WorldWideScience

Sample records for hydrate stability field

  1. Controls on gas hydrate stability in methane depleted sediments: Laboratory and field measurements

    Science.gov (United States)

    Lapham, L.; Chanton, J.; Martens, C. S.

    2009-12-01

    Gas hydrate deposits are the Earth’s largest reservoir of the powerful greenhouse gas methane and thus a key future energy resource. However, hydrate stability in sedimentary environments featuring highly variable methane concentrations needs to be understood to allow resource estimation and recovery. Hydrates are at chemical equilibrium and therefore stable where high pressures, low temperatures, and moderate salinities coexist with methane-saturated pore waters. When all of these conditions are not met, hydrates should dissociate or dissolve, releasing methane to the overlying water and possibly the atmosphere. In addition, other natural factors may control the kinetics of their degradation complicating models for hydrate stability and occurrence. Our measurements indicate that the pore-waters surrounding some shallow buried hydrates are not methane-saturated suggesting that dissolution should occur relatively rapidly. Yet, these hydrate deposits are known to persist relatively unchanged for years. We hypothesize that, once formed, hydrate deposits may be stabilized by natural factors inhibiting dissolution, including oil or microbial biofilm coatings. While most studies have focused on pressure and temperature changes where hydrates occur, relatively few have included measurements of in situ methane concentration gradients because of the difficulties inherent to making such measurements. Here we present recent measurements of methane concentration and stable carbon isotope gradients immediately adjacent to undisturbed hydrate surfaces obtained through deployments of novel seafloor instruments. Our results suggest that the hydrates studied are relatively stable when exposed to overlying and pore-waters that are undersaturated with methane. Concurrent laboratory measurements of methane concentration gradients next to artificial hydrate surfaces were utilized to test our protective coating hypothesis. After a stable dissolution rate for hydrate samples was

  2. The impact of increased sedimentation rates associated with the decay of the Fennoscandian ice-sheet on gas hydrate stability and focused fluid flow at the Nyegga pockmark field, offshore mid-Norway

    Science.gov (United States)

    Karstens, Jens; Haflidason, Haflidi; Becker, Lukas; Petter Sejrup, Hans; Berndt, Christian; Planke, Sverre; Dahlgreen, Torbjørn

    2016-04-01

    Climatic changes since the Last Glacial Maximum (LGM) have affected the stability of gas hydrate systems on glaciated margins by sea-level changes, bottom water temperature changes, isostatic uplift or subsidence and variability in sedimentation rates. While subsidence and sea-level rise stabilize gas hydrate deposits, bottom water temperature warming, uplift and enhanced sedimentation have the opposite effect. The response of gas hydrate systems to post-glaciation warming is therefore a complex phenomenon and highly depends on the timing and magnitude of each of these processes. While the impact of bottom water warming on the dissociation of gas hydrates have been addressed in numerous studies, the potential of methane release due to basal gas hydrate dissociation during periods of warming has received less attention. Here, we present results from numerical simulations which show that rapid sedimentation associated with the decay of the Fennoscandian ice-sheet was capable of causing significant basal gas hydrate dissociation. The modeling is constrained by a high-resolution three-dimensional sedimentation rate reconstruction of the Nyegga pockmark field, offshore mid-Norway, obtained by integrating chrono-stratigraphic information derived from sediments cores and a seismo-stratigraphic framework. The model run covers the period between 28,000 and 15,000 calendar years before present and predict that the maximum sedimentation rate-related gas hydrate dissociation coincides temporally and spatially with enhanced focused fluid flow activity in the study area. Basal gas hydrate dissociation due to rapid sedimentation may have occurred as well in other glaciated continental margins after the LGM and may have caused the release of significant amounts of methane to the hydrosphere and atmosphere. The major post glaciation deposition centers are the location of some of the largest known submarine slide complexes. The release of free gas due to basal gas hydrate

  3. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  4. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  5. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    Science.gov (United States)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    observed. In summary, the study indicates that the early stability of the sediment (i.e., when any hydrate is still present) is governed by the intensity of a heat source and the thermal conductivity of sediments. Later, the excess pore fluid pressure diffused from the dissociation region destabilizes the shallower sediments. In critical cases, an effective drainage path is necessary to prevent instability problems such as blow-up of sediments or buckling of a well.

  6. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  7. Structural stability of methane hydrate at high pressures

    Science.gov (United States)

    Shu, J.; Chen, X.; Chou, I.-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang

    2011-01-01

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure. ?? 2011, China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. All rights reserved.

  8. Stability Analysis of Methane Hydrate-Bearing Soils Considering Dissociation

    Directory of Open Access Journals (Sweden)

    Hiromasa Iwai

    2015-06-01

    Full Text Available It is well known that the methane hydrate dissociation process may lead to unstable behavior such as large ground deformations, uncontrollable gas production, etc. A linear instability analysis was performed in order to investigate which variables have a significant effect on the onset of the instability behavior of methane hydrate-bearing soils subjected to dissociation. In the analysis a simplified viscoplastic constitutive equation is used for the soil sediment. The stability analysis shows that the onset of instability of the material system mainly depends on the strain hardening-softening parameter, the degree of strain, and the permeability for water and gas. Then, we conducted a numerical analysis of gas hydrate-bearing soil considering hydrate dissociation in order to investigate the effect of the parameters on the system. The simulation method used in the present study can describe the chemo-thermo-mechanically coupled behaviors such as phase changes from hydrates to water and gas, temperature changes and ground deformation. From the numerical results, we found that basically the larger the permeability for water and gas is, the more stable the simulation results are. These results are consistent with those obtained from the linear stability analysis.

  9. Synthesis of polycrystalline methane hydrate, and its phase stability and mechanical properties at elevated pressure

    Science.gov (United States)

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1997-01-01

    Test specimens of methane hydrate were grown under static conditions by combining cold, pressurized CH4 gas with H2O ice grains, then warming the system to promote the reaction CH4 (g) + 6H2O (s???l) ??? CH4??6H2O. Hydrate formation evidently occurs at the nascent ice/liquid water interface, and complete reaction was achieved by warming the system above 271.5 K and up to 289 K, at 25-30 MPa, for approximately 8 hours. The resulting material is pure methane hydrate with controlled grain size and random texture. Fabrication conditions placed the H2O ice well above its melting temperature before reaction completed, yet samples and run records showed no evidence for bulk melting of the ice grains. Control experiments using Ne, a non-hydrate-forming gas, verified that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting is easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably at temperatures well above its melting point. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T= 140-200 K, Pc= 50-100 MPa, and ????= 10-4-10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to a higher degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; x-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.

  10. Are seafloor pockmarks on the Chatham Rise, New Zealand, linked to CO2 hydrates? Gas hydrate stability considerations.

    Science.gov (United States)

    Pecher, I. A.; Davy, B. W.; Rose, P. S.; Coffin, R. B.

    2015-12-01

    Vast areas of the Chatham Rise east of New Zealand are covered by seafloor pockmarks. Pockmark occurrence appears to be bathymetrically controlled with a band of smaller pockmarks covering areas between 500 and 700 m and large seafloor depressions beneath 800 m water depth. The current depth of the top of methane gas hydrate stability in the ocean is about 500 m and thus, we had proposed that pockmark formation may be linked to methane gas hydrate dissociation during sealevel lowering. However, while seismic profiles show strong indications of fluid flow, geochemical analyses of piston cores do not show any evidence for current or past methane flux. The discovery of Dawsonite, indicative of significant CO2 flux, in a recent petroleum exploration well, together with other circumstantial evidence, has led us to propose that instead of methane hydrate, CO2 hydrate may be linked to pockmark formation. We here present results from CO2 hydrate stability calculations. Assuming water temperature profiles remain unchanged, we predict the upper limit of pockmark occurrence to coincide with the top of CO2 gas hydrate stability during glacial-stage sealevel lowstands. CO2 hydrates may therefore have dissociated during sealevel lowering leading to gas escape and pockmark formation. In contrast to our previous model linking methane hydrate dissociation to pockmark formation, gas hydrates would dissociate beneath a shallow base of CO2 hydrate stability, rather than on the seafloor following upward "grazing" of the top of methane hydrate stability. Intriguingly, at the water depths of the larger seafloor depressions, the base of gas hydrate stability delineates the phase boundary between CO2 hydrates and super-saturated CO2. We caution that because of the high solubility of CO2, dissociation from hydrate to free gas or super-saturated CO2 would imply high concentrations of CO2 and speculate that pockmark formation may be linked to CO2 hydrate dissolution rather than dissociation

  11. Hydrate control for WAG injection in the Ekofisk field

    Energy Technology Data Exchange (ETDEWEB)

    Lekvam, Knut; Surguchev, Leonid M.; Ekrann, Steinar; Svartaas, Thor Martin; Kelland, Malcolm; Nilsson, Svante; Oevsthus, Jorun; Gjoevikli, Nils B.

    1997-12-31

    The report relates to a hydrate formation project for the Ekofisk field on the Norwegian continental shelf. To remove the possible hydrate formation problems during WAG (Water Alternating Gas) treatment, the following project was conducted to estimate roughly the distance from the injection well that hydrate formation can be prevented by whatever treatment is most appropriate. The first aim was to test experimentally whether selected kinetic hydrate inhibitors could be used, and in which concentrations and quantities. In addition evaluations were done to calculate the required volume of the inhibitor solutions that have to be injected to prevent mixing of uninhibited water and gas. 8 figs., 8 tabs.

  12. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer.

    Science.gov (United States)

    Amar-Yuli, Idit; Wachtel, Ellen; Shoshan, Einav Ben; Danino, Dganit; Aserin, Abraham; Garti, Nissim

    2007-03-27

    In this research, we studied the factors that control formation of GMO/tricaprylin/water hexosomes and affect their inner structure. As a stabilizer of the soft particles dispersed in the aqueous phase, we used the hydrophilic nonionic triblock polymer Pluronic 127. We demonstrate how properties of the hexosomes, such as size, structure, and stability, can be tuned by their internal composition, polymer concentration, and processing conditions. The morphology and inner structure of the hexosomes were characterized by small-angle X-ray scattering, cryo-transmission electron microscope, and dynamic light scattering. The physical stability (to creaming, aggregation, and coalescence) of the hexosomes was further examined by the LUMiFuge technique. Two competing processes are presumed to take place during the formation of hexosomes: penetration of water from the continuous phase during dispersion, resulting in enhanced hydration of the head groups, and incorporation of the polymer chains into the hexosome structure while providing a stabilizing surface coating for the dispersed particles. Hydration is an essential stage in lyotropic liquid crystal (LLC) formation. The polymer, on the other hand, dehydrates the lipid heads, thereby introducing disorder into the LLC and reducing the domain size. Yet, a critical minimum polymer concentration is necessary in order to form stable nanosized hexosomes. These competing effects require the attention of those preparing hexosomes. The competition between these two processes can be controlled. At relatively high polymer concentrations (1-1.6 wt % of the total formulation of the soft particles), the hydration process seems to occur more rapidly than polymer adsorption. As a result, smaller and more stable soft particles with high symmetry were formed. On the other hand, when the polymer concentration is fixed at lower levels (<1.0 wt %), the homogenization process encourages only partial polymer adsorption during the dispersion

  13. P-T stability conditions of methane hydrate in sediment from South China Sea

    Institute of Scientific and Technical Information of China (English)

    Shicai Sun; Yuguang Ye; Changling Liu; Fengkui Xiang; Yah Ma

    2011-01-01

    For reasonable assessment and safe exploitation of marine gas hydrate resource,it is important to determine the stability conditions of gas hydrates in marine sediment.In this paper,the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates,and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method.Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment,under any given pressure,is depressed by approximately -1.4 K relative to the pure water system.This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.

  14. The stability of gas hydrate field in the northeastern continental slope of Sakhalin Island, Sea of Okhotsk, as inferred from analysis of heat flow data and its implications for slope failures

    Science.gov (United States)

    Kim, Y.; Lee, S.; Jin, Y.; Baranov, B.; Obzhirov, A.; Salomatin, A.; Shoji, H.

    2012-12-01

    The sudden release of methane in shallow water due to ocean warming and/or sea level drop, leading to extensive mass wasting at continental margins, has been suggested as a possible cause of global climate change. In the northeastern continental slope of the Sakhalin Island (Sea of Okhotsk), numerous gas hydrate-related manifestations occur, including hydroacoustic anomaly (gas flare) in the water column, pockmarks and mounds on the seafloor, seepage structures and bottom-simulating reflectors (BSRs). The gas hydrate found at 385 mbsl represents the shallowest occurrence ever recorded in the Okhotsk Sea. In this study, we modeled the gas hydrate stability zone (GHSZ) using methane gas composition, water temperature and geothermal gradient to see if it is consistent with the observed depth of BSR. An important distinction can be made between the seafloor containing seepage features and normal seafloor in terms of their thermal structure. The depth of BSR matches well with the base of GHSZ estimated from the background heat flow (geothermal gradient). A large slope failure feature is found in the northern Sakhalin continental slope. We explore the possibility that this failure was caused by gas hydrate dissociation, based on the past climate change history and inference from the GHSZ modeling. Prediction of the natural landslide is difficult; however, new stratigraphic evidence from subbottom profiles suggests that the landslide occurred at 20 ka which is roughly consistent with the period of sea level drop during the Last Glacial Maximum. Furthermore, this region has witnessed a rapid sea water temperature increase (~0.6°C) in the last 50 years. If such a trend continues, additional slope failure can be expected in the near future in this region.

  15. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  16. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  17. Stabilization of ammonia-rich hydrate inside icy planets.

    Science.gov (United States)

    Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas

    2017-08-22

    The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H2O)(NH3)2, is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O(2-)([Formula: see text])2, where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.

  18. Field Data and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Ralf Löwner

    2007-06-01

    Full Text Available Data and information exchange are crucial for any kind of scientific research activities and are becoming more and more important. The comparison between different data sets and different disciplines creates new data, adds value, and finally accumulates knowledge. Also the distribution and accessibility of research results is an important factor for international work. The gas hydrate research community is dispersed across the globe and therefore, a common technical communication language or format is strongly demanded. The CODATA Gas Hydrate Data Task Group is creating the Gas Hydrate Markup Language (GHML, a standard based on the Extensible Markup Language (XML to enable the transport, modeling, and storage of all manner of objects related to gas hydrate research. GHML initially offers an easily deducible content because of the text-based encoding of information, which does not use binary data. The result of these investigations is a custom-designed application schema, which describes the features, elements, and their properties, defining all aspects of Gas Hydrates. One of the components of GHML is the "Field Data" module, which is used for all data and information coming from the field. It considers international standards, particularly the standards defined by the W3C (World Wide Web Consortium and the OGC (Open Geospatial Consortium. Various related standards were analyzed and compared with our requirements (in particular the Geographic Markup Language (ISO19136, GML and the whole ISO19000 series. However, the requirements demanded a quick solution and an XML application schema readable for any scientist without a background in information technology. Therefore, ideas, concepts and definitions have been used to build up the modules of GHML without importing any of these Markup languages. This enables a comprehensive schema and simple use.

  19. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...

  20. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    Directory of Open Access Journals (Sweden)

    Ryo Ohmura

    2012-02-01

    Full Text Available This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the best stability. Also, at a given molecule size, better stability may be available when the large molecule guest substance has a larger molar mass.

  1. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)

    2017-02-14

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

  2. Effects of magnetic fields on HCFC-141b refrigerant gas hydrate formation

    Institute of Scientific and Technical Information of China (English)

    刘勇; 郭开华; 梁德青; 樊栓狮

    2003-01-01

    Low-pressure refrigerant gas hydrates have brilliant prospects as a cool storage medium for air-conditioning systems. Intensive effects of some specific magnetic fields on the formation process of HCFC-141b refrigerant gas hydrate are depicted experimentally. Under influence of these specific magnetic fields, the orientation and growth region of gas hydrate are altered; induction time of hydrate crystallization can be shortened extremely, and it can be shortened to 40 min from 9 h; hydrate formation mass can be enhanced considerably, and hydration rate can arrive at 100% in some instances. Meanwhile, the relations of induction time and hydration rate changed with magnetic field intensity are depicted, and some elementary regulations are found.

  3. The influence of SO2 and NO2 impurities on CO2 gas hydrate formation and stability.

    Science.gov (United States)

    Beeskow-Strauch, Bettina; Schicks, Judith M; Spangenberg, Erik; Erzinger, Jörg

    2011-04-11

    The sequestration of industrially emitted CO(2) in gas hydrate reservoirs has been recently discussed as an option to reduce atmospheric greenhouse gas. This CO(2) contains, despite much effort to clean it, traces of impurities such as SO(2) and NO(2) . Here, we present results of a pilot study on CO(2) hydrates contaminated with 1% SO(2) or 1% NO(2) and show the impact on hydrate formation and stability. Microscopic observations show similar hydrate formation rates, but an increase in hydrate stability in the presence of SO(2). Laser Raman spectroscopy indicates a strong enrichment of SO(2) in the liquid and hydrate phase and its incorporation in both large and small cages of the hydrate lattice. NO(2) is not verifiable by laser Raman spectroscopy, only the presence of nitrate ions could be confirmed. Differential scanning calorimetry analyses show that hydrate stability and dissociation enthalpy of mixed CO(2)-SO(2) hydrates increase, but that only negligible changes arise in the presence of NO(2) impurities. X-ray diffraction data reveal the formation of sI hydrate in all experiments. The conversion rates of ice+gas to hydrate increase in the presence of SO(2), but decrease in the presence of NO(2). After hydrate dissociation, SO(2) and NO(2) dissolved in water and form strong acids.

  4. Evaluation of the geological relationships to gas hydrate formation and stability

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Finley, P.

    1988-01-01

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  5. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    Energy Technology Data Exchange (ETDEWEB)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  6. Influences of different types of magnetic fields on HCFC-141b gas hydrate formation processes

    Institute of Scientific and Technical Information of China (English)

    SHU; Bifen; MA; Xiaolin; GUO; Kaihua; LI; Jianhong

    2004-01-01

    In this study, visualizations and experiments are carried out on the influence of static and rotating magnetic fields on the characteristics of HCFC-141b gas hydrate formation, such as crystallization form, formation temperature and induction time. It has been found that a proper rotating magnetic field can considerably improve the low-pressure gas hydrate formation process,especially in increasing the formation temperature and shortening the induction time. The morphology of the gas hydrate formation appears rather complex and compact. However, a proper static magnetic field can make the gas hydrate crystal more organized, which will be benefit to heat transfer.

  7. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle

    Science.gov (United States)

    Brewer, Peter G.; Orr, Franklin M., Jr.; Friederich, Gernot; Kvenvolden, Keith A.; Orange, Daniel L.; McFarlane, James; Kirkwood, William

    1997-05-01

    We have observed the process of formation of clathrate hydrates of methane in experiments conducted on the remotely operated vehicle (ROV) Ventana in the deep waters of Monterey Bay. A tank of methane gas, acrylic tubes containing seawater, and seawater plus various types of sediment were carried down on Ventana to a depth of 910 m where methane gas was injected at the base of the acrylic tubes by bubble stream. Prior calculations had shown that the local hydrographic conditions gave an upper limit of 525 m for the P-T boundary defining methane hydrate formation or dissociation at this site, and thus our experiment took place well within the stability range for this reaction to occur. Hydrate formation in free seawater occurred within minutes as a buoyant mass of translucent hydrate formed at the gas-water interface. In a coarse sand matrix the filling of the pore spaces with hydrate turned the sand column into a solidified block, which gas pressure soon lifted and ruptured. In a fine-grained black mud the gas flow carved out flow channels, the walls of which became coated and then filled with hydrate in larger discrete masses. Our experiment shows that hydrate formation is rapid in natural seawater, that sediment type strongly influences the patterns of hydrate formation, and that the use of ROV technologies permits the synthesis of large amounts of hydrate material in natural systems under a variety of conditions so that fundamental research on the stability and growth of these substances is possible.

  8. Methane hydrate stability in the presence of water-soluble hydroxyalkyl cellulose

    Institute of Scientific and Technical Information of China (English)

    M. Mohammad-Taheri; A. Zarringhalam Moghaddam; K. Nazari; N. Gholipour Zanjani

    2012-01-01

    The effect of low-dosage water-soluble hydroxyethyl cellulose (approximate Mw~90,000 and 250,000) as a member ofhydroxyalkyl cellulosic polymer group on methane hydrate stability was investigated by monitoring hydrate dissociation at pressures greater than atmospheric pressure in a closed vessel.In particular,the influence of molecular weight and mass concentration of hydroxyethyl cellulose (HEC) was studied with respect to hydrate formation and dissociation.Methane hydrate formation was performed at 2 ℃ and at a pressure greater than 100 bar.Afterwards,hydrate dissociation was initiated by step heating from - 10 ℃ at a mild pressure of 13 bar to -3 ℃,0 ℃ and 2 ℃.With respect to the results obtained for methane hydrate formation/dissociation and the amount of gas uptake,we concluded that HEC 90,000 at 5000 ppm is suitable for long-term gas storage and transportation under a mild pressure of 13 bar and at temperatures below the freezing point.

  9. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. C. [Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble (France); Falenty, A.; Kuhs, W. F. [GZG, Abt. Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, 37077 Göttingen (Germany)

    2016-02-07

    The lattice constants of hydrogenated and deuterated CH{sub 4}-, CO{sub 2}-, Xe- (clathrate structure type I) and N{sub 2}-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO{sub 2} as compared to methane, CO{sub 2}-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-host interaction of the CO{sub 2}-water system. (3) The expansivity of CO{sub 2}-hydrate is larger than for CH{sub 4}-hydrate which leads to larger lattice constants for the former at temperatures above ∼150 K; this is likely due to the higher motional degrees of freedom of the CO{sub 2} guest molecules. (4) The cage occupancies of Xe- and CO{sub 2}-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms’ vibrational energy to thermal expansion is important, most prominently for CO{sub 2}- and Xe-hydrates.

  10. Stabilization and anomalous hydration of collagen fibril under heating.

    Directory of Open Access Journals (Sweden)

    Sasun G Gevorkian

    Full Text Available BACKGROUND: Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon. METHODOLOGY/PRINCIPAL FINDING: When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism. CONCLUSION/SIGNIFICANCE: We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.

  11. Physicochemical properties and thermal stability of quercetin hydrates in the solid state

    Energy Technology Data Exchange (ETDEWEB)

    Borghetti, G.S., E-mail: greicefarm@yahoo.com.br [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil); Carini, J.P. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil); Honorato, S.B.; Ayala, A.P. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60.455-970, Fortaleza, CE (Brazil); Moreira, J.C.F. [Departamento de Bioquimica, Instituto de Ciencias Basicas da Saude, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, CEP 90035-003, Porto Alegre, RS (Brazil); Bassani, V.L. [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Faculdade de Farmacia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, CEP 90.610-000, Porto Alegre, RS (Brazil)

    2012-07-10

    Highlights: Black-Right-Pointing-Pointer Quercetin raw materials may present different degree of hydration. Black-Right-Pointing-Pointer Thermal stability of quercetin in the solid state depends on its degree of hydration. Black-Right-Pointing-Pointer Quercetin dehydrate is thermodynamically more stable than the other crystal forms. - Abstract: In the present work three samples of quercetin raw materials (QCTa, QCTb and QCTc), purchased from different Brazilian suppliers, were characterized employing scanning electron microscopy, Raman spectroscopy, simultaneous thermogravimetry and infrared spectroscopy, differential scanning calorimetry, and variable temperature-powder X-ray diffraction, in order to know their physicochemical properties, specially the thermal stability in solid state. The results demonstrated that the raw materials of quercetin analyzed present distinct crystalline structures, ascribed to the different degree of hydration of their crystal lattice. The thermal stability of these quercetin raw materials in the solid state was highly dependent on their degree of hydration, where QCTa (quercetin dihydrate) was thermodynamically more stable than the other two samples.

  12. An Outlook on Biothermodynamics: Needs, Problems, and New Developments. I. Stability and Hydration of Proteins

    Science.gov (United States)

    Keller, Jürgen U.

    2008-12-01

    The application of concepts, principles, and methods of thermodynamics of equilibria and processes to bioengineering systems has led to a new and growing field: engineering biothermodynamics. This article, which is meant as the first in a series, gives an outline of basic aspects, changes, and actual examples in this field. After a few introductory remarks, the basic concepts and laws of thermodynamics extended to systems with internal variables, which serve as models for biofluids and other biosystems, are given. The method of thermodynamics is then applied to the problem of thermal stability of aqueous protein solutions, especially to that of myoglobin solutions. After this, the phenomenon of hydration of proteins by adsorption and intrusion of water molecules is considered. Several other phenomena like the adsorption of proteins on solid surfaces or cell membranes and their temperature and pressure-related behavior represented by an equation of state, or the thermodynamics of bacterial solutions including chemical reactions like wine fermentation, etc., will be presented in Parts II and III of this article.

  13. Methods of gas hydrate concentration estimation with field examples

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, D.; Dash, R.; Dewangan, P.

    different methods of gas hydrate concentration estimation that make use of data from the measurements of the seismic properties, electrical resistivity, chlorinity, porosity, density, and temperature are summarized in this paper. We demonstrate the methods...

  14. Selective and reactive hydration of nitriles to amides in water using silver nanoparticles stabilized by organic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Koji [Hokkaido University, Division of Materials Science and Engineering, Faculty of Engineering (Japan); Kawakami, Hayato [Miyoshi Oil & Fat Co., Ltd. (Japan); Narushima, Takashi; Yonezawa, Tetsu, E-mail: tetsu@eng.hokudai.ac.jp [Hokkaido University, Division of Materials Science and Engineering, Faculty of Engineering (Japan)

    2015-02-15

    Water-dispersible silver nanoparticles stabilized by silver–carbon covalent bonds were prepared. They exhibited high catalytic activities for the selective hydration of nitriles to amides in water. The activation of a nitrile group by the functional groups of the substrates and the hydrophobic layer on the nanoparticles influenced the catalyzed reaction were confirmed. Alkyl nitriles could also be selectively hydrated.

  15. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.

  16. Thermal stability and hydration behavior of ritonavir sulfate: A vibrational spectroscopic approach

    Directory of Open Access Journals (Sweden)

    Kaweri Gambhir

    2015-12-01

    Full Text Available Ritonavir sulfate is a protease inhibitor widely used in the treatment of acquired immunodeficiency syndrome. In order to elucidate the inherent stability and sensitivity characteristics of ritonavir sulfate, it was investigated under forced thermal and hydration stress conditions as recommended by the International Conference on Harmonization guidelines. In addition, competency of vibrational (infrared and Raman spectroscopy was assessed to identify structural changes of the drug symbolizing its stress degradation. High performance liquid chromatography was used as a confirmatory technique for both thermal and hydration stress study, while thermogravimetric analysis/differential thermal analysis and atomic force microscopy substantiated the implementation of vibrational spectroscopy in this framework. The results exhibited high thermal stability of the drug as significant variations were observed in the diffuse reflectance infrared Fourier transform spectra only after the drug exposure to thermal radiations at 100 °C. Hydration behavior of ritonavir sulfate was evaluated using Raman spectroscopy and the value of critical relative humidity was found to be >67%. An important aspect of this study was to utilize vibrational spectroscopic technique to address stability issues of pharmacological molecules, not only for their processing in pharmaceutical industry, but also for predicting their shelf lives and suitable storage conditions.

  17. Thermal stability and hydration behavior of ritonavir sulfate:A vibrational spectroscopic approach

    Institute of Scientific and Technical Information of China (English)

    Kaweri Gambhir; Parul Singh; Deepak K Jangir; Ranjana Mehrotra

    2015-01-01

    abstract Ritonavir sulfate is a protease inhibitor widely used in the treatment of acquired immunodeficiency syndrome. In order to elucidate the inherent stability and sensitivity characteristics of ritonavir sulfate, it was investigated under forced thermal and hydration stress conditions as recommended by the Inter-national Conference on Harmonization guidelines. In addition, competency of vibrational (infrared and Raman) spectroscopy was assessed to identify structural changes of the drug symbolizing its stress de-gradation. High performance liquid chromatography was used as a confirmatory technique for both thermal and hydration stress study, while thermogravimetric analysis/differential thermal analysis and atomic force microscopy substantiated the implementation of vibrational spectroscopy in this frame-work. The results exhibited high thermal stability of the drug as significant variations were observed in the diffuse reflectance infrared Fourier transform spectra only after the drug exposure to thermal ra-diations at 100 °C. Hydration behavior of ritonavir sulfate was evaluated using Raman spectroscopy and the value of critical relative humidity was found to be 4 67%. An important aspect of this study was to utilize vibrational spectroscopic technique to address stability issues of pharmacological molecules, not only for their processing in pharmaceutical industry, but also for predicting their shelf lives and suitable storage conditions.

  18. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle

    Science.gov (United States)

    Brewer, P.G.; Orr, F.M.; Friederich, G.; Kvenvolden, K.A.; Orange, D.L.; McFarlane, J.; Kirkwood, W.

    1997-01-01

    We have observed the process of formation of clathrate hydrates of methane in experiments conducted on the remotely operated vehicle (ROY) Ventana in the deep waters of Monterey Bay. A tank of methane gas, acrylic tubes containing seawater, and seawater plus various types of sediment were carried down on Ventana to a depth of 910 m where methane gas was injected at the base of the acrylic tubes by bubble stream. Prior calculations had shown that the local hydrographic conditions gave an upper limit of 525 m for the P-T boundary defining methane hydrate formation or dissociation at this site, and thus our experiment took place well within the stability range for this reaction to occur. Hydrate formation in free sea-water occurred within minutes as a buoyant mass of translucent hydrate formed at the gas-water interface. In a coarse sand matrix the Filling of the pore spaces with hydrate turned the sand column into a solidified block, which gas pressure soon lifted and ruptured. In a fine-grained black mud the gas flow carved out flow channels, the walls of which became coated and then filled with hydrate in larger discrete masses. Our experiment shows that hydrate formation is rapid in natural seawater, that sediment type strongly influences the patterns of hydrate formation, and that the use of ROV technologies permits the synthesis of large amounts of hydrate material in natural systems under a variety of conditions so that fundamental research on the stability and growth of these substances is possible.

  19. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

  20. Size and stability of liposomes: a possible role of hydration and osmotic forces.

    Science.gov (United States)

    Sabín, J; Prieto, G; Ruso, J M; Hidalgo-Alvarez, R; Sarmiento, F

    2006-08-01

    Dynamic light scattering and electrophoretic mobility measurements have been used to characterize the size, size distribution and zeta potentials (zeta-potentials) of egg yolk phosphatidylcholine (EYPC) liposomes in the presence of monovalent ions ( Na(+) and K(+)). To study the stability of liposomes the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been extended by introducing the hydrated radius of the adsorbed ions onto the liposome surfaces. The decrease of liposome size is explained on the basis of the membrane impermeability to some ions which generate osmotic forces, which leads to evacuate water from liposome inside.

  1. Measurement of Clathrate Hydrate Thermodynamic Stability in the Presence of Ammonia

    Science.gov (United States)

    Dunham, Marc

    2012-01-01

    There is a lack of data available for the stability of clathrate hydrates in the presence of ammonia for low-to-moderate pressures in the 0-10 MPa range. Providing such data will allow for a better understanding of natural mass transfer processes on celestial bodies like Titan and Enceladus, on which destabilization of clathrates may be responsible for replenishment of gases in the atmosphere. The experimental process utilizes a custom-built gas handling system (GHS) and a cryogenic calorimeter to allow for the efficient testing of samples under varying pressures and gas species.

  2. National Assessment of Oil and Gas Project, Northern Alaska Province (001). Petroleum Systems and Geologic Assessment of Gas Hydrates in Northern Alaska – 2008. Limits of the Gas Hydrate stability zone contour lines

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The limits of Gas Hydrate (GH) stability zone contour lines (GH stability thickness zero) shown here is a geographic boundary defined and mapped on basis of U.S....

  3. Fluid Flow Patterns During Production from Gas Hydrates in the Laboratory compared to Field Settings: LARS vs. Mallik

    Science.gov (United States)

    Strauch, B.; Heeschen, K. U.; Priegnitz, M.; Abendroth, S.; Spangenberg, E.; Thaler, J.; Schicks, J. M.

    2015-12-01

    The GFZ's LArge Reservoir Simulator LARS allows for the simulation of the 2008 Mallik gas hydrate production test and the comparison of fluid flow patterns and their driving forces. Do we see the gas flow pattern described for Mallik [Uddin, M. et al., J. Can. Petrol Tech, 50, 70-89, 2011] in a pilot scale test? If so, what are the driving forces? LARS has a network of temperature sensors and an electric resistivity tomography (ERT) enabling a good spatial resolution of gas hydrate occurrences, water and gas distribution, and changes in temperature in the sample. A gas flow meter and a water trap record fluid flow patterns and a backpressure valve has controlled the depressurization equivalent to the three pressure stages (7.0 - 5.0 - 4.2 MPa) applied in the Mallik field test. The environmental temperature (284 K) and confining pressure (13 MPa) have been constant. The depressurization induced immediate endothermic gas hydrate dissociation until re-establishment of the stability conditions by a consequent temperature decrease. Slight gas hydrate dissociation continued at the top and upper lateral border due to the constant heat input from the environment. Here transport pathways were short and permeability higher due to lower gas hydrate saturation. At pressures of 7.0 and 5.0 MPa the LARS tests showed high water flow rates and short irregular spikes of gas production. The gas flow patterns at 4.2 MPa and 3.0MPa resembled those of the Mallik test. In LARS the initial gas surges overlap with times of hydrate instability while water content and lengths of pathways had increased. Water production was at a minimum. A rapidly formed continuous gas phase caused the initial gas surges and only after gas hydrate dissociation decreased to a minimum the single gas bubbles get trapped before slowly coalescing again. In LARS, where pathways were short and no additional water was added, a transport of microbubbles is unlikely to cause a gas surge as suggested for Mallik.

  4. Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Finley, P.

    1988-12-31

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  5. The Iġnik Sikumi Field Experiment, Alaska North Slope: Design, operations, and implications for CO2−CH4 exchange in gas hydrate reservoirs

    Science.gov (United States)

    Boswell, Ray; Schoderbek, David; Collett, Timothy S.; Ohtsuki, Satoshi; White, Mark; Anderson, Brian J.

    2017-01-01

    The Iġnik Sikumi Gas Hydrate Exchange Field Experiment was conducted by ConocoPhillips in partnership with the U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and the U.S. Geological Survey within the Prudhoe Bay Unit on the Alaska North Slope during 2011 and 2012. The primary goals of the program were to (1) determine the feasibility of gas injection into hydrate-bearing sand reservoirs and (2) observe reservoir response upon subsequent flowback in order to assess the potential for CO2 exchange for CH4 in naturally occurring gas hydrate reservoirs. Initial modeling determined that no feasible means of injection of pure CO2 was likely, given the presence of free water in the reservoir. Laboratory and numerical modeling studies indicated that the injection of a mixture of CO2 and N2 offered the best potential for gas injection and exchange. The test featured the following primary operational phases: (1) injection of a gaseous phase mixture of CO2, N2, and chemical tracers; (2) flowback conducted at downhole pressures above the stability threshold for native CH4 hydrate; and (3) an extended (30-days) flowback at pressures near, and then below, the stability threshold of native CH4 hydrate. The test findings indicate that the formation of a range of mixed-gas hydrates resulted in a net exchange of CO2 for CH4 in the reservoir, although the complexity of the subsurface environment renders the nature, extent, and efficiency of the exchange reaction uncertain. The next steps in the evaluation of exchange technology should feature multiple well applications; however, such field test programs will require extensive preparatory experimental and numerical modeling studies and will likely be a secondary priority to further field testing of production through depressurization. Additional insights gained from the field program include the following: (1) gas hydrate destabilization is self-limiting, dispelling any notion of the potential for

  6. Thermodynamic and kinetic stability of zwitterionic histidine: Effects of gas phase hydration

    Science.gov (United States)

    Lee, Sung-Sik; Kim, Ju-Young; Han, Yuna; Shim, Hyun-Jin; Lee, Sungyul

    2015-09-01

    We present calculations for histidine-(H2O)n (n = 0-6) to examine the effects of micro-hydrating water molecules on the relative stability of the zwitterionic vs. canonical forms of histidine. We calculate the structures and Gibbs free energies of the conformers at wB97XD/6-311++G(d,p) level of theory. We find that six water molecules are required to produce the thermodynamically stable histidine zwitterion. By calculating the barriers of canonical ↔ zwitterionic transformation, we predict that both the most stable canonical and zwitterionic forms of histidine-(H2O)6 may be observed in low temperature gas phase environment.

  7. Hydration of the cyanide ion: an ab initio quantum mechanical charge field molecular dynamics study.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S

    2014-12-21

    This paper presents an ab initio quantum mechanical charge field molecular dynamics simulation study of the cyanide anion (CN(-)) in aqueous solution where hydrogen bond formation plays a dominant role in the hydration process. Preferential orientation of water hydrogens compared to oxygen atoms was quantified in terms of radial, angular as well as coordination number distributions. All structural results indicate that the water hydrogens are attracted towards CN(-) atoms, thus contributing to the formation of the hydration layer. Moreover, a clear picture of the local arrangement of water molecules around the ellipsoidal CN(-) ion is provided via angular-radial distribution and spatial distribution functions. Apart from the structural analysis, the evaluation of water dynamics in terms of ligand mean residence times and H-bond correlation functions indicates the weak structure making capacity of the CN(-) ion. The similar values of H-bond lifetimes obtained for the NHwat and CHwat bonds indicate an isokinetic behaviour of these H-bonds, since there is a very small difference in the magnitude of the lifetimes. On the other hand, the H-bond lifetimes between water molecules of the hydration shell, and between solute and solvent evidence the slightly stable hydration of the CN(-). Overall, the H-bonding dominates in the hydration process of the cyanide anion enabling it to become soluble in the aqueous environment associated to chemical and biological processes.

  8. Stability of permafrost and gas hydrates in Arctic coastal lowlands and on the Eurasian shelf

    Science.gov (United States)

    Hubberten, H. W.; Lantuit, H.; Overduin, P. P.; Romanovskii, N.; Wetterich, S.

    2011-12-01

    During the last Glacial period thick continuous permafrost developed on the Siberian coastal lowlands and large shelf areas due to the up to 120 m lower sea level and the exposure of these areas to cold temperatures. With the beginning of the Holocene transgression, complex interaction processes of sea water with the permafrost landscape occurred. The occurrence of gas hydrates captured in permafrost is a characteristic feature of the the Eurasian Arctic shelf areas, especially on the shelf of the Kara, Laptev and East Siberia seas. In some of the shelf areas oceanic rift zones stretch to the continent, as for example in the Laptev Sea area where the Gakkel Ridge continues into the land. Great differences in geothermal heat flow values and in the properties of the sediments and rocks have to be assumed in undisturbed lithosphere block and in fault zones like as in continental rifts (such as Momskii and Baikalskii rifts, etc.). As a result differences in the thickness of permafrost and the gas hydrate stability zone (GHSZ) within these structures are expected. The thickness of permafrost and the GHSZ change essentially and irregularly in the stages of regressions and transgressions of the sea. Models show that the thickness of offshore (subsea) permafrost in the stages of climatic warming and transgressions essentially decrease however, rather irregular. The possibilities and the boundary conditions for the occurrence of open taliks, which may result in an emission of greenhouse gases from sub-permafrost gases and hydrates, have been estimated. Ice-bearing and ice-bonded permafrost in the northern regions of Arctic lowlands and in the inner shelf zone, have been preserved during at least four Pleistocene climatic and glacial-eustatic cycles. Presently, they are subjected to degradation from the bottom under the impact of geothermal heat flux as well as from interaction with warmer sea water at the top. Subsea permafrost formed on the arctic continental shelves that

  9. Aminopentol, a possible novel biomarker tracer for methane hydrate stability in sedimentary records

    Science.gov (United States)

    Handley, L.; Talbot, H. M.; Cooke, M. P.; Wagner, T.

    2009-04-01

    perturbations in local climate with relation to these previously unrecognized methane emission events. The aerobic oxidation of methane is thought to be intrinsically linked with methane gas hydrate dissolution. Thus, the variability in amino-BHP abundance could provide an indicator for past methane emission events, directly linking key aspects of structural geology with gas hydrate stability, deep ocean processes, and methane cycling.

  10. Long-term stability of hydrogen isotope ratios in hydrated volcanic glass

    Science.gov (United States)

    Cassel, Elizabeth J.; Breecker, Daniel O.

    2017-03-01

    The advancement of conceptual and numerical geodynamic models necessitates quantitative, orogen-scale paleoelevation data. Felsic volcanic glasses, which record the hydrogen isotope compositions (δD) of meteoric water shortly after deposition, provide several advantages as a paleoelevation proxy. Questions remain, however, about the reliability of this relatively new proxy, including the effect of hydrofluoric (HF) acid abrasion in the preparation of glass shards for hydrogen isotope analysis and the stability of hydrogen isotope ratios in hydrated glass shards over geologic time (106-107 years). HF acid abrasion of natural ancient glass shards results in systematic shifts in glass δD values away from modern water δD values. To evaluate the effectiveness of HF acid abrasion, we treated 70-150 μm glass shards separated from various natural tephras with deuterium-labeled water (DLW; δD = +18,205‰) for up to 400 days. For all glasses, this treatment resulted in elevated δD values in comparison to untreated samples. HF acid abrasion after DLW exposure, however, removed this effect and restored glass shards to their original untreated δD values in samples older than 104 years. HF acid abrasion removes hydrous alteration precipitates at the glass surface without measurably changing the δD values of the underlying hydrated glass, regardless of abrasion duration or glass composition. Additionally, 45-34 Ma glasses record δD values that directly reflect their depositional environments as determined by stratigraphy: glasses from tuffs deposited in demonstrably evaporative lacustrine environments have relatively high δD values compared to glasses from contemporaneous tuffs deposited in nearby fluvial environments, which have much lower δD values. The preservation of δD values that systematically vary with original depositional environment, despite >30 Myr of post-hydration exposure to the same meteoric water, indicates that these volcanic glasses resisted

  11. Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions.

    Science.gov (United States)

    Miyawaki, Osato; Dozen, Michiko; Hirota, Kaede

    2016-08-01

    The protein unfolding process observed in a narrow temperature range was clearly explained by evaluating the small difference in the enthalpy of hydrogen-bonding between amino acid residues and the hydration of amino acid residue separately. In aqueous solutions, the effect of cosolute on the protein stability is primarily dependent on water activity, aw, the role of which has been long neglected in the literature. The effect of aw on protein stability works as a power law so that a small change in aw is amplified substantially through the cooperative hydration effect. In the present approach, the role of hydrophobic interaction stands behind. This affects protein stability indirectly through the change in solution structure caused by the existence of cosolute.

  12. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  13. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  14. Age-dependent effect of static magnetic field on brain tissue hydration.

    Science.gov (United States)

    Deghoyan, Anush; Nikoghosyan, Anna; Heqimyan, Armenuhi; Ayrapetyan, Sinerik

    2014-01-01

    Age-dependent effect of Static Magnetic Field (SMF) on rats in a condition of active and inactive Na(+)/K(+) pump was studied for comparison of brain tissues hydration state changes and magnetic sensitivity. Influence of 15 min 0, 2 Tesla (T) SMF on brain tissue hydration of three aged groups of male albino rats was studied. Tyrode's physiological solution and 10(-4) M ouabain was used for intraperitoneal injections. For animal immobilization, the liquid nitrogen was used and the definition of tissue water content was performed by tissue drying method. Initial water content in brain tissues of young animals is significantly higher than in those of adult and aged ones. SMF exposure leads to decrease of water content in brain tissues of young animals and increase in brain tissues of adult and aged ones. In case of ouabain-poisoned animals, SMF gives reversal effects on brain tissue's hydration both in young and aged animals, while no significant effect on adults is observed. It is suggested that initial state of tissue hydration could play a crucial role in animal age-dependent magnetic sensitivity and the main reason for this could be age-dependent dysfunction of Na(+)/K(+) pump.

  15. Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

    Directory of Open Access Journals (Sweden)

    E. Dendy Sloan

    2010-12-01

    Full Text Available The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin” hydrate sample preparation protocols and testing.

  16. A non-steady-state condition in sediments at the gas hydrate stability boundary off West Spitsbergen: Evidence for gas hydrate dissociation or just dynamic methane transport

    Science.gov (United States)

    Treude, Tina; Krause, Stefan; Bertics, Victoria; Steinle, Lea; Niemann, Helge; Liebetrau, Volker; Feseker, Tomas; Burwicz, Ewa; Krastel, Sebastian; Berndt, Christian

    2015-04-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. d18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity

  17. Orbit stability in billiards in magnetic field

    CERN Document Server

    Kovács, Z

    1997-01-01

    We study the stability properties of orbits in dispersing billiards in a homogeneous magnetic field by using a modified formalism based on the Bunimovich-Sinai curvature (horocycle method). We identify simple periodic orbits that can be stabilized by the magnetic field in the four-disk model and the square-lattice Lorentz gas. The stable orbits can play a key role in determining the transport properties of these models.

  18. Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa

    Science.gov (United States)

    Marion, G. M.; Kargel, J. S.; Catling, D. C.

    2004-01-01

    Gas hydrates are implicated in the geochemical evolution of both Mars and Europa [1- 3]. Most models developed for gas hydrate chemistry are based on the statistical thermodynamic model of van der Waals and Platteeuw [4] with subsequent modifications [5-8]. None of these models are, however, state-of-the-art with respect to gas hydrate/electrolyte interactions, which is particularly important for planetary applications where solution chemistry may be very different from terrestrial seawater. The objectives of this work were to add gas (carbon dioxide and methane) hydrate chemistries into an electrolyte model parameterized for low temperatures and high pressures (the FREZCHEM model) and use the model to examine controls on gas hydrate chemistries for Mars and Europa.

  19. An Analysis on Stability and Deposition Zones of Natural Gas Hydrate in Dongsha Region, North of South China Sea

    Directory of Open Access Journals (Sweden)

    Zuan Chen

    2010-01-01

    Full Text Available We propose several physical/chemical causes to support the seismic results which find presence of Bottom Simulating Reflector (BSR at site 1144 and site 1148 in Dongsha Region, North of South China Sea. At site 1144, according to geothermal gradient, the bottom of stability zone of conduction mode is in agreement with BSR. At site 1148, however, the stability zone of conduction mode is smaller than the natural gas presence zone predicted by the BSR. We propose three causes, that is, mixed convection and conduction thermal flow mode, multiple composition of natural gas and overpressure in deep sediment to explain the BSR presence or gas hydrate presence. Further, our numerical simulation results suggest yet another reason for the presence of BSR at site 1144 and site 1148. Because the temperatures in deep sediment calculated from the mixed convection and conduction thermal flow mode are lower than that from the single conduction mode, the bottom of gas hydrate stability zone (GHSZ is deeper than the bottom of gas hydrate deposition zone (GHDZ or BSR. The result indicates that occurrence zone of natural is decided by the condition that natural gas concentrate in the zone is greater than its solubility.

  20. XPS Study on the Stability and Transformation of Hydrate and Carbonate Phases within MgO Systems

    Directory of Open Access Journals (Sweden)

    Vanessa Rheinheimer

    2017-01-01

    Full Text Available MgO cements have great potential for carbon sequestration as they have the ability to carbonate and gain strength over time. The hydration of reactive MgO occurs at a similar rate as ordinary Portland cement (PC and forms brucite (Mg(OH2, magnesium hydroxide, which reacts with CO2 to form a range of hydrated magnesium carbonates (HMCs. However, the formation of HMCs within the MgO–CO2–H2O system depends on many factors, such as the temperature and CO2 concentration, among others, which play an important role in determining the rate and degree of carbonation, the type and stability of the produced HMCs and the associated strength development. It is critical to understand the stability and transformation pathway of HMCs, which are assessed here through the use of X-ray photoelectron spectroscopy (XPS. The effects of the CO2 concentration (in air or 10% CO2, exposure to high temperatures (up to 300 °C and curing period (one or seven days are reported. Observed changes in the binding energy (BE indicate the formation of different components and the transformation of the hydrated carbonates from one form to another, which will influence the final performance of the carbonated blends.

