced a 53% loss of total NADH (free plus bound) in the lens nucleus, with only a 13% drop in the anterior cortex. NADH loss in the nucleus was completely prevented with use of a senofilcon A contact lens, but no significant protection was observed with a lotrafilcon A lens. Overall, the senofilcon A lens provided an average of 67% protection against UVA-induced loss of four pyridine nucleotides in four different regions of the lens. HPLC analysis with fluorescence detection indicated a nearly six-fold increase in 365 nm-excited yellow fluorescence arising from lens nuclear

  5. Skin Hydration Assessment through Modern Non-Invasive Bioengineering Technologies.

    Science.gov (United States)

    Constantin, Maria-Magdalena; Poenaru, Elena; Poenaru, Calin; Constantin, Traian

    2014-03-01

    Non-invasive bioengineering technologies continuously discovered and developed in recent decades provide a significant input to research development and remarkably contribute to the improvement of medical education and care to our patients. Assessing skin hydration by using the capacitance method for a group of patients with allergic contact dermatitis versus healthy subjects, before and after applying a moisturiser (assessing the immediate and long-term effectiveness of hydration). For both groups, but especially for the patients with dry skin, there was a clear improvement of hydration, statistically significant after applying the moisturiser. In the case of the patients with allergic contact dermatitis, hydration was at a maximum immediately after the first application, and then maintained an increased level after 7 and 28 days, respectively. In the healthy subjects, the increase in hydration was lower, but progressive. The moisturiser determined an increase in hydration for all age groups, but those who showed the most obvious effect were the young adults (18-29 years old) with an increase of 19.9%.The maintenance effect of hydration lasted for 28 days, while the improvement was important for allergic skin (17.1%) and significant for healthy skin (10.9%). The assessment of epidermal hydration performed by using the corneometer showed very good hydration of the stratum corneum for both groups studied, with immediate and long-term effect. This study also showed that the degree of skin hydration was inversely proportional with age. The corneometer is easy to use, efficient and widely utilised in international studies for measurements in healthy or pathological conditions, for quantitative assessment of the effectiveness of various preparations intended for application to the skin surface, under well-controlled and standardised conditions.

  6. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  7. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  8. BSR and methane hydrates: New challenges for geophysics and rock physics

    Energy Technology Data Exchange (ETDEWEB)

    Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics

    1996-12-31

    It is generally accepted that solid gas hydrates which form within the uppermost few hundred meters of the sea floor are responsible for so-called Bottom Simulating Reflectors (BSRs) at continental margins. Gas to solid volumetric ratio in recovered hydrate samples may be as large as 170. Consequently, huge amounts of compressed methane (more than twice all recoverable and nonrecoverable oil, gas, and coal on earth) may exist under earth`s oceans. These hydrates are a potential energy resource, they influence global warming and effect seafloor mechanical stability. It is possible, in principle, to obtain a quantitative estimate of the amount and state of existing hydrates by relating seismic velocity to the volume of gas hydrate in porous sediments. This can be done by linking the elastic properties of hydrated sediments to their internal structure. The authors approach this problem by examining two micromechanical models of hydrate deposition in the pore space: (1) the hydrate cements grain contacts and thus significantly stiffens the sediment; and (2) the hydrate is located away from grain contacts and only weakly affects the stiffness of the sediment frame. To discriminate between the two models the authors use the Amplitude Versus Offset (AVO) technique of seismic data processing. This approach allows them to estimate the amount of gas hydrates in the pore space, and also to tell whether the permeability of the hydrated sediment is high or low. The latter is important for determining whether free methane can be trapped underneath a BSR.

  9. Bilateral Acanthamoeba ulcer in a user of disposable soft contact lenses: a tragic incident or a consequence of the aggressive policy of soft contact lens trading? Úlcera bilateral por Acanthamoeba em usuária de lentes de contato gelatinosas descartáveis: um incidente trágico ou uma conseqüência da política agressiva de venda de lentes de contato gelatinosas?

    Directory of Open Access Journals (Sweden)

    Sidney Júlio de Faria e Sousa

    2008-06-01

    Full Text Available This is the report of a case of bilateral Acanthamoeba keratitis in a 19-year-old woman who bought a pair of disposable soft contact lenses in a boutique. She wore this same pair of lenses for 3 months daily without the appropriate care. This led to bilateral corneal transplantation with cataract extraction and also trabeculectomy in the right eye. When last seen, both grafts were crystal clear but the visual acuities were far from satisfactory. She also had bilateral secondary glaucoma, barely controlled by topical medication. Actually, the physical features and the wearing time characteristics of the disposable soft contact lenses created unprecedented difficulties to the medical surveillance of their wearers. Without the right assistance they tend to become careless regarding routine cleaning. They also feel free to buy less expensive lenses, to use saline instead of lens solutions, to violate the limits of wearing time and to extend the use over the sleeping period. Additionally, the aggressive marketing and the wide distribution of these lenses increase the chances that economically or educationally unprepared people will acquire them. The question that remains is: Is the present case an accidental event or an example of what is likely to happen in the future if the indiscriminate selling of disposable soft contact lenses continues to evolve?Este é o relato de uma paciente do sexo feminino, de 19 anos, com ceratite bilateral por Acanthamoeba, devido ao uso de lentes de contato descartáveis, adquiridas em uma butique. Fez uso do mesmo par de lentes durante três meses, sem os cuidados adequados. Foi submetida a transplante penetrante de córnea e facectomia bilateral, além de trabeculectomia no olho direito. Quando vista pela última vez, os enxertos estavam transparentes, mas a visão de ambos os olhos não era satisfatória. Ela também apresentava glaucoma secundário bilateral, controlado precariamente com medicação tópica. Ocorre

  10. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  11. Desempenho visual de lentes de contato gelatinosas de diferentes tipos baseado na análise de frentes de onda Optical performance of different soft contact lenses based on wavefront analysis

    Directory of Open Access Journals (Sweden)

    Roberta Fagnani Gatti

    2008-12-01

    valor médio de outras aberrações de alta ordem (que exclui coma de terceira ordem e aberração esférica de quarta ordem, caracterizada pelo componente "outros" no exame de aberrometria. As lentes Focus® Choice AB apresentaram melhor desempenho visual em relação a este componente. CONCLUSÕES: O uso de lentes de contato gelatinosas alteram o comportamento das aberrações de alta ordem, com tendência ao aumento no valor médio das aberrações de Zernike assimétricas. Tal tendência ao aumento não foi verificada para as aberrações simétricas. Não foram encontradas diferenças estatisticamente significantes ao compararmos o padrão de influência obtido com os seis tipos de lentes incluídos no estudo.PURPOSE: To evaluate the visual performance by wavefront analyses of six different kinds of soft contact lenses: Cooperflex® (Cooper Vision, Frequency® 55 Aspheric (Cooper Vision, World Vision FW® (World Vision, Pure Vision® (Bausch & Lomb, Focus® Monthly (Ciba Vision and Focus® Choice AB (Ciba Vision. METHODS: A prospective study was performed with 130 eyes of 71 myopic or hyperopic patients with astigmatism until 1.50 diopter and best corrected visual acuity 20/20 or better. The patients first underwent ophthalmic examination and then wavefront analyses without visual correction and wearing one of the different contact lenses included in the study. The patients were divided into six similar groups, each one tested with one of the six lenses included in the study. RESULTS: Changes at the values of high order aberrations were verified during the use of contact lenses. In 78 (60% of the 130 analyzed eyes an increase at the RMS (rooth mean square values during the use of contact lens was detected. All types of analyzed contact lenses showed an increase of "coma" aberrations due to contact lens use. Frequency® Aspheric and Cooperflex® had the best visual performance in relation to "coma". There was a decrease in the medium value of spherical aberrations

  12. Straylight Measurements in Contact Lens Wear

    NARCIS (Netherlands)

    van der Meulen, Ivanka J. E.; Engelbrecht, Leonore A.; van Vliet, Johannes M. J.; Lapid-Gortzak, Ruth; Nieuwendaal, Carla P.; Mourits, Maarten P.; Schlingemann, Reinier O.; van den Berg, Thomas J. T. P.

    2010-01-01

    Purpose: (1) To quantify the effect of contact lens wear on straylight in rigid and soft contact lens wearers and (2) to relate findings to morphological changes and subjective complaints. Methods: Straylight was measured using the Oculus C-Quant during contact lens wear and after contact lens

  13. Soft Interfaces

    International Nuclear Information System (INIS)

    Strzalkowski, Ireneusz

    1997-01-01

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  14. Soft leptogenesis

    International Nuclear Information System (INIS)

    D'Ambrosio, Giancarlo; Giudice, Gian F.; Raidal, Martti

    2003-01-01

    We study 'soft leptogenesis', a new mechanism of leptogenesis which does not require flavour mixing among the right-handed neutrinos. Supersymmetry soft-breaking terms give a small mass splitting between the CP-even and CP-odd right-handed sneutrino states of a single generation and provide a CP-violating phase sufficient to generate a lepton asymmetry. The mechanism is successful if the lepton-violating soft bilinear coupling is unconventionally (but not unnaturally) small. The values of the right-handed neutrino masses predicted by soft leptogenesis can be low enough to evade the cosmological gravitino problem

  15. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  16. Language Contact.

    Science.gov (United States)

    Nelde, Peter Hans

    1995-01-01

    Examines the phenomenon of language contact and recent trends in linguistic contact research, which focuses on language use, language users, and language spheres. Also discusses the role of linguistic and cultural conflicts in language contact situations. (13 references) (MDM)

  17. Soft Robotics.

    Science.gov (United States)

    Whitesides, George M

    2018-04-09

    This description of "soft robotics" is not intended to be a conventional review, in the sense of a comprehensive technical summary of a developing field. Rather, its objective is to describe soft robotics as a new field-one that offers opportunities to chemists and materials scientists who like to make "things" and to work with macroscopic objects that move and exert force. It will give one (personal) view of what soft actuators and robots are, and how this class of soft devices fits into the more highly developed field of conventional "hard" robotics. It will also suggest how and why soft robotics is more than simply a minor technical "tweak" on hard robotics and propose a unique role for chemistry, and materials science, in this field. Soft robotics is, at its core, intellectually and technologically different from hard robotics, both because it has different objectives and uses and because it relies on the properties of materials to assume many of the roles played by sensors, actuators, and controllers in hard robotics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  19. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  20. Soft Active Materials for Actuation, Sensing, and Electronics

    OpenAIRE

    Kramer, Rebecca Krone

    2012-01-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components ...

  1. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    Science.gov (United States)

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  2. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  3. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  4. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  5. Dehydration behaviour of hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dette, S.S.; Stelzer, T.; Jones, M.J.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, 06099 Halle (Germany)

    2010-07-15

    Immersing a crystalline solvate in a suitable anti-solvent can induce phase transformation to solvent-free solid phase. In certain cases the solvent-mediated phase transition results in the generation of hollow, tubular structures. Both the tube dimensions of sodium-2-keto-L-gulonate anhydrate (skga) and the dehydration kinetics of sodium-2-keto-L-gulonate monohydrate (skgm) can be modified by the antisolvent employed. An explanation for the variable dehydration behaviour of skgm in the antisolvents is presented here. Furthermore, other crystalline hydrates were dehydrated in dry methanol. Providing an operational window can be found, any hydrate material could possibly find use in the production of tubes (micro- or nanotubes for different applications). The experimental conditions selected (dry methanol as antisolvent, dehydration temperature at 25 C) for the dehydration did not lead to the anhydrate tube growth for all hydrates investigated. Based upon the results presented here a first hypothesis is presented to explain this effect. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  7. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  8. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...... archiving. The Soft Clouding Project is part of LARM - a major infrastructure combining research in and access to sound and radio archives in Denmark. In 2012 the LARM infrastructure will consist of more than 1 million hours of radio, combined with metadata who describes the content. The idea is to analyse...... the concept of ‘infrastructure’ and ‘interface’ on a creative play with the fundamentals of LARM (and any sound archive situation combining many kinds and layers of data and sources). This paper will present and discuss the Soft clouding project from the perspective of the three practices and competencies...

  9. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

    2011-04-01

    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  10. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  11. Soft electronics for soft robotics

    Science.gov (United States)

    Kramer, Rebecca K.

    2015-05-01

    As advanced as modern machines are, the building blocks have changed little since the industrial revolution, leading to rigid, bulky, and complex devices. Future machines will include electromechanical systems that are soft and elastically deformable, lending them to applications such as soft robotics, wearable/implantable devices, sensory skins, and energy storage and transport systems. One key step toward the realization of soft systems is the development of stretchable electronics that remain functional even when subject to high strains. Liquid-metal traces embedded in elastic polymers present a unique opportunity to retain the function of rigid metal conductors while leveraging the deformable properties of liquid-elastomer composites. However, in order to achieve the potential benefits of liquid-metal, scalable processing and manufacturing methods must be identified.

  12. Soft, Embodied, Situated & Connected

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    relationship with textiles, as they are one of the few products worn much of the time, often in direct contact with the body. When designing wearables a designer must consider a range of requirements that do not typically demand focus when designing products that are not worn, including: sensitivity...... to material detail; an eye for fit and comfort on bodies with diverse shapes and movement capabilities; openness to a diversity of meanings that may be generated; as well as consideration of wearers’ intimate relations with technology. Soft wearables allow for greater scope within these requirements...

  13. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  14. Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2017-12-01

    Full Text Available Almost 98% of methane hydrate is stored in the seawater environment, the study of microscopic mechanism for methane hydrate dissociation on the sea floor is of great significance to the development of hydrate production, involving a three-phase coexistence system of seawater (3.5% NaCl + hydrate + methane gas. The molecular dynamics method is used to simulate the hydrate dissociation process. The dissociation of hydrate system depends on diffusion of methane molecules from partially open cages and a layer by layer breakdown of the closed cages. The presence of liquid or gas phases adjacent to the hydrate has an effect on the rate of hydrate dissociation. At the beginning of dissociation process, hydrate layers that are in contact with liquid phase dissociated faster than layers adjacent to the gas phase. As the dissociation continues, the thickness of water film near the hydrate-liquid interface became larger than the hydrate-gas interface giving more resistance to the hydrate dissociation. Dissociation rate of hydrate layers adjacent to gas phase gradually exceeds the dissociation rate of layers adjacent to the liquid phase. The difficulty of methane diffusion in the hydrate-liquid side also brings about change in dissociation rate.

  15. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  16. Anti-Agglomerator of Tetra-n-Butyl Ammonium Bromide Hydrate and Its Effect on Hydrate-Based CO2 Capture

    Directory of Open Access Journals (Sweden)

    Rong Li

    2018-02-01

    Full Text Available Tetra-n-butyl ammonium bromide (TBAB was widely used in the research fields of cold storage and CO2 hydrate separation due to its high phase change latent heat and thermodynamic promotion for hydrate formation. Agglomeration always occurred in the process of TBAB hydrate generation, which led to the blockage in the pipeline and the separation apparatus. In this work, we screened out a kind of anti-agglomerant that can effectively solve the problem of TBAB hydrate agglomeration. The anti-agglomerant (AA is composed of 90% cocamidopropyl dimethylamine and 10% glycerol, which can keep TBAB hydrate of 19.3–29.0 wt. % in a stable state of slurry over 72 h. The microscopic observation of the morphology of the TBAB hydrate particles showed that the addition of AA can greatly reduce the size of the TBAB hydrate particles. CO2 gas separation experiments found that the addition of AA led to great improvement on gas storage capacity, CO2 split fraction and separation factor, due to the increasing of contact area between gas phase and hydrate particles. The CO2 split fraction and separation factor with AA addition reached up to 70.3% and 42.8%, respectively.

  17. Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand

    Science.gov (United States)

    Waite, W.F.; deMartin, B.J.; Kirby, S.H.; Pinkston, J.; Ruppel, C.D.

    2002-01-01

    Using von Herzen and Maxwell's needle probe method, we measured thermal conductivity in four porous mixtures of quartz sand and methane gas hydrate, with hydrate composing 0, 33, 67 and 100% of the solid volume. Thermal conductivities were measured at a constant methane pore pressure of 24.8 MPa between -20 and +15??C, and at a constant temperature of -10??C between 3.5 and 27.6 MPa methane pore pressure. Thermal conductivity decreased with increasing temperature and increased with increasing methane pore pressure. Both dependencies weakened with increasing hydrate content. Despite the high thermal conductivity of quartz relative to methane hydrate, the largest thermal conductivity was measured in the mixture containing 33% hydrate rather than in hydrate-free sand. This suggests gas hydrate enhanced grain-to-grain heat transfer, perhaps due to intergranular contact growth during hydrate synthesis. These results for gas-filled porous mixtures can help constrain thermal conductivity estimates in porous, gas hydrate-bearing systems.

  18. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  19. Effect of gas hydrates melting on seafloor slope stability

    Science.gov (United States)

    Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.; Haflidason, H.; Sejrup, H. P.

    2003-04-01

    Quantitative studies of kinetics of gas hydrate formation and dissociation is of a particular concern to the petroleum industry for an evaluation of environmental hazards in deep offshore areas. Gas hydrate dissociation can generate excess pore pressure that considerably decreases the strength of the soil. In this paper, we present a theoretical study of the thermodynamic chemical equilibrium of gas hydrate in soil, which is based on models previously reported by Handa (1989), Sloan (1998) and Henry (1999). Our study takes into account the influence of temperature, pressure, pore water chemistry, and the pore size distribution of the sediment. This model fully accounts for the latent heat effects, as done by Chaouch and Briaud (1997) and Delisle et al. (1998). It uses a new formulation based on the enthalpy form of the law of conservation of energy. The model allows for the evaluation of the excess pore pressure generated during gas hydrate dissociation using the Soave’s (1972) equation of state. Fluid flow in response to the excess pore pressure is simulated using the finite element method. In the second part of the paper, we present and discuss an application of the model through a back-analysis of the case of the giant Storegga slide on the Norwegian margin. Two of the most important changes during and since the last deglaciation (hydrostatic pressure due to the change of the sea level and the increase of the sea water temperature) were considered in the calculation. Simulation results are presented and discussed. Chaouch, A., &Briaud, J.-L., 1997. Post melting behavior of gas hydrates in soft ocean sediments, OTC-8298, in 29th offshore technology conference proceedings, v. 1, Geology, earth sciences and environmental factors: Society of Petroleum Engineers, p. 217-224. Delisle, G.; Beiersdorf, H.; Neben, S.; Steinmann, D., 1998. The geothermal field of the North Sulawesi accretionary wedge and a model on BSR migration in unstable depositional environments. in

  20. Natural Gas Hydrates in the Offshore Beaufort-Mackenzie Basin-Study of a Feasible Energy Source II

    International Nuclear Information System (INIS)

    Majorowicz, J. A.; Hannigan, P. K.

