WorldWideScience

Sample records for hydrate potential agree

  1. Guideline appraisal with AGREE II: online survey of the potential influence of AGREE II items on overall assessment of guideline quality and recommendation for use.

    Science.gov (United States)

    Hoffmann-Eßer, Wiebke; Siering, Ulrich; Neugebauer, Edmund A M; Brockhaus, Anne Catharina; McGauran, Natalie; Eikermann, Michaela

    2018-02-27

    The AGREE II instrument is the most commonly used guideline appraisal tool. It includes 23 appraisal criteria (items) organized within six domains. AGREE II also includes two overall assessments (overall guideline quality, recommendation for use). Our aim was to investigate how strongly the 23 AGREE II items influence the two overall assessments. An online survey of authors of publications on guideline appraisals with AGREE II and guideline users from a German scientific network was conducted between 10th February 2015 and 30th March 2015. Participants were asked to rate the influence of the AGREE II items on a Likert scale (0 = no influence to 5 = very strong influence). The frequencies of responses and their dispersion were presented descriptively. Fifty-eight of the 376 persons contacted (15.4%) participated in the survey and the data of the 51 respondents with prior knowledge of AGREE II were analysed. Items 7-12 of Domain 3 (rigour of development) and both items of Domain 6 (editorial independence) had the strongest influence on the two overall assessments. In addition, Items 15-17 (clarity of presentation) had a strong influence on the recommendation for use. Great variations were shown for the other items. The main limitation of the survey is the low response rate. In guideline appraisals using AGREE II, items representing rigour of guideline development and editorial independence seem to have the strongest influence on the two overall assessments. In order to ensure a transparent approach to reaching the overall assessments, we suggest the inclusion of a recommendation in the AGREE II user manual on how to consider item and domain scores. For instance, the manual could include an a-priori weighting of those items and domains that should have the strongest influence on the two overall assessments. The relevance of these assessments within AGREE II could thereby be further specified.

  2. The Potential Socio-economic Impacts of Gas Hydrate Exploitation

    Science.gov (United States)

    Riley, David; Schaafsma, Marije; Marin-Moreno, Héctor; Minshull, Tim A.

    2017-04-01

    Gas hydrate has garnered significant interest as a possible clean fossil fuel resource, especially in countries with limited energy supplies. Whilst the sector is still in its infancy, there has been escalating development towards commercial production. To the best of our knowledge it appears that, despite its potential, existing analyses of the social and economic impacts of hydrate exploitation have been very limited. Before any viable commercial production commences, the potential impacts across society must be considered. It is likely that such impact assessments will become a legislative requirement for hydrate exploitation, similar to their requirement in conventional oil and gas projects. Social impact analysis should guide hydrate development to have the highest possible net benefits to the human and natural environment. Without active commercial hydrate operations, potential socio-economic impacts can only be inferred from other fossil fuel resource focused communities, including those directly or indirectly affected by the oil and gas industry either in the vicinity of the well or further afield. This review attempts to highlight potential impacts by synthesising current literature, focusing on social impacts at the extraction stage of operation, over time. Using a DPSIR (Driving forces; Pressures; States; Impacts; Responses) framework, we focus on impacts upon: health and wellbeing, land use and access, services and infrastructure, population, employment opportunities, income and lifestyles. Human populations directly or indirectly related with fossil fuel extraction activities often show boom and bust dynamics, and so any impacts may be finite or change temporally. Therefore potential impacts have to be reassessed throughout the lifetime of the exploitation. Our review shows there are a wide range of possible positive and negative socio-economic impacts from hydrate development. Exploitation can bring jobs and infrastructure to remote areas, although

  3. Estimation of potential distribution of gas hydrate in the northern South China Sea

    Science.gov (United States)

    Wang, Chunjuan; Du, Dewen; Zhu, Zhiwei; Liu, Yonggang; Yan, Shijuan; Yang, Gang

    2010-05-01

    Gas hydrate research has significant importance for securing world energy resources, and has the potential to produce considerable economic benefits. Previous studies have shown that the South China Sea is an area that harbors gas hydrates. However, there is a lack of systematic investigations and understanding on the distribution of gas hydrate throughout the region. In this paper, we applied mineral resource quantitative assessment techniques to forecast and estimate the potential distribution of gas hydrate resources in the northern South China Sea. However, current hydrate samples from the South China Sea are too few to produce models of occurrences. Thus, according to similarity and contrast principles of mineral outputs, we can use a similar hydrate-mining environment with sufficient gas hydrate data as a testing ground for modeling northern South China Sea gas hydrate conditions. We selected the Gulf of Mexico, which has extensively studied gas hydrates, to develop predictive models of gas hydrate distributions, and to test errors in the model. Then, we compared the existing northern South China Sea hydrate-mining data with the Gulf of Mexico characteristics, and collated the relevant data into the model. Subsequently, we applied the model to the northern South China Sea to obtain the potential gas hydrate distribution of the area, and to identify significant exploration targets. Finally, we evaluated the reliability of the predicted results. The south seabed area of Taiwan Bank is recommended as a priority exploration target. The Zhujiang Mouth, Southeast Hainan, and Southwest Taiwan Basins, including the South Bijia Basin, also are recommended as exploration target areas. In addition, the method in this paper can provide a useful predictive approach for gas hydrate resource assessment, which gives a scientific basis for construction and implementation of long-term planning for gas hydrate exploration and general exploitation of the seabed of China.

  4. Potential natural gas hydrates resources in Indian Offshore areas

    Digital Repository Service at National Institute of Oceanography (India)

    Sethi, A.K.; Sathe, A.V.; Ramana, M.V.

    (geophysical proxies of gas hydrates). A qualitative map prepared based on the inferred BSRs brought out a deepwater area of about 80,000 sq.km unto 3000 m isobath as favourable for gas hydrate occurrence. Methodology for reprocessing of seismic data...

  5. Effect of temperature dependence of the Langmuir constant molecular pair potentials on gas hydrates formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, B.; Enayati, M. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of); Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch

    2008-07-01

    Theoretical methods show that crystalline hydrates can form from single-phase systems consisting of both vapor water with gaseous hydrate former and liquid water with dissolved hydrate former. Two phase systems consist of both liquid water with gaseous hydrate former and with liquid hydrate former on the surface. This paper presented a Langmuir constant related model for the prediction of equilibrium pressures and cage occupancies of pure component hydrates. Intermolecular potentials were fit to quantum mechanical energies to obtain the Langmuir constants, which differed from the procedure utilized with the vdWP model. The paper described the experimental method and model calculations. This included the Fugacity model and Van der Waals and Platteeuw model. The paper also discussed pair potential of non-spherical molecules, including the multicentre (site-site) potential; Gaussian overlap potential; Lennard-Jones potential; and Kihara generalized pair potential. It was concluded that fraction of occupied cavities is a function of pair potentials between hard core and empty hydrate lattice. These pair potentials could be calculated from some model as Kihara cell potential, Gaussian potential, Lennard-Jones potential and multicentre pair potential. 49 refs., 3 figs.

  6. In vitro evaluation of rutin and rutin hydrate as potential radiation countermeasure agents

    International Nuclear Information System (INIS)

    Ojha, Himanshu; Sharma, Kulbhushan; Kallepalli, Simhachalam; Raina, Sheetal; Agrawala, Paban Kumar

    2014-01-01

    DNA damage is one of the major consequences of radiation exposure onto the biological systems. A series of compounds including flavanoids were found to render DNA protection against radiation damage. In this study we elucidated the potential of rutin and rutin hydrate to protect plasmid DNA against damage induced by irradiation. DPPH and hydroxyl radical scavenging assays were performed to assess the antiradical potential of rutin and rutin hydrate. Absorption measurements were performed to assess binding parameters of rutin and rutin hydrate with CT-DNA. DNA plasmid relaxation assay was performed to compare the radioprotective potential rutin and rutin hydrate against gamma irradiation mediated oxidative damage of pET28 (plasmid DNA). DPPH· assay indicated fast reaction kinetics for rutin and rutin hydrate however antiradical parameter in terms of EC50 suggested better scavenging capacity for rutin hydrate compared to rutin. Hydroxyl radical scavenging assay further suggested that both the compounds displayed significant reduction in hydroxyl radicals. Absorption binding study with CT-DNA suggested that rutin hydrate has better binding constant value (Ka=8.257x10 4 M -1 ) compared to Ka= 1.834x10 4 M -1 for rutin. Plasmid relaxation study demonstrated that plasmid DNA remains predominantly in the super-coiled form in the presence of both rutin and rutin hydrate after exposure to 100 Gy of γ-radiation. The mechanistic studies suggested that binding and scavenging capacity of rutin hydrate and rutin contributes towards DNA radioprotection. This study may be helpful in devising potent radioprotector molecules helpful for the radiotherapy treatment. (author)

  7. Agreeing on expectations

    DEFF Research Database (Denmark)

    Nielsen, Christian; Bentsen, Martin Juul

    Commitment and trust are often mentioned as important aspects of creating a perception of reliability between counterparts. In the context of university-industry collaborations (UICs), agreeing on ambitions and expectations are adamant to achieving outcomes that are equally valuable to all parties...... involved. Despite this, our initial probing indicated that such covenants rarely exist. As such, this paper draws on project management theory and proposes the possibility of structuring assessments of potential partners before university-industry collaborations are brought to life. Our analysis suggests...

  8. The Characteristics of Fluid Potential in Mud Diapirs Associated with Gas Hydrates in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    Ning Xu

    2006-01-01

    Full Text Available Many mud diapirs have been identified in the southern Okinawa Trough from a seismic survey using R/V KEXUE I in 2001. The movement and accumulation of free gas related to mud diapirs are discussed in detail by an analysis of fluid potential which is based upon velocity data. It can be found that free gas moves from the higher fluid potential strata to the lower ones and the gas hydrate comes into being during free gas movement meeting the proper criteria of temperature and pressure. In fact, gas hydrates have been found in the upper layers above the mud diapirs and in host rocks exhibiting other geophysical characteristics. As the result of the formation of the gas hydrate, the free gas bearing strata are enclosed by the gas hydrate bearing strata. Due to the high pressure anomalies of the free gas bearing strata the fluid potential increases noticeably. It can then be concluded that the high fluid potential anomaly on the low fluid potential background may be caused by the presence of the free gas below the gas hydrate bearing strata.

  9. 'Nothing is agreed until everything is agreed'

    DEFF Research Database (Denmark)

    McQuaid, Sara Dybris

    In terms of conflict resolution, we may think of Northern Ireland as a case of (deferring conflict by) institutionalising radical disagreement, in particular through the Agreement from 1998. The violence has largely if not completely stopped, but the key constitutional question of whether Northern...... Ireland should be British or Irish, is only settled for now. In the language of dialogue, the parties have “agreed to disagree” with an understanding that these matters can be reopened at some future date if there is a majority wish to do so. In the meantime, a system of designated power-sharing has been...

  10. Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China

    International Nuclear Information System (INIS)

    Fu, Xiugen; Wang, Jian; Tan, Fuwen; Feng, Xinglei; Wang, Dong; He, Jianglin

    2013-01-01

    Highlights: • Qiangtang Basin is the biggest residual petroleum-bearing basin in Tibet Plateau. • The Late Triassic Tumen Gela Formation is the most important gas source rock. • Seventy-one potential anticline structural traps have been found. • A favorable geothermal condition for gas hydrate formation. • A large number of mud volcanoes were discovered in the basin. - Abstract: The Qiangtang Basin is the biggest residual petroleum-bearing basin in the Qinghai–Tibet Plateau, and is also an area of continuous permafrost in southwest China with strong similarities to other known gas-hydrate-bearing regions. Permafrost thickness is typically 60–180 m; average surface temperature ranges from −0.2 to −4.0 °C, and the geothermal gradient is about 2.64 °C/100 m. In the basin, the Late Triassic Tumen Gela Formation is the most important gas source rock for gas, and there are 34.3 × 10 8 t of gas resources in the Tumen Gela Formation hydrocarbon system. Seventy-one potential anticline structural traps have been found nowadays covering an area of more than 30 km 2 for each individual one, five of them are connected with the gas source by faults. Recently, a large number of mud volcanoes were discovered in the central Qiangtang Basin, which could be indicative of the formation of potential gas hydrate. The North Qiangtang depression should be delineated as the main targets for the purpose of gas hydrate exploration

  11. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    International Nuclear Information System (INIS)

    Tohidi, Bahman; Chapoy, Antonin; Smellie, John; Puigdomenech, Ignasi

    2010-12-01

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely ∼0.00073 mole fraction methane and ∼10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (∼20 deg C and ∼100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of satisfactory

  12. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tohidi, Bahman; Chapoy, Antonin (Hydrafact Ltd, Inst. of Petroleum Engineering, Heriot-Watt Univ., Edinburgh (United Kingdom)); Smellie, John (Conterra AB, Uppsala (Sweden)); Puigdomenech, Ignasi (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely approx0.00073 mole fraction methane and approx10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (approx20 deg C and approx100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of

  13. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy

    2007-01-01

    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  14. Study of belite calcium sulfo-aluminate cement potential for zinc conditioning: From hydration to durability

    International Nuclear Information System (INIS)

    Berger, St.

    2009-12-01

    Calcium silicate cements are widely used for low- and intermediate-level radioactive waste conditioning. However, wastes produced by nuclear activities are very diverse and some of their components may chemically react with cement phases. For instance, ashes resulting from the incineration of technological wastes including neoprene and polyvinylchloride may contain substantial amounts of soluble zinc chloride. This compound is known to strongly delay or inhibit Portland cement setting. One approach to limit adverse cement-waste interactions is to select a binder showing a better compatibility with the waste while keeping cement matrix advantages (low cost, simple process, hydration with water provided by the waste...). This work thus investigates the potential of calcium sulfo-aluminate cement for zinc Zn(II) immobilization. Four aspects were considered: hydration (kinetics and products formed), properties of hydrated binders, mechanisms of zinc retention and durability of the cement pastes (based on leaching experiments and modelling). The influence of three main parameters was assessed: the gypsum content of the cement, the concentration of ZnCl 2 and the thermal evolution at early age. It follows that materials based on a calcium sulfo-aluminate cement containing 20% gypsum are interesting candidates for zinc Zn(II) stabilization/solidification: there is no delay in hydration, mineralogy of the hydrated phases is slightly dependent on thermal history, mechanical strength is high, dimensional changes are limited and zinc Zn(II) is well immobilized, even if the cement paste is leached by pure water during a long period (90 d). (author)

  15. Potential impact on climate of the exploitation of methane hydrate deposits offshore

    Digital Repository Service at National Institute of Oceanography (India)

    Glasby, G.P.

    . Brewer (2000) has identified two examples, one in the Eel River Basin off the coast of northern California (Brooks, Field, & Kennicutt, 1991) and the other in the Gulf of Mexico (MacDonald et al., 1994), where the methane hydrate deposits lie almost... of Mexico (an example of the structural type of deposit) are potentially the most attractive deposits economically. In particular, it was considered that devel- opment costs for these deposits would be low because the accumulations are located at relatively...

  16. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  17. Description of gas hydrates equilibria in sediments using experimental data of soil water potential

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, V. [NOVATEK, Moscow (Russian Federation); Chuvilin, E. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology; Makhonina, N.; Kvon, V. [VNIIGAZ, Moscow (Russian Federation); Safonov, S. [Schlumberger Moscow Research, Moscow (Russian Federation)

    2008-07-01

    Analytical relationships have been developed between hydrate dissociation pressure and vapor pressure above the pore water surface. In addition, experiments have been discussed in numerous publications on the effect of narrow interconnected throats between pores on clathrate dissociation conditions in porous media. This paper presented an approach that improved upon the available thermodynamic methods for calculation of hydrate phase equilibria. The approach took into account the properties of pore water in natural sediments including three-phase equilibrium of gas-pore water-gas hydrate in a similar way as for unfrozen water in geocryology science. The purpose of the paper was to apply and adapt geocryology and soil physics method to the thermodynamic calculation of non-clathrated water content in sediments. It answered the question of how to estimate the non-clathrated water content if pore water potential was known. The paper explained the thermodynamics of water phase in porous media including the thermodynamic properties of supercooled water, the thermodynamic properties of pore water and pore ice in sediments, and the phase equilibria of pore water. The paper also discussed the quantitative techniques that were utilized for determination of unfrozen water content in sediments and its dependence on temperature variation. These included contact-saturation, calorimetric, dielectric, nuclear magnetic resonance, and others. The thermodynamic calculations of pore water phase equilibria were also presented. 30 refs., 5 tabs., 8 figs.

  18. Gas hydrates:estimation of the gas potential, from reflection seismic data in the continental shelf of Uruguay

    International Nuclear Information System (INIS)

    De Santa Ana, H.; Ucha, N.; Gutierrez, L.; Veroslavsky, G.

    2004-01-01

    The uruguayan continental shelf shows geophysical indicators of gas hydrates in the Oriental del Plata, Pelotas and Punta del Este basin. The aim of this work is to present the potential presence of gas at the continental shelf in Uruguay and to evaluate the possibility of exploration of unconventional hydrocarbon plays. Analysis of the seismic surface based on regional and stratgigraphic information that proceeded from previous hydrocarbon exploration in the area have been used to estimatge resources of gas hydrates. Gas hydrates accumulation was mapped using characteristic reflectors and amplitude anomalies of seismic lines (BSR). Its quantity was estimated on this basis in about 86 TCF.

  19. Trichloroethylene Hypersensitivity Syndrome Is Potentially Mediated through Its Metabolite Chloral Hydrate.

    Science.gov (United States)

    Huang, Yongshun; Xia, Lihua; Wu, Qifeng; Zeng, Zifang; Huang, Zhenlie; Zhou, Shanyu; Jin, Jiachun; Huang, Hanlin

    2015-01-01

    We documented previously the entity of trichloroethylene (TCE) hypersensitivity syndrome (THS) in occupational workers. To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS. TCE and its main metabolites chloral hydrate (CH), trichloroethanol (TCOH) and trichloroacetic acid (TCA) were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks), and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test. The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%). The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively). Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens) were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test. Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS.

  20. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  1. Trichloroethylene Hypersensitivity Syndrome Is Potentially Mediated through Its Metabolite Chloral Hydrate.

    Directory of Open Access Journals (Sweden)

    Yongshun Huang

    Full Text Available We documented previously the entity of trichloroethylene (TCE hypersensitivity syndrome (THS in occupational workers.To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS.TCE and its main metabolites chloral hydrate (CH, trichloroethanol (TCOH and trichloroacetic acid (TCA were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks, and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test.The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%. The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively. Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test.Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS.

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  3. Submarine methane hydrates - Potential fuel resource of the 21st century

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.

    of these countries to initiate harvesting methane hydrates as soon as scientists and technologists come forward with dependable, safe and cost effective mechanisms to explore and exploit this resource. Technological factors : Lack of suitable production technology... reduction in deep-water development costs. All these are positive factors for hydrate exploration and development. Much of the engineering required to exploit these deposits can be achieved by suitably adopting proven technology currently used...

  4. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration

    Science.gov (United States)

    Hofer, Thomas S.; Hünenberger, Philippe H.

    2018-06-01

    The absolute intrinsic hydration free energy GH+,w a t ◦ of the proton, the surface electric potential jump χwa t ◦ upon entering bulk water, and the absolute redox potential VH+,w a t ◦ of the reference hydrogen electrode are cornerstone quantities for formulating single-ion thermodynamics on absolute scales. They can be easily calculated from each other but remain fundamentally elusive, i.e., they cannot be determined experimentally without invoking some extra-thermodynamic assumption (ETA). The Born model provides a natural framework to formulate such an assumption (Born ETA), as it automatically factors out the contribution of crossing the water surface from the hydration free energy. However, this model describes the short-range solvation inaccurately and relies on the choice of arbitrary ion-size parameters. In the present study, both shortcomings are alleviated by performing first-principle calculations of the hydration free energies of the sodium (Na+) and potassium (K+) ions. The calculations rely on thermodynamic integration based on quantum-mechanical molecular-mechanical (QM/MM) molecular dynamics (MD) simulations involving the ion and 2000 water molecules. The ion and its first hydration shell are described using a correlated ab initio method, namely resolution-of-identity second-order Møller-Plesset perturbation (RIMP2). The next hydration shells are described using the extended simple point charge water model (SPC/E). The hydration free energy is first calculated at the MM level and subsequently increased by a quantization term accounting for the transformation to a QM/MM description. It is also corrected for finite-size, approximate-electrostatics, and potential-summation errors, as well as standard-state definition. These computationally intensive simulations provide accurate first-principle estimates for GH+,w a t ◦, χwa t ◦, and VH+,w a t ◦, reported with statistical errors based on a confidence interval of 99%. The values obtained

  5. Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

    2007-11-16

    Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

  6. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  7. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    Energy Technology Data Exchange (ETDEWEB)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  8. Differential Scanning Calorimetric Study and Potential Model of the Binding of the Primary Water of Hydration to K-Hyaluronate

    Science.gov (United States)

    Whitson, K. B.; Marlowe, R. L.; Lukan, A. M.; Lee, S. A.; Anthony, L.; Rupprecht, A.

    1997-11-01

    DSC was performed on samples of K-hyaluronate (KHA) through a temperature range of 25-180^oC. A transition peak was observed which is due to the desorption of the primary water of hydration. The maximum position of the peak was observed to change with different scan rates. The average energy of activation, E_A, and enthalpy for desorption of the primary water of hydration was determined to be 0.62 and 0.17 eV per water molecule, respectively. Analysis of Mossbauer data(G. Albanese et al., Hyperfine Int.,) 95, 97 (1995) allowed us to determine the effective force constant, k_eff, of the water bound to KHA to be approximately 19.4 eV/nm^2. The parameters E_A, ΔH,and k_eff allow us to construct a potential model for the primary water of hydration of KHA. Comparison of these parameters with the same parameters for HA and DNA with different counterions reveal that the energy of activation is similar, as well as the enthalpy change.

  9. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential

    Science.gov (United States)

    Moridis, G.J.; Collett, T.S.; Boswell, R.; Kurihara, M.; Reagan, M.T.; Koh, C.; Sloan, E.D.

    2009-01-01

    Gas hydrates (GHs) are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural GH accumulations, the status of the primary international research and development (R&D) programs, and the remaining science and technological challenges facing the commercialization of production. After a brief examination of GH accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate-production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical-simulation capabilities are quite advanced and that the related gaps either are not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of GH deposits and determine that there are consistent indications of a large production potential at high rates across long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets; (b) methods to maximize production; and (c) some of the conditions and characteristics that render certain GH deposits undesirable for production. Copyright ?? 2009 Society of Petroleum Engineers.

  10. POTENTIAL MODIFICATION OF HYDRATION OF ALKALI ACTIVATED MIXTURES FROM GRANULATED BLAST FURNACE SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    VÁCLAVA TOMKOVÁ

    2012-07-01

    Full Text Available Alkali activated binders (AAB and composites from suitable latent hydraulic raw materials represent an alternative to materials based on Portland cements. The paper deals with possibilities to influence functional parameters of AAB by setting the mixtures of GBFS and fly ash to the selected chemical composition or by fly ash reactivity change effected by milling. In this way course of hydration process is modified, the alkali activation products phase composition is changed as well as their final characteristic. The amorphous character of the hydration products limits the evaluation of the composition during the massing phase. Part of the study is the search for possibilities of identifying the differences in composition and properties of specially drafted mixtures of original raw materials after their alkali activation.

  11. Development of an offshore gas field - investigation of hydrate and paraffin formation potential with regard to flow assurance; Entwicklung eines Offshore-Gasfeldes: Hydrat- und Paraffinuntersuchungen zur Sicherstellung der kontinuierlichen Produktion

    Energy Technology Data Exchange (ETDEWEB)

    Zettlitzer, M.; Busch, M. [RWE Dea AG, Wietze (Germany)

    2005-11-01

    During the production of offshore gas fields, raw gas from a number of production wells is usually led to a platform or - for reservoirs located close to shore - even transported as wet gas to an onshore gas treatment plant. The pipelines are located at the sea bottom, resulting in significant cooling of the raw gas with subsequent potential for the formation of hydrates and/or precipitation of paraffin on the pipeline walls. In order to safeguard continuous production, additional installations and/or dosage of chemicals would possibly be required. On the basis of gas and condensate samples from production tests, the formation potential for paraffins was experimentally investigated while the hydrate formation potential was assessed by simulations. The very small volume of condensate available (2-3 ml of each sample) formed a special challenge and limited the number of possible analytical investigations. Nevertheless, wax appearance temperature of five condensates under investigation could successfully be determined by a combination of gas-chromatographic and rheological measurements. Two of the three gas-bearing layers turned out to produce dry gas so that paraffin problems can be excluded. However, according to the simulations, hydrate formation at temperatures {<=}+20 C has to be expected under the formation pressure of about 200 bars. The third layer contains a gas condensate, causing paraffin precipitation at {<=}0 C and forming hydrate in a temperature range similar to that of the other two sands. Hence, precautions have to taken to prevent hydrate formation in all field lines containing wet gas. Furthermore, the paraffin precipitation potential has to be taken into account in the subsequent low-temperature gas-treatment plant. (orig.)