  1. Methane in shallow subsurface sediments at the landward limit of the gas hydrate stability zone offshore western Svalbard

    Science.gov (United States)

    Graves, Carolyn A.; James, Rachael H.; Sapart, Célia Julia; Stott, Andrew W.; Wright, Ian C.; Berndt, Christian; Westbrook, Graham K.; Connelly, Douglas P.

    2017-02-01

    Offshore western Svalbard plumes of gas bubbles rise from the seafloor at the landward limit of the gas hydrate stability zone (LLGHSZ; ∼400 m water depth). It is hypothesized that this methane may, in part, come from dissociation of gas hydrate in the underlying sediments in response to recent warming of ocean bottom waters. To evaluate the potential role of gas hydrate in the supply of methane to the shallow subsurface sediments, and the role of anaerobic oxidation in regulating methane fluxes across the sediment-seawater interface, we have characterised the chemical and isotopic compositions of the gases and sediment pore waters. The molecular and isotopic signatures of gas in the bubble plumes (C1/C2+ = 1 × 104; δ13C-CH4 = -55 to -51‰; δD-CH4 = -187 to -184‰) are similar to gas hydrate recovered from within sediments ∼30 km away from the LLGHSZ. Modelling of pore water sulphate profiles indicates that subsurface methane fluxes are largely at steady state in the vicinity of the LLGHSZ, providing no evidence for any recent change in methane supply due to gas hydrate dissociation. However, at greater water depths, within the GHSZ, there is some evidence that the supply of methane to the shallow sediments has recently increased, which is consistent with downslope retreat of the GHSZ due to bottom water warming although other explanations are possible. We estimate that the upward diffusive methane flux into shallow subsurface sediments close to the LLGHSZ is 30,550 mmol m-2 yr-1, but it is <20 mmol m-2 yr-1 in sediments further away from the seafloor bubble plumes. While anaerobic oxidation within the sediments prevents significant transport of dissolved methane into ocean bottom waters this amounts to less than 10% of the total methane flux (dissolved + gas) into the shallow subsurface sediments, most of which escapes AOM as it is transported in the gas phase.

  2. Cross-nucleation between clathrate hydrate polymorphs: assessing the role of stability, growth rate, and structure matching.

    Science.gov (United States)

    Nguyen, Andrew H; Molinero, Valeria

    2014-02-28

    Cross-nucleation is a phenomenon where a new crystal nucleates and grows upon the surface of a different polymorph. Previous studies indicate that faster growth rate of the new crystal is a necessary but not sufficient condition for cross-nucleation. The thermodynamic stability of the different polymorphs can also affect cross-nucleation by modulating the rates of crystal growth. The interplay between thermodynamic stability of the polymorphs involved, the growth rate of the crystals, and the need for creation of an interfacial transition layer that seamlessly connects the two structures has not yet been fully elucidated. Predicting cross-nucleation is particularly challenging for clathrate hydrates, for which there are sometimes several polymorphs with similar stability and for which growth rates are not known. In this work, we use molecular dynamics simulations to investigate which factor (stability, growth rate, or formation of interfacial transition layer) controls cross-nucleation between the four known Frank-Kasper clathrate hydrate polymorphs: sI, sII, TS, and HS-I. We investigate the growth and cross-nucleation of these four hydrates filled with a set of guest molecules that produce different order of stabilities for the four crystal structures. We determine that the growth rate of sII clathrate is the fastest, followed by TS, HS-I, and sI. We find that cross-nucleation into or from sII clathrates is preceded by the formation of an interfacial transition layer at the seed crystal/liquid interface because sII does not share a crystal plane with sI, HS-I, or TS. Cross-nucleation between the latter three can occur seamlessly and is determined only by their growth rates. Our results indicate that nucleation of an interfacial transition layer between non-matching polymorphs can control cross-nucleation or lack thereof under conditions of small driving force. Under conditions of sufficient supercooling clathrate hydrate polymorphs cross-nucleate into the fastest

  3. Study of formation and stability conditions of gas hydrates in drilling fluids; Etude des conditions de formation et de stabilite des hydrates de gaz dans les fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, M.

    2004-10-15

    Drilling fluids are complex media, in which solid particles are in suspension in a water-in-oil emulsion. The formation of gas hydrates in these fluids during off shore drilling operations has been suspected to be the cause of serious accidents. The purpose of this thesis is the study of the formation conditions as well as the stability of gas hydrates in complex fluids containing water-in-oil emulsions. The technique of high-pressure differential scanning calorimetry was used to characterise the conditions of hydrates formation and dissociation. Special attention has first been given to the validation of thermodynamic measurements in homogeneous solutions, in the pressure range 4 to 12 Mpa; the results were found to be in good agreement with literature data, as well as with modelling results. The method was then applied to water-in-oil emulsion, used as a model for real drilling fluids. It was proven that thermodynamics of hydrate stability are not significantly influenced by the state of dispersion of the water phase. On the other hand, the kinetics of formation and the amount of hydrates formed are highly increased by the dispersion. Applying the technique to real drilling fluids confirmed the results obtained in emulsions. Results interpretation allowed giving a representation of the process of hydrate formation in emulsion. Empirical modelling was developed to compute the stability limits of methane hydrate in the presence of various inhibitors, at pressures ranging from ambient to 70 MPa. Isobaric phase diagrams were constructed, that allow predicting the inhibiting efficiency of sodium chloride and calcium chloride at constant pressure, from 0,25 to 70 MPa. (author)

  4. Stability of prostacyclin analogues: an unusual lack of reactivity in acid-catalyzed alkene hydration.

    Science.gov (United States)

    Magill, A; O'Yang, C; Powell, M F

    1988-04-01

    Prostacyclin analogue 5 undergoes specific acid-catalyzed hydration (kH+ = 1.9 x 10(-7)M-1 sec-1 at 25 degrees C) and a pH-independent oxidation reaction (k0 = 1.2 x 10(-10) sec-1 at 25 degrees C) above pH approximately 5. The hydration reaction for 5 is much slower than for other structurally similar exocyclic alkenes, even though the rate-determining step is proton transfer. This slowness of reaction and an analysis of the pH-rate profile show that 5 does not exhibit significant intramolecular general acid catalysis, as does prostacyclin.

  5. CHARACTER ANALYSIS OF THE MARINE GAS HYDRATE STABILITY ZONE%海底天然气水合物稳定带的特征分析

    Institute of Scientific and Technical Information of China (English)

    方银霞; 黎明碧; 金翔龙; 申屠海港

    2001-01-01

    水合物稳定带(HSZ)控制着海底天然气水合物的成矿作用和分布规律,其厚度及分布范围决定了天然气水合物的蕴藏量,所以水合物稳定带的分析对天然气水合物的成矿与分布规律、成因与演化机制以及资源评价研究具有重要的指导意义。水合物稳定带本身受海底温度、压力和甲烷量等因素的影响,其变化会影响水合物稳定带的范围、稳定带底界的位置,并制约着天然气水合物的稳定性和甲烷气的释放。%Hydrate stability zone(HSZ)controls the deposition and the distribution of marine gas hydrate,and its thickness and distribution range determines the reserves of the marine gas hydrate.So the analysis of hydrate stability zone(HSZ) is useful to the study of the deposition,distribution,genesis,evolving mechanism and the resource evaluation of the marine gas hydrate.This paper systematically introduced the main characters of hydrate stability zone(HSZ),such as its formation,its temperature-pressure characters,and its geologic charactes.The paper also discussed the relationship between hydrate stability zone(HSZ) and hydrate deposition zone,the relationship between the base of hydrate stability zone and the top of free gas,the changes of hydrate stability zone and its influential factors.

  6. CALCIUM ORTHOPHOSPHATES HYDRATES: FORMATION, STABILITY AND INFLUENCE ON STANDARD PROPERTIES OF PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    Kaziliunas A.

    2013-12-01

    Full Text Available Preparation of phosphogypsum to produce the binders requires a much higher input than preparation of natural gypsum stone. This makes it uncompetitive material. The investigations presented therein are meant to reduce this input by looking for the ways of rendering impurities harmless. Soluble acid orthophosphates are the main harmful impurity of phosphogypsum. The studies show that dry insoluble calcium orthophosphates hydrates (1.09 % and 2.18 % P2O5 in gypsum have little effect on W/C, setting times and soundness of Portland cement pastes. Insoluble calcium orthophosphates hydrates {CaHPO4∙2H2O, Ca8(HPO42(PO44∙5H2O and Ca9(HPO4(PO45(OH∙4H2O} formed in acidic medium (pH = 4.2 - 5.9 have been destroyed in alkaline medium and reduce standard compressive strength of cement up to 28 %. Calcium orthophosphates hydrates of hydroxyapatite group are stable in alcaline medium, while in dry state they reduce the standard compressive strength of cement until 10 %, but their suspensions prolong setting times of Portland cement as soluble orthophosphates – 2 - 3 times. Alkalis in cement increase pH of paste, but do not change the process of formation of calcium orthophosphates hydrates of hydroxyapatite group: it takes place through an intermediate phase - CaHPO4·2H2O, whose transformation into apatite lasts for 2 - 3 months.

  7. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  8. Stability of Spherical Vesicles in Electric Fields

    Science.gov (United States)

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  9. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    Science.gov (United States)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and

  10. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate‐Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report

  11. Evaluating Parametrization Protocols for Hydration Free Energy Calculations with the AMOEBA Polarizable Force Field.

    Science.gov (United States)

    Bradshaw, Richard T; Essex, Jonathan W

    2016-08-09

    Hydration free energy (HFE) calculations are often used to assess the performance of biomolecular force fields and the quality of assigned parameters. The AMOEBA polarizable force field moves beyond traditional pairwise additive models of electrostatics and may be expected to improve upon predictions of thermodynamic quantities such as HFEs over and above fixed-point-charge models. The recent SAMPL4 challenge evaluated the AMOEBA polarizable force field in this regard but showed substantially worse results than those using the fixed-point-charge GAFF model. Starting with a set of automatically generated AMOEBA parameters for the SAMPL4 data set, we evaluate the cumulative effects of a series of incremental improvements in parametrization protocol, including both solute and solvent model changes. Ultimately, the optimized AMOEBA parameters give a set of results that are not statistically significantly different from those of GAFF in terms of signed and unsigned error metrics. This allows us to propose a number of guidelines for new molecule parameter derivation with AMOEBA, which we expect to have benefits for a range of biomolecular simulation applications such as protein-ligand binding studies.

  12. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    Science.gov (United States)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  13. Stability of Hydrated Methylamine: Structural Characteristics and H2N···H–O Hydrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Sha-Sha; Liu, Yi-Rong; Huang, Teng; Feng, Ya-Juan; Jiang, Shuai; Huang, Wei

    2015-04-23

    Methylamine is the simplest aliphatic amine found in human urine, blood, and tissues. It is thought to play a significant part in central nervous system disturbances observed during renal and hepatic disease. In this work we have investigated the methylamine hydration clusters using a basin hopping (BH) algorithm with the density functional theory (DFT). The results presented herein yield a detailed understanding of the structure and stability for a system consisting of one methylamine molecule and up to seven waters: the most stable geometries arise from a fusion of tetramer or pentamer rings; by the geometrical parameters and topological parameters analysis, the strengths of the H2N···H–O hydrogen bonds of the global minima increase as the sizes of clusters increase, except for n = 5 where there is a slight fluctuation. This work may shed light on the form mechanism of methylamine existing in organisms and the hydration structures of larger molecules containing amino functional groups and their interaction with the water molecules nearby.

  14. Effects of salinity on methane gas hydrate system

    Institute of Scientific and Technical Information of China (English)

    YANG; DingHui; XU; WenYue

    2007-01-01

    Using an approximately analytical formation,we extend the steady state model of the pure methane hydrate system to include the salinity based on the dynamic model of the methane hydrate system.The top and bottom boundaries of the methane hydrate stability zone (MHSZ) and the actual methane hydrate zone (MHZ),and the top of free gas occurrence are determined by using numerical methods and the new steady state model developed in this paper.Numerical results show that the MHZ thickness becomes thinner with increasing the salinity,and the stability is lowered and the base of the MHSZ is shifted toward the seafloor in the presence of salts.As a result,the thickness of actual hydrate occurrence becomes thinner compared with that of the pure water case.On the other hand,since lower solubility reduces the amount of gas needed to form methane hydrate,the existence of salts in seawater can actually promote methane gas hydrate formation in the hydrate stability zone.Numerical modeling also demonstrates that for the salt-water case the presence of methane within the field of methane hydrate stability is not sufficient to ensure the occurrence of gas hydrate,which can only form when the methane concentration dissolved in solution with salts exceeds the local methane solubility in salt water and if the methane flux exceeds a critical value corresponding to the rate of diffusive methane transport.In order to maintain gas hydrate or to form methane gas hydrate in marine sediments,a persistent supplied methane probably from biogenic or thermogenic processes,is required to overcome losses due to diffusion and advection.

  15. Strong Static Magnetic Fields Increase the Gel Signal in Partially Hydrated DPPC/DMPC Membranes

    Directory of Open Access Journals (Sweden)

    Jennifer Tang

    2015-09-01

    Full Text Available NIt was recently reported that static magnetic fields increase lipid order in the hydrophobic membrane core of dehydrated native plant plasma membranes [Poinapen, Soft Matter 9:6804-6813, 2013]. As plasma membranes are multicomponent, highly complex structures, in order to elucidate the origin of this effect, we prepared model membranes consisting of a lipid species with low and high melting temperature. By controlling the temperature, bilayers coexisting of small gel and fluid domains were prepared as a basic model for the plasma membrane core. We studied molecular order in mixed lipid membranes made of dimyristoyl-sn-glycero-3-phosphocholine (DMPC and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC using neutron diffraction in the presence of strong static magnetic fields up to 3.5 T. The contribution of the hydrophobic membrane core was highlighted through deuterium labeling the lipid acyl chains. There was no observable effect on lipid organization in fluid or gel domains at high hydration of the membranes. However, lipid order was found to be enhanced at a reduced relative humidity of 43%: a magnetic field of 3.5 T led to an increase of the gel signal in the diffraction patterns of 5%. While all biological materials have weak diamagnetic properties, the corresponding energy is too small to compete against thermal disorder or viscous effects in the case of lipid molecules. We tentatively propose that the interaction between the fatty acid chains’ electric moment and the external magnetic field is driving the lipid tails in the hydrophobic membrane core into a better ordered state.

  16. Final Scientific/Technical Report of Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hornbach, Matthew J [Southern Methodist Univ., Dallas, TX (United States); Colwell, Frederick S [Oregon State Univ., Corvallis, OR (United States); Harris, Robert [Oregon State Univ., Corvallis, OR (United States)

    2017-07-06

    Methane Hydrates, a solid form of methane and water, exist at high pressures and low temperatures, occurs on every continental margin on Earth, represents one of the largest reservoirs of carbon on the planet, and, if destabilized, may play an important role in both slope stability and climate change. For decades, researchers have studied methane hydrates with the hope of determining if methane hydrates are destabilizing, and if so, how this destabilization might impact slope stability and ocean/atmosphere carbon budgets. In the past ~5 years, it has become well established that the upper “feather-edge” of methane hydrate stability (intermediate water depths of ~200-500 meters below sea level) represents an important frontier for methane hydrates stability research, as this zone is most susceptible to destabilization due to minor fluctuations in ocean temperature in space and time. The Arctic Ocean—one of the fastest warming regions on Earth—is perhaps the best place to study possible changes to methane hydrate stability due to ocean warming. To address the stability of methane hydrates at intermediate ocean depths, Southern Methodist University in partnership with Oregon State University and The United State Geological Survey at Woods Hole began investigating methane hydrate stability in intermediate water depths below both the US Beaufort Sea and the Atlantic Margin, from 2012-2017. The work was funded by the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). The key goal of the SMU component of this study was to collect the first ever heat flow data in the Beaufort Sea and compare measured shallow (probe-based1) heat flow values with deeper (BSR-derived2) heat flow values, and from this, determine whether hydrates were in thermal equilibrium. In September 2016, SMU/OSU collected the first ever heat flow measurements in the US Beaufort Sea. Despite poor weather and rough seas, the cruise was a success, with 116 heat flow

  17. Effect of Mono- and Di-hydration on the Intramolecular Proton Transfers and Stability of Cyanuric Acid Isomers: A DFT Study

    Indian Academy of Sciences (India)

    YOUNES VALADBEIGI

    2016-08-01

    Structural and thermodynamic properties of 10 isomers of cyanuric acid were studied in aqueous and gas phases, employing B3LYP/6-311++G(d,p) method. The aromaticities of these isomers were evaluated using nucleus-independent chemical shift (NICS) index. The calculations showed that as the number of the ketogroups increases the stability of the isomers increases and the aromaticity decreases. Mono- and di-hydrations of the isomers did not change the stability trend, so that the tri-keto isomer was the most stable isomer amongthe hydrated and non-hydrated isomers. The activation energies (Ea) of the intramolecular proton transfers (tautomerisms) and energy barriers of H-rotations around its C-O axis in enolic isomers were calculated. The energy barriers were smaller than 45 kJ/mol for the H-rotations while the Ea values of the proton transfers were in the range of 130-210 kJ/mol. Effect of micro-hydrations on the transition state structures and the energy barriers of the tautomerisms were investigated. The mono- and di-hydrations lower the activation energies to100-130 kJ/mol and 110-145 kJ/mol, respectively.

  18. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  19. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  20. Experimental investigation and planetary implications of the stability of clathrate hydrates in aqueous solution at icy satellite conditions

    Science.gov (United States)

    Dunham, M.; Choukroun, M.; Barmatz, M.; Hodyss, R. P.; Smythe, W. D.

    2012-12-01

    Clathrate hydrates consist of hydrogen-bonded water molecules forming cages in which gas molecules are trapped individually. They are among the favored volatile reservoirs in solar system bodies, and are expected to play an important role in many processes: accretion of volatiles in planetesimals, outgassing on Titan, Enceladus, and comets. Their insulating thermal properties and high mechanical strength also bear important implications for understanding the evolution of icy satellites like Europa. However, the conditions allowing for their formation and/or their dissociation and the release of volatiles to the atmosphere (Titan) or the plumes (Enceladus) are still poorly understood. This is mainly because of a lack of knowledge on the stability of mixed clathrate hydrates in presence of anti-freeze agents such as ammonia. We have developed a high-pressure cryogenic calorimeter to address this deficiency in the literature. This liquid nitrogen - cooled Setaram BT2.15 calorimeter is located at the JPL Ice Physics Laboratory. The temperature range achievable with this instrument is 77-473 K. This calorimeter uses Calvet elements (3D arrays of thermocouples) to measure the heat flow required to follow a predefined heating rate within a sample and a reference cell with a resolution of 0.1 μW. A gas handling system has been designed and fabricated in house to reach pressures up to 100 bars, corresponding to several km depth in icy satellites. The thermodynamic properties of CO2 and CH4 clathrates with ammonia are under investigation, and the results will be used to constrain a statistical thermodynamic model of clathrates for applications to planetary environments. Preliminary results will be shown at the meeting. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the Minnesota Space Grant Consortium, the NASA Outer Planets Research program, and government sponsorship are gratefully

  1. Thermal Stability of Certain Hydrated Phases in Systems Made Using Portland Cement.

    Science.gov (United States)

    1985-08-01

    underlying it (Lea 1971, pp 397-398; Smith 1978, Mindess and Young 1981, p 530; Carette et al 1982), consequently it will not be dealt with further here as it...34Stability of Ettringite on Heating," Jan 1972, Journal of the * American Ceramic Society, Vol 55, pp 55-56. Mindess , Sidney and J. Francis Young

  2. Perturbation of hydration layer in solvated proteins by external electric and electromagnetic fields: Insights from non-equilibrium molecular dynamics

    Science.gov (United States)

    Nandi, Prithwish K.; Futera, Zdenek; English, Niall J.

    2016-11-01

    Given the fundamental role of water in governing the biochemistry of enzymes, and in regulating their wider biological activity (e.g., by local water concentration surrounding biomolecules), the influence of extraneous electric and electromagnetic (e/m) fields thereon is of central relevance to biophysics and, more widely, biology. With the increase in levels of local and atmospheric microwave-frequency radiation present in modern life, as well as other electric-field exposure, the impact upon hydration-water layers surrounding proteins, and biomolecules generally, becomes a particularly pertinent issue. Here, we present a (non-equilibrium) molecular-dynamics-simulation study on a model protein (hen egg-white lysozyme) hydrated in water, in which we determine, inter alia, translational self-diffusivities for both hen egg-white lysozyme and its hydration layer together with relaxation dynamics of the hydrogen-bond network between the protein and its hydration-layer water molecules on a residue-per-residue basis. Crucially, we perform this analysis both above and below the dynamical-transition temperature (at ˜220 K), at 300 and 200 K, respectively, and we compare the effects of external static-electric and e/m fields with linear-response-régime (r.m.s.) intensities of 0.02 V/Å. It was found that the translational self-diffusivity of hen egg-white lysozyme and its hydration-water layer are increased substantially in static fields, primarily due to the induced electrophoretic motion, whilst the water-protein hydrogen-bond-network-rearrangement kinetics can also undergo rather striking accelerations, primarily due to the enhancement of a larger-amplitude local translational and rotational motion by charged and dipolar residues, which serves to promote hydrogen-bond breakage and re-formation kinetics. These external-field effects are particularly evident at 200 K, where they serve to induce the protein- and solvation-layer-response effects redolent of dynamical

  3. Nitrogen-assisted Three-phase Equilibrium in Hydrate Systems Composed of Water, Methane, Carbon Dioxide, and Nitrogen

    Science.gov (United States)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2016-12-01

    Guest molecule exchange is a new and promising methane hydrate production technique in which methane gas is produced by injection of another gas without requiring depressurization or thermal stimulation. The technique is generally associated with injection of carbon dioxide, but injection of nitrogen and carbon dioxide mixtures are the most efficient and economical. However, thermodynamic behavior of injection mixtures is poorly understood, and it is unclear how nitrogen affects the exchange process. Here, we describe thermodynamic stability of hydrate systems that contain water, methane, carbon dioxide, and nitrogen. We present a series of ternary and quaternary phase diagrams and show the impact nitrogen has on hydrate stability. Our results demonstrate that nitrogen can either stabilize hydrate, de-stabilize hydrate, or produce three-phase equilibrium (gas, water, and hydrate) depending on its relative abundance. At low abundance nitrogen forms hydrate and directly contributes to the exchange process. At high abundance nitrogen de-stabilizes hydrate akin to traditional hydrate inhibitors, such as salt, alcohol, or mono-ethylene glycol. We show how the dual properties of nitrogen lead to three-phase equilibrium and how three-phase equilibrium may explain much of the behavior observed in methane production from nitrogen-rich injections. We apply our analysis to laboratory experiments and the methane hydrate field test on the northern Alaskan slope at Ignik Sikumi. These results can be extended to analyze dynamic evolution of mixed hydrate systems.

  4. On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation

    Energy Technology Data Exchange (ETDEWEB)

    Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

    2015-09-11

    The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh’s and Poisson’s ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Debye temperatures of 294 and 271 K are predicted for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.

  5. On the modulation effect of pulsing and static magnetic fields and mechanical vibrations on barley seed hydration.

    Science.gov (United States)

    Amyan, Armine; Ayrapetyan, Sinerik

    2004-01-01

    The changes of wet and dry weights of barley seed in different periods of swelling were studied in seeds treated with Extremely Low Frequency Electromagnetic Fields (ELF EMF), Static Magnetic Fields (SMF) and Mechanical Vibrations (MV) in cold (4 degrees C) and warm (20 degrees C) distilled water as well as in seeds non-treated (control). The metabolic dependent seed hydration, dry weight loss and water binding in seed were modulated by preliminary EMF, SMF and MV-induced treatment of distilled water. The specific electrical conductivity (SEC) of control and treated distilled water was measured before the seed incubation. Frequency and intensity "windows" (i.e. range of frequency or intensity) for the effect of EMF, MV and SMF (correspondingly) on seed hydration, solubility and water binding in seed were studied. These "windows" were different in various phases of seed swelling. It is suggested that water structure modification is the result of valence angle changes (SMF and EMF) and dipole molecules vibration (EMF and MV) has different effects on the process of hydration, solubility and water binding in seed. These results are important from the point of understanding the mechanisms of the biological effect of EMF, as well as from the point of agriculture.

  6. Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies

    Directory of Open Access Journals (Sweden)

    C.A. Royer

    2005-08-01

    Full Text Available A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.

  7. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  8. The interaction of climate change and methane hydrates

    Science.gov (United States)

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  9. Methane Gas Hydrate Stability Models on Continental Shelves in Response to Glacio-Eustatic Sea Level Variations: Examples from Canadian Oceanic Margins

    OpenAIRE

    2013-01-01

    We model numerically regions of the Canadian continental shelves during successive glacio-eustatic cycles to illustrate past, current and future marine gas hydrate (GH) stability and instability. These models indicated that the marine GH resource has dynamic features and the formation age and resource volumes depend on the dynamics of the ocean-atmosphere system as it responds to both natural (glacial-interglacial) and anthropogenic (climate change) forcing. Our models focus on the interval b...

  10. Solidification/stabilization and leaching behavior of PbCl₂ in fly-ash hydrated silicate matrix and fly-ash geopolymer matrix.

    Science.gov (United States)

    Li, Yang; Gao, Xingbao; Wang, Qi; He, Jie; Yan, Dahai

    2015-05-01

    Fly ash (FA) for reuse as a construction material is activated using two methods, to produce hydrated silicate and geopolymer gels. We investigated the solidification/stabilization and leaching behavior of PbCl2 in a geopolymer matrix (GM) and hydrated silicate matrix (HSM), based on FA as the source material, to evaluate the environmental and health risks. The GM and HSM synthetic conditions were 60 °C, 20 % relative humidity (RH), and 12 wt% (6 mol/L) NaOH, and 20 ± 2 °C, ≥ 90 % RH, and 30 wt.%, respectively, based on their compressive strength performances. X-ray diffraction (XRD) showed that Pb participated in hydration and geopolymerization, and was incorporated in the structural components of the hydrated silicate and geopolymer. In leaching experiments, the solidification/stabilization effects of Pb and Cl in the HSM and GM improved with increasing curing time. After long-term curing (28 days), the immobility of Pb in the GM was better than that in the HSM. Sodalite improved the Cl-stabilizing ability of the GM compared with that of the HSM. In static monolithic leaching experiments, HSM and GM had the same Pb-leaching behaviors. Based on the changes in the location of the neutral sphere layer with decreasing acid-neutralizing capacity, Pb release was divided into alkaline-release, stagnation, and acid-release stages. The neutral sphere layer contained the highest Pb concentration during permeation toward the block center from the block edge. This behavior regulation could also apply to other amphoteric metals immobilized by GMs and HSMs.

  11. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  12. Relativity stability of quantum gas in a weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    Men Fu-Dian; Liu Hui; Fan Zhao-Lan; Zhu Hou-Yu

    2009-01-01

    Based on the analytical expression of relativistic free energy for a weakly interacting Fermi gas in a weak magnetic field,by using the method of quantum statistics,the stability conditions of the system at both high and low temperatures axe given,and the effects of magnetic field and interpaxticle interactions on the stability of the system are analysed. It is shown that at high temperatures,the stability conditions of the system are completely the same,no matter whether it is the ultrarelativistic case or nonrelativistic case. At extremely low temperatures,the mechanical stability conditions of the system show a similar rule through a comparison between the ultrarelativistic case and nonrelativistic case. At the same time,thermal stability of a relativistic Bose gas in a weak magnetic field is discussed,and the influence of the effect of relativity on the thermal stability of the system is investigated.

  13. Effect of hydration on the stability of the collagen-like triple-helical structure of [4(R)-hydroxyprolyl-4(R)-hydroxyprolylglycine]10.

    Science.gov (United States)

    Kawahara, Kazuki; Nishi, Yoshinori; Nakamura, Shota; Uchiyama, Susumu; Nishiuchi, Yuji; Nakazawa, Takashi; Ohkubo, Tadayasu; Kobayashi, Yuji

    2005-12-06

    X-ray analysis has been carried out on a crystal of the collagen model peptide (Hyp(R)-Hyp(R)-Gly)10 [where Hyp(R) is 4(R)-hydroxyproline] with 1.5 A resolution. The triple-helical structure of (Hyp(R)-Hyp(R)-Gly)10 has the same helical parameters and Rich and Crick II hydrogen bond patterns as those of other collagen model peptides. However, our full-length crystal structure revealed that almost all consecutive Hyp(R) residues take the up-up pucker in contrast to putative down-up puckering propensities of other collagen model peptides. The unique feature of thermodynamic parameters associated with the conformational transition of this peptide from triple helix to single coil is that both enthalpy and entropy changes of the transition are much smaller than those of other model peptides such as (Pro-Pro-Gly)10 and (Pro-Hyp(R)-Gly)10. To corroborate the precise structural information including main- and side-chain dihedral angles and intra- and interwater bridge networks, we estimated the degrees of hydration by comparing molecular volumes observed experimentally in solution to those calculated ones from the crystal structure. The results showed that the degree of hydration of (Hyp(R)-Hyp(R)-Gly)10 is comparable to that of (Pro-Hyp(R)-Gly)10 in the triple-helical state, but the former was more highly hydrated than (Pro-Hyp(R)-Gly)10 in the single-coil state. Because hydration reduces the enthalpy due to the formation of a hydrogen bond with a water molecule and diminishes the entropy due to the restriction of water molecules surrounding a peptide molecule, we concluded that the high thermal stability of (Hyp(R)-Hyp(R)-Gly)10 is able to be described by its high hydration in the single-coil state.

  14. C-C stretching Raman spectra and stabilities of hydrocarbon molecules in natural gas hydrates: a quantum chemical study.

    Science.gov (United States)

    Liu, Yuan; Ojamäe, Lars

    2014-12-11

    The presence of specific hydrocarbon gas molecules in various types of water cavities in natural gas hydrates (NGHs) are governed by the relative stabilities of these encapsulated guest molecule-water cavity combinations. Using molecular quantum chemical dispersion-corrected hybrid density functional computations, the interaction (ΔE(host--guest)) and cohesive energies (ΔE(coh)), enthalpies, and Gibbs free energies for the complexes of host water cages and hydrocarbon guest molecules are calculated at the ωB97X-D/6-311++G(2d,2p) level of theory. The zero-point energy effect of ΔE(host-guest) and ΔE(coh) is found to be quite substantial. The energetically optimal host-guest combinations for seven hydrocarbon gas molecules (CH4, C2H6, C3H6, C3H8, C4H8, i-C4H10, and n-C4H10) and various water cavities (D, ID, T, P, H, and I) in NGHs are found to be CH4@D, C2H6@T, C3H6@T, C3H8@T, C4H8@T/P/H, i-C4H10@H, and n-C4H10@H, as the largest cohesive energy magnitudes will be obtained with these host-guest combinations. The stabilities of various water cavities enclosing hydrocarbon molecules are evaluated from the computed cohesive Gibbs free energies: CH4 prefers to be trapped in a ID cage; C2H6 prefer T cages; C3H6 and C3H8 prefer T and H cages; C4H8 and i-C4H10 prefer H cages; and n-C4H10 prefer I cages. The vibrational frequencies and Raman intensities of the C-C stretching vibrational modes for these seven hydrocarbon molecules enclosed in each water cavity are computed. A blue shift results after the guest molecule is trapped from gas phase into various water cages due to the host-guest interactions between the water cage and hydrocarbon molecule. The frequency shifts to the red as the radius of water cages increases. The model calculations support the view that C-C stretching vibrations of hydrocarbon molecules in the water cavities can be used as a tool to identify the types of crystal phases and guest molecules in NGHs.

  15. Quantum Stability of Chameleon Field Theories

    CERN Document Server

    Upadhye, Amol; Khoury, Justin

    2012-01-01

    Chameleon scalar fields are dark energy candidates which suppress fifth forces in high density regions of the universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound $m 0.0042$\\,eV. An improvement of less than a factor of two in the range of fifth force experiments could test all classical chameleon field theories whose quantum corrections are well-controlled and couple to matter with nearly gravitational strength regardless of the specific form of the chameleon potential.

  16. Slope stability improvement using low intensity field electrosmosis

    Science.gov (United States)

    Armillotta, Pasquale

    2014-05-01

    The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1

  17. Field Stabilization of Alvarez-Type Cavities

    CERN Document Server

    Du, Xiaonan; Mickat, Sascha; Seibel, Anja

    2016-01-01

    Alvarez-type cavities are commonly used to reliably accelerate high quality hadron beams. Optimization of their longitudinal field homogeneity is usually accomplished by post-couplers, i.e. additional rods being integrated into the cavity. This paper instead proposes to use the stems that keep the drift tubes for that purpose. As their individual azimuthal orientations do not change the cavity's undisturbed operational mode, they comprise a set of free parameters that can be used to modify higher mode field patterns. The latter have significant impact on the robustness of the operational mode w.r.t. eventual perturbations. Several optimized stem configurations are presented and benchmarked against each other. The path to obtain these configurations is paved analytically and worked out in detail through simulations. It is shown that the method provides for flat field distributions and very low field tilt sensitivities without insertion of post-couplers.

  18. Stability field diagrams for Ln–O–Cl systems

    Indian Academy of Sciences (India)

    K T JACOB; APOORVA DIXIT; ARNEET RAJPUT

    2016-06-01

    Isothermal stability field diagrams for Ln−O−Cl systems (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) are developed by taking partial pressures of volatile components oxygen and chlorine as variables. Thermodynamic properties of all the oxides and trichlorides (LnCl$_3$) are available in the literature. However, data for oxychlorides (LnOCl) and dichlorides (LnCl$_2$) are limited. Based on systematic trends in stability of these compounds across the lanthanide series, missing data are estimated to construct the diagrams for 13 Ln−O−Cl systems at 1000 K. All the lanthanide elements form stable LnCl$_3$ and LnOCl. Dichlorides of Nd, Sm, Eu, Dy, Tm and Yb are stable. For systems in which dichlorides are unstable (Ln = La, Ce, Pr, Gd, Tb, Ho, Er), the LnOCl is in equilibrium with the metal (Ln) and the stability field of LnOCl is sandwiched between those of oxides and trichlorides. Stability field diagrams of lanthanide systems forming stable LnCl$_2$ are of two kinds: in the first kind (Ln = Nd,Dy) the stability fields of Ln and LnOCl are in contact and the stability field of LnOCl separates the fields of chlorides and oxides. In diagrams of the second kind (Ln = Sm, Eu, Tm, Yb) there is a direct equilibrium between the oxides and dichlorides at low partial pressures of oxygen and chlorine. There is no contact between the stability fields of Ln and LnOCl; the stability field of LnOCl intervenes between the oxide and chloride phases only at higher partial pressures.

  19. Structural and dynamical aspects of the unsymmetric hydration of Sb(III): an ab initio quantum mechanical charge field molecular dynamics simulation.

    Science.gov (United States)

    Lim, Len Herald V; Bhattacharjee, Anirban; Asam, S Sikander; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M

    2010-03-01

    An ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulation was performed to investigate the behavior of the Sb(3+) ion in aqueous solution. The simulation reveals a significant influence of the residual valence shell electron density on the solvation structure and dynamics of Sb(3+). A strong hemidirectional behavior of the ligand binding pattern is observed for the first hydration shell extending up to the second hydration layer. The apparent domain partitioned structural behavior was probed by solvent reorientational kinetics and three-body distribution functions. The three-dimensional hydration space was conveniently segmented such that domains having different properties were properly resolved. The approach afforded a fair isolation of localized solvent structural and dynamical motifs that Sb(3+) seems to induce to a remarkable degree. Most intriguing is the apparent impact of the lone pair electrons on the second hydration shell, which offers insight into the mechanistic aspects of hydrogen bonding networks in water. Such electronic effects observed in the hydration of Sb(3+) can only be studied by applying a suitable quantum mechanical treatment including first and second hydration shell as provided by the QMCF ansatz.

  20. Characteristics of shallow gas hydrate in Okhotsk Sea

    Institute of Scientific and Technical Information of China (English)

    LUAN XiWu; JIN YoungKeun; Anatoly OBZHIROV; YUE BaoJing

    2008-01-01

    Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Korea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scansonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure detected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%-30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these struc tures, gas hydrate could not form due to low gas concentration.

  1. Characteristics of shallow gas hydrate in Okhotsk Sea

    Institute of Scientific and Technical Information of China (English)

    Anatoly; OBZHIROV

    2008-01-01

    Multidisciplinary field investigations were carried out in Okhotsk Sea by R/V Akademik M.A. Lavrentyev (LV) of the Russian Academy of Sciences (RAS) in May 2006, supported by funding agencies from Ko- rea, Russia, Japan and China. Geophysical data including echo-sounder, bottom profile, side-scan- sonar, and gravity core sample were obtained aimed to understand the characteristics and formation mechanism of shallow gas hydrates. Based on the geophysical data, we found that the methane flare detected by echo-sounder was the evidence of free gas in the sediment, while the dome structure de- tected by side-scan sonar and bottom profile was the root of gas venting. Gas hydrate retrieved from core on top of the dome structure which was interbedded as thin lamination or lenses with thickness varying from a few millimeters to 3 cm. Gas hydrate content in hydrate-bearing intervals visually amounted to 5%―30% of the sediment volume. This paper argued that gases in the sediment core were not all from gas hydrate decomposition during the gravity core lifting process, free gases must existed in the gas hydrate stability zone, and tectonic structure like dome structure in this paper was free gas central, gas hydrate formed only when gases over-saturated in this gas central, away from these struc- tures, gas hydrate could not form due to low gas concentration.

  2. Hydration, Ionic Valence and Cross-Linking Propensities of Cations Determine the Stability of Lipopolysaccharide (LPS) Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Agrinaldo; Pontes, Frederico J.; Lins, Roberto D.; Soares, Thereza A.

    2013-10-29

    The supra-molecular structure of LPS aggregates governs outer membrane permeability and activation of the host immune response during Gram-negative bacterial infections. Molecular dynamics simulations unveil at atomic resolution 10 the subtle balance between cation hydration and cross-link ability in modulating phase transitions of LPS membranes.

  3. Geosynthetic clay liners - slope stability field study

    Energy Technology Data Exchange (ETDEWEB)

    Carson, D.A. [Environmental Protection Agency, Cincinnati, OH (United States); Daniel, D.E. [Univ. of Illinois, Urbana, IL (United States); Koerner, R.M. [Geosynthetic Research Institute, Philadelphia, PA (United States); Bonaparte, R. [GeoSyntec Consultants, Atlanta, GA (United States)

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  4. Stability and semiclassics in self-generated fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2013-01-01

    to the coupled Maxwell-Pauli system. The parameter β tunes the coupling strength between the field and the particles and it effectively determines the strength of the field. We investigate the stability and the semiclassical asymptotics, h→0, of the total ground state energy E(β,h,V). The relevant parameter...

  5. Q criterion for disc stability modified by external tidal field

    CERN Document Server

    Jog, Chanda J

    2013-01-01

    The standard Q criterion (with Q > 1) describes the local stability of a disc supported by rotation and random motion. Most astrophysical discs, however, are under the influence of an external gravitational field which can affect their stability. A typical example is a galactic disc embedded in a dark matter halo. Here we do a linear perturbation analysis for a disc in an external field, and obtain a generalized dispersion relation and a modified stability criterion. An external field has two effects on the disc dynamics: first, it contributes to the unperturbed rotational field, and second, it adds a tidal field term in the stability parameter. A typical disruptive tidal field results in a higher modified Q value and hence leads to a more stable disc. We apply these results to the Milky Way, and to a low surface brightness galaxy UGC 7321. We find that in each case the stellar disc by itself is barely stable and it is the dark matter halo that stabilizes the disc against local, axisymmetric gravitational ins...

  6. The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, J.C. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States)

    2008-07-01

    A study was conducted to provide an internally-consistent, systematically-acquired database that could help in evaluating gas hydrate reservoirs. Other objectives were to assist in geomechanical analyses, hazards evaluation and the development of methane hydrate production techniques in sandy lithologies and fine-grained sediments that exist in the northern Gulf of Mexico. An understanding of the physical properties of hydrate-bearing sediments facilitates the interpretation of geophysical field data, borehole and slope stability analyses, and reservoir simulation and production models. This paper reported on the key findings derived from 5 years of laboratory experiments conducted on synthetic samples of sand, silts, or clays subjected to various confining pressures. The samples contained controlled saturations of tetrahydrofuran hydrate formed from the dissolved phase. This internally-consistent data set was used to conduct a comprehensive analysis of the trends in geophysical and geotechnical properties as a function of hydrate saturation, soil characteristics, and other parameters. The experiments emphasized measurements of seismic velocities, electrical conductivity and permittivity, large strain deformation and strength, and thermal conductivity. The impact of hydrate formation technique on the resulting physical properties measurements were discussed. The data set was used to identify systematic effects of sediment characteristics, hydrate concentration, and state of stress. The study showed that the electrical properties of hydrate-bearing sediments are less sensitive to the method used to form hydrate in the laboratory than to hydrate saturation. It was concluded that mechanical properties are strongly influenced by both soil properties and the hydrate loci. Since the thermal conductivity depends on the interaction of several factors, it cannot be readily predicted by volume average formulations. 23 refs., 2 tabs., 9 figs.

  7. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  8. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties

    Science.gov (United States)

    Lee, J. Y.; Francisca, F. M.; Santamarina, J. C.; Ruppel, C.

    2010-11-01

    stability field.

  9. Stability of Nonlinear Force-Free Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    胡友秋

    2001-01-01

    Based on the magnetohydrodynamic energy principle, it is proved that Gold-Hoyle's nonlinear force-free magnetic field is unstable. This disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Kriiger that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue associated with the domain of interest.

  10. Stability of the toroidal magnetic field in stellar radiation zones

    CERN Document Server

    Bonanno, Alfio

    2011-01-01

    Understanding the stability of the magnetic field in radiation zones is of crucial importance for various processes in stellar interior like mixing, circulation and angular momentum transport. The stability properties of a star containing a prominent toroidal field in a radiation zone is investigated by means of a linear stability analysis in the Boussinesq approximation taking into account the effect of thermal conductivity. The growth rate of the instability is explicitly calculated and the effects of stable stratification and heat transport are discussed in detail. It is argued that the stabilizing influence of gravity can never entirely suppress the instability caused by electric currents in radiation zones although the stable stratification can significantly decrease the growth rate of instability

  11. Challenges for large-field inflation and moduli stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried; Westphal, Alexander; Wieck, Clemens [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Dudas, Emilian; Heurtier, Lucien [CPhT, Ecole Polytechnique, Palaiseau (France); Winkler, Martin Wolfgang [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.

    2015-01-15

    We analyze the interplay between Kaehler moduli stabilization and chaotic inflation in supergravity. While heavy moduli decouple from inflation in the supersymmetric limit, supersymmetry breaking generically introduces non-decoupling effects. These lead to inflation driven by a soft mass term, m{sup 2}{sub φ}∝mm{sub 3/2}, where m is a supersymmetric mass parameter. This scenario needs no stabilizer field, but the stability of moduli during inflation imposes a large supersymmetry breaking scale, m{sub 3/2}>>H, and a careful choice of initial conditions. This is illustrated in three prominent examples of moduli stabilization: KKLT stabilization, Kaehler Uplifting, and the Large Volume Scenario. Remarkably, all models have a universal effective inflaton potential which is flattened compared to quadratic inflation. Hence, they share universal predictions for the CMB observables, in particular a lower bound on the tensor-to-scalar ratio, r>or similar 0.05.

  12. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada

    Directory of Open Access Journals (Sweden)

    J. Majorowicz

    2012-03-01

    Full Text Available Atmospheric methane from episodic gas hydrate (GH destabilization, the "clathrate gun" hypothesis, is proposed to affect past climates, possibly since the Phanerozoic began or earlier. In the terrestrial Beaufort-Mackenzie Basin (BMB, GHs occur commonly below thick ice-bearing permafrost (IBP, but they are rare within it. Two end-member GH models, where gas is either trapped conventionally (Case 1 or where it is trapped dynamically by GH formation (Case 2, were simulated using profile (1-D models and a 14 Myr ground surface temperature (GST history based on marine isotopic data, adjusted to the study setting, constrained by deep heat flow, sedimentary succession conductivity, and observed IBP and Type I GH contacts in Mallik wells. Models consider latent heat effects throughout the IBP and GH intervals. Case 1 GHs formed at ~0.9 km depth only ~1 Myr ago by in situ transformation of conventionally trapped natural gas. Case 2 GHs begin to form at ~290–300 m ~6 Myr ago in the absence of lithological migration barriers. During glacial intervals Case 2 GH layers expand both downward and upward as the permafrost grows downward through and intercalated with GHs. The distinctive model results suggest that most BMB GHs resemble Case 1 models, based on the observed distinct and separate occurrences of GHs and IBP and the lack of observed GH intercalations in IBP. Case 2 GHs formed >255 m, below a persistent ice-filled permafrost layer that is as effective a seal to upward methane migration as are Case 1 lithological seals. All models respond to GST variations, but in a delayed and muted manner such that GH layers continue to grow even as the GST begins to increase. The models show that the GH stability zone history is buffered strongly by IBP during the interglacials. Thick IBP and GHs could have persisted since ~1.0 Myr ago and ~4.0 Myr ago for Cases 1 and 2, respectively. Offshore BMB IBP and GHs formed terrestrially during Pleistocene sea level low

  13. Managing Salmonella Typhimurium and Escherichia coli O157:H7 in soil with hydrated lime - An outdoor study in lysimeters and field plots.

    Science.gov (United States)

    Nyberg, Karin A; Vinnerås, Björn; Albihn, Ann

    2014-01-01

    An outbreak of Salmonella Typhimurium or E. coli O157:H7 among domestic animals can have great financial consequences for an animal enterprise but also be a threat for public health as there is a risk for transmission of the infection through the environment. In order to minimize disease transmission, it is important to treat not only the affected animals but also the areas on which they have been kept. In the present study, the effect of hydrated lime as a treatment for Salmonella Typhimurium or E. coli O157:H7 contaminated soil was investigated. The study was performed outdoors, in a lysimeter system and in field plots. The soils were spiked with Salmonella Typhimurium and/or E. coli O157:H7 and hydrated lime was added at three different concentrations (0.5, 1 and 2%). Sampling was performed over one month, and the levels of bacteria were analyzed by standard culture methods. In addition, the soil pH was monitored throughout the study. The results showed that application of 0.5-1 kg hydrated lime per m(2) reduced both Salmonella Typhimurium and E. coli O157:H7 numbers to below the detection limit (2 log10 CFU g-1 soil) in 3-7 days. Lower application rates of hydrated lime did not reduce pathogen numbers in the lysimeter study, but in the field plots no E. coli O157:H7 was detected at the end of the four-week study period regardless of hydrated lime application. A recommended strategy for treating a Salmonella Typhimurium or E. coli O157:H7 contaminated soil could therefore be to monitor the pH over the time of treatment and to repeat hydrated lime application if a decrease in pH is observed.