    2000-01-01

    In the offshore part of Beaufort-Mackenzie Basin depth of methane hydrate stability reaches more than 1.5 km. However, there are areas in the western part of the basin where there are no conditions of methane hydrate stability. Construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost in the offshore area, shows that these zones can reach 1200 m and 900 m, respectively. Depth to the base of ice-bearing relict permafrost under the sea (depth of the -1 o C isotherm-ice-bearing permafrost base) and regional variations of geothermal gradient are the main controlling factors. Hydrostatic pressures in the upper 1500 m are the rule. History of methane hydrate stability zone is related mainly to the history of permafrost and it reached maximum depth in early Holocene. More recently, the permafrost and hydrate zone is diminishing because of sea transgression. Reevaluation of the location of possible gas hydrate occurrences is done from the analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone. In the offshore Beaufort-Mackenzie Basin, methane hydrate occurs in 21 wells. Nine of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate-stability zone described in this study. Interpretation of geological cross sections and maps of geological sequences reveals that hydrates are occurring in the Iperk-Kugmallit sequence. Hydrate-gas contact zones, however, are possible in numerous situations. As there are no significant geological seals in the deeper part of the offshore basin (all hydrates are within Iperk), it is suggested that overlying permafrost and hydrate stability zone acted as the only trap for upward migrating gas during the last tens of thousand of years (i.e., Sangamonian to Holocene)

  1. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  2. The temperature hydration kinetics

    Directory of Open Access Journals (Sweden)

    Mircea Oroian

    2017-07-01

    Full Text Available The aim of this study is to evaluate the hydration kinetics of lentil seeds (Lens culinaris in water at different temperatures (25, 32.5, 40, 55, 70 and 80 °C for assessing the adequacy of models for describing the absorption phenomena during soaking. The diffusion coefficient values were calculated using Fick’s model for spherical and hemispherical geometries and the values were in the range of 10−6 m2/s. The experimental data were fitted to Peleg, Sigmoidal, Weibull and Exponential models. The models adequacy was determined using regression coefficients (R2, root mean square error (RMSE and reduced chi-square (χ2. The Peleg model is the suitable one for predicting the experimental data. Temperature had a positive and significant effect on the water absorption capacities and absorption was an endothermic process.

  3. A dissolution-diffusion sliding model for soft rock grains with hydro-mechanical effect

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2018-06-01

    Full Text Available The deformation and failure of soft rock affected by hydro-mechanical (HM effect are one of the most concerns in geotechnical engineering, which are basically attributed to the grain sliding of soft rock. This study tried to develop a dissolution-diffusion sliding model for the typical red bed soft rock in South China. Based on hydration film, mineral dissolution and diffusion theory, and geochemical thermodynamics, a dissolution-diffusion sliding model with the HM effect was established to account for the sliding rate. Combined with the digital image processing technology, the relationship between the grain size of soft rock and the amplitude of sliding surface was presented. An equation for the strain rate of soft rocks under steady state was also derived. The reliability of the dissolution-diffusion sliding model was verified by triaxial creep tests on the soft rock with the HM coupling effect and by the relationship between the inversion average disjoining pressure and the average thickness of the hydration film. The results showed that the sliding rate of the soft rock grains was affected significantly by the waviness of sliding surface, the shear stress, and the average thickness of hydration film. The average grain size is essential for controlling the steady-state creep rate of soft rock. This study provides a new idea for investigating the deformation and failure of soft rock with the HM effect. Keywords: Soft rock, Hydro-mechanical (HM effect, Mineral dissolution-diffusion, Grain sliding model

  4. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  5. Soft Robotics Week

    CERN Document Server

    Rossiter, Jonathan; Iida, Fumiya; Cianchetti, Matteo; Margheri, Laura

    2017-01-01

    This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.

  6. Macroscopic investigation of water volume effects on interfacial dynamic behaviors between clathrate hydrate and water.

    Science.gov (United States)

    Cha, Minjun; Couzis, Alexander; Lee, Jae W

    2013-05-14

    This study investigated the effects of the water volume on the interfacial dynamics between cyclopentane (CP) hydrate and water droplet in a CP/n-decane oil mixture. The adhesion force between CP hydrate and various water droplets was determined using the z-directional microbalance. Through repetition of precise measurements over several cycles from contact to detachment, we observed abnormal wetting behaviors in the capillary bridge during the retraction process when the water drop volume is larger than 100 μL. With the increase in water droplet volumes, the contact force between CP hydrate and water also increases up to 300 μL. However, there is a dramatic reduction of increasing rate in the contact forces over 300 μL of water droplet. With the addition of the surfactants of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) to the water droplet, the contact force between CP hydrate and solution droplet exhibits a lower value and a transition volume of the contact force comes with a smaller solution volume of 200 μL. The water volume effects on the liquid wetting of the probe and the size of capillary bridges provide important insight into hydrate growth and aggregation/agglomeration in the presence of free water phase inside gas/oil pipelines.

  7. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  8. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  9. Hydration dependent dynamics in RNA

    International Nuclear Information System (INIS)

    Olsen, Greg L.; Bardaro, Michael F.; Echodu, Dorothy C.; Drobny, Gary P.; Varani, Gabriele

    2009-01-01

    The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in 2 H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state 13 C relaxation measurements, we establish that ns-μs motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration

  10. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan [Institute of Biotechnology CAS, Videnska 1083, 142 20 Prague (Czech Republic)

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  11. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    Science.gov (United States)

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  12. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies

    Science.gov (United States)

    Handwerger, Alexander L.; Rempel, Alan W.; Skarbek, Rob M.

    2017-07-01

    Submarine landslides occur along continental margins at depths that often intersect the gas hydrate stability zone, prompting suggestions that slope stability may be affected by perturbations that arise from changes in hydrate stability. Here we develop a numerical model to identify the conditions under which the destabilization of hydrates results in slope failure. Specifically, we focus on high-saturation hydrate anomalies at fine-grained to coarse-grained stratigraphic boundaries that can transmit bridging stresses that decrease the effective stress at sediment contacts and disrupt normal sediment consolidation. We evaluate slope stability before and after hydrate destabilization. Hydrate anomalies act to significantly increase the overall slope stability due to large increases in effective cohesion. However, when hydrate anomalies destabilize there is a loss of cohesion and increase in effective stress that causes the sediment grains to rapidly consolidate and generate pore pressures that can either trigger immediate slope failure or weaken the surrounding sediment until the pore pressure diffuses away. In cases where failure does not occur, the sediment can remain weakened for months. In cases where failure does occur, we quantify landslide dynamics using a rate and state frictional model and find that landslides can display either slow or dynamic (i.e., catastrophic) motion depending on the rate-dependent properties, size of the stress perturbation, and the size of the slip patch relative to a critical nucleation length scale. Our results illustrate the fundamental mechanisms through which the destabilization of gas hydrates can pose a significant geohazard.

  13. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  14. Detection and context of hydrated mineralogy in the Tyrrhena Terra region, Mars

    Science.gov (United States)

    den Haan, J.; Zegers, T. E.; van Ruitenbeek, F. J. A.; van der Werff, H. M. A.; Rossi, A.

    2008-09-01

    Introduction The discovery of phyllosilicates on Mars [1] has had major implications on the perceived geologic and climatologic evolution of Mars [2]. Not only do phyllosilicates represent a `wet' period on Mars, they might also represent a potentially favorable environment for life. The phyllosilicates have so far exclusively been found in or close to ancient Noachian highland terrain. Those phyllosilicate deposits studied (e.g. [3]) show a clear association between hydrated mineralogy and heavily eroded and crater-saturated outcrops. Phyllosilicates on Earth are associated with a wide variety of geological processes (volcanism, metamorphism, hydrothermal alteration, sedimentation). The occurrence of phyllosilicates on Mars may be equally diverse in nature. To be able to place constraints on the early Martian environment, the processes by which these phyllosilicates formed need to be reconstructed. To derive this information from individual phyllosilicate deposits, it is necessary to interpret their composition in relation to their geological context and relative time relationships. We conducted such an integrated hyperspectral and geological study of the Tyrrhena Terra region. Data products ad methods HRSC data products (both image at 12 m/pixel and stereo-derived DTMs) are used for examining geologic cross-cutting relationships, geomorphologic landforms and visual determination of unit boundaries. Odyssey THEMIS nighttime TIR images are analyzed for spatial variations in thermal inertia. Where available, HRSC is supplemented by higher-resolution visible observations of CTX or MOC. Hyperspectral analysis is conducted using data from the OMEGA hyperspectral instrument. In order to batch-process large amounts of OMEGA data, an IDL/ENVI tool was developed on top of the existing SOFT04, distributed by PSA. The applied atmospheric correction assumes that atmospheric contributions are multiplicative, and follow a power-law distribution with altitude [4]. The ratio of

  15. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    Science.gov (United States)

    Sridhara, Prathyusha

    In 2013, the International Energy Outlook (EIA, 2013) projected that global energy demand will grow by 56% between 2010 and 2040. Despite strong growth in renewable energy supplies, much of this growth is expected to be met by fossil fuels. Concerns ranging from greenhouse gas emissions and energy security are spawning new interests for other sources of energy including renewable and unconventional fossil fuel such as shale gas and oil as well as gas hydrates. The production methods as well as long-term reservoir behavior of gas hydrate deposits have been under extensive investigation. Reservoir simulators can be used to predict the production potentials of hydrate formations and to determine which technique results in enhanced gas recovery. In this work, a new simulation tool, Mix3HydrateResSim (Mix3HRS), which accounts for complex thermodynamics of multi-component hydrate phase comprised of varying hydrate solid crystal structure, is used to perform the CO2-assisted production technique simulations from CH4 hydrate accumulations. The simulator is one among very few reservoir simulators which can simulate the process of CH4 substitution by CO2 (and N2 ) in the hydrate lattice. Natural gas hydrate deposits around the globe are categorized into three different classes based on the characteristics of the geological sediments present in contact with the hydrate bearing deposits. Amongst these, the Class 2 hydrate accumulations predominantly confirmed in the permafrost and along seashore, are characterized by a mobile aqueous phase underneath a hydrate bearing sediment. The exploitation of such gas hydrate deposits results in release of large amounts of water due to the presence of permeable water-saturated sediments encompassing the hydrate deposits, thus lowering the produced gas rates. In this study, a suite of numerical simulation scenarios with varied complexity are considered which aimed at understanding the underlying changes in physical, thermodynamic and

  16. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  17. A high yield process for hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F. [Univ. of Roma La Sapienza, Roma (Italy). Dept. of Chemical Engineering

    2008-07-01

    Due to the large quantities of natural gas stored in deep ocean hydrates, hydrate reservoirs are a substantial energy resource. Hydrates concentrate methane by as much as a factor of 164. As such, several natural gas transportation and storage systems using gas hydrates have been studied, and many of them are nearing practical use. In these systems, the hydrate is produced as a slurry by a spray process at approximately 7 megapascal (MPa), and then shaped into pellets. The use of a spray process, instead of a conventional stirred vessel is necessary in order to reach high hydrate concentrations in the hydrate-ice system. This paper presented a new procedure to produce a bulk of concentrated methane hydrate in a static traditional reactor at moderate pressure, controlling pressure and temperature in the interval between ice melting and the hydrate equilibrium curve. This paper discussed the experimental procedure which included formation of methane hydrate at approximately 5 MPa and 2 degrees Celsius in a reaction calorimeter at a volume of two liters. Results were also discussed. It was concluded that the procedure seemed suitable for the development of a gas hydrate storage and transport technology. It was found that the spray procedure took more time, but could be sped up and made continuous by using two vessels, one for hydrate formation and the other for hydrate concentration. The advantage was the production of a concentrated hydrate, using a simpler equipment and working at lower pressures respect to the spray process. 9 refs., 5 figs.

  18. Soft Tissue Sarcoma

    Science.gov (United States)

    ... muscles, tendons, fat, and blood vessels. Soft tissue sarcoma is a cancer of these soft tissues. There ... have certain genetic diseases. Doctors diagnose soft tissue sarcomas with a biopsy. Treatments include surgery to remove ...

  19. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  20. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  1. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  2. Soft energy

    International Nuclear Information System (INIS)

    Lovins, A.B.

    1978-01-01

    A compact energy concept opposes the existing development course of energy supply. This concept does without projects for opening-up oil and gas occurrences in the Arctic and in offshore seas, and also without a further extension of nuclear energy. Energy consumption is to be stabilized in the long-run on today's level by a utilization of energy which is to be substantially improved in a technical and economic respect. Oil and gas are to be replaced by 'soft', regenerative, mainly decentralized energy sources, in the course of about 30 years time. Solar energy is to be used for heating and service water, biogas as motor fuel being generated primarily from reference which will come from agriculture and forestry. Wind and hydroelectric power are to be used for generating electricity. In the first part, concepts for the present and future energy policy are discussed, in the second part, a lot of figures are given, supporting the respective arguments. In the third part the relationships between social and energy-economic developments are pointed out. (UA) [de

  3. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    Science.gov (United States)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  4. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  5. Fabricating customized hydrogel contact lens

    Science.gov (United States)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  6. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  7. Methods to determine hydration states of minerals and cement hydrates

    International Nuclear Information System (INIS)

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-01-01

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na 2 SO 4 –H 2 O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions

  8. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  9. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    Science.gov (United States)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  10. LANL Contacts

    Science.gov (United States)

    : (505) 665-3664 ethics@lanl.gov Journalist queries Communications Office (505) 667-7000 Media contacts programs and employee resources. General Employee directory Emergency communication Communications Office (505) 667-7000 Ethics & Audits Internal Audit: (505) 665-3104 Ethics Office: (505) 667-7506 Fax

  11. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  12. Hydration modeling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, H.J.H.; Al-Mattarneh, Hashem; Mustapha, Kamal N.; Nuruddin, Muhd Fadhil

    2008-01-01

    The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the

  13. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  14. Changes in the solid state of anhydrous and hydrated forms of sodium naproxen under different grinding and environmental conditions: Evidence of the formation of new hydrated forms.

    Science.gov (United States)

    Censi, Roberta; Rascioni, Riccardo; Di Martino, Piera

    2015-05-01

    particles by liquid nitrogen and by the grinding forces that created a close contact between water and drug. The simultaneous disruption of the crystals, occurring during grinding, and their close contact with water molecules promoted the conversion in higher hydrates. Under the Method D, it was possible to highlight a certain tendency to hydration probably due to a rearrangement of water already present into the hydrates, but results were substantially different from Method B. Thus, summarizing, the different SN forms behave differently under different grinding and environmental conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The soft notion of China's 'soft power'

    OpenAIRE

    Breslin, Shaun

    2011-01-01

    · Although debates over Chinese soft power have increased in\\ud recent years, there is no shared definition of what ‘soft power’\\ud actually means. The definition seems to change depending on\\ud what the observer wants to argue.\\ud · External analyses of soft power often include a focus on\\ud economic relations and other material (hard) sources of power\\ud and influence.\\ud · Many Chinese analyses of soft power focus on the promotion of a\\ud preferred (positive) understanding of China’s inter...

  16. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  17. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  18. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  19. Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process

    International Nuclear Information System (INIS)

    Babu, Ponnivalavan; Kumar, Rajnish; Linga, Praveen

    2013-01-01

    Hydrate based gas separation (HBGS) process with silica sand and silica gel as contact medium was employed to capture CO 2 from fuel gas mixture. Gas uptake measurement at three different pressures (7.5, 8.5 and 9.0 MPa) and 274.15 K were conducted for hydrate formation kinetics and overall conversion of water to hydrate, rate of hydrate formation were determined. Water conversion of up to 36% was achieved with silica sand bed compared to 13% conversion in the silica gel bed. Effect of driving force on the rate of hydrate formation and gas consumption was significant in silica sand bed whereas it was found to be insignificant in silica gel bed. Hydrate dissociation experiments by thermal stimulation (at constant pressure) alone and a combination of depressurization and thermal stimulation were carried out for complete recovery of the hydrated gas. A driving force of 23 K was found to be sufficient to recover all the hydrated gas within 1 h. This study indicates that silica sand can be an effective porous media for separation of CO 2 from fuel gas when compared to silica gel. - Highlights: ► The clathrate process for pre-combustion capture of carbon dioxide in a novel fixed bed reactor is presented. ► Performance of two contact media (silica gel and silica sand) was investigated. ► Water to hydrate conversion was higher in a silica sand column. ► A pressure reduction and thermal stimulation approach is presented for a complete recovery of the hydrated gas

  20. Hole-doping of mechanically exfoliated graphene by confined hydration layers

    NARCIS (Netherlands)

    Bollmann, Tjeerd Rogier Johannes; Antipina, L.Y.; Temmen, M.; Reichling, M.; Sorokin, P.B.

    2015-01-01

    By the use of non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM), we measure the local surface potential of mechanically exfoliated graphene on the prototypical insulating hydrophilic substrate of CaF2(111). Hydration layers confined between the graphene and the

  1. Electrical measurement of the hydration state of the skin surface in vivo.

    Science.gov (United States)

    Tagami, H

    2014-09-01

    Healthy skin surface is smooth and soft, because it is covered by the properly hydrated stratum corneum (SC), an extremely thin and soft barrier membrane produced by the underlying normal epidermis. By contrast, the skin surfaces covering pathological lesions exhibit dry and scaly changes and the SC shows poor barrier function. The SC barrier function has been assessed in vivo by instrumentally measuring transepidermal water loss (TEWL). However, there was a lack of any appropriate method for evaluating the hydration state of the skin surface in vivo until 1980 when we reported the feasibility of employing high-frequency conductance or capacitance to evaluate it quickly and accurately. With such measurements, we can assess easily the moisturizing efficacy of various topical agents in vivo as well as the distribution pattern of water in the SC by combining it with a serial tape-stripping procedure of the skin surface. © 2014 The Author BJD © 2014 British Association of Dermatologists.

  2. Resveratrol-Loaded Lipid Nanocarriers: Correlation between In Vitro Occlusion Factor and In Vivo Skin Hydrating Effect

    Directory of Open Access Journals (Sweden)

    Lucia Montenegro

    2017-12-01

    Full Text Available Lipid nanocarriers show occlusive properties that may be related to their ability to improve skin hydration. The aim of this work was to evaluate the relationship between in vitro occlusion factor and in vivo skin hydration for three types of lipid nanocarriers: nanoemulsions (NEs, solid lipid nanoparticles (SLNs and nanostructured lipid carriers (NLCs. These lipid nanocarriers were loaded with trans-resveratrol (RSV and incorporated in gel vehicles. In vitro occlusion factor was in the order SLNs > NLCs > NEs. Gels containing unloaded or RSV loaded lipid nanocarriers were applied on the back of a hand of 12 healthy volunteers twice a day for one week, recording skin hydration changes using the instrument Soft Plus. An increase of skin hydration was observed for all lipid nanocarriers (SLNs > NLCs > NEs. RSV loading into these nanocarriers did not affect in vitro and in vivo lipid nanocarriers effects. A linear relationship (r2 = 0.969 was observed between occlusion factor and in vivo increase of skin hydration. Therefore, the results of this study showed the feasibility of using the occlusion factor to predict in vivo skin hydration resulting from topical application of different lipid nanocarriers loading an active ingredient with no inherent hydrating activity.

  3. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  4. Fire extinction utilizing carbon dioxide hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, T.; Aida, E.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2008-07-01

    Clathrate hydrates formed with nonflammable gases may be suitable for use as fire extinguishing agents because dissociation of the hydrates results in the temperature decrease in the combustion field and the nonflammable gases released from the dissociated hydrates prevent the supply of the oxygen to the combustion field. This paper discussed experiments in which ordinary ice and dry ice were used to evaluate the performance of CO{sub 2} hydrate as a fire extinguishing agent. The paper described the apparatus and procedure for the preparation of CO{sub 2} hydrate crystals. A schematic of the reactor to form CO{sub 2} hydrate and a photograph of CO{sub 2} hydrate crystal formed in the study were also presented. Other illustrations, photographs, and tables that were presented included a schematic diagram of the experimental apparatus used for the flame extinction experiments; a photograph of CO{sub 2} hydrate powder; sequential video graphs of the flame extinction by the supply of CO{sub 2} hydrate crystals to the methanol pool flame and the relevant illustration; and heat of CO{sub 2} hydrate dissociation, water vaporization and sublimation of dry ice. It was concluded that the critical mass of the CO{sub 2} hydrate required to extinguish a flame was much less than that of ordinary ice, indicating the superiority of CO{sub 2} hydrate to the ice. In addition, the experiments also revealed that the size of the CO{sub 2} hydrate particles had a significant effect on the performance of flame extinction. 5 refs., 2 tabs., 7 figs.

  5. Soft, Embodied, Situated & Connected

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2015-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, they leverage the cultural, sociological and material qualities of textiles, fashion and dress; divers...

  6. Soft, embodied, situated & connected

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Wilde, D.