  12. δD values of hydrated volcanic glass : a potential record of ancient meteoric water and climate in New Zealand

    International Nuclear Information System (INIS)

    Shane, P.; Ingraham, N.

    2002-01-01

    Tephra beds that are well drained and have been buried by thin paleosols become hydrated within 2-3000 yr on reaction with meteoric waters. Hence, the absorbed water within silicic volcanic glass shards provides a potential record of δD values of ancient meteoric water. Such isotopic records have previously received little investigation. We demonstrate that 1.5-2 m thick tephra beds in central North Island, New Zealand, display uniform δD values vertically through their profiles and laterally up to 250 m in outcrop. Reproducibility is not influenced by grain size or age of the tephra. We obtained an average δD value of -48 ± 3 permille for water within the 1.8 ka Taupo Tephra. This is similar to the composition of present-day surface waters. δD values of -73 ± 2 and -60 ± 2 permille for the 25 ka Kawakawa and 30 ka Mangaone Tephra beds are significantly lower than present waters, indicating that they have been hydrated under different surficial conditions. This is consistent with other proxy paleoclimatic indicators that suggest a cooler, drier, and windier climate at the time of their eruption. Tephra beds are a potential source of paleoclimatic data in terrestrial environments that otherwise may lack proxy records. (author). 17 refs., 5 figs., 3 tabs

  13. New German abortion law agreed.

    Science.gov (United States)

    Karcher, H L

    1995-07-15

    The German Bundestag has passed a compromise abortion law that makes an abortion performed within the first three months of pregnancy an unlawful but unpunishable act if the woman has sought independent counseling first. Article 218 of the German penal code, which was established in 1871 under Otto von Bismarck, had allowed abortions for certain medical or ethical reasons. After the end of the first world war, the Social Democrats tried to legalize all abortions performed in the first three months of pregnancy, but failed. In 1974, abortion on demand during the first 12 weeks was declared legal and unpunishable under the social liberal coalition government of chancellor Willy Brandt; however, the same year, the German Federal Constitution Court in Karlsruhe ruled the bill was incompatible with article 2 of the constitution, which guarantees the right to life and freedom from bodily harm to everyone, including the unborn. The highest German court also ruled that a pregnant woman had to seek a second opinion from an independent doctor before undergoing an abortion. A new, extended article 218, which included a clause giving social indications, was passed by the Bundestag. When Germany was unified, East Germans agreed to be governed by all West German laws, except article 218. The Bundestag was given 2 years to revise the article; however, in 1993, the Federal Constitution Court rejected a version legalizing abortion in the first 3 months of the pregnancy if the woman sought counsel from an independent physician, and suggested the recent compromise passed by the Bundestag, the lower house of the German parliament. The upper house, the Bundesrat, where the Social Democrats are in the majority, still has to pass it. Under the bill passed by the Bundestag, national health insurance will pay for an abortion if the monthly income of the woman seeking the abortion falls under a certain limit.

  14. Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization

    International Nuclear Information System (INIS)

    Peethamparan, Sulapha; Olek, Jan; Lovell, Janet

    2008-01-01

    The interaction of CKDs with a given soil depends on the chemical and physical characteristics of the CKDs. Hence, the characterization of CKDs and their hydration products may lead to better understanding of their suitability as soil stabilizers. In the present article, four different CKD powders are characterized and their hydration products are evaluated. A detailed chemical (X-ray diffraction), thermogravimetric and morphological (scanning electron microscope) analyses of both the CKD powders and the hydrated CKD pastes are presented. In general, high free-lime content (∼ 14-29%) CKDs, when reacted with water produced significant amounts of calcium hydroxide, ettringite and syngenite. These CKDs also developed higher unconfined compressive strength and higher temperature of hydration compared to CKDs with lower amounts of free-lime. An attempt was made to qualitatively correlate the performance of CKD pastes with the chemical and physical characteristics of the original CKD powders and to determine their potential suitability as soil stabilizers. To that effect a limited unconfined compressive strength testing of CKD-treated kaolinite clays was performed. The results of this study suggest that both the compressive strength and the temperature of hydration of the CKD paste can give early indications of the suitability of particular CKD for soil stabilization

  15. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  16. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    , not all of them are white like snow. Some hydrates from the deep Gulf of Mexico are richly colored in shades of yellow, orange, or even red. The ice-like masses are beautiful, and contrast with the dull gray of deep sea muds. Hydrates from the Blake... volcanoes and associated gas hydrates: Marine Geology, v. 167, p. 29-42. Milkov, A.V. and R. Sassen, 2001a, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope: Marine Geology, v. 179, pp. 71-83. Milkov, A.V., Sassen, R...

  17. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  18. Methane and carbon dioxide hydrates on Mars: Potential origins, distribution, detection, and implications for future in situ resource utilization

    Science.gov (United States)

    Pellenbarg, Robert E.; Max, Michael D.; Clifford, Stephen M.

    2003-04-01

    There is high probability for the long-term crustal accumulation of methane and carbon dioxide on Mars. These gases can arise from a variety of processes, including deep biosphere activity and abiotic mechanisms, or, like water, they could exist as remnants of planetary formation and by-products of internal differentiation. CH4 and CO2 would tend to rise buoyantly toward the planet's surface, condensing with water under appropriate conditions of temperature and pressure to form gas hydrate. Gas hydrates are a class of materials created when gas molecules are trapped within a crystalline lattice of water-ice. The hydrate stability fields of both CH4 and CO2 encompass a portion of the Martian crust that extends from within the water-ice cryosphere, from a depth as shallow as ~10-20 m to as great as a kilometer or more below the base of the Martian cryosphere. The presence and distribution of methane and carbon dioxide hydrates may be of critical importance in understanding the geomorphic evolution of Mars and the geophysical identification of water and other volatiles stored in the hydrates. Of critical importance, Martian gas hydrates would ensure the availability of key in situ resources for sustaining future robotic and human exploration, and the eventual colonization, of Mars.

  19. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  20. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  1. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  2. THE ROLE OF HYDRATION IN THE HYDROLYSIS OF PYROPHOSPHATE - A MONTE-CARLO SIMULATION WITH POLARIZABLE-TYPE INTERACTION POTENTIALS

    NARCIS (Netherlands)

    STMARTIN, H; ORTEGABLAKE, [No Value; LES, A; ADAMOWICZ, L

    1994-01-01

    The exchange of energy in biochemical reactions involves, in a majority of cases, the hydrolysis of phosphoanhydrides (P-O-P). This discovery has lead to a long discussion about the origin of the high energy of such bonds, and to a proposal that hydration plays a major role in the energetics of the

  3. Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System

    Directory of Open Access Journals (Sweden)

    Yun-Pei Liang

    2015-09-01

    Full Text Available The main purpose of this study is to investigate the production behaviors of gas hydrate at site DK-2 in the Qilian Mountain permafrost using the novel five-spot well (5S system by means of numerical simulation. The whole system is composed of several identical units, and each single unit consists of one injection well and four production wells. All the wells are placed horizontally in the hydrate deposit. The combination method of depressurization and thermal stimulation is employed for hydrate dissociation in the system. Simulation results show that favorable gas production and hydrate dissociation rates, gas-to-water ratio, and energy ratio can be acquired using this kind of multi-well system under suitable heat injection and depressurization driving forces, and the water production rate is manageable in the entire production process under current technology. In addition, another two kinds of two-spot well (2S systems have also been employed for comparison. It is found that the 5S system will be more commercially profitable than the 2S configurations for gas production under the same operation conditions. Sensitivity analysis indicates that the gas production performance is dependent on the heat injection rate and the well spacing of the 5S system.

  4. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

  5. China, Argentina agree to further strategic ties

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    According to Xinhua,China and Argentina have agreed to further enhance mutual trust and their strategic partnership as the two emerging economies are playing an increasingly important role in the world arena.“China will work with Argentina to strengthen strategic mutual trust,expand cooperation and coordination within multilateral frameworks in order to promote bilateral ties and benefit the two peoples,” Vice President Xi Jinping told Argentine Foreign Minister Hector Timerman on September 9.

  6. [Skin hydration and hydrating products].

    Science.gov (United States)

    Duplan, H; Nocera, T

    2018-05-01

    One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.

  7. Distribution of B, Cl and Their Isotopes in Pore Waters Separated from Gas Hydrate Potential Areas, Offshore Southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Hung-Chun Chao Chen-Feng You

    2006-01-01

    Full Text Available Boron (B and chlorine (Cl are widely distributed on the Earth’s surface and show distinctive geochemical behaviors. Cl behaves rather conservatively in oceanic environments while B is an excess-volatile and its distribution is sensitive to sediment absorption and organic matter degradation. The distribution of B, Cl and their isotopes in pore waters provide useful information for distinguishing between shallow circulation and deep origin fluid sources. Thirty-six sediment cores 0 - 5 m in length were sampled from a foreland accretionary prism offshore Southwestern Taiwan where strong bottom simulating reflectors (BSRs and an abundance of mud diapirs were discovered. More than 350 pore water samples were separated and analyzed for B, Cl and other major ions. Four long cores were selected for B and Cl isotopic analysis. We found that the Cl in all cores varied less than 10%, suggesting no major hydrate dissolution or formation involvement at shallow depths in the study area. However, the B concentration changed greatly, ranging between 360 and 650 μM, indicating a possible sedimentary contribution during the early diagenesis stage. The B isotopic compositions were relatively depleted (~25 to 37‰ in these pore waters, implying the addition of sedimentary exchangeable B with low δ11B. The Cl isotopes showed rather large variations, more than 8‰, possibly related to the addition of deep situated fluids. In summary, the chemical and isotopic characteristics of pore waters separated from piston cores off Southwestern Taiwan suggest strong influence from organic matter degradation during diagenesis at shallow depths and the possible addition of deep fluids advecting through mud diapir channels at greater depths, causing a minor degree of hydrate dissolution / formation to occur at shallow depths. Further systematic investigation of pore waters δ18O and δD are needed in a future study.

  8. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: the influence of colloidal structure on emulsions skin hydration potential.

    Science.gov (United States)

    Savic, Snezana; Lukic, Milica; Jaksic, Ivana; Reichl, Stephan; Tamburic, Slobodanka; Müller-Goymann, Christel

    2011-06-01

    To be considered as a suitable vehicle for drugs/cosmetic actives, an emulsion system should have a number of desirable properties mainly dependent on surfactant used for its stabilization. In the current study, C(12-14) alkyl polyglucoside (APG)-mixed emulsifier of natural origin has been investigated in a series of binary (emulsifier concentration 10-25% (w/w)) and ternary systems with fixed emulsifier content (15% (w/w)) with or without glycerol. To elucidate the systems' colloidal structure the following physicochemical techniques were employed: polarization and transmission electron microscopy, X-ray diffraction (WAXD and SAXD), thermal analysis (DSC and TGA), complex rheological, pH, and conductivity measurements. Additionally, the emulsion vehicles' skin hydration potential was tested in vivo, on human skin under occlusion. In a series of binary systems with fixed emulsifier/water ratios ranging from 10/90 to 25/75 the predominance of a lamellar mesophase was found, changing its character from a liquid crystalline to a gel crystalline type. The same was observed in gel emulsions containing equal amounts of emulsifier and oil (15% (w/w)), but varying in glycerol content (0-25%). Different emulsion samples exhibited different water distribution modes in the structure, reflecting their rheological behavior and also their skin hydration capacity. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Study of hydrogen-molecule guests in type II clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics

    Science.gov (United States)

    Burnham, Christian J.; Futera, Zdenek; English, Niall J.

    2018-03-01

    The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.

  10. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  11. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  12. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  13. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  14. Hydration status measured by BCM: A potential modifiable risk factor for peritonitis in patients on peritoneal dialysis.

    Science.gov (United States)

    Santhakumaran, Territa; Samad, Nasreen; Fan, Stanley L

    2016-05-01

    Peritoneal dialysis peritonitis and fluid overhydration (OH) are frequent problems in peritoneal dialysis. The latter can cause gut wall oedema or be associated with malnutrition. Both may lead to increased peritonitis risk. We wished to determine if OH is an independent risk factor for peritonitis (caused by enteric organisms). Retrospectively study of patients with >2 bioimpedance assessments (Body Composition Monitor). We compared peritonitis rates of patients with above or below the median time-averaged hydration parameter (OH/extracellular water, OH/ECW). Multivariate analysis was performed to determine independent risk factors for peritonitis by enteric organism. We studied 580 patients. Peritonitis was experienced by 28% patients (followed up for an average of 17 months). The overall peritonitis rate was 1:34 patient months. Patients with low OH/ECW values had significantly lower rates of peritonitis from enteric organisms than overhydrated patients (incident rate ratio 1.53, 95% confidence interval 1.38-1.70, P peritonitis from enteric organisms when multivariate model included demographic parameters (odds ratio for a 1% increment of OH/ECW was 1.05; 95% confidence interval 1.01-1.10, P peritonitis. While this may partly be due to the high co-morbidity of patients (advanced age and diabetes), on multivariate analysis, only inclusion of nutritional parameters reduced this association. It remains to be determined if overhydration will prove to be a modifiable risk factor for peritonitis or whether malnutrition will prove to be more important. © 2015 Asian Pacific Society of Nephrology.

  15. States agree on stronger physical protection regime

    International Nuclear Information System (INIS)

    2005-01-01

    Full text: Delegates from 89 countries agreed on 8 July to fundamental changes that will substantially strengthen the Convention on the Physical Protection of Nuclear Material (CPPNM). IAEA Director General Mohamed ElBaradei welcomed the agreement in saying 'This new and stronger treaty is an important step towards greater nuclear security by combating, preventing, and ultimately punishing those who would engage in nuclear theft, sabotage or even terrorism. It demonstrates that there is indeed a global commitment to remedy weaknesses in our nuclear security regime.' The amended CPPNM makes it legally binding for States Parties to protect nuclear facilities and material in peaceful domestic use, storage as well as transport. It will also provide for expanded cooperation between and among States regarding rapid measures to locate and recover stolen or smuggled nuclear material, mitigate any radiological consequences of sabotage, and prevent and combat related offences. The original CPPNM applied only to nuclear material in international transport. Conference President Dr. Alec Baer said 'All 89 delegations demonstrated real unity of purpose. They put aside some very genuine national concerns in favour of the global interest and the result is a much improved convention that is better suited to addressing the nuclear security challenges we currently face.' The new rules will come into effect once they have been ratified by two-thirds of the 112 States Parties of the Convention, expected to take several years. 'But concrete actions are already taking place around the world. For more than 3 years, the IAEA has been implementing a systematic Nuclear Security plan, including physical protection activities designed to prevent, detect and respond to malicious acts,' said Anita Nillson, Director of the IAEA's Office of Nuclear Security. The Agency's Nuclear Security Fund, set up after the events of 9/11, has delivered $19.5 million in practical assistance to 121 countries

  16. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Stevens, J.; Howard, J.J. [ConocoPhillips, Ponca City, OK (United States); Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States)

    2008-07-01

    Large amounts of natural gas trapped in hydrate reservoirs are found in Arctic regions and in deep offshore locations around the world. Natural gas production from hydrate deposits offer significant potential for future energy needs. However, research is needed in order to propose potential production schemes for natural gas hydrates. Natural gas molecules can be freed from hydrate structured cages by depressurization, by heating and by exposing the hydrate to a substance that will form a thermodynamically more stable hydrate structure. This paper provided a comparison of two approaches for releasing methane from methane hydrate in porous sandstone. The study scope covered the dissociation rate of methane hydrate in porous media through depressurization, and also referred to previous work done on producing methane from hydrates in sandstone while sequestering carbon dioxide (CO{sub 2}). The study was conducted in a laboratory setting. The paper discussed the experimental design which included the placing of a pressure- and temperature-controlled sample holder inside the bore of a magnetic resonance imager. The experimental procedures were then outlined, with reference to hydrate formation; carbon dioxide sequestration; hydrate dissociation experiments with constant volume; and hydrate dissociation experiments at constant pressure. The constant volume experiments demonstrated that in order to dissociate a large amount of hydrate, the initial depressurization had to be significantly lower than the hydrate stability pressure. 9 refs., 9 figs.

  17. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator

    International Nuclear Information System (INIS)

    Li, Gang; Li, Xiao-Sen; Li, Bo; Wang, Yi

    2014-01-01

    The combination forms of the hydrate dissociation methods in different well systems are divided into 6 main patterns. Dissociation processes of methane hydrate in porous media using the inverted five-spot water flooding method (Pattern 4) are investigated by the experimental observation and numerical simulation. In situ methane hydrate is synthesized in the Cubic Hydrate Simulator (CHS), a 5.832-L cubic reactor. A center vertical well is used as the hot water injection well, while the four vertical wells at the corner are the gas and water production wells. The gas production begins simultaneously with the hot water injection, while after approximately 20 min of compression, the water begins to be produced. One of the common characteristics of the inverted five-spot water flooding method is that both the gas and water production rates decrease with the reduction of the hydrate dissociation rate. The evaluation of the energy efficiency ratio might indicate the inverted five-spot water flooding as a promising gas producing method from the hydrate reservoir. - Highlights: • A three-dimensional 5.8-L cubic pressure vessel is developed. • Gas production of hydrate using inverted five-spot flooding method is studied. • Water/gas production rate and energy efficiency ratio are evaluated. • Temperature distributions of numerical simulation and experiment agree well. • Hydrate dissociation process is a moving boundary problem in this study

  18. Chemical potentials of alkaline earth metal halide aqueous electrolytes and solubility of their hydrates by molecular simulation: Application to CaCl2, antarcticite, and sinjarite

    Science.gov (United States)

    Moučka, Filip; Kolafa, Jiří; Lísal, Martin; Smith, William R.

    2018-06-01

    We present a molecular-level simulation study of CaCl2 in water and crystalline hydrates formed by CaCl2 at ambient (298.15 K, 1 bar) conditions and at a high-temperature high-pressure state (365 K, 275 bars) typical of hydraulic fracturing conditions in natural-gas extraction, at which experimental properties are poorly characterized. We focus on simulations of chemical potentials in both solution and crystalline phases and on the salt solubility, the first time to our knowledge that such properties have been investigated by molecular simulation for divalent aqueous electrolytes. We first extend our osmotic ensemble Monte Carlo simulation technique [F. Moučka et al., J. Phys. Chem. B 115, 7849-7861 (2011)] to such solutions. We then describe and apply new methodology for the simulation of the chemical potentials of the experimentally observed crystalline hydrates at ambient conditions (antarcticite, CaCl2.6H2O) and at high-temperature conditions (sinjarite, CaCl2.2H2O). We implement our methodologies using for both phases the CaCl2 transferable force field (FF) based on simple point charge-extended water developed by Mamatkulov et al. [J. Chem. Phys. 138, 024505 (2013)], based on training sets involving single-ion and ion-pair low-concentration solution properties at near-ambient conditions. We find that simulations of the solution chemical potentials at high concentrations are somewhat problematic, exhibiting densities diverging from experimental values and accompanied by dramatically decreasing particle mobility. For the solid phases, the sinjarite crystalline lattice differs from experiment only slightly, whereas the simulations of antarcticite completely fail, due to instability of the crystalline lattice. The FF thus only successfully yields the sinjarite solubility, but its value m = 8.0(7) mol kg-1H2O lies well below the experimentally observed solubility range at 1 bar pressure of (12m, 15m) in the temperature interval (320 K, 400 K). We conclude that the

  19. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  20. Army agrees to new study of biowarfare laboratory.

    Science.gov (United States)

    Smith, R Jeffrey

    1985-02-08

    As a result of a lawsuit initiated by Washington activist Jeremy Rifkin and joined by the attorney general for the state of Utah, the U.S. Army has agreed to defer construction, pending a study of potential environmental hazards, of a new laboratory that was authorized by a small number of Congressmen under an unusual procedure in December 1984. The laboratory, intended for tests of highly infectious and lethal biological aerosols, has aroused controversy because of fears that the data gathered there might be used to develop offensive biological weapons.

  1. Kinetic Hydration Heat Modeling for High-Performance Concrete Containing Limestone Powder

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone powder is increasingly used in producing high-performance concrete in the modern concrete industry. Limestone powder blended concrete has many advantages, such as increasing the early-age strength, reducing the setting time, improving the workability, and reducing the heat of hydration. This study presents a kinetic model for modeling the hydration heat of limestone blended concrete. First, an improved hydration model is proposed which considers the dilution effect and nucleation effect due to limestone powder addition. A degree of hydration is calculated using this improved hydration model. Second, hydration heat is calculated using the degree of hydration. The effects of water to binder ratio and limestone replacement ratio on hydration heat are clarified. Third, the temperature history and temperature distribution of hardening limestone blended concrete are calculated by combining hydration model with finite element method. The analysis results generally agree with experimental results of high-performance concrete with various mixing proportions.

  2. Microstructure of natural hydrate host sediments

    International Nuclear Information System (INIS)

    Jones, K.W.; Kerkar, P.B.; Mahajan, D.; Lindquist, W.B.; Feng, H.

    2007-01-01

    There is worldwide interest in the study of natural gas hydrate because of its potential impact on world energy resources, control on seafloor stability, significance as a drilling hazard and probable impact on climate as a reservoir of a major greenhouse gas. Gas hydrates can (a) be free floating in the sediment matrix (b) contact, but do not cement, existing sediment grains, or (c) actually cement and stiffen the bulk sediment. Seismic surveys, often used to prospect for hydrates over a large area, can provide knowledge of the location of large hydrate concentrations because the hydrates within the sediment pores modify seismic properties. The ability to image a sample at the grain scale and to determine the porosity, permeability and seismic profile is of great interest since these parameters can help in determining the location of hydrates with certainty. We report here on an investigation of the structure of methane hydrate sediments at the grain-size scale using the synchrotron radiation-based computed microtomography (CMT) technique. Work has started on the measurements of the changes occurring as tetrahydrofuran hydrate, a surrogate for methane hydrate, is formed in the sediment

  3. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  4. The AGREE Enterprise: a decade of advancing clinical practice guidelines.

    Science.gov (United States)

    Makarski, Julie; Brouwers, Melissa C

    2014-08-15

    The original AGREE (Appraisal of Guidelines for REsearch and Evaluation) Instrument was published in 2003, and its revision, the AGREE II, in 2009. Together, they filled an important gap in the guideline and quality of care fields. Ten years later, the AGREE Enterprise reflects on a trajectory of projects and international collaboration that have contributed to advancing the science and quality of practice guidelines and the uptake of AGREE/AGREE II. The AGREE Enterprise has undertaken activities to improve the tool and to develop resources to support its use. Since 2003, the uptake and adoption of AGREE by the international community has been swift and broad. A total of 33 language translations of the original AGREE Instrument and the current AGREE II are available and were initiated by the international community. A recent scan of the published literature identified over 600 articles that referenced the AGREE tools. The AGREE tools have been widely received and applied, with several organizations having incorporated the AGREE as part of their formal practice guideline programs. Since its redevelopment in 2010, the AGREE Enterprise website (www.agreetrust.org) continues to experience steady increases in visitors per month and currently has over 10,000 registered users. The AGREE Enterprise has contributed to the advancements of guidelines through research activities and international participation by scientific and user communities. As we enter a new decade, we look forward to ongoing collaborations and contributing to further advancements to improve quality of care and health care systems.

  5. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  6. Can hydrate dissolution experiments predict the fate of a natural hydrate system?

    Energy Technology Data Exchange (ETDEWEB)

    Hester, K.C.; Peltzer, E.T.; Dunk, R.M.; Walz, P.M.; Brewer, P.G. [Monterey Bay Aquarium Research Inst., Moss Landing, CA (United States); Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    2008-07-01

    Gas hydrates are naturally occurring compounds found in permafrost regions and in oceans. In the natural environment, sufficient temperature and pressure conditions for hydrate formation exist over a significant portion of the ocean. However, in addition to pressure and temperature, the chemical potential of the gas in the hydrate must be equal to the surrounding waters. If the concentration of the gas in surrounding water is under-saturated with respect to the gas in the hydrate, the hydrate will dissolve to drive the system towards chemical equilibrium. This paper presented a dissolution study of exposed hydrate from outcrops at Barkley Canyon, located off Vancouver Island, British Columbia. A previous field experiment on synthetic methane hydrate samples had demonstrated that mass transfer controlled dissolution in under-saturated seawater. However, seafloor hydrate outcrops have been shown to have significant longevity compared to expected dissolution rates based upon convective boundary layer diffusion calculations. An in-situ dissolution experiment was performed on two distinct natural hydrate fabrics in order to help resolve this apparent disconnect between the dissolution rates of synthetic and natural hydrate. The paper presented a map of Barkley Canyon and discussed the field measurements and methods for the study. Exposed outcrops of gas hydrates were cored using a specially constructed stainless steel coring device and a hydraulic ram was located inside the corer. Hydrate samples were cored directly using the a manipulator arm and then injected into a sampling cell. The hydrate was then added to an open mesh exposure container, which allowed for exposure to ambient benthic currents with minimal disturbance. As well, in order to observe the slow dissolution of the hydrate in seawater at Barkley Canyon, time-lapse photography was employed. Last, the paper presented the results of the hydrate fabric porosities and hydrate dissolution rates. It was

  7. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  8. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  9. 24 CFR 242.26 - Agreed interest rate.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Agreed interest rate. 242.26... MORTGAGE INSURANCE FOR HOSPITALS Mortgage Requirements § 242.26 Agreed interest rate. (a) The mortgage shall bear interest at the rate or rates agreed upon by the mortgagee and the mortgagor. (b) The amount...