  14. On the non-linear stability of scalar field cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Artur; Mena, Filipe C [Centro de Matematica, Universidade do Minho, 4710-057 Braga (Portugal); Kroon, Juan A Valiente, E-mail: aalho@math.uminho.pt, E-mail: fmena@math.uminho.pt, E-mail: jav@maths.qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom)

    2011-09-22

    We review recent work on the stability of flat spatially homogeneous and isotropic backgrounds with a self-interacting scalar field. We derive a first order quasi-linear symmetric hyperbolic system for the Einstein-nonlinear-scalar field system. Then, using the linearized system, we show how to obtain necessary and sufficient conditions which ensure the exponential decay to zero of small non-linear perturbations.

  15. A study on gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byoung Jae; Jung, Tae Jin; Sunwoo, Don [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Sufficient documents were reviewed to understand solid components of water and gaseous hydrocarbon known as gas hydrates, which represent an important potential energy resource of the future. The review provides us with valuable information on crystal structures, kinetics, origin and distribution of gas hydrates. In addition, the review increased our knowledge of exploration and development methods of gas hydrates. Large amounts of methane, the principal component of natural gas, in the form of solid gas hydrate are found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Natural gas hydrates are stable in some environments where the hydrostatic pressure exerted by overlying water column is sufficient for hydrate formation and stability. The required high pressures generally restrict gas hydrate to sediments beneath water of approximately 400 m. Higher sediment temperatures at greater subbottom depths destabilize gas hydrates. Based on the pressure- temperature condition, the outer continental margin of East Sea where water depth is deep enough to form gas hydrate is considered to have high potential of gas hydrate accumulations. (author). 56 refs., tabs., figs.

  16. The Stability of Magnetized Rotating Plasmas with Superthermal Fields

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Psaltis, Dimitrios

    2005-01-01

    findings for the stability of cold, magnetically dominated, rotating fluids and argue that, for these systems, the curvature of toroidal field lines cannot be neglected even when short wavelength perturbations are considered. We also comment on the implications of our results for the validity of shearing...

  17. Stability in higher-derivative matter fields theories

    Science.gov (United States)

    Tretyakov, Petr V.

    2016-09-01

    We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β _1 and β _4. By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β _4-1/3β _4, which is needed to avoid a tachyon-like instability.

  18. Stability in higher-derivative matter fields theories

    CERN Document Server

    Tretyakov, Petr V

    2016-01-01

    We discuss possible instabilities in higher-derivative matter fields theories. These theories has two free parameters $\\beta_1$ and $\\beta_4$. By using dynamical system approach we explicitly demonstrate that for stability of Minkowski space in expanding Universe it is need condition $\\beta_4-\\frac{1}{3}\\beta_4$ which is need to avoid tachyon-like instability.

  19. Storing natural gas as frozen hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J.S.; Khokhar, A.A. (Univ. of Trondheim (Norway)); Parlaktuna, M. (Middle East Technical Univ., Ankara (Turkey))

    1994-02-01

    The formation of natural gas hydrates is a well-known problem in the petroleum and natural gas industries. Hydrates are solid materials that form when liquid water and natural gas are brought in contact under pressure. Hydrate formation need not be a problem. On the contrary, it can be an advantage. The volume of hydrates is much less than that of natural gas. At standard conditions, hydrates occupy 150 to 170 times less volume than the corresponding gas. Typically, natural gas hydrates contain 15% gas and 85% water by mass. It follows that hydrates can be used for large-scale storage of natural gas. Benesh proposed using hydrates to improve the load factor of natural gas supply systems. The author suggested that hydrates could be produced by bringing liquid water into contact with natural gas at the appropriate temperature and high pressure. The hydrate then would be stored at a temperature and pressure where it was stable. When gas was needed for the supply system, the hydrate would be melted at low pressure. The stability of a natural gas hydrate during storage at atmospheric pressure and below-freezing temperatures was studied in the laboratory. The gas hydrate was produced in a stirred vessel at 2- to 6-MPa pressure and temperatures from 0 to 20 C. The hydrate was refrigerated and stored in deep freezers at [minus]5, [minus]10, and [minus]18 C for up to 10 days. The natural gas hydrate remained stable when kept frozen at atmospheric pressure.

  20. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  1. Basin scale assessment of gas hydrate dissociation in response to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

    2011-07-01

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate

  2. Accurate Calculation of Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable Force Field.

    Science.gov (United States)

    Baker, Christopher M; Lopes, Pedro E M; Zhu, Xiao; Roux, Benoît; Mackerell, Alexander D

    2010-03-01

    Lennard-Jones (LJ) parameters for a variety of model compounds have previously been optimized within the CHARMM Drude polarizable force field to reproduce accurately pure liquid phase thermodynamic properties as well as additional target data. While the polarizable force field resulting from this optimization procedure has been shown to satisfactorily reproduce a wide range of experimental reference data across numerous series of small molecules, a slight but systematic overestimate of the hydration free energies has also been noted. Here, the reproduction of experimental hydration free energies is greatly improved by the introduction of pair-specific LJ parameters between solute heavy atoms and water oxygen atoms that override the standard LJ parameters obtained from combining rules. The changes are small and a systematic protocol is developed for the optimization of pair-specific LJ parameters and applied to the development of pair-specific LJ parameters for alkanes, alcohols and ethers. The resulting parameters not only yield hydration free energies in good agreement with experimental values, but also provide a framework upon which other pair-specific LJ parameters can be added as new compounds are parametrized within the CHARMM Drude polarizable force field. Detailed analysis of the contributions to the hydration free energies reveals that the dispersion interaction is the main source of the systematic errors in the hydration free energies. This information suggests that the systematic error may result from problems with the LJ combining rules and is combined with analysis of the pair-specific LJ parameters obtained in this work to identify a preliminary improved combining rule.

  3. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    Science.gov (United States)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  4. Responses of two field-grown coffee species to drought and re-hydration

    NARCIS (Netherlands)

    Cai, Z.Q.; Chen, Y.J.; Cao, K.F.

    2005-01-01

    The gas exchange, parameters of chlorophyll fluorescence, contents of pigments, and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), as well as lipid peroxidation were investigated in two field-grown coffee species, Coffea arabica and C. liberica, exposed to drought and

  5. Mean-Field Approximation to the Hydrophobic Hydration in the Liquid-Vapor Interface of Water.

    Science.gov (United States)

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2016-03-03

    A mean-field approximation to the solvation of nonpolar solutes in the liquid-vapor interface of aqueous solutions is proposed. It is first remarked with a numerical illustration that the solvation of a methane-like solute in bulk liquid water is accurately described by the mean-field theory of liquids, the main idea of which is that the probability (Pcav) of finding a cavity in the solvent that can accommodate the solute molecule and the attractive interaction energy (uatt) that the solute would feel if it is inserted in such a cavity are both functions of the solvent density alone. It is then assumed that the basic idea is still valid in the liquid-vapor interface, but Pcav and uatt are separately functions of different coarse-grained local densities, not functions of a common local density. Validity of the assumptions is confirmed for the solvation of the methane-like particle in the interface of model water at temperatures between 253 and 613 K. With the mean-field approximation extended to the inhomogeneous system the local solubility profiles across the interface at various temperatures are calculated from Pcav and uatt obtained at a single temperature. The predicted profiles are in excellent agreement with those obtained by the direct calculation of the excess chemical potential over an interfacial region where the solvent local density varies most rapidly.

  6. Profile stabilization of tilt mode in a Field Reversed Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  7. Study on gas hydrate as a new energy resource in the 21th century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byeong-Jae; Kwak Young-Hoon; Kim, Won-Sik [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Natural gas hydrate, a special type of clathrate hydrates, is a metastable solid compound which mainly consists of methane and water, and generally called as gas hydrate. It is stable in the specific low-temperature/high-pressure conditions. Gas hydrates play an important role as major reservoir of methane on the earth. On the other hand, the formation and dissociation of gas hydrates could cause the plugging in pipeline, gas kick during production, atmospheric pollution and geohazard. To understand the formation and dissociation of the gas hydrate, the experimental equilibrium conditions of methane hydrate were measured in pure water, 3 wt.% NaCl and MgCl{sub 2} solutions. The equilibrium conditions of propane hydrates were also measured in pure water. The relationship between methane hydrate formation time and overpressure was also analyzed through the laboratory work. The geophysical surveys using air-gun system and multibeam echo sounder were implemented to develop exploration techniques and to evaluate the gas hydrate potential in the East Sea, Korea. General indicators of submarine gas hydrates on seismic data is commonly inferred from the BSR developed parallel to the see floor, amplitude blanking at the upper part of the BSR, and phase reversal and decrease of the interval velocity at BSR. The field data were processed using Geobit 2.9.5 developed by KIGAM to detect the gas hydrate indicators. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). Processing results show that the strong reflector occurred parallel to the sea floor were shown at about 1800 ms two way travel time. The interval velocity decrease at this strong reflector and at the reflection phase reversal corresponding to the reflection at the sea floor. Gas hydrate stability field in the study area was determined using the data of measured hydrate equilibrium condition, hydrothermal gradient and geothermal gradient. The depth of BSR detected in the seismic

  8. Stability in higher-derivative matter fields theories

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakov, Petr V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Kazan Federal University, Department of General Relativity and Gravitation, Institute of Physics, Kazan (Russian Federation)

    2016-09-15

    We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β{sub 1} and β{sub 4}. By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β{sub 4} < 0. By using the quantum field theory approach we also find an additional restriction for the parameters, β{sub 1} > -(1)/(3)β{sub 4}, which is needed to avoid a tachyon-like instability. (orig.)

  9. Slope stability monitoring from microseismic field using polarization methodology

    Directory of Open Access Journals (Sweden)

    Yu. I. Kolesnikov

    2003-01-01

    Full Text Available Numerical simulation of seismoacoustic emission (SAE associated with fracturing in zones of shear stress concentration shows that SAE signals are polarized along the stress direction. The proposed polarization methodology for monitoring of slope stability makes use of three-component recording of the microseismic field on a slope in order to pick the signals of slope processes by filtering and polarization analysis. Slope activity is indicated by rather strong roughly horizontal polarization of the respective portion of the field in the direction of slope dip. The methodology was tested in microseismic observations on a landslide slope in the Northern Tien-Shan (Kyrgyzstan.

  10. Simulation of subsea gas hydrate exploitation

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  11. Preliminary Experimental Examination Of Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems

    Science.gov (United States)

    Kneafsey, T. J.; Flemings, P. B.; Bryant, S. L.; You, K.; Polito, P. J.

    2013-12-01

    Global climate change will cause warming of the oceans and land. This will affect the occurrence, behavior, and location of subseafloor and subterranean methane hydrate deposits. We suggest that in many natural systems local salinity, elevated by hydrate formation or freshened by hydrate dissociation, may control gas transport through the hydrate stability zone. We are performing experiments and modeling the experiments to explore this behavior for different warming scenarios. Initially, we are exploring hydrate association/dissociation in saline systems with constant water mass. We compare experiments run with saline (3.5 wt. %) water vs. distilled water in a sand mixture at an initial water saturation of ~0.5. We increase the pore fluid (methane) pressure to 1050 psig. We then stepwise cool the sample into the hydrate stability field (~3 degrees C), allowing methane gas to enter as hydrate forms. We measure resistivity and the mass of methane consumed. We are currently running these experiments and we predict our results from equilibrium thermodynamics. In the fresh water case, the modeled final hydrate saturation is 63% and all water is consumed. In the saline case, the modeled final hydrate saturation is 47%, the salinity is 12.4 wt. %, and final water saturation is 13%. The fresh water system is water-limited: all the water is converted to hydrate. In the saline system, pore water salinity is elevated and salt is excluded from the hydrate structure during hydrate formation until the salinity drives the system to three phase equilibrium (liquid, gas, hydrate) and no further hydrate forms. In our laboratory we can impose temperature gradients within the column, and we will use this to investigate equilibrium conditions in large samples subjected to temperature gradients and changing temperature. In these tests, we will quantify the hydrate saturation and salinity over our meter-long sample using spatially distributed temperature sensors, spatially distributed

  12. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles

    Science.gov (United States)

    Malakhova, Valentina V.; Eliseev, Alexey V.

    2017-10-01

    Climate warming may lead to degradation of the subsea permafrost developed during Pleistocene glaciations and release methane from the hydrates, which are stored in this permafrost. It is important to quantify time scales at which this release is plausible. While, in principle, such time scale might be inferred from paleoarchives, this is hampered by considerable uncertainty associated with paleodata. In the present paper, to reduce such uncertainty, one-dimensional simulations with a model for thermal state of subsea sediments forced by the data obtained from the ice core reconstructions are performed. It is shown that heat propagates in the sediments with a time scale of ∼ 10-20 kyr. This time scale is longer than the present interglacial and is determined by the time needed for heat penetration in the unfrozen part of thick sediments. We highlight also that timings of shelf exposure during oceanic regressions and flooding during transgressions are important for simulating thermal state of the sediments and methane hydrates stability zone (HSZ). These timings should be resolved with respect to the contemporary shelf depth (SD). During glacial cycles, the temperature at the top of the sediments is a major driver for moving the HSZ vertical boundaries irrespective of SD. In turn, pressure due to oceanic water is additionally important for SD ≥ 50 m. Thus, oceanic transgressions and regressions do not instantly determine onsets of HSZ and/or its disappearance. Finally, impact of initial conditions in the subsea sediments is lost after ∼ 100 kyr. Our results are moderately sensitive to intensity of geothermal heat flux.

  13. Differential stability of 2'F-ANA*RNA and ANA*RNA hybrid duplexes: roles of structure, pseudohydrogen bonding, hydration, ion uptake and flexibility.

    Science.gov (United States)

    Watts, Jonathan K; Martín-Pintado, Nerea; Gómez-Pinto, Irene; Schwartzentruber, Jeremy; Portella, Guillem; Orozco, Modesto; González, Carlos; Damha, Masad J

    2010-04-01

    Hybrids of RNA with arabinonucleic acids 2'F-ANA and ANA have very similar structures but strikingly different thermal stabilities. We now present a thorough study combining NMR and other biophysical methods together with state-of-the-art theoretical calculations on a fully modified 10-mer hybrid duplex. Comparison between the solution structure of 2'F-ANA*RNA and ANA*RNA hybrids indicates that the increased binding affinity of 2'F-ANA is related to several subtle differences, most importantly a favorable pseudohydrogen bond (2'F-purine H8) which contrasts with unfavorable 2'-OH-nucleobase steric interactions in the case of ANA. While both 2'F-ANA and ANA strands maintained conformations in the southern/eastern sugar pucker range, the 2'F-ANA strand's structure was more compatible with the A-like structure of a hybrid duplex. No dramatic differences are found in terms of relative hydration for the two hybrids, but the ANA*RNA duplex showed lower uptake of counterions than its 2'F-ANA*RNA counterpart. Finally, while the two hybrid duplexes are of similar rigidities, 2'F-ANA single strands may be more suitably preorganized for duplex formation. Thus the dramatically increased stability of 2'F-ANA*RNA and ANA*RNA duplexes is caused by differences in at least four areas, of which structure and pseudohydrogen bonding are the most important.

  14. Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field.

    Science.gov (United States)

    Lamoureux, Guillaume; Roux, Benoît

    2006-02-23

    A polarizable potential function for the hydration of alkali and halide ions is developed on the basis of the recent SWM4-DP water model [Lamoureux, G.; MacKerell, A. D., Jr.; Roux, B. J. Chem. Phys. 2003, 119, 5185]. Induced polarization is incorporated using classical Drude oscillators that are treated as auxiliary dynamical degrees of freedom. The ions are represented as polarizable Lennard-Jones centers, whose parameters are optimized to reproduce the binding energies of gas-phase monohydrates and the hydration free energies in the bulk liquid. Systematic exploration of the parameters shows that the monohydrate binding energies can be consistent with a unique hydration free energy scale if the computed hydration free energies incorporate the contribution from the air/water interfacial electrostatic potential (-540 mV for SWM4-DP). The final model, which can satisfyingly reproduce both gas and bulk-phase properties, corresponds to an absolute scale in which the intrinsic hydration free energy of the proton is -247 kcal/mol.

  15. Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-06-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  16. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization

    Science.gov (United States)

    Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-01-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  17. Postglacial response of Arctic Ocean gas hydrates to climatic amelioration

    Science.gov (United States)

    Serov, Pavel; Vadakkepuliyambatta, Sunil; Mienert, Jürgen; Patton, Henry; Portnov, Alexey; Silyakova, Anna; Panieri, Giuliana; Carroll, Michael L.; Carroll, JoLynn; Andreassen, Karin; Hubbard, Alun

    2017-06-01

    Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate change, the processes and rates of subsurface/atmospheric natural gas exchange remain uncertain. Here we investigate the dynamics between gas hydrate stability and environmental changes from the height of the last glaciation through to the present day. Using geophysical observations from offshore Svalbard to constrain a coupled ice sheet/gas hydrate model, we identify distinct phases of subglacial methane sequestration and subsequent release on ice sheet retreat that led to the formation of a suite of seafloor domes. Reconstructing the evolution of this dome field, we find that incursions of warm Atlantic bottom water forced rapid gas hydrate dissociation and enhanced methane emissions during the penultimate Heinrich event, the Bølling and Allerød interstadials, and the Holocene optimum. Our results highlight the complex interplay between the cryosphere, geosphere, and atmosphere over the last 30,000 y that led to extensive changes in subseafloor carbon storage that forced distinct episodes of methane release due to natural climate variability well before recent anthropogenic warming.

  18. Hydrate Evolution in Response to Ongoing Environmental Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Alan [Univ. of Oregon, Eugene, OR (United States)

    2015-12-31

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project component concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover

  19. Effects of mannose, fructose, and fucose on the structure, stability, and hydration of lysozyme in aqueous solution

    DEFF Research Database (Denmark)

    Rahim, Abdoul; Peters, Günther H.J.; Jalkanen, Karl J.

    2013-01-01

    The bio-protective properties of monosaccharaides, namely mannose, fructose and fucose, on the stability and dynamical properties of the NMR determined hen egg-white lysozyme structure have been investigated by means of molecular dynamics simulations at room temperature in aqueous solution and in...

  20. Stability of toroidal magnetic fields in stellar interiors

    CERN Document Server

    Ibañez-Mejia, Juan C

    2015-01-01

    We present 3D MHD simulations of purely toroidal and mixed poloidal-toroidal magnetic field configurations to study the behavior of the Tayler instability. For the first time the simultaneous action of rotation and magnetic diffusion are taken into account and the effects of a poloidal field on the dynamic evolution of unstable toroidal magnetic fields is included. In the absence of diffusion, fast rotation (rotation rate compared to Alfv\\'en frequency) is able to suppress the instability when the rotation and magnetic axes are aligned and when the radial field strength gradient p 1.5, rapid rotation does not suppress the instability but instead introduces a damping factor to the growth rate in agreement with the analytic predictions. For the mixed poloidal-toroidal fields we find an unstable axisymmetric mode, not predicted analytically, right at the stability threshold for the non-axisymmetric modes; it has been argued that an axisymmetric mode is necessary for the closure of the Tayler-Spruit dynamo loop.

  1. Modeling of stability of gas hydrates under permafrost in an environment of surface climatic change – terrestrial case, Beaufort-Mackenzie basin, Canada

    Directory of Open Access Journals (Sweden)

    J. Majorowicz

    2011-09-01

    Full Text Available Modeling of the onset of permafrost formation and succeeding gas hydrate formation in the changing surface temperature environment has been done for the Beaufort-Mackenzie Basin (BMB. Numerical 1-D modeling is constrained by deep heat flow from deep well bottom hole temperatures, deep conductivity, present permafrost thickness and thickness of Type I gas hydrates. Latent heat effects were applied to the model for the entire ice bearing permafrost and Type I hydrate intervals. Modeling for a set of surface temperature forcing during the glacial-interglacial history including the last 14 Myr was performed. Two scenarios of gas formation were considered; case 1: formation of gas hydrate from gas entrapped under deep geological seals and case 2: formation of gas hydrate from gas in a free pore space simultaneously with permafrost formation. In case 1, gas hydrates could have formed at a depth of about 0.9 km only some 1 Myr ago. In case 2, the first gas hydrate formed in the depth range of 290–300 m shortly after 6 Myr ago when the GST dropped from −4.5 °C to −5.5. °C. The gas hydrate layer started to expand both downward and upward subsequently. These models show that the gas hydrate zone, while thinning persists under the thick body of BMB permafrost through the current interglacial warming periods.

  2. On the influence of hydrated imidazolium-based ionic liquid on protein structure stability: A molecular dynamics simulation study

    Science.gov (United States)

    Shao, Qiang

    2013-09-01

    The structure stability of three α-helix bundle (the B domain of protein A) in an imidazolium-based ionic liquid (1-butyl-3-methylimidazolium chloride (BMIM-Cl)) is studied by molecular dynamics simulations. Consistent with previous experiments, the present simulation results show that the native structure of the protein is consistently stabilized in BMIM-Cl solutions with different concentrations. It is observed that BMIM+ cations have a strong tendency to accumulate on protein surface whereas Cl- anions are expelled from protein. BMIM+ cations cannot only have electrostatic interactions with the carbonyl groups on backbone and the carboxylate groups on negatively charged side chains, but also have hydrophobic interactions with the side chains of non-polar residues. In the meanwhile, the accumulation of large-size BMIM+ cations on protein surface could remove the surrounding water molecules, reduce the hydrogen bonding from water to protein, and thus stabilize the backbone hydrogen bonds. In summary, the present study could improve our understanding of the molecular mechanism of the impact of water-miscible ionic liquid on protein structure.

  3. Operational stability of organic field-effect transistors.

    Science.gov (United States)

    Bobbert, Peter A; Sharma, Abhinav; Mathijssen, Simon G J; Kemerink, Martijn; de Leeuw, Dago M

    2012-03-02

    Organic field-effect transistors (OFETs) are considered in technological applications for which low cost or mechanical flexibility are crucial factors. The environmental stability of the organic semiconductors used in OFETs has improved to a level that is now sufficient for commercialization. However, serious problems remain with the stability of OFETs under operation. The causes for this have remained elusive for many years. Surface potentiometry together with theoretical modeling provide new insights into the mechanisms limiting the operational stability. These indicate that redox reactions involving water are involved in an exchange of mobile charges in the semiconductor with protons in the gate dielectric. This mechanism elucidates the established key role of water and leads in a natural way to a universal "stress function", describing the stretched exponential-like time dependence ubiquitously observed. Further study is needed to determine the generality of the mechanism and the role of other mechanisms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    and the role it plays in the global climate and the future of fuels. Russia, Japan, Nigeria, Peru, Chile, Pakistan, Indonesia, Korea, etc are various countries who are perusing the gas hydrates studies as a future resource for fuel. Indian Initiative..., 1993, Free gas at the base of the gas hydrate zone in the vicinity of the Chile Triple junction: Geology, v. 21, pp. 905-908. Borowski, W.S., C.K. Paull, and U. William, III, 1999, Global and local variations of interstitial sulfate gradients...

  5. Methane Gas Hydrate Stability Models on Continental Shelves in Response to Glacio-Eustatic Sea Level Variations: Examples from Canadian Oceanic Margins

    Directory of Open Access Journals (Sweden)

    Jan Safanda

    2013-11-01

    Full Text Available We model numerically regions of the Canadian continental shelves during successive glacio-eustatic cycles to illustrate past, current and future marine gas hydrate (GH stability and instability. These models indicated that the marine GH resource has dynamic features and the formation age and resource volumes depend on the dynamics of the ocean-atmosphere system as it responds to both natural (glacial-interglacial and anthropogenic (climate change forcing. Our models focus on the interval beginning three million years ago (i.e., Late Pliocene-Holocene. They continue through the current interglacial and they are projected to its anticipated natural end. During the current interglacial the gas hydrate stability zone (GHSZ thickness in each region responded uniquely as a function of changes in water depth and sea bottom temperature influenced by ocean currents. In general, the GHSZ in the deeper parts of the Pacific and Atlantic margins (≥1316 m thinned primarily due to increased water bottom temperatures. The GHSZ is highly variable in the shallower settings on the same margins (~400–500 m. On the Pacific Margin shallow GH dissociated completely prior to nine thousand years ago but the effects of subsequent sea level rise reestablished a persistent, thin GHSZ. On the Atlantic Margin Scotian Shelf the warm Gulf Stream caused GHSZ to disappear completely, whereas in shallow water depths offshore Labrador the combination of the cool Labrador Current and sea level rise increased the GHSZ. If future ocean bottom temperatures remain constant, these general characteristics will persist until the current interglacial ends. If the sea bottom warms, possibly in response to global climate change, there could be a significant reduction to complete loss of GH stability, especially on the shallow parts of the continental shelf. The interglacial GH thinning rates constrain rates at which carbon can be transferred between the GH reservoir and the atmosphere

  6. Tuning the field-induced magnetic transition in a layered cobalt phosphonate by reversible dehydration-hydration process.

    Science.gov (United States)

    Yang, Ting-Hai; Liao, Yi; Zheng, Li-Min; Dinnebier, Robert E; Su, Yan-Hui; Ma, Jing

    2009-06-07

    A layered cobalt phosphonate, Co(2-pmp)(H(2)O)(2) (1) (2-pmpH(2) = 2-pyridylmethylphosphonic acid) is reported, which provides the first example of metamagnetic cobalt system that shows reversible changes in both structures and magnetic behaviors upon dehydration-hydration process.

  7. APPROXIMATE MODEL OF INTENSE FIELD STABILIZATION FOR.HYDlROGEN ATOM

    Institute of Scientific and Technical Information of China (English)

    XIE BAI-SONG

    2000-01-01

    An approximate model is proposed to study the stabilization problem of hydrogen atoms under monochromatic intense laser field.The stabilization regime for system parameters such as laser field strength,laser field frequency and atomic magnetic quantum number are obtained by stability analysis of fixed points of the model.The results are consistent with those obtained by other methods.

  8. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  9. Stability of Gradient Field Corrections for Quantitative Diffusion MRI

    Science.gov (United States)

    Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2016-01-01

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol. PMID:28736467

  10. Stability of gradient field corrections for quantitative diffusion MRI

    Science.gov (United States)

    Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.

    2017-03-01

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.

  11. Structural and dynamical characteristics of trehalose and sucrose matrices at different hydration levels as probed by FTIR and high-field EPR.

    Science.gov (United States)

    Malferrari, M; Nalepa, A; Venturoli, G; Francia, F; Lubitz, W; Möbius, K; Savitsky, A

    2014-06-07

    Some organisms can survive complete dehydration and high temperatures by adopting an anhydrobiotic state in which the intracellular medium contains large amounts of disaccharides, particularly trehalose and sucrose. Trehalose is most effective also in protecting isolated in vitro biostructures. In an attempt to clarify the molecular mechanisms of disaccharide bioprotection, we compared the structure and dynamics of sucrose and trehalose matrices at different hydration levels by means of high-field W-band EPR and FTIR spectroscopy. The hydration state of the samples was characterized by FTIR spectroscopy and the structural organization was probed by EPR using a nitroxide radical dissolved in the respective matrices. Analysis of the EPR spectra showed that the structure and dynamics of the dehydrated matrices as well as their evolution upon re-hydration differ substantially between trehalose and sucrose. The dehydrated trehalose matrix is homogeneous in terms of distribution of the residual water and spin-probe molecules. In contrast, dehydrated sucrose forms a heterogeneous matrix. It is comprised of sucrose polycrystalline clusters and several bulk water domains. The amorphous form was found only in 30% (volume) of the sucrose matrix. Re-hydration leads to a structural homogenization of the sucrose matrix, whilst in the trehalose matrix several domains develop differing in the local water/radical content and radical mobility. The molecular model of the matrices provides an explanation for the different protein-matrix dynamical coupling observed in dried ternary sucrose and trehalose matrices, and accounts for the superior efficacy of trehalose as a bioprotectant. Furthermore, for bacterial photosynthetic reaction centers it is shown that at low water content the protein-matrix coupling is modulated by the sugar/protein molar ratio in sucrose matrices only. This effect is suggested to be related to the preference for sucrose, rather than trehalose, as a

  12. Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation.

    Science.gov (United States)

    Lapham, Laura L; Wilson, Rachel M; Chanton, Jeffrey P

    2012-01-15

    The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected by physical processes, and can thus be interpreted to result from either the gas source or

  13. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    Science.gov (United States)

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  14. Separation of SF6 from gas mixtures using gas hydrate formation.

    Science.gov (United States)

    Cha, Inuk; Lee, Seungmin; Lee, Ju Dong; Lee, Gang-woo; Seo, Yongwon

    2010-08-15

    This study aims to examine the thermodynamic feasibility of separating sulfur hexafluoride (SF(6)), which is widely used in various industrial fields and is one of the most potent greenhouse gases, from gas mixtures using gas hydrate formation. The key process variables of hydrate phase equilibria, pressure-composition diagram, formation kinetics, and structure identification of the mixed gas hydrates, were closely investigated to verify the overall concept of this hydrate-based SF(6) separation process. The three-phase equilibria of hydrate (H), liquid water (L(W)), and vapor (V) for the binary SF(6) + water mixture and for the ternary N(2) + SF(6) + water mixtures with various SF(6) vapor compositions (10, 30, 50, and 70%) were experimentally measured to determine the stability regions and formation conditions of pure and mixed hydrates. The pressure-composition diagram at two different temperatures of 276.15 and 281.15 K was obtained to investigate the actual SF(6) separation efficiency. The vapor phase composition change was monitored during gas hydrate formation to confirm the formation pattern and time needed to reach a state of equilibrium. Furthermore, the structure of the mixed N(2) + SF(6) hydrate was confirmed to be structure II via Raman spectroscopy. Through close examination of the overall experimental results, it was clearly verified that highly concentrated SF(6) can be separated from gas mixtures at mild temperatures and low pressure conditions.

  15. Effect of regular hydration on gas phase structural stability of [zwitterionic alanine+M{sup +}] (M{sup +} = Li{sup +}, Na{sup +}, K{sup +}) complexes: A quantum chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, Nidhi [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad 211 004 (India); Ojha, Animesh K., E-mail: animesh@mnnit.ac.in [Department of Physics, Motilal Nehru National Institute of Technology, Allahabad 211 004 (India)

    2011-04-28

    Graphical abstract: We have examined the gas phase structural stability of Ala-M{sup +}.(W){sub n=0-5} and ZAla-M{sup +}.(W){sub n=0-5} (M{sup +} = Li{sup +}, Na{sup +}, K{sup +}) complexes. We found that the five water molecules are needed to stabilize the -OO coordinated structure of ZAla-M{sup +} over the -NO/OH coordinated structure of Ala-M{sup +}. The negative and large values of entropies of hydrated species also confirm that hydrated species are more stable over the nonhydrated species. Display Omitted Research highlights: {yields} Effect of regular hydration on gas phase structural stability of differently coordinated Ala-M{sup +} and ZAla-M{sup +} (M{sup +} = Li{sup +}, Na{sup +}, K{sup +}) complexes has been studied. {yields} Five water molecules are needed to stabilize the -OO coordinated structure of ZAla-M{sup +} over-NO/OH coordinated structures of Ala-M{sup +} complex. {yields} Planarity of the ZAla-M{sup +} complexes does not change by the addition of five water molecules. {yields} Loss of entropy by the stepwise addition of water molecules confirms that the hydrated species are more stable. - Abstract: In the present study, we have examined the effect of coordination of metal cations (M{sup +} = Li{sup +}, Na{sup +}, K{sup +}) and water molecules (W) on the gas phase structural stability of D-alanine (Ala) and zwitterionic alanine (ZAla). The -NO/OH and -OO coordinated structures of Ala-M{sup +}.(W){sub n=0-5} and ZAla-M{sup +}.(W){sub n=0-5}, respectively were optimized in gas phase at B3LYP/6-311++G(d,p) level of theory. In complexes, Ala-Li{sup +} and Ala-Na{sup +} the structures where Li{sup +} and Na{sup +} coordinated to -NO/OO modes of Ala were more stable. However, in case of Ala-K{sup +}, the structure where K{sup +} coordinated to -OH mode was found to be more stable. Stepwise addition of water molecules changes the order of stability of hydrate species of Ala-M{sup +} and ZAla-M{sup +} complexes and we found that five water molecules

  16. Multiphoton ionization and stabilization of helium in superintense xuv fields

    CERN Document Server

    Sørngård, S A; Nepstad, R; Førre, M

    2011-01-01

    Multiphoton ionization of helium is investigated in the superintense field regime, with particular emphasis on the role of the electron-electron interaction in the ionization and stabilization dynamics. To accomplish this, we solve ab initio the time-dependent Schr\\"odinger equation with the full electron-electron interaction included. By comparing the ionization yields obtained from the full calculations with corresponding results of an independent-electron model, we come to the somewhat counterintuitive conclusion that the single-particle picture breaks down at superstrong field strengths. We explain this finding from the perspective of the so-called Kramers-Henneberger frame, the reference frame of a free (classical) electron moving in the field. The breakdown is tied to the fact that shake-up and shake-off processes cannot be properly accounted for in commonly used independent-electron models. In addition, we see evidence of a change from the multiphoton to the shake-off ionization regime in the energy di...

  17. Evaluation of Heat Induced Methane Release from Methane Hydrates

    Science.gov (United States)

    Leeman, J.; Elwood-Madden, M.; Phelps, T. J.; Rawn, C. J.

    2010-12-01

    Clathrates, or gas hydrates, structurally are guest gas molecules populating a cavity in a cage of water molecules. Gas hydrates naturally occur on Earth under low temperature and moderate pressure environments including continental shelf, deep ocean, and permafrost sediments. Large quantities of methane are trapped in hydrates, providing significant near-surface reserves of carbon and energy. Thermodynamics predicts that hydrate deposits may be destabilized by reducing the pressure in the system or raising the temperature. However, the rate of methane release due to varying environmental conditions remains relatively unconstrained and complicated by natural feedback effects of clathrate dissociation. In this study, hydrate dissociation in sediment due to localized increases in temperature was monitored and observed at the mesoscale (>20L) in a laboratory environment. Experiments were conducted in the Seafloor Process Simulator (SPS) at Oak Ridge National Laboratory (ORNL) to simulate heat induced dissociation. The SPS, containing a column of Ottawa sand saturated with water containing 25mg/L Sno-Max to aid nucleation, was pressurized and cooled well into the hydrate stability field. A fiber optic distributed sensing system (DSS) was embedded at four depths in the sediment column. This allowed the temperature strain value (a proxy for temperature) of the system to be measured with high spatial resolution to monitor the clathrate formation/dissociation processes. A heat exchanger embedded in the sediment was heated using hot recirculated ethylene glycol and the temperature drop across the exchanger was measured. These experiments indicate a significant and sustained amount of heat is required to release methane gas from hydrate-bearing sediments. Heat was consumed by hydrate dissociated in a growing sphere around the heat exchanger until steady state was reached. At steady state all heat energy entering the system was consumed in maintaining the temperature profile

  18. Sediment composition and texture of Pleistocene deep-sea turbidites in the eastern Nankai Trough gas hydrate field

    Science.gov (United States)

    Egawa, K.; Nishimura, O.; Izumi, S.; Ito, T.; Konno, Y.; Yoneda, J.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Nagao, J.

    2013-12-01

    In the 2012 JOGMEC/JAPEX pressure coring operation, we collected a totally 60-m-long core sample from the interval of gas hydrate concentration zone at the planned site of the world's first offshore production test of natural gas hydrates in the eastern Nankai Trough area. In this contribution, the cored sediments were sedimentologically, mineralogically, and paleontologically analyzed to know sediment composition and texture of reservoir formation, which are known to provide useful geological information to discuss sedimentation, diagenesis, and permeability. The targeted interval belongs to a Middle Pleistocene deep-sea turbidite sequence distributed around the Daini Atsumi Knoll, east of the Kumano forearc basin, and consists of the lower (thick sand-dominant), middle (thin-bedded sand-and-mud alteration), and upper (mud-dominant) formations in ascending order. X-ray powder diffraction analysis and scanning electron microscopic observation revealed that pore space in turbidite sands is commonly filled with clay fractions (mostly phyllosilicates) in the lower formation. Such a pore filling of clay fractions is reflected in particle size distribution showing high standard deviation and clay content, and thus is expected to have an impact on permeability. There is the older Pliocene to Early Pleistocene fossil coccolith record in the middle formation, indicating sediment reworking probably induced by submarine landslide. The coexistence of authigenic siderite and framboidal pyrite in the middle formation strongly suggests anoxic microbial activity under methane oxidation and sulfide reduction conditions at least before the hydrate cementation. This contribution was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI).

  19. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  20. Drift-wave stability in the field-reversed configuration

    Science.gov (United States)

    Lau, C. K.; Fulton, D. P.; Holod, I.; Lin, Z.; Binderbauer, M.; Tajima, T.; Schmitz, L.

    2017-08-01

    Gyrokinetic simulations of C-2-like field-reversed configuration (FRC) find that electrostatic drift-waves are locally stable in the core. The stabilization mechanisms include finite Larmor radius effects, magnetic well (negative grad-B), and fast electron short circuit effects. In the scrape-off layer (SOL), collisionless electrostatic drift-waves in the ion-to-electron-scale are destabilized by electron temperature gradients due to the resonance with locally barely trapped electrons. Collisions can suppress this instability, but a collisional drift-wave instability still exists at realistic pressure gradients. Simulation results are in qualitative agreement with C-2 FRC experiments. In particular, the lack of ion-scale instability in the core is not inconsistent with experimental measurements of a fluctuation spectrum showing a depression at ion-scales. The pressure gradient thresholds for the SOL instability from simulations are also consistent with the critical gradient behavior observed in experiments.

  1. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  2. Relict gas hydrates as possible reason of gas emission from shallow permafrost at the northern part of West Siberia

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Tumskoy, Vladimir; Istomin, Vladimir; Tipenko, Gennady

    2017-04-01

    Intra-permafrost gas (mostly methane) is represent a serious geological hazards during exploration and development of oil and gas fields. Special danger is posed by large methane accumulations which usually confined to sandy and silty sand horizons and overlying in the frozen strata on the depth up to 200 meters. Such methane accumulations are widely spread in a number of gas fields in the northern part of Western Siberia. According to indirect indicators this accumulations can be relic gas hydrates, that formed earlier during favorable conditions for hydrate accumulation (1, 2). Until now, they could be preserved in the frozen sediments due to geological manifestation of the self-preservation effect of gas hydrates at temperatures below zero. These gas hydrate formations, which are lying above the gas hydrate stability zone today, are in a metastable state and are very sensitive to various anthropogenic impacts. During drilling and operation of production wells in the areas where the relic of gas hydrates can occur, there are active gas emission and gas explosion, that can lead to various technical complications up to the accident. Mathematical and experimental simulations were were conducted to evaluate the possibility of existence of relic gas hydrates in the northern part of West Siberia. The results of math simulations revealed stages of geological history when the gas hydrate stability zone began virtually from the ground surface and saturated in shallow permafrost horizons. Later permafrost is not completely thaw. Experimental simulations of porous gas hydrate dissociation in frozen soils and evaluation of self-preservation manifestation of gas hydrates at negative temperatures were carried out for identification conditions for relic gas hydrates existence in permafrost of northern part of West Siberia. Sandy and silty sand sediments were used in experimental investigations. These sediments are typical of most gas-seeping (above the gas hydrate stability

  3. Testing a coupled hydro-thermo-chemo-geomechanical model for gas hydrate bearing sediments using triaxial compression lab experiments

    CERN Document Server

    Gupta, Shubhangi; Haeckel, Matthias; Helmig, Rainer; Wohlmuth, Barbara

    2015-01-01

    The presence of gas hydrates influences the stress-strain behavior and increases the load-bearing capacity of sub-marine sediments. This stability is reduced or completely lost when gas hydrates become unstable. Since natural gas hydrate reservoirs are considered as potential resources for gas production on industrial scales, there is a strong need for numerical production simulators with geomechanical capabilities. To reliably predict the mechanical behavior of gas hydrate-bearing sediments during gas production, numerical tools must be sufficiently calibrated against data from controlled experiments or field tests, and the models must consider thermo-hydro-chemo-mechanical process coupling in a suitable manner. In this study, we perform a controlled triaxial volumetric strain test on a sediment sample in which methane hydrate is first formed under controlled isotropic effective stress and then dissociated via depressurization under controlled total stress. Sample deformations were kept small, and under thes...

  4. Challenges for D-brane large-field inflation with stabilizer fields

    Science.gov (United States)

    Landete, Aitor; Marchesano, Fernando; Wieck, Clemens

    2016-09-01

    We study possible string theory compactifications which, in the low-energy limit, describe chaotic inflation with a stabilizer field. We first analyze type IIA setups where the inflationary potential arises from a D6-brane wrapping an internal three-cycle, and where the stabilizer field is either an open-string or bulk Kähler modulus. We find that after integrating out the relevant closed-string moduli consistently, tachyonic directions arise during inflation which cannot be lifted. This is ultimately due to the shift symmetries of the type IIA Kähler potential at large compactification volume. This motivates us to search for stabilizer candidates in the complex structure sector of type IIB orientifolds, since these fields couple to D7-brane Wilson lines and their shift symmetries are generically broken away from the large complex structure limit. However, we find that in these setups the challenge is to obtain the necessary hierarchy between the inflationary and Kaluza-Klein scales.

  5. Challenges for D-brane large-field inflation with stabilizer fields

    CERN Document Server

    Landete, Aitor; Wieck, Clemens

    2016-01-01

    We study possible string theory compactifications which, in the low-energy limit, describe chaotic inflation with a stabilizer field. We first analyze type IIA setups where the inflationary potential arises from a D6-brane wrapping an internal three-cycle, and where the stabilizer field is either an open-string or bulk K\\"ahler modulus. We find that after integrating out the relevant closed-string moduli consistently, tachyonic directions arise during inflation which cannot be lifted. This is ultimately due to the shift symmetries of the type IIA K\\"ahler potential at large compactification volume. This motivates us to search for stabilizer candidates in the complex structure sector of type IIB orientifolds, since these fields couple to D7-brane Wilson lines and their shift symmetries are generically broken away from the large complex structure limit. However, we find that in these setups the challenge is to obtain the necessary hierarchy between the inflationary and Kaluza-Klein scales.

  6. Hydrates fighting tools; Des outils de lutte contre les hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2003-04-01

    Shell Exploration and Production company (SEPCo) is the operator of the 'Popeye' deep offshore field in the Gulf of Mexico. Thanks to the introduction of a low dosing hydrates inhibitor (LDHI) elaborated by Shell Global Solutions, the company has added a 7.5 Gpc extra volume of gas to its recoverable reserves. This new technology avoids the plugging of pipes by hydrates formation. (J.S.)

  7. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    Energy Technology Data Exchange (ETDEWEB)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  8. Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province, offshore Norway

    Science.gov (United States)

    Attias, Eric; Weitemeyer, Karen; Minshull, Tim A.; Best, Angus I.; Sinha, Martin; Jegen-Kulcsar, Marion; Hölz, Sebastian; Berndt, Christian

    2016-08-01

    Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution 3-D seismic data were previously collected in 2006. 2-D CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within subseafloor fluid flow pipe structures.

  9. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  10. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  11. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates

    Science.gov (United States)

    Andreassen, K.; Hart, P.E.; MacKay, M.

    1997-01-01

    A bottom simulating seismic reflection (BSR) that parallels the sea floor occurs worldwide on seismic profiles from outer continental margins. The BSR coincides with the base of the gas hydrate stability field and is commonly used as indicator of natural submarine gas hydrates. Despite the widespread assumption that the BSR marks the base of gas hydrate-bearing sediments, the occurrence and importance of low-velocity free gas in the sediments beneath the BSR has long been a subject of debate. This paper investigates the relative abundance of hydrate and free gas associated with the BSR by modeling the reflection coefficient or amplitude variation with offset (AVO) of the BSR at two separate sites, offshore Oregon and the Beaufort Sea. The models are based on multichannel seismic profiles, seismic velocity data from both sites and downhole log data from Oregon ODP Site 892. AVO studies of the BSR can determine whether free gas exists beneath the BSR if the saturation of gas hydrate above the BSR is less than approximately 30% of the pore volume. Gas hydrate saturation above the BSR can be roughly estimated from AVO studies, but the saturation of free gas beneath the BSR cannot be constrained from the seismic data alone. The AVO analyses at the two study locations indicate that the high amplitude BSR results primarily from free gas beneath the BSR. Hydrate concentrations above the BSR are calculated to be less than 10% of the pore volume for both locations studied.

  12. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  13. Long-term effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues: Field experiments.

    Science.gov (United States)

    Schotsmans, Eline M J; Fletcher, Jonathan N; Denton, John; Janaway, Robert C; Wilson, Andrew S

    2014-05-01

    An increased number of police enquiries involving human remains buried with lime have demonstrated the need for more research into the effect of different types of lime on cadaver decomposition and its micro-environment. This study follows previous studies by the authors who have investigated the effects of lime on the decay of human remains in laboratory conditions and 6 months of field experiments. Six pig carcasses (Sus scrofa), used as human body analogues, were buried without lime with hydrated lime (Ca(OH)2) and quicklime (CaO) in shallow graves in sandy-loam soil in Belgium and recovered after 17 and 42 months of burial. Analysis of the soil, lime and carcasses included entomology, pH, moisture content, microbial activity, histology and lime carbonation. The results of this study demonstrate that despite conflicting evidence in the literature, the extent of decomposition is slowed down by burial with both hydrated lime and quicklime. The more advanced the decay process, the more similar the degree of liquefaction between the limed and unlimed remains. The end result for each mode of burial will ultimately result in skeletonisation. This study has implications for the investigation of clandestine burials, for a better understanding of archaeological plaster burials and potentially for the interpretation of mass graves and management of mass disasters by humanitarian organisation and DVI teams. Copyright © 2014. Published by Elsevier Ireland Ltd.

  14. Stability and conservation properties of transient field simulations using FIT

    Directory of Open Access Journals (Sweden)

    R. Schuhmann

    2003-01-01

    Full Text Available Time domain simulations for high-frequency applications are widely dominated by the leapfrog timeintegration scheme. Especially in combination with the spatial discretization approach of the Finite Integration Technique (FIT it leads to a highly efficient explicit simulation method, which in the special case of Cartesian grids can be regarded to be computationally equivalent to the Finite Difference Time Domain (FDTD algorithm. For stability reasons, however, the leapfrog method is restricted to a maximum stable time step by the well-known Courantcriterion, and can not be applied to most low-frequency applications. Recently, some alternative, unconditionally stable techniques have been proposed to overcome this limitation, including the Alternating Direction Implicit (ADI-method. We analyze such schemes using a transient modal decomposition of the electric fields. It is shown that stability alone is not sufficient to guarantee correct results, but additionally important conservation properties have to be met. Das Leapfrog-Verfahren ist ein weit verbreitetes Zeitintegrationsverfahren für transiente hochfrequente elektrodynamischer Felder. Kombiniert mit dem räumlichen Diskretisierungsansatz der Methode der Finiten Integration (FIT führt es zu einer sehr effizienten, expliziten Simulationsmethode, die im speziellen Fall kartesischer Rechengitter als äquivalent zur Finite Difference Time Domain (FDTD Methode anzusehen ist. Aus Stabilitätsgründen ist dabei die Zeitschrittweite durch das bekannte Courant-Kriterium begrenzt, so dass das Leapfrog- Verfahren für niederfrequente Probleme nicht sinnvoll angewendet werden kann. In den letzten Jahren wurden alternativ einige andere explizite oder “halb-implizite" Zeitbereichsverfahren vorgeschlagen, u.a. das “Alternating Direction Implicit" (ADI-Verfahren, die keiner Beschränkung des Zeitschritts aus Stabilitätsgründen unterliegen. Es zeigt sich aber, dass auch diese Methoden im

  15. Gas Hydrate Research Site Selection and Operational Research Plans

    Science.gov (United States)

    Collett, T. S.; Boswell, R. M.