    2015-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, they leverage the cultural, sociological and material qualities of textiles, fashion and dress; diverse

  7. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.

    Science.gov (United States)

    Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C

    2017-10-01

    Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.

  8. Growth of hydrated gel layers in nuclear waste glasses

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Machiels, A.J.

    1984-01-01

    The hydration kinetics of waste glasses in contact with an aqueous solution has been studied by using three different approaches. Emphasis has been placed on modeling processes in the transition zone defined as the region in which the nature of the glass changes from the original dry glass to an open hydrated structure. The first model relies on concentration-dependent diffusion coefficients to obtain a transition zone in which the ions mobility is extremely low compared to that in the gel layer. In the second model, the transition zone and hydrated layer are treated as distinct phases and it is assumed that ion exchange at their common boundary is the rate-controlling process. The third model treats the transition zone as a thin film of constant thickness and low diffusivity. In the absence of appreciable network dissolution, all three models indicate that growth of the gel layer becomes eventually proportional to the square root of time; however, as long as processes in the transition zone are rate controlling, growth is linearly proportional to time

  9. Tribological performance of Zinc soft metal coatings in solid lubrication

    Science.gov (United States)

    Regalla, Srinivasa Prakash; Krishnan Anirudh, V.; Reddy Narala, Suresh Kumar

    2018-04-01

    Solid lubrication by soft coatings is an important technique for superior tribological performance in machine contacts involving high pressures. Coating with soft materials ensures that the subsurface machine component wear decreases, ensuring longer life. Several soft metal coatings have been studied but zinc coatings have not been studied much. This paper essentially deals with the soft coating by zinc through electroplating on hard surfaces, which are subsequently tested in sliding experiments for tribological performance. The hardness and film thickness values have been found out, the coefficient of friction of the zinc coating has been tested using a pin on disc wear testing machine and the results of the same have been presented.

  10. Soft Congruence Relations over Rings

    Science.gov (United States)

    Xin, Xiaolong; Li, Wenting

    2014-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively. PMID:24949493

  11. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  12. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  13. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    Science.gov (United States)

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  14. Impact of CO{sub 2} hydrates on ocean carbon dioxide deposition options

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P C

    1995-04-01

    The objective of the research project described in this report was to contribute to the research on greenhouse gases and the global environment. The focus is on the concept of storing large amounts of CO{sub 2} in the ocean. The project was divided into three subtasks: (1) a comprehensive study of the thermodynamic, physical and chemical properties of the seawater/CO{sub 2}/hydrate system, (2) establishment of a micro-scale kinetic model for CO{sub 2} hydrate formation and stability, based on (1), and (3) establishment of macro-scale models for various ocean deposition options based on (2). A database of selected thermodynamic functions has been set up. A large database of oceanic data has also been made; for any given coordinates at sea a computer program provides the temperature, salinity and oxygen profiles from the sea surface to the sea floor. The kinetic model predicts the formation and pseudo-stability of a very thin hydrate film which acts as an inhibitor for diffusion of CO{sub 2} into the sea water. The model predicts that the hydrate film reduces the overall flux from a liquid CO{sub 2} source with about 90%. Thermodynamically, pure CO{sub 2} in contact with water might form hydrates at depths below about 400 m, which would indicate that hydrate formation could play a role for all ocean CO{sub 2} deposition options. However, this study shows that other mechanisms significantly reduce the role of hydrate formation. It is finally concluded that although more modelling and experimental work is required within this field of research, the hydrate film may play an important role for all options except from shallow water injection. 86 refs., 32 figs., 16 tabs.

  15. Healthy Contact Lens Wear and Care

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    In this podcast, CDC’s Dr. Jennifer Cope explains some basic steps for proper wear and care of soft contact lenses.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/4/2014.

  16. Physical Properties of Gas Hydrates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  17. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  18. Soft Robotics: from scientific challenges to technological applications

    Science.gov (United States)

    Laschi, C.

    2016-05-01

    Soft robotics is a recent and rapidly growing field of research, which aims at unveiling the principles for building robots that include soft materials and compliance in the interaction with the environment, so as to exploit so-called embodied intelligence and negotiate natural environment more effectively. Using soft materials for building robots poses new technological challenges: the technologies for actuating soft materials, for embedding sensors into soft robot parts, for controlling soft robots are among the main ones. This is stimulating research in many disciplines and many countries, such that a wide community is gathering around initiatives like the IEEE TAS TC on Soft Robotics and the RoboSoft CA - A Coordination Action for Soft Robotics, funded by the European Commission. Though still in its early stages of development, soft robotics is finding its way in a variety of applications, where safe contact is a main issue, in the biomedical field, as well as in exploration tasks and in the manufacturing industry. And though the development of the enabling technologies is still a priority, a fruitful loop is growing between basic research and application-oriented research in soft robotics.

  19. Application of empirical hydration distribution functions around polar atoms for assessing hydration structures of proteins

    International Nuclear Information System (INIS)

    Matsuoka, Daisuke; Nakasako, Masayoshi

    2013-01-01

    Highlights: ► Empirical distribution functions of water molecules in protein hydration are made. ► The functions measure how hydrogen-bond geometry in hydration deviate from ideal. ► The functions assess experimentally identified hydration structures of protein. - Abstract: To quantitatively characterize hydrogen-bond geometry in local hydration structures of proteins, we constructed a set of empirical hydration distribution functions (EHDFs) around polar protein atoms in the main and side chains of 11 types of hydrophilic amino acids (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 113 (2009) 11274). The functions are the ensemble average of possible hydration patterns around the polar atoms, and describe the anisotropic deviations from ideal hydrogen bond geometry. In addition, we defined probability distribution function of hydration water molecules (PDFH) over the hydrophilic surface of a protein as the sum of EHDFs of solvent accessible polar protein atoms. The functions envelop most of hydration sites identified in crystal structures of proteins (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 114 (2010) 4652). Here we propose the application of EHDFs and PDFHs for assessing crystallographically identified hydration structures of proteins. First, hydration water molecules are classified with respect to the geometry in hydrogen bonds in referring EHDFs. Difference Fourier electron density map weighted by PDFH of protein is proposed to identify easily density peaks as candidates of hydration water molecules. A computer program implementing those ideas was developed and used for assessing hydration structures of proteins

  20. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  1. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  2. Soft Sensors and Actuators based on Nanomaterials

    Science.gov (United States)

    Yao, Shanshan

    The focus of this research is using novel bottom-up synthesized nanomaterials and structures to build up devices for wearable sensors and soft actuators. The applications of the wearable sensors towards motion detection and health monitoring are investigated. In addition, flexible heaters for bimorph actuators and stretchable patches made of microgel depots containing drug-loaded nanoparticles (NPs) for stretch-triggered wearable drug delivery are studied. Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to 1 MPa) and finger touch with good sensitivity, fast response time ( 40 ms) and good pressure mapping function were developed. The sensors were demonstrated for several wearable applications including monitoring thumb movements and knee motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. In addition to mechanical sensors, a wearable skin hydration sensor made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix was demonstrated based on skin impedance measurement. The hydration sensors were packaged into a flexible wristband for skin hydration monitoring and a chest patch consisting of a strain sensor, three electrocardiogram (ECG) electrodes and a skin hydration sensor for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless and continuous sensing of skin hydration and other health parameters. Two representative applications of the nanomaterials for soft actuators were investigated. In the first application on bimorph actuation, low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible Ag

  3. Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Chuanhui [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Li Xianguo, E-mail: chuanhuigao@foxmail.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Feng Lijuan; Lu Shaoyan; Liu Jinyan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China)

    2010-03-01

    In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32 deg. from 12.71 deg. and the whiskers surface was changed from hydrophilic to lipophilic.

  4. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Preliminary Report - Cascadia Margin Gas Hydrates, Volume 204 Initial Report Mallik 2002 GSC Bulletin 585 : Scientific results from the Mallik 2002 gas hydrate production well program Offshore gas hydrate sample

  5. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  6. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  7. Tear exchange and contact lenses: a review.

    Science.gov (United States)

    Muntz, Alex; Subbaraman, Lakshman N; Sorbara, Luigina; Jones, Lyndon

    2015-01-01

    Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  8. Soft Active Materials for Actuation, Sensing, and Electronics

    Science.gov (United States)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  9. Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes.

    Science.gov (United States)

    Romanos, Georgios E

    2013-01-01

    Laser dentistry and soft-tissue surgery, in particular, have become widely adopted in recent years. Significant cost reductions for dental lasers and the increasing popularity of CADCAM, among other factors, have contributed to a substantial increase in the installed base of dental lasers, especially soft-tissue lasers. New development in soft-tissue surgery, based on the modern understanding of laser-tissue interactions and contact soft-tissue surgery mechanisms, will bring a higher quality and consistency level to laser soft-tissue surgery. Recently introduced diode-laser technology enables enhanced control of side effects that result from tissue overheating and may improve soft-tissue surgical outcomes.

  10. Contact Lens Care

    Science.gov (United States)

    ... Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More sharing ... www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative Contact ...

  11. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  12. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  13. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  14. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  15. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  17. Effects of soft x-ray irradiation on cell ultrastructure

    International Nuclear Information System (INIS)

    Ford, T.W.; Page, A.M.; Stead, A.D.; Foster, G.F.

    1993-01-01

    The future of X-ray microscopy lies mainly in its potential for imaging fresh, hydrated biological material at a resolution superior to that of light microscopy. For the image to be accepted as representing the cellular organization of the living cell, it is essential that artifacts are not introduced as a result of the image collection system. One possible source of artifacts is cellular damage resulting from the irradiation of the material with soft X-rays. Cells of the unicellular alga Chlorella have been examined by transmission electron microscopy (TEM) following exposure to different doses of monochromatic (380eV) soft X-rays. Extreme ultrastructural damage has been detected following doses of 10 3 -10 4 Gy, in particular loss of cellular membranes such as the internal thylakoid membranes of the chloroplast. This is discussed in relation to dosage commonly used for imaging by soft X-ray microscopy

  18. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  19. Volume of hydration in terminal cancer patients.

    Science.gov (United States)

    Bruera, E; Belzile, M; Watanabe, S; Fainsinger, R L

    1996-03-01

    In this retrospective study we reviewed the volume and modality of hydration of consecutive series of terminal cancer patients in two different settings. In a palliative care unit 203/290 admitted patients received subcutaneous hydration for 12 +/- 8 days at a daily volume of 1015 +/- 135 ml/day. At the cancer center, 30 consecutive similar patients received intravenous hydration for 11.5 +/- 5 days (P > 0.2) but at a daily volume of 2080 +/- 720 ml/day (P palliative care unit patients required discontinuation of hydration because of complications. Hypodermoclysis was administered mainly as a continuous infusion, an overnight infusion, or in one to three 1-h boluses in 62 (31%), 98 (48%) and 43 (21%) patients, respectively. Our findings suggest that, in some settings, patients may be receiving excessive volumes of hydration by less comfortable routes such as the intravenous route. Increased education and research in this area are badly needed.

  20. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  1. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  2. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  3. Applicability of contact angle techniques used in the analysis of contact lenses, part 1: comparative methodologies.

    Science.gov (United States)

    Campbell, Darren; Carnell, Sarah Maria; Eden, Russell John

    2013-05-01

    Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable.

  4. Combined evaluation of nutrition and hydration in dialysis patients with bioelectrical impedance vector analysis (BIVA).

    Science.gov (United States)

    Piccoli, Antonio; Codognotto, Marta; Piasentin, Paola; Naso, Agostino

    2014-08-01

    Body hydration changes continuously in hemodialysis patients. The Subjective Global Assessment (SGA) is used for the nutritional evaluation but it does not allow a direct evaluation of hydration. Bioelectrical impedance vector analysis (BIVA) is very sensitive to hydration. The potential of the combined evaluation of hydration and nutrition with SGA and BIVA is still lacking. Observational cross-sectional study on 130 (94 Male) uremic patients undergoing chronic hemodialysis three times a week. Nutritional status was evaluated with the SGA. Each subject was classified as SGA-A (normal nutritional status), SGA-B (moderate malnutrition), or SGA-C (severe malnutrition). Body hydration was evaluated with BIVA. The two vector components resistance (R) and reactance (Xc) were normalized by the subject's height and standardized as bivariate Z-score, i.e. Z(R) and Z(Xc). Undernutrition influenced impedance vector distribution both before and after a dialysis session. In pre-dialysis, the mean vector of SGA A was inside the 50% tolerance ellipse. In SGA B and C, Z(R) was increased and Z(Xc) decreased, indicating a progressive loss of soft tissue mass. Fluid removal with dialysis increased both Z(R) and Z(Xc) in SGA A and B but not in C. With ROC curve analysis on the slope of increase, we found the cutoff value of 27.8° below which undernutrition was present, either moderate or severe. The area under the ROC curve was 77.7° (95% CI 69.5-84.5, P hydration in each SGA category can be detected with BIVA. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Can hydrate dissolution experiments predict the fate of a natural hydrate system?

    Energy Technology Data Exchange (ETDEWEB)

    Hester, K.C.; Peltzer, E.T.; Dunk, R.M.; Walz, P.M.; Brewer, P.G. [Monterey Bay Aquarium Research Inst., Moss Landing, CA (United States); Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    2008-07-01

    Gas hydrates are naturally occurring compounds found in permafrost regions and in oceans. In the natural environment, sufficient temperature and pressure conditions for hydrate formation exist over a significant portion of the ocean. However, in addition to pressure and temperature, the chemical potential of the gas in the hydrate must be equal to the surrounding waters. If the concentration of the gas in surrounding water is under-saturated with respect to the gas in the hydrate, the hydrate will dissolve to drive the system towards chemical equilibrium. This paper presented a dissolution study of exposed hydrate from outcrops at Barkley Canyon, located off Vancouver Island, British Columbia. A previous field experiment on synthetic methane hydrate samples had demonstrated that mass transfer controlled dissolution in under-saturated seawater. However, seafloor hydrate outcrops have been shown to have significant longevity compared to expected dissolution rates based upon convective boundary layer diffusion calculations. An in-situ dissolution experiment was performed on two distinct natural hydrate fabrics in order to help resolve this apparent disconnect between the dissolution rates of synthetic and natural hydrate. The paper presented a map of Barkley Canyon and discussed the field measurements and methods for the study. Exposed outcrops of gas hydrates were cored using a specially constructed stainless steel coring device and a hydraulic ram was located inside the corer. Hydrate samples were cored directly using the a manipulator arm and then injected into a sampling cell. The hydrate was then added to an open mesh exposure container, which allowed for exposure to ambient benthic currents with minimal disturbance. As well, in order to observe the slow dissolution of the hydrate in seawater at Barkley Canyon, time-lapse photography was employed. Last, the paper presented the results of the hydrate fabric porosities and hydrate dissolution rates. It was

  6. Multi-channel electrical impedance tomography for regional tissue hydration monitoring

    International Nuclear Information System (INIS)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-01-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ∼35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in

  7. Imaging bacterial spores by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-01-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark

  8. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  9. Tension of a Soft Spring in Contact with a Cylinder

    Science.gov (United States)

    Lee, Wen-Tang; Hsiao, Huang-Wen

    2009-01-01

    It is possible for a relatively small force, applied to one end of a rope, to support a much larger force if the rope is merely wrapped a few times around a post. This setup, called a "capstan", has been discussed in a number of papers in this journal and elsewhere. If we wrap a cord around a rough curved surface, T[subscript 1] and T[subscript 2]…

  10. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  11. Hydration of Concrete: The First Steps.

    Science.gov (United States)

    Thissen, Peter; Natzeck, Carsten; Giraudo, Nicolas; Weidler, Peter; Wöll, Christof

    2018-04-12

    Concrete is the most important construction material used by mankind and, at the same time, one of the most complex substances known in materials science. Since this mineral compound is highly porous, a better understanding of its surface chemistry, and in particular the reaction with water, is urgently required to understand and avoid corrosion of infrastructure like buildings and bridges. We have gained insight into proton transfer from concrete upon contact with water by applying the so-called Surface Science approach to a well-defined mineral, Wollastonite. Data from IR (infrared) spectroscopy reveal that exposure of this calcium-silicate (CS) substrate to H 2 O leads to dissociation and the formation of OH-species. This proton transfer is a chemical reaction of key importance, since on the one hand it triggers the conversion of cement into concrete (a calcium-silicate-hydrate phase), but on the other hand also governs the corrosion of concrete. Interestingly, we find that no proton transfer takes place when the same surface is exposed to methanol. In order to understand this unexpected difference, the analysis of the spectroscopic data obtained was aided by a detailed, first-principles computational study employing density functional theory (DFT). The combined experimental and theoretical effort allows derivation of a consistent picture of proton transfer reactions occurring in CS and CSH phases. Implications for strategies to protect this backbone of urban infrastructure from corrosion in harsh, aqueous environments will be discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Soft, embodied, situated & connected: enriching interactions with soft wearbles

    NARCIS (Netherlands)

    Tomico Plasencia, O.; Wilde, D.

    2016-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, soft wearables leverage the cultural, sociological and material qualities of textiles, fashion and dress;

  13. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  14. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  15. Basics of development of gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Makogon, Yuri F.; Holditch, Stephen A.; Makogon, Taras Y.

    2005-07-01

    Natural gas hydrate deposits could possibly be an important energy resource during this century. However, many problems associated with producing these deposits must first be solved. The industry must develop new technologies to produce the gas, to forecast possible tectonic cataclysms in regions of gas hydrate accumulations, and to prevent damage to the environment. These global issues must be addressed by every company or country who wants to produce gas hydrate deposits. Cooperative research between industry and universities can lead to technology breakthroughs in coming years. This paper reviews the Messoyakha field and the Blake Ridge and Nankai areas to explain a methodology for estimating how much gas might be producible from gas hydrate deposits (GHDs) under various conditions. The Messoyakha field is located on land, while the Blake Ridge and Nankai areas are offshore. Messoyakha is the first and the only GHD where gas production from hydrates has reached commercial flow rates. The Blake Ridge GHD has been studied for 20 years and 11 wells have been drilled to collect gas-hydrate samples. The potential resources of gas (gas in place) from Blake Ridge is estimated at 37.7Oe10{sup 12} m{sup 3} (1.330 Tcf) in hydrate form and 19.3Oe10{sup 12}m{sup 3} (681 Bcf) [5] in free gas. To estimate how much of the potential resource can be produced we need a thorough understanding of both the geologic and the thermodynamic characteristics of the formations. (Author)

  16. Gas hydrate exploration activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Keun-Pil Park, K.P. [Korea Inst. of Geoscience and Mineral Resources, Gas Hydrate R and D Organization, Ministry of Knowledge Economy, Yuseong-gu, Daejeon (Korea, Republic of)

    2008-07-01

    Korea's first gas hydrate research project was launched in 1996 to study the gas hydrate potential in the Ulleung Basin of the East Sea. It involved a series of laboratory experiments followed by a preliminary offshore seismic survey and regional reconnaissance geophysical and marine geological surveys. The bottom simulating reflector (BSR) was interpreted to show wide area distribution in the southern part of the Ulleung Basin, and its average burial depth was 187 m below the sea floor in the East Sea. A three-phase 10-year National Gas Hydrate Development Program was launched in 2004 to estimate the potential reserves in the East Sea. It will involve drilling to identify natural gas hydrates and to determine the most optimized production methods. Drilling sites were proposed based on five indicators that imply gas hydrate occurrence, notably BSR, gas vent, enhanced seismic reflection, acoustic blanking and gas seeping structure. The UBGH-X-01 gas hydrate expedition in the East Sea Ulleung Basin involved 5 logging while drilling (LWD) surveys at three high priority sites. One wire line logging was implemented at the site of the UBGH09. A total 334 m of non-pressurized conventional cores and 16 pressure cores were obtained in late 2007. The UBGH-X-01 was successfully completed, recovering many natural samples of gas hydrate from 3 coring sites in the East Sea. 7 refs., 12 figs.