  10. 24 CFR 241.1070 - Agreed interest rate.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Agreed interest rate. 241.1070...-Eligibility Requirements § 241.1070 Agreed interest rate. The equity or acquisition loan shall bear interest at the rate agreed upon by the borrower and the lender. ...

  11. 24 CFR 203.20 - Agreed interest rate.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Agreed interest rate. 203.20... § 203.20 Agreed interest rate. (a) The mortgage shall bear interest at the rate agreed upon by the mortgagee and the mortgagor. (b) Interest shall be payable in monthly installments on the principal amount...

  12. 24 CFR 241.560 - Agreed interest rate.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Agreed interest rate. 241.560... § 241.560 Agreed interest rate. (a) The mortgage shall bear interest at the rate agreed upon by the lender and the borrower. (b) Interest shall be payable in monthly installments on the principal amount of...

  13. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  14. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  15. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    our understanding of methane hydrates in nature. COL assembled a Methane Hydrate Project Science Team with members from academia, industry, and government. This Science Team worked with COL and DOE to develop and host the Methane Hydrate Community Workshop, which surveyed a substantial cross section of the methane hydrate research community for input on the most important research developments in our understanding of methane hydrates in nature and their potential role as an energy resource, a geohazard, and/or as an agent of global climate change. Our understanding of how methane hydrates occur in nature is still growing and evolving, and it is known with certainty that field, laboratory, and modeling studies have contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information needed to advance our understanding of methane hydrates.

  16. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  17. Vibrational spectra of halide-water dimers: Insights on ion hydration from full-dimensional quantum calculations on many-body potential energy surfaces

    Science.gov (United States)

    Bajaj, Pushp; Wang, Xiao-Gang; Carrington, Tucker; Paesani, Francesco

    2018-03-01

    Full-dimensional vibrational spectra are calculated for both X-(H2O) and X-(D2O) dimers (X = F, Cl, Br, I) at the quantum-mechanical level. The calculations are carried out on two sets of recently developed potential energy functions (PEFs), namely, Thole-type model energy (TTM-nrg) and many-body energy (MB-nrg), using the symmetry-adapted Lanczos algorithm with a product basis set including all six vibrational coordinates. Although both TTM-nrg and MB-nrg PEFs are derived from coupled-cluster single double triple-F12 data obtained in the complete basis set limit, they differ in how many-body effects are represented at short range. Specifically, while both models describe long-range interactions through the combination of two-body dispersion and many-body classical electrostatics, the relatively simple Born-Mayer functions employed in the TTM-nrg PEFs to represent short-range interactions are replaced in the MB-nrg PEFs by permutationally invariant polynomials to achieve chemical accuracy. For all dimers, the MB-nrg vibrational spectra are in close agreement with the available experimental data, correctly reproducing anharmonic and nuclear quantum effects. In contrast, the vibrational frequencies calculated with the TTM-nrg PEFs exhibit significant deviations from the experimental values. The comparison between the TTM-nrg and MB-nrg results thus reinforces the notion that an accurate representation of both short-range interactions associated with electron density overlap and long-range many-body electrostatic interactions is necessary for a correct description of hydration phenomena at the molecular level.

  18. Basics of development of gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Makogon, Yuri F.; Holditch, Stephen A.; Makogon, Taras Y.

    2005-07-01

    Natural gas hydrate deposits could possibly be an important energy resource during this century. However, many problems associated with producing these deposits must first be solved. The industry must develop new technologies to produce the gas, to forecast possible tectonic cataclysms in regions of gas hydrate accumulations, and to prevent damage to the environment. These global issues must be addressed by every company or country who wants to produce gas hydrate deposits. Cooperative research between industry and universities can lead to technology breakthroughs in coming years. This paper reviews the Messoyakha field and the Blake Ridge and Nankai areas to explain a methodology for estimating how much gas might be producible from gas hydrate deposits (GHDs) under various conditions. The Messoyakha field is located on land, while the Blake Ridge and Nankai areas are offshore. Messoyakha is the first and the only GHD where gas production from hydrates has reached commercial flow rates. The Blake Ridge GHD has been studied for 20 years and 11 wells have been drilled to collect gas-hydrate samples. The potential resources of gas (gas in place) from Blake Ridge is estimated at 37.7Oe10{sup 12} m{sup 3} (1.330 Tcf) in hydrate form and 19.3Oe10{sup 12}m{sup 3} (681 Bcf) [5] in free gas. To estimate how much of the potential resource can be produced we need a thorough understanding of both the geologic and the thermodynamic characteristics of the formations. (Author)

  19. Gas hydrate exploration activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Keun-Pil Park, K.P. [Korea Inst. of Geoscience and Mineral Resources, Gas Hydrate R and D Organization, Ministry of Knowledge Economy, Yuseong-gu, Daejeon (Korea, Republic of)

    2008-07-01

    Korea's first gas hydrate research project was launched in 1996 to study the gas hydrate potential in the Ulleung Basin of the East Sea. It involved a series of laboratory experiments followed by a preliminary offshore seismic survey and regional reconnaissance geophysical and marine geological surveys. The bottom simulating reflector (BSR) was interpreted to show wide area distribution in the southern part of the Ulleung Basin, and its average burial depth was 187 m below the sea floor in the East Sea. A three-phase 10-year National Gas Hydrate Development Program was launched in 2004 to estimate the potential reserves in the East Sea. It will involve drilling to identify natural gas hydrates and to determine the most optimized production methods. Drilling sites were proposed based on five indicators that imply gas hydrate occurrence, notably BSR, gas vent, enhanced seismic reflection, acoustic blanking and gas seeping structure. The UBGH-X-01 gas hydrate expedition in the East Sea Ulleung Basin involved 5 logging while drilling (LWD) surveys at three high priority sites. One wire line logging was implemented at the site of the UBGH09. A total 334 m of non-pressurized conventional cores and 16 pressure cores were obtained in late 2007. The UBGH-X-01 was successfully completed, recovering many natural samples of gas hydrate from 3 coring sites in the East Sea. 7 refs., 12 figs.

  20. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  1. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  2. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  3. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  4. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  5. AGREED-UPON PROCEDURES, PROCEDURES FOR AUDITING EUROPEAN GRANTS

    Directory of Open Access Journals (Sweden)

    Daniel Petru VARTEIU

    2016-12-01

    The audit of EU-funded projects is an audit based on agreed-upon procedures, which are established by the Managing Authority or the Intermediate Body. Agreed-upon procedures can be defined as engagements made in accordance with ISRS 4400, applicable to agreed-upon procedures, where the auditor undertakes to carry out the agreed-upon procedures and issue a report on factual findings. The report provided by the auditor does not express any assurance. It allows users to form their own opinions about the conformity of the expenses with the project budget as well as the eligibility of the expenses.

  6. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  7. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...... a characteristic broad absorption peak at 0.5 THz corresponding to the dipole moment of THF molecules. The refractive indices of THF and propane hydrates are 1.725 and 1.775 at 1 THz, respectively, and show a slight but clear difference from the refractive index of ice (1.79). THz-TDS is a potentially useful...... technique for the ondestructive inspection of gas hydrates. # 2009 The Japan Society of Applied Physics...

  8. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  9. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  10. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    OpenAIRE

    Peng Zhang; Qingbai Wu; Yuzhong Yang

    2013-01-01

    The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on...

  11. Modeling dissociation behaviour of methane hydrate in porous soil media

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, A.G.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Gas hydrates, or clathrates, exist in the form of crystalline solid structures of hydrogen bonded water molecules where the lattice cages are occupied by guest gas molecules. Methane gas hydrates are the most common. As such, hydrate bearing sediments are considered to be a potential future energy resource. Gas hydrates also function as a source or sink for atmospheric methane, which may influence global warming. The authors emphasized that an understanding of the behaviour of soils containing gas hydrates is necessary in order to develop ways of recovering the vast gas resources that exist in the form of hydrates, particularly since hydrates are also suspected to be a potential factor in the initiation and propagation of submarine slope failures. Gas hydrate dissociation occurs when water and gas are released, resulting in an increase in pore fluid pressure, thereby causing significant reductions in effective stress leading to sediment failure. Dissociation may occur as a result of pressure reductions or increases in temperature. This study focused on the strength and deformation behaviour of hydrate bearing soils associated with temperature induced dissociation. Modeling the dissociation behavior of hydrates in porous soil media involves an understanding of the geomechanics of hydrate dissociation. This paper addressed the issue of coupling the hydrate dissociation problem with the soil deformation problem. A mathematical framework was constructed in which the thermally stimulated hydrate dissociation process in porous soil media under undrained conditions was considered with conduction heat transfer. It was concluded that a knowledge of geomechanical response of hydrate bearing sediments will enable better estimates of benefits and risks associated with the recovery process, thereby ensuring safe and economical exploration. 20 refs., 1 fig., 1 appendix.

  12. Carbon dioxide hydrate formation in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Lang, X. [South China Univ. of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conservation; Wang, Y.; Liang, D. [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Energy Conversion and Guangzhou Center of Natural Gas Hydrate; Sun, X.; Jurcik, B. [Air Liquide Laboratories, Tsukuba (Japan)

    2008-07-01

    Gas hydrates are thermodynamically stable at high pressures and near the freezing temperature of pure water. Methane hydrates occur naturally in sediments in the deep oceans and permafrost regions and constitute an extensive hydrocarbon reservoir. Carbon dioxide (CO{sub 2}) hydrates are of interest as a medium for marine sequestration of anthropogenic carbon dioxide. Sequestering CO{sub 2} as hydrate has potential advantages over most methods proposed for marine CO{sub 2} sequestration. Because this technique requires a shallower depth of injection when compared with other ocean sequestration methods, the costs of CO{sub 2} hydrate sequestration may be lower. Many studies have successfully used different continuous reactor designs to produce CO{sub 2} hydrates in both laboratory and field settings. This paper discussed a study that involved the design and construction of a fixed-bed reactor for simulation of hydrate formation system. Water, river sands and carbon dioxide were used to simulate the seep kind of hydrate formation. Carbon dioxide gas was distributed as small bubbles to enter from the bottom of the fixed-bed reactor. The paper discussed the experimental data and presented a diagram of the gas hydrate reactor system. The morphology as well as the reaction characters of CO{sub 2} hydrate was presented in detail. The results were discussed in terms of experimental phenomena and hydrate formation rate. A mathematical model was proposed for describing the process. 17 refs., 7 figs.

  13. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Tech Research Corporation, Atlanta, GA (United States); Santamarina, J. Carlos [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2017-12-30

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate natural hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.

  14. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  15. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  16. Impact of welan gum on tricalcium aluminate–gypsum hydration

    International Nuclear Information System (INIS)

    Ma Lei; Zhao Qinglin; Yao Chukang; Zhou Mingkai

    2012-01-01

    The retarding effect of welan gum on tricalcium aluminate–gypsum hydration, as a partial system of ordinary Portland cement (OPC) hydration, was investigated with several methods. The tricalcium aluminate–gypsum hydration behavior in the presence or absence of welan gum was researched by field emission gun scanning electron microscopy, X-ray diffraction and zeta potential analysis. Meanwhile, we studied the surface electrochemical properties and adsorption characteristics of welan gum by utilizing a zeta potential analyzer and UV–VIS absorption spectrophotometer. By adding welan gum, the morphology change of ettringite and retardation of hydration stages in tricalcium aluminate–gypsum system was observed. Moreover, we detected the adsorption behavior and zeta potential inversion of tricalcium aluminate and ettringite, as well as a rapid decrease in the zeta potential of tricalcium aluminate–gypsum system. The reduction on nucleation rate of ettringite and hydration activity of C 3 A was also demonstrated. Thus, through the adsorption effect, welan gum induces a retarding behavior in tricalcium aluminate–gypsum hydration. Highlights: ► Adsorption characteristics of welan gum on C 3 A and ettringite have been studied. ► C 3 A–gypsum hydration behavior and the hydration products are examined in L/S = 3. ► Welan gum retards the process of C 3 A–gypsum hydration. ► The addition of welan gum changes the nucleation growth of ettringite.

  17. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der Waals–Platteeuw model and sPC-SAFT EoS

    International Nuclear Information System (INIS)

    Abolala, Mostafa; Varaminian, Farshad

    2015-01-01

    Highlights: • Applying sPC-SAFT for phase equilibrium calculations. • Determining Kihara potential parameters for hydrate formers. • Successful usage of the model for systems with hydrate azeotropes. - Abstract: In this communication, equilibrium conditions of clathrate hydrates containing mixtures of noble gases (Argon, Krypton and Xenon) and light hydrocarbons (C 1 –C 3 ), which form structure I and II, are modeled. The thermodynamic model is based on the solid solution theory of Van der Waals–Platteeuw combined with the simplified Perturbed-Chain Statistical Association Fluid Theory equation of state (sPC-SAFT EoS). In dispersion term of sPC-SAFT EoS, the temperature dependent binary interaction parameters (k ij ) are adjusted; taking advantage of the well described (vapor + liquid) phase equilibria. Furthermore, the Kihara potential parameters are optimized based on the P–T data of pure hydrate former. Subsequently, these obtained parameters are used to predict the binary gas hydrate dissociation conditions. The equilibrium conditions of the binary gas hydrates predicted by this model agree well with experimental data (overall AAD P ∼ 2.17)

  18. Hydrates on tap: scientists say natural gas hydrates may be tough nut to crack

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-12-01

    Gas hydrates are methane molecules trapped in cages of water molecules, yielding a substance with a slushy, sherbet-like consistency. Drilling for hydrates is similar to conventional oil and gas drilling, however, the secret to economic production still remains hidden. Hydrates exist in abundance in such places as deep ocean floor and below ground in some polar regions. The real challenge lies in producing gas from this resource, inasmuch as there is no existing technology for production of gas specifically from methane hydrates. This paper describes an international research program, involving a five-country partnership to spud the first of three wells into the permafrost of the Mackenzie River Delta in the Northwest Territories. The project, worth about $15 million, has brought together public funding and expertise from Japan, Germany, India as well as the Canadian and US Geological Surveys and the US Dept. of Energy in an effort to gain information on the production response of gas hydrates. The operator of the project is Japan Petroleum Exploration Company of Canada, a subsidiary of Japan National Oil Corporation. Since Japan is poor in domestic hydrocarbon resources, but is surrounded by deep water that contains potential for gas hydrates, Japan has a great deal riding on the success of this project. Germany and the United States are also very much interested. Current thinking is that gas is in contact with the hydrates and that it should be possible to develop a free gas reservoir as if it were a conventional deposit. As the free gas is drawn off, the pressure is reduced on the hydrates in contact with it , the hydrates dissociate from the gas and replenish the conventional reservoir. So far this is still only a theory, but it appears to be a sensible approach to hydrate production. 1 photo.

  19. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  20. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  1. Influence of limestone on the hydration of Portland cements

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Gallucci, Emmanuel; Scrivener, Karen

    2008-01-01

    The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the 'limestone-free' cement, which contained less than 0.3% CO 2 , and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration

  2. Carbon dioxide gas hydrates accumulation in freezing and frozen sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilin, E.; Guryeva, O. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology

    2008-07-01

    Carbon dioxide (CO{sub 2}) hydrates and methane hydrates can be formed, and exist under natural conditions. The permafrost area has been considered as an environment for the potential disposal of CO{sub 2}. The favorable factors for preserving CO{sub 2} in liquid and gas hydrate states in frozen sediments and under permafrost horizons are great thickness of frozen sediments; low permeability in comparison with thawed sediments; and favourable conditions for hydrates formation. Therefore, research on the formation and existence conditions of CO{sub 2} gas hydrates in permafrost and under permafrost sediments are of great importance for estimation of CO{sub 2} disposal conditions in permafrost, and for working out specific sequestration schemes. This paper presented the results of an experimental study on the process of carbon dioxide (CO{sub 2}) gas hydrates formation in the porous media of sediments under positive and negative temperatures. Sediment samples of various compositions including those selected in the permafrost area were used. The research was conducted in a special pressure chamber, which allowed to monitor pressure and temperature. The study used the monitoring results in order to make quantitative estimation of the kinetics of CO{sub 2} hydrates accumulation in the model sediments. Results were presented in terms of kinetics of CO{sub 2} hydrates accumulation in the porous media at positive and negative temperatures; kinetics of CO{sub 2} hydrates accumulation in various porous media; gas hydrate-former influence on kinetics of hydrates accumulation in frozen sediments; and influence of freezing on CO{sub 2} hydrates accumulation in porous media. It was concluded that hydrate accumulation took an active place in porous media not only under positive, but also under high negative temperatures, when the water was mainly in the form of ice in porous media. 27 refs., 3 tabs., 5 figs.

  3. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  4. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  5. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  6. The U.S. Geological Survey’s Gas Hydrates Project

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    The Gas Hydrates Project at the U.S. Geological Survey (USGS) focuses on the study of methane hydrates in natural environments. The project is a collaboration between the USGS Energy Resources and the USGS Coastal and Marine Geology Programs and works closely with other U.S. Federal agencies, some State governments, outside research organizations, and international partners. The USGS studies the formation and distribution of gas hydrates in nature, the potential of hydrates as an energy resource, and the interaction between methane hydrates and the environment. The USGS Gas Hydrates Project carries out field programs and participates in drilling expeditions to study marine and terrestrial gas hydrates. USGS scientists also acquire new geophysical data and sample sediments, the water column, and the atmosphere in areas where gas hydrates occur. In addition, project personnel analyze datasets provided by partners and manage unique laboratories that supply state-of-the-art analytical capabilities to advance national and international priorities related to gas hydrates.

  7. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  8. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed

  9. Two-component, ab initio potential energy surface for CO2—H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both

    Science.gov (United States)

    Wang, Qingfeng Kee; Bowman, Joel M.

    2017-10-01

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO2—H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.

  10. Two-component, ab initio potential energy surface for CO2-H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both.

    Science.gov (United States)

    Wang, Qingfeng Kee; Bowman, Joel M

    2017-10-28

    We report an ab initio, full-dimensional, potential energy surface (PES) for CO 2 -H 2 O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D 0 , of 787 cm -1 is obtained using that ZPE, D e , and the rigorous ZPEs of the monomers. Using a benchmark D e , D 0 is 758 cm -1 . Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO 2 hydrate clathrate CO 2 (H 2 O) 20 (5 12 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO 2 .

  11. Dissociation behavior of pellet shaped mixed gas hydrate samples that contain propane as a guest

    International Nuclear Information System (INIS)

    Kawamura, Taro; Sakamoto, Yasuhide; Ohtake, Michika; Yamamoto, Yoshitaka; Komai, Takeshi; Haneda, Hironori; Yoon, Ji-Ho; Ohga, Kotaro

    2006-01-01

    The dissociation kinetics of mixed gas hydrates that contain propane as a guest molecule have been investigated. The mixed gas hydrates used in this work were artificially prepared using the binary gas mixture of methane-propane and the ternary gas mixture of methane-ethane-propane. The crystal structures and the guest compositions of the mixed hydrates were clearly identified by using Raman spectroscopy and gas chromatography. The dissociation rates of the gas hydrates observed under several isothermal and isobaric conditions were discussed with an analytical model. The isobaric conditions were achieved by pressurizing with mixed gases using buffer cylinders, which had similar compositions to those of the initial gases used for synthesizing each hydrate sample. Interestingly, the calculated result agreed well with the experimentally observed results only when the composition of the vapor phase was assumed to be identical with that of the hydrate phase instead of the bulk (equilibrium) gas composition

  12. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    Science.gov (United States)

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  13. Prospects of gas hydrate presence in the Chukchi sea

    Directory of Open Access Journals (Sweden)

    Т. В. Матвеева

    2017-08-01

    Full Text Available The purpose of this study is to forecast the scale and distribution character of gas hydrate stability zone in the Chukchi Sea under simulated natural conditions and basing on these results to estimate resource potential of gas hydrates within this area. Three types of stability zone have been identified. A forecast map of gas hydrate environment and potentially gas hydrate-bearing water areas in the Chukchi Sea has been plotted to a scale of 1:5 000 000. Mapping of gas hydrate stability zone allowed to give a justified forecast based on currently available data on geologic, fluid dynamic, cryogenic, geothermal and pressure-temperature conditions of gas hydrate formation in the Chukchi Sea. It is the first forecast of such kind that focuses on formation conditions for hydrates of various types and compositions in the Arctic seas offshore Russia. Potential amount of gas, stored beneath the Chukchi Sea in the form of hydrates, is estimated based on mapping of their stability zone and falls into the interval of 7·1011-11.8·1013 m3.

  14. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  15. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  16. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  17. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  18. Four African Nations Agree to Water Management Programme

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Seeking to improve their management of water resources, four northeast African nations today agreed at the International Atomic Energy Agency (IAEA) to establish a long-term framework for utlizing a key underground water system. Chad, Egypt, Libya and Sudan signed a Strategic Action Programme (SAP) that aims to optimize the equitable use of the Nubian Sandstone Aquifer System, a huge water resource that lies beneath the four nations. The SAP also commits the countries to strengthen and build upon a previously existing regional coordination mechanism, in part by establishing a new Joint Authority for the Nubian Aquifer System. The Programme lays the groundwork for improving cooperation among the four arid nations and for strengthening their capacity to monitor and manage the aquifer effectively. With growing populations and decreasing water availability from other sources in the region, the aquifer is under mounting pressure. Removing water without a clear understanding of transboundary and other implications threatens water quality and has the potential to harm biodiversity and accelerate land degradation. The agreement resulted from a joint Technical Cooperation project of the United Nations Development Programme (UNDP) and the Global Environment Facility (GEF), the United Nations Educational, Scientific and Cultural Organization (UNESCO) and the IAEA. ''I congratulate all involved on this significant achievement,'' said IAEA Director General Yukiya Amano. ''Water is a key resource, and effective management and use of such water resources is essential for the future. The agreement of the Strategic Action Programme is the result of real cooperation between the four States, the Agency and UNDP-GEF. I am confident that this Programme will be a success and will benefit the people of the region. This positive project experience benefits strengthened and expanded cooperation between the IAEA and the UNDP-GEF.'' ''UNDP would like to congratulate the

  19. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  20. ARCO and Sun agree to settle Iranian claims

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that ARCO and Sun Co. Inc. have agreed to separate settlements totaling almost $261 million that resolve their claims over oil field assets expropriated by Iran in 1978--80. The agreements are subject to approval by the Iran-U.S. claims tribunal at The Hague. The tribunal was set up in 1981 to resolve foreign claims to assets nationalized by the government of Ayatollah Khomeini following the fall of the Shah of Iran as a result of the 1978-79 Iranian revolution. The settlements are seen as the latest steps Iran has taken to normalize relations with the U.S., notably through petroleum related deals

  1. Theoretical description of biomolecular hydration - Application to A-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Hummer, G. [Los Alamos National Laboratory, NM (United States); Soumpasis, D.M. [Max Planck Inst. for Biophysical Chemistry, Goettingen (Germany)

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  2. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    as the rhabdophane structure is preserved. The bound hydrate water is accommodated in the rhabdophane structure and is stable at temperatures of up to 650 oC. The thermal stability of the hydrate water and the phosphate structure are of significance for the proton conductivity. The LaPO4·0.6H2O and NdPO4•0.5H2O......Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...... to the monazite structure upon dehydration. The thermal stability of the hydrate is studied and found to contain water of two types, physically adsorbed and structurally bound hydrate water. The adsorbed water is correlated to the specific surface area and can be reversibly recovered when dehydrated as long...

  3. Theoretical description of biomolecular hydration - Application to A-DNA

    International Nuclear Information System (INIS)

    Garcia, A.E.; Hummer, G.; Soumpasis, D.M.

    1994-01-01

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG) 5 ] 2 and [d(C 5 G 5 )] 2 . We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers

  4. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  5. On being examined: do students and faculty agree?

    Science.gov (United States)

    Perrella, Andrew; Koenig, Joshua; Kwon, Henry; Nastos, Stash; Rangachari, P K

    2015-12-01

    Students measure out their lives, not with coffee spoons, but with grades on examinations. But what exams mean and whether or not they are a bane or a boon is moot. Senior undergraduates (A. Perrella, J. Koenig, and H. Kwon) designed and administered a 15-item survey that explored the contrasting perceptions of both students (n = 526) and faculty members (n = 33) in a 4-yr undergraduate health sciences program. A series of statements gauged the level of agreement on a 10-point scale. Students and faculty members agreed on the value of assessing student learning with a variety of methods, finding new information to solve problems, assessing conceptual understanding and logical reasoning, having assessments with no single correct answer, and having comments on exams. Clear differences emerged between students and faculty members on specific matters: rubrics, student choice of exam format, assessing creativity, and transfer of learning to novel situations. A followup questionnaire allowed participants to clarify their interpretation of select statements, with responses from 71 students and 17 faculty members. All parties strongly agreed that exams should provide a good learning experience that would help them prepare for the future (students: 8.64 ± 1.71 and faculty members: 8.03 ± 2.34). Copyright © 2015 The American Physiological Society.