    2009-12-01

    In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a

  16. Investigation on the effects of natural gas hydrate formation on slurry flow stability%天然气水合物的生成对浆液流动稳定性影响综述

    Institute of Scientific and Technical Information of China (English)

    丁麟; 史博会; 吕晓方; 柳杨; 阮超宇; 宋尚飞; 宫敬

    2016-01-01

    In the hydrate risk management strategy in deep-sea oil/gas transportation pipeline,hydrates are allowed to form in the pipe line,and the petroleum products are transported in the liquid-solid slurry form. Therefore,to ensure the flow safety in deep-sea pipeline,the hydrate volume fraction and degree of agglomeration must be controlled in a safe value. The liquid-solid slurry has complex flow properties due to the introduction of the hydrate solid phase. The present work reviewed the effects of hydrate particles on the flow stability and plug mechanism in both pseudo single phase system and the gas-liquid multiphase system. The hydrate growth and deposition on pipe wall,the inter-couple of natural gas hydrate and gas-liquid multiphase flow pattern and the different plug mechanisms indifferent systems were discussed emphatically. Besides,an introduction of the software simulation of the hydrates slurry flow was made. Finally,based on the reviewing,this paper proposed that study on the microscopic property and quantitative description of the hydrate growth and deposition,the critical velocities of different patterns of particles distribution,and the hydrate formation and slurry flow property in different flow patterns were the main issues to be researched in the future.%目前在海底混输管道的水合物风险控制策略中,允许水合物在管道内的生成,以液固浆液流动的形式对海底油气产物进行输送。其中主要通过控制浆液中水合物的生成量和聚集程度,来实现对海底集输管线的流动安全保障。液固浆液流动具有相当复杂的流动特性,固相颗粒的引入对于流体的流动特性影响很大。本文分别综述了拟单相流动体系和气液多相流动体系中水合物颗粒对于管输体系流动稳定性的影响以及水合物对混输管道堵管特性的影响。着重讨论了水合物在管道壁面的生长和沉积特性、水合物与气液流型的耦合关系以及不

  17. Thermal stability conditions of a weakly interacting Fermi gas in a weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    Fudian Men; Hui Liu; Houyu Zhu

    2009-01-01

    On the basis of the results derived from pseudopotential method and ensemble theory,thermal stability of a weakly interacting Fermi gas in a weak magnetic field is studied by using analytical method of thermodynamics.The exact analytical expressions of stability conditions at different temperatures are given,and the effects of interactions as well as magnetic field on the stability of the system are discussed.It is shown that there is an upper-limit magnetic field for the stability of the system at low temperatures,and there is an attractive dividing value at high temperatures.If attractive interaction is lower than the critical value,the stability of the system has no request for magnetic field,but if attractive interaction is higher than the dividing value,a lower-limit magnetic field exists for the stability of the system.

  18. Thermodynamic inhibitor performance extender that, effectively and economically prevent hydrate formation in the oil field production systems

    Energy Technology Data Exchange (ETDEWEB)

    Allenson, Stephen; Johnston, Angela [Nalco Energy Services, Sugar Land, TX (United States)

    2008-07-01

    This paper presents the development of a new additive that was developed to improve the effectiveness of the treatment two to four fold when added to the thermodynamic hydrate inhibitor (THI). Consequently, the THI/additive treatment can now enable the system to handle two to four times the amount of water production or can allow treatment of the same amount of water at half to quarter the dosage of THI. This new additive extends the performance of the THI and allows for a significant increase in production or a significant drop in the amount of THI usage with a corresponding drop in cost. This paper will further discuss the overall process of THI enhancement and will present several case studies where the enhanced THI has been successfully applied. (author)

  19. Characterization of H/V Spectral Ratios for the Assessment of Slope Stability in the Gas Hydrate-rich Area: an Example from Offshore SW Taiwan

    Science.gov (United States)

    Lin, J. Y.; Tsia, C. H.; Cheng, W. B.; Chin, S. J.; Lin, S. S.; Liang, C. W.

    2015-12-01

    The Nakamura's method, which calculates the ratios between horizontal and vertical component spectra of seismic signals (H/V), is widely used in the inland area. However, few related estimations were performed for the offshore area and little knowledge for the marine sediments were obtained. From 2013 to 2015, three passive ocean bottom seismometer (OBS) experiments were conducted in gas hydrate-rich area offshore SW Taiwan in the aim of acquiring information related to the physical properties of seafloor sediments. The H/V of the seafloor sediments in the three areas were estimated by using the ambient noise and seismic signal recorded by OBSs. The resonance frequency of each site was estimated from the main peak of H/V distribution and a range between 5 and 10 Hz were obtained. Based on the empirical law, this resonance frequency range should correspond to a sediment thickness of approximately several to ten of meters. This estimation is consistent with the thickness of the sedimentary cover imaged by chirp sonar survey, suggesting that the site response of seafloor is dominantly controlled by the unconsolidated sedimentary layer on the top of the sea bed. Remarkably, the H/V ratios obtained in our study area are much larger than that calculated for the inland areas. The magnification can reach as high as 50 to more than 100. This observation infers that the sea water movement might emphasize the horizontal motion of the marine sediments, which is crucial for the slope stability assessment. Moreover, for most stations located in the active margin, no distinct peak is observed for the H/V pattern calculated during earthquakes. However, in the passive margin, the H/V peak calculated from ambient noise and earthquakes is mostly identical. This phenomenon may suggest that relatively unclear sedimentary boundary exist in the active margin environment. Estimating H/V spectral ratios of data recorded by the OBSs deployed in the southwest Taiwan offshore area offers a

  20. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B.

    2004-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from five methane hydrate-bearing zones at the Mallik site. In Zone #1, numerical simulations using the EOSHYDR2 model indicated that gas production from hydrates at the Mallik site was possible by depressurizing a thin free gas zone at the base of the hydrate stability field. Horizontal wells appeared to have a slight advantage over vertical wells, while multiwell systems involving a combination of depressurization and thermal stimulation offered superior performance, especially when a hot noncondensible gas was injected. Zone #2, which involved a gas hydrate layer with an underlying aquifer, could yield significant amounts of gas originating entirely from gas hydrates, the volumes of which increased with the production rate. However, large amounts of water were also produced. Zones #3, #4 and #5 were lithologically isolated gas hydrate-bearing deposits with no underlying zones of mobile gas or water. In these zones, thermal stimulation by circulating hot water in the well was used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increased with the gas hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the specific heat of the rock and of the hydrate, and to the permeability of the formation. ?? 2004 Published by Elsevier B.V.

  1. A study of the stability of polyacrylamide solutions under laboratory and field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Kissne, G.M.; Lakatosne, S.J.

    1980-01-01

    Questions are examined of thermal, mechanical and microbiological stability of polyacrylamide solutions used in the processes of oil expulsion and formation treatment. Results are given from experiments performed with nonhydrolyzed and partially hydrolyzed domestic and foreign polyacrylamides under laboratory and field conditions. Attention is drawn to the fact that problems of stability are varied. The economic aspect of field use of the processes must not be underestimated. Stability of polymers can be ensured by effective chemical microbiological protection.

  2. Impact of CO{sub 2} hydrates on ocean carbon dioxide deposition options

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.C.

    1995-04-01

    The objective of the research project described in this report was to contribute to the research on greenhouse gases and the global environment. The focus is on the concept of storing large amounts of CO{sub 2} in the ocean. The project was divided into three subtasks: (1) a comprehensive study of the thermodynamic, physical and chemical properties of the seawater/CO{sub 2}/hydrate system, (2) establishment of a micro-scale kinetic model for CO{sub 2} hydrate formation and stability, based on (1), and (3) establishment of macro-scale models for various ocean deposition options based on (2). A database of selected thermodynamic functions has been set up. A large database of oceanic data has also been made; for any given coordinates at sea a computer program provides the temperature, salinity and oxygen profiles from the sea surface to the sea floor. The kinetic model predicts the formation and pseudo-stability of a very thin hydrate film which acts as an inhibitor for diffusion of CO{sub 2} into the sea water. The model predicts that the hydrate film reduces the overall flux from a liquid CO{sub 2} source with about 90%. Thermodynamically, pure CO{sub 2} in contact with water might form hydrates at depths below about 400 m, which would indicate that hydrate formation could play a role for all ocean CO{sub 2} deposition options. However, this study shows that other mechanisms significantly reduce the role of hydrate formation. It is finally concluded that although more modelling and experimental work is required within this field of research, the hydrate film may play an important role for all options except from shallow water injection. 86 refs., 32 figs., 16 tabs.

  3. Stability of Rotating Self-Gravitating Filaments:Stability of Rotating Self-Gravitating Filaments: Effects of Magnetic Field

    CERN Document Server

    Sadhukhan, Shubhadeep; Chakraborty, Sagar

    2016-01-01

    We have performed systemmatic local linear stability analysis on a radially stratified infinite self-gravitating cylinder of rotating plasma under the influence of magnetic field. In order to render the system analytically tractable, we have focussed solely on the axisymmetric modes of perturbations. Using cylindrical coordinate system, we have derived the critical linear mass density of a non-rotating filament required for gravitational collapse to ensue in the presence of azimuthal magnetic field. Moreover, for such filaments threaded by axial magnetic field, we show that the growth rates of the modes having non-zero radial wavenumber are reduced more strongly by the magnetic field than that of the modes having zero radial wavenumber. More importantly, our study contributes to the understanding of the stability property of rotating astrophysical filaments that are more often than not influenced by magnetic fields. In addition to complementing many relevant numerical studies reported the literature, our resu...

  4. Assessing fluid-gas expulsion geology and gas hydrate deposits across the Gulf of Mexico with multicomponent and multifrequency seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Sava, D.C.; Murray, P.E.; DeAngelo, M.V.; Backus, M.M.; Graebner, R.J. [Texas Univ., Austin, TX (United States). Bureau of Economic Geology; Roberts, H.H. [Louisiana State Univ., Baton Rouge, LA (United States). Coastal Studies Inst.

    2008-07-01

    This paper reported on a study of 2 fluid-gas expulsion sites across a portion of the Green Canyon area of the Gulf of Mexico, where deep-water fields and oil and gas seeps are numerous. Hydrates are pervasive across the 2 expulsion sites studied at Typhoon and Genesis Fields. The 2 sites GD 237 and GC 204 are positioned on the flank of an intraslope basin containing a thick sedimentary sequence. Major fluid-gas migration pathways occur near the edges of shallow subsurface salt masses. The two-fluid gas expulsion sites were investigated with 4-component ocean-bottom-cable (4C OBC) seismic data and chirp-sonar data acquired by an autonomous underwater vehicle (AUV). The study examined the near-seafloor geology of the deep-water, fluid-gas expulsion features to estimate hydrate concentrations in strata spanned by the hydrate stability zone local to these expulsion sites. In some units, hydrate concentrations were more than 30 per cent of the available pore space of the host sediment. A free-gas layer was discovered immediately under the base of the hydrate stability zone across each expulsion site area. It was revealed by a reduction in V{sub p} velocity. Although the amount of free-gas in this zone has not been estimated, it is expected that the zone has a gas saturation of only a few percentage points. This free-gas zone was not obviously different from hydrate-bearing zones when examining resistivity logs. It was concluded that interpreting the thickness of a hydrate stability zone from resistivity logs alone could result in an overestimation of the thickness of the hydrate stability zone and the amount of hydrate that exists near deep-water expulsion features. 10 refs., 13 figs.

  5. Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background

    CERN Document Server

    Dănilă, Bogdan; Mak, Man Kwong; Pantaragphong, Praiboon; Sabau, Sorin

    2016-01-01

    We perform the study of the stability of the cosmological scalar field models, by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. In the KCC approach we describe the time evolution of the scalar field cosmologies in geometric terms, by performing a "second geometrization", by considering them as paths of a semispray. By introducing a non-linear connection and a Berwald type connection associated to the Friedmann and Klein-Gordon equations, five geometrical invariants can be constructed, with the second invariant giving the Jacobi stability of the cosmological model. We obtain all the relevant geometric quantities, and we formulate the condition of the Jacobi stability for scalar field cosmologies in the second order formalism. As an application of the developed methods we consider the Jacobi stability properties of the scalar fields with exponential and Higgs type potential. We find that the Universe dominated by a scalar field exponential potential is in Jacobi unstable state, ...

  6. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  7. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  8. Classical stabilization of the hydrogen atom in a monochromatic field

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Casati, G. (Dipartimento di Fisica dell' Universita, Via Castelnuovo 7, 22100 Como (Italy)); Shepelyansky, D.L. (Laboratoire de Physique Quantique, Universite Paul Sabatier, 31062, Toulouse (France))

    1993-02-01

    We report the results of analytical and numerical investigations on the ionization of a classical atom in a strong, linearly polarized, monochromatic field. We show that the ionization probability decreases with increasing field intensity at field amplitudes much larger than the classical chaos border. This effect should be observable in real laboratory experiments.

  9. Temperatures stabilization of a field instrument for uranium enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R.; Wawrowski, S.; Charland, M. [Canberra Industries, Inc., Meriden, CT (United States)] [and others

    1996-12-31

    Enrichment measurements with sodium iodide (NaI) detectors are hampered with a number of problems related to the temperature behavior of NaI crystals and the associated electronics. This problem is of particular concern in applications requiring the use of fixed regions of interest; such applications are used by the International Atomic Energy Agency (IAEA) in Vienna. The Canberra IMCA is a new portable instrument for such applications which can use either a NaI or a Ge detector. In developing the IMCA to meet the IAEA requirements for NaI detectors, Canberra has designed a system with a new temperature stabilization method capable of maintaining the detector stability at 0.5% over a temperature range of -10 to +50{degrees}C. This paper includes a detailed description of this IMCA temperature stabilization system, as well as test results for a range of temperatures using uranium standards.

  10. Stability of skyrmions on curved surfaces in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elias, R.G.; Altbir, D. [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, J.M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000 Viçosa, MG (Brazil)

    2015-10-01

    We study the stability and energetics associated to skyrmions appearing as excitations on curved surfaces. Using a continuum model we show that the presence of cylindrically radial and azimuthal fields destabilize the skyrmions that appear in the absence of an external field. Weak fields generate fractional skyrmions while strong magnetic fields yield stable 2π-skyrmions, which have their widths diminished by the magnetic field strength. Under azimuthal fields vortex appears as stable state on the curved surface. - Highlights: • Stability of skyrmions on curved surfaces in the presence of a magnetic field. • Weak fields can destabilize skyrmions. • Strong magnetic fields yield the appearing of 2π-skyrmions. • The width of skyrmions is determined by the curvature and magnetic field strength. • Under azimuthal fields vortex appears as stable states.

  11. Physical properties of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kliner, J.T.R.; Grozic, J.L.H. [Calgary Univ., AB (Canada)

    2003-07-01

    Gas hydrates are naturally occurring, solid crystalline compounds (clathrates) that encapsulate gas molecules inside the lattices of hydrogen bonded water molecules within a specific temperature-pressure stability zone. Estimates of the total quantity of available methane gas in natural occurring hydrates are based on twice the energy content of known conventional fossil fuels reservoirs. Accurate and reliable in-situ quantification techniques are essential in determining the economic viability of this potential energy yield, which is dependent upon several factors such as sensitivity of the temperature-pressure stability zone, sediment type, porosity, permeability, concentration/abundance of free gas, spatial distribution in pore spaces, specific cage occupancy, and the influence of inhibitors. Various techniques like acoustic P and S waves, time domain reflectometry, and electrical resistance have been used to analyze the quantity and spatial distribution of the gas hydrate samples. These techniques were reviewed and the results obtained in the course of gas hydrate research were presented. 34 refs., 8 figs.

  12. Desalination utilizing clathrate hydrates (LDRD final report).

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  13. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    Science.gov (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  14. Distribution of long-lived radioactive iodine isotope (I-129) in pore waters from the gas hydrate fields on the continental margins: Indication for methane source of gas hydrate deposits

    Science.gov (United States)

    Tomaru, H.; Lu, Z.; Fehn, U.

    2011-12-01

    Because iodine has a strong association with organic matters in marine environments, pore waters in high methane potential region, in particular gas hydrate occurrences on the continental margins, are enriched significantly in iodine compared with seawater. Natural iodine system is composed of stable and radioactive species, I-129 (half-life of 15.7 Myr) has been used for estimating the age of source formations both for methane and iodine, because iodine can be liberated into pore water during the degradation of organic matter to methane in deep sediments. Here we present I-129 age data in pore waters collected from variety of gas hydrate occurrences on the continental margins. The I-129 ages in pore waters from these locations are significantly older than those of host sediments, indicating long-term transport and accumulation from deep/old sediments. The I-129 ages in the Japan Sea and Okhotsk Sea along the plate boundary between the North American and Amurian Plates correspond to the ages of initial spreading of these marginal seas, pointing to the massive deposition of organic matter for methane generation in deep sediments within limited periods. On the Pacific side of these areas, organic matter-rich back stop is responsible for methane in deep-seated gas hydrate deposits along the Nankai Trough. Deep coaly sequences responsible for deep conventional natural gas deposits are also responsible for overlying gas hydrate deposits off Shimokita Peninsula, NE Japan. Those in the Gulf of Mexico are correlative to the ages of sediments where the top of salt diapirs intrude. Marine sediments on the Pacific Plate subducting beneath the Australian Plate are likely responsible for the methane and iodine in the Hikurangi Trough, New Zealand. These ages reflect well the regional geological settings responsible for generation, transport, and accumulation of methane, I-129 is a key to understand the geological history of gas hydrate deposition.

  15. New type of phase transformation in gas hydrate forming system at high pressures. Some experimental and computational investigations of clathrate hydrates formed in the SF6-H2O system.

    Science.gov (United States)

    Aladko, E Ya; Ancharov, A I; Goryainov, S V; Kurnosov, A V; Larionov, E G; Likhacheva, A Yu; Manakov, A Yu; Potemkin, V A; Sheromov, M A; Teplykh, A E; Voronin, V I; Zhurko, F V

    2006-10-26

    In this work, we present a new, previously unknown type of structure transformation in the high-pressure gas hydrates, which is related to the existence of two different isostructural phases of the sulfur hexafluoride clathrate hydrates. Each of these phases has its own stability field on the phase diagram. The difference between these hydrates consists of partial filling of small D cages by SF(6) molecules in the high-pressure phase; at 900 MPa, about half of small cages are occupied. Our calculations indicate that the increase of population of small cavities is improbable, therefore, at any pressure value, a part of the cavities remains vacant and the packing density is relatively low. This fact allowed us to suppose the existence of the upper pressure limit of hydrate formation in this system; the experimental results obtained confirm this assumption.

  16. Study of Formation Mechanisms of Gas Hydrate

    Science.gov (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2015-04-01

    observed was located just below the gas-water contact. The open-system dynamic model showed that the hydrates were basically uniformly distributed in a homogeneous porous media at a constant gas migration rate. However, if the gas migration rate was extremely low, the hydrates will tend to concentrate at the bottom of water zone (i.e. at the first contact of the water and the flowed gas) and finally blocked the vertical flow of gas. The models we designed can be scaled up to a field scale, and the research findings from this study can be contributed to the dispersion analysis of an in-situ hydrate reservoir.

  17. Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand

    Science.gov (United States)

    Schwalenberg, Katrin; Rippe, Dennis; Koch, Stephanie; Scholl, Carsten

    2017-05-01

    Marine controlled source electromagnetic (CSEM) data have been collected to investigate methane seep sites and associated gas hydrate deposits at Opouawe Bank on the southern tip of the Hikurangi Margin, New Zealand. The bank is located in about 1000 m water depth within the gas hydrate stability field. The seep sites are characterized by active venting and typical methane seep fauna accompanied with patchy carbonate outcrops at the seafloor. Below the seeps, gas migration pathways reach from below the bottom-simulating reflector (at around 380 m sediment depth) toward the seafloor, indicating free gas transport into the shallow hydrate stability field. The CSEM data have been acquired with a seafloor-towed, electric multi-dipole system measuring the inline component of the electric field. CSEM data from three profiles have been analyzed by using 1-D and 2-D inversion techniques. High-resolution 2-D and 3-D multichannel seismic data have been collected in the same area. The electrical resistivity models show several zones of highly anomalous resistivities (>50 Ωm) which correlate with high amplitude reflections located on top of narrow vertical gas conduits, indicating the coexistence of free gas and gas hydrates within the hydrate stability zone. Away from the seeps the CSEM models show normal background resistivities between 1 and 2 Ωm. Archie's law has been applied to estimate gas/gas hydrate saturations below the seeps. At intermediate depths between 50 and 200 m below seafloor, saturations are between 40 and 80% and gas hydrate may be the dominating pore filling constituent. At shallow depths from 10 m to the seafloor, free gas dominates as seismic data and gas plumes suggest.

  18. Stability of nanofluids in quiescent and shear flow fields

    Directory of Open Access Journals (Sweden)

    Chen Haisheng

    2011-01-01

    Full Text Available Abstract An experimental study was conducted to investigate the structural stability of ethylene glycol-based titanium dioxide nanoparticle suspensions (nanofluids prepared by two-step method. The effects of particle concentration, fluid temperature, shear rate and shear duration were examined. Particle size and thermal conductivity measurements in quiescent state indicated the existence of aggregates and that they were stable in temperatures up to 60°C. Shear stability tests suggested that the structure of nanoparticle aggregates was stable in a shear interval of 500-3000 s-1 measured over a temperature range of 20-60°C. These findings show directions to resolve controversies surrounding the underlying mechanisms of thermal conduction and convective heat transfer of nanofluids.

  19. Intermolecular hydrogen transfer between guest species in small and large cages of methane + propane mixed gas hydrates.

    Science.gov (United States)

    Sugahara, Takeshi; Kobayashi, Yusuke; Tani, Atsushi; Inoue, Tatsuya; Ohgaki, Kazunari

    2012-03-15

    To investigate the molecular interaction between guest species inside of the small and large cages of methane + propane mixed gas hydrates, thermal stabilities of the methyl radical (possibly induced in small cages) and the normal propyl and isopropyl radicals (induced in large cages) were investigated by means of electron spin resonance measurements. The increase of the total amount of the normal propyl and isopropyl radicals reveals that the methyl radical in the small cage withdraws one hydrogen atom from the propane molecule enclathrated in the adjacent large cage of the structure-II hydrate. A guest species in a hydrate cage has the ability to interact closely with the other one in the adjacent cages. The clathrate hydrate may be utilized as a possible nanoscale reaction field.

  20. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  1. Magnetohydrodynamic Stability of Streaming Jet Pervaded Internally by Varying Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Alfaisal A. Hasan

    2012-01-01

    Full Text Available The Magnetohydrodynamic stability of a streaming cylindrical model penetrated by varying transverse magnetic field has been discussed. The problem is formulated, the basic equations are solved, upon appropriate boundary conditions the eigenvalue relation is derived and discussed analytically, and the results are verified numerically. The capillary force is destabilizing in a small axisymmetric domain 0<<1 and stabilizing otherwise. The streaming has a strong destabilizing effect in all kinds of perturbation. The toroidal varying magnetic field interior the fluid has no direct effect at all on the stability of the fluid column. The axial exterior field has strong stabilizing effect on the model. The effect of all acting forces altogether could be identified via the numerical analysis of the stability theory of the present model.

  2. Gas hydrate dissociation structures in submarine slopes

    Energy Technology Data Exchange (ETDEWEB)

    Gidley, I.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Studies have suggested that gas hydrates may play a role in submarine slope failures. However, the mechanics surrounding such failures are poorly understood. This paper discussed experimental tests conducted on a small-scale physical model of submarine soils with hydrate inclusions. The laboratory tests investigated the effects of slope angle and depth of burial of the hydrate on gas escape structures and slope stability. Laponite was used to model the soils due to its ability to swell and produce a clear, colorless thixotropic gel when dispersed in water. An R-11 refrigerant was used to form hydrate layers and nodules. The aim of the experiment was to investigate the path of the fluid escape structures and the development of a subsequent slip plane caused by the dissociation of the R-11 hydrates. Slope angles of 5, 10, and 15 degrees were examined. Slopes were examined using high-resolution, high-speed imaging techniques. Hydrate placement and slope inclinations were varied in order to obtain stability data. Results of the study showed that slope angle influenced the direction of travel of the escaping gas, and that the depth of burial affected sensitivity to slope angle. Theoretical models developed from the experimental data have accurately mapped deformations and stress states during testing. Further research is being conducted to investigate the influence of the size, shape, and placement of the hydrates. 30 refs., 15 figs.

  3. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  4. Necessary stability condition for field-reversed theta pinches

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J. R.

    1981-03-01

    Toroidal systems of arbitrary cross section without toroidal magnetic field are analyzed via the double adiabatic fluid equations. Such systems are shown to be unstable if there exists one closed field line on which the average of kapparB/sup 2/ is positive, where kappa is the curvature. A similar criterion is derived for linear systems and is applied to a noncircular z-pinch.

  5. Anomalous porosity preservation and preferential accumulation of gas hydrate in the Andaman accretionary wedge, NGHP-01 site 17A

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Kelly K.; Johnson, Joel E.; Torres, Marta E.; Hong, WeiLi; Giosan, Liviu; Solomon, E.; Kastner, Miriam; Cawthern, Thomas; Long, Philip E.; Schaef, Herbert T.

    2014-12-01

    In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.

  6. Hydration of polyethylene glycol-grafted liposomes.

    OpenAIRE

    Tirosh, O; Barenholz, Y.; Katzhendler, J; Priev, A

    1998-01-01

    This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG...

  7. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  8. Visual field influence on manual roll and pitch stabilization

    Science.gov (United States)

    Huang, J.-K.; Young, L. R.

    1988-01-01

    Human control performance in nulling perceived tilt angles was investigated for combinations of pseudo-random vestibular disturbances and different waveforms of low frequency wide visual field motions. For both roll and pitch axes, subjects tilted the trainer in which they were seated in the direction of field rotation. This visual bias was much stronger for pitch backwards with upward field rotation. Frequency response analysis showed the dominance of visual cues at low frequencies (below 0.06 Hz) and the reliance on vestibular information in the high frequency range for both axes. Models suggest that operator balancing responses at high frequencies are mainly processed by the semicircular canals rather than the otolith organs. The results also suggest that the subject tends to rely less on the otolith organs for pitch perception than for roll.

  9. Indicators of Psychical Stability Among Junior and Youth Track and Field National Team Candidates

    Directory of Open Access Journals (Sweden)

    Romualdas K. Malinauskas

    2014-03-01

    Full Text Available This article deals with questions of psychical stability among junior and youth track and field national team candidates. Two methods were used to carry out the survey: The Competitive State Anxiety Inventory developed by Martens et al. and Athletes Psychical Stability Questionnaire developed by Milman. The random sample size consists of 81 junior and youth track and field national team candidates. Participants comprised 39 youth teams and 42 junior national team candidates. It was determined that, in comparison with the junior track and field national team candidates, anxiety of youth track and field national team candidates is lower (p<0.05. The psychical stability of youth track and field national team candidates, were found to be significantly higher than those of junior track and field national team candidates because it was found that youth track and field national team candidates scored higher (p <.05 than junior track and field national team candidates in following components of psychical stability: in precompetitive emotional stability and in self-regulation.

  10. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  11. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    Science.gov (United States)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18

  12. Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon.

    Science.gov (United States)

    Shearer, Cameron J; Fahy, Adam; Barr, Matthew; Dastoor, Paul C; Shapter, Joseph G

    2012-08-01

    Here, we demonstrate the simple fabrication of a single-walled carbon nanotube (SWCNT) field emission electrode which shows excellent field emission characteristics and remarkable field emission stability without requiring posttreatment. Chemically functionalized SWCNTs were chemically attached to a silicon substrate. The chemical attachment led to vertical alignment of SWCNTs on the surface. Field emission sweeps and Fowler-Nordheim plots showed that the Si-SWCNT electrodes field emit with a low turn-on electric field of 1.5 V μm-1 and high electric field enhancement factor of 3,965. The Si-SWCNT electrodes were shown to maintain a current density of >740 μA cm-2 for 15 h with negligible change in applied voltage. The results indicate that adhesion strength between the SWCNTs and substrate is a much greater factor in field emission stability than previously reported.

  13. High Volume Manufacturing and Field Stability of MEMS Products

    Science.gov (United States)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are

  14. Using optical soliton stability for magnetic field measurement

    Science.gov (United States)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Marinescu, Andrei

    2015-02-01

    In this paper we propose a novel optical method for measuring the circular magnetic field. In practice, many situations may appear in which there are difficulties in measuring the magnetic field, as inside coils, motors etc., where the magnetic field lines are circular or elliptical. The proposed method, applied for measuring the current on high voltage lines, strongly benefits from the advantages that it offers as compared to classical solutions based on the inductive principle. Some of the advantages of optoelectronic and optic measurement methods have a real importance. These advantages consist in: avoiding the use of energy intensive materials (Cu, Fe etc.), reducing the weight of the measuring system, reducing at the minimum the fire danger due to the use of paper-oil insulation in high voltage devices etc. The novelty of our proposed method consists in using the electromagnetic radiation in ultrashort pulses, having a relatively large frequency band and a much improved resistance to external perturbations, for measuring the circular magnetic field generated from the current of high voltage lines, inside power transformers or high power motors.

  15. Controls on evolution of gas-hydrate system in the Krishna-Godavari basin, offshore India

    Digital Repository Service at National Institute of Oceanography (India)

    Badesab, F.K.; Dewangan, P.; Usapkar, A.; Kocherla, M.; Peketi, A.; Mohite, K.; Sangode, S.J.; Deenadayalan, K.

    magnetic minerals in the studied samples. 5.5. Can magnetic record be used as a potential tracer to identify the fossil gas hydrate zone in the K-G basin? In marine settings, the dissociation of gas hydrates takes place whenever P-T condition changes..., whenever the suitable P-T conditions prevail, hydrate nucleation takes place leaving the former boundary of gas hydrate stability zone (GHSZ) as a fossil gas hydrate horizon. In K-G basin, the present base of GHSZ calculated using hydrate stability...

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  17. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability.

    Science.gov (United States)

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-06-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed.

  18. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  19. Stabilization and destabilization effects of the electric field on stochastic precipitate pattern formation

    NARCIS (Netherlands)

    Lagzi, István; Izsák, Ferenc

    2004-01-01

    Stabilization and destabilization effects of an applied electric field on the Liesegang pattern formation in low concentration gradient were studied with numerical model simulations. In the absence of an electric field pattern formation exhibits increasingly stochastic behaviour as the initial conce

  20. Einstein-charged scalar field theory: black hole solutions and their stability

    CERN Document Server

    Ponglertsakul, Supakchai; Winstanley, Elizabeth

    2015-01-01

    A complex scalar field on a charged black hole in a cavity is known to experience a superradiant instability. We investigate possible final states of this instability. We find hairy black hole solutions of a fully coupled system of Einstein gravity and a charged scalar field. The black holes are surrounded by a reflecting mirror. We also investigate the stability of these black holes.

  1. Prospecting for marine gas hydrate resources

    Science.gov (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  2. Stability of magnetic fields in non-barotropic stars: an analytic treatment

    CERN Document Server

    Akgün, Taner; Mastrano, Alpha; Marchant, Pablo

    2013-01-01

    Magnetic fields in upper main-sequence stars, white dwarfs, and neutron stars are known to persist for timescales comparable to their lifetimes. From a theoretical perspective this is problematic, as it can be shown that simple magnetic field configurations are always unstable. In non-barotropic stars, stable stratification allows for a much wider range of magnetic field structures than in barotropic stars, and helps stabilize them by making it harder to induce radial displacements. Recent simulations by Braithwaite and collaborators have shown that, in stably stratified stars, random initial magnetic fields evolve into nearly axisymmetric configurations with both poloidal and toroidal components, which then remain stable for some time. It is desirable to provide an analytic study of the stability of such fields. We write an explicit expression for a plausible equilibrium structure of an axially symmetric magnetic field with both poloidal and toroidal components of adjustable strengths, in a non-barotropic st...

  3. Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2016-09-01

    Full Text Available Natural gas hydrates, crystalline solids whose gas molecules are so compressed that they are denser than a typical fluid hydrocarbon, have extensive applications in the areas of climate change and the energy crisis. The hydrate deposit located in the Shenhu Area on the continental slope of the South China Sea is regarded as the most promising target for gas hydrate exploration in China. Samples taken at drilling site SH2 have indicated a high abundance of methane hydrate reserves in clay sediments. In the last few decades, with its relatively low energy cost, the depressurization gas recovery method has been generally regarded as technically feasible and the most promising one. For the purpose of a better acquaintance with the feasible field operational factors and processes which control the production behavior of a real 3D geological CH4-hydrate deposit, it is urgent to figure out the effects of the parameters such as well type, well spacing, bottom hole pressure, and perforation intervals on methane recovery. One years’ numerical simulation results show that under the condition of 3000 kPa constant bottom hole pressure, 1000 m well spacing, perforation in higher intervals and with one horizontal well, the daily peak gas rate can reach 4325.02 m3 and the cumulative gas volume is 1.291 × 106 m3. What’s more, some new knowledge and its explanation of the curve tendency and evolution for the production process are provided. Technically, one factor at a time design (OFAT and an orthogonal design were used in the simulation to investigate which factors dominate the productivity ability and which is the most sensitive one. The results indicated that the order of effects of the factors on gas yield was perforation interval > bottom hole pressure > well spacing.

  4. The fate of gas hydrates in the Barents Sea and Kara Sea region

    Science.gov (United States)

    Klitzke, Peter; Scheck-Wenderoth, Magdalena; Schicks, Judith; Luzi-Helbing, Manja; Cacace, Mauro; Jacquey, Antoine; Sippel, Judith; Faleide, Jan Inge

    2016-04-01

    The Barents Sea and Kara Sea are located in the European Arctic. Recent seismic lines indicate the presence of gas hydrates in the Barents Sea and Kara Sea region. Natural gas hydrates contain huge amounts of methane. Their stability is mainly sensitive to pressure and temperature conditions which make them susceptible for climate change. When not stable, large volumes of methane will be released in the water column and - depending on the water depth - may also be released into the atmosphere. Therefore, studying the evolution in time and space of the gas hydrates stability zone in the Barents Sea region is of interest for both environmental impact and energy production. In this study, we assess the gas hydrate inventory of the Barents Sea and Kara Sea under the light of increasing ocean bottom temperatures in the next 200 years. Thereby, we make use of an existing 3D structural and thermal model which resolves five sedimentary units, the crystalline crust and the lithospheric mantle. The sedimentary units are characterised by the prevailing lithology and porosity including effects of post-depositional erosion which strongly affect the local geothermal gradient. Governing equations for the conductive 3D thermal field and momentum balance have been integrated in a massively parallel finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly on unstructured meshes. First we calculate the present-day steady-state 3D thermal field. Subsequently, we use the latter as initial condition to calculate the transient 3D thermal field for the next 200 years considering an ocean temperature model as upper boundary. Temperature and load distributions are then used to calculate the thickness of the gas hydrate stability zone for each time step. The results show that the gas hydrate stability zone strongly varies in the region due to the local geothermal gradient changes. The latter

  5. Slug tuner effect on the field stabilization of the drift tube linac

    Science.gov (United States)

    Kim, Han-Sung

    2015-02-01

    In a drift tube linac (DTL), the accelerating field is stabilized against external perturbation, through resonant coupling between each cell by using post couplers. For proper field stabilization tuning, the frequency band between the post mode and the cavity mode should be closed. In addition, the field profile along the beam axis of the highest post mode should be similar to that of the TM011 cavity mode. As a conventional method to correct the resonance frequency and to make the accelerating field flat, slug tuners are incorporated. We observed that the similarity of field profiles between the highest post mode and the TM011 cavity mode disappeared when the slug tuners were inserted too much into the DTL tank. To achieve field stabilization tuning, we limited the slug tuner insertion and used a tuning ring around each post coupler to tune the resonant frequency of the DTL tank. The details of the effect of a slug tuner on the field stabilization tuning and the solution to the resonant frequency tuning problem caused by limited slug insertion will be presented in this paper.

  6. Transient seafloor venting on continental slopes from warming-induced methane hydrate dissociation

    Science.gov (United States)

    Darnell, K. N.; Flemings, P. B.

    2015-12-01

    Methane held in frozen hydrate cages within marine sediment comprises one of the largest carbon reservoirs on the planet. Recent submarine observations of widespread methane seepage may record hydrate dissociation due to oceanic warming, which consequently may further amplify climate change. Here we simulate the effect of seafloor warming on marine hydrate deposits using a multiphase flow model. We show that hydrate dissociation, gas migration, and subsequent hydrate formation cangenerate temporary methane venting into the ocean through the hydrate stability zone. Methane seeps venting through the hydrate stability zone on the eastern Atlantic margin may record this process due to warming begun thousands of years ago. Our results contrast with the traditional view that venting occurs only updip of the hydrate stability zone.

  7. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  8. Estimates of future warming-induced methane emissions from hydrate offshore west Svalbard for a range of climate models

    OpenAIRE

    Marin-Moreno, Héctor; MINSHULL, Timothy A.; Westbrook, Graham K.; Sinha, Bablu

    2015-01-01

    Methane hydrate close to the hydrate stability limit in seafloor sediment could represent an important source of methane to the oceans and atmosphere as the oceans warm. We investigate the extent to which patterns of past and future ocean-temperature fluctuations influence hydrate stability in a region offshore West Svalbard where active gas venting has been observed. We model the transient behavior of the gas hydrate stability zone at 400–500 m water depth (mwd) in response to past temperatu...

  9. Estimates of future warming-induced methane emissions from hydrate offshore west Svalbard for a range of climate models

    OpenAIRE

    2015-01-01

    Methane hydrate close to the hydrate stability limit in seafloor sediment could represent an important source of methane to the oceans and atmosphere as the oceans warm. We investigate the extent to which patterns of past and future ocean-temperature fluctuations influence hydrate stability in a region offshore West Svalbard where active gas venting has been observed. We model the transient behavior of the gas hydrate stability zone at 400–500 m water depth (mwd) in response to past temperatu...

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  11. Origin and character of gaseous hydrocarbons in the hydrate and non-hydrate charged sediments on the Norway - Svalbard margins

    Energy Technology Data Exchange (ETDEWEB)

    Vaular, Espen Nesheim

    2011-05-15

    Gas incubated in clathrate water-structures, stabilizes the hydrogen bonded substance termed gas hydrate. In the marine environment vast amount of carbon is stored as gas hydrates within the temperature and pressure zone these ice-like structures are stable. Natural gas hydrate mapping and characterization is important basic research that brings about critical knowledge concerning various topics. Natural gas hydrates is a vital part of the carbon cycle, it is a potential energy resource (and thereby a potential climate agent) and it is a potential geo-hazard. One of the goals the GANS initiative aimed at exploring, was the hydrate bearing sediment of the Norway -Svalbard margins, to investigate the character and expansion of natural gas hydrates. Part of the investigation was to define how the gas in the hydrated sediment was produced and where it came from. As a result this thesis addresses the matter of light hydrocarbon characterization and origin in two Norwegian hydrate deposits. On cruises to Vestnesa on the Svalbard margin and to Nyegga in the mid-Norwegian margin, samples of hydrate charged and non-hydrate charged sediments were obtained and analyzed. Through compositional and isotopic analyses the origin of the hydrate bound gas in the fluid escape feature G11 at Nyegga was determined. The hydrate incubated methane is microbial produced as well as parts of the hydrate bound ethane. The compositional analysis in both the Nyegga area and at the Vestnesa Ridge points at thermogenic contributions in the sediment interstitials and pore water. The two hydrate bearing margins show large differences in hydrocarbon content and microbial activity in the pockmarks investigated. The gravity cores from the penetrated pockmark at Vestnesa showed low hydrocarbon content and thus suggest ceased or periodic venting. The fluid flow escape features at Nyegga show large variety of flux rates based on ROV monitoring and headspace analysis of the sediment and pore water. The

  12. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  13. Experiments on the stability of a liquid bridge in an axial electric field

    Science.gov (United States)

    Sankaran, Subramanian; Saville, D. A.

    1993-01-01

    The behavior of a neutrally buoyant liquid bridge was studied in the presence of axial electric fields. Silicone oil and a castor-oil-eugenol mixture were used to form cylinders with slenderness ratios larger than pi with strong, axial, dc electric fields. Below a certain field strength, a smooth transition to an axisymmetric, vaselike shape occurred. Circulation patterns were observed in these bridges. At lower field strengths, the bridge shape was more deformed and, at a well-defined field, pinch-off occurred. With ac fields, the field strength required to stabilize the bridge was higher and the collapse of the cylinder was much sharper. Upon interchanging the fluids, a steady axial field was found to destabilize cylinders with slenderness ratios less than 3. This behavior is consistent with that anticipated if the fluids behave as leaky dielectrics but not if they act as perfect dielectrics.

  14. Origins of hydration lubrication.

    Science.gov (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob

    2015-01-14

    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  15. Is Submarine Groundwater Discharge a Gas Hydrate Formation Mechanism on the Circum-Arctic Shelf?

    Science.gov (United States)

    Frederick, J. M.; Buffett, B. A.

    2015-12-01

    Methane hydrate is an ice-like solid that can sequester large quantities of methane gas in marine sediments along most continental margins where thermodynamic conditions permit its formation. Along the circum-Arctic shelf, relict permafrost-associated methane hydrate deposits formed when non-glaciated portions of the shelf experienced subaerial exposure during ocean transgressions. Gas hydrate stability and the permeability of circum-Arctic shelf sediments to gas migration is closely linked with relict submarine permafrost. Heat flow observations on the Alaskan North Slope and Canadian Beaufort Shelf suggest the movement of groundwater offshore, but direct observations of groundwater flow do not exist. Submarine discharge, an offshore flow of fresh, terrestrial groundwater, can affect the temperature and salinity field in shelf sediments, and may be an important factor in submarine permafrost and gas hydrate evolution on the Arctic continental shelf. Submarine groundwater discharge may also enhance the transport of organic matter for methanogenesis within marine sediments. Because it is buoyancy-driven, the velocity field contains regions with a vertical (upward) component as groundwater flows offshore. This combination of factors makes submarine groundwater discharge a potential mechanism controlling permafrost-associated gas hydrate evolution on the Arctic continental shelf. In this study, we quantitatively investigate the feasibility of submarine groundwater discharge as a control on permafrost-associated gas hydrate formation on the Arctic continental shelf, using the Canadian Beaufort Shelf as an example. We have developed a shelf-scale, two-dimensional numerical model based on the finite volume method for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. The model tracks the evolution of the pressure, temperature, salinity, methane gas, methane hydrate, and permafrost fields given imposed boundary conditions, with latent heat of

  16. High-pressure experiments on the stability of methane hydrates in the H2O-NH3-CH4 system with applications to Titan's cryovolcanism.

    Science.gov (United States)

    Choukroun, M.; Le Menn, E.; Grasset, O.

    2007-08-01

    The current methane abundance in Titan's thick atmosphere cannot be explained without the existence of replenishment processes. Indeed, the intense photochemistry taking place in the atmosphere would destroy the 2-5% CH4 amounts measured by the GCMS onboard the Huygens probe [1] within 10-100 Myr [e.g. 2]. Among the several hypotheses that could explain this replenishment, release of methane during cryovolcanic events seems highly likely. The VIMS [3] and Radar instruments [4] onboard the Cassini spacecraft have brought substantial evidence for cryovolcanic features on Titan's surface. A numerical model has shown the possibility to release CH4 by dissociating methane clathrate hydrates at depth, due to interaction of a clathrate layer with warm ice intrusions [5]. However, the effect of volatile compounds, dissolved (e.g. N2) or in solution (e.g. NH3), would most certainly play a major role in cryovolcanic processes. High-pressure low-temperature experimental investigations on the effect of ammonia on methane hydrates' dissociation are conducted within an optical sapphire-anvil cell. Preliminary results have been previously presented, which lead to contradictory interpretations so far [6,7]. As further experiments are being performed, the reliability of the experimental measurements and the reasons for observing discrepancies in the results can be adressed with more and more confidence. This poster will discuss the experimental issues encountered in the H2O-NH3-CH4 system, up-todate experimental results, as well as their implications for Titan's cryovolcanism. References: [1] Niemann HB et al., Nature 438, 779-784 (2005). [2] Yung YL et al., Astrophys. J. Suppl., 55, 465-506 (1984). [3] Sotin C et al., Nature 435, 786-789 (2005). [4] Lopes RMC et al., Icarus 186, 395-412 (2007). [5] Tobie G et al., Nature 440 (2), 61-64 (2006). [6] Choukroun M et al., 37th Lunar and Planet. Sci. Conf. Abstract #1640 (2006). [7] Choukroun M et al., 38th Lunar and Planet. Sci. Conf

  17. Structure II gas hydrates found below the bottom-simulating reflector

    Science.gov (United States)

    Paganoni, M.; Cartwright, J. A.; Foschi, M.; Shipp, R. C.; Van Rensbergen, P.

    2016-06-01

    Gas hydrates are a major component in the organic carbon cycle. Their stability is controlled by temperature, pressure, water chemistry, and gas composition. The bottom-simulating reflector (BSR) is the primary seismic indicator of the base of hydrate stability in continental margins. Here we use seismic, well log, and core data from the convergent margin offshore NW Borneo to demonstrate that the BSR does not always represent the base of hydrate stability and can instead approximate the boundary between structure I hydrates above and structure II hydrates below. At this location, gas hydrate saturation below the BSR is higher than above and a process of chemical fractionation of the migrating free gas is responsible for the structure I-II transition. This research shows that in geological settings dominated by thermogenic gas migration, the hydrate stability zone may extend much deeper than suggested by the BSR.

  18. Relation between stabilization energy, crystal field coefficient and themagnetic exchange interaction for Tb3+ ion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiangmu; MA Wenjuan; CUI Shuwen; WANG Lihua

    2006-01-01

    Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B20 and the magnetic exchange interaction was studied as temperature approaches to 0K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B20 approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substancessuch as TbCo5, Tb2Co17 and Tb2Fe14B compounds.

  19. Conditions for Emergence, Stability and Change in New Organizations in the Field of Citizens Climate Action

    DEFF Research Database (Denmark)

    Figueroa, Maria Josefina

    expanding worldwide the weight of expectations can be boiled down to two: One refers to their potential for delivering specific mitigation/adaptation goals; the second refers to their organizational potential, stability and the manner in which they can ultimately affect societal transformational change....... This contribution is concerned with the latter. It proposes that using field analysis it is possible to understand conditions of emergence, stability and change in citizen engagement in climate action. The present contribution offers only a preliminary exploration of possibilities for how using field theory can...

  20. Optical-coupling nuclear spin maser under highly stabilized low static field

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimi, A., E-mail: yoshimi@ribf.riken.jp [RIKEN Nishina Center (Japan); Inoue, T.; Uchida, M.; Hatakeyama, N.; Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan)

    2008-01-15

    A nuclear spin maser of a new type, that employs a feedback scheme based on optical nuclear spin detection, has been fabricated. The spin maser is operated at a low static field of 30 mG by using the optical detection method. The frequency stability and precision of the spin maser have been improved by a highly stabilized current source for the static magnetic field. An experimental setup to search for an electric dipole moment (EDM) in {sup 129}Xe atom is being developed.

  1. Convective stability of a vertical layer of magnetizable fluid in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bashtovoy, V.G.; Pavlinov, M.I.