  17. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  18. Possibility Fuzzy Soft Set

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2011-01-01

    Full Text Available We introduce the concept of possibility fuzzy soft set and its operation and study some of its properties. We give applications of this theory in solving a decision-making problem. We also introduce a similarity measure of two possibility fuzzy soft sets and discuss their application in a medical diagnosis problem.

  19. Fixing soft margins

    NARCIS (Netherlands)

    P. Kofman (Paul); A. Vaal, de (Albert); C.G. de Vries (Casper)

    1993-01-01

    textabstractNon-parametric tolerance limits are employed to calculate soft margins such as advocated in Williamson's target zone proposal. In particular, the tradeoff between softness and zone width is quantified. This may be helpful in choosing appropriate margins. Furthermore, it offers

  20. learning and soft skills

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    2000-01-01

    Learning of soft skills are becoming more and more necessary due to the complexe development of modern companies and their environments. However, there seems to be a 'gap' between intentions and reality regarding need of soft skills and the possiblities to be educated in this subject in particular...

  1. Embodying Soft Wearables Research

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    of soft wearables. Throughout, we will experiment with how embodied design research techniques might be shared, developed, and used as direct and unmediated vehicles for their own reporting. Rather than engage in oral presentations, participants will lead each other through a proven embodied method...... and knowledge transfer in the context of soft wearables....

  2. Occupational contact urticaria and protein contact dermatitis.

    Science.gov (United States)

    Doutre, Marie-Sylvie

    2005-01-01

    Irritant dermatitis and eczema are the most prevalent occupational skin diseases. Less common are immediate contact reactions such as contact urticaria and protein contact dermatitis. Occupational contact urticaria can be subdivided into two categories, immunological and non immunological. However, some agents can induce these two types of reactions. Contact urticaria to natural rubber latex is particularly frequent among health care personnel, but contact urticaria to a wide variety of other substances occurs in many other occupations. Among those at risk are cooks, bakers, butchers, restaurant personnel, veterinarians, hairdressers, florists, gardeners, and forestry workers. Protein contact dermatitis in some of these occupations is caused principally by proteins of animal or plant origin, especially among individuals with a history of atopic dermatitis. Diagnosis requires careful interrogation, clinical examination and skin tests (open tests and prick tests with immediate lecture) to identify a particular contact allergen.

  3. Vapor hydration and subsequent leaching of transuranic-containing SRL and WV glasses

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Gerding, T.J.

    1989-09-01

    Prior to contact by liquid water and subsequent leaching, high-level nuclear waste glass subject to disposal in the unsaturated environment at Yucca Mountain, Nevada, will be altered through contact with humid air. Conditions could range from temperatures as high as 200 degree C to ambient repository temperature after cooling and relative humidities up to 100% depending on the air flow and heat transport dynamics of the waste package and near field environments. However, under any potential set of temperature/humidity conditions, the glass will undergo alteration via well-established vapor phase hydration processes. In the present paper, the results of a set of parametric experiments are described, whereby vapor phase hydrated glasses were subjected to leaching under static conditions. The purpose of the experiments was to (1) compare the leaching of vapor phase altered glass to that of fresh glass, (2) to develop techniques for determining the radionuclide content of secondary phases that formed during the hydration reaction, and (3) to provide a basis for performing long-term saturated and unsaturated testing of vapor hydrated glass. 3 refs., 2 figs., 2 tabs

  4. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sergeyev, Ivan V.; Bahri, Salima; McDermott, Ann E., E-mail: aem5@columbia.edu [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Day, Loren A. [Public Health Research Institute, Rutgers University, 225 Warren St., Newark, New Jersey 07103 (United States)

    2014-12-14

    High resolution two- and three-dimensional heteronuclear correlation spectroscopy ({sup 1}H–{sup 13}C, {sup 1}H–{sup 15}N, and {sup 1}H–{sup 13}C–{sup 13}C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1–21 as well as residues 39–40 and 43–46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virion axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water {sup 1}H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water “tunnels” through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.

  5. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Science.gov (United States)

    Braun, Doris E.; Griesser, Ulrich J.

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359

  6. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  7. AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface.

    Science.gov (United States)

    Kim, Seong Han; Opdahl, Aric; Marmo, Chris; Somorjai, Gabor A

    2002-04-01

    The surfaces of two types of soft contact lenses neutral and ionic hydrogels--were characterized by atomic force microscopy (AFM) and sum-frequency-generation (SFG) vibrational spectroscopy. AFM measurements in saline solution showed that the presence of ionic functional groups at the surface lowered the friction and adhesion to a hydrophobic polystyrene tip. This was attributed to the specific interactions of water and the molecular orientation of hydrogel chains at the surface. Friction and adhesion behavior also revealed the presence of domains of non-crosslinked polymer chains at the lens surface. SFG showed that the lens surface became partially dehydrated upon exposure to air. On this partially dehydrated lens surface, the non-crosslinked domains exhibited low friction and adhesion in AFM. Fully hydrated in saline solution, the non-crosslinked domains extended more than tens of nanometers into solution and were mobile.

  8. Soft buckling actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-12-26

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.

  9. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Directory of Open Access Journals (Sweden)

    Ulfah Rimayanti

    Full Text Available PURPOSE: To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP reading changes caused by wearing soft contact lenses (CLs. METHODS: One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL, with -5.0 diopters (D, -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. RESULTS: The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. CONCLUSIONS: Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  10. Ocular surface displacement with and without contact lenses during non-contact tonometry.

    Science.gov (United States)

    Rimayanti, Ulfah; Kiuchi, Yoshiaki; Uemura, Shohei; Takenaka, Joji; Mochizuki, Hideki; Kaneko, Makoto

    2014-01-01

    To evaluate the displacement of the central ocular surface during non-contact tonometry with and without soft contact lenses and determine the factors associated with the displacement of the central ocular surface and intraocular pressure (IOP) reading changes caused by wearing soft contact lenses (CLs). One eye each in 21 subjects was studied. The cornea was photographed using a high-speed camera at 5,000 frames/sec during non-contact tonometry without contact lenses (NCL), with -5.0 diopters (D), -0.5 D and +5.0 D CL. The displacement of the ocular surface and the factors affecting displacement at the IOP reading and maximum displacement time were investigated. The IOP readings while wearing +5 D CL were significantly higher than those obtained while wearing -5 D CL. The ocular surface displacement between +5 D CL and other groups were significantly different. A significant positive correlation was found between the ocular surface displacement of subjects at the IOP reading time and the IOP obtained with the non-contact tonometer. A significant negative correlation was found between the ocular surface curvature and the IOP obtained using the non-contact tonometer. The radius of curvature of the ocular surface affected the displacement during the IOP reading and maximum displacement time. Our results indicate that soft contact lens use changes the ocular surface behavior and IOP readings during non-contact tonometry. The radius of curvature of the eye affects the ocular surface displacement and IOP readings in this situation.

  11. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  12. On the electrolytic generation of hydrated electron

    International Nuclear Information System (INIS)

    Ghosh Mazumdar, A.S.; Guha, S.N.

    1975-01-01

    Investigations on the electrolytic generation of hydrated electron in oxygenated as well as oxygen-free solutions at different pH were undertaken. Since sup(-e)aq is known to react rapidly with O 2 yielding the transient O 2 - ion, the latter was looked for through its interaction with phosphite ions resulting in their oxidation near the cathode. It appears from the results that in electrolytic processes, the primary electron (esup(-)sub(cathode)) probably reacts directly with reactive solutes like oxygen, bypassing the hydration step. Data obtained in oxygen-free solutions, however, support the possible formation of hydrated electron at least in alkaline solutions. (author)

  13. Contact lenses fitting after intracorneal ring segments implantation in keratoconus

    Directory of Open Access Journals (Sweden)

    Luciane Bugmann Moreira

    2013-08-01

    Full Text Available PURPOSE: Evaluate contact lenses fitting after intracorneal ring implantation for keratoconus, its visual acuity and comfort. METHODS: Retrospective study of patients undergoing contact lenses fitting, after intracorneal ring for keratoconus. The criterion for contact lens fitting was unsatisfactory visual acuity with spectacle correction as referred by the patients. All patients were intolerants to contact lenses prior to intracorneal implantation. Visual acuity analysis was done by conversion of Snellen to logMAR scales. The comfort was evaluated according subjective questioning of good, medium or poor comfort. RESULTS: Nineteen patients were included in the study. Two patients (10.5% did not achieved good comfort with contact lenses and underwent penetrating keratoplasties. All the others 17 patients showed good or medium comfort. Four rigid gas-permeable contact lenses were fitted, one piggyback approach, 3 toric soft contact lenses, 2 soft lenses specially design for keratoconus and 7 disposable soft lenses. The average visual acuity improved from 0.77 ± 0.37 to 0.19 ± 0.13 logMAR units after contact lenses fitting. CONCLUSION: Contact lens fitting after intracorneal ring is possible, provides good comfort, improves visual acuity, and therefore, may postpone the need for penetrating keratoplasty.

  14. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  15. The Soft Palate Friendly Speech Bulb for Velopharyngeal Insufficiency

    OpenAIRE

    Kahlon, Sukhdeep Singh; Kahlon, Monaliza; Gupta, Shilpa; Dhingra, Parvinder Singh

    2016-01-01

    Velopharyngeal insufficiency is an anatomic defect of the soft palate making palatopharyngeal sphincter incomplete. It is an important concern to address in patients with bilateral cleft lip and palate. Speech aid prosthesis or speech bulbs are best choice in cases where surgically repaired soft palate is too short to contact pharyngeal walls during function but these prosthesis have been associated with inadequate marginal closure, ulcerations and patient discomfort. Here is a case report of...

  16. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  17. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  18. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... Costume Contact Lenses Can Ruin Vision Eye Makeup Safety In fact, it is illegal to sell colored ...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses ...

  1. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  2. Oceanic hydrates: more questions than answers

    International Nuclear Information System (INIS)

    Laherrere, Jean

    2000-01-01

    Methane hydrates create problems by blocking pipelines and casing; they are also accused of contributing to environmental problems (e.g. global warming). Methane hydrates are also found in permafrost areas and in oceanic sediments where the necessary temperature and pressure for stability occur. Claims for the widespread occurrence in thick oceanic deposits are unfounded: apparently indirect evidence from seismic reflectors, seismic hydrocarbon indicators, logs and free samples is unreliable. At one time, hydrate was seen as a static, biogenic, continuous, huge resource but that view is changing to one of a dynamic, overpressurised, discontinuous and unreliable resource. Only Japan and India are currently showing any serious interest in hydrates. Academic research has raised more questions than answers. It is suggested that more hard exploratory evidence rather than theoretical study is required

  3. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  4. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  5. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  6. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  7. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  8. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces

    Directory of Open Access Journals (Sweden)

    Muhammad Shabir

    2017-06-01

    Full Text Available Bipolar soft topological spaces are mathematical expressions to estimate interpretation of data frameworks. Bipolar soft theory considers the core features of data granules. Bipolarity is important to distinguish between positive information which is guaranteed to be possible and negative information which is forbidden or surely false. Connectedness and compactness are the most important fundamental topological properties. These properties highlight the main features of topological spaces and distinguish one topology from another. Taking this into account, we explore the bipolar soft connectedness, bipolar soft disconnectedness and bipolar soft compactness properties for bipolar soft topological spaces. Moreover, we introduce the notion of bipolar soft disjoint sets, bipolar soft separation, and bipolar soft hereditary property and study on bipolar soft connected and disconnected spaces. By giving the detailed picture of bipolar soft connected and disconnected spaces we investigate bipolar soft compact spaces and derive some results related to this concept.

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  10. Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue hydration effects.

    Science.gov (United States)

    Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B

    2000-12-01

    Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.

  11. Soft-Material Robotics

    OpenAIRE

    Wang, L; Nurzaman, SG; Iida, Fumiya

    2017-01-01

    There has been a boost of research activities in robotics using soft materials in the past ten years. It is expected that the use and control of soft materials can help realize robotic systems that are safer, cheaper, and more adaptable than the level that the conventional rigid-material robots can achieve. Contrary to a number of existing review and position papers on soft-material robotics, which mostly present case studies and/or discuss trends and challenges, the review focuses on the fun...

  12. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene; Vidal, Rene Victor Valqui

    2006-01-01

    ’s interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable for supporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  13. Evaluating Six Soft Approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Valqui Vidal, René Victor

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  14. Evaluating six soft approaches

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup; Vidal, Rene Victor Valqui

    2008-01-01

    's interactive planning principles to be supported by soft approaches in carrying out the principles in action. These six soft approaches are suitable forsupporting various steps of the strategy development and planning process. These are the SWOT analysis, the Future Workshop, the Scenario methodology......, Strategic Option Development and Analysis, Strategic Choice Approach and Soft Systems Methodology. Evaluations of each methodology are carried out using a conceptual framework in which the organisation, the result, the process and the technology of the specific approach are taken into consideration. Using...

  15. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  16. Preservation of methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  17. Contact Lens Visual Rehabilitation in Keratoconus and Corneal Keratoplasty

    Directory of Open Access Journals (Sweden)

    Yelda Ozkurt

    2012-01-01

    Full Text Available Keratoconus is the most common corneal distrophy. It’s a noninflammatory progressive thinning process that leads to conical ectasia of the cornea, causing high myopia and astigmatism. Many treatment choices include spectacle correction and contact lens wear, collagen cross linking, intracorneal ring segments implantation and finally keratoplasty. Contact lenses are commonly used to reduce astigmatism and increase vision. There are various types of lenses are available. We reviewed soft contact lenses, rigid gas permeable contact lenses, piggyback contact lenses, hybrid contact lenses and scleral-semiscleral contact lenses in keratoconus management. The surgical option is keratoplasty, but even after sutur removal, high astigmatism may stil exists. Therefore, contact lens is an adequate treatment option to correct astigmatism after keratoplasty.

  18. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  19. ATLAS soft QCD results

    CERN Document Server

    Sykora, Tomas; The ATLAS collaboration

    2018-01-01

    Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.

  20. Dynamics of Soft Matter

    CERN Document Server

    García Sakai, Victoria; Chen, Sow-Hsin

    2012-01-01

    Dynamics of Soft Matter: Neutron Applications provides an overview of neutron scattering techniques that measure temporal and spatial correlations simultaneously, at the microscopic and/or mesoscopic scale. These techniques offer answers to new questions arising at the interface of physics, chemistry, and biology. Knowledge of the dynamics at these levels is crucial to understanding the soft matter field, which includes colloids, polymers, membranes, biological macromolecules, foams, emulsions towards biological & biomimetic systems, and phenomena involving wetting, friction, adhesion, or micr

  1. Discrete element modeling of calcium-silicate-hydrate

    International Nuclear Information System (INIS)

    Chandler, Mei Qiang; Peters, John F; Pelessone, Daniele

    2013-01-01

    The discrete element method (DEM) was used to model calcium-silicate-hydrate (C-S-H) at the nanoscale. The C-S-H nanoparticles were modeled as spherical particles with diameters of approximately 5 nm. Interparticle forces included traditional mechanical contact forces, van der Waals forces and ionic correlation forces due to negatively charged C-S-H nanoparticles and ion species in the nanopores. Previous work by the authors demonstrated the DEM method was feasible in studying the properties of the C-S-H nanostructures. In this work, the simulations were performed to look into the effects of nanoparticle packing, nanoparticle morphology, interparticle forces and nanoparticle properties on the deformation mechanisms and mechanical properties of the C-S-H matrix. This work will provide insights into possible ways to improve the properties of the C-S-H matrix. (paper)

  2. Corneal ring infiltration in contact lens wearers

    Directory of Open Access Journals (Sweden)

    Seyed Ali Tabatabaei

    2017-01-01

    Full Text Available To report a case of atypical sterile ring infiltrates during wearing soft silicone hydrogel contact lens due to poor lens care. A 29-year-old woman presented with complaints of pain, redness, and morning discharge. She was wearing soft silicone hydrogel contact lens previously; her current symptoms began 1 week before presentation. On examination, best-corrected visual acuity was 20/40 in that eye. Slit-lamp examination revealed dense, ring-shaped infiltrate involving both the superficial and deep stromal layers with lucid interval to the limbus, edema of the epithelium, epithelial defect, and vascularization of the superior limbus. Cornea-specific in vivo laser confocal microscopy (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM, Heidelberg Engineering GmbH, Dossenheim, Germany revealed Langerhans cells and no sign of Acanthamoeba or fungal features, using lid scraping and anti-inflammatory drops; her vision completely recovered. We reported an atypical case of a sterile corneal ring infiltrate associated with soft contact lens wearing; smear, culture, and confocal microscopy confirmed a sterile inflammatory reaction.

  3. The influence of Na2O on the hydration of C3A II. Suspension hydration

    NARCIS (Netherlands)

    Spierings, G.A.C.M.; Stein, H.N.

    1976-01-01

    The influence of Na2O on the hydration of C3A was studied in suspensions from the start of the reaction onwards. The heat evolution rate in very early stages of the hydration, measured at varying NaOH concentrations, and SEM, indicate that at NaOH concentrations larger then 0.1 M the reaction

  4. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  5. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator

    International Nuclear Information System (INIS)

    Li, Gang; Li, Xiao-Sen; Li, Bo; Wang, Yi

    2014-01-01

    The combination forms of the hydrate dissociation methods in different well systems are divided into 6 main patterns. Dissociation processes of methane hydrate in porous media using the inverted five-spot water flooding method (Pattern 4) are investigated by the experimental observation and numerical simulation. In situ methane hydrate is synthesized in the Cubic Hydrate Simulator (CHS), a 5.832-L cubic reactor. A center vertical well is used as the hot water injection well, while the four vertical wells at the corner are the gas and water production wells. The gas production begins simultaneously with the hot water injection, while after approximately 20 min of compression, the water begins to be produced. One of the common characteristics of the inverted five-spot water flooding method is that both the gas and water production rates decrease with the reduction of the hydrate dissociation rate. The evaluation of the energy efficiency ratio might indicate the inverted five-spot water flooding as a promising gas producing method from the hydrate reservoir. - Highlights: • A three-dimensional 5.8-L cubic pressure vessel is developed. • Gas production of hydrate using inverted five-spot flooding method is studied. • Water/gas production rate and energy efficiency ratio are evaluated. • Temperature distributions of numerical simulation and experiment agree well. • Hydrate dissociation process is a moving boundary problem in this study

  6. Teaching Soft Skills Employers Need

    Science.gov (United States)

    Ellis, Maureen; Kisling, Eric; Hackworth, Robbie G.

    2014-01-01

    This study identifies the soft skills community colleges teach in an office technology course and determines whether the skills taught are congruent with the soft skills employers require in today's entry-level office work. A qualitative content analysis of a community college office technology soft skills course was performed using 23 soft skills…

  7. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  8. Contact Dermatitis in Pediatrics.

    Science.gov (United States)

    Pelletier, Janice L; Perez, Caroline; Jacob, Sharon E

    2016-08-01

    Contact dermatitis is an umbrella term that describes the skin's reaction to contacted noxious or allergenic substances. The two main categories of contact dermatitis are irritant type and allergic type. This review discusses the signs, symptoms, causes, and complications of contact dermatitis. It addresses the testing, treatment, and prevention of contact dermatitis. Proper management of contact dermatitis includes avoidance measures for susceptible children. Implementation of a nickel directive (regulating the use of nickel in jewelry and other products that come into contact with the skin) could further reduce exposure to the most common allergens in the pediatric population. [Pediatr Ann. 2016;45(8):e287-e292.]. Copyright 2016, SLACK Incorporated.

  9. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  10. Exchange of tears under a contact lens is driven by distortions of the contact lens.