  6. Gas hydrate inhibition by perturbation of liquid water structure

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  7. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  8. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  9. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  10. Dehydration behaviour of hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dette, S.S.; Stelzer, T.; Jones, M.J.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, 06099 Halle (Germany)

    2010-07-15

    Immersing a crystalline solvate in a suitable anti-solvent can induce phase transformation to solvent-free solid phase. In certain cases the solvent-mediated phase transition results in the generation of hollow, tubular structures. Both the tube dimensions of sodium-2-keto-L-gulonate anhydrate (skga) and the dehydration kinetics of sodium-2-keto-L-gulonate monohydrate (skgm) can be modified by the antisolvent employed. An explanation for the variable dehydration behaviour of skgm in the antisolvents is presented here. Furthermore, other crystalline hydrates were dehydrated in dry methanol. Providing an operational window can be found, any hydrate material could possibly find use in the production of tubes (micro- or nanotubes for different applications). The experimental conditions selected (dry methanol as antisolvent, dehydration temperature at 25 C) for the dehydration did not lead to the anhydrate tube growth for all hydrates investigated. Based upon the results presented here a first hypothesis is presented to explain this effect. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    Science.gov (United States)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  12. Molecular analysis of petroleum derived compounds that adsorb onto gas hydrate surfaces

    International Nuclear Information System (INIS)

    Borgund, Anna E.; Hoiland, Sylvi; Barth, Tanja; Fotland, Per; Askvik, Kjell M.

    2009-01-01

    Field observations have shown that some streams of water, gas and crude oil do not form gas hydrate plugs during petroleum production even when operating within thermodynamic conditions for hydrate formation. Also, when studied under controlled laboratory conditions, some oils are found to form hydrate dispersed systems whereas others form plugs. Oils with low tendency to form hydrate plugs are believed to contain natural hydrate plug inhibiting components (NICs) that adsorb onto the hydrate surface, making them less water-wet and preventing the particles from agglomerating into large hydrate clusters. The molecular structure of the NICs is currently unknown. In this work, hydrate adsorbing components were extracted from crude oils using freon hydrates as an extraction phase. The fractions were found to be enriched in polar material, and more polar material is associated with hydrates generated in biodegraded crude oils than in non-biodegraded oils. Various fractionation schemes and analytical techniques have been applied in the search for molecular characterisation. The average molecular weights were found to be approximately 500 g/mole. GC-MS chromatograms show a large UCM (Unresolved Complex Mixture). Thus, GC-MS has a limited potential for identification of compounds. A commercial biosurfactant was used as a model compound in the search for similar structures in the extracts. The results from analysis of the hydrate adsorbing components suggest that the type and structure are more important for hydrate morphology than the amount of material adsorbed.

  13. Experimental hydrate formation and gas production scenarios based on CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.C.; Howard, J.J. [ConocoPhillips, Bartlesville, OK (United States). Reservoir Laboratories; Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States); Ersland, G.; Husebo, J.; Graue, A. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology

    2008-07-01

    Gas hydrate production strategies have focused on depressurization or thermal stimulation of the reservoir, which in turn leads to hydrate dissociation. In order to evaluate potential production scenarios, the recovery efficiency of the natural gas from hydrate must be known along with the corresponding amounts of produced water. This study focused on the exchange of carbon dioxide (CO{sub 2}) with the natural gas hydrate and the subsequent release of free methane (CH{sub 4}). Laboratory experiments that investigated the rates and mechanisms of hydrate formation in coarse-grained porous media have shown the significance of initial water saturation and salinity on forming methane hydrates. Many of the experiments were performed in a sample holder fitted with an MRI instrument for monitoring hydrate formation. Hydrate-saturated samples were subjected to different procedures to release methane. The rates and efficiency of the exchange process were reproducible over a series of initial conditions. The exchange process was rapid and efficient in that no free water was observed in the core with MRI measurements. Injection of CO{sub 2} into the whole-core hydrate-saturated pore system resulted in methane production at the outlet end. Permeability measurements on these hydrate saturated cores during hydrate formation decreased to low values, but enough for gas transport. The lower permeability values remained constant during the methane-carbon dioxide exchange process in the hydrate structure. 12 refs., 9 figs.

  14. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yanxin; Cheng Yipik [Department of Civil, Environmental and Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT (United Kingdom); Xu Xiaomin; Soga, Kenichi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

    2013-06-18

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

  15. Methane hydrates and the future of natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2011-01-01

    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  16. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    Science.gov (United States)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  17. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    Directory of Open Access Journals (Sweden)

    Qingbai Wu

    2013-03-01

    Full Text Available The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on water transfer to the hydrate surfaces with lower Gibbs free energy after nucleation. Significant differences in the reactions in the two types of media arose from differences in the water retention capacity and lithology of media due to the internal surface area and pore size distributions. Compared with methane hydrate formation in silica gel, the reaction in loess was much slower and formed far less methane hydrate. The results of this study will advance the understanding of how the properties of the environment affect the formation of gas hydrates in nature.

  18. Electrochemical stability of ionic clathrate hydrates and their structural consideration

    International Nuclear Information System (INIS)

    Lee, Wonhee; Lim, Dongwook; Lee, Huen

    2013-01-01

    Although electrochemical stability is an essential factor in relation to the potential applications of ionic clathrate hydrates to solid electrolytes, most studies regarding the proton conductors have focused on their ionic conductivity and thermal stability. Solid electrolytes in various electrochemical devices have to endure the applied potentials; thus, we examined the linear sweep voltammograms of various tetraalkylammonium hydroxide hydrates in order to shed light on the trend of electrochemical stability depending on the hydrate structure. We revealed that the electrochemical stability of Me 4 NOH hydrates is mainly affected by both their ionic concentration and cage occupancy. In particular, the true clathrate structures of β-Me 4 NOH hydrates are more electrochemically stable than their α-forms that possess partially broken hydrogen bonds. We also observed that the binary THF–Pr 4 NOH and pure Bu 4 NOH clathrate hydrates exhibit greater electrochemical stability than those of pure Me 4 NOH hydrates having lower or similar ionic concentrations. These results are considered to arise from the fact that each of the Pr 4 N + and Bu 4 N + ions occupies an extended space comprising four cages, which leads to stabilization of the larger unit, whereas a Me 4 N + ion is completely included only in one cage

  19. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  20. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  1. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing

    2015-07-15

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years\\' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  2. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    KAUST Repository

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Herná ndez-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid M.; Monteiro, Paulo J M

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C-S-H fibers are composed of particles that are 1.5-2 nm thick and several tens of nanometers long. 29Si NMR shows 47.9% Q1 and 52.1% Q2, with a mean SiO4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C3S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L3,2-edge indicates that Ca2 + in C-S-H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO44 - tetrahedron chain. © 2015 Elsevier Ltd. All rights reserved.

  3. Atomic and nano-scale characterization of a 50-year-old hydrated C3S paste

    International Nuclear Information System (INIS)

    Geng, Guoqing; Taylor, Rae; Bae, Sungchul; Hernández-Cruz, Daniel; Kilcoyne, David A.; Emwas, Abdul-Hamid; Monteiro, Paulo J.M.

    2015-01-01

    This paper investigates the atomic and nano-scale structures of a 50-year-old hydrated alite paste. Imaged by TEM, the outer product C–S–H fibers are composed of particles that are 1.5–2 nm thick and several tens of nanometers long. 29 Si NMR shows 47.9% Q 1 and 52.1% Q 2 , with a mean SiO 4 tetrahedron chain length (MCL) of 4.18, indicating a limited degree of polymerization after 50 years' hydration. A Scanning Transmission X-ray Microscopy (STXM) study was conducted on this late-age paste and a 1.5 year old hydrated C 3 S solution. Near Edge X-ray Absorption Fine Structure (NEXAFS) at Ca L 3,2 -edge indicates that Ca 2+ in C–S–H is in an irregular symmetric coordination, which agrees more with the atomic structure of tobermorite than that of jennite. At Si K-edge, multi-scattering phenomenon is sensitive to the degree of polymerization, which has the potential to unveil the structure of the SiO 4 4− tetrahedron chain.

  4. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    International Nuclear Information System (INIS)

    Wang, Yimin; Bowman, Joel M.; Kamarchik, Eugene

    2016-01-01

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na + H 2 O, F − H 2 O, and Cl − H 2 O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H 2 O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na + and aVTZ basis for Cl − and F − ), over a large range of distances and H 2 O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  5. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu [Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com [Quantum Pomegranate, LLC, 2604 Kings Lake Court NE, Atlanta, Georgia 30345 (United States)

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  6. Methane Hydrate in Confined Spaces: An Alternative Storage System.

    Science.gov (United States)

    Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin

    2018-03-14

    Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Gas hydrates in the Ulleung Basin, East Sea of Korea

    Directory of Open Access Journals (Sweden)

    Byong-Jae Ryu Michael Riedel

    2017-01-01

    Full Text Available To develop gas hydrates as a potential energy source, geophysical surveys and geological studies of gas hydrates in the Ulleung Basin, East Sea off the east coast of Korea have been carried out since 1997. Bottom-simulating reflector (BSR, initially used indicator for the potential presence of gas hydrates was first identified on seismic data acquired in 1998. Based on the early results of preliminary R&D project, 12367 km of 2D multichannel reflection seismic lines, 38 piston cores, and multi-beam echo-sounder data were collected from 2000 to 2004. The cores showed high amounts of total organic carbon and high residual hydrocarbon gas levels. Gas composition and isotope ratios define it as of primarily biogenic origin. In addition to the BSRs that are widespread across the basin, numerous chimney structures were found in seismic data. These features indicate a high potential of the Ulleung Basin to host significant amounts of gas hydrate. Dedicated geophysical surveys, geological and experimental studies were carried out culminating in two deep drilling expeditions, completed in 2007 and 2010. Sediment coring (including pressure coring, and a comprehensive well log program complements the regional studies and were used for a resource assessment. Two targets for a future test-production are currently proposed: pore-filling gas hydrate in sand-dominated sediments and massive occurrences of gas hydrate within chimney-like structures. An environmental impact study has been launched to evaluate any potential risks to production.

  8. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  9. Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates

    Directory of Open Access Journals (Sweden)

    Siažik Ján

    2017-01-01

    Full Text Available Hydrates of the natural gas in the lithosphere are a very important potential source of energy that will be probably used in the coming decades. It seems as promising accumulation of the standard gas to form hydrates synthetically, stored, and disengage him when is peak demand. Storage of natural gas or biomethane in hydrates is advantageous not only in terms of storage capacity, but also from the aspect of safety storage hydrates. The gas stored in such form may occurs at relatively high temperatures and low pressures in comparison to other Technologies of gas- storage. In one cubic meter of hydrate can be stored up to 150 m3 of natural gas, depending on the conditions of thermobaric hydrate generation. This article discusses the design of the facility for the continuous generation of hydrates of natural gas measurement methodology and optimal conditions for their generation.

  10. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  11. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  12. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    Science.gov (United States)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and

  13. Hydration benefits to courtship feeding in crickets

    OpenAIRE

    Ivy, T. M.; Johnson, J. C.; Sakaluk, S. K.

    1999-01-01

    The spermatophore transferred by male decorated crickets (Gryllodes sigillatus) at mating includes a large gelatinous spermatophylax that the female consumes after copulation. Although previous studies have shown that G. sigillatus females gain no nutritional benefits from consuming food gifts, there may be other benefits to their consumption. We examined potential hydration benefits to females by experimentally manipulating both the availability of water and the number of food gifts that fem...

  14. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  15. Introduction to the Gas Hydrate Master Project of Energy National Science and Technology Program of Taiwan

    Science.gov (United States)

    Yang, T. F.; Research Team of Gas Hydrate Project of CGS of Taiwan

    2011-12-01

    Bottom Simulating Reflectors (BSRs), which have been considered as one of major indicators of the gas hydrate in sub-seafloor, have been detected and widely distributed in offshore SW Taiwan. The Central Geological Survey of Taiwan launched a 4-year multidisciplinary gas hydrate investigation program in 2004 to explore the potential of gas hydrate resources in the area. The results indicate that enormous amounts of gas hydrate should occur beneath the seafloor, although none of solid gas hydrate samples have been found. Therefore, a second stage of another 4-year program started in 2008 to extend the studies/investigation. In the ongoing projects, some specific areas will be studied in detail to assess the components of gas hydrate petroleum system and provide a better assessment of the energy resource potential of gas hydrate in the target area. In addition to the field investigations, phase equilibrium of gas hydrate via experiment, theoretical modeling, and molecular simulations has also been studied. The results can provide insights into gas hydrate production technology. Considering the high potential energy resources, the committee of the energy national science and technology program suggests initiating a master project to plan the strategy and timeline for the gas hydrate exploration, exploitation and production in Taiwan. The plan will be introduced in this presentation.

  16. Application of gas hydrate formation in separation processes: A review of experimental studies

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique; Naidoo, Paramespri; Ramjugernath, Deresh

    2012-01-01

    Highlights: ► Review of gas hydrate technology applied to separation processes. ► Gas hydrates have potential to be a future sustainable separation technology. ► More theoretical, simulation, and economic studies needed. - Abstract: There has been a dramatic increase in gas hydrate research over the last decade. Interestingly, the research has not focussed on only the inhibition of gas hydrate formation, which is of particular relevance to the petroleum industry, but has evolved into investigations on the promotion of hydrate formation as a potential novel separation technology. Gas hydrate formation as a separation technology shows tremendous potential, both from a physical feasibility (in terms of effecting difficult separations) as well as an envisaged lower energy utilization criterion. It is therefore a technology that should be considered as a future sustainable technology and will find wide application, possibly replacing a number of current commercial separation processes. In this article, we focus on presenting a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology. Although many investigations have been undertaken on the positive application of gas hydrates to date, there is a need to perform more theoretical, experimental, and economic studies to clarify various aspects of separation processes using clathrate/semi-clathrate hydrate formation phenomena, and to conclusively prove its sustainability.

  17. Critical guest concentration and complete tuning pattern appearing in the binary clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Cha, J.H.; Lee, H. [Korea Advanced Inst. of Science and Technology, Yuseong-gu, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering; Kim, D.Y. [SK Engineering and Construction, Jongno-gu, Seoul (Korea, Republic of); Park, J. [Hanwha Chemical R and D Center, Yuseong-gu, Daejeon (Korea, Republic of); Lee, J.W. [Kongju National Univ., Cheonan, Chungnam (Korea, Republic of); Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    Clathrate hydrates, or gas hydrates, are stabilized by van der Waals interaction between a guest molecule and a host framework. Because of their property, they are a potential resource in the exploitation of natural gas hydrates, as a material for the sequestration of carbon dioxide (CO{sub 2}), as a means of storage and transportation of natural gas, as well as hydrogen storage. Clathrate hydrate research can be divided into two categories that emphasize either macroscopic or microscopic approaches. However, these two approaches need to be closely linked for a better understanding of the structures and processes involving both natural phenomena and hydrates for industrial processes. Details on the molecular scale that concern the less usual properties of clathrate hydrates remain unknown. This paper presented the results of a study that reported on the existence of a critical guest concentration (CGC) and established the complete tuning pattern that occurred in the binary hydrates, including water-soluble hydrate formers (promoters) and water-insoluble guests. The paper presented the experimental procedures, including formation of the methane (CH{sub 4}) and tetrahydrofuran (THF) binary hydrate; a schematic diagram of the experimental apparatus; and formation of the CH{sub 4} and t-BuNH{sub 2} binary hydrate. Nuclear magnetic resonance (NMR) spectroscopic measurements and thermodynamic measurements were also presented. It was concluded that the CGC value appeared to primarily depend on the chemical nature of a liquid guest component participating in the binary hydrate formation. 10 refs., 2 tabs., 9 figs.

  18. BSR and methane hydrates: New challenges for geophysics and rock physics

    Energy Technology Data Exchange (ETDEWEB)

    Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics

    1996-12-31

    It is generally accepted that solid gas hydrates which form within the uppermost few hundred meters of the sea floor are responsible for so-called Bottom Simulating Reflectors (BSRs) at continental margins. Gas to solid volumetric ratio in recovered hydrate samples may be as large as 170. Consequently, huge amounts of compressed methane (more than twice all recoverable and nonrecoverable oil, gas, and coal on earth) may exist under earth`s oceans. These hydrates are a potential energy resource, they influence global warming and effect seafloor mechanical stability. It is possible, in principle, to obtain a quantitative estimate of the amount and state of existing hydrates by relating seismic velocity to the volume of gas hydrate in porous sediments. This can be done by linking the elastic properties of hydrated sediments to their internal structure. The authors approach this problem by examining two micromechanical models of hydrate deposition in the pore space: (1) the hydrate cements grain contacts and thus significantly stiffens the sediment; and (2) the hydrate is located away from grain contacts and only weakly affects the stiffness of the sediment frame. To discriminate between the two models the authors use the Amplitude Versus Offset (AVO) technique of seismic data processing. This approach allows them to estimate the amount of gas hydrates in the pore space, and also to tell whether the permeability of the hydrated sediment is high or low. The latter is important for determining whether free methane can be trapped underneath a BSR.

  19. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  20. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    International Nuclear Information System (INIS)

    2008-09-01

    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  1. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  2. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  3. An international effort to compare gas hydrate reservoir simulators

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, J.W. [Akron Univ., Akron, OH (United States). Dept. of Theoretical and Applied Math; Moridis, G.J. [California Univ., Berkely, CA (United States). Earth Sciences Div., Lawrence Berkely National Lab.; Wilson, S.J. [Ryder Scott Co., Denver, CO (United States); Kurihara, M. [Japan Oil Engineering Co. Ltd., Tokyo (Japan); White, M.D. [Pacific Northwest National Laboratory Hydrology Group, Richland, WA (United States); Masuda, Y. [Tokyo Univ., Tokyo (Japan). Dept. of Geosystem Engineering; Anderson, B.J. [National Energy Technology Lab., Morgantown, WV (United States)]|[West Virginia Univ., Morgantown, WV (United States). Dept. of Chemical Engineering; Collett, T.S. [United States Geological Survey, Denver, CO (United States); Hunter, R.B. [ASRC Energy Services, Anchorage, AK (United States); Narita, H. [National Inst. of Advanced Industrial Science and Technology, MEthane hydrate Research Lab., Sapporo (Japan); Pooladi-Darvish, M. [Fekete Associates Inc., Calgary, AB (Canada); Rose, K.; Boswell, R. [National Energy Technology Lab., Morgantown, WV (United States)

    2008-07-01

    In this study, 5 different gas hydrate production scenarios were modeled by the CMG STARS, HydateResSim, MH-21 HYDRES, STOMP-HYD and the TOUGH+HYDRATE reservoir simulators for comparative purposes. The 5 problems ranged in complexity from 1 to 3 dimensional with radial symmetry, and in horizontal dimensions of 20 meters to 1 kilometer. The scenarios included (1) a base case with non-isothermal multi-fluid transition to equilibrium, (2) a base case with gas hydrate (closed-domain hydrate dissociation), (3) dissociation in a 1-D open domain, (4) gas hydrate dissociation in a one-dimensional radial domain, similarity solutions, (5) gas hydrate dissociation in a two-dimensional radial domain. The purpose of the study was to compare the world's leading gas hydrate reservoir simulators in an effort to improve the simulation capability of experimental and naturally occurring gas hydrate accumulations. The problem description and simulation results were presented for each scenario. The results of the first scenario indicated very close agreement among the simulators, suggesting that all address the basics of mass and heat transfer, as well as overall process of gas hydrate dissociation. The third scenario produced the initial divergence among the simulators. Other differences were noted in both scenario 4 and 5, resulting in significant corrections to algorithms within several of the simulators. The authors noted that it is unlikely that these improvements would have been identified without this comparative study due to a lack of real world data for validation purposes. It was concluded that the solution for gas hydrate production involves a combination of highly coupled fluid, heat and mass transport equations combined with the potential for formation or disappearance of multiple solid phases in the system. The physical and chemical properties of the rocks containing the gas hydrate depend on the amount of gas hydrate present in the system. Each modeling and

  4. Gas hydrates: entrance to a methane age or climate threat?

    International Nuclear Information System (INIS)

    Krey, Volker; Nakicenovic, Nebojsa; Grubler, Arnulf; O'Neill, Brian; Riahi, Keywan; Canadell, Josep G; Abe, Yuichi; Andruleit, Harald; Archer, David; Hamilton, Neil T M; Johnson, Arthur; Kostov, Veselin; Lamarque, Jean-Francois; Langhorne, Nicholas; Nisbet, Euan G; Riedel, Michael; Wang Weihua; Yakushev, Vladimir

    2009-01-01

    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates-in particular if combined with carbon capture and storage-to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  5. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Yang, Jinhai; Okwananke, Anthony; Tohidi, Bahman; Chuvilin, Evgeny; Maerle, Kirill; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2017-01-01

    Highlights: • Flue gas was injected for both methane recovery and carbon dioxide sequestration. • Kinetics of methane recovery and carbon dioxide sequestration was investigated. • Methane-rich gas mixtures can be produced inside methane hydrate stability zones. • Up to 70 mol% of carbon dioxide in the flue gas was sequestered as hydrates. - Abstract: Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mol% carbon dioxide and 85.4 mol% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mol% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mol% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

  6. The temperature hydration kinetics

    Directory of Open Access Journals (Sweden)

    Mircea Oroian

    2017-07-01

    Full Text Available The aim of this study is to evaluate the hydration kinetics of lentil seeds (Lens culinaris in water at different temperatures (25, 32.5, 40, 55, 70 and 80 °C for assessing the adequacy of models for describing the absorption phenomena during soaking. The diffusion coefficient values were calculated using Fick’s model for spherical and hemispherical geometries and the values were in the range of 10−6 m2/s. The experimental data were fitted to Peleg, Sigmoidal, Weibull and Exponential models. The models adequacy was determined using regression coefficients (R2, root mean square error (RMSE and reduced chi-square (χ2. The Peleg model is the suitable one for predicting the experimental data. Temperature had a positive and significant effect on the water absorption capacities and absorption was an endothermic process.

  7. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  8. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components.

    Science.gov (United States)

    Timasheff, Serge N

    2002-07-23

    Solvent additives (cosolvents, osmolytes) modulate biochemical reactions if, during the course of the reaction, there is a change in preferential interactions of solvent components with the reacting system. Preferential interactions can be expressed in terms of preferential binding of the cosolvent or its preferential exclusion (preferential hydration). The driving force is the perturbation by the protein of the chemical potential of the cosolvent. It is shown that the measured change of the amount of water in contact with protein during the course of the reaction modulated by an osmolyte is a change in preferential hydration that is strictly a measure of the cosolvent chemical potential perturbation by the protein in the ternary water-protein-cosolvent system. It is not equal to the change in water of hydration, because water of hydration is a reflection strictly of protein-water forces in a binary system. There is no direct relation between water of preferential hydration and water of hydration.

  9. Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination

    International Nuclear Information System (INIS)

    Zheng, Jia-nan; Yang, Ming-jun; Liu, Yu; Wang, Da-yong; Song, Yong-chen

    2017-01-01

    Highlights: • CP decreases CO 2 hydrate phase equilibrium pressure by forming CO 2 -CP hydrates. • The increase of CP can’t decrease hydrates phase equilibrium pressure unlimitedly. • Higher CP concentration lowers CO 2 hydrate gas uptake. • The optimal CP molar ratio is 0.01 based on hydrate phase equilibrium and gas uptake. - Abstract: Cyclopentane (CP) is considered to be a potential co-guest molecule in carbon dioxide (CO 2 ) hydrate-based desalination. The experimental thermodynamic data of CO 2 -CP hydrates were measured for a salt solution, where CP was chosen as a hydrate promoter. Seven experimental cases (62 cycles) were studied with different molar ratios of CP/water (0, 0.0025, 0.005, 0.0075, 0.01, 0.02, and 0.03). Hydrate phase equilibrium data were generated using an isochoric method, and the hydrate saturations were calculated based on gas uptake. The results indicated that the increase in CP concentration significantly decreased the CO 2 hydrate equilibrium pressure to a certain limit; the hydrate saturation also decreased during this process. Also, it was determined that CP encouraged the formation of s-II double CO 2 -CP hydrates, which are different from s-I simple CO 2 hydrate. The CO 2 -CP guest provides a strengthened stability and moderate hydrate phase equilibrium conditions for hydrate-based desalination. The recommended optimal molar ratio of CP is 0.01 when the increase in equilibrium was more than 10 K, and the decrease in hydrate saturation was less than 2%.