    1978-01-01

    An infinitely large plane vertical layer of magnetizable fluid is considered, this layer being heated from below and bounded on both lateral surfaces by ferromagnetic half-spaces. The fluid and the ferromagnetic material on both sides have the same pyromagnetic coefficient. The possibility of overcoming a convective instability of such a fluid layer in a uniform magnetic field is demonstrated by a solution of the equilibrium equation. The result indicates that such a magnetic field raises the stability threshold to full stabilization of the fluid layer, with the instability range in terms of the Rayleigh number now having both a lower and an upper limit. 3 references.

  2. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    Science.gov (United States)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the

  3. Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods

    Energy Technology Data Exchange (ETDEWEB)

    Gallavotti, G.

    1985-04-01

    A self-contained analysis is given of the simplest quantum fields from the renormalization group point of view: multiscale decomposition, general renormalization theory, resummations of renormalized series via equations of the Callan-Symanzik type, asymptotic freedom, and proof of ultraviolet stability for sine-Gordon fields in two dimensions and for other super-renormalizable scalar fields. Renormalization in four dimensions (Hepp's theorem and the De Calan--Rivasseau nexclamation bound) is presented and applications are made to the Coulomb gases in two dimensions and to the convergence of the planar graph expansions in four-dimensional field theories (t' Hooft--Rivasseau theorem).

  4. Effect of external and internal magnetic fields on the bias stability in a Zeeman laser gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Kolbas, Yu Yu; Saveliev, I I; Khokhlov, N I [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2015-06-30

    With the specific features of electronic systems of a Zeeman laser gyroscope taken into account, the basic physical mechanisms of the magnetic field effect on the bias stability and the factors giving rise to the internal magnetic fields are revealed. The hardware-based methods of reducing the effect of external and internal magnetic fields are considered, as well as the algorithmic methods for increasing the stability of the bias magnetic component by taking into account its reproducible temperature and time dependences. Typical experimental temperature and time dependences of the magnetic component of the Zeeman laser gyro bias are presented, and by their example the efficiency of the proposed methods for reducing the effect of magnetic fields is shown. (laser gyroscopes)

  5. Improvement of Sidestream Dark Field Imaging with an Image Acquisition Stabilizer

    NARCIS (Netherlands)

    G.M. Balestra (Gianmarco); R. Bezemer (Rick); E.C. Boerma (Christiaan); Z-Y. Yong (Ze-Yie); K.D. Sjauw (Krishan); A.E. Engstrom (Annemarie); M. Koopmans (Matty); C. Ince (Can)

    2010-01-01

    textabstractBackground: In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS) for Sidestream Dark Field (SDF) imaging.Methods: The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhe

  6. Dopant segregation during vertical Bridgman-Stockbarger growth with melt stabilization by strong axial magnetic fields

    Science.gov (United States)

    Matthiesen, D. H.; Wargo, M. J.; Motakef, S.; Carlson, D. J.; Nakos, J. S.

    1987-01-01

    Ga-doped germanium was grown in a vertical Bridgman-Stockbarger system with melt stabilization by axial magnetic fields of 30 kG. It was found that radial segregation of gallium is negligible and that the initial transient of axial macro-segregation is in apparent compliance with the theory of diffusion controlled plane front solidification.

  7. Pickering emulsions: Wetting and colloidal stability of hairy particles - A self-consistent field theory

    NARCIS (Netherlands)

    Salari, J.W.O.; Leermakers, F.A.M.; Klumperman, B.

    2011-01-01

    The assembly of sterically stabilized colloids at liquid–liquid interfaces is studied with the self-consistent field (SCF) theory using the discretization scheme that was developed by Scheutjens, Fleer, and co-workers. The model is based on a poly(methyl methacrylate) (pMMA) particle with poly(isobu

  8. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    K. Heremans

    2005-08-01

    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  9. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  10. Gas Hydrates as a CH4 Source and a CO2 Sink: New Approaches Based on Fundamental Research

    Science.gov (United States)

    Schicks, J. M.; Spangenberg, E.; Erzinger, J.

    2007-12-01

    hydrates: Differential scanning calorimetric measurements for the determination of the specific enthalpy of dissociation, determination of stability fields for pure and multicomponent systems, CH4 - CO2 -exchange reaction in clathrate hydrates and CO2 -hydrate formation in sediments under different pressure and temperature conditions were studied. Based on these fundamental data, new concepts for methane production and combined CO2 - sequestration will be presented and discussed. Reference: S.R. Dallimore, T.S. Collet (Eds.), 2005. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada, Geological Survey of Canada, WO H. Lee, Y. Seo, Y.-T. Seo, I.L. Moudrakovski, J.A. Ripmeester, 2003. Angewandte Chemie International Edition, 42, 5049-5051 A. Graue, B. Kvamme, 2006. Conference Paper presented at the Offshore Technology Conference in Houston, Texas, U.S.A., 1-4 May 2006 J.M. Schicks, R. Naumann, J. Erzinger, K.C. Hester, Caroly A. Koh, E.D. Sloan, 2006. Journal of Physical Chemistry, 110, 11468-11474

  11. Hydration Assessment of Athletes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ KEY POINTS · Although there is no scientific consensus for 1 ) howbest to assess the hydration status of athletes, 2)what criteria to use as acceptable outcome measurements, or 3) the best time to apply practical assessment methods, there are methods that can be used toprovide athletes with useful feedback about their hydration status

  12. Field stability of piezoelectric shear properties in PIN-PMN-PT crystals under large drive field.

    Science.gov (United States)

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas

    2011-02-01

    The coercive fields (E(C)) of Pb(In₀.₅Nb₀.₅)O₃-Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (E(int)), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shearmode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥ 60% of their coercive fields, because of the developed E(int), induced by the acceptor-oxygen vacancy defect dipoles.

  13. Naphthenic acids hydrates of gases: influence of the water/oil interface on the dispersing properties of an acidic crude oil; Acides naphteniques hydrates de gaz de l'interface eau/huile sur les proprietes dispersantes d'un brut acide

    Energy Technology Data Exchange (ETDEWEB)

    Arla, D.

    2006-01-15

    Nowadays, the development of offshore oil production under increasing water depths (high pressures and low temperatures) has led oil companies to focus on gas hydrates risks. Hydrates are crystals containing gas and water molecules which can plug offshore pipelines. It has been shown that some asphaltenic crude oils stabilize water-in-oil emulsions (W/O) during several months and exhibit very good anti-agglomerant properties avoiding hydrate plugs formation. In this work, we have studied the 'anti-hydrate' properties of a West African acidic crude oil called crude AH. This oil contains naphthenic acids, RCOOH hydrocarbons which are sensitive to both the pH and the salinity of the water phase.The emulsifying properties of the crude AH have firstly been explored. It has been shown that heavy resins and asphaltenes are the main compounds of the crude AH responsible for the long term stability of the W/O emulsions whereas the napthenates RCOO{sup -} lead to less stable W/O emulsions. Dealing with hydrates, the crude AH exhibits moderate anti-agglomerant properties due to the presence of heavy resins and asphaltenes. However, the naphthenates RCOO{sup -} drastically increase the formation of hydrate plugs. Moreover, it has been pointed out that hydrate particles agglomeration accelerates the kinetics of hydrate formation and enhances the water/oil separation. In order to explain these behaviours, a mechanism of agglomeration by 'sticking' between a hydrate particle and a water droplet has been proposed. Finally, we have developed a model which describes the physico-chemical equilibria of the naphthenic acids in the binary system water/crude AH, in order to transpose the results obtained in the laboratory to the real oil field conditions. (author)

  14. Inverse Doppler shift and control field as coherence generators for the stability in superluminal light

    Science.gov (United States)

    Ghafoor, Fazal; Bacha, Bakht Amin; Khan, Salman

    2015-05-01

    A gain-based four-level atomic medium for the stability in superluminal light propagation using control field and inverse Doppler shift as coherence generators is studied. In regimes of weak and strong control field, a broadband and multiple controllable transparency windows are, respectively, identified with significantly enhanced group indices. The observed Doppler effect for the class of high atomic velocity of the medium is counterintuitive in comparison to the effect of the class of low atomic velocity. The intensity of each of the two pump fields is kept less than the optimum limit reported in [M. D. Stenner and D. J. Gauthier, Phys. Rev. A 67, 063801 (2003), 10.1103/PhysRevA.67.063801] for stability in the superluminal light pulse. Consequently, superluminal stable domains with the generated coherence are explored.

  15. Stability of convective flow of a conducting fluid in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Birikh, R.V.; Gershuni, G.Z.; Zhukhovitskii, E.M.; Rudakov, R.N.

    1978-01-01

    The steady plane-parallel convective flow of a conducting fluid through a flat vertical channel, with constant wall temperatures, is analyzed with necessary approximations by the Galerkin perturbation method and the Runge-Kutta method of stepwise orthogonalization. The differential equation for the amplitude of flow and temperature perturbations, first in a transverse and then in a longitudinal magnetic field, is solved and, on this basis, the stability limits are calculated in terms of the Grashof number as well as the Hartmann number. Plane perturbations are found to be most dangerous to stability in a longitudinal field, but no definite conclusion has been arrived at concerning the effect of spatial perturbations in a transverse field. 5 references, 6 figures.

  16. The stability of travelling waves induced by crossed electric and magnetic fields in nematic liquid crystals

    Science.gov (United States)

    Stewart, I. W.; Faulkner, T. R.

    A theoretical study is carried out into the stability of travelling wave solutions to an approximate dynamic equation for the problem in which a nematic liquid crystal is subjected to crossed electric and magnetic fields. The authors recently found three types of travelling wave solutions for this problem [2], each characterised by the control parameter q which describes the relationship between the magnitudes of the fields and their crossed angle. Two types of stability are ex amined: the first considers perturbations which vanish outside some finite interval in the moving coordinate of the travelling wave, while the second considers quite general perturbations belonging to a weighted L2( R) space, the weighting function being determined by the particular solution and the control parameter q. When the first type of stability occurs, perturbations decay to zero as time increases. In the second type of stability perturbations may eith er decay to zero or induce a small phase shift to the original travelling wave. Both these versions of stability depend crucially on q and on the type of travelling wave solution being considered.

  17. Stability of plane Poiseuille flow of viscoelastic fluids in the presence of a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    Hifdi Ahmed

    2012-07-01

    Full Text Available The linear stability of plan Poiseuille flow of an electrically conducting viscoelastic fluid in the presence of a transverse magnetic field is investigated numerically. The fourth-order Sommerfeld equation governing the stability analysis is solved by spectral method with expansions in lagrange’s polynomials, based on collocation points of Gauss-Lobatto. The critical values of Reynolds number, wave number and wave speed are computed. The results are shown through the neutral curve. The main purpose of this work is to check the combined effect of magnetic field and fluid’s elasticity on the stability of the plane Poiseuille flow. Based on the results obtained in this work, the magnetic field is predicted to have a stabilizing effect on the Poiseuille flow of viscoelastic fluids. Hence, it will be shown that for second-order fluids (K 0 is that the critical Reynolds numbers Rec increase when the Hartman number M increases for certain value of elasticity number K and decrease for others. The latter result is in contrast to previous studies.

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    generated of these seismic data with cores, logging, and other well data. Unfortunately, the Hot Ice No. 1 well did not encounter hydrates in the reservoir sands, although brine-saturated sands containing minor amounts of methane were encountered within the hydrate stability zone (HSZ). Synthetic seismograms created from well log data were in agreement with reflectivity data measured by the 3D VSP survey. Modeled synthetic seismograms indicated a detectable seismic response would be expected in the presence of hydrate-bearing sands. Such a response was detected in the 3D VSP data at locations up-dip to the west of the Hot Ice No. 1 wellbore. Results of this project suggest that the presence of hydrate-bearing strata may not be related as simply to HSZ thickness as previously thought. Geological complications of reservoir facies distribution within fluvial-deltaic environments will require sophisticated detection technologies to assess the locations of recoverable volumes of methane contained in hydrates. High-resolution surface seismic data and more rigorous well log data analysis offer the best near-term potential. The hydrate resource potential is huge, but better tools are needed to accurately assess their location, distribution and economic recoverability.

  19. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production

  20. Quadrupole stabilization of the n = 2 rotational instability of a field-reversed theta-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, S.; Minato, T.; Kawakami, Y.; Tanjyo, M.; Okada, S.; Ito, Y.; Kako, M.; Got, S.; Ishimura, T.; It, H.

    1983-09-19

    The n = 2 rotational instability is the most dangerous gross instability in a field-reversed theta pinch. It is demonstrated for the first time that the instability is completely suppressed by superposing a quadrupole field which is much smaller than the axial confinement field at the separatrix. The experimental threshold intensity of the field for stabilization is about 2.5 times less than that predicted by theoretical stability analysis.

  1. On the Stability of a General Magnetic Field Topology in Stellar Radiative Zones

    CERN Document Server

    Augustson, Kyle; Strugarek, Antoine

    2016-01-01

    This paper provides a brief overview of the formation of stellar fossil magnetic fields and what potential instabilities may occur given certain configurations of the magnetic field. In particular, a purely magnetic instability can occur for poloidal, toroidal, and mixed poloidal-toroidal axisymmetric magnetic field configurations as originally studied in Tayler (1973), Markey & Tayler (1973), and Tayler (1980). However, most of the magnetic field configurations observed at the surface of massive stars are non- axisymmetric. Thus, extending earlier studies of the axisymmetric Tayler instability in spherical geometry (Goossens, 1980), we introduce a formulation for the global change in the potential energy contained in a convectively-stable region given an arbitrary Lagrangian perturbation, which permits the inclusion of both axisymmetric and non-axisymmetric magnetic fields. With this tool in hand, a path is shown by which more general stability criterion can be established.

  2. QMS in the third stability zone with a transverse magnetic field applied.

    Science.gov (United States)

    Syed, Sarfaraz U A H; Sreekumar, Jeyan; Gibson, J R; Taylor, Stephen

    2011-08-01

    We report here a study using a quadrupole mass spectrometer (QMS) in which a static magnetic field is applied transversely to the body of the mass filter operating in stability zone 3. Significant improvement in QMS performance was obtained under certain magnetic field conditions, and these have been explained in terms of our theoretical model. The theoretical approach assumed in the model is that the QMS contains hyperbolic rods as electrodes and that the magnetic field acts over the full length of the mass filter assembly. Our latest analysis also predicts for what values of operating parameters an enhancement of the quadrupole resolution is achieved when a transverse magnetic field is applied. The model predicts instrument resolution R > 5000 for Ar with a 100 mm long mass filter and R > 3500 for a HT and D(2) mixture with a 200 mm long mass filter via application of a transverse magnetic field.

  3. On The Stability of A General Magnetic Field Topology In Stellar Radiative Zones

    Science.gov (United States)

    Augustson, Kyle; Mathis, Stéphane; Strugarek, Antoine

    2016-10-01

    This paper provides a brief overview of the formation of stellar fossil magnetic fields and what potential instabilities may occur given certain configurations of the magnetic field. In particular, a purely magnetic instability can occur for poloidal, toroidal, and mixed poloidal-toroidal axisymmetric magnetic field configurations as originally studied in Tayler (1973), Markey & Tayler (1973), and Tayler (1980). However, most of the magnetic field configurations observed at the surface of massive stars are non- axisymmetric. Thus, extending earlier studies of the axisymmetric Tayler instability in spherical geometry (Goossens, 1980), we introduce a formulation for the global change in the potential energy contained in a convectively-stable region given an arbitrary Lagrangian perturbation, which permits the inclusion of both axisymmetric and non-axisymmetric magnetic fields. With this tool in hand, a path is shown by which more general stability criterion can be established.

  4. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  5. Vacuum stability of a general scalar potential of a few fields

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan [NICPB, Tallinn (Estonia)

    2016-06-15

    We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the Z{sub 3} scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues. (orig.)

  6. Robust Output Feedback Stabilization of a Field-Sensed Magnetic Suspension System

    Directory of Open Access Journals (Sweden)

    Jen-Hsing Li

    2013-01-01

    Full Text Available The magnetic suspension system (MSS is very important in many engineering applications. This paper proposes the dynamic output feedback control of a field-sensed MSS (FSMSS. Subsequently, the mathematical model of the MSS is described by discrete-time systems. Ideally, the coefficients of a nominal polynomial can precisely determine the Schur stability. But in reality, the coefficients may contain uncertainties due to reasons such as computational errors. Therefore, there is a need to address the problem of robust stability for discrete-time systems. In this paper, the size of allowable perturbation in polynomial coefficient space was estimated for the output feedback control of the MSS. The ℓ∞-norm and a lower bound for the size of the Schur stability hypercube are provided in this paper.

  7. Evaluation of Gas Hydrate at Alaminos Canyon 810, Northern Gulf of Mexico Slope

    Science.gov (United States)

    Yang, C.; Cook, A.; Sawyer, D.; Hillman, J. I. T.

    2016-12-01

    We characterize the gas hydrate reservoir in Alaminos Canyon Block 810 (AC810) on the northern Gulf of Mexico slope, approximately 400 km southeast of Houston, Texas, USA. Three-dimensional seismic data shows a bottom-simulating-reflection (BSR), over 30 km2, which suggests that a significant gas hydrate accumulation may occur at AC810. Furthermore, logging while drilling (LWD) data acquired from a Statoil well located that penetrated the BSR near the crest of the regional anticline indicates two possible gas hydrate units (Hydrate Unit A and Hydrate Unit B). LWD data in this interval are limited to gamma ray and resistivity only. Resistivity curve separations are observed in Hydrate Unit A (131 to 253 mbsf) suggesting hydrate-filled fractures in marine mud. A spiky high resistivity response in Hydrate Unit B (308 to 354 mbsf) could either be a marine mud or a sand-prone interval. The abrupt decrease (from 7 to 1 Ωm) in resistivity logs at 357 mbsf generally corresponds with the interpreted base of hydrate stability, as the BSR is observed near 350 mbsf on the seismic data. To further investigate the formation characteristics, we generate synthetic traces using general velocity and density trends for marine sediments to match the seismic trace extracted at the Statoil well. We consider models with 1) free gas and 2) water only below the base of hydrate stability. In our free gas-below models, we find the velocity of Hydrate Unit A and Hydrate Unit B is generally low and does not deviate significantly from the general velocity trends, suggesting that gas hydrate is present in a marine mud. In the water-below model, the compressional velocity of Hydrate Unit B ranges from 2450 m/s to 3150 m/s. This velocity is similar to the velocity of high hydrate saturation in sand; typically greater than 2500 m/s. This may indicate that Hydrate Unit B is sand with high hydrate saturation; however, to achieve a suitable match between the water-below synthetic seismogram and the

  8. Field soil aggregate stability kit for soil quality and rangeland health evaluations

    Science.gov (United States)

    Herrick, J.E.; Whitford, W.G.; de Soyza, A. G.; Van Zee, J. W.; Havstad, K.M.; Seybold, C.A.; Walton, M.

    2001-01-01

    Soil aggregate stability is widely recognized as a key indicator of soil quality and rangeland health. However, few standard methods exist for quantifying soil stability in the field. A stability kit is described which can be inexpensively and easily assembled with minimal tools. It permits up to 18 samples to be evaluated in less than 10 min and eliminates the need for transportation, minimizing damage to soil structure. The kit consists of two 21??10.5??3.5 cm plastic boxes divided into eighteen 3.5??3.5 cm sections, eighteen 2.5-cm diameter sieves with 1.5-mm distance openings and a small spatula used for soil sampling. Soil samples are rated on a scale from one to six based on a combination of ocular observations of slaking during the first 5 min following immersion in distilled water, and the percent remaining on a 1.5-mm sieve after five dipping cycles at the end of the 5-min period. A laboratory comparison yielded a correlation between the stability class and percent aggregate stability based on oven dry weight remaining after treatment using a mechanical sieve. We have applied the method in a wide variety of agricultural and natural ecosystems throughout western North America, including northern Mexico, and have found that it is highly sensitive to differences in management and plant community composition. Although the field kit cannot replace the careful laboratory-based measurements of soil aggregate stability, it can clearly provide valuable information when these more intensive procedures are not possible.

  9. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate

    Science.gov (United States)

    Yun, T.S.; Santamarina, C.J.; Ruppel, C.

    2007-01-01

    The mechanical behavior of hydrate-bearing sediments subjected to large strains has relevance for the stability of the seafloor and submarine slopes, drilling and coring operations, and the analysis of certain small-strain properties of these sediments (for example, seismic velocities). This study reports on the results of comprehensive axial compression triaxial tests conducted at up to 1 MPa confining pressure on sand, crushed silt, precipitated silt, and clay specimens with closely controlled concentrations of synthetic hydrate. The results show that the stress-strain behavior of hydrate-bearing sediments is a complex function of particle size, confining pressure, and hydrate concentration. The mechanical properties of hydrate-bearing sediments at low hydrate concentration (probably 50% of pore space), the behavior becomes more independent of stress because the hydrates control both stiffness and strength and possibly the dilative tendency of sediments by effectively increasing interparticle coordination, cementing particles together, and filling the pore space. The cementation contribution to the shear strength of hydrate-bearing sediments decreases with increasing specific surface of soil minerals. The lower the effective confining stress, the greater the impact of hydrate formation on normalized strength.

  10. Simulation of gas hydrate dissociation caused by repeated tectonic uplift events

    Science.gov (United States)

    Goto, Shusaku; Matsubayashi, Osamu; Nagakubo, Sadao

    2016-05-01

    Gas hydrate dissociation by tectonic uplift is often used to explain geologic and geophysical phenomena, such as hydrate accumulation probably caused by hydrate recycling and the occurrence of double bottom-simulating reflectors in tectonically active areas. However, little is known of gas hydrate dissociation resulting from tectonic uplift. This study investigates gas hydrate dissociation in marine sediments caused by repeated tectonic uplift events using a numerical model incorporating the latent heat of gas hydrate dissociation. The simulations showed that tectonic uplift causes upward movement of some depth interval of hydrate-bearing sediment immediately above the base of gas hydrate stability (BGHS) to the gas hydrate instability zone because the sediment initially maintains its temperature: in that interval, gas hydrate dissociates while absorbing heat; consequently, the temperature of the interval decreases to that of the hydrate stability boundary at that depth. Until the next uplift event, endothermic gas hydrate dissociation proceeds at the BGHS using heat mainly supplied from the sediment around the BGHS, lowering the temperature of that sediment. The cumulative effects of these two endothermic gas hydrate dissociations caused by repeated uplift events lower the sediment temperature around the BGHS, suggesting that in a marine area in which sediment with a highly concentrated hydrate-bearing layer just above the BGHS has been frequently uplifted, the endothermic gas hydrate dissociation produces a gradual decrease in thermal gradient from the seafloor to the BGHS. Sensitivity analysis for model parameters showed that water depth, amount of uplift, gas hydrate saturation, and basal heat flow strongly influence the gas hydrate dissociation rate and sediment temperature around the BGHS.

  11. Towards a magnetic field stabilization at ISOLTRAP for high-accuracy mass measurements on exotic nuclides

    CERN Document Server

    Marie-Jeanne, M; Blaum, K; Djekic, S; Dworschak, M; Hager, U; Herlert, A; Nagy, S; Savreux, R; Schweikhard, L; Stahl, S; Yazidjian, C

    2008-01-01

    The field stability of a mass spectrometer plays a crucial role in the accuracy of mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of fluctuations are temperature variations in the vicinity of the trap and pressure changes in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the temperature and pressure fluctuations by at least an order of magnitude down to and has been achieved, which corresponds to a relative magnetic field change of ΔB/B=2.7×10-9 and 1.1×10-10, respectively.

  12. Nonlinear Stability of Intense Mismatched Beams in a Uniform Focusing Field

    CERN Document Server

    Pakter, Renato; Simeoni, Wilson

    2005-01-01

    We investigate the nonlinear coupling between axisymmetric and elliptic oscillations in the dynamics of intense beams propagating in a uniform magnetic focusing field. It is shown that finite amplitude mismatched oscillations of an initially round beam may destabilize elliptic oscillations, heavily affecting stability and the shape of the beam. This is a potential mechanics for beam particle loss in such systems. Self consistent simulations are performed to verify the findings.

  13. Stabilization of circular Rydberg atoms by circularly polarized infrared laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Askeland, S.; Soerngaard, S. A.; Nepstad, R.; Foerre, M. [Department of Physics and Technology, University of Bergen, N-5007 Bergen (Norway); Pilskog, I. [Department of Physics and Technology, University of Bergen, N-5007 Bergen (Norway); Laboratoire de Chimie Physique - Matiere et Rayonnement, Universite Pierre et Marie Curie - CNRS (UMR 7614), F-75231 Paris Cedex 05 (France)

    2011-09-15

    The ionization dynamics of circular Rydberg states in strong circularly polarized infrared (800 nm) laser fields is studied by means of numerical simulations with the time-dependent Schroedinger equation. We find that at certain intensities, related to the radius of the Rydberg states, atomic stabilization sets in, and the ionization probability decreases as the intensity is further increased. Moreover, there is a strong dependence of the ionization probability on the rotational direction of the applied laser field, which can be understood from a simple classical analogy.

  14. Stabilization of nonclassical states of the radiation field in a cavity by reservoir engineering.

    Science.gov (United States)

    Sarlette, A; Raimond, J M; Brune, M; Rouchon, P

    2011-07-01

    We propose an engineered reservoir inducing the relaxation of a cavity field towards nonclassical states. It is made up of two-level atoms crossing the cavity one at a time. Each atom-cavity interaction is first dispersive, then resonant, then dispersive again. The reservoir pointer states are those produced by an effective Kerr Hamiltonian acting on a coherent field. We thereby stabilize squeezed states and quantum superpositions of multiple coherent components in a cavity having a finite damping time. This robust decoherence protection method could be implemented in state-of-the-art experiments.

  15. A carbon nanotube field emission cathode with high current density and long-term stability

    Science.gov (United States)

    Calderón-Colón, Xiomara; Geng, Huaizhi; Gao, Bo; An, Lei; Cao, Guohua; Zhou, Otto

    2009-08-01

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. However, problems including short lifetime at high current density, instability under high voltage, poor emission uniformity, and pixel-to-pixel inconsistency are still major obstacles for device applications. We developed an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The cathodes have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. The application of this CNT electron source for high-resolution x-ray imaging is demonstrated.

  16. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.

    2011-01-01

    Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.

  17. Stability Analysis and Variational Integrator for Real-Time Formation Based on Potential Field

    Directory of Open Access Journals (Sweden)

    Shengqing Yang

    2014-01-01

    Full Text Available This paper investigates a framework of real-time formation of autonomous vehicles by using potential field and variational integrator. Real-time formation requires vehicles to have coordinated motion and efficient computation. Interactions described by potential field can meet the former requirement which results in a nonlinear system. Stability analysis of such nonlinear system is difficult. Our methodology of stability analysis is discussed in error dynamic system. Transformation of coordinates from inertial frame to body frame can help the stability analysis focus on the structure instead of particular coordinates. Then, the Jacobian of reduced system can be calculated. It can be proved that the formation is stable at the equilibrium point of error dynamic system with the effect of damping force. For consideration of calculation, variational integrator is introduced. It is equivalent to solving algebraic equations. Forced Euler-Lagrange equation in discrete expression is used to construct a forced variational integrator for vehicles in potential field and obstacle environment. By applying forced variational integrator on computation of vehicles' motion, real-time formation of vehicles in obstacle environment can be implemented. Algorithm based on forced variational integrator is designed for a leader-follower formation.

  18. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    Science.gov (United States)

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  19. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl₂ hydrates and MgCl₂ hydrates for seasonal heat storage.

    Science.gov (United States)

    Pathak, Amar Deep; Nedea, Silvia; Zondag, Herbert; Rindt, Camilo; Smeulders, David

    2016-04-21

    Salt hydrates store solar energy in chemical form via a reversible dehydration-hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The mixture of CaCl2 and MgCl2 hydrates has been shown experimentally to have exceptional cycle stability and improved kinetics. However, the optimal operating conditions for the mixture are unknown. To understand the appropriate balance between dehydration and hydrolysis kinetics in the mixtures, it is essential to gain in-depth insight into the mixture components. We present a GGA-DFT level study to investigate the various gaseous structures of CaCl2 hydrates and to understand the relative stability of their conformers. The hydration strength and relative stability of conformers are dominated by electrostatic interactions. A wide network of intramolecular homonuclear and heteronuclear hydrogen bonds is observed in CaCl2 hydrates. Equilibrium product concentrations are obtained during dehydration and hydrolysis reactions under various temperature and pressure conditions. The trend of the dehydration curve with temperature in CaCl2 hydrates is similar to the experiments. Comparing these results to those of MgCl2 hydrates, we find that CaCl2 hydrates are more resistant towards hydrolysis in the temperature range of 273-800 K. Specifically, the present study reveals that the onset temperatures of HCl formation, a crucial design parameter for MgCl2 hydrates, are lower than for CaCl2 hydrates except for the mono-hydrate.

  20. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Frank R. Rack; Tim Francis; Peter Schultheiss; Philip E. Long; Barry M. Freifeld

    2005-04-01

    The primary activities accomplished during this quarter were continued efforts to develop plans for Phase 2 of this cooperative agreement based on the evolving operational planning for IODP Expedition 311, which will use the JOIDES Resolution to study marine methane hydrates along the Cascadia margin, offshore Vancouver Island. IODP Expedition 311 has been designed to further constrain the models for the formation of marine gas hydrate in subduction zone accretionary prisms. The objectives include characterizing the deep origin of the methane, its upward transport, its incorporation in gas hydrate, and its subsequent loss to the seafloor. The main attention of this expedition is on the widespread seafloor-parallel layer of dispersed gas hydrate located just above the base of the predicted stability field. In a gas hydrate formation model, methane is carried upward through regional sediment or small-scale fracture permeability, driven by the tectonic consolidation of the accretionary prism. The upward moving methane is incorporated into the gas hydrate clathrate as it enters the methane hydrate stability zone. Also important is the focusing of a portion of the upward methane flux into localized plumes or channels to form concentrations of near-seafloor gas hydrate. The amount of gas hydrate in local concentrations near the seafloor is especially important for understanding the response of marine gas hydrate to climate change. The expedition includes coring and downhole measurements at five sites across the Northern Cascadia accretionary prism. The sites will track the history of methane in an accretionary prism from (1) its production by mainly microbiological processes over a thick sediment vertical extent, (2) its upward transport through regional or locally focused fluid flow, (3) its incorporation in the regional hydrate layer above the BSR or in local concentrations at or near the seafloor, (4) methane loss from the hydrate by upward diffusion, and (5) methane

  1. Interfacial phenomena in gas hydrate systems.

    Science.gov (United States)

    Aman, Zachary M; Koh, Carolyn A

    2016-03-21

    Gas hydrates are crystalline inclusion compounds, where molecular cages of water trap lighter species under specific thermodynamic conditions. Hydrates play an essential role in global energy systems, as both a hinderance when formed in traditional fuel production and a substantial resource when formed by nature. In both traditional and unconventional fuel production, hydrates share interfaces with a tremendous diversity of materials, including hydrocarbons, aqueous solutions, and inorganic solids. This article presents a state-of-the-art understanding of hydrate interfacial thermodynamics and growth kinetics, and the physiochemical controls that may be exerted on both. Specific attention is paid to the molecular structure and interactions of water, guest molecules, and hetero-molecules (e.g., surfactants) near the interface. Gas hydrate nucleation and growth mechanics are also presented, based on studies using a combination of molecular modeling, vibrational spectroscopy, and X-ray and neutron diffraction. The fundamental physical and chemical knowledge and methods presented in this review may be of value in probing parallel systems of crystal growth in solid inclusion compounds, crystal growth modifiers, emulsion stabilization, and reactive particle flow in solid slurries.

  2. Wet hydrate dissolution plant

    OpenAIRE

    Stanković Mirjana S.; Kovačević Branimir T.; Pezo Lato L.

    2003-01-01

    The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant with capacity of 50,000 t/y was manufactured, at "Zeolite Mira", Mira (VE), Italy, in 1997, for increasing detergent zeolite production from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate ...

  3. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Collett, T.S. (USGS); Riedel, M. (McGill Univ., Montreal, Quebec, Canada); Cochran, J.R. (Columbia Univ., Palisades, NY); Boswell, R.M.; Kumar, Pushpendra (Oil and Natural Gas Corporation Ltd., Navi Mumbai, India); Sathe, A.V. (Oil and Natural Gas Corporation Ltd., Uttaranchal, INDIA)

    2008-07-01

    Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  5. Thessaloniki Mud Volcano, the Shallowest Gas Hydrate-Bearing Mud Volcano in the Anaximander Mountains, Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    C. Perissoratis

    2011-01-01

    Full Text Available A detailed multibeam survey and the subsequent gravity coring carried out in the Anaximander Mountains, Eastern Mediterranean, detected a new active gas hydrate-bearing mud volcano (MV that was named Thessaloniki. It is outlined by the 1315 m bathymetric contour, is 1.67 km2 in area, and has a summit depth of 1260 m. The sea bottom water temperature is 13.7∘C. The gas hydrate crystals generally have the form of flakes or rice, some larger aggregates of them are up to 2 cm across. A pressure core taken at the site contained 3.1 lt. of hydrocarbon gases composed of methane, nearly devoid of propane and butane. The sediment had a gas hydrate occupancy of 0.7% of the core volume. These characteristics place the gas hydrate field at Thessaloniki MV at the upper boundary of the gas hydrate stability zone, prone to dissociation with the slightest increase in sea water temperature, decrease in hydrostatic pressure, or change in the temperature of the advecting fluids.

  6. Fundamental challenges to methane recovery from gas hydrates

    Science.gov (United States)

    Servio, P.; Eaton, M.W.; Mahajan, D.; Winters, W.J.

    2005-01-01

    The fundamental challenges, the location, magnitude, and feasibility of recovery, which must be addressed to recover methane from dispersed hydrate sources, are presented. To induce dissociation of gas hydrate prior to methane recovery, two potential methods are typically considered. Because thermal stimulation requires a large energy input, it is less economically feasible than depressurization. The new data will allow the study of the effect of pressure, temperature, diffusion, porosity, tortuosity, composition of gas and water, and porous media on gas-hydrate production. These data also will allow one to improve existing models related to the stability and dissociation of sea floor hydrates. The reproducible kinetic data from the planned runs together with sediment properties will aid in developing a process to economically recover methane from a potential untapped hydrate source. The availability of plentiful methane will allow economical and large-scale production of methane-derived clean fuels to help avert future energy crises.

  7. Place field stability requires the metabotropic glutamate receptor, mGlu5

    Science.gov (United States)

    Zhang, Sijie; Manahan-Vaughan, Denise

    2014-01-01

    The metabotropic glutamate (mGlu) receptors are critically involved in enabling the persistency of forms of synaptic plasticity that are believed to underlie hippocampus-dependent memory. These receptors and in particular, mGlu5, are also required for hippocampus-dependent learning and memory. In the hippocampus, synaptic plasticity is one of the mechanisms by which spatial information may be represented. Another mechanism involves increased firing of place cells. Place cells increase their firing activity when an animal is in a specific spatial location. Inhibition of factors that are essential for synaptic plasticity, such as N-methyl-d-aspartate receptors or protein synthesis, also impair place cell activity. This raises the question as to whether mGlu receptors, that are so important for synaptic plasticity and spatial memory, are also important for place cell encoding. We examined location-dependent place cell firing i.e. place fields. We observed that antagonism of mGlu5, using 2-methyl-6-(phenylethynyl) pyridine (MPEP) had no effect on place field profiles in a familiar environment. However, in a novel environment mGlu5-antagonism affected long-term place field stability, reduced place cell firing and spatial information. These data strongly suggest a role for mGlu5 in the mechanisms underlying informational content and long-term stability of place fields, and add to evidence supporting the importance of these receptors for hippocampal function. PMID:24910241

  8. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  9. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Science.gov (United States)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  10. Modeling DNA hydration: comparison of calculated and experimental hydration properties of nuclic acid bases.

    Science.gov (United States)

    Poltev, V I; Malenkov, G G; Gonzalez, E J; Teplukhin, A V; Rein, R; Shibata, M; Miller, J H

    1996-02-01

    Hydration properties of individual nucleic acid bases were calculated and compared with the available experimental data. Three sets of classical potential functions (PF) used in simulations of nucleic acid hydration were juxtaposed: (i) the PF developed by Poltev and Malenkov (PM), (ii) the PF of Weiner and Kollman (WK), which together with Jorgensen's TIP3P water model are widely used in the AMBER program, and (iii) OPLS (optimized potentials for liquid simulations) developed by Jorgensen (J). The global minima of interaction energy of single water molecules with all the natural nucleic acid bases correspond to the formation of two water-base hydrogen bonds (water bridging of two hydrophilic atoms of the base). The energy values of these minima calculated via PM potentials are in somewhat better conformity with mass-spectrometric data than the values calculated via WK PF. OPLS gave much weaker water-base interactions for all compounds considered, thus these PF were not used in further computations. Monte Carlo simulations of the hydration of 9-methyladenine, 1-methyluracil and 1-methylthymine were performed in systems with 400 water molecules and periodic boundary conditions. Results of simulations with PM potentials give better agreement with experimental data on hydration energies than WK PF. Computations with PM PF of the hydration energy of keto and enol tautomers of 9-methylguanine can account for the shift in the tautomeric equilibrium of guanine in aqueous media to a dominance of the keto form in spite of nearly equal intrinsic stability of keto and enol tautomers. The results of guanine hydration computations are discussed in relation to mechanisms of base mispairing errors in nucleic acid biosynthesis. The data presented in this paper along with previous results on simulation of hydration shell structures in DNA duplex grooves provide ample evidence for the advantages of PM PF in studies of nucleic-acid hydration.

  11. Arguments for a Comprehensive Laboratory Research Subprogram on Hydrocarbon Gas Hydrates and Hydrate-Sediment Aggregates in the 2005-2010 DOE Methane Hydrate R & D Program

    Science.gov (United States)

    Kirby, S. H.

    2005-12-01

    Field observations of natural hydrocarbon clathrate hydrates, including responses to drilling perturbations of hydrates, well logging and analysis of drill core, and field geophysics are, combined with theoretical modeling, justifiably key activities of the authorized 2005-2010 DOE Methane Hydrate Program. It is argued in this presentation that sustained fundamental laboratory research amplifies, extends and verifies results obtained from field and modeling investigations and does so in a cost-effective way. Recent developments of hydrocarbon clathrate hydrate and sediment aggregate synthesis methods, applications of in-situ optical cell, Raman, NMR, x-ray tomography and neutron diffraction techniques, and cryogenic x-ray and SEM methods re-enforce the importance of such lab investigations. Moreover, there are large data gaps for hydrocarbon-hydrate and hydrate-sediment-aggregate properties. We give three examples: 1) All natural hydrocarbon hydrates in sediment core have been altered to varying degrees by their transit, storage, depressurization, and subsequent lab investigations, as are well-log observations during drilling operations. Interpretation of drill core properties and structure and well logs are also typically not unique. Emulations of the pressure-temperature-deformation-time histories of synthetic samples offer a productive way of gaining insight into how natural samples and logging measurements may be compositionally and texturally altered during sampling and handling. 2) Rock physics models indicate that the effects of hydrates on sediment properties depend on the manner in which hydrates articulate with the sediment matrix (their conformation). Most of these models have not been verified by direct testing using hydrocarbon hydrates with conformation checked by optical cell observations or cryogenic SEM. Such tests are needed and technically feasible. 3) Modeling the effects of exchanges of heat, multiphase fluid fluxes, and deformation involve

  12. STRUCTURE AND STABILITY OF MAGNETIC FIELDS IN SOLAR ACTIVE REGION 12192 BASED ON NONLINEAR FORCE-FREE FIELD MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S. [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen Germany (Germany); Hayashi, K.; Kusano, K., E-mail: inoue@mps.mpg.de [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)

    2016-02-20

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  13. Large eddy simulation for wind field analysis based on stabilized finite element method

    Institute of Scientific and Technical Information of China (English)

    Cheng HUANG; Yan BAO; Dai ZHOU; Jin-quan XU

    2011-01-01

    In this paper, a stabilized finite element technique, actualized by streamline upwind Petrov-Galerkin (SUPG) stabilized method and three-step finite element method (FEM), for large eddy simulation (LES) is developed to predict the wind flow with high Reynolds numbers. Weak form of LES motion equation is combined with the SUPG stabilized term for the spatial finite element discretization. An explicit three-step scheme is implemented for the temporal discretization. For the numerical example of 2D wind flow over a square rib at Re=4.2×105, the Smagorinsky's subgrid-scale (SSGS) model, the DSGS model, and the DSGS model with Cabot near-wall model are applied, and their results are analyzed and compared with experimental results. Furthermore, numerical examples of 3D wind flow around a surface-mounted cube with different Reynolds numbers are performed using DSGS model with Cabot near-wall model based on the present stabilized method to study the wind field and compared with experimental and numerical results. Finally, vortex structures for wind flow around a surface-mounted cube are studied by present numerical method. Stable and satisfactory results are obtained, which are consistent with most of the measurements even under coarse mesh.

  14. Stability of bumps in piecewise smooth neural fields with nonlinear adaptation

    KAUST Repository

    Kilpatrick, Zachary P.

    2010-06-01

    We study the linear stability of stationary bumps in piecewise smooth neural fields with local negative feedback in the form of synaptic depression or spike frequency adaptation. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Discontinuities in the adaptation variable associated with a bump solution means that bump stability cannot be analyzed by constructing the Evans function for a network with a sigmoidal gain function and then taking the high-gain limit. In the case of synaptic depression, we show that linear stability can be formulated in terms of solutions to a system of pseudo-linear equations. We thus establish that sufficiently strong synaptic depression can destabilize a bump that is stable in the absence of depression. These instabilities are dominated by shift perturbations that evolve into traveling pulses. In the case of spike frequency adaptation, we show that for a wide class of perturbations the activity and adaptation variables decouple in the linear regime, thus allowing us to explicitly determine stability in terms of the spectrum of a smooth linear operator. We find that bumps are always unstable with respect to this class of perturbations, and destabilization of a bump can result in either a traveling pulse or a spatially localized breather. © 2010 Elsevier B.V. All rights reserved.

  15. Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L., E-mail: qiaoqin.yang@mail.usask.ca; Yang, Q.; Zhang, C.; Li, Y.S.

    2013-12-31

    A double-layered nanostructure consisting of a layer of vertically aligned Carbon Nanotubes (CNTs) and a layer of diamond beneath has been synthesized on silicon substrate by Hot Filament Chemical Vapor Deposition. The synthesis was achieved by first depositing a layer of diamond on silicon and then depositing a top layer of vertically aligned CNTs by applying a negative bias on the substrate holder. The growth of CNTs was catalyzed by a thin layer of spin-coated iron nitride. The surface morphology and structure of the CNTs/diamond double-layered structure were characterized by Scanning Electron Microscope, Energy Dispersive X-ray spectrum, and Raman Spectroscopy. Their field electron emission (FEE) properties were measured by KEITHLEY 237 high voltage measurement unit, showing much higher FEE current stability than single layered CNTs. - Highlights: • A new double-layered nanostructure consisting of a layer of vertically aligned CNTs and a layer of diamond beneath has been synthesized by hot filament chemical vapor deposition. • This double-layered structure exhibits superior field electron emission stability. • The improvement of emission stability is due to the combination of the unique properties of diamond and CNTs.

  16. Methodological approach to assess tractor stability in normal operation in field using a commercial warning device

    Directory of Open Access Journals (Sweden)

    V. Rondelli

    2013-09-01

    Full Text Available Since Roll-Over Protective Structures (ROPS are mandatory on tractors, the number of fatalities caused in the event of an upset is definitely reduced. Nevertheless, fatal accidents caused by machine loss of stability are still of great concern. In fact, despite ROPS have reduced injury to agricultural operators, tractor stability is still a complex issue due to its high versatility in use, especially considering normal operations in field, when interactions with the environment such as soil morphology and climatic conditions are involved, as well as interactions with operator skills and experience. With the aim of collecting data on different variables influencing the dynamics of tractors in field, a commercial device that allows the continuous monitoring of working conditions and the active configuration of the machines was fitted on standard tractors in normal operation at the experimental farm of the Bologna University. The device consists of accelerometers, gyroscope, GSM/GPRS, GPS for geo-referencing and a transceiver for the automatic recognition of tractor-connected equipment. A microprocessor processes data and provides information, through a dedicated algorithm requiring data on the geometry of the tested tractor, on the level of risk for the operator in terms of probable loss of stability and suggests corrective measures to reduce the potential instability of the tractor.

  17. Stability of the stationary solutions of neural field equations with propagation delays.

    Science.gov (United States)

    Veltz, Romain; Faugeras, Olivier

    2011-05-03

    In this paper, we consider neural field equations with space-dependent delays. Neural fields are continuous assemblies of mesoscopic models arising when modeling macroscopic parts of the brain. They are modeled by nonlinear integro-differential equations. We rigorously prove, for the first time to our knowledge, sufficient conditions for the stability of their stationary solutions. We use two methods 1) the computation of the eigenvalues of the linear operator defined by the linearized equations and 2) the formulation of the problem as a fixed point problem. The first method involves tools of functional analysis and yields a new estimate of the semigroup of the previous linear operator using the eigenvalues of its infinitesimal generator. It yields a sufficient condition for stability which is independent of the characteristics of the delays. The second method allows us to find new sufficient conditions for the stability of stationary solutions which depend upon the values of the delays. These conditions are very easy to evaluate numerically. We illustrate the conservativeness of the bounds with a comparison with numerical simulation.

  18. Isotropic Brownian motions over complex fields as a solvable model for May-Wigner stability analysis

    Science.gov (United States)

    Ipsen, J. R.; Schomerus, H.

    2016-09-01

    We consider matrix-valued stochastic processes known as isotropic Brownian motions, and show that these can be solved exactly over complex fields. While these processes appear in a variety of questions in mathematical physics, our main motivation is their relation to a May-Wigner-like stability analysis, for which we obtain a stability phase diagram. The exact results establish the full joint probability distribution of the finite-time Lyapunov exponents, and may be used as a starting point for a more detailed analysis of the stability-instability phase transition. Our derivations rest on an explicit formulation of a Fokker-Planck equation for the Lyapunov exponents. This formulation happens to coincide with an exactly solvable class of models of the Calgero-Sutherland type, originally encountered for a model of phase-coherent transport. The exact solution over complex fields describes a determinantal point process of biorthogonal type similar to recent results for products of random matrices, and is also closely related to Hermitian matrix models with an external source.

  19. On the stability of the massive scalar field in Kerr space-time

    CERN Document Server

    Beyer, Horst Reinhard

    2011-01-01

    The current early stage in the investigation of the stability of the Kerr metric is characterized by the study of appropriate model problems. Particularly interesting is the problem of the stability of the solutions of the Klein-Gordon equation, describing the propagation of a scalar field in the background of a rotating (Kerr-) black hole. Results suggest that the stability of the field depends crucially on its mass $\\mu$. Among others, the paper provides an improved bound for $\\mu$ above which the solutions of the reduced, by separation in the azimuth angle in Boyer-Lindquist coordinates, Klein-Gordon equation are stable. Finally, it gives new formulations of the reduced equation, in particular, in form of a time-dependent wave equation that is governed by a family of unitarily equivalent positive self-adjoint operators. The latter formulation might turn out useful for further investigation. On the other hand, it is proved that from the abstract properties of this family alone it cannot be concluded that th...

  20. Guest-Host Interaction Study in Clathrate Hydrates Using Lattice Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    Maofeng Jing; Shunle Dong

    2005-01-01

    Lattice dynamics simulation of several gas hydrates (helium, argon, and methane) with different occupancy rates has been performed using TIP3P potential model. Results show that the coupling between the guest and host is not simple as depicted by the conventional viewpoints. For clathrate hydrate enclosing small guest, the small cages are dominantly responsible for the thermodynamic stability of clathrate hydrates. And the spectrum of methane hydrate is studied compared with argon hydrate,then as a result, shrink effect from positive hydrogen shell is proposed.