    Science.gov (United States)

    Maki, Kara L; Ross, David S

    2014-12-01

    We studied the flow of the post-lens tear film under a soft contact lens to understand how the design parameters of contact lenses can affect ocular health. When a soft contact lens is inserted, the blinking eyelid causes the lens to stretch in order to conform to the shape of the eye. The deformed contact lens acts to assume its un-deformed shape and thus generates a suction pressure in the post-lens tear film. In consequence, the post-lens tear fluid moves; it responds to the suction pressure. The suction pressure may draw in fresh fluid from the edge of the lens, or it may eject fluid there, as the lens reassumes its un-deformed shape. In this article, we develop a mathematical model of the flow of the post-lens tear fluid in response to the mechanical suction pressure of a deformed contact lens. We predict the amount of exchange of fluid exchange under a contact lens and we explore the influence of the eye's shape on the rate of exchange of fluid. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    . For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems......The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually...

  12. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  13. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment.

    Science.gov (United States)

    Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M

    2016-09-15

    The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times.

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  15. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Stevens, J.; Howard, J.J. [ConocoPhillips, Ponca City, OK (United States); Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States)

    2008-07-01

    Large amounts of natural gas trapped in hydrate reservoirs are found in Arctic regions and in deep offshore locations around the world. Natural gas production from hydrate deposits offer significant potential for future energy needs. However, research is needed in order to propose potential production schemes for natural gas hydrates. Natural gas molecules can be freed from hydrate structured cages by depressurization, by heating and by exposing the hydrate to a substance that will form a thermodynamically more stable hydrate structure. This paper provided a comparison of two approaches for releasing methane from methane hydrate in porous sandstone. The study scope covered the dissociation rate of methane hydrate in porous media through depressurization, and also referred to previous work done on producing methane from hydrates in sandstone while sequestering carbon dioxide (CO{sub 2}). The study was conducted in a laboratory setting. The paper discussed the experimental design which included the placing of a pressure- and temperature-controlled sample holder inside the bore of a magnetic resonance imager. The experimental procedures were then outlined, with reference to hydrate formation; carbon dioxide sequestration; hydrate dissociation experiments with constant volume; and hydrate dissociation experiments at constant pressure. The constant volume experiments demonstrated that in order to dissociate a large amount of hydrate, the initial depressurization had to be significantly lower than the hydrate stability pressure. 9 refs., 9 figs.

  16. Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt

    Science.gov (United States)

    Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu

    2018-01-01

    Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation Sh ≥ 0.65. Hydrate contribution to the residual strength is mainly by increasing cohesion at low hydrate saturation and friction at high hydrate saturation. Stress state and hydrate saturation are dominating both the stiffness and the strength of hydrate-bearing sediments; thus, a wave velocity-based peak strength prediction model is proposed and validated, which allows for precise estimation of the shear strength of hydrate-bearing sediments through acoustic logging data. This method is advantageous to geomechanical simulators, particularly when the experimental strength data of natural samples are not available.

  17. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  18. The effect of degumming by hydration on the purification of high acidity solvent extracted olive oil

    Directory of Open Access Journals (Sweden)

    Thomopoulos, C. D.

    1993-10-01

    Full Text Available The degumming result of the following factors was studied: the temperature of hydration, the percentage of water in oil and the contact time at the hydration temperature. The hydration at 95°C with 2% water for a contact time of 15 min resulted in maximum removal of phosphorus of the oil with minimum oil losses. The same purification result was also attained at 80°G with 2% water and for a contact time of 15 min causing 2.19% greater losses of the oil. Under these conditions the hydration resulted in an about 35-48% removal of the phosphorus in crude oil. The residual phosphorus was removed by subsequent alkali neutralization.

    El resultado del desgomado, controlado por la disminución del contenido en fósforo, fue estudiado según los siguientes factores: temperatura de hidratación, porcentaje de agua en el aceite y tiempo de contacto a la temperatura de hidratación. La hidratación a 95°C con 2% de agua y tiempo de contacto de 15 minutos, dio la máxima eliminación del contenido en fósforo del aceite crudo y el mínimo de pérdidas en aceite. Cambiando la temperatura de 95 a 80°C y manteniendo el contenido en agua al 2% y el tiempo de contacto de 15 minutos, aumentó la pérdida de aceite en un 2.19%. Bajo estas condiciones, y en ambos casos, se consiguió eliminar el 35-48% del contenido en fósforo del aceite crudo, eliminándose el residual mediante la neutralización alcalina.

  19. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  20. Effect of overpressure on gas hydrate distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    Natural gas hydrate systems can be characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic. This paper discussed a study that examined this effect of overpressure on gas hydrate and free gas distribution in marine sediments. A one-dimensional numerical model that coupled sedimentation, fluid flow, and gas hydrate formation was utilized. In order to quantify the relative importance of sedimentation rates and low permeability sediments, a dimensionless sedimentation-compaction group (scN) was defined, that compared the absolute permeability of the sediments to the sedimentation rate. Higher values of scN mean higher permeability or low sedimentation rate which generally yield hydrostatic pore pressure while lower values of scN normally create pore pressure greater than hydrostatic. The paper discussed non-hydrostatic consolidation in gas hydrate systems, including mass balances; constitutive relationships; normalized variables; and dimensionless groups. A numerical solution to the problem was presented. It was concluded that simulation results demonstrated that decreasing scN not only increased pore pressure above hydrostatic values, but also lowered the lithostatic stress gradient and gas hydrate saturation. This occurred because overpressure resulted in lower effective stress, causing higher porosity and lower bulk density of the sediment. 16 refs., 5 figs., 1 appendix.

  1. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.; Yoon, S.; Wentzcovitch, R. M.; Monteiro, P. J. M.

    2014-01-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  2. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  3. Blue LED irradiation to hydration of skin

    Science.gov (United States)

    Menezes, Priscila F. C.; Requena, Michelle B.; Lizarelli, Rosane F., Z.; Bagnato, Vanderlei S.

    2015-06-01

    Blue LED system irradiation shows many important properties on skin as: bacterial decontamination, degradation of endogenous skin chromophores and biostimulation. In this clinical study we prove that the blue light improves the skin hydration. In the literature none authors reports this biological property on skin. Then this study aims to discuss the role of blue light in the skin hydration. Twenty patients were selected to this study with age between 25-35 years old and phototype I, II and III. A defined area from forearm was pre determined (A = 4.0 cm2). The study was randomized in two treatment groups using one blue light device (power of 5.3mW and irradiance of 10.8mW/cm2). The first treatment group was irradiated with 3J/cm2 (277seconds) and the second with 6J/cm2 (555 seconds). The skin hydration evaluations were done using a corneometer. The measurements were collected in 7, 14, 21 and 30 days, during the treatment. Statistical test of ANOVA, Tukey and T-Student were applied considering 5% of significance. In conclusion, both doses were able to improve the skin hydration; however, 6J/cm2 has kept this hydration for 30 days.

  4. Improving Performance of Cantilevered Momentum Wheel Assemblies by Soft Suspension Support

    OpenAIRE

    Zhou, Weiyong; Li, Dongxu

    2013-01-01

    This paper focuses on improving the performance of the rigid support cantilevered momentum wheel assemblies (CMWA) by soft suspension support. A CMWA, supported by two angular contact ball bearings, was modeled as a Jeffcott rotor. The support stiffness, before and after in series with a linear soft suspension support, were simplified as two Duffing's type springs respectively. The result shows that the rigid support CMWA produces large disturbance force at the resonance speed range. The soft...

  5. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Science.gov (United States)

    Ferrara, Toni L; Boughton, Philip; Slavich, Eve; Wroe, Stephen

    2013-01-01

    Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard) and non-mineralized (soft) layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias). A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method that is applicable

  6. A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws.

    Directory of Open Access Journals (Sweden)

    Toni L Ferrara

    Full Text Available Nanomechanical testing methods that are suitable for a range of hydrated tissues are crucial for understanding biological systems. Nanoindentation of tissues can provide valuable insights into biology, tissue engineering and biomimetic design. However, testing hydrated biological samples still remains a significant challenge. Shark jaw cartilage is an ideal substrate for developing a method to test hydrated tissues because it is a unique heterogeneous composite of both mineralized (hard and non-mineralized (soft layers and possesses a jaw geometry that is challenging to test mechanically. The aim of this study is to develop a novel method for obtaining multidirectional nanomechanical properties for both layers of jaw cartilage from a single sample, taken from the great white shark (Carcharodon carcharias. A method for obtaining multidirectional data from a single sample is necessary for examining tissue mechanics in this shark because it is a protected species and hence samples may be difficult to obtain. Results show that this method maintains hydration of samples that would otherwise rapidly dehydrate. Our study is the first analysis of nanomechanical properties of great white shark jaw cartilage. Variation in nanomechanical properties were detected in different orthogonal directions for both layers of jaw cartilage in this species. The data further suggest that the mineralized layer of shark jaw cartilage is less stiff than previously posited. Our method allows multidirectional nanomechanical properties to be obtained from a single, small, hydrated heterogeneous sample. Our technique is therefore suitable for use when specimens are rare, valuable or limited in quantity, such as samples obtained from endangered species or pathological tissues. We also outline a method for tip-to-optic calibration that facilitates nanoindentation of soft biological tissues. Our technique may help address the critical need for a nanomechanical testing method

  7. Modeling the hydration process of bean grains coated with carnauba wax

    Directory of Open Access Journals (Sweden)

    Aline Almeida da Paixão

    2017-08-01

    Full Text Available Edible waxes are widely used to maintain foodstuff until they are consumed. However, some products may be subjected to industrial procedures, such as hydration, prior to their consumption. Hydration of a material is a complex process, which aims to reconstitute the original characteristics of a product when in contact with a liquid phase. An important agricultural product that requires this procedure is beans. Thus, the purpose of this work is to study the hydration process of beans (cultivar BRSMG Majestoso in different temperatures and concentrations of carnauba wax, which is applied on the product surface. Beans with initial moisture content of 0.2015, 0.1972 and 0.1745 (d.b. corresponding to treatments 0 (witness, 1 (wax diluted in water in the ratio 1:1, and 2 (carnauba wax, without dilution were used. Later, these samples were imbibed in distilled water at temperatures of 20, 30 and 40 ºC, for 15 h. The temperature and the carnauba wax influenced the water absorption rate. The Peleg model described satisfactory experimental data and the Mitscherlich model presented biased residual distribution. The constants C1 and C2 of the Peleg model exhibited opposite behaviors with increasing temperatures in the hydration process.

  8. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  9. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  10. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  11. Soft Decision Analyzer

    Science.gov (United States)

    Lansdowne, Chatwin; Steele, Glen; Zucha, Joan; Schlesinger, Adam

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  12. Hard and Soft Governance

    DEFF Research Database (Denmark)

    Moos, Lejf

    2009-01-01

    of Denmark, and finally the third layer: the leadership used in Danish schools. The use of 'soft governance' is shifting the focus of governance and leadership from decisions towards influence and power and thus shifting the focus of the processes from the decision-making itself towards more focus......The governance and leadership at transnational, national and school level seem to be converging into a number of isomorphic forms as we see a tendency towards substituting 'hard' forms of governance, that are legally binding, with 'soft' forms based on persuasion and advice. This article analyses...... and discusses governance forms at several levels. The first layer is the global: the methods of 'soft governance' that are being utilised by transnational agencies. The second layer is the national and local: the shift in national and local governance seen in many countries, but here demonstrated in the case...

  13. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  14. Hydration dynamics of hyaluronan and dextran.

    Science.gov (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P

    2012-07-03

    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Multicavity SCRF calculation of ion hydration energies

    International Nuclear Information System (INIS)

    Diercksen, B.H.F.; Karelson, M.; Tamm, T.

    1994-01-01

    The hydration energies of the proton, hydroxyl ion, and several inorganic ions were calculated using the multicavity self-consistent reaction field (MCa SCRF) method developed for the quantum-mechanical modeling of rotationally or flexible systems in dielectric media. The ionic complexes H 3 O + (H2O) 4 , OH - (H2O) 4 , NH + 4 (H2O) 4 , and Hal - (H2O) 4 , where Hal = F, Cl, or Br, have been studied. Each complex was divided between five spheres, corresponding to the central ion and four water molecules in their first coordination sphere, respectively. Each cavity was surrounded by a polarizable medium with the dielectric permittivity of water at room temperature (80). The ionic hydration energies of ions were divided into specific and nonspecific parts. After accounting for the cavity-formation energy using scaled particle theory, good agreement between the total calculated and experimental hydration energies was obtained for all ions studied

  16. Thermal expansion properties of calcium aluminate hydrates

    International Nuclear Information System (INIS)

    Song, Tae Woong

    1986-01-01

    In order to eliminate the effect of impurities and aggregates on the thermomechanical properties of the various calcium aluminate hydrates, and to prepare clinkers in which all calcium aluminates are mixed homogeneously, chemically pure CaO and Al 2 O 3 were weighed, blended and heated in various conditions. After quantitative X-ray diffractometry(QXRD), the synthesized clinker was hydrated and cured under the conditions of 30 deg C, W/C=0.5, relative humidity> 90% respectively during 24 hours. And then differential thermal analysis(DTA), thermogravimetry(TG), micro calorimetry, thermomechanical analysis(TMA) and scanning electron microanalysis(SEM) were applied to examine the thermal properties of samples containing, calcium aluminate hydrates in various quantity. (Author)

  17. THz characterization of hydrated and anhydrous materials

    Science.gov (United States)

    Sokolnikov, Andre

    2011-06-01

    The characterization of anhydrous and hydrated forms of materials is of great importance to science and industry. Water content poses difficulties for successful identification of the material structure by THz radiation. However, biological tissues and hydrated forms of nonorganic substances still may be investigated by THz radiation. This paper outlines the range of possibilities of the above characterization, as well as provides analysis of the physical mechanism that allows or prevents penetration of THz waves through the substance. THz-TDS is used to measure the parameters of the characterization of anhydrous and hydrated forms of organic and nonorganic samples. Mathematical methods (such as prediction models of time-series analysis) are used to help identifying the absorption coefficient and other parameters of interest. The discovered dependencies allow designing techniques for material identification/characterization (e.g. of drugs, explosives, etc. that may have water content). The results are provided.

  18. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  19. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  20. Irrigation port hydration in phacoemulsification surgery

    Directory of Open Access Journals (Sweden)

    Suzuki H

    2018-01-01

    Full Text Available Hisaharu Suzuki,1 Yoichiro Masuda,2 Yuki Hamajima,1 Hiroshi Takahashi3 1Department of Ophthalmology, Nippon Medical School Musashikosugi Hospital, Kawasaki City, Kanagawa, 2Department of Ophthalmology, The Jikei University, Katsushika Medical Center, Tokyo, 3Department of Ophthalmology, Nippon Medical School, Tokyo, Japan Background: In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome.Purpose: We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port.Patients and methods: The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group and 30 eyes underwent surgeries without the HYUIP technique (control. The three points evaluated during each surgery included 1 the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2 the need for conventional hydration, and 3 watertight completion at the end stage of surgery.Results: The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups.Conclusion: The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse. Keywords: cataract surgery, hydration, irrigation and aspiration, phacoemulsification, wound, self-sealing 

  1. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla

    2017-12-01

    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  2. Forces Between a Permanent Magnet and a Soft Magnetic Plate

    DEFF Research Database (Denmark)

    Beleggia, Marco; Vokoun, David; De Graef, Marc

    2012-01-01

    Forces between a hard/permanent magnet of arbitrary shape and an ideally soft magnetic plate in close proximity are derived analytically from the image method applied to magnetostatics. We found that the contact force, defined as the force required to detach the hard magnet from the plate, coinci...

  3. Soft and hard pomerons

    International Nuclear Information System (INIS)

    Maor, Uri; Tel Aviv Univ.

    1995-09-01

    The role of s-channel unitarity screening corrections, calculated in the eikonal approximation, is investigated for soft Pomeron exchange responsible for elastic and diffractive hadron scattering in the high energy limit. We examine the differences between our results and those obtained from the supercritical Pomeron-Regge model with no such corrections. It is shown that screening saturation is attained at different scales for different channels. We then proceed to discuss the new HERA data on hard (PQCD) Pomeron diffractive channels and discuss the relationship between the soft and hard Pomerons and the relevance of our analysis to this problem. (author). 18 refs, 9 figs, 1 tab

  4. Mechanics of soft materials

    CERN Document Server

    Volokh, Konstantin

    2016-01-01

    This book provides a concise introduction to soft matter modelling. It offers an up-to-date review of continuum mechanical description of soft and biological materials from the basics to the latest scientific materials. It includes multi-physics descriptions, such as chemo-, thermo-, electro- mechanical coupling. It derives from a graduate course at Technion that has been established in recent years. It presents original explanations for some standard materials and features elaborated examples on all topics throughout the text. PowerPoint lecture notes can be provided to instructors. .

  5. Applanation tonometry in silicone hydrogel contact lens wearers.

    Science.gov (United States)

    Allen, R J; Dev Borman, A; Saleh, G M

    2007-12-01

    Previous studies have investigated intraocular pressure (IOP) measurements through conventional soft (hydrogel) therapeutic contact lenses, and have found that an accurate IOP can be recorded in normal eyes, and in eyes with abnormal anterior segments. The IOP measurement through soft contact lenses may be affected by the water content and centre thickness of the lens. Silicone hydrogel contact lenses are now being used as therapeutic contact lenses due to their high oxygen permeability. The purpose of this study is to investigate if IOP can be accurately measured in a subject wearing a silicone hydrogel contact lens. In a cohort study, the IOP was measured with a Goldmann applanation tonometer without a contact lens and then repeated with a hydrogel contact lens in situ. The IOP of 20 eyes of 10 volunteers with no ocular pathology was measured. The mean difference (+/-S.D.) found between IOP measurement with (mean 15.55+/-1.70 mmHg) and without (mean 16.05+/-1.90 mmHg) contact lens was found to be -0.5+/-0.89 mmHg. Statistical analysis was performed which revealed a correlation coefficient of 0.89. No significant statistical difference was found between the two groups with paired t-test (p=0.19). Accurate measurement of IOP by applanation tonometry can be achieved through a silicone hydrogel contact lens.

  6. Thermal decomposition of uranyl sulphate hydrate

    International Nuclear Information System (INIS)

    Sato, T.; Ozawa, F.; Ikoma, S.

    1980-01-01

    The thermal decomposition of uranyl sulphate hydrate (UO 2 SO 4 .3H 2 O) has been investigated by thermogravimetry, differential thermal analysis, X-ray diffraction and infrared spectrophotometry. As a result, it is concluded that uranyl sulphate hydrate decomposes thermally: UO 2 SO 4 .3H 2 O → UO 2 SO 4 .xH 2 O(2.5 = 2 SO 4 . 2H 2 O → UO 2 SO 4 .H 2 O → UO 2 SO 4 → α-UO 2 SO 4 → β-UO 2 SO 4 → U 3 O 8 . (author)

  7. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  8. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  9. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  10. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  11. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... about the members of the eye-care team . Consumer warning about the improper use of colored contact ...

  12. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... One Use Facts About Colored Contacts and Halloween Safety Colored Contact Lens Facts Over-the-Counter Costume ... new application of artificial intelligence shows whether a patient’s eyes point to high blood pressure or risk ...

  13. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Costume Contacts May Contain Chemicals Harmful to Eyes Four Ways Over-the-Counter Costume Contact Lenses Can ... was in severe pain and on medication for four weeks, and couldn't see well enough to ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ... wear any kind of contact lens. In Butler's case, the lenses caused an infection and left her ...

  15. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados ... truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non- ...

  16. Colored Contact Lens Dangers

    Science.gov (United States)

    ... Hazard: The Hidden Dangers of Buying Decorative Contact Lenses Without a Prescription Leer en Español: Peligros asociados ... truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager Blinded In One Eye By Non- ...