  10. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  11. Towards understanding the role of amines in the SO2 hydration and the contribution of the hydrated product to new particle formation in the Earth's atmosphere.

    Science.gov (United States)

    Lv, Guochun; Nadykto, Alexey B; Sun, Xiaomin; Zhang, Chenxi; Xu, Yisheng

    2018-08-01

    By theoretical calculations, the gas-phase SO 2 hydration reaction assisted by methylamine (MA) and dimethylamine (DMA) was investigated, and the potential contribution of the hydrated product to new particle formation (NPF) also was evaluated. The results show that the energy barrier for aliphatic amines (MA and DMA) assisted SO 2 hydration reaction is lower than the corresponding that of water and ammonia assisted SO 2 hydration. In these hydration reactions, nearly barrierless reaction (only a barrier of 0.1 kcal mol -1 ) can be found in the case of SO 2  + 2H 2 O + DMA. These lead us to conclude that the SO 2 hydration reaction assisted by MA and DMA is energetically facile. The temporal evolution for hydrated products (CH 3 NH 3 + -HSO 3 - -H 2 O or (CH 3 ) 2 NH 2 + -HSO 3 - -H 2 O) in molecular dynamics simulations indicates that these complexes can self-aggregate into bigger clusters and can absorb water and amine molecules, which means that these hydrated products formed by the hydration reaction may serve as a condensation nucleus to initiate the NPF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  13. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  14. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  15. Non-invasive measurement of corneal hydration.

    Science.gov (United States)

    March, W F; Bauer, N J

    2001-01-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noncontact assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea using a microscope objective lens (25x magnification, NA=0.5, f=10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array-detector for rapid spectral data acquisition over a range from 2,890 to 3,590 cm(-1). Raman spectra were recorded from the anterior 100 to 150 microm of the cornea over a period of time before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400 cm(-1) (OH-vibrational mode of water) and 2,940 cm(-1) (CH-vibrational mode of proteins) was used as a measure of corneal hydration. High signal-to-noise ratio (SNR 25) Raman spectra were obtained from the human corneas using 15 mJ of laser light energy. Qualitative changes in the hydration of the anterior-most part of the corneas could be observed as a result of the dehydrating agent. Confocal Raman spectroscopy could potentially be applied clinically as a noncontact tool for the assessment of corneal hydration in vivo.

  16. Unraveling halide hydration: A high dilution approach.

    Science.gov (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG [minus sign in circle symbol]hyd[H+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a ΔG [minus sign in circle symbol]hyd[H] value of -1100 kJ mol(-1) [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl(-), Br(-), and I(-) ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F(-) ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl(-), Br(-), and I(-) ions does not extend beyond the ion first hydration shell, and the structure of water in the F(-) second shell is also substantially unaffected by the ion.

  17. Reservoir Models for Gas Hydrate Numerical Simulation

    Science.gov (United States)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  18. Hydration dependent dynamics in RNA

    International Nuclear Information System (INIS)

    Olsen, Greg L.; Bardaro, Michael F.; Echodu, Dorothy C.; Drobny, Gary P.; Varani, Gabriele

    2009-01-01

    The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in 2 H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state 13 C relaxation measurements, we establish that ns-μs motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration

  19. Permafrost-associated gas hydrates of Northern Alaska: A possible source of atmospheric methane

    International Nuclear Information System (INIS)

    Collett, T.S.

    1991-01-01

    Numerous researchers have suggested that destabilized gas hydrates may be contributing to this buildup in atmospheric methane. Little is known about the geologic or geochemical nature of gas hydrates, even though they are known to occur in numerous arctic sedimentary basins. Because of the abundance of available geologic data, the author's research has focused on assessing the distribution of gas hydrates within the onshore regions of northern Alaska; currently, onshore permafrost-associated gas hydrates are believed to be insulated from most atmospheric temperature changes and are not at this time an important source of atmospheric methane. Their onshore gas hydrate studies, however, can be used to develop geologic analogs for potential gas hydrate occurrences within unexplored areas, such as the thermally unstable nearshore continental shelf. On the North Slope, gas hydrates have been identified in 36 industry wells by using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by an oil company. Most gas hydrates they identified occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. Stable carbon isotope geochemical analysis of well cuttings suggests that the identified hydrates originated from a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. They postulate that the thermogenic gas migrated from deeper reservoirs along the faults thought to be migration pathways for the large volumes of shallow, heavy oil found in the same area

  20. Cryogenic-SEM investigation of CO{sub 2} hydrate morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Camps, A.P.; Milodowski, A.; Rochelle, C.; Williams, J.F.; Jackson, P. D. [British Geological Survey, Keyworth, Nottinghamshire (United Kingdom); Camps, A.P; Lovell, M.; Williams, J.F. [Leicester Univ., Leicester (United Kingdom). Dept. of Geology

    2008-07-01

    Gas hydrates occur naturally around the world in the shallow-marine geosphere, and are seen as a drilling hazard in the petroleum industry due to their role in the carbon cycle, and their possible contribution in past and present climate change. Hydrates are ice-like structures composed of cages of water molecules containing one or more guest molecules, such as methane and carbon dioxide (CO{sub 2}). CO{sub 2} hydrates also occur naturally on earth and are being investigated for their potential to store large volumes of CO{sub 2} to reduce atmospheric emissions of greenhouse gases as a climate change mitigation strategy. However, the mineralogy and formation processes of hydrates are relatively poorly understood. Different imaging techniques have been utilized to study gas hydrates, such as nuclear magnetic resonance, magnetic resonance imaging, and x-ray computed tomography. Scanning Electron Microscopy (SEM) at cryogenic temperatures is another technique to study hydrates, and has been used successfully for investigation of methane and CO{sub 2} hydrates. This paper presented a study that investigated CO{sub 2} hydrates formed in laboratories, using a cryogenic-SEM. The paper presented the study methods and observations, including euhedral crystalline carbon dioxide hydrate; acicular carbon dioxide hydrate; granoblastic carbon dioxide hydrate; and gas rich carbon dioxide hydrate. It was concluded that the investigation produced various different hydrate morphologies resulting from different formation conditions. Morphologies ranged from well-defined euhedral crystals to acicular needles, and more complex, intricate forms. 22 refs., 6 figs., 1 appendix.

  1. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    Science.gov (United States)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  2. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  3. Hydrate Evolution in Response to Ongoing Environmental Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Alan [Univ. of Oregon, Eugene, OR (United States)

    2015-12-31

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project component concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover

  4. CO2 injection into submarine, CH4-hydrate bearing sediments: Parameter studies towards the development of a hydrate conversion technology

    Science.gov (United States)

    Deusner, Christian; Bigalke, Nikolaus; Kossel, Elke; Haeckel, Matthias

    2013-04-01

    In the recent past, international research efforts towards exploitation of submarine and permafrost hydrate reservoirs have increased substantially. Until now, findings indicate that a combination of different technical means such as depressurization, thermal stimulation and chemical activation is the most promising approach for producing gas from natural hydrates. Moreover, emission neutral exploitation of CH4-hydrates could potentially be achieved in a combined process with CO2 injection and storage as CO2-hydrate. In the German gas hydrate initiative SUGAR, a combination of experimental and numerical studies is used to elucidate the process mechanisms and technical parameters on different scales. Experiments were carried out in the novel high-pressure flow-through system NESSI (Natural Environment Simulator for sub-Seafloor Interactions). Recent findings suggest that the injection of heated, supercritical CO2 is beneficial for both CH4 production and CO2 retention. Among the parameters tested so far are the CO2 injection regime (alternating vs. continuous injection) and the reservoir pressure / temperature conditions. Currently, the influence of CO2 injection temperature is investigated. It was shown that CH4 production is optimal at intermediate reservoir temperatures (8 ° C) compared to lower (2 ° C) and higher temperatures (10 ° C). The reservoir pressure, however, was of minor importance for the production efficiency. At 8 ° C, where CH4- and CO2-hydrates are thermodynamically stable, CO2-hydrate formation appears to be slow. Eventual clogging of fluid conduits due to CO2-rich hydrate formation force open new conduits, thereby tapping different regions inside the CH4-hydrate sample volume for CH4gas. In contrast, at 2 ° C immediate formation of CO2-hydrate results in rapid and irreversible obstruction of the entire pore space. At 10 ° C pure CO2-hydrates can no longer be formed. Consequently the injected CO2 flows through quickly and interaction with

  5. Major occurrences and reservoir concepts of marine clathrate hydrates: Implications of field evidence

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.

  6. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  7. A high yield process for hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F. [Univ. of Roma La Sapienza, Roma (Italy). Dept. of Chemical Engineering

    2008-07-01

    Due to the large quantities of natural gas stored in deep ocean hydrates, hydrate reservoirs are a substantial energy resource. Hydrates concentrate methane by as much as a factor of 164. As such, several natural gas transportation and storage systems using gas hydrates have been studied, and many of them are nearing practical use. In these systems, the hydrate is produced as a slurry by a spray process at approximately 7 megapascal (MPa), and then shaped into pellets. The use of a spray process, instead of a conventional stirred vessel is necessary in order to reach high hydrate concentrations in the hydrate-ice system. This paper presented a new procedure to produce a bulk of concentrated methane hydrate in a static traditional reactor at moderate pressure, controlling pressure and temperature in the interval between ice melting and the hydrate equilibrium curve. This paper discussed the experimental procedure which included formation of methane hydrate at approximately 5 MPa and 2 degrees Celsius in a reaction calorimeter at a volume of two liters. Results were also discussed. It was concluded that the procedure seemed suitable for the development of a gas hydrate storage and transport technology. It was found that the spray procedure took more time, but could be sped up and made continuous by using two vessels, one for hydrate formation and the other for hydrate concentration. The advantage was the production of a concentrated hydrate, using a simpler equipment and working at lower pressures respect to the spray process. 9 refs., 5 figs.

  8. Quantum chemical analysis of the structures of MgSO4 hydrates

    NARCIS (Netherlands)

    Iype, E.; Ozen, C.; Nedea, S.V.; Rindt, C.C.M.; Zondag, H.A.

    2012-01-01

    Magnesium sulfate salts can form hydrated compounds with up to seven degree of hydration with an energy exchange of the order of 2.8GJ/m3 [1]. In addition, this salt is abundant in nature and thus this material is a potential candidate for storing energy in seasonal heat storage systems. One of the

  9. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  10. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  11. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  12. Thermodynamic studies on semi-clathrate hydrates of TBAB + gases containing carbon dioxide

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali

    2012-01-01

    CO 2 capture has become an important area of research mainly due to its drastic greenhouse effects. Gas hydrate formation as a separation technique shows tremendous potential, both from a physical feasibility as well as an envisaged lower energy utilization criterion. Briefly, gas (clathrate) hydrates are non-stoichiometric, ice-like crystalline compounds formed through a combination of water and suitably sized guest molecule(s) under low-temperatures and elevated pressures. As the pressure required for gas hydrate formation is generally high, therefore, aqueous solution of tetra-n-butyl ammonium bromide (TBAB) is added to the system as a gas hydrate promoter. TBAB generally reduces the required hydrate formation pressure and/or increases the formation temperature as well as modifies the selectivity of hydrate cages to capture CO 2 molecules. TBAB also takes part in the hydrogen-bonded cages. Such hydrates are called 'semi-clathrate' hydrates. Evidently, reliable and accurate phase equilibrium data, acceptable thermodynamic models, and other thermodynamic studies should be provided to design efficient separation processes using the aforementioned technology. For this purpose, phase equilibria of clathrate/semi-clathrate hydrates of various gas mixtures containing CO 2 (CO 2 + CH 4 /N 2 /H 2 ) in the presence of pure water and aqueous solutions of TBAB have been measured in this thesis. In the theoretical section of the thesis, a thermodynamic model on the basis of the van der Waals and Platteeuw (vdW-P) solid solution theory along with the modified equations for determination of the Langmuir constants of the hydrate formers has been successfully developed to represent/predict equilibrium conditions of semi-clathrate hydrates of CO 2 , CH 4 , and N 2 . Later, several thermodynamic consistency tests on the basis of Gibbs-Duhem equation as well as a statistical approach have been applied on the phase equilibrium data of the systems of mixed/simple clathrate hydrates

  13. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  14. International Society of Nephrology-Hydration and Kidney Health Initiative - Expanding Research and Knowledge.

    Science.gov (United States)

    Moist, Louise M; Clark, William F; Segantini, Luca; Damster, Sandrine; Le Bellego, Laurent; Wong, Germaine; Tonelli, Marcello

    2016-01-01

    The purpose of this manuscript is to describe a collaborative research initiative to explore the role of hydration in kidney health. Our understanding of the effects of hydration in health and disease is surprisingly limited, particularly when we consider the vital role of hydration in basic human physiology. Recent initiatives and research outcomes have challenged the global medical community to expand our knowledge about hydration, including the differences between water, sugared beverages and other consumables. Identification of the potential mechanisms contributing to the benefits of hydration has stimulated the global nephrology community to advance research regarding hydration for kidney health. Hydration and kidney health has been a focus of research for several research centers with a rapidly expanding world literature and knowledge. The International Society of Nephrology has collaborated with Danone Nutricia Research to promote development of kidney research initiatives, which focus on the role of hydration in kidney health and the global translation of this new information. This initiative supports the use of existing data in different regions and countries to expand dialogue among experts in the field of hydration and health, and to increase scientific interaction and productivity with the ultimate goal of improving kidney health. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  16. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    Science.gov (United States)

    Sridhara, Prathyusha

    In 2013, the International Energy Outlook (EIA, 2013) projected that global energy demand will grow by 56% between 2010 and 2040. Despite strong growth in renewable energy supplies, much of this growth is expected to be met by fossil fuels. Concerns ranging from greenhouse gas emissions and energy security are spawning new interests for other sources of energy including renewable and unconventional fossil fuel such as shale gas and oil as well as gas hydrates. The production methods as well as long-term reservoir behavior of gas hydrate deposits have been under extensive investigation. Reservoir simulators can be used to predict the production potentials of hydrate formations and to determine which technique results in enhanced gas recovery. In this work, a new simulation tool, Mix3HydrateResSim (Mix3HRS), which accounts for complex thermodynamics of multi-component hydrate phase comprised of varying hydrate solid crystal structure, is used to perform the CO2-assisted production technique simulations from CH4 hydrate accumulations. The simulator is one among very few reservoir simulators which can simulate the process of CH4 substitution by CO2 (and N2 ) in the hydrate lattice. Natural gas hydrate deposits around the globe are categorized into three different classes based on the characteristics of the geological sediments present in contact with the hydrate bearing deposits. Amongst these, the Class 2 hydrate accumulations predominantly confirmed in the permafrost and along seashore, are characterized by a mobile aqueous phase underneath a hydrate bearing sediment. The exploitation of such gas hydrate deposits results in release of large amounts of water due to the presence of permeable water-saturated sediments encompassing the hydrate deposits, thus lowering the produced gas rates. In this study, a suite of numerical simulation scenarios with varied complexity are considered which aimed at understanding the underlying changes in physical, thermodynamic and

  17. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: a test from the GMGS2 expedition in the South China Sea

    Science.gov (United States)

    Liu, Tao; Liu, Xuewei

    2018-06-01

    Pore-filling and fracture-filling are two basic distribution morphologies of gas hydrates in nature. A clear knowledge of gas hydrate morphology is important for better resource evaluation and exploitation. Improper exploitation may cause seafloor instability and exacerbate the greenhouse effect. To identify the gas hydrate morphologies in sediments, we made a thorough analysis of the characteristics of gas hydrate bearing sediments (GHBS) based on rock physics modeling. With the accumulation of gas hydrate in sediments, both the velocities of two types of GHBS increase, and their densities decrease. Therefore, these two morphologies cannot be differentiated only by velocity or density. After a series of tests, we found the attribute ρ {{V}{{P}}}0.5 as a function of hydrate concentration show opposite trends for these two morphologies due to their different formation mechanisms. The morphology of gas hydrate can thus be identified by comparing the measured ρ {{V}{{P}}}0.5 with its background value, which means the ρ {{V}{{P}}}0.5 of the hydrate-free sediments. In 2013, China’s second gas hydrate expedition was conducted by Guangzhou Marine Geologic Survey to explore gas hydrate resources in the northern South China Sea, and both two hydrate morphologies were recovered. We applied this method to three sites, which include two pore-filling and three fracture-filling hydrate layers. The data points, that agree with the actual situations, account for 72% and 82% of the total for the two pore-filling hydrate layers, respectively, and 86%, 74%, and 69% for the three fracture-filling hydrate layers, respectively.

  18. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  19. Methods to determine hydration states of minerals and cement hydrates

    International Nuclear Information System (INIS)

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-01-01

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na 2 SO 4 –H 2 O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions

  20. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  1. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    Science.gov (United States)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  2. Role of interlayer hydration in lincomycin sorption by smectite clays.

    Science.gov (United States)

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  3. Acoustical method of whole-body hydration status monitoring

    Science.gov (United States)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  4. [Prospects for Application of Gases and Gas Hydrates to Cryopreservation].

    Science.gov (United States)

    Shishova, N V; Fesenko, E E

    2015-01-01

    In the present review, we tried to evaluate the known properties of gas hydrates and gases participating in the formation of gas hydrates from the point of view of the mechanisms of cryoinjury and cryoprotection, to consider the papers on freezing biological materials in the presence of inert gases, and to analyze the perspectives for the development of this direction. For the purpose, we searched for the information on the physical properties of gases and gas hydrates, compared processes occured during the formation of gas hydrates and water ice, analyzed the influence of the formation and growth of gas hydrates on the structure of biological objects. We prepared a short review on the biological effects of xenon, krypton, argon, carbon dioxide, hydrogen sulfide, and carbon monoxide especially on hypothermal conditions and probable application of these properties in cryopreservation technologies. The description of the existing experiments on cryopreservation of biological objects with the use of gases was analyzed. On the basis of the information we found, the most perspective directions of work in the field of cryopreservation of biological objects with the use of gases were outlined. An attempt was made to forecast the potential problems in this field.

  5. Frozen heat: Global outlook on methane gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, Yannick; Solgaard, Anne

    2010-09-15

    The United Nations Environment Programme via its collaborating center in Norway, UNEP/GRID-Arendal, is undertaking an assessment of the state of the knowledge of methane gas hydrates. The Global Outlook on Methane Gas Hydrates seeks to bridge the gap between the science, research and development activities related to this potential large scale unconventional source of natural gas and the needs of decision makers and the general public to understand the underlying societal and environmental drivers and impacts. The Outlook aims to provide credible and unbiased information sourced from stakeholders representing the environment, government, industry and society.

  6. The melting curve of tetrahydrofuran hydrate in D2O

    International Nuclear Information System (INIS)

    Hanley, H.J.M.; Meyers, G.J.; White, J.W.; Sloan, E.D.

    1989-01-01

    Melting points for the tetrahydrofuran/D 2 O hydrate in equilibrium with the air-saturated liquid at atmospheric pressure are reported. The melting points were measured by monitoring the absorbance of the solution. Overall, the melting-point phase boundary curve is about 2.5 K greater than the corresponding curve for the H 2 O hydrate, with a congruent melting temperature of 281 ± 0.5 K at a D 2 O mole fraction of 0.936. The phase boundary is predicted to within 5% if the assumption is made that the THF occupancy in the D 2 O and H 2 O hydrates is the same. The authors measure an occupancy of 99.9%. The chemical potential of the empty lattice in D 2 O is estimated to be 5% greater than in H 2 O

  7. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  8. Hydration modeling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, H.J.H.; Al-Mattarneh, Hashem; Mustapha, Kamal N.; Nuruddin, Muhd Fadhil

    2008-01-01

    The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the

  9. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    Science.gov (United States)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  10. Hydration and Fluid Replacement Knowledge, Attitudes, Barriers, and Behaviors of NCAA Division 1 American Football Players.

    Science.gov (United States)

    Judge, Lawrence W; Kumley, Roberta F; Bellar, David M; Pike, Kim L; Pierson, Eric E; Weidner, Thomas; Pearson, David; Friesen, Carol A

    2016-11-01

    Judge, LW, Kumley, RF, Bellar, DM, Pike, KL, Pierson, EE, Weidner, T, Pearson, D, and Friesen, CA. Hydration and fluid replacement knowledge, attitudes, barriers, and behaviors of NCAA Division 1 American football players. J Strength Cond Res 30(11): 2972-2978, 2016-Hydration is an important part of athletic performance, and understanding athletes' hydration knowledge, attitudes, barriers, and behaviors is critical for sport practitioners. The aim of this study was to assess National Collegiate Athletic Association (NCAA) Division 1 (D1) American football players, with regard to hydration and fluid intake before, during, and after exercise, and to apply this assessment to their overall hydration practice. The sample consisted of 100 student-athletes from 2 different NCAA D1 universities, who participated in voluntary summer football conditioning. Participants completed a survey to identify the fluid and hydration knowledge, attitudes and behaviors, demographic data, primary football position, previous nutrition education, and barriers to adequate fluid consumption. The average Hydration Knowledge Score (HKS) for the participants in the present study was 11.8 ± 1.9 (69.4% correct), with scores ranging from 42 to 100% correct. Four key misunderstandings regarding hydration, specifically related to intervals of hydration habits among the study subjects, were revealed. Only 24% of the players reported drinking enough fluids before, during, immediately after, and 2 hours after practice. Generalized linear model analysis predicted the outcome variable HKS (χ = 28.001, p = 0.045), with nutrition education (Wald χ = 8.250, p = 0.041) and position on the football team (χ = 9.361, p = 0.025) being significant predictors. "Backs" (e.g., quarterbacks, running backs, and defensive backs) demonstrated significantly higher hydration knowledge than "Linemen" (p = 0.014). Findings indicated that if changes are not made to increase hydration awareness levels among football teams

  11. Gas hydrate geohazards in shallow sediments and their impact on the design of subsea systems

    Energy Technology Data Exchange (ETDEWEB)

    Peters, D.; Hatton, G. [Shell Global Solutions Inc., Houston, TX (United States); Mehta, A. [Shell Malaysia Exploration and Production, Sarawak (Malaysia); Hadley, C. [Shell Exploration and Production Inc., Houston, TX (United States)

    2008-07-01

    This paper described the challenges that exist in producing gas hydrates in deepwater and Arctic environments as a potential source of methane gas. In order to safely produce hydrocarbon reservoirs far beneath near-mudline hydrates, it is important to understand and manage the geohazard risks associated with wells that pass through hydrate-bearing sediments. Since these wells may produce for decades, the temperature of near-mudline sediments may increase above the hydrate dissociation temperature for hundreds of meters from the well. This can result in the release of large quantities of gas causing a volume change that can impact the subsea system in many ways. As the fluids of an underlying reservoir flow to the mudline, heat carried by the fluids warms nearwell sediments and dissociates hydrates, which releases gas that can displace and fracture near well soil. This gas release may be calculated with numerical simulations that model heat and mass transfer in hydrate-bearing sediments. The model simulations require information on the nature and distribution of hydrates within the sediments, the melting behaviour of the hydrates, the thermal and mechanical properties of these shallow sediments, and the amount of hydrates contained in the sediments. However, this information is costly to acquire and characterize with certainty for an offshore development. Therefore, it is important to understand what information, processes, and calculations are needed in order to ensure safe, robust systems to produce the hydrocarbon reservoirs far below the hydrates. It was concluded that the relation between the quantity of gas released and dissociated gas quantities must be well understood. The hydrate concentration is a critical reservoir parameter for reservoirs with severe geohazard risk. 6 refs., 6 figs.

  12. Preliminary report on the economics of gas production from natural gas hydrates

    International Nuclear Information System (INIS)

    Walsh, M.; Wilson, S.; Patil, S.; Moridis, G.; Boswell, R.; Koh, C.; Sloan, D.

    2008-01-01

    Gas hydrates are solid crystalline compounds in which gas molecules reside inside cages that are formed by hydrogen-bonded water molecules in a crystal lattice. At particularly low temperatures and high pressures, a guest molecule will combine with water to form gas hydrates. Gas hydrates are found in two different settings in which the temperature and pressure conditions are suitable for their existence, notably in Arctic permafrost regions and below the seafloor. Because of the size of this possible future resource, if any of the gas in hydrates can be proven to be economically recoverable, then production from gas hydrates could become an important portion of the world's energy portfolio as demand for natural gas increases along with the technology to compress and distribute natural gas to distant markets. This paper presented a compilation of economic research that was conducted on the resource potential of gas hydrates. The paper reported a preliminary estimate of the price of natural gas that may lead to economically-viable production from North American Arctic region hydrates. The paper also discussed the implications of a recent study on the production of class 3 marine hydrate deposits from the Gulf of Mexico. The state of the art technologies and methods in hydrate reservoir modeling and hydrate reservoir production and petrophysical testing were also discussed. It was concluded that the somewhat optimistic results presented in this report should be interpreted with caution, however, the economically-viable gas production from hydrates was not an unreasonable scenario. 23 refs., 2 tabs., 10 figs

  13. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  14. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  15. A critical appraisal of chronic kidney disease mineral and bone disorders clinical practice guidelines using the AGREE II instrument.