  1. Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions

    Science.gov (United States)

    Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.

    2016-06-01

    Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions.

  2. Alternating magnetic field losses in ATLAS type aluminium stabilized NbTi superconductors

    CERN Document Server

    Boxman, E W; ten Kate, H H J

    2002-01-01

    During ramping up- and down of the current in large-scale magnets the ramp losses are an important factor affecting the thermal and electro-magnetic stability of the system. The calculation of the losses is not straightforward due to the large dimensions of the conductor (~600 mm/sup 2/) implying that diffusion effects have to be taken into account. The AC-losses of the Al stabilized NbTi cable conductors used in the ATLAS magnet system were measured in 0.5 m long samples, using an inductive method with pick-up coils as well as the calorimetric method. External varying magnetic fields up to 2 tesla amplitude were applied parallel and perpendicular to the conductor wide surface. The results are compared to theory. It is found that hysteresis loss, eddy current loss in the Aluminum cladding and cable-to-cladding coupling loss contribute most to the AC loss. (5 refs).

  3. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  4. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  5. Structure and Stability of Magnetic Fields in Solar Active Region12192 Based on Nonlinear Force-Free Field Modeling

    CERN Document Server

    Inoue, S; Kusano, K

    2016-01-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region(AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains multiple-flux-tube system, {\\it e.g.}, a large flux tube, both of whose footpoints are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the later are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the oth...

  6. Interaction Study of Guest with Host in Clathrate Hydrate

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Shunle Dong

    2007-01-01

    Lattice dynamical simulations of noble gas hydrate structures I and II have been performed. Potential energies were investigated to study the influence of guest species on the stability of the hydrate structure. Results show that when the diameter of inclusion molecules is between 3 A and 4.2 A, such as Ar and Kr, the critical role of the 512 cage in the stabilization of hydrates becomes effective. For Xe hydrates SI and SII, with the help of lattice dynamical calculations, the modes attributions are identified directly. We proposed the resonant effect of the fingerprint frequency at about 7 meV and 10 meV which arise from the coupling of Xe molecules in the 512 cage with the host lattice.

  7. On the problems of stability and durability of field-emission current sources for electrovacuum devices

    Science.gov (United States)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Akchurin, Garif G.; Akchurin, Georgy G.; Avetisyan, Yuri A.

    2016-03-01

    The results of the practical implementation of the concept of field-emission current source with high average current density of 0.1-0.3 A-cm-2 are shown. The durability of cathode samples at a level of 6000 hours is achieved under conditions of technical vacuum. A phenomenological model is suggested that describes the tunneling of both equilibrium and nonequilibrium electrons in a vacuum from the zone of concentration of electrostatic field. Conditions are discussed as the resulting increase in the emission current due to the connection mechanism of the photoelectric effect is thermodynamically favorable, that is not accompanied by an undesirable increase in the temperature of the local emission zone. It is shown that to ensure stability and durability of the cathode is also important to limit the concentration of equilibrium carriers using composite structures «DLC film on Mo substrate." This helps to reduce the criticality of the CVC. A possible alternative is to use a restrictive resistance in the cathode. However, this increases the heat losses and thus decreases assembly efficiency. The results of experimental studies of the structure showing the saturation of photoemission current component with an increase in operating voltage. This fact suggests the existence of an effective mechanism for control of emission at constant operating voltage. This is fundamentally important for the stabilization of field emission cathode, providing a reliability and durability. The single-photon processes and the small thickness DLC films (15-20 nm) provide high-speed process of control.

  8. Composite model to reproduce the mechanical behaviour of methane hydrate bearing soils

    Science.gov (United States)

    De la Fuente, Maria

    2016-04-01

    Methane hydrate bearing sediments (MHBS) are naturally-occurring materials containing different components in the pores that may suffer phase changes under relative small temperature and pressure variations for conditions typically prevailing a few hundreds of meters below sea level. Their modelling needs to account for heat and mass balance equations of the different components, and several strategies already exist to combine them (e.g., Rutqvist & Moridis, 2009; Sánchez et al. 2014). These equations have to be completed by restrictions and constitutive laws reproducing the phenomenology of heat and fluid flows, phase change conditions and mechanical response. While the formulation of the non-mechanical laws generally includes explicitly the mass fraction of methane in each phase, which allows for a natural update of parameters during phase changes, mechanical laws are, in most cases, stated for the whole solid skeleton (Uchida et al., 2012; Soga et al. 2006). In this paper, a mechanical model is proposed to cope with the response of MHBS. It is based on a composite approach that allows defining the thermo-hydro-mechanical response of mineral skeleton and solid hydrates independently. The global stress-strain-temperature response of the solid phase (grains + hydrate) is then obtained by combining both responses according to energy principle following the work by Pinyol et al. (2007). In this way, dissociation of MH can be assessed on the basis of the stress state and temperature prevailing locally within the hydrate component. Besides, its structuring effect is naturally accounted for by the model according to patterns of MH inclusions within soil pores. This paper describes the fundamental hypothesis behind the model and its formulation. Its performance is assessed by comparison with laboratory data presented in the literature. An analysis of MHBS response to several stress-temperature paths representing potential field cases is finally presented. References

  9. Hydration behaviour of polyhydroxylated fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Zavala, J G [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon S/N, 47460 Jalisco (Mexico); Barajas-Barraza, R E [Departamento de Matematicas y Fisica, Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur, Manuel Gomez MorIn No 8585, 45604 Jalisco (Mexico); Padilla-Osuna, I; Guirado-Lopez, R A, E-mail: jgrz@culagos.udg.mx, E-mail: ebarajas@iteso.mx, E-mail: ismael@ifisica.uaslp.mx, E-mail: guirado@ifisica.uaslp.mx [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2011-10-28

    We have performed semi-empirical as well as density functional theory calculations in order to analyse the hydration properties of both bare C{sub 60} and highly hydroxylated C{sub 60}(OH){sub 26} fullerenes. In all of our calculations, a total of 42 and 98 water molecules are always surrounding our here-considered carbon nanostructures. We found different wetting properties as a function of the chemical composition and structure of the OH-molecular over-layer covering the fullerene surface. In the case of bare C{sub 60}, water adsorption reveals that the H{sub 2}O species are not uniformly arranged around the carbon network but rather forms water droplets of different sizes, clearly revealing the hydrophobic nature of the C{sub 60} structure. In contrast, in the polyhydroxylated C{sub 60}(OH){sub 26} fullerenes, the degree of wetting is strongly influenced by the precise location of the hydroxyl groups. We found that different adsorbed configurations for the OH-molecular coating can lead to the formation of partially hydrated or completely covered C{sub 60}(OH){sub 26} compounds, a result that could be used to synthesize fullerene materials with different degrees of wettability. By comparing the relative stability of our hydroxylated structures in both bare and hydrated conditions we obtain that the energy ordering of the C{sub 60}(OH){sub 26} isomers can change in the presence of water. The radial distribution function of our hydrated fullerenes reveals that water near these kinds of surfaces is densely packed. In fact, by counting the number of H{sub 2}O molecules which are adsorbed, by means of hydrogen bonds, to the surface of our more stable C{sub 60}(OH){sub 26} isomer, we found that it varies in the range of 5-10, in good agreement with experiments. Finally, by comparing the calculated optical absorption spectra of various C{sub 60}(OH){sub 26} structures in the presence and absence of water molecules, we note that only slight variations in the position and

  10. Conditional solvation of isoleucine in model extended and helical peptides: context dependence of hydrophobic hydration and the failure of the group-transfer model

    OpenAIRE

    Tomar, Dheeraj; Weber, Valéry; Pettitt, B M; Asthagiri, D.

    2013-01-01

    The hydration thermodynamics of the GXG tripeptide relative to the reference GGG is often used to define the conditional hydration contribution of X. This quantity or the hydration thermodynamics of a small molecule analog of the side-chain or some combination of such estimates, have anchored the interpretation of seminal experiments on protein stability and folding. We show that such procedures to model protein hydration have significant limitations. We study the conditional hydration thermo...

  11. Electrical properties of methane hydrate + sediment mixtures: The σ of CH4 Hydrate + Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Du Frane, Wyatt L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stern, Laura A. [U. S. Geological Survey, Menlo Park, CA (United States); Constable, Steven [Scripps Institution of Oceanography, La Jolla, CA (United States); Weitemeyer, Karen A. [Scripps Institution of Oceanography, La Jolla, CA (United States); National Oceanography Centre Southampton (United Kingdom), Univ. of Southampton Waterfront Campus, Southampton (United Kingdom); Smith, Megan M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Roberts, Jeffery J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-30

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. We built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EM field surveys. We report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. Finally, these results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.

  12. Analysis on MHD Stability of Free Surface Jet flow in a Gradient Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    许增裕; 康伟山; 潘传杰

    2004-01-01

    The simplified modeling for analysis on MHD stability of free surface jet flow in a gradient magnetic fields is based on the theoretical and experimental results on channel liquid metal MHD flow, especially, the results of MHD flow velocity distribution in cross-section of channels (rectangular duct and circular pipe), and the expected results from the modeling are well agreed with the recent experimental data obtained. It is the first modeling which can efficiently explain the experimental results of liquid-metal free surface jet flow.

  13. Electric field induced domain formation in surface stabilized ferroelectric liquid crystal cells

    OpenAIRE

    Dierking, Ingo; Gießelmann, Frank; Schacht, Jochen; Zugenmaier, Peter

    1994-01-01

    Two types of domains have been observed for S sub(C) ferroelectric liquid crystals in surface stabilized cells (SSFLC) by application of a high electric field with the smectic layers tilted by the amount of the chevron angle with respect to the normal of the rubbing direction in the substrate plane. The layer structure resembles that of a chevron configuration in the plane of the substrate similar to the recently reported stripe-shaped SSFLC structure. The two domain types 'appear' to switch ...

  14. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  15. Methane hydrates. A possible energy source in the twenty-first century; Dagli idrati di metano l`energia del XXI secolo?

    Energy Technology Data Exchange (ETDEWEB)

    Sorassi, S.

    1998-11-01

    The morphological characteristics of particular crystal structures, to be found in nature both in arctic and Antarctic regions and under seas and oceans, and consisting of water and gas molecules, the so-called `gas hydrates`, are dealt with. Technical problems related to gas recovery (methane in particular) from hydrates, above all under sea level, mainly due to their reduced stability, are examined. On the ground of these considerations, various gas recovery methods from hydrate fields are described. An overall evaluation of methane availability as hydrates all over the world, as well as a comparison between extraction costs from hydrate and well as a comparison between extraction costs from hydrate and conventional fields, are made. Finally, short-term programmes on research and development of methane hydrate fields in some areas of the Earth are described. [Italiano] L`articolo esamina, in apertura, le caratteristiche morfologiche di particolari strutture cristalline, presenti in natura sia nelle regioni artiche ed antartiche che nelle profondita` marine ed oceaniche, costituite da molecole di acqua e di gas, dette `idrati di gas`. Vengono successivamente presentati i problemi tecnici connessi con il recupero del gas (e del metano in particolare) da tali formazioni, specie da quelle sottomarine, dovuti principalmente alla loro scarsa stabilita`. In funzione di tali considerazioni, viene presentata una rassegna dei metodi di recupero del gas da giacimenti di idrati. Segue una valutazione di massima delle disponibilita` di metano sotto forma di idrati a livello globale ed il confronto dei costi di estrazione del prodotto da giacimenti di idrati, rispetto ai costi di estrazione da giacimenti convenzionali. L`articolo si conclude con l`indicazione dei programmi di a breve termine di ricerca e di sfruttamento di giacimenti di idrati di metano in alcune regioni del globo.

  16. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  17. Methane storage in dry water gas hydrates.

    Science.gov (United States)

    Wang, Weixing; Bray, Christopher L; Adams, Dave J; Cooper, Andrew I

    2008-09-03

    Dry water stores 175 v(STP)/v methane at 2.7 MPa and 273.2 K in a hydrate form which is close to the Department of Energy volumetric target for methane storage. Dry water is a silica-stabilized free-flowing powder (95% wt water), and fast methane uptakes were observed (90% saturation uptake in 160 min with no mixing) as a result of the relatively large surface-to-volume ratio of this material.

  18. Existence and Stability of Static Solutions of the Landau-Lifshitz Equation with Multi-direct Effective Field

    Institute of Scientific and Technical Information of China (English)

    Bo Ling GUO; Gan Shan YANG

    2004-01-01

    We prove the existence of solutions of the static Landau-Lifshitz equation with multidirect effective field and with Dirichlet boundary condition, and establish the stability of the solution of Landau-Lifshitz equation with respect to time.

  19. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  20. Dissolution of Hydrocarbon Gas Hydrates in Seawater at 1030-m; Effects of Porosity, Structure, and Compositional Variation as Determined by High-Definition Video and SEM Imaging.

    Science.gov (United States)

    Stern, L. A.; Peltzer, E. T.; Durham, W. B.; Kirby, S. H.; Brewer, P. G.; Circone, S.; Rehder, G.

    2002-12-01

    appropriate to the field site. These calculations assume that dissolution occurred only along the outer (i.e. imaged) surface of the samples. This assumption is now validated by SEM analysis of recovered samples from the second dive, showing little to no internal alteration of compacted material following their partial dissolution. Quantitative comparison of results from the two dives poses challenges due to variations in sample size and orientation. However, both compacted methane hydrate samples from the second dive in fact exhibited comparable behavior to that measured in the previous experiment; the oily sample did not dissolve at a slower rate, as might be expected if a hydrophobic contaminant inhibits seawater contact. Surprisingly, the porous methane hydrate exhibited significantly slower face retreat than its compacted counterparts. The sII methane-ethane hydrate dissolved measurably slower than all other samples, consistent with the solubility properties of its guest components. While these results represent only a first step in emulating the more complex interactions of seawater with naturally occurring hydrate-bearing sediments, such end member studies should aid preliminary modelling investigations of the chemical stability and lifetime of gas hydrates exposed at the seafloor.

  1. Specific heating power of fatty acid and phospholipid stabilized magnetic fluids in an alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cuyper, M de; Soenen, S J H [Interdisciplinary Research Centre, Katholieke Universiteit Leuven-Campus Kortrijk, B-8500 Kortrijk (Belgium); Hodenius, M; Ivanova, G; Baumann, M; Paciok, E; Schmitz-Rode, T [Applied Medical Engineering, Helmholtz-Institute, Rheinisch-Westfaelische Technische Hochschule Aachen, Pauwelsstrasse 20, D-52074 Aachen (Germany); Eckert, T [Department of Physical Chemistry, RWTH Aachen, Landoltweg 2, D-52074 Aachen (Germany)], E-mail: hodenius@hia.rwth-aachen.de

    2008-05-21

    Magnetic fluids (MFs) with a similar narrow size distribution of the iron oxide core were stabilized with lauric acid (MF 1), oleate (MF 2) or, after dialysis in the presence of liposomes, with phospholipid molecules (MF 3 and MF 4, respectively). The hydrodynamic sizes of the MF 1 and MF 3 were half those found for MF 2 and MF 4. The MFs were exposed to inductive heating in an alternating magnetic field at a frequency of 200 kHz and a maximum magnetic field strength of 3.8 kA m{sup -1}. Specific absorption rates (SAR) of 294 {+-} 42 (MF 1), 214 {+-} 16 (MF 2), 297 {+-} 13 (MF 3) and 213 {+-} 6 W g{sup -1} Fe (MF 4) were obtained. The data for MF 2 and MF 4 were identical to those found for the commercially available ferucarbotran. The biomedical relevance of the phospholipid-coated MFs is briefly discussed.

  2. Specific heating power of fatty acid and phospholipid stabilized magnetic fluids in an alternating magnetic field

    Science.gov (United States)

    DeCuyper, M.; Hodenius, M.; Ivanova, G.; Baumann, M.; Paciok, E.; Eckert, T.; Soenen, S. J. H.; Schmitz-Rode, T.

    2008-05-01

    Magnetic fluids (MFs) with a similar narrow size distribution of the iron oxide core were stabilized with lauric acid (MF 1), oleate (MF 2) or, after dialysis in the presence of liposomes, with phospholipid molecules (MF 3 and MF 4, respectively). The hydrodynamic sizes of the MF 1 and MF 3 were half those found for MF 2 and MF 4. The MFs were exposed to inductive heating in an alternating magnetic field at a frequency of 200 kHz and a maximum magnetic field strength of 3.8 kA m-1. Specific absorption rates (SAR) of 294 ± 42 (MF 1), 214 ± 16 (MF 2), 297 ± 13 (MF 3) and 213 ± 6 W g-1 Fe (MF 4) were obtained. The data for MF 2 and MF 4 were identical to those found for the commercially available ferucarbotran. The biomedical relevance of the phospholipid-coated MFs is briefly discussed.

  3. On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field

    Science.gov (United States)

    Xu, Lanxi; Lan, Wanli

    2016-10-01

    Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M , where M is the maximum of the absolute value of the velocity field of the laminar flow.

  4. Characterization and Moment Stability Analysis of Quasilinear Quantum Stochastic Systems with Quadratic Coupling to External Fields

    CERN Document Server

    Vladimirov, Igor G

    2012-01-01

    The paper is concerned with open quantum systems whose Heisenberg dynamics are described by quantum stochastic differential equations driven by external boson fields. The system-field coupling operators are assumed to be quadratic polynomials of the system observables, with the latter satisfying canonical commutation relations. In combination with a cubic system Hamiltonian, this leads to a class of quasilinear quantum stochastic systems which retain algebraic closedness in the evolution of mixed moments of the observables. Although such a system is nonlinear and its quantum state is no longer Gaussian, the dynamics of the moments of any order are amenable to exact analysis, including the computation of their steady-state values. In particular, a generalized criterion is developed for quadratic stability of the quasilinear systems. The results of the paper are applicable to the generation of non-Gaussian quantum states with manageable moments and an optimal design of linear quantum controllers for quasilinear...

  5. On the stability of KMS states in perturbative algebraic quantum field theories

    CERN Document Server

    Drago, Nicolo; Pinamonti, Nicola

    2016-01-01

    We analyze the stability properties shown by KMS states for interacting massive scalar fields propagating over Minkowski spacetime, recently constructed in the framework of perturbative algebraic quantum field theories by Fredenhagen and Lindner \\cite{FredenhagenLindner}. In particular, we prove the validity of the return to equilibrium property when the interaction Lagrangean has compact spatial support. Surprisingly, this does not hold anymore, if the adiabatic limit is considered, namely when the interaction Lagrangean is invariant under spatial translations. Consequently, an equilibrium state under the adiabatic limit for a perturbative interacting theory evolved with the free dynamics does not converge anymore to the free equilibrium state. Actually, we show that its ergodic mean converges to a non equilibrium steady state for the free theory.

  6. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  7. Magnetic field stabilization for high-accuracy mass measurements on exotic nuclides

    CERN Document Server

    Marie-Jeanne, M; Blaum, K; Djekic, S; Dworschak, M; Hager, U; Herlert, Alexander; Nagy, S; Savreux, R; Schweikhard, L; Stahl, S; Yazidjian, C; Nagy, Sz.

    2007-01-01

    The magnetic-field stability of a mass spectrometer plays a crucial role in precision mass measurements. In the case of mass determination of short-lived nuclides with a Penning trap, major causes of instabilities are temperature fluctuations in the vicinity of the trap and pressure fluctuations in the liquid helium cryostat of the superconducting magnet. Thus systems for the temperature and pressure stabilization of the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN have been installed. A reduction of the fluctuations by at least one order of magnitude downto dT=+/-5mK and dp=+/-50mtorr has been achieved, which corresponds to a relative frequency change of 2.7x10^{-9} and 1.5x10^{-10}, respectively. With this stabilization the frequency determination with the Penning trap only shows a linear temporal drift over several hours on the 10 ppb level due to the finite resistance of the superconducting magnet coils.

  8. Stability of the relative equilibria of a rigid body in a J2 gravity field

    CERN Document Server

    Wang, Yue; Xu, Shijie

    2014-01-01

    The motion of a point mass in the J2 problem is generalized to that of a rigid body in a J2 gravity field. Different with the original J2 problem, the gravitational orbit-rotation coupling of the rigid body is considered in this generalized problem. The linear stability of the classical type of relative equilibria of the rigid body, which have been obtained in our previous paper, is studied in the framework of geometric mechanics with the second-order gravitational potential. Non-canonical Hamiltonian structure of the problem, i.e., Poisson tensor, Casimir functions and equations of motion, are obtained through a Poisson reduction process by means of the symmetry of the problem. The linear system matrix at the relative equilibria is given through the multiplication of the Poisson tensor and Hessian matrix of the variational Lagrangian. Based on the characteristic equation of the linear system matrix, the conditions of linear stability of the relative equilibria are obtained. With the stability conditions obta...

  9. Carbon nanotube—Based cold cathodes: Field emission angular properties and temporal stability

    Science.gov (United States)

    Iacobucci, S.; Fratini, M.; Rizzo, A.; Zhang, Y.; Cole, M. T.; Milne, W. I.; Lagomarsino, S.; Liscio, A.; Stefani, G.

    2016-10-01

    The field emission (FE) properties of carbon nanotube (CNT)-based cathodes have been investigated on nanostructured surfaces grown by plasma enhanced chemical vapor deposition. The FE angular properties and temporal stability of the emergent electron beam have been determined using a dedicated apparatus for cathodes of various architectures and geometries, characterized by scanning electron microscopy and I-V measurements. The angular electron beam divergence and time instability at the extraction stage, which are crucial parameters in order to obtain high brilliance of FE-based-cathode electron sources, have been measured for electrons emitted by several regular architectures of vertically aligned arrays and critically compared to conventional disordered cathodes. The measured divergences strongly depend on the grid mesh. For regular arrays of individual CNT, divergences from 2° to 5° have been obtained; in this specific case, measurements together with ray-tracing simulations suggest that the maximum emission angle is of the order of ±30° about the tube main axis. Larger divergences have been measured for electron beams emitted from honeycomb-structured cathodes (6°) and significantly broader angle distributions (10°) from disordered CNT surfaces. Emission current instabilities of the order of 1% for temporal stability studies conducted across a medium time scale (hours) have been noted for all cathodes consisting of a high number (104 and larger) of aligned CNTs, with the degree of stability being largely independent of the architecture.

  10. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  11. Study on gas hydrate as a new energy resource in the twenty first century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byung Jae; Kim, Won Sik; Oh, Jae Ho [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    Methane hydrate, a special type of clathrate hydrates, is a metastable solid compound mainly consisted of methane and water and generally called as gas hydrate. It is stable in the specific low- temperature/high-pressure conditions. Very large amount of methane that is the main component of natural gas, is accumulated in the form of methane hydrate subaquatic areas. Methane hydrate are the major reservoir of methane on the earth. On the other hand, the development and transmission through pipeline of oil and natural gas in the permafrost and deep subaquatic regions are significantly complicated by formation and dissociation of methane hydrate. The dissociation of natural methane hydrates caused by increasing temperature and decreasing pressure could cause the atmospheric pollution and geohazard. The formation, stable existence and dissociation of natural methane hydrates depend on the temperature, pressure, and composition of gas and characteristics of the interstitial waters. For the study on geophysical and geological conditions for the methane hydrate accumulation and to find BSR in the East Sea, Korea, the geophysical surveys using air-gun system, multibeam echo sounder, SBP were implemented in last September. The water temperature data vs. depth were obtained to determine the methane hydrate stability zone in the study area. The experimental equilibrium condition of methane hydrate was also measured in 3 wt.% sodium chloride solution. The relationship between Methane hydrate formation time and overpressure was analyzed through the laboratory work. (author). 49 refs., 6 tabs., 26 figs.

  12. Fluorinated polyimide gate dielectrics for the advancing the electrical stability of organic field-effect transistors.

    Science.gov (United States)

    Baek, Yonghwa; Lim, Sooman; Yoo, Eun Joo; Kim, Lae Ho; Kim, Haekyoung; Lee, Seung Woo; Kim, Se Hyun; Park, Chan Eon

    2014-09-10

    Organic field-effect transistors (OFETs) that operated with good electrical stability were prepared by synthesizing fluorinated polyimide (PI) gate dielectrics based on 6FDA-PDA-PDA PI and 6FDA-CF3Bz-PDA PI. 6FDA-PDA-PDA PI and 6FDA-CF3Bz-PDA PI contain 6 and 18 fluorine atoms per repeat unit, respectively. These fluorinated polymers provided smooth surface topographies and surface energies that decreased as the number of fluorine atoms in the polymer backbone increased. These properties led to a better crystalline morphology in the semiconductor film grown over their surfaces. The number of fluorine atoms in the PI backbone increased, the field-effect mobility improved, and the threshold voltage shifted toward positive values (from -0.38 to +2.21 V) in the OFETs with pentacene and triethylsilylethynyl anthradithiophene. In addition, the highly fluorinated polyimide dielectric showed negligible hysteresis and a notable gate bias stability under both a N2 environment and ambient air.

  13. State — Region — Field — Enterprise: Framework of Economics System Stability of Russia Part 2

    Directory of Open Access Journals (Sweden)

    Georgy Borisovich Kleiner

    2015-09-01

    Full Text Available In the article, the factors of a stability of the Russian economy are investigated from the systematic positions as a multilevel, multisubject and multidimensional socio-economic system. The concept of economics system stability as abilities to keep prerequisites for growth with the support and effective use of system structure of economy is formulated. The leading role of all economic subjects of different levels (including government as a subject of the international relations, regions as the subjects of Federation, enterprises as economic entities in economic stability is shown. The need of "extension" of a network of subjects due to strengthening of the subjectivity of economic fields is emphasized. Research of an internal basic system structure of an economic subject and external structure of its immediate environment in socioeconomic, administrative-and-managerial, and market spaces with the use of the results of the new theory of economic systems leads to a conclusion of similarity of these structures. It is shown that each of these system complexes includes (together with a subject four systems of various types — object, environmental, processed, and designed. The system environment of a subject in the administrative-and-managerial space of inter-level interactions has the same structure. It gives the chance to reduce a problem of subjects’ resistance to a question of balance of system structures of the complexes forming an internal filling and an external environment of subjects. The method of balance index of similar complexes is given. Recommendations on a choice of the measures of economic policy for providing economics system stability of Russia during the crisis are formulated. It is shown that such policy has to be developed with the principles of a subject-preservation, system balance of internal filling and external environment of subjects, a corporate solidarity of subjects despite their level in the administrative

  14. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    Science.gov (United States)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  15. Quantifying atmospheric stability conditions at a swine facility and an adjacent corn field in Iowa, USA

    Science.gov (United States)

    Hernandez-Ramirez, Guillermo; Sauer, Thomas J.; Hatfield, Jerry L.; Prueger, John H.

    2011-10-01

    Atmospheric stability conditions in the atmospheric surface layer control the distance and direction of transport of air contaminants. Near confined animal facilities, transport processes significantly impact air quality as these sites typically act as point sources of dust and odor constituents; however, little information is available on atmospheric stability effects. This study was conducted to assess year-round temporal patterns of atmospheric stability at a swine production facility and an adjacent commercial corn field (CF) in the US Midwest. Two towers of 10 and 20 m heights for continuous micrometeorological measurements were deployed within a CF and between swine buildings (BSB), respectively. Each tower was equipped with an eddy-covariance system at 6.8 m height, infrared thermometers, and six cup anemometers with thermocouples installed at log-distributed heights. Overall results from gradient Richardson number and Monin-Obukhov (z/L) calculations revealed a greater prevalence of unstable conditions for BSB compared with CF. During the 13-month measurement period, unstable cases (z/L ranging from -1 to -0.01) occurred 1.4 times more frequently for BSB than CF (52 vs. 39%, respectively), while stable cases (0.011-0.2) were 1.8 times more frequent for CF than BSB (24 vs. 14%, respectively). These patterns were partly associated with higher surface radiometric temperatures for BSB. Relatively greater diurnal heat capture at BSB (ground and roof surfaces) and a cooling effect in CF through active canopy transpiration during the daytime explain these z/L and radiometric temperature results. Prevalent diurnal atmospheric instability at BSB suggests enhanced ascendant vertical transport of air pollutants perhaps causing greater mixing/dilution with the atmospheric layer and/or their facilitated transport over greater distances when sorbed onto particles. This enhanced understanding of the spatio-temporal patterns of atmospheric stability can be subsequently

  16. Improvement of Sidestream Dark Field Imaging with an Image Acquisition Stabilizer

    Directory of Open Access Journals (Sweden)

    Sjauw Krishan D

    2010-07-01

    Full Text Available Abstract Background In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS for Sidestream Dark Field (SDF imaging. Methods The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhesion to the imaged tissue by application of negative pressure. The effects of the IAS on the sublingual microcirculatory flow velocities, the force required to induce pressure artifacts (PA, the time to acquire a stable image, and the duration of stable imaging were assessed in healthy volunteers. To demonstrate the clinical applicability of the SDF setup in combination with the IAS, simultaneous bilateral sublingual imaging of the microcirculation were performed during a lung recruitment maneuver (LRM in mechanically ventilated critically ill patients. One SDF device was operated handheld; the second was fitted with the IAS and held in position by a mechanic arm. Lateral drift, number of losses of image stability and duration of stable imaging of the two methods were compared. Results Five healthy volunteers were studied. The IAS did not affect microcirculatory flow velocities. A significantly greater force had to applied onto the tissue to induced PA with compared to without IAS (0.25 ± 0.15 N without vs. 0.62 ± 0.05 N with the IAS, p Conclusions The present study has validated the use of an IAS for improvement of SDF imaging by demonstrating that the IAS did not affect microcirculatory perfusion in the microscopic field of view. The IAS improved both axial and lateral SDF image stability and thereby increased the critical force required to induce pressure artifacts. The IAS ensured a significantly increased duration of maintaining a stable image sequence.

  17. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.

    Science.gov (United States)

    Sujith, K S; Ramachandran, C N

    2017-01-12

    Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH3OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH4 molecules, CH3OH molecules assist bubble formation by stabilizing CH4 bubble nuclei formed in the solution. The CH3OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH4 and the Laplace pressure within the bubble. The effect of CO2 on the formation of nanobubble in the CH4-CO2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO2 in the early nucleation of bubble is explained

  18. A numerical study of natural hydrate formation kinetics in petroleum pipelines by the phase field method: influence of the model parameters; Estudo da cinetica de formacao de hidratos em dutos de petroleo pelo metodo do campo de fase: influencia dos parametros do modelo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mabelle Biancardi; Castro, Jose Adilson de; Silva, Alexandre Jose da; Ferreira, Alexandre Furtado [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Pos-Graduacao em Engenharia Metalurgica], e-mail: mabelle@metal.eeimvr.uff.br, e-mail: adilson@metal.eeimvr.uff.br, e-mail: ajs@metal.eeimvr.uff.br, e-mail: furtado@metal.eeimvr.uff.br

    2006-07-01

    The objective of this work is to study the influence of the parameters of the phase field model field on the formation of natural hydrates. It was investigated parameters such as superficial tension, effect of the super-cooling, homogeneous and heterogeneous nucleation. The influence of these parameters was analyzed according to morphology of the interface and the rate of formation. The mathematical model to describe the evolution of the natural hydrates formation is based on the simultaneous solution of the phase and energy equations. The finite volume numerical method was used to discretize the governing differential equations. Results of the simulation indicated that the reduction of the superficial tension leads to the increase of the surface rugosity, interface thickness and instability of the interface resulting in a decrease of the rate growth. In order to investigate the nucleation effect of the natural hydrates, two conditions had been simulated a) the random distribution of nuclei: where the evolution of formed hydrates suffered coalescence and the kinetic decreased due to impingement of hydrates regions and b) Nucleation in the pipeline wall, where rough interfaces were observed. (author)

  19. Hydrophilic quantum dots stability against an external low-strength electric field

    Energy Technology Data Exchange (ETDEWEB)

    Goftman, Valentina V., E-mail: Valentina.Goftman@UGent.be [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent (Belgium); Pankratov, Vladislav A.; Markin, Alexey V. [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Ginste, Dries Vande [IBCN/Electromagnetics Group, Department of Information Technology, Ghent University/iMinds, Sint-Pietersnieuwstraat 41, 9000 B-Gent (Belgium); De Saeger, Sarah [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent (Belgium); Goryacheva, Irina Yu. [Department of General and Inorganic Chemistry, Chemistry Institute, Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Silica-coated and polymer-covered hydrophilic quantum dots are synthesized and characterized. • Impact of low-strength electric field is compared for both hydrophilic shells. • Silica shell protects the quantum dots fluorescent core when being subjected to a low-strength electric field. - Abstract: Since the stability of nanobiolabels plays a key role in their application, we thoroughly investigated how an external, low-strength electric field impacts on the fluorescent properties of hydrophilic quantum dots (QDs). Two fundamentally different approaches were applied to make the QDs water-soluble, i.e. ligand exchange (namely silica covering) and encapsulation with an amphiphilic polymer. It is shown that, even under a low-strength electric field, the polymer-coated QDs could lose 90% of their brightness because of the weak interaction between the QD's surface and the polymeric molecule. Silica-covered QDs, on the contrary, stay bright and stable owing to the covalently attached dense silica shell. These findings, which are clearly explained and illustrated in the present paper, are of critical importance in the context of hydrophilic QDs’ bioapplication.

  20. Field scale geomechanical modeling for prediction of fault stability during underground gas storage operations in a depleted gas field in the Netherlands

    NARCIS (Netherlands)

    Orlic, B.; Wassing, B.B.T.; Geel, C.R.

    2013-01-01

    A geomechanical modeling study was conducted to investigate stability of major faults during past gas production and future underground gas storage operations in a depleted gas field in the Netherlands. The field experienced induced seismicity during gas production, which was most likely caused by

  1. Field scale geomechanical modeling for prediction of fault stability during underground gas storage operations in a depleted gas field in the Netherlands

    NARCIS (Netherlands)

    Orlic, B.; Wassing, B.B.T.; Geel, C.R.

    2013-01-01

    A geomechanical modeling study was conducted to investigate stability of major faults during past gas production and future underground gas storage operations in a depleted gas field in the Netherlands. The field experienced induced seismicity during gas production, which was most likely caused by t

  2. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    Energy Technology Data Exchange (ETDEWEB)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  3. [Hydration in clinical practice].

    Science.gov (United States)

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  4. Geophysical Indicators of Gas Hydrate in the Northern Continental Margin, South China Sea

    Directory of Open Access Journals (Sweden)

    Xiujuan Wang

    2011-01-01

    Full Text Available Gas hydrate drilling results show that gas hydrate has a close relationship with strong bottom-simulating reflectors (BSRs identified from seismic data in the Baiyun sag, South China Sea. The BSRs observed on seismic profiles at the crests of submarine canyons indicate the likely existence of gas hydrate. We calculate the acoustic impedance using constrained sparse spike inversion (CSSI, the interval velocity, and the seismic reflection characteristics such as reflection strength, instantaneous frequency, blanking, and enhanced reflection to demonstrate the presence of gas hydrate. Higher acoustic impedance and P-wave velocity were identified above the BSR. A remarkable low impedance, low frequency, and acoustic blanking indicated the presence of gas below gas hydrate stability zone. The occurrence of gas hydrate at the crests of canyons suggests that the abundance of gas hydrate in Baiyun sag may be due to the migrating submarine canyons providing the structural reliefs and the topographic ridges.

  5. Stability

    Directory of Open Access Journals (Sweden)

    Nada S. Abdelwahab

    2017-05-01

    Full Text Available The present work concerns with the development of stability indicating the RP-HPLC method for simultaneous determination of guaifenesin (GUF and pseudoephedrine hydrochloride (PSH in the presence of guaifenesin related substance (Guaiacol. GUC, and in the presence of syrup excepients with minimum sample pre-treatment. In the developed RP-HPLC method efficient chromatographic separation was achieved for GUF, PSH, GUC and syrup excepients using ODS column as a stationary phase and methanol: water (50:50, v/v, pH = 4 with orthophosphoric acid as a mobile phase with a flow rate of 1 mL min−1 and UV detection at 210 nm. The chromatographic run time was approximately 10 min. Calibration curves were drawn relating the integrated area under peak to the corresponding concentrations of PSH, GUF and GUC in the range of 1–8, 1–20, 0.4–8 μg mL−1, respectively. The developed method has been validated and met the requirements delineated by ICH guidelines with respect to linearity, accuracy, precision, specificity and robustness. The validated method was successfully applied for determination of the studied drugs in triaminic chest congestion® syrup; moreover its results were statistically compared with those obtained by the official method and no significant difference was found between them.

  6. 水合法制丙二醇的CSTR开车模拟及反应器稳定性分析%Simulation on Start-up and Stability Analysis of CSTR for Hydration Production of Propylene Glycol

    Institute of Scientific and Technical Information of China (English)

    刘世超; 侯言超; 刘宏超; 朱建华

    2012-01-01

    Dynamic simulation on start-up of CSTR was performed using hydration production of propylene glycol from propylene oxide (PO) and water as a benchmark reaction. The time evolution of the reactor temperature, component concentration and reactant conversion was obtained, and the key factors to determine a successful start-up of CSTR were identified. The operating stability of CSTR was then analyzed. The results demonstrate that start-up could fail when the feedstock temperature is 297.15 K, while it would succeed when the feedstock temperature is 300.00 K. This indicates that one main factor to influence the start-up of CSTR is the feedstock temperature: when the feedstock temperature is higher than the reaction ignition temperature, the start-up would be successful, otherwise it would be failed. For the benchmark reacting system, the ignition temperature is 297.70 K. After the CSTR is started-up successfully, a rising feedstock temperature does not increase the operating stability obviously. When the feedstock temperature decreases less than 3.00 K, the CSTR exhibits a higher PO conversion. However, when the feedstock temperature decreases more than 4.00 K, the PO conversion drops dramatically, which could eventually lead to an automatic shut-up of CSTR. Overall, the CSTR with the benchmark reaction has certain anti-interference ability to the feedstock temperature, but the operating stability is poor in general.%以水合法制丙二醇为例,对连续搅拌釜式反应器(CSTR)的开车过程进行了动态模拟研究,分析了开车过程中温度、浓度、转化率随时间的变化曲线,确定了影响反应器开车能否成功的主要因素,并对反应器的抗干扰能力进行了分析.研究结果表明,在反应器进料温度(T0)297.15K的条件下,反应器开车失败;而将反应器的进料温度升至300.00K,可使反应器开车成功:影响反应器开车成功与否的主要因素是反应器的进料温度是否高于其点火温度,而

  7. The influence of sedimentation rate variation on the occurrence of methane hydrate crystallized from dissolved methane in marine gas hydrate system

    Science.gov (United States)

    Yuncheng, C.; Chen, D.

    2015-12-01

    Methane is commonly delivered to the gas hydrate stability zone by advection of methane-bearing fluids, diffusion of dissolved methane, and in-situ biogenic methane production (Davie and Buffett, 2003), except at cold vent sites. Burial of pore water and sediment compaction can induce the fluid flux change (Bhatnagar et al., 2007). Sedimentation supply the organic material for methane production. In addition, Gas hydrate can move to below gas hydrate stability zone and decompose via sedimentation. Therefore, sedimentation significantly affect the gas hydrate accumulation. ODP site 997 located at the Blake Ridge. The sedimentation rate is estimated to 48 m/Ma, 245m/Ma, 17.2 m/Ma and 281m/Ma for 0-2.5Ma, 2.5-3.75Ma, 3.75-4.4Ma, and 4.4-5.9Ma, respectively, according to the age-depth profile of biostratigraphic marker of nonnofossils(Paull et al., 1996). We constructed a gas hydrate formation model and apply to ODP sites 997 to evaluate the influence of variation of sedimentation rate on gas hydrate accumulation. Our results show that the gas hydrate format rate varied from 0.013mol/m2-a to 0.017mol/m2-a and the gas hydrate burial to below gas hydrate stability zone varied from 0.001mol/m2-a to 0.018mol/m2-a during recently 5Ma. The gas hydrate formation rate by pore water advection and dissolved methane diffusion would be lower, and the top occurrence of gas hydrate would be shallower, when the sedimentation rate is higher. With higher sedimentation rate, the amount of gas hydrate burial to below stability zone would be larger. The relative high sedimentation rate before 2.5 Ma at ODP site 997 produced the gas hydrate saturation much lower than present value, and over 60% of present gas hydrates are formed during recent 2.5Ma. Reference: Bhatnagar,G., Chapman, W. G.,Dickens, G. R., et al. Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes. American Journal of Science, 2007, 307, 861

  8. Linking basin-scale and pore-scale gas hydrate distribution patterns in diffusion-dominated marine hydrate systems

    Science.gov (United States)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; Hillman, Jess I. T.; Malinverno, Alberto

    2017-02-01

    The goal of this study is to computationally determine the potential distribution patterns of diffusion-driven methane hydrate accumulations in coarse-grained marine sediments. Diffusion of dissolved methane in marine gas hydrate systems has been proposed as a potential transport mechanism through which large concentrations of hydrate can preferentially accumulate in coarse-grained sediments over geologic time. Using one-dimensional compositional reservoir simulations, we examine hydrate distribution patterns at the scale of individual sand layers (1-20 m thick) that are deposited between microbially active fine-grained material buried through the gas hydrate stability zone (GHSZ). We then extrapolate to two-dimensional and basin-scale three-dimensional simulations, where we model dipping sands and multilayered systems. We find that properties of a sand layer including pore size distribution, layer thickness, dip, and proximity to other layers in multilayered systems all exert control on diffusive methane fluxes toward and within a sand, which in turn impact the distribution of hydrate throughout a sand unit. In all of these simulations, we incorporate data on physical properties and sand layer geometries from the Terrebonne Basin gas hydrate system in the Gulf of Mexico. We demonstrate that diffusion can generate high hydrate saturations (upward of 90%) at the edges of thin sands at shallow depths within the GHSZ, but that it is ineffective at producing high hydrate saturations throughout thick (greater than 10 m) sands buried deep within the GHSZ. Furthermore, we find that hydrate in fine-grained material can preserve high hydrate saturations in nearby thin sands with burial.Plain Language SummaryThis study combines one-, two-, and three-dimensional simulations to explore one potential process by which methane dissolved in water beneath the seafloor can be converted into solid methane hydrate. This work specifically examines one end-member methane transport

  9. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    Science.gov (United States)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea

  10. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  11. Stability analysis and non-field-periodic islands with the SIESTA code

    Science.gov (United States)

    Cook, C. R.; Hirshman, S. P.; Sanchez, R.; Anderson, D. T.

    2012-03-01

    SIESTA is a three-dimensional magnetohydrodynamic equilibrium code capable of resolving magnetic islands in toroidal plasma confinement devices. The simulation begins with a VMEC equilibrium containing closed, nested magnetic flux surfaces. In general, this equilibrium can be unstable to tearing modes as VMEC is purely an ideal MHD code. SIESTA then calculates a new equilibrium by perturbing the initial configuration and following a nonlinear energy minimization process with finite resistivity. The converged SIESTA equilibrium with islands will then be stable. The Solov'ev tokamak equilibrium is a configuration that is tractable analytically. A stability analysis will be performed on an unstable VMEC Solov'ev equilibrium as well as a stable, converged SIESTA Solov'ev equilibrium. These numerical results for the MHD eigenspectrum will be compared to what is expected from theory. Presently SIESTA assumes that plasma perturbations, and thus also magnetic islands, are field-periodic. This limitation is being removed from the code by allowing the displacement toroidal mode number to not be restricted to multiples of the number of field periods. An example of a non-field-periodic perturbation in CTH will be discussed.

  12. Field-emission stability of hydrothermally synthesized aluminum-doped zinc oxide nanostructures.

    Science.gov (United States)

    Hsieh, Tsang-Yen; Wang, Jyh-Liang; Yang, Po-Yu; Hwang, Chuan-Chou; Shye, Der-Chi

    2012-07-01

    The Al-doped ZnO (AZO) nanostructures field-emission arrays (FEAs) were hydrothermally synthesized on AZO/glass substrate. The samples with Al-dosage of 3 at.% show the morphology as nanowires vertically grown on the substrates and a structure of c-axis elongated single-crystalline wurtzite. The good field-emission (i.e., the large anode current and low fluctuation of 15.9%) can be found by AZO nanostructure FEAs with well-designed Al-dosage (i.e., 3 at.%) because of the vertical nanowires with the less structural defects and superior crystallinity. Moreover, the Full width at half maximum (FWHM) of near band-edge emission (NBE) decreased as the increase of annealing temperature, representing the compensated structural defects during oxygen ambient annealing. After the oxygen annealing at 500 degrees C, the hydrothermal AZO nanostructure FEAs revealed the excellent electrical characteristics (i.e., the larger anode current and uniform distribution of induced fluorescence) and enhanced field-emission stability (i.e., the lowest current fluctuation of 5.97%).

  13. Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates

    Science.gov (United States)

    Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.

    2017-03-01

    Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.

  14. RESEARCH ON COUPLED RELATIONSHIP BETWEEN HYDRATION NUMBER WITH RAMAN SPECTRUM

    Institute of Scientific and Technical Information of China (English)

    LEI Huaiyan; LIU Zhihong; FAN Shuanshi; XU Maoquan; GUAN Baocong

    2003-01-01

    As we know, there are three structures-sⅠ, sⅡ, and sH, with hydrocarbonate gas hydrate.Because of those special structures characteristics and potentail large fossil energy resource, gas hydrate play an important role in natural carbonate cycle system. In this paper, CH4, CO2, C3H8, and CH4 +CO2 system have been experimental performed in order to model hydrate formation and discomposition and to obtain hydrate stability conditions of tempreature and pressure. The results from laboratory using Raman spectra show that Raman spectrascopy is a effective tool to identify hydrate structure. Raman spectra of clathrate hydrate guest molecules are presented for two structure (sⅠ and sⅡ) in the following systems: CH4, CO2, C3 H8. Relatively occupancy of CH4 in the large and small cavities of sⅠ were determined by deconvoluting the v1 symmetric bands, resulting in hydration numbers of 6.04±0.03. The freqyuency of the v1 bands for CH4 in structures Ⅰ and Ⅱ differ statistically. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities.

  15. Determination of hydration film thickness using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG Changsheng; SONG Shaoxian; GU Qingbao

    2005-01-01

    Dispersion of a solid particle in water may lead to the formation of hydration film on the particle surface, which can strongly increase the repulsive force between the particles and thus strongly affect the stability of dispersions. The hydration film thickness, which varies with the variation of property of suspension particles, is one of the most important parameters of hydration film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on force-distance curve of atomic force microscopy, for determining the hydration film thickness of particles is developed. The method utilizes the difference of cantilever deflection before, between and after penetrating the hydration films between tip and sample, which reflect the difference of slope on the force-distance curve. 3 samples, mica, glass and stainless steel, were used for hydration thickness determination, and the results show that the hydration film thickness between silicon tip and mica, glass and stainless steel are 30.0(2.0, 29.0(1.0 and 32.5(2.5 nm, respectively.

  16. Star formation from dark filamentary clouds: Gravitational stability of a cylindrical plasma with an azimuthal and axial magnetic field

    CERN Document Server

    McLeman, James A; Bingham, Robert

    2012-01-01

    The precise process by which dark filamentary clouds collapse to form stars is a subject of intense debate. In this paper we consider a cylindrical distribution of plasma with both axial and azimuthal magnetic field and examine the resulting gravitational stability. The azimuthal magnetic field is created from an electric current in the plasma and is found to be dictated by Ampere's law. We model this system by using the magnetohydrodynamic (MHD) equation to derive a new virial theorem. We can reduce it to the virial theorem due to Chandrasekhar and Fermi (1953) if we remove the azimuthal magnetic field, as this will represent the case which they have considered. This new virial theorem gives us a fresh insight into the stability of the system. We also derive from this new virial theorem the case where there is only an azimuthal magnetic field. Our generalised stability condition allows for a possible electric current within realistic astronomical values.