  17. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Cleveland. "This is far from the truth." Real People, Real Problems with Colored Contact Lenses Julian: Teenager ... the lenses. Never share contact lenses with another person. Get follow up exams with your eye care ...

  18. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  19. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to ... wear costume contact lenses for Halloween or any time of year, follow these guidelines: Get an eye ...

  20. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... glow-in-the-dark lizard lenses, costume contacts can certainly add a spooky, eye-popping touch. But ... consideration as a standard contact lens because they can be purchased over-the-counter or on the ...

  1. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering ... Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at ...

  2. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... not require the same level of care or consideration as a standard contact lens because they can ... sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. " ...

  3. Dermatitis, contact (image)

    Science.gov (United States)

    This picture shows a skin inflammation (dermatitis) caused by contact with a material that causes an allergic reaction in this person. Contact dermatitis is a relatively common condition, and can be caused ...

  4. Contact materials for nanoelectronics

    KAUST Repository

    Alshareef, Husam N.; Quevedo-Ló pez, Manuel Angel Quevedo; Majhi, Prashant

    2011-01-01

    In this article, we review current research activities in contact material development for electronic and nanoelectronic devices. A fundamental issue in contact materials research is to understand and control interfacial reactions and phenomena

  5. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... the United States. All contact lenses are medical devices that require a prescription and proper fitting by an eye-care professional. Retailers that sell contacts without a ...

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... prescription. Follow the contact lens care directions for cleaning, disinfecting, and wearing the lenses. Never share contact ... with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology Job Center © American ...

  7. Mappings on Neutrosophic Soft Classes

    Directory of Open Access Journals (Sweden)

    Shawkat Alkhazaleh

    2014-03-01

    Full Text Available In 1995 Smarandache introduced the concept of neutrosophic set which is a mathematical tool for handling problems involving imprecise, indeterminacy and inconsistent data. In 2013 Maji introduced the concept of neutrosophic soft set theory as a general mathematical tool for dealing with uncertainty. In this paper we define the notion of a mapping on classes where the neutrosophic soft classes are collections of neutrosophic soft set. We also define and study the properties of neutrosophic soft images and neutrosophic soft inverse images of neutrosophic soft sets.

  8. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  9. Contact Lens Risks

    Science.gov (United States)

    ... There is a risk of eye infection from bacteria in swimming pool water, hot tubs, lakes and the ocean Replace your contact lens storage case every 3 months or as directed by your eye care professional. Other Risks of Contact Lenses Other risks of contact lenses include pink eye ( ...

  10. Hydrogenation of passivated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  11. Mixed Lubricated Line Contacts

    NARCIS (Netherlands)

    Faraon, I.C.

    2005-01-01

    The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is

  12. New Cosmetic Contact Allergens

    Directory of Open Access Journals (Sweden)

    An Goossens

    2015-02-01

    Full Text Available Allergic and photo-allergic contact dermatitis, and immunologic contact urticaria are potential immune-mediated adverse effects from cosmetics. Fragrance components and preservatives are certainly the most frequently observed allergens; however, all ingredients must be considered when investigating for contact allergy.

  13. Soft actuators and soft actuating devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-10-17

    A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.

  14. Development of artificial soft rock. Jinko nangan zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, K.; Nishioka, T. (The Tokyo Electric Power Co. Inc., Tokyo (Japan)); Nojiri, Y.; Kurihara, H.; Fukazawa, E. (Kajima Corp., Tokyo (Japan))

    1990-09-15

    When a part of the ground is replaced with artificial materials in the construction of important structures on soft rock foundations, it is desirable for the artificial materials to have the rigidity equivalent to that of the surrounding ground and to be stable in the long term. The article reports a success in the development and utilization of artificial soft rocks satisfying the above conditions by using a raw material produced locally at the construction site. The soft rock aimed at was mudstone belonging to the Neocene period, and the artificial material of soil-mortal system is selected as the equivalent having the same physical properties. Improvements in selection of solidification agents and cohesive soil were especially contrived: taht is, a new material for solidification was developed by mixing blast-furnace cement and gypsum; and the mudstone on the site was used as the cohesive soil by slurrying it to adjust its grain size to homogeneous composition. The artificial soft rock resulting from the above contrivance showed excellent flow, self-leveling, and filling properties at the stage of fresh mortar, and the physical properties after hardning was very similar to those of the natural ground. The long-term stability was also confirmed by the tests on hydration reaction and environmental factors. 2 figs., 1 tab.

  15. Soft Tissue Extramedullary Plasmacytoma

    Directory of Open Access Journals (Sweden)

    Fernando Ruiz Santiago

    2010-01-01

    Full Text Available We present the uncommon case of a subcutaneous fascia-based extramedullary plasmacytoma in the leg, which was confirmed by the pathology report and followed up until its remission. We report the differential diagnosis with other more common soft tissue masses. Imaging findings are nonspecific but are important to determine the tumour extension and to plan the biopsy.

  16. On Soft Biometrics

    DEFF Research Database (Denmark)

    Nixon, Mark; Correia, Paulo; Nasrollahi, Kamal

    2015-01-01

    Innovation has formed much of the rich history in biometrics. The field of soft biometrics was originally aimed to augment the recognition process by fusion of metrics that were sufficient to discriminate populations rather than individuals. This was later refined to use measures that could be us...

  17. Soft Matter Characterization

    CERN Document Server

    Borsali, Redouane

    2008-01-01

    Progress in basic soft matter research is driven largely by the experimental techniques available. Much of the work is concerned with understanding them at the microscopic level, especially at the nanometer length scales that give soft matter studies a wide overlap with nanotechnology. This 2 volume reference work, split into 4 parts, presents detailed discussions of many of the major techniques commonly used as well as some of those in current development for studying and manipulating soft matter. The articles are intended to be accessible to the interdisciplinary audience (at the graduate student level and above) that is or will be engaged in soft matter studies or those in other disciplines who wish to view some of the research methods in this fascinating field. Part 1 contains articles with a largely (but, in most cases, not exclusively) theoretical content and/or that cover material relevant to more than one of the techniques covered in subsequent volumes. It includes an introductory chapter on some of t...

  18. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon; Santamarina, Carlos

    2016-01-01

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  19. Standardization and software infrastructure for gas hydrate data communications

    Energy Technology Data Exchange (ETDEWEB)

    Kroenlein, K.; Chirico, R.D.; Kazakov, A.; Frenkel, M. [National Inst. of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Div.; Lowner, R. [GeoForschungsZentrum Potsdam (Germany); Wang, W. [Chinese Academy of Science, Beijing (China). Computer Network Information Center; Smith, T. [MIT Systems, Flushing, NY (United States); Sloan, E.D. [Colorado School of Mines, Golden, CO (United States). Centre for Hydrate Research

    2008-07-01

    The perceived value of gas hydrates as an energy resource for the future has led to extensive hydrate research studies and experiments. The hydrate deposits are widely dispersed throughout the world, and many countries are now investigating methods of extracting gas hydrate resources. This paper described a gas hydrates markup language (GHML) developed as an international standard for data transfer and storage within the gas hydrates community. The language is related to a hydrates database developed to facilitate a greater understanding of naturally occurring hydrate interactions with geophysical processes, and aid in the development of hydrate technologies for resource recovery and storage. Recent updates to the GHML included the addition of ThermoML, a communication standard for thermodynamic data into the GHML schema. The standard will be used to represent all gas hydrates thermodynamic data. A new element for the description of crystal structures has also been developed, as well as a guided data capture tool. The tool is available free of charge and is publicly licensed for use by gas hydrate data producers. A web service has also been provided to ensure that access to GHML files for gas hydrates and data files are available for users. It was concluded that the tool will help to ensure data quality assurance for the conversion of data and meta-data within the database. 28 refs., 9 figs.

  20. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  1. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  2. The Soft Palate Friendly Speech Bulb for Velopharyngeal Insufficiency.

    Science.gov (United States)

    Kahlon, Sukhdeep Singh; Kahlon, Monaliza; Gupta, Shilpa; Dhingra, Parvinder Singh

    2016-09-01

    Velopharyngeal insufficiency is an anatomic defect of the soft palate making palatopharyngeal sphincter incomplete. It is an important concern to address in patients with bilateral cleft lip and palate. Speech aid prosthesis or speech bulbs are best choice in cases where surgically repaired soft palate is too short to contact pharyngeal walls during function but these prosthesis have been associated with inadequate marginal closure, ulcerations and patient discomfort. Here is a case report of untreated bilateral cleft lip and palate associated with palatal insufficiency treated by means of palate friendly innovative speech bulb. This modified speech bulb is a combination of hard acrylic and soft lining material. The hard self-curing acrylic resin covers only the hard palate area and a permanent soft silicone lining material covering the soft palate area. A claw-shaped wire component was extended backwards from acrylic and was embedded in soft silicone to aid in retention and approximation of two materials. The advantage of adding the soft lining material in posterior area helped in covering the adequate superior extension and margins for maximal pharyngeal activity. This also improved the hypernasality, speech, comfort and overall patient acceptance.

  3. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gashydrate petroleum system

    Energy Technology Data Exchange (ETDEWEB)

    Su, M.; Yang, R.; Wang, H.; Sha, Z.; Liang, J.; Wu, N.; Qiao, S.; Cong, X.

    2016-07-01

    The results of the first marine gas hydrate drilling expedition of Guangzhou Marine Geological Survey (GMGS-1) in northern continental slope of the South China Sea revealed a variable distribution of gas hydrates in the Shenhu area. In this study, comparisons between the eight sites with gas-hydrate petroleum system were used to analyze and re-examine hydrate potential. In the Shenhu gas hydrate drilling area, all the sites were located in a suitable low-temperature, high-pressure environment. Biogenic and thermogenic gases contributed to the formation of hydrates. Gas chimneys and some small-scale faults (or micro-scale fractures) compose the migration pathways for gas-bearing fluids. Between these sites, there are three key differences: the seafloor temperatures and pressures; geothermal gradient and sedimentary conditions. Variations of seafloor temperatures and pressures related to water depths and geothermal gradient would lead to changes in the thickness of gas hydrate stability zones. Although the lithology and grain size of the sediments were similar, two distinct sedimentary units were identified for the first time through seismic interpretation, analysis of deep-water sedimentary processes, and the Cm pattern (plotted one-percentile and median values from grain-size analyses), implying the heterogeneous sedimentary conditions above Bottom Simulating Reflectors (BSRs). Based on the analyses of forming mechanisms and sedimentary processes, these two fine-grained sedimentary units have different physical properties. Fine-grained turbidites (Unit I) with thin-bedded chaotic reflectors at the bottom acted as the host rocks for hydrates; whereas, finegrained sediments related to soft-sediment deformation (Unit II) characterized by thick continuous reflectors at the top would serve as regional homogeneous caprocks. Low-flux methane that migrated upwards along chimneys could be enriched preferentially in fine-grained turbidites, resulting in the formation of

  4. Obsidian Hydration Dating in the Undergraduate Curriculum.

    Science.gov (United States)

    Manche, Emanuel P.; Lakatos, Stephen

    1986-01-01

    Provides an overview of obsidian hydration dating for the instructor by presenting: (1) principles of the method; (2) procedures; (3) applications; and (4) limitations. The theory of the method and one or more laboratory exercises can be easily introduced into the undergraduate geology curriculum. (JN)

  5. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.

    2012-01-01

    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  6. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    methane hydrate in sea bed near continental margin and underneath of permafrost ... clathrate structure,6,7 IR spectroscopy analysis of vibra- tional form of guest .... Hydrogen (H71) of the hydroxyl group of methanol is found to have formed ...

  7. A new approach to model mixed hydrates

    Czech Academy of Sciences Publication Activity Database

    Hielscher, S.; Vinš, Václav; Jäger, A.; Hrubý, Jan; Breitkopf, C.; Span, R.

    2018-01-01

    Roč. 459, March (2018), s. 170-185 ISSN 0378-3812 R&D Projects: GA ČR(CZ) GA17-08218S Institutional support: RVO:61388998 Keywords : gas hydrate * mixture * modeling Subject RIV: BJ - Thermodynamics Impact factor: 2.473, year: 2016 https://www.sciencedirect.com/science/article/pii/S0378381217304983

  8. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids...

  9. Hydration dynamics near a model protein surface

    International Nuclear Information System (INIS)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-01-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces

  10. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  11. Gold(III)-Catalyzed Hydration of Phenylacetylene

    Science.gov (United States)

    Leslie, J. Michelle; Tzeel, Benjamin A.

    2016-01-01

    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  12. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids sh...

  13. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  14. Field Tests of the Magnetotelluric Method to Detect Gas Hydrates, Mallik, Mackenzie Delta, Canada

    Science.gov (United States)

    Craven, J. A.; Roberts, B.; Bellefleur, G.; Spratt, J.; Wright, F.; Dallimore, S. R.

    2008-12-01

    The magnetotelluric method is not generally utilized at extreme latitudes due primarily to difficulties in making the good electrical contact with the ground required to measure the electric field. As such, the magnetotelluric technique has not been previously investigated to direct detect gas hydrates in on-shore permafrost environments. We present the results of preliminary field tests at Mallik, Northwest Territories, Canada, that demonstrate good quality magnetotelluric data can be obtained in this environment using specialized electrodes and buffer amplifiers similar to those utilized by Wannamaker et al (2004). This result suggests that subsurface images from larger magnetotelluric surveys will be useful to complement other techniques to detect, quantify and characterize gas hydrates.

  15. Hole-doping of mechanically exfoliated graphene by confined hydration layers

    Institute of Scientific and Technical Information of China (English)

    Tjeerd R. J. Bollmann[1,2; Liubov Yu. Antipina[3,4; Matthias Temmen[2; Michael Reichling[2; Pavel B. Sorokin[5

    2015-01-01

    By the use of non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM), we measure the local surface potential of mechanically exfoliated graphene on the prototypical insulating hydrophilic substrate of CAF2(111). Hydration layers confined between the graphene and the CaF2 substrate, resulting from the graphene's preparation under ambient conditions on the hydrophilic substrate surface, are found to electronically modify the graphene as the material's electron density transfers from graphene to the hydration layer. Density functional theory (DFT) calculations predict that the first 2 to 3 water layers adjacent to the graphene hole-dope the graphene by several percent of a unit charge per unit cell.

  16. Quantitative and simultaneous non-invasive measurement of skin hydration and sebum levels

    Science.gov (United States)

    Ezerskaia, Anna; Pereira, S. F.; Urbach, H. Paul; Verhagen, Rieko; Varghese, Babu

    2016-01-01

    We report a method on quantitative and simultaneous non-contact in-vivo hydration and sebum measurements of the skin using an infrared optical spectroscopic set-up. The method utilizes differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lay “in between” the prominent water absorption bands. We have used an emulsifier containing hydro- and lipophilic components to mix water and sebum in various volume fractions which was applied to the skin to mimic different oily-dry skin conditions. We also measured the skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli. Good agreement was found between our experimental results and reference values measured using conventional biophysical methods such as Corneometer and Sebumeter. PMID:27375946

  17. SoftWAXS: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules.

    Science.gov (United States)

    Bardhan, Jaydeep; Park, Sanghyun; Makowski, Lee

    2009-10-01

    This paper describes a computational approach to estimating wide-angle X-ray solution scattering (WAXS) from proteins, which has been implemented in a computer program called SoftWAXS. The accuracy and efficiency of SoftWAXS are analyzed for analytically solvable model problems as well as for proteins. Key features of the approach include a numerical procedure for performing the required spherical averaging and explicit representation of the solute-solvent boundary and the surface of the hydration layer. These features allow the Fourier transform of the excluded volume and hydration layer to be computed directly and with high accuracy. This approach will allow future investigation of different treatments of the electron density in the hydration shell. Numerical results illustrate the differences between this approach to modeling the excluded volume and a widely used model that treats the excluded-volume function as a sum of Gaussians representing the individual atomic excluded volumes. Comparison of the results obtained here with those from explicit-solvent molecular dynamics clarifies shortcomings inherent to the representation of solvent as a time-averaged electron-density profile. In addition, an assessment is made of how the calculated scattering patterns depend on input parameters such as the solute-atom radii, the width of the hydration shell and the hydration-layer contrast. These results suggest that obtaining predictive calculations of high-resolution WAXS patterns may require sophisticated treatments of solvent.

  18. A tissue adaptation model based on strain-dependent collagen degradation and contact-guided cell traction.

    Science.gov (United States)

    Heck, T A M; Wilson, W; Foolen, J; Cilingir, A C; Ito, K; van Donkelaar, C C

    2015-03-18

    Soft biological tissues adapt their collagen network to the mechanical environment. Collagen remodeling and cell traction are both involved in this process. The present study presents a collagen adaptation model which includes strain-dependent collagen degradation and contact-guided cell traction. Cell traction is determined by the prevailing collagen structure and is assumed to strive for tensional homeostasis. In addition, collagen is assumed to mechanically fail if it is over-strained. Care is taken to use principally measurable and physiologically meaningful relationships. This model is implemented in a fibril-reinforced biphasic finite element model for soft hydrated tissues. The versatility and limitations of the model are demonstrated by corroborating the predicted transient and equilibrium collagen adaptation under distinct mechanical constraints against experimental observations from the literature. These experiments include overloading of pericardium explants until failure, static uniaxial and biaxial loading of cell-seeded gels in vitro and shortening of periosteum explants. In addition, remodeling under hypothetical conditions is explored to demonstrate how collagen might adapt to small differences in constraints. Typical aspects of all essentially different experimental conditions are captured quantitatively or qualitatively. Differences between predictions and experiments as well as new insights that emerge from the present simulations are discussed. This model is anticipated to evolve into a mechanistic description of collagen adaptation, which may assist in developing load-regimes for functional tissue engineered constructs, or may be employed to improve our understanding of the mechanisms behind physiological and pathological collagen remodeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Critical issues in soft rocks

    OpenAIRE

    Milton Assis Kanji

    2014-01-01

    This paper discusses several efforts made to study and investigate soft rocks, as well as their physico-mechanical characteristics recognized up to now, the problems in their sampling and testing, and the possibility of its reproduction through artificially made soft rocks. The problems in utilizing current and widespread classification systems to some types of weak rocks are also discussed, as well as other problems related to them. Some examples of engineering works in soft rock or in soft ...

  20. Soft skills and dental education

    OpenAIRE

    Gonzalez, M. A. G.; Abu Kasim, N. H.; Naimie, Z.

    2014-01-01

    Soft skills and hard skills are essential in the practice of dentistry. While hard skills deal with technical proficiency, soft skills relate to a personal values and interpersonal skills that determine a person's ability to fit in a particular situation. These skills contribute to the success of organisations that deal face-to-face with clients. Effective soft skills benefit the dental practice. However, the teaching of soft skills remains a challenge to dental schools. This paper discusses ...

  1. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    International Nuclear Information System (INIS)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan

    2016-01-01

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO_2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  2. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    Science.gov (United States)

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  3. Detection of innersphere interactions between magnesium hydrate and the phosphate backbone of the HDV ribozyme using Raman crystallography.

    Science.gov (United States)

    Gong, Bo; Chen, Yuanyuan; Christian, Eric L; Chen, Jui-Hui; Chase, Elaine; Chadalavada, Durga M; Yajima, Rieko; Golden, Barbara L; Bevilacqua, Philip C; Carey, Paul R

    2008-07-30

    A Raman microscope and Raman difference spectroscopy are used to detect the vibrational signature of RNA-bound magnesium hydrate in crystals of hepatitis delta virus (HDV) ribozyme and to follow the effects of magnesium hydrate binding to the nonbridging phosphate oxygens in the phosphodiester backbone. There is a correlation between the Raman intensity of the innersphere magnesium hydrate signature peak, near 322 cm-1, and the intensity of the PO2- symmetric stretch, near 1100 cm-1, perturbed by magnesium binding, demonstrating direct observation of -PO2-...Mg2+(H2O)x innersphere complexes. The complexes may be pentahydrates (x = 5) and tetrahydrates (x = 4). The assignment of the Raman feature near 322 cm-1 to a magnesium hydrate species is confirmed by isotope shifts observed in D2O and H218O that are semiquantitatively reproduced by calculations. The standardized intensity changes in the 1100 cm-1 PO2- feature seen upon magnesium hydrate binding indicates that there are approximately 5 innersphere Mg2+...-O2P contacts per HDV molecule when the crystal is exposed to a solution containing 20 mM magnesium.