    Science.gov (United States)

    Sekercioglu, Nigar; Al-Khalifah, Reem; Ewusie, Joycelyne Efua; Elias, Rosilene M; Thabane, Lehana; Busse, Jason W; Akhtar-Danesh, Noori; Iorio, Alfonso; Isayama, Tetsuya; Martínez, Juan Pablo Díaz; Florez, Ivan D; Guyatt, Gordon H

    2017-02-01

    Patients with chronic kidney disease mineral and bone disorders (CKD-MBD) suffer high rates of morbidity and mortality, in particular related to bone and cardiovascular outcomes. The management of CKD-MBD remains challenging. The objective of this systematic survey is to critically appraise clinical practice guidelines (CPGs) addressing CKD-MBD. Data sources included MEDLINE, EMBASE, the National Guideline Clearinghouse, Guideline International Network and Turning Research into Practice up to May 2016. Teams of two reviewers, independently and in duplicate, screened titles and abstracts and potentially eligible full text reports to determine eligibility and subsequently appraised the guidelines using the Advancing Guideline Development, Reporting and Evaluation in Health Care instrument II (AGREE). Sixteen CPGs published from 2003 to 2015 addressing the diagnosis and management of CKD-MBD in adult patients (11 English, two Spanish, one Italian, one Portuguese and one Slovak) proved eligible. The National Institute for Health and Care Excellence guideline performed best with respect to AGREE II criteria; only three other CPGs warranted high scores on all domains. All other guidelines received scores of under 60% on one or more domains. Major discrepancies in recommendations were not, however, present, and we found no association between quality of CPGs which was not associated with resulting recommendations. Most guidelines assessing CKD-MBD suffer from serious shortcomings using AGREE criteria although limitations with respect to AGREE criteria do not necessarily lead to inappropriate recommendations.

  16. Study on gas hydrate as a new energy resource in the 21th century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byeong-Jae; Kwak Young-Hoon; Kim, Won-Sik [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Natural gas hydrate, a special type of clathrate hydrates, is a metastable solid compound which mainly consists of methane and water, and generally called as gas hydrate. It is stable in the specific low-temperature/high-pressure conditions. Gas hydrates play an important role as major reservoir of methane on the earth. On the other hand, the formation and dissociation of gas hydrates could cause the plugging in pipeline, gas kick during production, atmospheric pollution and geohazard. To understand the formation and dissociation of the gas hydrate, the experimental equilibrium conditions of methane hydrate were measured in pure water, 3 wt.% NaCl and MgCl{sub 2} solutions. The equilibrium conditions of propane hydrates were also measured in pure water. The relationship between methane hydrate formation time and overpressure was also analyzed through the laboratory work. The geophysical surveys using air-gun system and multibeam echo sounder were implemented to develop exploration techniques and to evaluate the gas hydrate potential in the East Sea, Korea. General indicators of submarine gas hydrates on seismic data is commonly inferred from the BSR developed parallel to the see floor, amplitude blanking at the upper part of the BSR, and phase reversal and decrease of the interval velocity at BSR. The field data were processed using Geobit 2.9.5 developed by KIGAM to detect the gas hydrate indicators. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). Processing results show that the strong reflector occurred parallel to the sea floor were shown at about 1800 ms two way travel time. The interval velocity decrease at this strong reflector and at the reflection phase reversal corresponding to the reflection at the sea floor. Gas hydrate stability field in the study area was determined using the data of measured hydrate equilibrium condition, hydrothermal gradient and geothermal gradient. The depth of BSR detected in the seismic

  17. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, S.L.; Cherkis, N.Z.; Czarnecki, M.F. [Naval Research Lab., Washington, DC (United States); Max, M.D. [MDS Research, Washington, DC (United States)

    2000-09-01

    Marine sediments on the continental slope of the NE South China Sea have appropriate thickness, methane-generating potential, and occur in a suitable pressure-temperature regime to host gas hydrate. Evidence for gas hydrate, the bottom simulating reflector (BSR), is observed to the south of Taiwan on reflection seismic records, and can be used to suggest that gas hydrates are widely distributed. The tectono-sedimentary framework south of Taiwan bears directly upon methane generation and the likelihood of the presence of significant gas hydrate deposits. Three zones of probable hydrate occurrence have been delineated along the margins of the NE South China Sea: (1) in a thick accumulation of sediment along the northern passive margin; (2) along a more thinly sedimented eastern active collisional margin, and especially; (3) in a zone of thick originally passive margin sedimentation into which the collisional margin has encroached obliquely. (author)

  18. Broadband Seismic Studies at the Mallik Gas Hydrate Research Well

    Science.gov (United States)

    Sun, L. F.; Huang, J.; Lyons-Thomas, P.; Qian, W.; Milkereit, B.; Schmitt, D. R.

    2005-12-01

    The JAPEX/JNOC/GSC et al. Mallik 3L-38, 4L-38 and 5L-38 scientific wells were drilled in the MacKenzie Delta, NWT, Canada in early 2002 primarily for carrying out initial tests of the feasibility of producing methane gas from the large gas hydrate deposits there [1]. As part of this study, high resolution seismic profiles, a pseudo-3D single fold seismic volume and broadband (8~180Hz) multi-offset vertical seismic profiles (VSP) were acquired at the Mallik site. Here, we provide details on the acquisition program, present the results of the 2D field profile, and discuss the potential implications of these observations for the structure of the permafrost and gas hydrate zones. These zones have long been problematic in seismic imaging due to the lateral heterogeneities. Conventional seismic data processing usually assume a stratified, weak-contrast elastic earth model. However, in permafrost and gas hydrate zones this approximation often becomes invalid. This leads to seismic wave scattering caused by multi-scale perturbation of elastic properties. A 3D viscoelastic finite difference modeling algorithm was employed to simulate wave propagation in a medium with strong contrast. Parameters in this modeling analysis are based on the borehole geophysical log data. In addition, an uncorrelated Vibroseis VSP data set was studied to investigate frequency-dependent absorption and velocity dispersion. Our results indicate that scattering and velocity dispersion are important for a better understanding of attenuation mechanisms in heterogeneous permafrost and gas hydrate zones. [1] Dallimore, S.R., Collett, T.S., Uchida, T., and Weber, M., 2005, Overview of the science program for the Mallik 2002 Gas Hydrate Production Research Well Program; in Scientific Results from Mallik 2002 Gas Hydrate production Research Well Program, MacKenzie Delta, Northwest Territories, Canada, (ed.) S.R. Dallimore and T.S. Collett; Geological Survey of Canada, Bulletin 585, in press.

  19. Hydrated Minerals and Evaporites as Key Targets for a Mars Sample Return Mission

    Science.gov (United States)

    Adeli, S.; Hauber, E.; Jaumann, R.

    2018-04-01

    Here we focus on hydrated minerals and evaporites as paleo-environment indicators with preservation capacity. Thus, samples from these materials would increase our knowledge about the past aqueous activities of Mars and its habitability potentials.

  20. Archie's Saturation Exponent for Natural Gas Hydrate in Coarse-Grained Reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-03-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice-bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate-bearing sands. In this work, we calibrate n for hydrate-bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L-38, by establishing an independent downhole Sh profile based on compressional-wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L-38 well, we also apply this method to two marine, coarse-grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313-H and Green Canyon 955-H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse-grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  1. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  2. Volatile inventories in clathrate hydrates formed in the primordial nebula.

    Science.gov (United States)

    Mousis, Olivier; Lunine, Jonathan I; Picaud, Sylvain; Cordier, Daniel

    2010-01-01

    The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances

  3. Fire extinction utilizing carbon dioxide hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, T.; Aida, E.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2008-07-01

    Clathrate hydrates formed with nonflammable gases may be suitable for use as fire extinguishing agents because dissociation of the hydrates results in the temperature decrease in the combustion field and the nonflammable gases released from the dissociated hydrates prevent the supply of the oxygen to the combustion field. This paper discussed experiments in which ordinary ice and dry ice were used to evaluate the performance of CO{sub 2} hydrate as a fire extinguishing agent. The paper described the apparatus and procedure for the preparation of CO{sub 2} hydrate crystals. A schematic of the reactor to form CO{sub 2} hydrate and a photograph of CO{sub 2} hydrate crystal formed in the study were also presented. Other illustrations, photographs, and tables that were presented included a schematic diagram of the experimental apparatus used for the flame extinction experiments; a photograph of CO{sub 2} hydrate powder; sequential video graphs of the flame extinction by the supply of CO{sub 2} hydrate crystals to the methanol pool flame and the relevant illustration; and heat of CO{sub 2} hydrate dissociation, water vaporization and sublimation of dry ice. It was concluded that the critical mass of the CO{sub 2} hydrate required to extinguish a flame was much less than that of ordinary ice, indicating the superiority of CO{sub 2} hydrate to the ice. In addition, the experiments also revealed that the size of the CO{sub 2} hydrate particles had a significant effect on the performance of flame extinction. 5 refs., 2 tabs., 7 figs.

  4. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    Science.gov (United States)

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  5. Capillary pressure controlled methane hydrate and ice growth-melting patterns in porous media : synthetic silica versus natural sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Tohidi, B.; Webber, B. [Heriot-Watt Univ., Centre for Gas Research, Edinburgh (United Kingdom). Inst. of Petroleum Engineering

    2008-07-01

    Although naturally-occurring gas hydrates (or clathrate hydrates) in marine sediments can pose a hazard to deepwater hydrocarbon production operations, they represent a potential strategic energy reserve. Gas hydrates can also provide a means for deep ocean carbon dioxide disposal through sequestration/storage. They have long-term importance with respect to ocean margin stability, methane release, and global climate change. However, fundamental knowledge is still lacking regarding the mechanisms of hydrate growth, accumulation and distribution within the subsurface. Marine sediments which host gas hydrates are commonly fine-grained silts, muds, and clays with narrow mean pore diameters, leading to speculation that capillary phenomena could play a significant role in controlling hydrate distribution in the seafloor, and may be partly responsible for discrepancies between observed and predicted hydrate stability zone thicknesses. A close relationship between hydrate inhibition and pore size has been confirmed through previous laboratory studies. Clathrate stability has been significantly reduced in narrow pores. However, the focus of investigations has generally been hydrate dissociation conditions in porous media, with capillary controls on the equally important process of hydrate growth being largely overlooked. This paper presented the results of an experimental investigation into methane hydrate growth and dissociation equilibria in natural medium grained sandstone. The study also compared data with that previously measured for mesoporous silica glasses. The paper discussed solid-liquid phase behaviour in confined geometries including hysteresis in porous media. It also discussed the experimental equipment and method. It was concluded that, as for synthetic silicas, hydrate growth and dissociation in the sandstone were characterised by a measurable hysteresis between opposing transitions, notably hydrate (or ice) formation occurring at temperatures lower than

  6. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    Science.gov (United States)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  7. Accurate description of phase diagram of clathrate hydrates on molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Belosludov, V.; Subbotin, O. [Niklaev Inst. of Inorganic Chemistry, Novosibirsk (Russian Federation). Siberian Branch of Russian Academy of Science; Belosludov, R.; Mizuseki, H.; Kawazoe, Y. [Tohoku Univ., Aoba-ku, Sendai (Japan). Inst. for Materials Research

    2008-07-01

    A number of experimental and theoretical studies of hydrogen hydrates have been conducted using different methods. In order to accurately estimate the thermodynamic properties of clathrate hydrates that multiply filling the cages, this paper presented a method based on the solid solution theory of van der Waals and Platteeuw with several modifications, including multiple occupancies, host relaxation, and the description of the quantum nature of hydrogen behavior in the cavities. The validity of the proposed approach was verified for argon, methane, and xenon hydrates. The results were in agreement with known experimental data. The model was then used to calculate the curves of monovariant three-phase equilibrium gas-hydrate-ice and the degree of filling of the large and small cavities for pure hydrogen and mixed hydrogen/propane hydrates in a wide range of pressure and at low temperatures. The paper presented the theory, including equations, monovariant equilibria, and computational details. It was concluded that the proposed model accounted for the influence of guest molecules on the host lattice and guest-guest interaction. The model could be used with other inclusion compounds with the same type of composition such as clathrate silicon, zeolites, and inclusion compounds of semiconductor elements. The calculated curves of monovariant equilibrium agree with the experiment. 33 refs., 1 tab., 9 figs.

  8. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  9. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  10. Report: Agreed-Upon Procedures on EPA’s Fiscal Year 2009 First Quarter Financial Statements

    Science.gov (United States)

    Report #09-2-0161, June 8, 2009. We compared the statements with EPA’s crosswalk, recomputed them for mathematical accuracy, and compared them with balances separately generated by us. Except for immaterial rounding differences, the amounts agreed.

  11. Observation of interstitial molecular hydrogen in clathrate hydrates.

    Science.gov (United States)

    Grim, R Gary; Barnes, Brian C; Lafond, Patrick G; Kockelmann, Winfred A; Keen, David A; Soper, Alan K; Hiratsuka, Masaki; Yasuoka, Kenji; Koh, Carolyn A; Sum, Amadeu K

    2014-09-26

    The current knowledge and description of guest molecules within clathrate hydrates only accounts for occupancy within regular polyhedral water cages. Experimental measurements and simulations, examining the tert-butylamine + H2 + H2O hydrate system, now suggest that H2 can also be incorporated within hydrate crystal structures by occupying interstitial sites, that is, locations other than the interior of regular polyhedral water cages. Specifically, H2 is found within the shared heptagonal faces of the large (4(3)5(9)6(2)7(3)) cage and in cavities formed from the disruption of smaller (4(4)5(4)) water cages. The ability of H2 to occupy these interstitial sites and fluctuate position in the crystal lattice demonstrates the dynamic behavior of H2 in solids and reveals new insight into guest-guest and guest-host interactions in clathrate hydrates, with potential implications in increasing overall energy storage properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast x-ray fluorescence microtomography of hydrated biological samples.

    Directory of Open Access Journals (Sweden)

    Enzo Lombi

    Full Text Available Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples.

  13. Physical Properties of Gas Hydrates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  14. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  15. Hydration of swelling clays: multi-scale sequence of hydration and determination of macroscopic energies from microscopic properties; Hydratation des argiles gonflantes: sequence d'hydratation multi-echelle determination des energies macroscopiques a partir des proprietes microscopiques

    Energy Technology Data Exchange (ETDEWEB)

    Salles, F

    2006-10-15

    Smectites have interesting properties which make them potential candidates for engineered barriers in deep geological nuclear waste repository: low permeability, swelling and cations retention. The subject of this thesis consists in the determination of the relationship between hydration properties, swelling properties and cations mobility in relation with confinement properties of clayey materials. The aim is to understand and to predict the behaviour of water in smectites, following two research orientations: the mechanistic aspects and the energetic aspects of the hydration of smectites. We worked on the Na-Ca montmorillonite contained in the MX80 bentonite, with the exchanged homo ionic structure (saturated with alkaline cations and calcium cations). The approach crosses the various scales (microscopic, mesoscopic and macroscopic) and implied the study of the various components of the system (layer-cation-water), by using original experimental methods (thermo-poro-metry and electric conductivity for various relative humidities (RH) and electrostatic calculations. Initially, the dry state is defined by SCTA (scanning calorimetry thermal analysis). Then a classical characterization of the smectite porosity for the dry state is carried out using mercury intrusion and nitrogen adsorption. We evidenced the existence of a meso-porosity which radius varies from 2 to 10 nm depending on the compensating cation. The thermo-poro-metry and conductivity experiments performed at various hydration states made it possible to follow the increase in the pore sizes and the cations mobility as a function of the hydration state. We highlight in particular the existence of an osmotic mesoscopic swelling for low RH (approximately 50-60%RH for Li and Na). By combining the results of thermo-poro-metry, X-ray diffraction and electric conductivity, we are able to propose a complete hydration sequence for each cation, showing the crucial role of the compensating cation in the hydration of

  16. Application of empirical hydration distribution functions around polar atoms for assessing hydration structures of proteins

    International Nuclear Information System (INIS)

    Matsuoka, Daisuke; Nakasako, Masayoshi

    2013-01-01

    Highlights: ► Empirical distribution functions of water molecules in protein hydration are made. ► The functions measure how hydrogen-bond geometry in hydration deviate from ideal. ► The functions assess experimentally identified hydration structures of protein. - Abstract: To quantitatively characterize hydrogen-bond geometry in local hydration structures of proteins, we constructed a set of empirical hydration distribution functions (EHDFs) around polar protein atoms in the main and side chains of 11 types of hydrophilic amino acids (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 113 (2009) 11274). The functions are the ensemble average of possible hydration patterns around the polar atoms, and describe the anisotropic deviations from ideal hydrogen bond geometry. In addition, we defined probability distribution function of hydration water molecules (PDFH) over the hydrophilic surface of a protein as the sum of EHDFs of solvent accessible polar protein atoms. The functions envelop most of hydration sites identified in crystal structures of proteins (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 114 (2010) 4652). Here we propose the application of EHDFs and PDFHs for assessing crystallographically identified hydration structures of proteins. First, hydration water molecules are classified with respect to the geometry in hydrogen bonds in referring EHDFs. Difference Fourier electron density map weighted by PDFH of protein is proposed to identify easily density peaks as candidates of hydration water molecules. A computer program implementing those ideas was developed and used for assessing hydration structures of proteins

  17. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  18. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  19. Hydration of swelling clays: multi-scale sequence of hydration and determination of macroscopic energies from microscopic properties

    International Nuclear Information System (INIS)

    Salles, F.

    2006-10-01

    Smectites have interesting properties which make them potential candidates for engineered barriers in deep geological nuclear waste repository: low permeability, swelling and cations retention. The subject of this thesis consists in the determination of the relationship between hydration properties, swelling properties and cations mobility in relation with confinement properties of clayey materials. The aim is to understand and to predict the behaviour of water in smectites, following two research orientations: the mechanistic aspects and the energetic aspects of the hydration of smectites. We worked on the Na-Ca montmorillonite contained in the MX80 bentonite, with the exchanged homo ionic structure (saturated with alkaline cations and calcium cations). The approach crosses the various scales (microscopic, mesoscopic and macroscopic) and implied the study of the various components of the system (layer-cation-water), by using original experimental methods (thermo-poro-metry and electric conductivity for various relative humidities (RH) and electrostatic calculations. Initially, the dry state is defined by SCTA (scanning calorimetry thermal analysis). Then a classical characterization of the smectite porosity for the dry state is carried out using mercury intrusion and nitrogen adsorption. We evidenced the existence of a meso-porosity which radius varies from 2 to 10 nm depending on the compensating cation. The thermo-poro-metry and conductivity experiments performed at various hydration states made it possible to follow the increase in the pore sizes and the cations mobility as a function of the hydration state. We highlight in particular the existence of an osmotic mesoscopic swelling for low RH (approximately 50-60%RH for Li and Na). By combining the results of thermo-poro-metry, X-ray diffraction and electric conductivity, we are able to propose a complete hydration sequence for each cation, showing the crucial role of the compensating cation in the hydration of

  20. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Preliminary Report - Cascadia Margin Gas Hydrates, Volume 204 Initial Report Mallik 2002 GSC Bulletin 585 : Scientific results from the Mallik 2002 gas hydrate production well program Offshore gas hydrate sample

  1. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  2. Delineation, Characterization and Assessment of Gas-hydrates: Examples from Indian Offshore

    Science.gov (United States)

    Sain, K.

    2017-12-01

    Successful test productions in McKenzie delta, Alaska, Nankai Trough and more recently in South China Sea have provided great hopes for production of gas-hydrates in near future, and boosted national programs of many countries including India. It has been imperative to map the prospective zones of gas-hydrates and evaluate their resource potential. Hence, we have adopted a systematic strategy for the delineation, characterization and quantification of gas-hydrates based on seismic traveltime tomography, full-waveform inversion, impedance inversion, attributes computation and rock-physical modeling. The bathymetry, seafloor temperature, total organic carbon content, sediment-thickness, rate of sedimentation, geothermal gradient imply that shallow sediments of Indian deep water are good hosts for occurrences of gas-hydrates. From the analysis of multi-channel seismic (MCS) data, we have identified the Krishna-Godavari (KG), Mahanadi and Andaman basins as prospective for gas-hydrates, and their presence has been validated by drilling and coring of Indian Expeditions-01 and -02. The MCS data also shows BSR-like features in the Cauvery, Kerala-Konkan and Saurashtra basins indicating that gas-hydrates cannot be ruled out from these basins also. We shall present several approaches that have been applied to field seismic and well-log data for the detection, characterization and quantification of gas-hydrates along the Indian margin.

  3. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo, E-mail: Yongkoo.Seol@netl.doe.gov; Choi, Jeong-Hoon; Dai, Sheng [National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, West Virginia 26507 (United States)

    2014-08-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field.

  4. A thermodynamic approach to the hydration of sulphate-resisting Portland cement

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Wieland, Erich

    2006-01-01

    A thermodynamic approach is used to model changes in the hydrate assemblage and the composition of the pore solution during the hydration of calcite-free and calcite-containing sulphate-resisting Portland cement CEM I 52.5 N HTS. Modelling is based on thermodynamic data for the hydration products and calculated hydration rates for the individual clinker phases, which are used as time-dependent input parameters. Model predictions compare well with the composition of the hydrate assemblage as observed by TGA and semi-quantitative XRD and with the experimentally determined compositions of the pore solutions. The calculations show that in the presence of small amounts of calcite typically associated with Portland cement, C-S-H, portlandite, ettringite and calcium monocarbonate are the main hydration products. In the absence of calcite in the cement, however, siliceous hydrogarnet instead of calcium monocarbonate is observed to precipitate. The use of a higher water-to-cement ratio for the preparation of a calcite-containing cement paste has a minor effect on the composition of the hydrate assemblage, while it significantly changes the composition of the pore solution. In particular, lower pH value and higher Ca concentrations appear that could potentially influence the solubility and uptake of heavy metals and anions by cementitious materials

  5. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration

    Science.gov (United States)

    Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.

    2011-08-01

    Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures. The optimized model reproduces the hydration free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic hydration, as characterized by the hydration enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.

  6. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Choi, Jeong-Hoon; Dai, Sheng

    2014-01-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field

  7. Influence of smectite hydration and swelling on atrazine sorption behavior.

    Science.gov (United States)

    Chappell, Mark A; Laird, David A; Thompson, Michael L; Li, Hui; Teppen, Brian J; Aggarwal, Vaneet; Johnston, Cliff T; Boyd, Stephen A

    2005-05-01

    hydration status has a large influence on the affinity of smectites for atrazine and that air-drying treatments have the potential to modify the sorption affinity of smectitic soils for organic molecules such as atrazine.

  8. Hydration abnormalities in Nigerian patients on chronic hemodialysis.

    Science.gov (United States)

    Tzamaloukas, Antonios H; Onime, Aideloje; Agaba, Emmanuel I; Vanderjagt, Dorothy J; Ma, Irene; Lopez, Andrea; Tzamaloukas, Rolinda A; Glew, Robert H

    2007-10-01

    The state of hydration affects the outcomes of chronic dialysis. Bioelectrical impedance analysis (BIA) provides estimates of body water (V), extracellular volume (ECFV), and fat-free mass (FFM) that allow characterization of hydration. We compared single-frequency BIA measurements before and after 14 hemodialysis sessions in 10 Nigerian patients (6 men, 4 women; 44+/-7 years old) with clinical evaluation (weight removed during dialysis, presence of edema) and with estimates of body water obtained by the Watson, Chertow, and Chumlea anthropometric formulas. Predialysis and postdialysis values of body water did not differ between BIA and anthropometric estimates. However, only the BIA estimate of the change in body water during dialysis (-0.8+/-2.9 L) did not differ from the corresponding change in body weight (-1.3+/-3.0 kg), while anthropometric estimates of the change in body water were significantly lower, approximately one-third of the change in weight. Bioelectrical impedance analysis correctly detected the intradialytic change in body water content (the ratio V/Weight) in 79% of the cases, while anthropometric formula estimates of the same change were erroneous in each case. Compared with patients with clinical postdialysis euvolemia (n=7), those with postdialysis edema (n=5) had higher values of postdialysis BIA ratios V/FFM (0.77+/-0.01 vs. 0.72+/-0.03, phydration in patients on chronic hemodialysis. In contrast, BIA provides estimates of hydration agreeing with clinical estimates in the same patients, although it tends to underestimate body water and extracellular volume in patients with large collections of fluid in central body cavities.

  9. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  10. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  11. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  12. Characterization of methane-hydrate formation inferred from insitu Vp-density relationship for hydrate-bearing sediment cores obtained off the eastern coast of India

    Science.gov (United States)

    Kinoshita, M.; Hamada, Y.; Hirose, T.; Yamada, Y.