  17. Generic super-exponential stability of elliptic equilibrium positions for symplectic vector fields

    Science.gov (United States)

    Niederman, Laurent

    2013-11-01

    In this article, we consider linearly stable elliptic fixed points (equilibrium) for a symplectic vector field and prove generic results of super-exponential stability for nearby solutions. We will focus on the neighborhood of elliptic fixed points but the case of linearly stable isotropic reducible invariant tori in a Hamiltonian system should be similar. More specifically, Morbidelli and Giorgilli have proved a result of stability over superexponentially long times if one considers an analytic Lagrangian torus, invariant for an analytic Hamiltonian system, with a diophantine translation vector which admits a sign-definite torsion. Then, the solutions of the system move very little over times which are super-exponentially long with respect to the inverse of the distance to the invariant torus. The proof proceeds in two steps: first one constructs a high-order Birkhoff normal form, then one applies the Nekhoroshev theory. Bounemoura has shown that the second step of this construction remains valid if the Birkhoff normal form linked to the invariant torus or the elliptic fixed point belongs to a generic set among the formal series. This is not sufficient to prove this kind of super-exponential stability results in a general setting. We should also establish that the most strongly non resonant elliptic fixed point or invariant torus in a Hamiltonian system admits Birkhoff normal forms fitted for the application of the Nekhoroshev theory. Actually, the set introduced by Bounemoura is already very large but not big enough to ensure that a typical Birkhoff normal form falls into this class. We show here that this property is satisfied generically in the sense of the measure (prevalence) through infinite-dimensional probe spaces (that is, an infinite number of parameters chosen at random) with methods similar to those developed in a paper of Gorodetski, Kaloshin and Hunt in another setting.

  18. Ant Colony Optimization Analysis on Overall Stability of High Arch Dam Basis of Field Monitoring

    Directory of Open Access Journals (Sweden)

    Peng Lin

    2014-01-01

    Full Text Available A dam ant colony optimization (D-ACO analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline.

  19. Stability conditions for fermionic Ising spin-glass models in the presence of a transverse field

    Science.gov (United States)

    Magalhães, S. G.; Zimmer, F. M.; Morais, C. V.

    2009-06-01

    The stability of a spin-glass (SG) phase is analyzed in detail for a fermionic Ising SG (FISG) model in the presence of a magnetic transverse field Γ. The fermionic path integral formalism, replica method and static approach have been used to obtain the thermodynamic potential within one step replica symmetry breaking ansatz. The replica symmetry (RS) results show that the SG phase is always unstable against the replicon. Moreover, the two other eigenvalues λ± of the Hessian matrix (related to the diagonal elements of the replica matrix) can indicate an additional instability to the SG phase, which enhances when Γ is increased. Therefore, this result suggests that the study of the replicon cannot be enough to guarantee the RS stability in the present quantum FISG model, especially near the quantum critical point. In particular, the FISG model allows changing the occupation number of sites, so one can get a first order transition when the chemical potential exceeds a certain value. In this region, the replicon and the λ± indicate instability problems for the SG solution close to all ranges of a first order boundary.

  20. Ant colony optimization analysis on overall stability of high arch dam basis of field monitoring.

    Science.gov (United States)

    Lin, Peng; Liu, Xiaoli; Chen, Hong-Xin; Kim, Jinxie

    2014-01-01

    A dam ant colony optimization (D-ACO) analysis of the overall stability of high arch dams on complicated foundations is presented in this paper. A modified ant colony optimization (ACO) model is proposed for obtaining dam concrete and rock mechanical parameters. A typical dam parameter feedback problem is proposed for nonlinear back-analysis numerical model based on field monitoring deformation and ACO. The basic principle of the proposed model is the establishment of the objective function of optimizing real concrete and rock mechanical parameter. The feedback analysis is then implemented with a modified ant colony algorithm. The algorithm performance is satisfactory, and the accuracy is verified. The m groups of feedback parameters, used to run a nonlinear FEM code, and the displacement and stress distribution are discussed. A feedback analysis of the deformation of the Lijiaxia arch dam and based on the modified ant colony optimization method is also conducted. By considering various material parameters obtained using different analysis methods, comparative analyses were conducted on dam displacements, stress distribution characteristics, and overall dam stability. The comparison results show that the proposal model can effectively solve for feedback multiple parameters of dam concrete and rock material and basically satisfy assessment requirements for geotechnical structural engineering discipline.

  1. Feedback stabilization of resistive wall modes in a reversed-field pinch

    Science.gov (United States)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Cecconello, M.; Drake, J. R.; Manduchi, G.; Marchiori, G.

    2005-09-01

    An array of saddle coils having Nc=16 equally spaced positions along the toroidal direction has been installed for feedback control of resistive wall modes (RWMs) on the EXTRAP T2R reversed-field pinch [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]. Using feedback, multiple nonresonant RWMs are simultaneously suppressed for three to four wall times. Feedback stabilization of RWMs results in a significant prolongation of the discharge duration. This is linked to a better sustainment of the plasma and tearing mode toroidal rotation with feedback. Due to the limited number of coils in the toroidal direction, pairs of modes with toroidal mode numbers n ,n' that fulfill the condition ∣n-n'∣=Nc are coupled by the feedback action from the discrete coil array. With only one unstable mode in a pair of coupled modes, the suppression of the unstable mode is successful. If two modes are unstable in a coupled pair, two possibilities exist: partial suppression of both modes or, alternatively, complete stabilization of one target mode while the other is left unstable.

  2. Chemical stabilization of subgrade soil for the strategic expeditionary landing field

    Science.gov (United States)

    Conaway, M. H.

    1983-06-01

    The Strategic Expeditionary Landing Field (SELF) is a military expeditionary-type airfield with an aluminum matted surface that is designed for sustained tactical and cargo airlift operations in an amphibious objective area. Because of the operational traffic parameters such as loads of the various types of aircraft, tire pressures and volume of traffic, a base layer must be constructed over subgrade soil support conditions which may be only marginal. The base layer could be constructed with conventional soil construction techniques (compaction) and yield the required strength. It would be difficult, however, to maintain this strength for the required one-year service life under many climatic conditions due to the degrading effects of water on the support capacity of many soils. Chemical soil stabilization with lime, portland cement and asphalt stabilizing agents could be used to treat the soil. These additives, when properly mixed with certain types of soils, initiate reactions which will increase soil support strength and enhance durability (resistance to the degrading effects of water). Technically, this procedure is quite viable but logistically, it may not be feasible.

  3. Vlasov fluid stability of a 2-D plasma with a linear magnetic field null

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S.

    1984-01-01

    Vlasov fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov fluid dispersion functional by using set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.

  4. The field stabilization and adaptive optics mirrors for the European Extremely Large Telescope

    Science.gov (United States)

    Vernet, Elise; Jochum, Lieselotte; La Penna, Paolo; Hubin, Norbert; Muradore, Riccardo; Casalta, Joan Manel; Kjelberg, Ivar; Sinquin, Jean-Christophe; Locre, Frédéric; Morin, Pierre; Cousty, Raphaël; Lurçon, Jean-Marie; Roland, Jean-Jacques; Crepy, Bruno; Gabriel, Eric; Biasi, Roberto; Andrighettoni, Mario; Angerer, Gerald; Gallieni, Daniele; Mantegazza, Marco; Tintori, Matteo; Molinari, Emilio; Tresoldi, Daniela; Toso, Giorgio; Spanó, Paolo; Riva, Marco; Crimi, Giuseppe; Riccardi, Armando; Marque, Gilles; Carel, Jean-Louis; Ruch, Eric

    2008-07-01

    A 42 meters telescope does require adaptive optics to provide few milli arcseconds resolution images. In the current design of the E-ELT, M4 provides adaptive correction while M5 is the field stabilization mirror. Both mirrors have an essential role in the E-ELT telescope strategy since they do not only correct for atmospheric turbulence but have also to cancel part of telescope wind shaking and static aberrations. Both mirrors specifications have been defined to avoid requesting over constrained requirements in term of stroke, speed and guide stars magnitude. Technical specifications and technological issues are discussed in this article. Critical aspects and roadmap to assess the feasibility of such mirrors are outlined.

  5. Stability of naked singularity arising in gravitational collapse of Type I matter fields

    Indian Academy of Sciences (India)

    Sanjay B Sarwe; R V Saraykar

    2005-07-01

    Considering gravitational collapse of Type I matter fields, we prove that, given an arbitrary 2-mass function (, ) and a 1-function ℎ(, ) (through the corresponding 1-metric function (, )), there exist infinitely many choices of energy distribution function () such that the `true’ initial data (, ℎ(, )) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole (BH) and naked singularity (NS) form a `big' subset of the true initial data set, their occurrence is not generic. The terms `stability' and `genericity’ are appropriately defined following the theory of dynamical systems. The particular case of radial pressure () has been illustrated in details to get a clear picture of how naked singularity is formed and how, it is stable with respect to initial data.

  6. Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S.

    1984-01-01

    Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.

  7. Preparation and thermal stability of nickel nanowires via self-assembly process under magnetic field

    Indian Academy of Sciences (India)

    Hu Wang; Ming Li; Xiaoyu Li; Kenan Xie; Li Liao

    2015-09-01

    Nickel nanowires were synthesized via a template-free method in an aqueous solution system combined with chemical reduction and magnetic field. The suitable concentration of Ni ions and reaction time were controlled in order to obtain nickel wires with uniform sizes. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetry and differential scanning calorimetry. The results showed that the Ni nanowires with large aspect ratio up to 200 had uniform size and morphology, about 200 nm. Especially, it is noteworthy that the samples were stable in air when the temperature was lower than 318°C. The study would provide a facile method to prepare nickel nanowires with homogeneous diameter and high thermal stability, which could be used in catalysing CO2 hydrogenation.

  8. Stability of MHD jet flows between nonconducting plates in a transverse field

    Energy Technology Data Exchange (ETDEWEB)

    Levin, V.B.; Shtern, V.N.

    1985-06-01

    The linear stability of jet flows of a conducting fluid between parallel nonconducting plates in a transverse field is examined. It is assumed that the flow is caused by the current between linear electrodes situated on one of the plates, and that the velocity profile for the initial flow and for perturbations is a Hartmann profile across the plates. Hartmann boundary layers are modeled with respect to the friction force. Neutral curves and dependences of the critical Reynolds number on the Hartmann number are obtained; the dependence is found to be linear for finite-width electrodes, and proportional to the square root of Ha for infinitely thin electrodes. A comparison with experimental data is carried out. 13 references.

  9. Evolution of a gas bubble in porous matrix filled by methane hydrate

    Science.gov (United States)

    Tsiberkin, Kirill; Lyubimov, Dmitry; Lyubimova, Tatyana; Zikanov, Oleg

    2013-04-01

    Behavior of a small isolated hydrate-free inclusion (a bubble) within hydrate-bearing porous matrix is studied analytically and numerically. An infinite porous matrix of uniform properties with pores filled by methane hydrates and either water (excessive water situation) or methane gas (excessive gas situation) is considered. A small spherical hydrate-free bubble of radius R0 exists at initial moment within the matrix due to overheating relative to the surrounding medium. There is no continuing heat supply within the bubble, so new hydrate forms on its boundary, and its radius decreases with time. The process is analysed in the framework of the model that takes into account the phase transition and accompanying heat and mass transport processes and assumes spherical symmetry. It is shown that in the case of small (~ 10-2-10-1 m) bubbles, convective fluxes are negligible and the process is fully described by heat conduction and phase change equations. A spherically symmetric Stefan problem for purely conduction-controlled evolution is solved analytically for the case of equilibrium initial temperature and pressure within the bubble. The self-similar solution is verified, with good results, in numerical simulations based on the full filtration and heat transfer model and using the isotherm migration method. Numerical simulations are also conducted for a wide range of cases not amenable to analytical solution. It is found that, except for initial development of an overheated bubble, its radius evolves with time following the self-similar formula: R(t) ( t)1-2 R0-= 1 - tm- , (1) where tm is the life-time of bubble (time of its complete freezing). The analytical solution shows that tm follows 2 tm ~ (R0-?) , (2) where ? is a constant determined by the temperature difference ΔT between the bubble's interior and far field. We consider implications for natural hydrate deposits. As an example, for a bubble with R0 = 4 cm and ΔT = 0.001 K, we find tm ~ 5.7 ? 106 s (2

  10. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    Science.gov (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    impact of core retrieval on specimen properties, it is also important to consider how far removed hydrate-bearing samples are from hydrate stability conditions. ?? 2008 Elsevier Ltd.

  11. Effects of Straw Incorporation on Soil Nutrients, Enzymes, and Aggregate Stability in Tobacco Fields of China

    Directory of Open Access Journals (Sweden)

    Jiguang Zhang

    2016-07-01

    Full Text Available To determine the effects of straw incorporation on soil nutrients, enzyme activity, and aggregates in tobacco fields, we conducted experiments with different amounts of wheat and maize straw in Zhucheng area of southeast Shandong province for three years (2010–2012. In the final year of experiment (2012, straw incorporation increased soil organic carbon (SOC and related parameters, and improved soil enzyme activity proportionally with the amount of straw added, except for catalase when maize straw was used. And maize straw incorporation was more effective than wheat straw in the tobacco field. The percentage of aggregates >2 mm increased with straw incorporation when measured by either dry or wet sieving. The mean weight diameter (MWD and geometric mean diameter (GMD in straw incorporation treatments were higher than those in the no-straw control (CK. Maize straw increased soil aggregate stability more than wheat straw with the same incorporation amount. Alkaline phosphatase was significantly and negatively correlated with soil pH. Sucrase and urease were both significantly and positively correlated with soil alkali-hydrolysable N. Catalase was significantly but negatively correlated with soil extractable K (EK. The MWD and GMD by dry sieving had significantly positive correlations with SOC, total N, total K, and EK, but only significantly correlated with EK by wet sieving. Therefore, soil nutrients, metabolic enzyme activity, and aggregate stability might be increased by increasing the SOC content through the maize or wheat straw incorporation. Moreover, incorporation of maize straw at 7500 kg·hm−2 was the best choice to enhance soil fertility in the tobacco area of Eastern China.

  12. Fast ion confinement and stability in a neutral beam injected reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J. K.; Almagri, A. F.; Den Hartog, D. J.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Mirnov, V. V.; Morton, L. A.; Nornberg, M. D.; Parke, E.; Reusch, J. A.; Sarff, J. S.; Waksman, J. [University of Wisconsin, Madison, Wisconsin 53706 (United States); Belykh, V.; Davydenko, V. I.; Ivanov, A. A.; Polosatkin, S. V.; Tsidulko, Y. A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Lin, L. [University of California, Los Angeles, California 90095 (United States); Liu, D. [University of California, Irvine, California 92697 (United States); and others

    2013-05-15

    The behavior of energetic ions is fundamentally important in the study of fusion plasmas. While well-studied in tokamak, spherical torus, and stellarator plasmas, relatively little is known in reversed field pinch plasmas about the dynamics of fast ions and the effects they cause as a large population. These studies are now underway in the Madison Symmetric Torus with an intense 25 keV, 1 MW hydrogen neutral beam injector (NBI). Measurements of the time-resolved fast ion distribution via a high energy neutral particle analyzer, as well as beam-target neutron flux (when NBI fuel is doped with 3–5% D{sub 2}) both demonstrate that at low concentration the fast ion population is consistent with classical slowing of the fast ions, negligible cross-field transport, and charge exchange as the dominant ion loss mechanism. A significant population of fast ions develops; simulations predict a super-Alfvénic ion density of up to 25% of the electron density with both a significant velocity space gradient and a sharp radial density gradient. There are several effects on the background plasma including enhanced toroidal rotation, electron heating, and an altered current density profile. The abundant fast particles affect the plasma stability. Fast ions at the island of the core-most resonant tearing mode have a stabilizing effect, and up to 60% reduction in the magnetic fluctuation amplitude is observed during NBI. The sharp reduction in amplitude, however, has little effect on the underlying magnetic island structure. Simultaneously, beam driven instabilities are observed as repetitive ∼50 μs bursts which coincide with fast particle redistribution; data indicate a saturated core fast ion density well below purely classical predictions.

  13. Methane Hydrates: More Than a Viable Aviation Fuel Feedstock Option

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    Demand for hydrocarbon fuels is steadily increasing, and greenhouse gas emissions continue to rise unabated with the energy demand. Alternate fuels will be coming on line to meet that demand. This report examines the recovering of methane from methane hydrates for fuel to meet this demand rather than permitting its natural release into the environment, which will be detrimental to the planet. Some background on the nature, vast sizes, and stability of sedimentary and permafrost formations of hydrates are discussed. A few examples of the severe problems associated with methane recovery from these hydrates are presented along with the potential impact on the environment and coastal waters. Future availability of methane from hydrates may become an attractive option for aviation fueling, and so future aircraft design associated with methane fueling is considered.

  14. Molecular modeling of the dissociation of methane hydrate in contact with a silica surface.

    Science.gov (United States)

    Bagherzadeh, S Alireza; Englezos, Peter; Alavi, Saman; Ripmeester, John A

    2012-03-15

    We use constant energy, constant volume (NVE) molecular dynamics simulations to study the dissociation of the fully occupied structure I methane hydrate in a confined geometry between two hydroxylated silica surfaces between 36 and 41 Å apart, at initial temperatures of 283, 293, and 303 K. Simulations of the two-phase hydrate/water system are performed in the presence of silica, with and without a 3 Å thick buffering water layer between the hydrate phase and silica surfaces. Faster decomposition is observed in the presence of silica, where the hydrate phase is prone to decomposition from four surfaces, as compared to only two sides in the case of the hydrate/water simulations. The existence of the water layer between the hydrate phase and the silica surface stabilizes the hydrate phase relative to the case where the hydrate is in direct contact with silica. Hydrates bound between the silica surfaces dissociate layer-by-layer in a shrinking core manner with a curved decomposition front which extends over a 5-8 Å thickness. Labeling water molecules shows that there is exchange of water molecules between the surrounding liquid and intact cages in the methane hydrate phase. In all cases, decomposition of the methane hydrate phase led to the formation of methane nanobubbles in the liquid water phase.

  15. Preliminary discussion on gas hydrate reservoir system of Shenhu Area, North Slope of South China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, N.; Yang, S.; Liang, J.; Wang, H.; Fu, S. [Guangzhou Marine Geological Survey, Guangzhou (China); Zhang, H. [China Geological Survey, Beijing (China); Su, X. [China Univ. of Geosciences, Beijing (China)

    2008-07-01

    Gas hydrate is a type of ice-like solid substance formed by the combination of certain low-molecular-weight gases such as methane, ethane, and carbon dioxide with water. Gas hydrate primarily occurs naturally in sediments beneath the permafrost and the sediments of the continental slope with the water depth greater than 300 m. Marine gas hydrate geological systems are important because they may be sufficiently concentrated in certain locations to be an economically viable fossil fuel resource. However, gas hydrates can cause geo-hazards through large-scale slope destabilization and can release methane, a potential greenhouse gas, into the environment. This paper discussed the hydrate drilling results from a geological and geophysical investigation of the gas hydrate reservoir system of the Shenhu Area, located in the north slope of South China Sea. The paper identified the basic formation conditions, and discussed the pore-water geochemical features of shallow sediments and their inflected gas sources, gas hydrate distribution and seismic characteristics. It was concluded that the gas hydrate was heterogeneously distributed in space, and mainly distributed in certain ranges above the bottom of the gas hydrate stability zone. It was also concluded that methane gas that formed hydrate was likely from in-situ micro-biogenic methane. Last, it was found that distributed and in-situ micro-biogenic methane resulted in low methane flux, and formed the distributed pattern of gas hydrate system with the features of differential distribution and saturation. 34 refs., 2 tabs., 3 figs.

  16. Conical quarl swirl stabilized non-premixed flames: flame and flow field interaction

    KAUST Repository

    Elbaz, Ayman M.

    2017-09-19

    The flame-flow field interaction is studied in non-premixed methane swirl flames stabilized in quartz quarl via simultaneous measurements of the flow field using a stereo PIV and OH-PLIF at 5 KHz repetition rate. Under the same swirl intensity, two flames with different fuel jet velocity were investigated. The time-averaged flow field shows a unique flow pattern at the quarl exit, where two recirculation vortices are formed; a strong recirculation zone formed far from the quarl exit and a larger recirculation zone extending inside the quarl. However, the instantaneous images show that, the flow pattern near the quarl exit plays a vital role in the spatial location and structure of the reaction zone. In the low fuel jet velocity flame, a pair of vortical structures, located precisely at the corners of the quarl exit, cause the flame to roll up into the central region of low speed flow, where the flame sheet then tracks the axial velocity fluctuations. The vorticity field reveals a vortical structure surrounding the reaction zones, which reside on a layer of low compressive strain adjacent to that vortical structure. In the high fuel jet velocity flame, initially a laminar flame sheet resides at the inner shear layer of the main jet, along the interface between incoming fresh gas and high temperature recirculating gas. Further downstream, vortex breakdown alters the flame sheet path toward the central flame region. The lower reaction zones show good correlation to the regions of maximum vorticity and track the regions of low compressive strain associated with the inner shear layer of the jet flow. In both flames the reactions zones conform the passage of the large structure while remaining inside the low speed regions or at the inner shear layer.

  17. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    Science.gov (United States)

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no

  18. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  19. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate

    Science.gov (United States)

    Frederick, J. M.; Buffett, B. A.

    2014-12-01

    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the

  20. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang

    2007-06-01

    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  1. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  2. On the stability conditions for theories of modified gravity coupled to matter fields

    CERN Document Server

    De Felice, Antonio; Papadomanolakis, Georgios

    2016-01-01

    We present a thorough stability analysis of modified gravity theories when the coupling to matter fields is considered. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical...

  3. Internal Transport Barrier Broadening through Subdominant Mode Stabilization in Reversed Field Pinch Plasmas

    Science.gov (United States)

    Lorenzini, R.; Auriemma, F.; Fassina, A.; Martines, E.; Terranova, D.; Sattin, F.

    2016-05-01

    The reversed field pinch (RFP) device RFX-mod features strong internal transport barriers when the plasma accesses states with a single dominant helicity. Such transport barriers enclose a hot helical region with high confinement whose amplitude may vary from a tiny one to an amplitude encompassing an appreciable fraction of the available volume. The transition from narrow to wide thermal structures has been ascribed so far to the transport reduction that occurs when the dominant mode separatrix, which is a preferred location for the onset of stochastic field lines, disappears. In this Letter we show instead that the contribution from the separatrix disappearance, by itself, is marginal and the main role is instead played by the progressive stabilization of secondary modes. The position and the width of the stochastic boundary encompassing the thermal structures have been estimated by applying the concept of a 3D quasiseparatrix layer, developed in solar physics to treat reconnection phenomena without true separatrices and novel to toroidal laboratory plasmas. Considering the favorable scaling of secondary modes with the Lundquist number, these results open promising scenarios for RFP plasmas at temperatures higher than the presently achieved ones, where lower secondary modes and, consequently, larger thermal structures are expected. Furthermore, this first application of the quasiseparatrix layer to a toroidal plasma indicates that such a concept is ubiquitous in magnetic reconnection, independent of the system geometry under investigation.

  4. Field application of innovative grouting agents for in situ stabilization of buried waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Farnsworth, R.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-12-31

    This paper presents field applications for two innovative grouting agents that were used to in situ stabilize buried waste sites, via jet grouting. The two grouting agents include paraffin and a proprietary iron oxide based cement grout called TECT. These materials were tested in specially designed cold test pits that simulate buried transuranic waste at the Idaho National Engineering Laboratory (INEL). The field demonstrations were performed at the INEL in an area referred to as the Cold Test Pit, which is adjacent to the INEL Radioactive Waste Management Complex (RWMC). At the RWMC, 56,000 m{sup 3} of transuranic (TRU) waste is co-mingled with over 170,000 m{sup 3} of soil in shallow land burial. Improving the confinement of this waste is one of the options for final disposition of this waste. Using jet-grouting technology to inject these materials into the pore spaces of buried waste sites results in the creation of buried monolithic waste forms that simultaneously protect the waste from subsidence, while eliminating the migratory potential of hazardous and radioactive contaminants in the waste.

  5. On the stability conditions for theories of modified gravity in the presence of matter fields

    Science.gov (United States)

    De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios

    2017-03-01

    We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.

  6. Fuel traps: mapping stability via water association.

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Susan L.; Clawson, Jacalyn S.; Greathouse, Jeffery A.; Alam, Todd M; Leung, Kevin; Varma, Sameer; Sabo, Dubravko; Martin, Marcus Gary; Cygan, Randall Timothy

    2007-03-01

    Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.

  7. Profile study of shear stabilization of the lower hybrid drift instability in the reverse-field screw pinch

    Energy Technology Data Exchange (ETDEWEB)

    Gerwin, R.

    1976-10-01

    A criterion due to N. Krall for magnetic shear stabilization of the Lower-Hybrid Drift Instability is applied to model profiles of the Reverse-Field Screw Pinch configuration. Conditions that can virtually eliminate this instability are found numerically, for gentle density profiles. However, shear-stabilization proves to be ineffective for sharper (but still reasonable-looking) profiles. If such profiles have to be lived with, it becomes necessary to rely either on finite-beta stabilization or on the fact that this instability possesses a threshold related to ion gyro-resonance.

  8. Phase field simulation of the interface morphology evolution and its stability during directional solidification of binary alloys

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influences of pulling speed V and temperature gradient G on morphology evolution, concentration distribution, solute trapping and interface stability during directional solidification of binary alloys have been studied with the B-S phase field model. Simulated results reproduced the morphology transitions of deep cell to shallow cell and shallow cell to plane front. The primary cellular spacing, depth of groove and effective solute redistribution coefficient for different V and G are compared. The absolute stability under high pulling speed and high temperature gradient has also been predicted, which is in agreement with the Mullins-Sekerka (M-S) stability theory.

  9. In-plane magnetic field effect on switching voltage and thermal stability in electric-field-controlled perpendicular magnetic tunnel junctions

    Science.gov (United States)

    Grezes, C.; Rojas Rozas, A.; Ebrahimi, F.; Alzate, J. G.; Cai, X.; Katine, J. A.; Langer, J.; Ocker, B.; Khalili Amiri, P.; Wang, K. L.

    2016-07-01

    The effect of in-plane magnetic field on switching voltage (Vsw) and thermal stability factor (Δ) are investigated in electric-field-controlled perpendicular magnetic tunnel junctions (p-MTJs). Dwell time measurements are used to determine the voltage dependence of the energy barrier height for various in-plane magnetic fields (Hin), and gain insight into the Hin dependent energy landscape. We find that both Vsw and Δ decrease with increasing Hin, with a dominant linear dependence. The results are reproduced by calculations based on a macrospin model while accounting for the modified magnetization configuration in the presence of an external magnetic field.

  10. Site selection for DOE/JIP gas hydrates drilling in the northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.R.; Ruppel, C. [United States Geological Survey, Woods Hole, MA (United States); Shelander, D.; Dai, J. [Schlumberger, Houston, TX (United States); McConnell, D. [AOA Geophysics Inc., Houston, TX (United States); Shedd, W. [Minerals Management Service, New Orleans, LA (United States); Frye, M. [Minerals Management Service, Herndon, VA (United States); Boswell, R.; Rose, K. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Jones, E.; Latham, T. [Chevron Energy Technology Corp., Houston, TX (United States); Collett, T. [United States Geological Survey, Denver, CO (United States); Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Science; Wood, W. [United States Naval Research Lab, Stennis Space Center, MS (United States)

    2008-07-01

    As drilling operations in the Gulf of Mexico shift from shallow water to deeper water targets, operators are encountering sediments with pressure-temperature regimes for gas hydrate stability. The Chevron-led Joint Industry Project (JIP) on methane hydrates was formed in 2001 to study the hazards associated with drilling these types of hydrate-bearing sediments and to assess the capacity of geological and geophysical tools to predict gas hydrate distributions and concentrations. Selected reservoirs units with high concentrations of gas hydrate were sampled to obtain physical data on hydrate bearing sediments. The JIP work validates methods devised to estimate gas hydrate distribution and concentrations in order to analyze the resource potential of these hydrate-bearing sediments. This paper described the geologic and geophysical setting of 3 sites in the northern Gulf of Mexico that contain hydrate-bearing reservoir sands. The three sites that will undergo exploratory drilling and a logging campaign in late spring 2008 include the Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system characterized with seafloor fluid expulsion features, structural closure associated with uplifted salt, and seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets sheet sands and associated channel deposits within a small basin. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. 39 refs., 1 tab., 4 figs.

  11. Stabilization of carbon-fiber cold field-emission cathodes with a dielectric coating.

    Science.gov (United States)

    Mousa, M S; Kelly, T F

    2003-01-01

    A comprehensive investigation has been carried out to determine the source of an inherent temporal instability in the spatial distribution and the electron emission current obtained from field-emitting carbon fiber tips. These instability effects were successfully overcome by coating the tip with a sub-micron layer of dielectric epoxy resin coating. The influence of the coating thickness was studied and an optimum thickness of 0.2-0.3 microm that produced high emission stability was found. A large reduction in the intensity fluctuations of the emission image, at this coating thickness is demonstrated by using chart recorder traces in addition to slow scans of an optically monitored screen signal. The current-voltage (I-V) characteristics were obtained at a threshold field that is a few times lower than that of the uncoated tip. At low emission current levels linear F-N plots were obtained with a slope value lower than that of the uncoated emitter. The spatial distribution consisted of a very bright spot without any internal structure. The total energy distribution of the emitted electrons demonstrated a non-metallic behavior. The spectra obtained consisted of a single peak for low currents and a double peak for higher currents. The electron energy was measured relative to the Fermi level of tungsten and a spectral shift was shown to be a function of the current. Experiments have shown that the coated tips are not affected by the variations of pressure conditions down to 10(-6) mbar. These results suggest that a resin coated fiber tip offers superior performance to tungsten as a cold field emission electron source. Numerous improvements in the performance are underway. This includes a variety of polymeric coatings and more emissive carbon fibers.

  12. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  13. Lysosomal membrane stability in laboratory- and field-exposed terrestrial isopods Porcellio scaber (Isopoda, Crustacea).

    Science.gov (United States)

    Nolde, Natasa; Drobne, Damjana; Valant, Janez; Padovan, Ingrid; Horvat, Milena

    2006-08-01

    Two established methods for assessment of the cytotoxicity of contaminants, the lysosomal latency (LL) assay and the neutral red retention (NRR) assay, were successfully applied to in toto digestive gland tubes (hepatopancreas) of the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). In vitro exposure of isolated gland tubes to copper was used as a positive control to determine the performance of the two methods. Lysosomal latency and the NRR assay were then used on in vivo (via food) laboratory-exposed animals and on field populations. Arbitrarily selected criteria for determination of the fitness of P. scaber were set on the basis of lysosomal membrane stability (LMS) as assessed with in toto digestive gland tubes. Decreased LMS was detected in animals from all polluted sites, but cytotoxicity data were not in agreement with concentrations of pollutants. Lysosomal membrane stability in the digestive gland tubes of animals from an environment in Idrija, Slovenia that was highly polluted with mercury (260 microg/g dry wt food and 1,600 microg/g dry wt soil) was less affected than LMS in laboratory animals fed with 5 and 50 microg Hg/g dry weight for 3 d. This probably indicates tolerance of P. scaber to mercury in the mercury-polluted environment and/or lower bioavailability of environmental mercury. In animals from the vicinity of a thermal power plant with environmental mercury concentrations three to four orders of magnitude lower than those in Idrija, LMS was severely affected. In general, the LL assay was more sensitive than the NRR assay. The LMS assay conducted on digestive gland tubes of terrestrial isopods is highly recommended for integrated biomarker studies.

  14. Influence of gas hydrates crystals or ice crystals on the permeability of a porous medium; Influence de cristaux d'hydrates de gaz ou de glace sur la permeabilite d'un milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Bonnefoy, O.

    2005-03-15

    The first part is a bibliographic study. We study the conditions for thermodynamic equilibrium of the hydrates as a bulk medium and the composition of the liquid and solid phases. We then describe the basics of fluid dynamics in a porous medium. Eventually, we merge the two approaches and study the influence of the porous medium on the hydrate stability. An off-shore hydrate field (Blake Ridge) and an on-shore field (Mallik) are precisely described. The latter will be used as a reference case for subsequent numerical simulations. The second part is devoted to the experiments. Their goal is to measure the permeability of a sediment containing crystals. To get closer to natural geologic conditions, crystals are synthesized in absence of free gas. It turns out that hydrates form in a very heterogeneous way in the porous medium, which makes the measurements non representative. We believe that this result has a general character and that, at the laboratory time-scale, it is difficult, to say the least to achieve a uniform distribution of gas hydrates grown from dissolved gas. To circumvent this difficulty, we show, with a theoretical approach, that ice crystals behave much the same way as the hydrate crystals, concerning the Van der Waals forces that govern the agglomeration. This allows us to calculate the Hamaker constant of the hydrates. The second series of experiments focuses on the permeability of a non consolidated porous medium under mechanical stress, where the pores are filled with ice crystals. Two silica beads populations are used to form a porous medium: 3 mm and 0.2 mm. With the large grains, results show two thresholds: for saturations below the lower threshold, the presence of crystals does not modify the permeability. For saturations above the upper threshold, the permeability vanishes almost completely (percolation phenomenon). Between these two limits, the permeability decreases exponentially with the saturation. With the fine grains, the permeability

  15. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  16. Dynamics of hydration water and coupled protein sidechains around a polymerase protein surface

    Science.gov (United States)

    Qin, Yangzhong; Yang, Yi; Wang, Lijuan; Zhong, Dongping

    2017-09-01

    Water-protein coupled interactions are essential to the protein structural stability, flexibility and dynamic functions. The ultimate effects of the hydration dynamics on the protein fluctuations remain substantially unexplored. Here, we investigated the dynamics of both hydration water and protein sidechains at 13 different sites around the polymerase β protein surface using a tryptophan scan with femtosecond spectroscopy. Three types of hydration-water relaxations and two types of protein sidechain motions were determined, reflecting a highly dynamic water-protein interactions fluctuating on the picosecond time scales. The hydration-water dynamics dominate the coupled interactions with higher flexibility.

  17. A prediction method of natural gas hydrate formation in deepwater gas well and its application

    Directory of Open Access Journals (Sweden)

    Yanli Guo

    2016-09-01

    Full Text Available To prevent the deposition of natural gas hydrate in deepwater gas well, the hydrate formation area in wellbore must be predicted. Herein, by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data, a method based on OLGA & PVTsim for predicting the hydrate formation area in wellbore was proposed. Meanwhile, The hydrate formation under the conditions of steady production, throttling and shut-in was predicted by using this method based on a well data in the South China Sea. The results indicate that the hydrate formation area decreases with the increase of gas production, inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time. Throttling effect causes a plunge in temperature and pressure in wellbore, thus leading to an increase of hydrate formation area.

  18. Temporal stability and variability of soil-water content in a gravel-mulched field in northwestern China

    Science.gov (United States)

    Zhao, Wenju; Cui, Zhen; Zhang, Jiyi; Jin, Jian

    2017-09-01

    Characterizing the spatiotemporal variability of soil-water content (SWC) is of paramount importance in many scientific fields and operational applications. We present a case study of the temporal stability and variability of SWC in a gravel-mulched field, a form of mulching that has been widely used by farmers on the loessial area of China for over 300 years, using Spearman correlation coefficients, frequency distributions and an index of temporal stability. SWC was measured weekly from May to August 2013 in the 0-10, 10-20, 20-30 and 30-50 cm layers. SWC was more variable in the surface soil, due to several environmental factors, and the variability gradually decreased with depth. A large sample size was needed for estimating the mean SWC of the field under dry conditions. High Spearman correlation coefficients between the SWCs measured on different sampling campaigns indicated a high temporal stability. The stability of the SWC spatial patterns over time and along the soil profile allowed us to identify a location representative of the field-mean SWC, with high coefficients of determination ranging between 0.8564 and 0.9325. The large-scale monitoring of SWC from few observations is thus feasible, which will aid the management of soil moisture in gravel-mulched fields in arid regions.

  19. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH4 storage and CO2 capture from CO2/H2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  20. Conditional stability of diatomic molecule driven by a weak laser field

    Institute of Scientific and Technical Information of China (English)

    Chong Gui-Shu; Hai Wen-Hua; Xie Qiong-Tao

    2005-01-01

    Using a direct perturbation method, we investigate the stability of a diatomic molecule modelled by a weakly laser-driven Morse oscillator. It is shown that stationary state solution of the system is stable in the sense of Lyapunov and the periodical one possesses conditional stability, namely its stability depends on the initial conditions and system parameters. The corresponding sufficient and necessary conditions are established that indicate the stable states associated with some discrete energies. The results reveal how a diatomic molecule can be stabilized or dissociated with a weak laser, and demonstrate that the mathematical conditional stability works in the considered physical system.

  1. Optimizations of force-field parameters for protein systems with the secondary-structure stability and instability

    CERN Document Server

    Sakae, Yoshitake

    2013-01-01

    We propose a novel method for refining force-field parameters of protein systems. In this method, the agreement of the secondary-structure stability and instability between the protein conformations obtained by experiments and those obtained by molecular dynamics simulations is used as a criterion for the optimization of force-field parameters. As an example of the applications of the present method, we refined the force-field parameter set of the AMBER ff99SB force field by searching the torsion-energy parameter spaces of $\\psi$ (N-C$^{\\alpha}$-C-N) and $\\zeta$ (C$^{\\beta}$-C$^{\\alpha}$-C-N) of the backbone dihedral angles. We then performed folding simulations of $\\alpha$-helical and $\\beta$-hairpin peptides, using the optimized force field. The results showed that the new force-field parameters gave structures more consistent with the experimental implications than the original AMBER ff99SB force field.

  2. Field-Scale Partitioning of Ecosystem Respiration Components Suggests Carbon Stabilization in a Bioenergy Grass Ecosystem

    Science.gov (United States)

    Black, C. K.; Miller, J. N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2014-12-01

    Annually-harvested agroecosystems have the potential to be net carbon sinks only if their root systems allocate sufficient carbon belowground and if this carbon is then retained as stable soil organic matter. Soil respiration measurements are the most common approach to evaluate the stability of soil carbon at experimental time scales, but valid inferences require the partitioning of soil respiration into root-derived (current-year C) and heterotrophic (older C) components. This partitioning is challenging at the field scale because roots and soil are intricately mixed and physical separation in impossible without disturbing the fluxes to be measured. To partition soil flux and estimate the C sink potential of bioenergy crops, we used the carbon isotope difference between C3 and C4 plant species to quantify respiration from roots of three C4 grasses (maize, Miscanthus, and switchgrass) grown in a site with a mixed cropping history where respiration from the breakdown of old soil carbon has a mixed C3-C4 signature. We used a Keeling plot approach to partition fluxes both at the soil surface using soil chambers and from the whole field using continuous flow sampling of air within and above the canopy. Although soil respiration rates from perennial grasses were higher than those from maize, the isotopic signature of respired carbon indicated that the fraction of soil CO2 flux attributable to current-year vegetation was 1.5 (switchgrass) to 2 (Miscanthus) times greater in perennials than that from maize, indicating that soil CO2 flux came mostly from roots and turnover of soil organic matter was reduced in the perennial crops. This reduction in soil heterotrophic respiration, combined with the much greater quantities of C allocated belowground by perennial grasses compared to maize, suggests that perennial grasses grown as bioenergy crops may be able to provide an additional climate benefit by acting as carbon sinks in addition to reducing fossil fuel consumption.

  3. Stability estimates for linearized near-field phase retrieval in X-ray phase contrast imaging

    CERN Document Server

    Maretzke, Simon

    2016-01-01

    Propagation-based X-ray phase contrast enables nanoscale imaging of biological tissue by probing not only the attenuation, but also the real part of the refractive index of the sample. Since only intensities of diffracted waves can be measured, the main mathematical challenge consists in a phase-retrieval problem in the near-field regime. We treat an often used linearized version of this problem known as contract transfer function model. Surprisingly, this inverse problem turns out to be well-posed assuming only a compact support of the imaged object. Moreover, we establish bounds on the Lipschitz stability constant. In general this constant grows exponentially with the Fresnel number of the imaging setup. However, both for homogeneous objects, characterized by a fixed ratio of the induced refractive phase shifts and attenuation, and in the case of measurements at two distances, a much more favorable algebraic dependence on the Fresnel number can be shown. In some cases we establish order optimality of our es...

  4. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  5. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  6. Multidimensional stability analysis of the phase-field method for fracture with a general degradation function and energy split.

    Science.gov (United States)

    Arriaga, Miguel; Waisman, Haim

    2017-06-01

    A local physical stability criterion for multidimensional fracture problems modeled by the phase field method is developed and studied. Stability analysis provides a rigorous mathematical way to determine the onset of an unstable damage growth and fracture of the structure. In this work, stability is determined by examining the roots of a characteristic equation that arise when a linear perturbation technique is applied to the instantaneous partial differential equation system in a general viscoplastic material. It is shown that such analysis is not limited to a particular degradation function or energy split and could therefore be applied to a wide range of cases. Numerical results are presented to verify the theoretical predictions assuming quadratic and cubic degradation functions. Additionally we show that this stability criterion can be directly expanded to 2D with robust mesh-insensitive predictive capabilities with respect to crack nucleation and path. Several numerical examples are presented to verify these results.

  7. Influence of magnetic fields on the hydration process of amino acids: vibrational spectroscopy study of L-phenylalanine and L-glutamine.

    Science.gov (United States)

    De Ninno, Antonella; Congiu Castellano, Agostina

    2014-02-01

    Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effect of weak electromagnetic fields on the structure of L-glutamine (L-Gln) and L-phenylalnine (L-Phe) in aqueous solution. It has been found that the exposure to a DC field or a 50 Hz AC field, for a short time induces modifications in the spectra of exposed samples in agreement with our preceding observations on glutamic acid. Furthermore, the acid-base equilibrium has been investigated by using the ratio of the intensity of the deprotonated on protonated species. In the case of L-Phe, the exposure induces a measurable shift of acid dissociation constant pKa1 out of the experimental errors, while in case of L-Gln, the effect is under the limit detectable with this method. The phenomenon of the shift of the acid-base equilibrium has been connected elsewhere to modification of the water-water hydrogen bonds in the water around both the backbone and the residue (R). Here we suggest that the magnetic field modifies the water structure around the molecules and changes the hydrophobic interactions allowing the molecules of amino acids to aggregate. The differences observed in the behavior of L-Phe and L-Gln may be related to the differences in the polarity of their residues.

  8. Modelling the effects of waste components on cement hydration

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2001-01-01

    Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long te

  9. Modelling the effects of waste components on cement hydration

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2000-01-01

    Ordinary Portland Cement (OPC) is often used for the Solidification/Stabilization (S/S) of waste containing heavy metals and salts. These waste componenents will precipitate in the form of insoluble compounds onto unreacted cement clinker grains preventing further hydration. In this study the long t

  10. A Model for Temperature Influence on Concrete Hydration Exothermic Rate (Part one:Theory and Experiment)

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenyang; QIANG Sheng; CHEN Weimin

    2014-01-01

    Recent achievements in concrete hydration exothermic models based on Arrhenius equation have improved computation accuracy for mass concrete temperature field. But the properties of the activation energy and the gas constant (Ea/R) have not been well studied yet. From the latest experiments it is shown that Ea/R obviously changes with the hydration degree without fixed form. In this paper, the relationship between hydration degree and Ea/R is studied and a new hydration exothermic model is proposed. With those achievements, the mass concrete temperature field with arbitrary boundary condition can be calculated more precisely.

  11. Hydration and physical performance.

    Science.gov (United States)

    Murray, Bob

    2007-10-01

    There is a rich scientific literature regarding hydration status and physical function that began in the late 1800s, although the relationship was likely apparent centuries before that. A decrease in body water from normal levels (often referred to as dehydration or hypohydration) provokes changes in cardiovascular, thermoregulatory, metabolic, and central nervous function that become increasingly greater as dehydration worsens. Similarly, performance impairment often reported with modest dehydration (e.g., -2% body mass) is also exacerbated by greater fluid loss. Dehydration during physical activity in the heat provokes greater performance decrements than similar activity in cooler conditions, a difference thought to be due, at least in part, to greater cardiovascular and thermoregulatory strain associated with heat exposure. There is little doubt that performance during prolonged, continuous exercise in the heat is impaired by levels of dehydration >or= -2% body mass, and there is some evidence that lower levels of dehydration can also impair performance even during relatively short-duration, intermittent exercise. Although additional research is needed to more fully understand low-level dehydration's effects on physical performance, one can generalize that when performance is at stake, it is better to be well-hydrated than dehydrated. This generalization holds true in the occupational, military, and sports settings.

  12. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  13. Perspective: Structure and ultrafast dynamics of biomolecular hydration shells

    Directory of Open Access Journals (Sweden)

    Damien Laage

    2017-07-01

    Full Text Available The structure and function of biomolecules can be strongly influenced by their hydration shells. A key challenge is thus to determine the extent to which these shells differ from bulk water, since the structural fluctuations and molecular excitations of hydrating water molecules within these shells can cover a broad range in both space and time. Recent progress in theory, molecular dynamics simulations, and ultrafast vibrational spectroscopy has led to new and detailed insight into the fluctuations of water structure, elementary water motions, and electric fields at hydrated biointerfaces. Here, we discuss some central aspects of these advances, focusing on elementary molecular mechanisms and processes of hydration on a femto- to picosecond time scale, with some special attention given to several issues subject to debate.

  14. Some thermodynamical aspects of protein hydration water

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco, E-mail: francesco.mallamace@unime.it [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Mallamace, Domenico [Dipartimento SASTAS, Università di Messina, I-98166 Messina (Italy); Vasi, Sebastiano [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Vasi, Cirino [CNR-IPCF, Viale F. Stagno D’Alcontres 37, I-98158 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  15. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  16. Effects of lanthanoid cations on the first electronic transition of liquid water studied using attenuated total reflection far-ultraviolet spectroscopy: ligand field splitting of lanthanoid hydrates in aqueous solutions.

    Science.gov (United States)

    Goto, Takeyoshi; Ikehata, Akifumi; Morisawa, Yusuke; Higashi, Noboru; Ozaki, Yukihiro

    2012-10-15

    The effects of the lanthanoid cations (Ln(3+)) on the first electronic transition (à ← X̃) of liquid water were studied from the attenuated total reflection far-ultraviolet (ATR-FUV) spectra of trivalent Ln(3+) electrolyte solutions (1 M), except Pm(3+). The à ← X̃ transition energies of the Ln(3+) electrolyte solutions show a distinct tetrad in their dependence on the number of 4f electrons of the Ln(3+) cations. For the half occupation period of the 4f electrons, the à ← X̃ transition energies decrease from La(3+) (4f(0), 8.0375 eV) to Nd(3+) (4f(3), 8.0277 eV) and increase from Sm(3+) (4f(5), 8.0279 eV) to Gd(3+) (4f(7), 8.0374 eV). For the complete occupation period, there are two local minima at Dy(3+) (4f(9), 8.0349 eV) and Yb(3+) (4f(13), 8.0355 eV). The à ← X̃ transition energies of the tetrad nodes (La(3+), Gd(3+), Ho(3+) (4f(10)), and Lu(3+) (4f(14))) increase slightly, as the nuclear charge increases in accordance with the hydration energies of the Ln(3+) cations. The energy difference (ΔE) between the à ← X̃ transition energies and the line between La(3+) and Lu(3+) is largest at Nd(3+) (80.5 cm(-1)) for the half occupation period and at Dy(3+) (26.1 cm(-1)) and Yb(3+) (24.5 cm(-1)) for the complete occupation period. The order of magnitude of ΔE is comparable to the ligand field splitting (LFS) of the ground state multiplets of Ln(3+) complexes. The observed tetrad trend of the à ← X̃ transition energies of the Ln(3+) electrolyte solutions across the 4f period reflects the hydration energies of the Ln(3+) cations and the LFS induced by water ligands.