  4. THE SORPTION OF OFLOXACIN BY HYDRATED ALUMINA AND SILICON

    Directory of Open Access Journals (Sweden)

    A. N. Chebotarev

    2016-11-01

    Full Text Available The sorption of ofloxacin (OFL – the antibiotic from class of fluoroquinolones has been studied on alumina (γ-Al2O3 different acid-base modifications – acidic Al2O3(acidic, neutral Al2O3 (Neutral and the basic Al2O3 (core and amorphous silica – silica gel (SG L 5/40 and aerosil A-300. Determination of ofloxacin in solutions has been carried out by spectrophotometry on spectrophotometer SF-46 at λ = 291 nm and acidity 7. To clarify the nature of the sorption surfaces of OFL hydrated on aluminum and silicon oxides were studied according to the degree of extraction (S% from pH, contact time of the phases (min. sample from the sorbent mass (g; sorption isotherms were built and antibiotic desorption was studied. The OFL significant recovery (~ 60% is observed at the pH range of 4 ÷ 8, and reaches its maximum (80-85% at pH 7. The maximum degree of extraction of the antibiotic on aerosil A-300 and L 5/40 silica realized at pH 6 and it was ~ 80%. Comparative analysis of the forms constructed isotherms (L – type indicates a significant affinity investigated hydrated oxides to sorbate. The value of the static exchange capacity and concentration ratios can proof that. Differences in the quantitative characteristics of sorption of aluminum and silicon oxides are associated with nature and the acid-base properties of adsorption sites. In the study of the OFL concentrates desorption in static mode dilute NaOH and HNO3 solutions it was found that growth desorption degree occured with increasing concentration. Desorption was 2-3 times better in the case of aluminum oxide than silicon oxide when there were the same concentrations of acid and alkali. This is another confirmation of the participation in various sorption interactions forces of physical and chemical nature.

  5. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  6. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation

    International Nuclear Information System (INIS)

    Anderson, Graydon K.

    2004-01-01

    The enthalpies of the reactions in which methane hydrate is dissociated to methane vapor and either (1) water, or (2) ice are determined by a new analysis using the Clapeyron equation. The difference in enthalpies of the two reactions is used to infer the hydration number at the quadruple point where hydrate, ice, liquid water, and methane vapor coexist. By appropriate corrections, the hydration number at points removed from the quadruple point is also determined. The most important feature of the new analysis is the direct use of the Clapeyron equation. The method avoids the use of certain simplifying assumptions that have compromised the accuracy of previous analyses in which the Clausius-Clapeyron equation was used. The analysis takes into account the finite volumes of all phases, the non-ideality of the vapor phase, and the solubility of methane in water. The results show that the enthalpy of dissociation and hydration number are constant within experimental error over the entire (hydrate, liquid, vapor) coexistence region. The results are more accurate than but entirely consistent with almost all previous studies

  7. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  8. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS

    International Nuclear Information System (INIS)

    JONES, K.W.; FENG, H.; TOMOV, S.; WINTER, W.J.; EATON, M.; MAHAJAN, D.

    2004-01-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2)

  9. On Neutrosophic Soft Topological Space

    Directory of Open Access Journals (Sweden)

    Tuhin Bera

    2018-03-01

    Full Text Available In this paper, the concept of connectedness and compactness on neutrosophic soft topological space have been introduced along with the investigation of their several characteristics. Some related theorems have been established also. Then, the notion of neutrosophic soft continuous mapping on a neutrosophic soft topological space and it’s properties are developed here.

  10. Soft matter: rubber and networks

    Science.gov (United States)

    McKenna, Gregory B.

    2018-06-01

    Rubber networks are important and form the basis for materials with properties ranging from rubber tires to super absorbents and contact lenses. The development of the entropy ideas of rubber deformation thermodynamics provides a powerful framework from which to understand and to use these materials. In addition, swelling of the rubber in the presence of small molecule liquids or solvents leads to materials that are very soft and ‘gel’ like in nature. The review covers the thermodynamics of polymer networks and gels from the perspective of the thermodynamics and mechanics of the strain energy density function. Important relationships are presented and experimental results show that the continuum ideas contained in the phenomenological thermodynamics are valid, but that the molecular bases for some of them remain to be fully elucidated. This is particularly so in the case of the entropic gels or swollen networks. The review is concluded with some perspectives on other networks, ranging from entropic polymer networks such as thermoplastic elastomers to physical gels in which cross-link points are formed by glassy or crystalline domains. A discussion is provided for other physical gels in which the network forms a spinodal-like decomposition, both in thermoplastic polymers that form a glassy network upon phase separation and for colloidal gels that seem to have a similar behavior.

  11. Static friction of stainless steel wire rope–rubber contacts.

    NARCIS (Netherlands)

    Loeve, A.J.; Krijger, T.; Mugge, W.; Breedveld, P.; Dodou, D.; Dankelman, J.

    2014-01-01

    Little is known about static friction of stainless-steel wire ropes ('cables') in contact with soft rubbers, an interface of potential importance for rigidifiable medical instruments. Although friction theories imply that the size and profile of the cables affect static friction, there are no

  12. Contact printed masks for 3D microfabrication in negative resists

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Boisen, Anja

    2005-01-01

    We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded into the ......We present a process based on contact printed shadow masks for three dimensional microfabrication of soft and sensitive overhanging membranes in SU-8. A metal mask is transferred onto unexposed SU-8 from an elastomer stamp made of polydimethylsiloxane. This mask is subsequently embedded...... into the negative resist to protect buried material from UV-exposure. Unlike direct evaporation-deposition of a mask onto the SU-8, printing avoids high stress and radiation, thus preventing resist wrinkling and prepolymerization. We demonstrate effective monolithic fabrication of soft, 4-μm thick and 100-μm long...

  13. Clinical management of soft tissue sarcomas

    International Nuclear Information System (INIS)

    Pinedo, H.M.; Verweij, J.

    1986-01-01

    This book is concerned with the clinical management of soft tissue sarcomas. Topics covered include: Radiotherapy; Pathology of soft tissue sarcomas; Surgical treatment of soft tissue sarcomas; and Chemotherapy in advanced soft tissue sarcomas

  14. Mapping on complex neutrosophic soft expert sets

    Science.gov (United States)

    Al-Quran, Ashraf; Hassan, Nasruddin

    2018-04-01

    We introduce the mapping on complex neutrosophic soft expert sets. Further, we investigated the basic operations and other related properties of complex neutrosophic soft expert image and complex neutrosophic soft expert inverse image of complex neutrosophic soft expert sets.

  15. CONTACT RESISTANCE MODELING

    Directory of Open Access Journals (Sweden)

    S. V. LOSKUTOV

    2018-05-01

    Full Text Available Purpose. To determine the contribution of the real contact spots distribution in the total conductivity of the conductors contact. Methodology. The electrical contact resistance research was carried out on models. The experimental part of this work was done on paper with a graphite layer with membranes (the first type and conductive liquids with discrete partitions (the second type. Findings. It is shown that the contact electrical resistance is mainly determined by the real area of metal contact. The experimental dependence of the electrical resistance of the second type model on the distance between the electrodes and the potential distribution along the sample surface for the first type model were obtained. The theoretical model based on the principle of electric field superposition was considered. The dependences obtained experimentally and calculated by using the theoretical model are in good agreement. Originality. The regularity of the electrical contact resistance formation on a large number of membranes was researched for the first time. A new model of discrete electrical contact based on the liquid as the conducting environment with nuclear membrane partitions was developed. The conclusions of the additivity of contact and bulk electrical resistance were done. Practical value. Based on these researches, a new experimental method of kinetic macroidentation that as a parameter of the metal surface layer deformation uses the real contact area was developed. This method allows to determine the value of average contact stresses, yield point, change of the stress on the depth of deformation depending on the surface treatment.

  16. The structure of hydrate bearing fine grained marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Priest, J.; Kingston, E.; Clayton, C. [Southampton Univ., Highfield (United Kingdom). School of Civil Engineering and the Environment; Schultheiss, P.; Druce, M. [Geotek Ltd., Daventry (United Kingdom)

    2008-07-01

    This paper discussed the structure of naturally occurring methane gas hydrates in fine-grained sediments from core samples recovered using in situ pressures from the eastern margin of the Indian Ocean. High resolution X-ray computed tomography (CT) images were taken of gas hydrate cores. The hydrate structure was examined and comparisons were made between low resolution X-ray images obtained on the cores prior to sub-sectioning and depressurization procedures. The X-ray images showed the presence of high-angle, sub-parallel veins within the recovered sediments. The scans indicated that the hydrates occurred as fracture filing veins throughout the core. Fracture orientation was predominantly sub-vertical. Thick millimetric hydrate veins were composed of sub-millimetric veins with variations in fracture angle. The analysis indicated that hydrate formation was episodic in nature and subject to changes in the stress regime. Results of the study showed that depressurization and subsequent freezing alter the structure of the sediment even when the gas hydrate has not been altered. A large proportion of the hydrate survived when outside of its stability region. The self-preserving behaviour of the hydrate was attributed to the endothermic nature of gas hydrate dissociation. It was concluded that the accurate physical characterization of gas hydrates can only be conducted when the core section remains under in situ stress conditions. 13 refs., 9 figs.

  17. Carbon dioxide hydrate formation in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Lang, X. [South China Univ. of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conservation; Wang, Y.; Liang, D. [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Energy Conversion and Guangzhou Center of Natural Gas Hydrate; Sun, X.; Jurcik, B. [Air Liquide Laboratories, Tsukuba (Japan)

    2008-07-01

    Gas hydrates are thermodynamically stable at high pressures and near the freezing temperature of pure water. Methane hydrates occur naturally in sediments in the deep oceans and permafrost regions and constitute an extensive hydrocarbon reservoir. Carbon dioxide (CO{sub 2}) hydrates are of interest as a medium for marine sequestration of anthropogenic carbon dioxide. Sequestering CO{sub 2} as hydrate has potential advantages over most methods proposed for marine CO{sub 2} sequestration. Because this technique requires a shallower depth of injection when compared with other ocean sequestration methods, the costs of CO{sub 2} hydrate sequestration may be lower. Many studies have successfully used different continuous reactor designs to produce CO{sub 2} hydrates in both laboratory and field settings. This paper discussed a study that involved the design and construction of a fixed-bed reactor for simulation of hydrate formation system. Water, river sands and carbon dioxide were used to simulate the seep kind of hydrate formation. Carbon dioxide gas was distributed as small bubbles to enter from the bottom of the fixed-bed reactor. The paper discussed the experimental data and presented a diagram of the gas hydrate reactor system. The morphology as well as the reaction characters of CO{sub 2} hydrate was presented in detail. The results were discussed in terms of experimental phenomena and hydrate formation rate. A mathematical model was proposed for describing the process. 17 refs., 7 figs.

  18. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  19. Natural gas hydrates. Experimental techniques and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yuguang; Liu, Changling (eds.) [Qingdao Institute of Marine Geology (China). Gas Hydrate Laboratory

    2013-07-01

    Focuses on gas hydrate experiment in laboratory. Intends to provide practical significant parameters for gas hydrate exploration and exploitation in the oceanic and permafrost environments. Consists of different themes that present up-to-date information on hydrate experiments. ''Natural Gas Hydrates: Experimental Techniques and Their Applications'' attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc.

  20. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...... a characteristic broad absorption peak at 0.5 THz corresponding to the dipole moment of THF molecules. The refractive indices of THF and propane hydrates are 1.725 and 1.775 at 1 THz, respectively, and show a slight but clear difference from the refractive index of ice (1.79). THz-TDS is a potentially useful...... technique for the ondestructive inspection of gas hydrates. # 2009 The Japan Society of Applied Physics...

  1. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  2. Soft options. Sanfte Alternativen

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, R

    1981-01-01

    This collection of contributions made by supporters of the ''soft approach'' is intended to provide an insight into a conceivable future which is quite different from traditional ideas on social and economic developments based on the usual economic thinking and conventional energy sources. The chapter entitled ''The new world view'' shows the way from a machine-like paradigm to a living example in science. In the chapter entitled ''Women are organizing their future'' female perspectives and concepts of solutions are described. In the chapter ''Eco-tecture'' examples of living architecture and of environment formation are presented. In the chapter ''Soft technology'' approaches to an ecology-oriented technology are discussed, and in the chapter ''Network and future workshops'' novel forms of organization and communication are described.

  3. Biological Soft Robotics.

    Science.gov (United States)

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  4. Soft-sediment mullions

    Science.gov (United States)

    Ortner, Hugo

    2015-04-01

    In this contribution I describe the appearance, formation and significance of soft-sediment mullions. I use several examples from synorogenic turbidites of the Alps and the Pyrenees to show their appearance in the field. Soft-sediment mullions are elongate, slightly irregular bulges at the base of coarse-grained clastic beds (sand to conglomerate), separated by narrow, elongate flames of fine-grained material (mud) protruding into the coarse-grained bed. Various processes may lead to the formation of such structures: (1) longitudinal furrows parallel to the sediment transport direction may form by spiral motion in flow rolls during sediment transport (Dzulinski, 1966; Dzulinski & Simpson, 1966). (2) Loading combined with downslope movement can produce elongate structures parallelling the dowslope direction (Anketell et al., 1970). (3) Soft-sediment mullions are oriented perpendicular or oblique to the downslope direction, and show evidence of bedding-parallel shortening. Thus, they resemble cuspate-lobate folds or mullions, which are well-known in ductile structural geology (e.g. Urai et al., 2001). Soft-sediment mullions have been observed in two cases: Either bedding-parallel shortening can be achieved by slump processes, or by active tectonic shortening. Slumping is characterized by an alternation of stretching and shortening (e.g. Ortner, 2007; Alsop & Marco 2014), and therefore mullions do overprint or are overprinted by normal faults. In active depositional systems that are subject to tectonic shortening growth strata will form, but sediments already deposited will be shortened during lithification. In some cases, the formation of soft-sediment mullions predates folding, but the most widespread expression of syn-lithification shortening seems to be soft-sediment mullions, that form in the inner arcs of fold hinges. In the examples documented so far, the size of soft-sediment mullions is dependent on the grain-size of the coarse-grained layer, in which the

  5. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  6. CHARACTERIZATIONS OF FUZZY SOFT PRE SEPARATION AXIOMS

    OpenAIRE

    El-Latif, Alaa Mohamed Abd

    2015-01-01

    − The notions of fuzzy pre open soft sets and fuzzy pre closed soft sets were introducedby Abd El-latif et al. [2]. In this paper, we continue the study on fuzzy soft topological spaces andinvestigate the properties of fuzzy pre open soft sets, fuzzy pre closed soft sets and study variousproperties and notions related to these structures. In particular, we study the relationship betweenfuzzy pre soft interior fuzzy pre soft closure. Moreover, we study the properties of fuzzy soft pre regulars...

  7. Holiday fun with soft gluons

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Emissions of soft gluons from energetic particles play an important role in collider processes. While the basic physics of soft emissions is simple, it gives rise to a variety of interesting and intricate phenomena (non-global logs, Glauber phases, super-leading logs, factorization breaking). After an introduction, I will review progress in resummation methods such as Soft-Collinear Effective Theory driven by a better understanding of soft emissions. I will also show some new results for computations of soft-gluon effects in gap-between-jets and isolation-cone cross sections.

  8. Reptile Soft Tissue Surgery.

    Science.gov (United States)

    Di Girolamo, Nicola; Mans, Christoph

    2016-01-01

    The surgical approach to reptiles can be challenging. Reptiles have unique physiologic, anatomic, and pathologic differences. This may result in frustrating surgical experiences. However, recent investigations provided novel, less invasive, surgical techniques. The purpose of this review was to describe the technical aspects behind soft tissue surgical techniques that have been used in reptiles, so as to provide a general guideline for veterinarians working with reptiles. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. When Coke Is Not Hydrating

    Directory of Open Access Journals (Sweden)

    Mohammed Bahaa Aldeen MD

    2014-09-01

    Full Text Available A 47-year-old African American man was admitted with 4 days of back pain, nausea and vomiting, and low urine output. There was no history of fever, dysuria, frequency, hesitancy, viral symptoms, trauma, rash, or constipation. Despite his past medical history of hypertension, diabetes mellitus, and hyperlipidemia he denied taking any medications for 18 months, including nonsteroidal anti-inflammatory drugs, acetaminophen, or antacids. He denied smoking and alcohol but admitted to cocaine use. No significant FH. Physical examination results were as follows: BP 235/125 mm Hg, heart rate 90 beats/min, temperature 98°F, O2 saturation normal; lungs and heart normal, abdomen soft but bilateral costovertebral angle tenderness. Neurological examination was normal. Laboratory tests yielded the following results: creatinine (Cr 10.5 mg/dL (1.2 mg/dL in 2010, blood urea nitrogen 63 mg/dL, glucose 151 mg/dL, Ca 9.4 mg/dL, PO4 6.1 mg/dL, Hgb 15 g/dL, white blood cells (WBC 9100, platelets 167 000, amylase/lipase normal, aspartate aminotransferase/alanine aminotransferase (AST/ALT normal, bilirubin 1.4 mg/dL, alkaline phosphatase 39 IU/L, creatine phosphokinase 127 µg/L. Hepatic panel, C- and P-ANCA (cytoplasmic– and perinuclear–antineutrophil cytoplasm antibodies, respectively, anti-GBM (anti–glomerular basement membrane, antimyeloperoxidase, antinuclear antibody, and Helicobacter pylori were all negative. C3, C4 normal, urinalysis: 2+ blood, no white blood cells or eosinophils, no casts, no albumin, negative for nitrate/leukocyte esterase and bacteria. Imaging: chest radiograph, abdominal radiograph, computed tomography of the abdomen, electrocardiography, and transthoracic echocardiography were all normal. Course. The patient’s urine output declined from 700 to 400 cm3/d and the on third day he required hemodialysis with Cr 14 mg/dL. Renal biopsy showed typical findings of interstitial nephritis. The patient was dialyzed for 10 days and responded

  10. Contact and symplectic topology

    CERN Document Server

    Colin, Vincent; Stipsicz, András

    2014-01-01

    Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

  11. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  12. NIH Scientists Map Genetic Changes That Drive Tumors in a Common Pediatric Soft-Tissue Cancer

    Science.gov (United States)

    ... Press Release NIH scientists map genetic changes that drive tumors in a common pediatric soft-tissue cancer ... of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT INFORMATION Contact Us LiveHelp ...