    2017-12-01

    In 2015, the Indian National Gas Hydrate Program (NGHP) Drilling Expedition 02 was carried out off the eastern margin of the Indian Peninsula in order to investigate distribution and occurrence of gas hydrates. From 25 drill sites, downhole logging data, cored samples, and drilling performance data were collected. One of the target areas (area B) is located on the axial and flank of an anticline, where the BSR is identified 100 m beneath the summit of anticline. 3 sites were drilled in the crest. The lower potential hydrate zone II was suggested by downhole logging (LWD) at 270-290 m below seafloor across the top of anticline. Core samples from this interval is characterized by a higher natural gamma radiation, gamma-ray-based higher bulk density and lower porosity, and higher electrical resistivity. All these features are in good agreement with LWD results. During this expedition, numerous special core sampling operations (PCAT) were carried out, keeping its insitu pressure in a pressure-tight vessel. They enabled acquiring insitu P-wave velocity and gamma-ray attenuation density measurements. In-situ X-CT images exhibit very clear hydrate distribution as lower density patches. Hydrate-bearing sediments exhibit a Vp-density trend that is clearly different from the ordinary formation. Vp values are significantly higher than 2 km/s whereas the density remains constant at 2-2.2 g/cm3 in hydrate zones. At some hydrate-bearing sediments, we noticed that Vp is negatively correlated to the density in the deeper portion (235-285 mbsf). On the other hand, in the shallower portion they are positively correlated. From lithostratigraphy the shallower portion consists of sand, whereas deeper portion are silty-clay dominant. We infer that the sand-dominant, shallower hydrate is a pore-filling type, and Vp is correlated positively to density. On the other hand, the clay-dominant, deeper hydrate is filled in vertical veins, and Vp is negatively correlated to density. Negative

  13. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  14. Volume of hydration in terminal cancer patients.

    Science.gov (United States)

    Bruera, E; Belzile, M; Watanabe, S; Fainsinger, R L

    1996-03-01

    In this retrospective study we reviewed the volume and modality of hydration of consecutive series of terminal cancer patients in two different settings. In a palliative care unit 203/290 admitted patients received subcutaneous hydration for 12 +/- 8 days at a daily volume of 1015 +/- 135 ml/day. At the cancer center, 30 consecutive similar patients received intravenous hydration for 11.5 +/- 5 days (P > 0.2) but at a daily volume of 2080 +/- 720 ml/day (P palliative care unit patients required discontinuation of hydration because of complications. Hypodermoclysis was administered mainly as a continuous infusion, an overnight infusion, or in one to three 1-h boluses in 62 (31%), 98 (48%) and 43 (21%) patients, respectively. Our findings suggest that, in some settings, patients may be receiving excessive volumes of hydration by less comfortable routes such as the intravenous route. Increased education and research in this area are badly needed.

  15. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  16. A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems

    Science.gov (United States)

    White, M. D.

    2012-12-01

    The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict

  17. Quantitative study of Portland cement hydration by X-Ray diffraction/Rietveld analysis and geochemical modeling

    Science.gov (United States)

    Coutelot, F.; Seaman, J. C.; Simner, S.

    2017-12-01

    In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.

  18. IAEA and EU Review Progress on Cooperation, Agree on Next Steps at Annual Meeting

    International Nuclear Information System (INIS)

    2018-01-01

    The International Atomic Energy Agency (IAEA) and the European Union (EU) reviewed progress achieved in working together on a range of nuclear activities and agreed to further enhance cooperation during their sixth annual Senior Officials Meeting in Vienna. The talks on 8 February at the IAEA’s headquarters provided a forum for exchanging views on strengthening collaboration on nuclear safety, security, safeguards, sustainable development, nuclear energy research and increasing innovation. The two organizations welcomed the fruitful cooperation and progress achieved over the past years. They agreed to deepen cooperation in several areas, particularly in the promotion of nuclear applications for sustainable development.

  19. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2018-01-01

    The swapping of methane with carbon dioxide in hydrate has been proposed as a potential strategy for geologic sequestration of carbon dioxide and production of methane from natural hydrate deposits. However, this strategy requires a better understanding of the thermodynamic characteristics of CH4...... and CO2 hydrate as well as (CH4 + CO2) or (CH4 + CO2 + N2) mixed hydrates (since (CO2 + N2) gas mixture is often used as the swapping gas), along with the thermal physics property changes during gas exchange. In this study, a high pressure micro-differential scanning calorimetry (HP μ-DSC) was performed...

  20. Calculation of the eroei coefficient for natural gas hydrates in laboratory conditions

    Science.gov (United States)

    Siažik, Ján; Malcho, Milan; Čaja, Alexander

    2017-09-01

    In the 1960s, scientists discovered that methane hydrate existed in the gas field in Siberia. Gas hydrates are known to be stable under conditions of high pressure and low temperature that have been recognized in polar regions and in the uppermost part of deep -water sediments below the sea floor. The article deals with the determination of the EROEI coefficient to generate the natural gas hydrate in the device under specific temperature and pressure conditions. Energy returned on energy invested expresses ratio of the amount of usable energy delivered from a particular energy resource to the amount of exergy used to obtain that energy resource. Gas hydrates have been also discussed before decades like potential source mainly for regions with restricted access to conventional hydrocarbons also tactic interest in establishing alternative gas reserves.

  1. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  2. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  3. 32 CFR 1900.33 - Allocation of resources; agreed extensions of time.

    Science.gov (United States)

    2010-07-01

    ... time. 1900.33 Section 1900.33 National Defense Other Regulations Relating to National Defense CENTRAL... Administrative Matters § 1900.33 Allocation of resources; agreed extensions of time. (a) In general. Agency... the component, (2) The business demands imposed on the component by the Director of Central...

  4. System for Delivering Student Aid Is Flawed, Many Agree, But What's the Solution?

    Science.gov (United States)

    Burd, Stephen

    1997-01-01

    Public officials and student aid experts agree that the federal program delivery system is outdated, inefficient, and vulnerable to fraud, but they disagree on how bad the situation is and whether the Education Department has the structure necessary to fix it. A 1995 project to integrate all federal grant and loan programs into one system has not…

  5. Context, Complexity and Contestation: Birmingham's Agreed Syllabuses for Religious Education since the 1970s

    Science.gov (United States)

    Parker, Stephen G.; Freathy, Rob J. K.

    2011-01-01

    The present article offers an historical perspective on the 1975, 1995 and 2007 Birmingham Agreed Syllabuses for Religious Education. It draws upon historical evidence uncovered as part of "The hidden history of curriculum change in religious education in English schools, 1969-1979" project, and curriculum history theories, especially…

  6. Resourcing the National Goals for Schooling: An Agreed Framework of Principles for Funding Schools

    Science.gov (United States)

    Ministerial Council on Education, Employment, Training and Youth Affairs (NJ1), 2012

    2012-01-01

    Funding for school education in Australia should be on the basis of clear and agreed policy principles for achieving effectiveness, efficiency, equity and a socially and culturally cohesive society. On the basis of these principles a national framework for funding schools will be supported by complementary State and Commonwealth models for funding…

  7. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  8. Hydration-controlled bacterial motility and dispersal on surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Wang, G.; Gulez, Gamze

    2010-01-01

    hydrated habitats, where water dynamics result in fragmented aquatic habitats connected by micrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using......Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably...... an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharply within a small range of water potential (0 to −2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly...

  9. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  10. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs

    Science.gov (United States)

    Cook, Ann E.; Waite, William F.

    2018-01-01

    Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.

  11. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Science.gov (United States)

    Braun, Doris E.; Griesser, Ulrich J.

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359

  12. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  13. On the electrolytic generation of hydrated electron

    International Nuclear Information System (INIS)

    Ghosh Mazumdar, A.S.; Guha, S.N.

    1975-01-01

    Investigations on the electrolytic generation of hydrated electron in oxygenated as well as oxygen-free solutions at different pH were undertaken. Since sup(-e)aq is known to react rapidly with O 2 yielding the transient O 2 - ion, the latter was looked for through its interaction with phosphite ions resulting in their oxidation near the cathode. It appears from the results that in electrolytic processes, the primary electron (esup(-)sub(cathode)) probably reacts directly with reactive solutes like oxygen, bypassing the hydration step. Data obtained in oxygen-free solutions, however, support the possible formation of hydrated electron at least in alkaline solutions. (author)

  14. Mechanistic insights into a hydrate contribution to the Paleocene-Eocene carbon cycle perturbation from coupled thermohydraulic simulations

    Science.gov (United States)

    Minshull, T. A.; Marín-Moreno, H.; Armstrong McKay, D. I.; Wilson, P. A.

    2016-08-01

    During the Paleocene-Eocene Thermal Maximum (PETM), the carbon isotopic signature (δ13C) of surface carbon-bearing phases decreased abruptly by at least 2.5 to 3.0‰. This carbon isotope excursion (CIE) has been attributed to widespread methane hydrate dissociation in response to rapid ocean warming. We ran a thermohydraulic modeling code to simulate hydrate dissociation due to ocean warming for various PETM scenarios. Our results show that hydrate dissociation in response to such warming can be rapid but suggest that methane release to the ocean is modest and delayed by hundreds to thousands of years after the onset of dissociation, limiting the potential for positive feedback from emission-induced warming. In all of our simulations at least half of the dissociated hydrate methane remains beneath the seabed, suggesting that the pre-PETM hydrate inventory needed to account for all of the CIE is at least double that required for isotopic mass balance.

  15. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage

    International Nuclear Information System (INIS)

    N’Tsoukpoe, Kokouvi Edem; Schmidt, Thomas; Rammelberg, Holger Urs; Watts, Beatriz Amanda; Ruck, Wolfgang K.L.

    2014-01-01

    Highlights: • We report an evaluation of the potential of salt hydrates for thermochemical storage. • Both theoretical calculations and experimental measurements using TGA/DSC are used. • Salt hydrates offer very low potential for thermochemical heat storage. • The efficiency of classical processes using salt hydrates is very low: typically 25%. • New processes are needed for the use of salt hydrates in thermochemical heat storage. - Abstract: In this paper, the potential energy storage density and the storage efficiency of salt hydrates as thermochemical storage materials for the storage of heat generated by a micro-combined heat and power (micro-CHP) have been assessed. Because salt hydrates used in various thermochemical heat storage processes fail to meet the expectations, a systematic evaluation of the suitability of 125 salt hydrates has been performed in a three-step approach. In the first step general issues such as toxicity and risk of explosion have been considered. In the second and third steps, the authors implement a combined approach consisting of theoretical calculations and experimental measurements using Thermogravimetric Analysis (TGA). Thus, application-oriented comparison criteria, among which the net energy storage density of the material and the thermal efficiency, have been used to evaluate the potential of 45 preselected salt hydrates for a low temperature thermochemical heat storage application. For an application that requires a discharging temperature above 60 °C, SrBr 2 ·6H 2 O and LaCl 3 ·7H 2 O appear to be the most promising, only from thermodynamic point of view. However, the maximum net energy storage density including the water in the water storage tank that they offer (respectively 133 kW h m −3 and 89 kW h m −3 ) for a classical thermochemical heat storage process are not attractive for the intended application. Furthermore, the thermal efficiency that would result from the storage process based on salt hydrates

  16. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  17. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  18. The impact of fire suppression tasks on firefighter hydration: a critical review with consideration of the utility of reported hydration measures.

    Science.gov (United States)

    Walker, Adam; Pope, Rodney; Orr, Robin Marc

    2016-01-01

    Firefighting is a highly stressful occupation with unique physical challenges, apparel and environments that increase the potential for dehydration. Dehydration leaves the firefighter at risk of harm to their health, safety and performance. The purpose of this review was to critically analyse the current literature investigating the impact of fighting 'live' fires on firefighter hydration. A systematic search was performed of four electronic databases for relevant published studies investigating the impact of live fire suppression on firefighter hydration. Study eligibility was assessed using strict inclusion and exclusion criteria. The included studies were critically appraised using the Downs and Black protocol and graded according to the Kennelly grading system. Ten studies met the eligibility criteria for this review. The average score for methodological quality was 55 %, ranging from 50 % ('fair' quality) to 61 % ('good' quality) with a 'substantial agreement' between raters ( k  = .772). Wildfire suppression was considered in five studies and structural fire suppression in five studies. Results varied across the studies, reflecting variations in outcome measures, hydration protocols and interventions. Three studies reported significant indicators of dehydration resulting from structural fire suppression, while two studies found mixed results, with some measures indicating dehydration and other measures an unchanged hydration status. Three studies found non-significant changes in hydration resulting from wildfire firefighting and two studies found significant improvements in markers of hydration. Ad libitum fluid intake was a common factor across the studies finding no, or less severe, dehydration. The evidence confirms that structural and wildfire firefighting can cause dehydration. Ad libitum drinking may be sufficient to maintain hydration in many wildfire environments but possibly not during intense, longer duration, hot structural fire operations

  19. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  20. Oceanic hydrates: more questions than answers

    International Nuclear Information System (INIS)

    Laherrere, Jean

    2000-01-01

    Methane hydrates create problems by blocking pipelines and casing; they are also accused of contributing to environmental problems (e.g. global warming). Methane hydrates are also found in permafrost areas and in oceanic sediments where the necessary temperature and pressure for stability occur. Claims for the widespread occurrence in thick oceanic deposits are unfounded: apparently indirect evidence from seismic reflectors, seismic hydrocarbon indicators, logs and free samples is unreliable. At one time, hydrate was seen as a static, biogenic, continuous, huge resource but that view is changing to one of a dynamic, overpressurised, discontinuous and unreliable resource. Only Japan and India are currently showing any serious interest in hydrates. Academic research has raised more questions than answers. It is suggested that more hard exploratory evidence rather than theoretical study is required

  1. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  2. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  3. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  4. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  5. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  6. GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    James Sorensen; Jaroslav Solc; Bethany Bolles

    2000-07-01

    The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

  7. Hydrogen Storage Capacity of Tetrahydrofuran and Tetra-N-Butylammonium Bromide Hydrates Under Favorable Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Joshua T. Weissman

    2017-08-01

    Full Text Available An experimental study was conducted to evaluate the feasibility of employing binary hydrates as a medium for H2 storage. Two reagents, tetrahydrofuran (THF and tetra-n-butylammonium bromide (TBAB, which had been reported previously to have potential to form binary hydrates with H2 under favorable conditions (i.e., low pressures and high temperatures, were investigated using differential scanning calorimetry and Raman spectroscopy. A scale-up facility was employed to quantify the hydrogen storage capacity of THF binary hydrate. Gas chromatography (GC and pressure drop analyses indicated that the weight percentages of H2 in hydrate were less than 0.1%. The major conclusions of this investigation were: (1 H2 can be stored in binary hydrates at relatively modest pressures and temperatures which are probably feasible for transportation applications; and (2 the storage capacity of H2 in binary hydrate formed from aqueous solutions of THF over a concentration range extending from 2.78 to 8.34 mol % and at temperatures above 263 K and pressures below 11 MPa was <0.1 wt %.

  8. Towards an understanding of the propensity for crystalline hydrate formation by molecular compounds

    Directory of Open Access Journals (Sweden)

    Alankriti Bajpai

    2016-11-01

    Full Text Available Hydrates are technologically important and ubiquitous yet they remain a poorly understood and understudied class of molecular crystals. In this work, we attempt to rationalize propensity towards hydrate formation through crystallization studies of molecules that lack strong hydrogen-bond donor groups. A Cambridge Structural Database (CSD survey indicates that the statistical occurrence of hydrates in 124 molecules that contain five- and six-membered N-heterocyclic aromatic moieties is 18.5%. However, hydrate screening experiments on a library of 11 N-heterocyclic aromatic compounds with at least two acceptor moieties and no competing hydrogen-bond donors or acceptors reveals that over 70% of this group form hydrates, suggesting that extrapolation from CSD statistics might, at least in some cases, be deceiving. Slurrying in water and exposure to humidity were found to be the most effective discovery methods. Electrostatic potential maps and/or analysis of the crystal packing in anhydrate structures was used to rationalize why certain molecules did not readily form hydrates.

  9. A Molecular Dynamic Simulation of Hydrated Proton Transfer in Perfluorosulfonate Ionomer Membranes (Nafion 117

    Directory of Open Access Journals (Sweden)

    Hong Sun

    2015-01-01

    Full Text Available A molecular dynamic model based on Lennard-Jones Potential, the interaction force between two particles, molecular diffusion, and radial distribution function (RDF is presented. The diffusion of the hydrated ion, triggered by both Grotthuss and vehicle mechanisms, is used to study the proton transfer in Nafion 117. The hydrated ion transfer mechanisms and the effects of the temperature, the water content in the membrane, and the electric field on the diffusion of the hydrated ion are analyzed. The molecular dynamic simulation results are in good agreement with those reported in the literature. The modeling results show that when the water content in Nafion 117 is low, H3O+ is the main transfer ion among the different hydrated ions. However, at higher water content, the hydrated ion in the form of H+(H2O2 is the main transfer ion. It is also found that the negatively charged sulfonic acid group as the fortified point facilitates the proton transfer in Nafion 117 better than the free water molecule. The diffusion of the hydrated ion can be improved by increasing the cell temperature, the water content in Nafion, and the electric field intensity.

  10. Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions

    Science.gov (United States)

    Lee, K.; Lee, S.; Lee, W.

    2008-12-01

    A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.

  11. Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes

    Science.gov (United States)

    Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.

    2009-01-01

    Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.

  12. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  13. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-01-24

    Natural gas is projected to be the premium fuel of the 21st century because of availability, as well as economical and environmental considerations. Natural gas is coproduced with water from the subsurface forming gas hydrates. Hydrate formation may result in shutdown of onshore and offshore operations. Industry practice has been usage of alcohols--which have undesirable environmental impacts--to affect bulk-phase properties and inhibit hydrate formation. An alternative to alcohols is changing the surface properties through usage of polymers and surfactants, effective at 0.5-3 wt % of coproduced water. One group of low-dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are anti-agglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, reported work on hydrate anti-agglomeration is very limited. In this paper, our focus is on the use of two vastly different surfactants as anti-agglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. We examine the effectiveness of a quaternary ammonium salt (i.e., quat). Visual observation measurements show that a small concentration of the quat (0.01%) can prevent agglomeration. However, a quat is not a green chemical and therefore may be undesirable. We show that a rhamnolipid biosurfactant can be effective to a concentration of 0.05 wt %. One difference between the two surfactants is the stability of the water-in-oil emulsions created. The biosurfactant forms a less stable emulsion, which makes it very desirable for hydrate application.

  14. [How to assess clinical practice guidelines with AGREE II: The example of neonatal jaundice].

    Science.gov (United States)

    Renesme, L; Bedu, A; Tourneux, P; Truffert, P

    2016-03-01

    Neonatal jaundice is a very frequent condition that occurs in approximately 50-70% of term or near-term (>35 GA) babies in the 1st week of life. In some cases, a high bilirubin blood level can lead to kernicterus. There is no consensus for the management of neonatal jaundice and few countries have published national clinical practice guidelines for the management of neonatal jaundice. The aim of this study was to assess the quality of these guidelines. We conducted a systematic review of the literature for national clinical practice guidelines for the management of neonatal jaundice in term or near-term babies. Four independent reviewers assessed the quality of each guideline using the AGREE II evaluation. For each of the clinical practice guidelines, the management modalities were analyzed (screening, treatment, follow-up, etc.). Seven national clinical practice guidelines were found (South Africa, USA AAP, UK NICE, Canada, Norway, Switzerland, and Israel). The AGREE II score showed widespread variation regarding the quality of these national guidelines. There was no major difference between the guidelines concerning the clinical management of these babies. The NICE guideline is the most valuable guideline regarding the AGREE II score. NICE showed that, despite a strong and rigorous methodology, there is no evidenced-based recommended code of practice (RCP). Comparing RCPs, we found no major differences. The NICE guideline showed the best quality. The AGREE II instrument should be used as a framework when developing clinical practice guidelines to improve the quality of the future guideline. In France, a national guideline is needed for a more standardized management of neonatal jaundice. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Evaluation of the quality of guidelines for myasthenia gravis with the AGREE II instrument.

    Directory of Open Access Journals (Sweden)

    Zhenchang Zhang

    Full Text Available Clinical practice guidelines (CPGs are systematically developed statements to assist practitioners in making decisions about appropriate healthcare in specific clinical circumstances. The methodological quality of CPGs for myasthenia gravis (MG are unclear.To critically evaluate the methodological quality of CPGs for MG using AGREE II instrument.A systematical search strategy on PubMed, EMBASE, DynaMed, the National Guideline Clearinghouse (NGC and the Chinese Biomedical Literature database (CBM was performed on September 20th 2013. All guidelines related to MG were evaluated with AGREE II. The software used for analysis was SPSS 17.0.A total of 15 CPGs for MG met the inclusion criteria (12 CPGs in English, 3 CPGs in Chinese. The overall agreement among reviews was moderate or high (ICC >0.70. The mean scores (mean ± SD for al six domains were presented as follows: scope and purpose (60.93% ± 16.62%, stakeholder involvement (40.93% ± 20.04%, rigor of development (37.22% ± 30.46%, clarity of presentation (64.26% ± 16.36%, applicability (28.19% ± 20.56% and editorial independence (27.78% ± 28.28%. Compared with non-evidence-based CPGs, evidence-based CPGs had statistically significant higher quality scores for all AGREE II domains (P0.05. The quality scores of CPGs developed by NGC/AAN were higher than the quality scores of CPGs developed by other organizations for all domains. The difference was statistically significant for all domains with the exception of clarity of presentation (P = 0.07.The qualities of CPGs on MG were generally acceptable with several flaws. The AGREE II instrument should be adopted by guideline developers, particularly in China.

  16. A fermented barley and soybean formula enhances skin hydration.

    Science.gov (United States)

    Lee, Sein; Kim, Jong-Eun; Suk, Sujin; Kwon, Oh Wook; Park, Gaeun; Lim, Tae-Gyu; Seo, Sang Gwon; Kim, Jong Rhan; Kim, Dae Eung; Lee, Miyeong; Chung, Dae Kyun; Jeon, Jong Eun; Cho, Dong Woon; Hurh, Byung Serk; Kim, Sun Yeou; Lee, Ki Won

    2015-09-01

    Skin hydration is one of the primary aims of beauty and anti-aging treatments. Barley (Hordeum vulgare) and soybean (Glycine max) are major food crops, but can also be used as ingredients for the maintenance of skin health. We developed a natural product-based skin treatment using a barley and soybean formula (BS) incorporating yeast fermentation, and evaluated its skin hydration effects as a dietary supplement in a clinical study. Participants ingested a placebo- (n = 33) or BS- (3 g/day) containing drink (n = 32) for 8 weeks. A significant increase in hydration in the BS group as compared to the placebo group was observed on the faces of subjects after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in stratum corneum (SC) thickness were also observed on the face and forearm. BS enhanced hyaluronan (HA) and skin barrier function in vitro and reduced Hyal2 expression in human dermal fibroblasts (HDF). BS also recovered ultraviolet (UV) B-induced downregulation of HA in HaCaT cells. These results suggest that BS has promising potential for development as a health functional food to enhance skin health.

  17. Spray-on-skin cells in burns: a common practice with no agreed protocol.

    Science.gov (United States)

    Allouni, Ammar; Papini, Remo; Lewis, Darren

    2013-11-01

    Cultured epithelial autograft (CEA) has been used for skin coverage after burn wound excision since 1981. It is used in burn units and centres throughout the U.K.; however, there appears to be no agreed standards of practice. We aimed to investigate the experience and current practice with its usage in the management of acute burn injury. An online survey was sent to twenty-five burns consultants in the U.K., who are members of the British Burn Association. We received 14 responses. Rarely have the responders agreed to the same practice in most of the questions. Different choices were given by responders with regards the indications for cell culture, techniques used, primary and secondary dressings used, first wound review timing, and measures used to evaluate outcomes. In the current economic environment, the NHS needs to rationalize services on the basis of cost effectiveness. CEA is an expensive procedure that requires an adequately sterile laboratory, special equipments and highly experienced dedicated staff. When dealing with expensive management options, it is important to have an agreed protocol that can form the standard that can be referred to when auditing practices and results to improve burn management and patients' care. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Using AGREE II to Evaluate the Quality of Traditional Medicine Clinical Practice Guidelines in China.

    Science.gov (United States)

    Deng, Wei; Li, Le; Wang, Zixia; Chang, Xiaonan; Li, Rui; Fang, Ziye; Wei, Dang; Yao, Liang; Wang, Xiaoqin; Wang, Qi; An, Guanghui

    2016-03-15

    To evaluate/assess the quality of the Clinical Practice Guidelines (CPGs) of traditional medicine in China. We systematically searched the literature databases WanFang Data, VIP, CNKI and CBM for studies published between 1978 and 2012 to identify and select CPGs of traditional medicine. We used the Appraisal of Guidelines for Research and Evaluation II (AGREE II) instrument to evaluate these guidelines. A total of 75 guidelines were included, of which 46 guidelines (62%) were on Traditional Chinese Medicine, 19 (25%) on Chinese Integrated Medicine, and 10 (13%) on Uyghur Medicine. Most traditional medicine CPGs published in domestic journals scored medicine. In each domain of AGREE II, traditional Medicine CPGs performed clearly better than international CPGs. The same trend was seen in guidelines of Modern Medicine. An increasing amount of CPGs are being published, but their quality is low. Referring to the key points of international guidelines development, supervision through AGREE II, cooperating with international groups and exploring the strategy of guideline development could improve the quality of CPGs on traditional medicine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Evidence-based practice guidelines in OHS: are they agree-able?