  17. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  18. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    , allows us a unique opportunity to study the response of methane hydrate deposits to warming. Gas hydrate stability in the Arctic and the permeability of the shelf sediments to gas migration is thought to be closely linked with relict submarine permafrost. Submarine permafrost extent depends on several environmental factors, such as the shelf lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, groundwater hydrology, and the salinity of the pore water. Effects of submarine groundwater discharge, which introduces fresh terrestrial groundwater off-shore, can freshen deep marine sediments and is an important control on the freezing point depression of ice and methane hydrate. While several thermal modeling studies suggest the permafrost layer should still be largely intact near-shore, many recent field studies have reported elevated methane levels in Arctic coastal waters. The permafrost layer is thought to create an impermeable barrier to fluid and gas flow, however, talik formation (unfrozen regions within otherwise continuous permafrost) below paleo-river channels can create permeable pathways for gas migration from depth. This is the first study of its kind to make predictions of the methane gas flux to the water column from the Arctic shelf sediments using a 2D multi-phase fluid flow model. Model results show that the dissociation of methane hydrate deposits through taliks can supersaturate the overlying water column at present-day relative to equilibrium with the atmosphere when taliks are large (> 1 km width) or hydrate saturation is high within hydrate layers (> 50% pore volume). Supersaturated waters likely drive a net flux of methane into the atmosphere, a potent greenhouse gas. Effects of anthropogenic global warming will certainly increase gas venting rates if ocean bottom water temperatures increase, but likely won't have immediately observable impacts due to the long response times.

  19. Stability Of Superposed Fluids Through Magnetic Field With Suspended Particles Of Different Permeability Saturated Through Porous Layer

    Directory of Open Access Journals (Sweden)

    Singh M.

    2015-12-01

    Full Text Available The instability of plane interface between two superposed Rivlin-Ericksen elastico-viscous fluids saturated through a porous medium has been studied to include the suspended (dust particles effect. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For stationary convection, the Rivlin-Ericksen elastico-viscous fluid behaves like Newtonian fluids. It found that for a potentially stable arrangement the Rivlin-Ericksen elastico-viscous fluid of different permeabilities in the presence of suspended particles in a porous medium is stable, whereas in a potentially unstable case instability of the system occurs. In the presence of a magnetic field for a potentially stable arrangement the system is always stable and for the potentially unstable arrangement, the magnetic field succeeds in stabilizing certain wave-number band which was unstable in the absence of the magnetic field.

  20. A field experimental study of lignin sand stabilizing material (LSSM) extracted from spent-liquor of straw pulping paper mills

    Institute of Scientific and Technical Information of China (English)

    WANG Han-jie; LI Jing; LU Xiao-zhen; JIN Yong-can

    2005-01-01

    A new technique was introduced for sand stabilization and re-vegetation by use of lignin sand stabilizing material( LSSM). LSSM is a reconstructed organic compound with lignin as the most dominant component from the extracts of black-liquor issued by straw pulp paper mills. Unlike the polyvinyl acetate or foamed asphalt commonly used for dune stabilization, the new material is plant-friendly and can be used with virescence actions simultaneously. The field experimental study was conducted since 2001 in China' s Northwest Ningxia Hui Autonomous Region and has been proved that LSSM is effective in stabilizing the fugitive dunes, making the arenaceous plants survive and the bare dune vegetative. The advisable solution concentration is 2% and the optimal field spraying quantity is 2.5 L/m2. The soil nutrients of the stabilized and greened dune, such as organic matter, available phosphorous and total nitrogen are all increased compared with the control treatment, which is certainly helpful to the growth of arenaceous plants. The technique is worthwhile to be popularized because it is provided not only a new method for desertification control but also an outlet for cleaning contaminants issued from the straw paper mills.

  1. Development of Carbon Sequestration Options by Studying Carbon Dioxide-Methane Exchange in Hydrates

    Science.gov (United States)

    Horvat, Kristine Nicole

    Gas hydrates form naturally at high pressures (>4 MPa) and low temperatures (climate change point of view, a 100 ppm increase in atmospheric carbon dioxide (CO2) levels over the past century is of urgent concern. A potential solution to both of these issues is to simultaneously exchange CH4 with CO 2 in natural hydrate reserves by forming more stable CO2 hydrates. This approach would minimize disturbances to the host sediment matrix of the seafloor while sequestering CO2. Understanding hydrate growth over time is imperative to prepare for large scale CH4 extraction coupled with CO2 sequestration. In this study, we performed macroscale experiments in a 200 mL high-pressure Jerguson cell that mimicked the pressure-temperature conditions of the seafloor. A total of 13 runs were performed under varying conditions. These included the formation of CH4 hydrates, followed by a CO2 gas injection and CO2 hydrate formation followed by a CH4 gas injection. Results demonstrated that once gas hydrates formed, they show "memory effect" in subsequent charges, irrespective of the two gases injected. This was borne out by the induction time data for hydrate formation that reduced from 96 hours for CH4 and 24 hours for CO2 to instant hydrate formation in both cases upon injection of a secondary gas. During the study of CH4-CO2 exchange where CH4 hydrates were first formed and CO2 gas was injected into the system, gas chromatographic (GC) analysis of the cell indicated a pure CH4 gas phase, i.e., all injected CO2 gas entered the hydrate phase and remained trapped in hydrate cages for several hours, though over time some CO2 did enter the gas phase. Alternatively, during the CH 4-CO2 exchange study where CO2 hydrates were first formed, the injected CH4 initially entered the hydrate phase, but quickly gaseous CO2 exchanged with CH4 in hydrates to form more stable CO2 hydrates. These results are consistent with the better thermodynamic stability of CO2 hydrates, and this appears to be a

  2. Experimental melting of phlogopite-peridotite in the garnet stability field

    Science.gov (United States)

    Condamine, Pierre; Médard, Etienne; Devidal, Jean-Luc

    2016-11-01

    Melting experiments have been performed at 3 GPa, between 1150 and 1450 °C, on a phlogopite-peridotite source in the garnet stability field. We succeeded to extract and determine the melt compositions of both phlogopite-bearing lherzolite and harzburgite from low to high degrees of melting (ϕ = 0.008-0.256). Accounting for the presence of small amounts of F in the mantle, we determined that phlogopite coexists with melt >150 °C above the solidus position (1150-1200 °C). Fluorine content of phlogopite continuously increases during partial melting from 0.2 to 0.9 wt% between 1000 and 1150 °C and 0.5 to 0.6 wt% between 1150 and 1300 °C at 1 and 3 GPa, respectively. The phlogopite continuous breakdown in the lherzolite follows the reaction: 0.59 phlogopite + 0.52 clinopyroxene + 0.18 garnet = 0.06 olivine + 0.23 orthopyroxene + 1.00 melt. In the phlogopite-harzburgite, the reaction is: 0.93 phlogopite + 0.46 garnet = 0.25 olivine + 0.14 orthopyroxene + 1.00 melt. Melts from phlogopite-peridotite sources at 3 GPa are silica-undersaturated and are foiditic to trachybasaltic in composition from very low (0.8 wt%) to high (25.6 wt%) degrees of melting. As observed at 1 GPa, the potassium content of primary mantle melts is buffered by the presence of phlogopite, but the buffering values are higher, from 6.0 to 8.0 wt% depending on the source fertility. We finally show that phlogopite garnet-peridotite melts are very close to the composition of the most primitive post-collisional lavas described worldwide.

  3. Electrohydrodynamic linear stability of two immiscible fluids in channel flow under the influence of a parallel electric field

    Science.gov (United States)

    Kerem Uguz, A.; Aubry, Nadine

    2007-11-01

    The instability of a flat interface between two viscous, immiscible and incompressible liquids in plane Poiseuille flow is studied in the presence of an electric field parallel to the flat interface. In practice, either the stability or instability of the interface is desired depending on the application such as material deposition, mixing, or droplet formation. For that purpose the effect of various parameters was studied via linear stability analysis. The electric field was found to be either stabilizing or destabilizing depending on the electrical properties of the fluids. An interesting feature of this problem is the presence of a second window of stability, namely for some parameters there exist two regions of wavenumbers in which the system is stable. Our results are compared with the case where the electric field is normal to the fluid-fluid interface [1, 2]. [1] O. Ozen, N. Aubry, D. T. Papageorgiou and P. G. Petropoulos, Electrochimica Acta, 51, 5316-5323 (2006) [2] F. Li, O. Ozen, N. Aubry, D.T. Papageorgiou and P.G. Petropoulos, Journal of Fluid Mechanics, 583, 347-377 (2007)

  4. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  5. The development and reliability of a simple field based screening tool to assess core stability in athletes.

    Science.gov (United States)

    O'Connor, S; McCaffrey, N; Whyte, E; Moran, K

    2016-07-01

    To adapt the trunk stability test to facilitate further sub-classification of higher levels of core stability in athletes for use as a screening tool. To establish the inter-tester and intra-tester reliability of this adapted core stability test. Reliability study. Collegiate athletic therapy facilities. Fifteen physically active male subjects (19.46 ± 0.63) free from any orthopaedic or neurological disorders were recruited from a convenience sample of collegiate students. The intraclass correlation coefficients (ICC) and 95% Confidence Intervals (CI) were computed to establish inter-tester and intra-tester reliability. Excellent ICC values were observed in the adapted core stability test for inter-tester reliability (0.97) and good to excellent intra-tester reliability (0.73-0.90). While the 95% CI were narrow for inter-tester reliability, Tester A and C 95% CI's were widely distributed compared to Tester B. The adapted core stability test developed in this study is a quick and simple field based test to administer that can further subdivide athletes with high levels of core stability. The test demonstrated high inter-tester and intra-tester reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Temporal stability of soil moisture spatial variability at two scales and its implication for optimal field monitoring

    Directory of Open Access Journals (Sweden)

    X. Zhou

    2007-05-01

    Full Text Available Soil moisture spatial distribution is a key component in characterizing and modeling water movement at multiple scales. The temporal stability of soil moisture spatial distribution at multiple depths was investigated at the 7.9-ha Shale Hills Catchment in central Pennsylvania with a year-round monitoring of 77 sites distributed across the catchment. For this catchment with heterogeneous soils and landforms, integration of soils information into the temporal stability assessment provided a more accurate location of representative monitoring sites for capturing mean soil moisture. The temporal stability pattern of soil moisture at the swale scale was similar to that at the catchment scale, suggesting that the swale could be used as a representative unit in the catchment study in terms of mean soil moisture dynamics. The temporal stability of soil moisture variability in this catchment varied over space and seasons. Temporally stable sites were found in the northwestern and southeastern parts of the catchment, while the areas near the stream and some swale areas had lower temporal stability. The spatial distribution of soil moisture was more stable over time during wet seasons, but less stable during transitional periods (i.e. drying or recharging periods. The temporal stability concept helps the optimal design of field monitoring sites and sampling strategies. On the other hand, the temporally unstable sites provide insights regarding the hydrological processes behind the spatial variability of soil moisture.

  7. Investigation on stability of directionally solidified CBr4-C2Cl6 lamellar eutectic by using multiphase field simulation

    Institute of Scientific and Technical Information of China (English)

    Zhu Yao-chan; Wang Jin-Cheng; Yang Gen-Cang; Zhao Da-Wen

    2007-01-01

    With the multiphase field method,the stability of lamellar basic state is investigated during the directional solidification of eutectic alloy CBr4-C2Cl6.A great number of lamellar patterns observed in experiments are simulated,and a stability diagram for lamellar pattern selections is presented.The simulated growth behaviours of these patterns are found to be qualitatively consistent with Karma et al'S numerical calculations and experimental results.The formation of the primary instability is attributed to the destabilization of solute boundary layer.

  8. Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

  9. Transition state trajectory stability determines barrier crossing rates in chemical reactions induced by time-dependent oscillating fields

    CERN Document Server

    Craven, Galen T; Hernandez, Rigoberto

    2015-01-01

    When a chemical reaction is driven by an external field, the transition state that the system must pass through as it changes from reactant to product -for example, an energy barrier- becomes time-dependent. We show that for periodic forcing the rate of barrier crossing can be determined through stability analysis of the non-autonomous transition state. Specifically, strong agreement is observed between the difference in the Floquet exponents describing stability of the transition state trajectory, which defines a recrossing-free dividing surface [G. T. Craven, T. Bartsch, and R. Hernandez, Phys. Rev. E 89, 040801(R) (2014)], and the rates calculated by simulation of ensembles of trajectories. This result opens the possibility to extract rates directly from the intrinsic stability of the transition state, even when it is time-dependent, without requiring a numerically-expensive simulation of the long-time dynamics of a large ensemble of trajectories.

  10. CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts.

    Science.gov (United States)

    Park, Sungwon; Lee, Seungmin; Lee, Youngjun; Seo, Yongwon

    2013-07-02

    In order to investigate the feasibility of semiclathrate hydrate-based precombustion CO2 capture, thermodynamic, kinetic, and spectroscopic studies were undertaken on the semiclathrate hydrates formed from a fuel gas mixture of H2 (60%) + CO2 (40%) in the presence of quaternary ammonium salts (QASs) such as tetra-n-butylammonium bromide (TBAB) and fluoride (TBAF). The inclusion of QASs demonstrated significantly stabilized hydrate dissociation conditions. This effect was greater for TBAF than TBAB. However, due to the presence of dodecahedral cages that are partially filled with water molecules, TBAF showed a relatively lower gas uptake than TBAB. From the stability condition measurements and compositional analyses, it was found that with only one step of semiclathrate hydrate formation with the fuel gas mixture from the IGCC plants, 95% CO2 can be enriched in the semiclathrate hydrate phase at room temperature. The enclathration of both CO2 and H2 in the cages of the QAS semiclathrate hydrates and the structural transition that results from the inclusion of QASs were confirmed through Raman and (1)H NMR measurements. The experimental results obtained in this study provide the physicochemical background required for understanding selective partitioning and distributions of guest gases in the QAS semiclathrate hydrates and for investigating the feasibility of a semiclathrate hydrate-based precombustion CO2 capture process.

  11. Explicit treatment of hydrogen bonds in the universal force field: Validation and application for metal-organic frameworks, hydrates, and host-guest complexes

    Science.gov (United States)

    Coupry, Damien E.; Addicoat, Matthew A.; Heine, Thomas

    2017-10-01

    A straightforward means to include explicit hydrogen bonds within the Universal Force Field (UFF) is presented. Instead of treating hydrogen bonds as non-bonded interaction subjected to electrostatic and Lennard-Jones potentials, we introduce an explicit bond with a negligible bond order, thus maintaining the structural integrity of the H-bonded complexes and avoiding the necessity to assign arbitrary charges to the system. The explicit hydrogen bond changes the coordination number of the acceptor site and the approach is thus most suitable for systems with under-coordinated atoms, such as many metal-organic frameworks; however, it also shows an excellent performance for other systems involving a hydrogen-bonded framework. In particular, it is an excellent means for creating starting structures for molecular dynamics and for investigations employing more sophisticated methods. The approach is validated for the hydrogen bonded complexes in the S22 dataset and then employed for a set of metal-organic frameworks from the Computation-Ready Experimental database and several hydrogen bonded crystals including water ice and clathrates. We show that the direct inclusion of hydrogen bonds reduces the maximum error in predicted cell parameters from 66% to only 14%, and the mean unsigned error is similarly reduced from 14% to only 4%. We posit that with the inclusion of hydrogen bonding, the solvent-mediated breathing of frameworks such as MIL-53 is now accessible to rapid UFF calculations, which will further the aim of rapid computational scanning of metal-organic frameworks while providing better starting points for electronic structure calculations.

  12. Molecular dynamics simulations for the growth of CH4-CO2 mixed hydrate

    Institute of Scientific and Technical Information of China (English)

    Lizhi Yi; Deqing Liang; Xuebing Zhou; Dongliang Li

    2014-01-01

    Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xCO2=75%, xCO2=50%, and xCO2=25%systems at T =250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.

  13. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  14. Mean-field dispersion-induced spatial synchrony, oscillation and amplitude death, and temporal stability in an ecological model.

    Science.gov (United States)

    Banerjee, Tanmoy; Dutta, Partha Sharathi; Gupta, Anubhav

    2015-05-01

    One of the most important issues in spatial ecology is to understand how spatial synchrony and dispersal-induced stability interact. In the existing studies it is shown that dispersion among identical patches results in spatial synchrony; on the other hand, the combination of spatial heterogeneity and dispersion is necessary for dispersal-induced stability (or temporal stability). Population synchrony and temporal stability are thus often thought of as conflicting outcomes of dispersion. In contrast to the general belief, in this present study we show that mean-field dispersion is conducive to both spatial synchrony and dispersal-induced stability even in identical patches. This simultaneous occurrence of rather conflicting phenomena is governed by the suppression of oscillation states, namely amplitude death (AD) and oscillation death (OD). These states emerge through spatial synchrony of the oscillating patches in the strong-coupling strength. We present an interpretation of the mean-field diffusive coupling in the context of ecology and identify that, with increasing mean-field density, an open ecosystem transforms into a closed ecosystem. We report on the occurrence of OD in an ecological model and explain its significance. Using a detailed bifurcation analysis we show that, depending on the mortality rate and carrying capacity, the system shows either AD or both AD and OD. We also show that the results remain qualitatively the same for a network of oscillators. We identify a new transition scenario between the same type of oscillation suppression states whose geneses differ. In the parameter-mismatched case, we further report on the direct transition from OD to AD through a transcritical bifurcation. We believe that this study will lead to a proper interpretation of AD and OD in ecology, which may be important for the conservation and management of several communities in ecosystems.

  15. Formulation and shelf life stability of water-borne lecithin nanoparticles for potential application in dietary supplements field.

    Science.gov (United States)

    Edris, Amr E

    2012-09-01

    ABSTRACT The objective of the present investigation is to formulate commercial soybean lecithin as nanoparticles in solvent-free aqueous system for potential supplementary applications. A mechanical method, which involved two major steps, was used for that purpose. First, lecithin submicron particles (~ 0.5 μm) have been prepared by gradual hydration of lecithin powder using mechanical agitation. Finally, the size of these particles was further reduced to lecithin nanoparticles were assessed every 15 days during the 3-month shelf life period at two different temperatures. Results showed that the final particle size of lecithin in the freshly prepared aqueous dispersion was 79.8 ± 1.0 nm and the amount of peroxide detected was 3.5 ± 0.2 meq/kg lipid. At the end of the storage period, dispersions stored at 4°C exhibited physical and chemical stability as evident from the translucent appearance, the small change in particle size (84.1 ± 1.3 nm), and the small amount of generated peroxides (4.1 ± 0.2 meq/kg lipid). On the other hand, dispersions stored at 25°C were physically stable up to 60 days. Over that period, samples became turbid and the particle size increased to 145.0 ± 1.7 nm with a bimodal distribution pattern. This behavior was due to phospholipids (PLs) degradation and hydrolysis under acidic conditions, which proceeds faster at a relatively high temperature (25°C) than at (4°C). The outcome of this investigation may help in developing water-based dispersions carrying lecithin nanoparticles for dietary supplement of PLs.

  16. Lysozyme in water-acetonitrile mixtures: Preferential solvation at the inner edge of excess hydration

    Science.gov (United States)

    Sirotkin, Vladimir A.; Kuchierskaya, Alexandra A.

    2017-06-01

    Preferential solvation/hydration is an effective way for regulating the mechanism of the protein destabilization/stabilization. Organic solvent/water sorption and residual enzyme activity measurements were performed to monitor the preferential solvation/hydration of hen egg-white lysozyme at high and low water content in acetonitrile at 25 °C. The obtained results show that the protein destabilization/stabilization depends essentially on the initial hydration level of lysozyme and the water content in acetonitrile. There are three composition regimes for the dried lysozyme. At high water content, the lysozyme has a higher affinity for water than for acetonitrile. The residual enzyme activity values are close to 100%. At the intermediate water content, the dehydrated lysozyme has a higher affinity for acetonitrile than for water. A minimum on the residual enzyme activity curve was observed in this concentration range. At the lowest water content, the organic solvent molecules are preferentially excluded from the dried lysozyme, resulting in the preferential hydration. The residual catalytic activity is ˜80%, compared with that observed after incubation in pure water. Two distinct schemes are operative for the hydrated lysozyme. At high and intermediate water content, lysozyme is preferentially hydrated. However, in contrast to the dried protein, at the intermediate water content, the initially hydrated lysozyme has the increased preferential hydration parameters. At low water content, the preferential binding of the acetonitrile molecules to the initially hydrated lysozyme was detected. No residual enzyme activity was observed in the water-poor acetonitrile. Our data clearly show that the initial hydration level of the protein macromolecules is one of the key factors that govern the stability of the protein-water-organic solvent systems.

  17. Sulfide Composition and Melt Stability Field in the Earth's Upper Mantle

    Science.gov (United States)

    Zhang, Z.; Hirschmann, M. M.

    2015-12-01

    estimates, and consequently likely refractory. Together with future work on metal/sulfur ratio of sulfide, we will define the sulfide composition-depth profile and its corresponding melt stability field in different mantle redox/geotherm domains.

  18. The stability of two layer dielectric-electrolyte micro-flow subjected to an external electric field

    Science.gov (United States)

    Demekhin, E. A.; Ganchenko, G. S.; Navarkar, A.; Amiroudine, S.

    2016-09-01

    The two-phase microflow of conductive (electrolyte) and non-conductive (dielectric) viscous liquids bounded by two solid walls in an external electric field is scrutinized. The lower solid wall, which is adjoined to the electrolyte, is a charged dielectric surface; the upper wall which bounds the dielectric is insulated. The problem has a steady one-dimensional (1D) solution. The theoretical results for a plug-like velocity profile are successfully compared with available theoretical and experimental data from the literature. The linear stability of the steady-state flow is investigated numerically with spectral Galerkin's method for solving linearized eigenvalue problem. This method was successfully applied for related problem of electroosmosis of ultrathin film. The numerical analysis provides insights on the coexistence of long and short-wave instabilities. The influence of control parameters such as the ratio of the viscosities of both liquids and the ratio of the channel heights on the stability of one-dimensional flow was investigated for different values of external electric field. The influence of an external pressure gradient on the flow stability is also investigated. The experimental facts established by other authors, according to which the system destabilizes if the electroosmotic flow is oppositely directed to the external pressure gradient, is confirmed in this work. Otherwise stabilization takes place.

  19. First-principles study of electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate.

    Science.gov (United States)

    Li, Zhimin; Huang, Huisheng; Zhang, Tonglai; Zhang, Shengtao; Zhang, Jianguo; Yang, Li

    2014-01-01

    The electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate have been studied using density functional theory. The results indicate that the influence of external electric field on the crystal structure is anisotropic. The electric field effects on the distance of the Pb-O ionic interactions are stronger than those on the covalent interactions. However, the changes of most structural parameters are not monotonically dependent on the increased electric field. This reveals that lead styphnate can undergo a phase transition upon the external electric field. When the applied field is increased to 0.003 a.u., the effective band gap and total density of states vary evidently. And the Franz-Keldysh effect yields larger influence on the band gap than the structural change induced by external electric field. Furthermore, lead styphnate has different initial decomposition reactions in the presence and absence of the electric field. Finally, we find that its sensitivity becomes more and more sensitive with the increasing electric field.

  20. Structure and Hydration of Highly Branched, Monodisperse Phytoglycogen Nanoparticles

    Science.gov (United States)

    Atkinson, John; Nickels, Jonathan; Stanley, Christopher; Diallo, Souleymane; Katsaras, John; Dutcher, John

    Monodisperse phytoglycogen nanoparticles are a promising, new soft colloidal nanomaterial with many applications in the personal care, food, nutraceutical and pharmaceutical industries. These applications rely on exceptional properties that emerge from the highly branched structure of phytoglycogen and its interaction with water, such as extraordinarily high water retention, and low viscosity and exceptional stability in water. The structure and hydration of the nanoparticles was characterized using small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS). SANS allowed us to determine the size of the nanoparticles, evaluate their radial density profile, quantify the particle-to-particle spacing, and determine their water content. The results show clearly that the nanoparticles are highly hydrated, with each nanoparticle containing 250% of its mass in water, and that aqueous dispersions approach a jamming transition at ~ 25% (w/w). QENS experiments provided an independent and consistent measure of the high level of hydration of the particles.

  1. Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.

    2011-01-01

    In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.

  2. Pronounced Hysteresis and High Charge Storage Stability of Single-Walled Carbon Nanotube-Based Field-Effect Transistors

    OpenAIRE

    Wang, S.G.; Sellin, P.

    2005-01-01

    In this letter, pronounced hysteresis loops were observed in single-walled carbon nanotube-based field-effect transistors (CNTFETs). The shift in threshold voltage was found to increase with increasing gate voltage sweep ranges. A significant enhancement in the charge storage stability over 14 days was obtained at room temperature after a two-stage hydrogen and air annealing process was applied to the CNTFETs. The passivation of interface traps by annealing in hydrogen and the removal of phys...

  3. Utilization of industrial solid wastes able to generate calcium trisulphoaluminate and silicate hydrates in stabilization processes and for the manufacture of building materials; Utilizzazione di residui solidi industriali in grado di generare trisolfoalluminato e silicato di calcio idrati nei processi di stabilizzazione e nella produzione di materiali da costruzione

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, L. [Naples, Univ. `Federico II` (Italy). Dipt. di Chimica; Cioffi, R. [Naples, Univ. `Federico II` (Italy). Ditp. di Ingegneria dei Materiali e della Produzione

    1998-01-01

    In this work the stabilization of hazardous solid wastes containing heavy metals has been studied by means of novel matrices able to generate calcium trisulphoaluminate and silicate hydrates. The process is based on the hydration of two different mixtures containing blast furnace slag, coal ashes, chemical gypsum and Portland cement. The stabilization capacity of the two mixtures has been checked with regard to both a residue from an incinerator of municipal solid wastes and model systems obtained by adding 5 and 10% of soluble nitrates of Cd, Cr, Cu, Ni, Pb and Zn. The stabilized products have been validated from the point of view of mechanical properties by determining the unconfined compressive strength, and from the environmental point of view by means of static and dynamic leaching tests. Both matrices have proved to have great potentiality for the stabilization of hazardous solid wastes, the one based on blast furnace slag being better. Finally, evidence is given that different leaching tests are necessary to fully understand the immobilization mechanism responsible for stabilization. [Italiano] In questo lavoro e` stata studiata la atbilizzazione di residui tossici e nocivi contenenti metalli pesanti per mezzo di matrici leganti innovative capaci di generare trisolfoalluminato e silicato di calcio idrati. Il processo e` basato sull`idratazione di due diverse miscele contenenti scoria d`alto forno, ceneri di carbone, gessi chimici e cemento Portland. Le capacita` stabilizzanti delle due miscele sono state verificate sia nei confronti di un residuo solido generato a seguito dell`incenerimento di RSU, che nei confronti di sistemi modello ottenuti aggiungendo singolarmente il 5 e 10% dei nitrati solubili di Cd, Cr, Cu, Ni, Pb e Zn. I prodotti solidi stabilizzati sono stati validati dal punto di vista delle prestazioni meccaniche mediante prove di resistenza a compressione, e dal punto di vista ambientale mediante test di rilascio sia statici che dinamici

  4. Atmospheric Consequences of the Hydration in Gas Phase of Aldehydes and Ketones

    Science.gov (United States)

    Vaida, V.; Axson, J. L.; Maron, M. K.

    2010-12-01

    Aldehydes and ketones are known oxidation products of biogenic and anthropogenic VOCs and have been observed by field studies to be present in aerosol and cloud particles. While the gas-phase chemistry of these compounds is fairly well understood, their modeled concentration and role in SOA formation remains controversial. In aqueous solution aldehydes and ketones hydrate to form alcohols. We explore the hydration of these compounds in the gas phase and examine the water and photon mediated processes of these hydrates. The formation of hydrates can contribute to aerosol growth and formation by partitioning into clouds and aerosols because of their lower vapor pressure and tendency to form intermolecular hydrogen bonds. Hydration of aldehydes and ketones has important consequences to the atmospheric photochemistry of these organic compounds. The experimental approaches employ Fourier transform spectroscopy (FTS) and cavity ringdown spectroscopy (CRDS) to observe the formation of diols and hydrates by these molecules as a function of relative humidity.

  5. Effect of Quantum Interference from Incoherent Pumping Field and Spontaneous Emission on Controlling the Optical Bistability and Multi-Stability

    Institute of Scientific and Technical Information of China (English)

    H.R.Hamedi; Ali Sari; M.Sahrai; S.H.Asadpour

    2013-01-01

    Optical bistability (OB) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated.The effect of quantum interference arising from spontaneous emission and incoherent pumping on OB and OM is discussed.It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms.In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.

  6. Obsidian Hydration: A New Paleothermometer

    Energy Technology Data Exchange (ETDEWEB)

    Anovitz, Lawrence {Larry} M [ORNL; Riciputi, Lee R [ORNL; Cole, David R [ORNL; Fayek, Mostafa [ORNL; Elam, J. Michael [University of Tennessee, Knoxville (UTK)

    2006-01-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  7. Obsidian hydration: A new paleothermometer

    Science.gov (United States)

    Anovitz, Lawrence M.; Riciputi, Lee R.; Cole, David R.; Fayek, Mostafa; Elam, J. Michael

    2006-07-01

    The natural hydration of obsidian was first proposed as a dating technique for young geological and archaeological specimens by Friedman and Smith (1960), who noted that the thickness of the hydrated layer on obsidian artifacts increases with time. This approach is, however, sensitive to temperature and humidity under earth-surface conditions. This has made obsidian hydration dating more difficult, but potentially provides a unique tool for paleoclimatic reconstructions. In this paper we present the first successful application of this approach, based on combining laboratory-based experimental calibrations with archaeological samples from the Chalco site in the Basin of Mexico, dated using stratigraphically correlated 14C results and measuring hydration depths by secondary ion mass spectrometry. The resultant data suggest, first, that this approach is viable, even given the existing uncertainties, and that a cooling trend occurred in the Basin of Mexico over the past 1450 yr, a result corroborated by other paleoclimatic data.

  8. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  9. Role of external magnetic field and current closure in the force balance mechanism of a magnetically stabilized plasma torch

    Science.gov (United States)

    G, Ravi; Goyal, Vidhi

    2012-10-01

    Experimental investigations on the role of applied external magnetic field and return current closure in the force balance mechanism of a plasma torch are reported. The plasma torch is of low power and has wall, gas and magnetic stabilization mechanisms incorporated in it. Gas flow is divided into two parts: axial-central and peripheral-shroud, applied magnetic field is axial and return current is co-axial. Results indicate that application of large external magnetic field gives rise to not only J x B force but also, coupled with gas flow, to a new drag-cum-centrifugal force that acts on the plasma arc root and column. The magnetic field also plays a role in the return current closure dynamics and thus in the overall force balance mechanism. This in turn affects the electro-thermal efficiency of the plasma torch. Detailed experimental results, analytical calculations and physical model representing the processes will be presented and discussed.

  10. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.

    Science.gov (United States)

    Rabbani, Yahya; Ashtiani, Mahshid; Hashemabadi, Seyed Hassan

    2015-06-14

    In this study, the stability and rheological properties of a suspension of carbonyl iron microparticles (CIMs) in silicone oil were investigated within a temperature range of 10 to 85 °C. The effect of adding two hydrophobic (stearic and palmitic) acids on the stability and magnetorheological effect of a suspension of CIMs in silicone oil was studied. According to the results, for preparing a stable and efficient magnetorheological (MR) fluid, additives should be utilized. Therefore, 3 wt% of stearic acid was added to the MR fluid which led to an enhancement of the fluid stability over 92% at 25 °C. By investigating shear stress variation due to the changes in the shear rate for acid-based MR fluids, the maximum yield stress was obtained by fitting the Bingham plastic rheological model at high shear rates. Based on the existing correlations of yield stress and either temperature or magnetic field strength, a new model was fitted to the experimental data to monitor the simultaneous effect of magnetic field strength and temperature on the maximum yield stress. The results demonstrated that as the magnetic field intensified or the temperature decreased, the maximum yield stress increased dramatically. In addition, when the MR fluid reached its magnetic saturation, the viscosity of fluid depended only on the shear rate.

  11. Cauchy horizon stability in a collapsing spherical dust cloud: I. Geometric optics approximation and spherically symmetric test fields

    Science.gov (United States)

    Ortiz, Néstor; Sarbach, Olivier

    2014-04-01

    A spherical dust cloud which is initially at rest and which has a monotonously decaying density profile collapses and forms a shell-focusing singularity. Provided the density profile is not too flat, meaning that its second radial derivative is negative at the centre, this singularity is visible to local, and sometimes even to global observers. According to the strong cosmic censorship conjecture, such naked singularities should be unstable under generic, non-spherical perturbations of the initial data or when more realistic matter models are considered. In an attempt to gain further insight into this stability issue, in this work we initiate the analysis of a simpler but related problem. We discuss the stability of test fields propagating in the vicinity of the Cauchy horizon associated to the naked central singularity. We first study the high-frequency limit and show that the fields undergo a blueshift as they approach the Cauchy horizon. However, in contrast to what occurs at inner horizons of black holes, we show that the blueshift is uniformly bounded along incoming and outgoing null rays. Motivated by this boundedness result, we take a step beyond the geometric optics approximation and consider the Cauchy evolution of spherically symmetric test scalar fields. We prove that under reasonable conditions on the initial data a suitable rescaled field can be continuously extended to the Cauchy horizon. In particular, this result implies that the physical field is everywhere finite on the Cauchy horizon away from the central singularity.

  12. Northern gas fields and NGH technology. A feasibility study to develop natural gas hydrate technology for the international gas markets; Nordlige gassfelt and NGH-teknologi. En studie av muligheter for utvikling av naturgasshydratteknologi for det internasjonale gassmarked

    Energy Technology Data Exchange (ETDEWEB)

    Ramsland, Trond Ragnvald; Loy, Erik F.; Doesen, Sturle

    1997-12-31

    Two natural gas fields have been studied for three different technological solutions using two different economic theories. The aim was to examine whether a new technology for transporting natural gas, Natural Gas Hydrates (NGH), can compete with the existing technologies pipeline and Liquefied Natural Gas (LNG). Natural gas can rarely be used immediately after production and the supply systems can be divided into four interrelated parts: 1) Exploration. 2) Development and production. 3) Transportation. 4) Distribution. The emphasis in the study is on production costs and transportation. Exploration is assumed carried out and thus viewed sunk cost. Distribution from landing point to consumers is not part of the study. Production can take place either onshore or offshore, the natural gas can be transported to the market either by pipeline or ship and the costs are becoming more important as the distance from the fields to the markets increase. Natural gas projects have long lead times and large capital requirements. New supplies will materialise then if there is confidence that demand for the gas exists at a profitable price. Therefore natural gas is generally sold on long term contracts. The conclusions are that economies of scale exist and that pipeline is the superior technology for high volumes but cannot compete for smaller volumes where the LNG technology has been the best alternative. However, the report concludes that the NGH can compete fully. The distance to the market where the natural gas is to be transported is crucial for choice of transportation mode. The shipping modes are superior for long transportation distances. NGH is superior to LNG also with regards to distance. Despite that the two economic models used for the evaluation have provided very different absolute project values, they have provided the same conclusions about the ranking of the different technologies. It is clear then that if NGH technology is developed further into a reliable and

  13. Behavior of calcium silicate hydrate in aluminate solution

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; ZHAO Zhuo; LIU Gui-hua; ZHOU Qiu-sheng; PENG Zhi-hong

    2005-01-01

    Using calcium hydroxide and sodium silicate as starting materials, two kinds of calcium silicate hydrates, CaO · SiO2 · H2O and 2CaO · SiO2 · 1.17H2O, were hydro-thermally synthesized at 120 ℃. The reaction rule of calcium silicate hydrate in aluminate solution was investigated. The result shows that CaO · SiO2 · H2O is more stable than 2CaO · SiO2 · 1.17H2 O in aluminate solution and its stability increases with the increase of reaction temperature but decreases with the increase of caustic concentration. The reaction between calcium silicate hydrate and aluminate solution is mainly through two routes. In the first case, Al replaces partial Si in calcium silicate hydrate, meanwhile 3CaO · Al2 O3 · xSiO2 · (6-2x) H2 O (hydro-garnet) is formed and some SiO2 enters the solution. In the second case, calcium silicate hydrate can react directly with aluminate solution, forming hydro-garnet and Na2O · Al2O3 · 2SiO2 · nH2O (DSP). The desilication reaction of aluminate solution containing silicate could contribute partially to forming DSP.

  14. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States

    Directory of Open Access Journals (Sweden)

    N. F. Taylor

    2011-12-01

    Full Text Available We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA. This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007–2008. During the summer, 12% of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88% did not posses multiple possible states. In continuous measurements during the winter, 49% of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65% occupied the more hydrated state; 35% occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5 composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  15. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    decomposition in the permafrost deposits during cryopegs' migration. From these horizons will be active methane emissions, including gas explosion in coastal areas and on the Arctic shelf. This mechanism of methane emissions is a significant geological hazard during the development of oil and gas fields in the Arctic. References. 1. Chuvilin EM, Yakushev VS, Perlova EV. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. // Polarforschung 68: 215-219, 1998. (erschienen 2000). 2. Chuvilin E.M., Bukhanov B.A., Ekimova V.V. et al. Experimental modeling of interaction between salt solutions and frozen sediments containing gas hydrates. / The 8th International Conference on Gas Hydrates. Beijing, China, 2014. These researches were supported by grants RFBR № 13-05-12039 and RSF №16-17-00051.

  16. EDITORIAL: 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control

    Science.gov (United States)

    Buttery, Richard

    2011-08-01

    This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http

  17. Oil & Natural Gas Technology A new approach to understanding the occurrence and volume of natural gas hydrate in the northern Gulf of Mexico using petroleum industry well logs

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Ann [The Ohio State Univ., Columbus, OH (United States); Majumdar, Urmi [The Ohio State Univ., Columbus, OH (United States)

    2016-03-31

    The northern Gulf of Mexico has been the target for the petroleum industry for exploration of conventional energy resource for decades. We have used the rich existing petroleum industry well logs to find the occurrences of natural gas hydrate in the northern Gulf of Mexico. We have identified 798 wells with well log data within the gas hydrate stability zone. Out of those 798 wells, we have found evidence of gas hydrate in well logs in 124 wells (15% of wells). We have built a dataset of gas hydrate providing information such as location, interval of hydrate occurrence (if any) and the overall quality of probable gas hydrate. Our dataset provides a wide, new perspective on the overall distribution of gas hydrate in the northern Gulf of Mexico and will be the key to future gas hydrate research and prospecting in the area.

  18. Improvement of luminescent stability from carbon nanotube field emission display based on printed CNT film

    Institute of Scientific and Technical Information of China (English)

    ZENG; Fanguang; ZHU; Changchun; LIU; Xinghui

    2006-01-01

    Aiming at the influences of poor contact at carbon nanotube (CNT)/electrode interface on luminescence stability in printed CNT film, a new co-sintering process for cathode fabrication was presented to improve the luminescent stability of fully printed CNT-FED. By co-sintering the printed silver and CNT layers, CNTs geometrically matched with Ag surface and/or embedded into Ag layer at the bottom of the co-sintered film, large CNTs block and bulk silver nested each other at the top of the co-sintered film. All these structures increased the contact area at CNT/Ag interface, which could increase the probability of forming ohmic contact at CNT/Ag interface. The luminescent stability of printed CNT-FED with co-sintered cathode could be improved as 5.6 times high as that of common devices.

  19. Airway Hydration and COPD

    Science.gov (United States)

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  20. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  1. Conditional solvation of isoleucine in model extended and helical peptides: context dependence of hydrophobic hydration and the failure of the group-transfer model

    CERN Document Server

    Tomar, Dheeraj; Pettitt, B M; Asthagiri, D

    2013-01-01

    The hydration thermodynamics of the GXG tripeptide relative to the reference GGG defines the \\textit{conditional} hydration contribution of X. This quantity or the hydration thermodynamics of a small molecule analog of the side-chain or some combination of such estimates, have anchored the interpretation of many of the seminal experiments on protein stability and folding and in the genesis of the current views on dominant interactions stabilizing proteins. We show that such procedures to model protein hydration have significant limitations. We study the conditional hydration thermodynamics of the isoleucine side-chain in an extended pentapeptide and in helical deca-peptides, using as appropriate an extended penta-glycine or appropriate helical deca-peptides as reference. Hydration of butane in the gauche conformation provides a small molecule reference for the side-chain. We use the quasichemical theory to parse the hydration thermodynamics into chemical, packing, and long-range interaction contributions. The...

  2. Thermodynamic Properties of Hydrogen + Tetra-n-Butyl Ammonium Bromide Semi-Clathrate Hydrate

    Directory of Open Access Journals (Sweden)

    Shunsuke Hashimoto

    2010-01-01

    Full Text Available Thermodynamic stability and hydrogen occupancy on the hydrogen + tetra-n-butyl ammonium bromide semi-clathrate hydrate were investigated by means of Raman spectroscopic and phase equilibrium measurements under the three-phase equilibrium condition. The structure of mixed gas hydrates changes from tetragonal to another structure around 95 MPa and 292 K depending on surrounding hydrogen fugacity. The occupied amount of hydrogen in the semi-clathrate hydrate increases significantly associated with the structural transition. Tetra-n-butyl ammonium bromide semi-clathrate hydrates can absorb hydrogen molecules by a pressure-swing without destroying the hydrogen bonds of hydrate cages at 15 MPa or over.

  3. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data

    Science.gov (United States)

    Riedel, Michael; Collett, Timothy S.

    2017-01-01

    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  4. Chemical Stabilization of Subgrade Soil for the Strategic Expeditionary Landing Field.

    Science.gov (United States)

    1983-06-01

    produce changes in soil plasticity , workability and uncured strength. ’I F oo dt~sivl.isa Got5p Typcal nt.,is Loboeaseiy glosfietIi criteriaI...compared to other stabilizers [44). Should highly plastic soil ( plasticity index greater than 30) be encountered, it will be most difficult to pulverize and

  5. Joint Electrical and Seismic Interpretation of Gas Hydrate Bearing Sediments From the Cascadia Margin

    Science.gov (United States)

    Ellis, M.; Minshull, T.; Sinha, M.; Best, A.

    2008-12-01

    Gas hydrates are found in continental margin sediments worldwide. Their global importance as future energy reserves and their potential impact on slope stability and abrupt climate change all require better knowledge of where they occur and how much hydrate is present. However, current estimates of the distribution and volume of gas hydrate beneath the seabed range widely. Improved geophysical methods could provide much better constraints on hydrate concentrations. Geophysical measurements of seismic velocity and electrical resistivity using seabed or borehole techniques are often used to determine the hydrate saturation of sediments. Gas hydrates are well known to affect these physical properties; hydrate increases sediment p-wave velocity and electrical resistivity by replacing the conductive pore fluids, by cementing grains together and by blocking pores. A range of effective medium theoretical models have been developed to interpret these measurements in terms of hydrate content, but uncertainties about the pore-scale distribution of hydrate can lead to large uncertainties in the results. This study developed effective medium models to determine the seismic and electrical properties of hydrate bearing sediments in terms of their porosity, micro-structure and hydrate saturation. The seismic approach combines a Self Consistent Approximation (SCA) and Differential Effective Medium (DEM), which can model a bi-connected effective medium and allows the shape and alignment of the grains to be taken into account. The electrical effective medium method was developed to complement the seismic models and is based on the application of a geometric correction to the Hashin-Shrikman conductive bound. The electrical and seismic models are non-unique and hence it was necessary to develop a joint electrical and seismic interpretation method to investigate hydrate bearing sediments. The joint method allows two variables (taken from porosity, aspect ratio or hydrate saturation

  6. Constraining gas hydrate occurrence in the northern Gulf of Mexico continental slope : fine scale analysis of grain-size in hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hangsterfer, A.; Driscoll, N.; Kastner, M. [Scripps Inst. of Oceanography, La Jolla, CA (United States). Geosciences Research Division

    2008-07-01

    Methane hydrates can form within the gas hydrate stability zone (GHSZ) in sea beds. The Gulf of Mexico (GOM) contains an underlying petroleum system and deeply buried, yet dynamic salt deposits. Salt tectonics and fluid expulsion upward through the sediment column result in the formation of fractures, through which high salinity brines migrate into the GHSZ, destabilizing gas hydrates. Thermogenic and biogenic hydrocarbons also migrate to the seafloor along the GOMs northern slope, originating from the thermal and biogenic degradation of organic matter. Gas hydrate occurrence can be controlled by either primary permeability, forming in coarse-grained sediment layers, or by secondary permeability, forming in areas where hydrofracture and faulting generate conduits through which hydrocarbon-saturated fluids flow. This paper presented a study that attempted to determine the relationship between grain-size, permeability, and gas hydrate distribution. Grain-size analyses were performed on cores taken from Keathley Canyon and Atwater Valley in the GOM, on sections of cores that both contained and lacked gas hydrate. Using thermal anomalies as proxies for the occurrence of methane hydrate within the cores, samples of sediment were taken and the grain-size distributions were measured to see if there was a correlation between gas hydrate distribution and grain-size. The paper described the methods, including determination of hydrate occurrence and core analysis. It was concluded that gas hydrate occurrence in Keathley Canyon and Atwater Valley was constrained by secondary permeability and was structurally controlled by hydrofractures and faulting that acted as conduits through which methane-rich fluids flowed. 11 refs., 2 tabs., 5 figs.

  7. Placement of field probes for stabilization of breathing-induced B0-fluctuations in the brain

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer H.; Hanson, Lars G.;

    ). It is a fundamental challenge, however, that the B0 measurements are spatially sparse (e.g. 16 probes), and performed outside the brain. Typically, the field is modelled by a linear combination of the spatial shim fields that the scanner can produce (such as spherical harmonics up to 3rd order), and the coefficients......Introduction: B0-fluctuations induced by breathing and body motion lead to artifacts for certain brain imaging sequences at ultra-high field (7T). A promising solution is to monitor the B0-fluctuations during the scan using external field probes, and update the shim currents in real-time (1...... for these spatial terms are determined by least square fitting to the field probe measurements. The probes must be placed carefully to ensure that the spherical harmonics can be distinguished using these few samples, and they must be placed close to the head so that the spatial field model is valid and to have good...

  8. Placement of field probes for stabilization of breathing-induced B0-fluctuations in the brain

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer H; Hanson, L.G.

    2015-01-01

    Introduction: B0-fluctuations induced by breathing and body motion lead to artifacts for certain brain imaging sequences at ultra-high field (7T). A promising solution is to monitor the B0-fluctuations during the scan using external field probes, and update the shim currents in real-time (1). It ...... SNR. Here, we provide a simulation of breathing-induced B0-fluctuations inside and around the head and use this simulated field to test different sets of probe positions. We also formulate two optimization problems to guide placement of the field probes.......Introduction: B0-fluctuations induced by breathing and body motion lead to artifacts for certain brain imaging sequences at ultra-high field (7T). A promising solution is to monitor the B0-fluctuations during the scan using external field probes, and update the shim currents in real-time (1...

  9. Are coarse-grained models apt to detect protein thermal stability? Th