  13. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.; Santamarina, Carlos

    2018-01-01

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  14. Modeling dissociation behaviour of methane hydrate in porous soil media

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, A.G.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Gas hydrates, or clathrates, exist in the form of crystalline solid structures of hydrogen bonded water molecules where the lattice cages are occupied by guest gas molecules. Methane gas hydrates are the most common. As such, hydrate bearing sediments are considered to be a potential future energy resource. Gas hydrates also function as a source or sink for atmospheric methane, which may influence global warming. The authors emphasized that an understanding of the behaviour of soils containing gas hydrates is necessary in order to develop ways of recovering the vast gas resources that exist in the form of hydrates, particularly since hydrates are also suspected to be a potential factor in the initiation and propagation of submarine slope failures. Gas hydrate dissociation occurs when water and gas are released, resulting in an increase in pore fluid pressure, thereby causing significant reductions in effective stress leading to sediment failure. Dissociation may occur as a result of pressure reductions or increases in temperature. This study focused on the strength and deformation behaviour of hydrate bearing soils associated with temperature induced dissociation. Modeling the dissociation behavior of hydrates in porous soil media involves an understanding of the geomechanics of hydrate dissociation. This paper addressed the issue of coupling the hydrate dissociation problem with the soil deformation problem. A mathematical framework was constructed in which the thermally stimulated hydrate dissociation process in porous soil media under undrained conditions was considered with conduction heat transfer. It was concluded that a knowledge of geomechanical response of hydrate bearing sediments will enable better estimates of benefits and risks associated with the recovery process, thereby ensuring safe and economical exploration. 20 refs., 1 fig., 1 appendix.

  15. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.

    2018-04-02

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  16. Alveolar Soft Part Sarcoma.

    Science.gov (United States)

    Jaber, Omar I; Kirby, Patricia A

    2015-11-01

    Alveolar soft part sarcoma is a rare neoplasm usually arising in the soft tissues of the lower limbs in adults and in the head and neck region in children. It presents primarily as a slowly growing mass or as metastatic disease. It is characterized by a specific chromosomal alteration, der(17)t(X:17)(p11:q25), resulting in fusion of the transcription factor E3 (TFE3) with alveolar soft part sarcoma critical region 1 (ASPSCR1) at 17q25. This translocation is diagnostically useful because the tumor nuclei are positive for TFE3 by immunohistochemistry. Real-time polymerase chain reaction to detect the ASPSCR1-TFE3 fusion transcript on paraffin-embedded tissue blocks has been shown to be more sensitive and specific than detection of TFE3 by immunohistochemical stain. Cathepsin K is a relatively recent immunohistochemical stain that can aid in the diagnosis. The recent discovery of the role of the ASPSCR1-TFE3 fusion protein in the MET proto-oncogene signaling pathway promoting angiogenesis and cell proliferation offers a promising targeted molecular therapy.

  17. Introduction to contact mechanics

    CERN Document Server

    Fischer-Cripps, Anthony C

    2000-01-01

    Contact mechanics deals with the elastic or plastic contact between two solid objects, and is thus intimately connected with such topics as fracture, hardness, and elasticity.This text, intended for advanced undergraduates, begins with an introduction to the mechanical properties of materials, general fracture mechanics, and fractures in brittle solids.This is followed by a detailed discussion of stresses and the nature of elastic and elastic-plastic contact.

  18. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... also available in Spanish . Follow The Academy Professionals: Education Guidelines News Multimedia Public & Patients: Contact Us About the Academy Jobs at the Academy Financial ...

  19. Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Meltem Önder

    2009-03-01

    Full Text Available Allergic contact dermatitis is the delayed type hypersensitivity reaction to exogenous agents. Allergic contact dermatitis may clinically present acutely after allergen exposure and initial sensitization in a previously sensitized individual. Acute phase is characterized by erythematous, scaly plaques. In severe cases vesiculation and bullae in exposed areas are very characteristic. Repeated or continuous exposure of sensitized individual with allergen result in chronic dermatitis. Lichenification, erythematous plaques, hyperkeratosis and fissuring may develop in chronic patients. Allergic contact dermatitis is very common dermatologic problem in dermatology daily practice. A diagnosis of contact dermatitis requires the careful consideration of patient history, physical examination and patch testing. The knowledge of the clinical features of the skin reactions to various contactans is important to make a correct diagnosis of contact dermatitis. It can be seen in every age, in children textile product, accessories and touch products are common allergens, while in adults allergic contact dermatitis may be related with topical medicaments. The contact pattern of contact dermatitis depends on fashion and local traditions as well. The localization of allergic reaction should be evaluated and patients’ occupation and hobbies should be asked. The purpose of this review is to introduce to our collaques up dated allergic contact dermatitis literatures both in Turkey and in the World.

  20. Colors and contact dermatitis.

    Science.gov (United States)

    Bonamonte, Domenico; Foti, Caterina; Romita, Paolo; Vestita, Michelangelo; Angelini, Gianni

    2014-01-01

    The diagnosis of skin diseases relies on several clinical signs, among which color is of paramount importance. In this review, we consider certain clinical presentations of both eczematous and noneczematous contact dermatitis in which color plays a peculiar role orientating toward the right diagnosis. The conditions that will be discussed include specific clinical-morphologic subtypes of eczematous contact dermatitis, primary melanocytic, and nonmelanocytic contact hyperchromia, black dermographism, contact chemical leukoderma, and others. Based on the physical, chemical, and biologic factors underlying a healthy skin color, the various skin shades drawing a disease picture are thoroughly debated, stressing their etiopathogenic origins and histopathologic aspects.

  1. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    Science.gov (United States)

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  3. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  4. Collapse of triangular channels in a soft elastomer

    Science.gov (United States)

    Tepáyotl-Ramírez, Daniel; Lu, Tong; Park, Yong-Lae; Majidi, Carmel

    2013-01-01

    We extend classical solutions in contact mechanics to examine the collapse of channels in a soft elastomer. These channels have triangular cross-section and collapse when pressure is applied to the surrounding elastomer. Treating the walls of the channel as indenters that penetrate the channel base, we derive an algebraic mapping between pressure and cross-sectional area. These theoretical predictions are in strong agreement with results that we obtain through finite element analysis and experimental measurements. This is accomplished without data fitting and suggests that the theoretical approach may be generalized to a broad range of cross-sectional geometries in soft microfluidics.

  5. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  6. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  7. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  8. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  9. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...

  10. Advances in understanding hydration of Portland cement

    International Nuclear Information System (INIS)

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-01-01

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C 3 A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed

  11. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  12. Advances in understanding hydration of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 (Switzerland); Juilland, Patrick [Sika Technology AG, Zürich (Switzerland); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California at Berkeley (United States)

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  13. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.

    1987-01-01

    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  14. Propane hydrate nucleation: Experimental investigation and correlation

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2008-01-01

    supersaturation region. The experiments showed that the gas dissolution rate rather than the induction time of propane hydrate is influenced by a change in agitation. This was especially valid at high stirring rates when the water surface was severely disturbed.Addition of polyvinylpyrrolidone (PVP......) to the aqueous phase was found to reduce the gas dissolution rate slightly. However the induction times were prolonged quite substantially upon addition of PVP.The induction time data were correlated using a newly developed induction time model based on crystallization theory also capable of taking into account...... the presence of additives. In most cases reasonable agreement between the data and the model could be obtained. The results revealed that especially the effective surface energy between propane hydrate and water is likely to change when the stirring rate varies from very high to low. The prolongation...

  15. Cornea stress test--evaluation of corneal endothelial function in vivo by contact lens induced stress

    Directory of Open Access Journals (Sweden)

    Saini Jagjit

    1997-01-01

    Full Text Available Reliable and valid assessment of corneal endothelial function is a critical input for diagnosing, prognosticating and monitoring progression of disorders affecting corneal endothelium. In 123 eyes, corneal endothelial function was assessed employing data from the corneal hydration recovery dynamics. Serial pachometric readings were recorded on Haag-Striet pachometer with Mishima-Hedbys modification before and after two hours of thick soft contact lens wear. Percentage Recovery Per Hour (PRPH was derived from raw data as an index of endothelial function. Assessed PRPH in pseudophakic corneal oedema and Fuchs′ endothelial dystrophy eyes (35.9 +/- 9.8% was significantly lower than normal controls (61.9 +/- 10.5%. On employing receiver operation characteristics curve analysis the tested results demonstrated high sensitivity (87% and specificity (92% for detection of low endothelial function at PRPH cut off of 47.5%. Using this PRPH cut off, 80% of Fuchs′ endothelial dystrophy and 93.3% of pseudophakic corneal oedema eyes could be demonstrated to have low endothelial function. A total of 66.7% of diabetic eyes also demonstrated PRPH of lower than 47.5%. Clear corneal grafts demonstrated PRPH values of 24.6% to 73.0%. Of 6 corneal grafts that demonstrated initial PRPH of lower than 47.5%, 4 failed within 4 to 6 months. Our data demonstrated high sensitivity and specificity of this corneal stress test. PRPH index was useful in quantifying endothelial function in clinical disorders including diabetes mellitus. The index PRPH was demonstrated to be useful in monitoring and prognosticating outcome of corneal grafts.

  16. Non-invasive measurement of corneal hydration.

    Science.gov (United States)

    March, W F; Bauer, N J

    2001-01-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noncontact assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea using a microscope objective lens (25x magnification, NA=0.5, f=10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array-detector for rapid spectral data acquisition over a range from 2,890 to 3,590 cm(-1). Raman spectra were recorded from the anterior 100 to 150 microm of the cornea over a period of time before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400 cm(-1) (OH-vibrational mode of water) and 2,940 cm(-1) (CH-vibrational mode of proteins) was used as a measure of corneal hydration. High signal-to-noise ratio (SNR 25) Raman spectra were obtained from the human corneas using 15 mJ of laser light energy. Qualitative changes in the hydration of the anterior-most part of the corneas could be observed as a result of the dehydrating agent. Confocal Raman spectroscopy could potentially be applied clinically as a noncontact tool for the assessment of corneal hydration in vivo.

  17. Hydration benefits to courtship feeding in crickets

    OpenAIRE

    Ivy, T. M.; Johnson, J. C.; Sakaluk, S. K.

    1999-01-01

    The spermatophore transferred by male decorated crickets (Gryllodes sigillatus) at mating includes a large gelatinous spermatophylax that the female consumes after copulation. Although previous studies have shown that G. sigillatus females gain no nutritional benefits from consuming food gifts, there may be other benefits to their consumption. We examined potential hydration benefits to females by experimentally manipulating both the availability of water and the number of food gifts that fem...

  18. Unraveling halide hydration: A high dilution approach.

    Science.gov (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG [minus sign in circle symbol]hyd[H+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a ΔG [minus sign in circle symbol]hyd[H] value of -1100 kJ mol(-1) [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl(-), Br(-), and I(-) ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F(-) ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl(-), Br(-), and I(-) ions does not extend beyond the ion first hydration shell, and the structure of water in the F(-) second shell is also substantially unaffected by the ion.

  19. Reservoir Models for Gas Hydrate Numerical Simulation

    Science.gov (United States)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  20. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas

    2015-01-01

    ) hydrate formation using a rocking cell apparatus. Hydrate formation and decomposition kinetics were investigated by constant cooling (hydrate nucleation temperature) and isothermal (hydrate nucleation time) methods. Improved (synergistic) hydrate formation kinetics (hydrate nucleation and growth) were...... of these two promoters is favorable both thermodynamically and kinetically for hydrate formation from flue gas....

  1. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  2. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  3. Direct Laser Writing of Nanophotonic Structures on Contact Lenses.

    Science.gov (United States)

    AlQattan, Bader; Yetisen, Ali K; Butt, Haider

    2018-04-24

    Contact lenses are ubiquitous biomedical devices used for vision correction and cosmetic purposes. Their application as quantitative analytical devices is highly promising for point-of-care diagnostics. However, it is a challenge to integrate nanoscale features into commercial contact lenses for application in low-cost biosensors. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm, 3 ns pulse, 240 mJ) in holographic interference patterning mode was utilized to produce optical nanostructures over the surface of a hydrogel contact lens. One-dimensional (925 nm) and two-dimensional (925 nm × 925 nm) nanostructures were produced on contact lenses and analyzed by spectroscopy and angle-resolve measurements. The holographic properties of these nanostructures were tested in ambient moisture, fully hydrated, and artificial tear conditions. The measurements showed a rapid tuning of optical diffraction from these nanostructures from 41 to 48°. The nanostructures were patterned near the edges of the contact lens to avoid any interference and obstruction to the human vision. The formation of 2D nanostructures on lenses increased the diffraction efficiency by more than 10%. The versatility of the holographic laser ablation method was demonstrated by producing four different 2D nanopattern geometries on contact lenses. Hydrophobicity of the contact lens was characterized by contact angle measurements, which increased from 59.0° at pristine condition to 62.5° at post-nanofabrication. The holographic nanostructures on the contact lens were used to sense the concentration of Na + ions. Artificial tear solution was used to simulate the conditions in dry eye syndrome, and nanostructures on the contact lenses were used to detect the electrolyte concentration changes (±47 mmol L -1 ). Nanopatterns on a contact lens may be used to sense other ocular diseases in early stages at point-of-care settings.

  4. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... eye-care professional. Retailers that sell contacts without a prescription are breaking the law, and may be fined $11,000 per violation. "Many of the lenses found online or in beauty salons, novelty shops or in pop-up ... contact lenses from a retailer that does not ask for a prescription. ...

  5. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  6. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... Get follow up exams with your eye care provider. If you notice redness, swelling, excessive discharge, pain or discomfort from wearing contact lenses, remove the lenses and seek immediate medical attention from an ophthalmologist. Related resources: Learn how to properly care for contact lenses . ...

  7. Sciences & Nature: Contact

    African Journals Online (AJOL)

    Principal Contact. Ehouan Etienne Ehile Professor University of Abobo-Adjamé 02 BP 801 Abidjan 02. Phone: (+225) 2030 4201. Fax: (+225) 2030 4203. Email: eh_ehile@yahoo.fr. Support Contact. Irie Zoro Bi Email: banhiakalou@yahoo.fr. ISSN: 1812-0741. AJOL African Journals Online. HOW TO USE AJOL.

  8. Contact Us | DOepatents

    Science.gov (United States)

    advance. Your help is appreciated. Contact us by email Email doepatentscomments@osti.gov NOTE: Email us by phone Phone Phone (865) 241-5275 Contact us in writing Mail U.S. Department of Energy Office of non-federal websites. Their policies may differ from this site. Javascript Not Enabled Email Link

  9. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... eye-care team . Consumer warning about the improper use of colored contact lenses , from the U.S. Food and Drug Administration (FDA). Are the colored lenses you are considering buying approved by the FDA? Check the FDA's database of approved contact lenses . Related Stories Prevent Infection ...

  10. Contact dermatitis. A review

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Benezra, C; Burrows, D

    1987-01-01

    In recent years, there has been a dramatic rise in our understanding of contact dermatitis. This paper is a review of our knowledge of the mechanisms involved in contact dermatitis and related phenomena, the investigation of these events and the emergence of significant new allergens during...

  11. Contact Hamiltonian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)

    2017-01-15

    In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.

  12. Contact Quality in Participation

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Jensen, Olav Storm

    2016-01-01

    We investigate the concept of participation from the perspective of quality of the contact in the communicative interactions between participants. We argue for the need for an academic-personal competence that qualifies the human contact central in all Participatory Design (PD) activities as a way...

  13. Nigerian Food Journal: Contact

    African Journals Online (AJOL)

    Nigerian Food Journal. ... Nigerian Food Journal: Contact. Journal Home > About the Journal > Nigerian Food Journal: Contact. Log in or Register to get access to full text downloads. ... Mailing Address. Department of Food Science and Technology University of Agriculture, Makurdi, Nigeria ...

  14. Colored Contact Lens Dangers

    Medline Plus

    Full Text Available ... like a suction cup." Halloween is a popular time for people to use colored contact lenses to enhance their costumes. From ... MD, professor of ophthalmology at Case Western Reserve University in Cleveland. "This is far ... Use Facts About Colored Contacts and Halloween Safety Colored ...

  15. Carbon dioxide gas hydrates accumulation in freezing and frozen sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilin, E.; Guryeva, O. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology

    2008-07-01

    Carbon dioxide (CO{sub 2}) hydrates and methane hydrates can be formed, and exist under natural conditions. The permafrost area has been considered as an environment for the potential disposal of CO{sub 2}. The favorable factors for preserving CO{sub 2} in liquid and gas hydrate states in frozen sediments and under permafrost horizons are great thickness of frozen sediments; low permeability in comparison with thawed sediments; and favourable conditions for hydrates formation. Therefore, research on the formation and existence conditions of CO{sub 2} gas hydrates in permafrost and under permafrost sediments are of great importance for estimation of CO{sub 2} disposal conditions in permafrost, and for working out specific sequestration schemes. This paper presented the results of an experimental study on the process of carbon dioxide (CO{sub 2}) gas hydrates formation in the porous media of sediments under positive and negative temperatures. Sediment samples of various compositions including those selected in the permafrost area were used. The research was conducted in a special pressure chamber, which allowed to monitor pressure and temperature. The study used the monitoring results in order to make quantitative estimation of the kinetics of CO{sub 2} hydrates accumulation in the model sediments. Results were presented in terms of kinetics of CO{sub 2} hydrates accumulation in the porous media at positive and negative temperatures; kinetics of CO{sub 2} hydrates accumulation in various porous media; gas hydrate-former influence on kinetics of hydrates accumulation in frozen sediments; and influence of freezing on CO{sub 2} hydrates accumulation in porous media. It was concluded that hydrate accumulation took an active place in porous media not only under positive, but also under high negative temperatures, when the water was mainly in the form of ice in porous media. 27 refs., 3 tabs., 5 figs.

  16. Polymorphism in Br2 clathrate hydrates.

    Science.gov (United States)

    Goldschleger, I U; Kerenskaya, G; Janda, K C; Apkarian, V A

    2008-02-07

    The structure and composition of bromine clathrate hydrate has been controversial for more than 170 years due to the large variation of its observed stoichiometries. Several different crystal structures were proposed before 1997 when Udachin et al. (Udachin, K. A.; Enright, G. D.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 1997, 119, 11481) concluded that Br2 forms only the tetragonal structure (TS-I). We show polymorphism in Br2 clathrate hydrates by identifying two distinct crystal structures through optical microscopy and resonant Raman spectroscopy on single crystals. After growing TS-I crystals from a liquid bromine-water solution, upon dropping the temperature slightly below -7 degrees C, new crystals of cubic morphology form. The new crystals, which have a limited thermal stability range, are assigned to the CS-II structure. The two structures are clearly distinguished by the resonant Raman spectra of the enclathrated Br2, which show long overtone progressions and allow the extraction of accurate vibrational parameters: omega(e) = 321.2 +/- 0.1 cm(-1) and omega(e)x(e) = 0.82 +/- 0.05 cm(-1) in TS-I and omega(e) = 317.5 +/- 0.1 cm(-1) and omega(e)x(e) = 0.70 +/- 0.1 cm(-1) in CS-II. On the basis of structural analysis, the discovery of the CS-II crystals implies stability of a large class of bromine hydrate structures and, therefore, polymorphism.

  17. The economics of exploiting gas hydrates

    International Nuclear Information System (INIS)

    Döpke, Lena-Katharina; Requate, Till

    2014-01-01

    We investigate the optimal exploitation of methane hydrates, a recent discovery of methane resources under the sea floor, mainly located along the continental margins. Combustion of methane (releasing CO2) and leakage through blow-outs (releasing CH4) contribute to the accumulation of greenhouse gases. A second externality arises since removing solid gas hydrates from the sea bottom destabilizes continental margins and thus increases the risk of marine earthquakes. We show that in such a model three regimes can occur: i) resource exploitation will be stopped in finite time, and some of the resource will stay in situ, ii) the resource will be used up completely in finite time, and iii) the resource will be exhausted in infinite time. We also show how to internalize the externalities by policy instruments. - Highlights: • We set up a model of optimal has hydrate exploitation • We incorporate to types of damages: contribution to global warming and geo-hazards • We characterize optimal exploitation paths and study decentralization with an exploitation tax. • Three regimes can occur: • i) exploitation in finite time and some of the stock remaining in situ, • ii) exploitation in finite time and the resource will be exhausted, • iii) exploitation and exhaustion in infinite time

  18. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  19. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  20. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Directory of Open Access Journals (Sweden)

    Takeshi Sugahara

    2012-05-01

    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.