    Science.gov (United States)

    Hulshof, Carel; Hoenen, John

    2007-01-01

    The purpose of this study was to evaluate the acceptance, validity, reliability and feasibility of the AGREE (Appraisal of Guidelines and REsearch and Evaluation) instrument to assess the quality of evidence-based practice guidelines for occupational physicians. In total, 6 practice guidelines of the Netherlands Society of Occupational Medicine (NVAB) were appraised by 20 occupational health professionals and experts in guideline development or implementation. Although appraisers often disagreed on individual item scores, the internal consistency and interrater reliability for most domains was sufficient. The AGREE criteria were in general considered relevant and no major suggestions for additional items for use in the context of occupational health were brought up. The domain scores for the individual guidelines show a wide variety: 'applicability' had on average the lowest mean score (53%) while 'scope and purpose' had the highest one (87%). Low scores indicate where improvements are possible and necessary, e.g. by providing more information about the development. Key experts in occupational health report that AGREE is a relevant and easy to use instrument to evaluate quality aspects and the included criteria provide a good framework to develop or update evidence-based practice guidelines in the field of occupational health.

  20. The dynamics of water in hydrated white bread investigated using quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Sjoestroem, J; Kargl, F; Fernandez-Alonso, F; Swenson, J

    2007-01-01

    The dynamics of water in fresh and in rehydrated white bread is studied using quasielastic neutron scattering (QENS). A diffusion constant for water in fresh bread, without temperature gradients and with the use of a non-destructive technique, is presented here for the first time. The self-diffusion constant for fresh bread is estimated to be D s = 3.8 x 10 -10 m 2 s -1 and the result agrees well with previous findings for similar systems. It is also suggested that water exhibits a faster dynamics than previously reported in the literature using equilibration of a hydration-level gradient monitored by vibrational spectroscopy. The temperature dependence of the dynamics of low hydration bread is also investigated for T = 280-350 K. The average relaxation time at constant momentum transfer (Q) shows an Arrhenius behavior in the temperature range investigated

  1. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  2. Preservation of methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  3. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    Science.gov (United States)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal

  4. Exploring the ab initio/classical free energy perturbation method: The hydration free energy of water

    International Nuclear Information System (INIS)

    Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.

    2000-01-01

    The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to

  5. Hydration benefits to courtship feeding in crickets

    Science.gov (United States)

    Ivy, T. M.; Johnson, J. C.; Sakaluk, S. K.

    1999-01-01

    The spermatophore transferred by male decorated crickets (Gryllodes sigillatus) at mating includes a large gelatinous spermatophylax that the female consumes after copulation. Although previous studies have shown that G. sigillatus females gain no nutritional benefits from consuming food gifts, there may be other benefits to their consumption. We examined potential hydration benefits to females by experimentally manipulating both the availability of water and the number of food gifts that females consumed, and by measuring their effect on female fitness. Analysis of the number of nymphs produced by females revealed a significant interaction between the number of spermatophylaxes consumed and water availability. When spermatophylaxes were not provided, females given water ad libitum produced significantly more nymphs than females subjected to water stress. Female longevity was significantly affected by water availability, with an increase in the availability of water corresponding to a significant increase in female longevity. These data suggest that female G. sigillatus accrue fitness benefits by consuming spermatophylaxes when alternative sources of water are unavailable. In addition, females appear to allocate water contained in spermatophylaxes towards reproduction as opposed to survival.

  6. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  7. In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates

    Science.gov (United States)

    Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.

    2017-12-01

    Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and

  8. Hydration in advanced cancer: can bioelectrical impedance analysis improve the evidence base? A systematic review of the literature.

    Science.gov (United States)

    Nwosu, Amara Callistus; Mayland, Catriona R; Mason, Stephen R; Khodabukus, Andrew F; Varro, Andrea; Ellershaw, John E

    2013-09-01

    Decisions surrounding the administration of clinically assisted hydration to patients dying of cancer can be challenging because of the limited understanding of hydration in advanced cancer and a lack of evidence to guide health care professionals. Bioelectrical impedance analysis (BIA) has been used to assess hydration in various patient groupings, but evidence for its use in advanced cancer is limited. To critically appraise existing methods of hydration status assessment in advanced cancer and review the potential for BIA to assess hydration in advanced cancer. Searches were carried out in four electronic databases. A hand search of selected peer-reviewed journals and conference abstracts also was conducted. Studies reporting (de)hydration assessment (physical examination, biochemical measures, symptom assessment, and BIA) in patients with advanced cancer were included. The results highlight how clinical examination and biochemical tests are standard methods of assessing hydration, but limitations exist with these methods in advanced cancer. Furthermore, there is disagreement over the evidence for some commonly associated symptoms with dehydration in cancer. Although there are limitations with using BIA alone to assess hydration in advanced cancer, analysis of BIA raw measurements through the method of bioelectrical impedance vector analysis may have a role in this population. The benefits and burdens of providing clinically assisted hydration to patients dying of cancer are unclear. Bioelectrical impedance vector analysis shows promise as a hydration assessment tool but requires further study in advanced cancer. Innovative methodologies for research are required to add to the evidence base and ultimately improve the care for the dying. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  9. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)

    2017-02-14

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

  10. Direct observation of characteristic dissociation behaviors of hydrate-bearing cores by rapid-scanning X-ray CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebinuma, T.; Oyama, H.; Utiumi, T.; Nagao, J.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohiraku, Sapporo (Japan)

    2008-07-01

    Methane hydrate has significant potential as a new source of energy. Major considerations in developing production methods of methane from hydrates are the fundamental properties of hydrate-bearing sediments, and the dissociation behavior of methane hydrate and the gas and water flow generated by its dissociation in sediments. Marine methane hydrates occur several hundred meters below the sea floor, in a variety of forms. The pore-space filling-type is considered to be the most suited to exploitation, as it is contained within the pore spaces of sandy sediments, and has relatively larger gas permeability compared to other forms. However, shallow sandy sediments are not usually consolidated, and methane hydrate is unstable at normal pressure and temperature. Therefore, common methods are not suitable, and new experimental methods have been developed to study the properties of hydrate-bearing sediment and its dissociation process. This paper presented the results of an experimental study involving the dissociation of artificial methane-hydrate-bearing sediments. The experiment was performed using X-ray computed tomography in order to directly observe dissociation behavior in the sediments and the gas and water flows generated by dissociation. The paper described the depressurization process and presented a schematic diagram of rapid scanning X-ray computed tomography scanner and core holder with tri-axial structure. The experimental apparatus for dissociation of methane hydrate was also illustrated. The thermal stimulation process and hot water injection process were explained. It was concluded that dissociation by depressurization demonstrated that the temperature reduction induced by depressurization depended on the phase equilibrium state of methane hydrate, and that dissociation preferentially occurred at the periphery of the core. This behavior was due to the heat flux from the outside of the core, where the heat flux controlled the dissociation rate. 10 refs

  11. Cement hydration from hours to centuries controlled by diffusion through barrier shells of C-S-H

    Science.gov (United States)

    Rahimi-Aghdam, Saeed; Bažant, Zdeněk P.; Abdolhosseini Qomi, M. J.

    2017-02-01

    Although a few good models for cement hydration exist, they have some limitations. Some do not take into account the complete range of variation of pore relative humidity and temperature, and apply over durations limited from up a few months to up to about a year. The ones that are applicable for long durations are either computationally too intensive for use in finite element programs or predict the hydration to terminate after few months. However, recent tests of autogenous shrinkage and swelling in water imply that the hydration may continue, at decaying rate, for decades, provided that a not too low relative pore humidity (above 0.7) persists for a long time, as expected for the cores of thick concrete structural members. Therefore, and because design lifetimes of over hundred years are required for large concrete structures, a new hydration model for a hundred year lifespan and beyond is developed. The new model considers that, after the first day of hydration, the remnants of anhydrous cement grains, gradually consumed by hydration, are enveloped by contiguous, gradually thickening, spherical barrier shells of calcium-silicate hydrate (C-S-H). The hydration progress is controlled by transport of water from capillary pores through the barrier shells toward the interface with anhydrous cement. The transport is driven by a difference of humidity, defined by equivalence with the difference in chemical potential of water. Although, during the period of 4-24 h, the C-S-H forms discontinuous nano-globules around the cement grain, an equivalent barrier shell control was formulated for this period, too, for ease and effectiveness of calculation. The entire model is calibrated and validated by published test data on the evolution of hydration degree for various cement types, particle size distributions, water-cement ratios and temperatures. Computationally, this model is sufficiently effective for calculating the evolution of hydration degree (or aging) at every

  12. The influence of Na2O on the hydration of C3A II. Suspension hydration

    NARCIS (Netherlands)

    Spierings, G.A.C.M.; Stein, H.N.

    1976-01-01

    The influence of Na2O on the hydration of C3A was studied in suspensions from the start of the reaction onwards. The heat evolution rate in very early stages of the hydration, measured at varying NaOH concentrations, and SEM, indicate that at NaOH concentrations larger then 0.1 M the reaction

  13. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  14. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  15. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  16. Description of the structural evolution of a hydrating portland cement paste by SANS

    International Nuclear Information System (INIS)

    Haeussler, F.; Eichhorn, F.; Baumbach, H.

    1994-01-01

    On the spectrometer MURN at the pulsed reactor IBR-2 dry Portland cement, silica fume, and a hydrating Portland cement paste were studied by small-angle neutron scattering (SANS). By using the TOF-method a momentum transfer from 0.07 nm -1 to 7 nm -1 is detectable. Every component (dry cement powder, clinker minerals, hydrating cement pastes) shows a different scattering behaviour. In the measured Q-region the hardening cement paste does not show a Porod-like behaviour of SANS-curves. In contrast the Porod's potential law holds for dry powder samples of clinker minerals and silica fume. In experiments carried out to observe the hydration progress within the first 321 days the characteristics of the scattering curves (potential behaviour, the radius of gyration, and the macroscopic scattering cross section at Q = 0 nm -1 were measured. Some evolution of the inner structure of the hardened cement paste was noted. (orig.)

  17. Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Lee, Yohan; Lee, Dongyoung; Lee, Jong-Won; Seo, Yongwon

    2016-01-01

    Highlights: • We examine sH hydrates with CO 2 + N 2 + neohexane for CO 2 capture and sequestration. • The structural transition occurs in the CO 2 (40%) + N 2 (60%) + neohexane system. • CO 2 molecules are enclathrated into sH hydrates in the N 2 -rich systems. • CO 2 selectivity in sH hydrates is slightly lower than that in sI hydrates. • ΔH d values provide information on the structural transition of sH to sI hydrates. - Abstract: In this study, the thermodynamic behaviors, cage-specific guest distributions, structural transition, and dissociation enthalpies of sH hydrates with CO 2 + N 2 gas mixtures were investigated for their potential applications to hydrate-based CO 2 capture and sequestration. The stability conditions of the CO 2 + N 2 + water systems and the CO 2 + N 2 + neohexane (2,2-dimethylbutane, NH) + water systems indicated that the gas mixtures in the range of flue gas compositions could form sH hydrates, thereby mitigating the pressure and temperature required for gas hydrate formation. Structure identification using powder X-ray diffraction (PXRD) revealed the coexistence of sI and sH hydrates in the CO 2 (40%) + N 2 (60%) + NH system and the hydrate structure transformed from sH into sI as the CO 2 concentration increased. In addition, the Raman analysis clearly demonstrated that CO 2 molecules were enclathrated into the cages of sH hydrates in the N 2 -rich systems. It was found from direct CO 2 composition measurements that CO 2 selectivity in the sH hydrate phase was slightly lower than that in the corresponding sI hydrate phase. Dissociation enthalpy (ΔH d ) measurements using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) indicated that the ΔH d values could also provide valuable information on the structural transition of sH to sI hydrates with respect to the CO 2 concentration in the feed gas. This study provides a better understanding of the thermodynamic and physicochemical background for CO 2

  18. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    . For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems......The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually...

  19. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  20. Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt

    Science.gov (United States)

    Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu

    2018-01-01

    Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation Sh ≥ 0.65. Hydrate contribution to the residual strength is mainly by increasing cohesion at low hydrate saturation and friction at high hydrate saturation. Stress state and hydrate saturation are dominating both the stiffness and the strength of hydrate-bearing sediments; thus, a wave velocity-based peak strength prediction model is proposed and validated, which allows for precise estimation of the shear strength of hydrate-bearing sediments through acoustic logging data. This method is advantageous to geomechanical simulators, particularly when the experimental strength data of natural samples are not available.

  1. Decisions to Perform Emergency Caesarean Sections at a University Hospital; Do obstetricians agree?

    Directory of Open Access Journals (Sweden)

    Gowri Vaidyanathan

    2016-02-01

    Full Text Available Objectives: This study was undertaken to assess the degree of agreement amongst obstetricians regarding decisions to perform emergency Caesarean section (CS procedures at a university hospital. Methods: This retrospective clinical audit was carried out on 50 consecutive emergency CS procedures performed between November 2012 and March 2013 on women with singleton pregnancies at the Sultan Qaboos University Hospital in Muscat, Oman. Data on each procedure were collected from electronic patient records and independently reviewed by six senior obstetricians to determine agreement with the decision. Results: Of the 50 women who underwent CS procedures, the mean age was 28.9 ± 5.1 years and 48% were primigravidae. A total of 65% of the CS procedures were category I. The most common indications for a CS was a non-reassuring fetal heart trace (40% and dystocia (32%. There was complete agreement on the decision to perform 62% of the CS procedures. Five and four obstetricians agreed on 80% and 95% of the procedures, respectively. The range of disagreement was 4–20%. Disagreement occurred primarily with category II and III procedures compared to category I. Additionally, disagreement occurred in cases where the fetal heart trace pattern was interpreted as an indication for a category II CS. Conclusion: The majority of obstetricians agreed on the decisions to perform 94% of the emergency CS procedures. Obstetric decision-making could be improved with the implementation of fetal scalp pH testing facilities, fetal heart trace interpretation training and cardiotocography review meetings.

  2. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  3. Effect of overpressure on gas hydrate distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    Natural gas hydrate systems can be characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic. This paper discussed a study that examined this effect of overpressure on gas hydrate and free gas distribution in marine sediments. A one-dimensional numerical model that coupled sedimentation, fluid flow, and gas hydrate formation was utilized. In order to quantify the relative importance of sedimentation rates and low permeability sediments, a dimensionless sedimentation-compaction group (scN) was defined, that compared the absolute permeability of the sediments to the sedimentation rate. Higher values of scN mean higher permeability or low sedimentation rate which generally yield hydrostatic pore pressure while lower values of scN normally create pore pressure greater than hydrostatic. The paper discussed non-hydrostatic consolidation in gas hydrate systems, including mass balances; constitutive relationships; normalized variables; and dimensionless groups. A numerical solution to the problem was presented. It was concluded that simulation results demonstrated that decreasing scN not only increased pore pressure above hydrostatic values, but also lowered the lithostatic stress gradient and gas hydrate saturation. This occurred because overpressure resulted in lower effective stress, causing higher porosity and lower bulk density of the sediment. 16 refs., 5 figs., 1 appendix.

  4. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.; Yoon, S.; Wentzcovitch, R. M.; Monteiro, P. J. M.

    2014-01-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  5. Blue LED irradiation to hydration of skin

    Science.gov (United States)

    Menezes, Priscila F. C.; Requena, Michelle B.; Lizarelli, Rosane F., Z.; Bagnato, Vanderlei S.

    2015-06-01

    Blue LED system irradiation shows many important properties on skin as: bacterial decontamination, degradation of endogenous skin chromophores and biostimulation. In this clinical study we prove that the blue light improves the skin hydration. In the literature none authors reports this biological property on skin. Then this study aims to discuss the role of blue light in the skin hydration. Twenty patients were selected to this study with age between 25-35 years old and phototype I, II and III. A defined area from forearm was pre determined (A = 4.0 cm2). The study was randomized in two treatment groups using one blue light device (power of 5.3mW and irradiance of 10.8mW/cm2). The first treatment group was irradiated with 3J/cm2 (277seconds) and the second with 6J/cm2 (555 seconds). The skin hydration evaluations were done using a corneometer. The measurements were collected in 7, 14, 21 and 30 days, during the treatment. Statistical test of ANOVA, Tukey and T-Student were applied considering 5% of significance. In conclusion, both doses were able to improve the skin hydration; however, 6J/cm2 has kept this hydration for 30 days.

  6. Transient Electromagnetic Modelling and Imaging of Thin Resistive Structures: Applications for Gas Hydrate Assessment

    Science.gov (United States)

    Swidinsky, Andrei

    Gas hydrates are a solid, ice-like mixture of water and low molecular weight hydrocarbons. They are found under the permafrost and to a far greater extent under the ocean, usually at water depths greater than 300m. Hydrates are a potential energy resource, a possible factor in climate change, and a geohazard. For these reasons, it is critical that gas hydrate deposits are quantitatively assessed so that their concentrations, locations and distributions may be established. Due to their ice-like nature, hydrates are electrically insulating. Consequently, a method which remotely detects changes in seafloor electrical conductivity, such as marine controlled source electromagnetics (CSEM), is a useful geophysical tool for marine gas hydrate exploration. Hydrates are geometrically complex structures. Advanced electromagnetic modelling and imaging techniques are crucial for proper survey design and data interpretation. I develop a method to model thin resistive structures in conductive host media which may be useful in building approximate geological models of gas hydrate deposits using arrangements of multiple, bent sheets. I also investigate the possibility of interpreting diffusive electromagnetic data using seismic imaging techniques. To be processed in this way, such data must first be transformed into its non-diffusive, seismic-like counterpart. I examine such a transform from both an analytical and a numerical point of view, focusing on methods to overcome inherent numerical instabilities. This is the first step to applying seismic processing techniques to CSEM data to rapidly and efficiently image resistive gas hydrate structures. The University of Toronto marine electromagnetics group has deployed a permanent marine CSEM array offshore Vancouver Island, in the framework of the NEPTUNE Canada cabled observatory, for the purposes of monitoring gas hydrate deposits. In this thesis I also propose and examine a new CSEM survey technique for gas hydrate which would

  7. Multi-channel electrical impedance tomography for regional tissue hydration monitoring

    International Nuclear Information System (INIS)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-01-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ∼35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in

  8. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of scientific and technical program

    Science.gov (United States)

    Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.

    2011-01-01

    The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate

  9. Adsorption of water and carbon dioxide on hematite and consequences for possible hydrate formation.

    Science.gov (United States)

    Kvamme, Bjørn; Kuznetsova, Tatiana; Kivelae, Pilvi-Helina

    2012-04-07

    The interest in carbon dioxide for enhanced oil recovery is increasing proportional to the decline in naturally driven oil production and also due to the increasing demand for reduced emission of carbon dioxide into the atmosphere. Transport of carbon dioxide in offshore pipelines involves high pressure and low temperatures, conditions which may lead to formation of hydrates from residual water dissolved in carbon dioxide and carbon dioxide. The critical question is whether the water at certain temperatures and pressures will drop out as liquid droplets first, and then form hydrates, or alternatively, adsorb on the pipeline surfaces, and subsequently form hydrates heterogeneously. In this work, we used several different basis sets of density functional theory in ab initio calculations to estimate the charge distribution of hematite (the dominating component of rust) crystals. These rust particles were embedded in water and chemical potential for adsorbed water molecules was estimated through thermodynamic integration and compared to similar estimates for water clusters of the same size. While the generated charges were not unique, the use of high order approximations and different basis sets provides a range of likely charge distributions. Values obtained for the chemical potential of water in different surroundings indicated that it would be thermodynamically favorable for water to adsorb on hematite, and that evaluation of potential carbon dioxide hydrate formation conditions and kinetics should be based on this formation mechanism. Depending on the basis set and approximations, the estimated gain for water to adsorb on the hematite surface rather than condense as droplets varied between -1.7 kJ mole(-1) and -3.4 kJ mole(-1). The partial charge distribution on the hematite surface is incompatible with the hydrate structure, and thus hydrates will be unable to attach to the surface. The behavior of water outside the immediate vicinity of hematite (beyond 3

  10. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter

    International Nuclear Information System (INIS)

    Lee, Yohan; Kim, Yunju; Lee, Jaehyoung; Lee, Huen; Seo, Yongwon

    2015-01-01

    Highlights: • The extent of the replacement was improved due to the enclathration of N 2 in small cages. • The dissociation enthalpies of the replaced gas hydrates were measured. • There was no noticeable heat flow change during the CH 4 –flue gas replacement. • The replacement could occur without significant destruction of gas hydrates. - Abstract: The CH 4 –flue gas replacement in naturally occurring gas hydrates has attracted significant attention due to its potential as a method of exploitation of clean energy and sequestration of CO 2 . In the replacement process, the thermodynamic and structural properties of the mixed gas hydrates are critical factors to predict the heat flow in the hydrate-bearing sediments and the heat required for hydrate dissociation, and to evaluate the CO 2 storage capacity of hydrate reservoirs. In this study, the 13 C NMR and gas composition analyses confirmed that the preferential enclathration of N 2 molecules in small 5 12 cages of structure I hydrates improved the extent of the CH 4 recovery. A high pressure micro-differential scanning calorimeter (HP μ-DSC) provided reliable hydrate stability conditions and heat of dissociation values in the porous silica gels after the replacement, which confirmed that CH 4 in the hydrates was successfully replaced with flue gas. A heat flow change associated with the dissociation and formation of hydrates was not noticeable during the CH 4 –flue gas replacement. Therefore, this study reveals that CH 4 –flue gas swapping occurs without structural transitions and significant hydrate dissociations

  11. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  12. Morphology studies on gas hydrates interacting with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering

    2008-07-01

    Clathrate hydrates or gas hydrates are non-stoichiometric, crystalline compounds that form when small molecules come in contact with water at certain temperatures and pressures. Natural gas hydrates are found in the ocean bottom and in permafrost regions. It is thought that the amount of energy stored in natural hydrates is at least twice that of all other fossil fuels combined. In addition, trapping carbon dioxide as a hydrate in the bottom of the ocean has been suggested as an alternative means of reducing atmospheric carbon dioxide levels. Naturally occurring clathrates are found in close interaction with fine grained particles of very small mean pore diameters. Even though an increasing amount of hydrate equilibrium data for small diameter porous media has become available, the morphological behavior of hydrates subject to such conditions is yet to be explored. This paper presented a study that visually examined hydrate formation and decomposition of gas hydrates while interacting with fine grains of silica gel. The study showed still frames from high-resolution video recordings for hydrate formation and decomposition. The paper discussed the experiment including the apparatus as well as the results of hydrate formation and hydrate dissociation. This study enabled for the first time to observe clathrate morphology while hydrates interacted closely with fine grain particles with small mean pore diameters. 9 refs., 8 figs.

  13. Prestack Waveform Inversion and Well Log Examination at GC955 and WR313 in the Gulf of Mexico for Estimation of Methane Hydrate Concentrations

    Science.gov (United States)

    Fortin, W.; Goldberg, D.; Kucuk, H. M.

    2017-12-01

    Gas hydrates are naturally occurring compounds, which, at a molecular scale, are lattice structures of ice embedded with various gas molecules in the lattice voids. Volumetric estimates of associated hydrocarbons vary greatly due to the difficulty in remotely estimating hydrate concentrations in marine sediments but embedded hydrocarbon stores are thought to represent a significant portion of global deposits. Inherent hydrate instabilities obscure our understanding of and complicates processes related to resource extraction and hydrate response to disturbances in the local environment. Understanding the spatial extent and variability of hydrate deposits have important implications for potential economic production, climate change, and assessing natural hazards risks. Seismic reflection techniques are capable of determining the extent of gas hydrate deposits, often through the observation of bottom simulating reflectors (BSRs). However, BSRs are not present everywhere gas hydrates exist. Using high resolution prestack time migrated seismic data and prestack waveform inversion (PWI) we produce highly resolved velocity models and compare them to co-located well logs. Coupling our PWI results with velocity-porosity relationships and nearby well control, we map hydrate properties at GC955 and WR313. Integrating small scale heterogeneities and variations along the velocity model with in-situ measurements, we develop a workflow aimed to quantify hydrate concentrations observed in seismic data over large areas in great detail regardless of the existence of a BSR.

  14. Europe Agrees on Common Strategy to Initiate Study of LSA/MMA

    Science.gov (United States)

    1998-09-01

    strong involvement in millimetre astronomy: the 5 x 15-m IRAM array on Plateau de Bure (France), the 30-m IRAM antenna (Spain), the 20-m at Onsala (Sweden), the 15-m Swedish-ESO Submillimetre Telescope (SEST, La Silla), the 15-m JCMT (Mauna Kea, Hawaii), the 10-m HHT (Arizona), and others. Over 60 research institutes around Europe use these facilities. Many of them have developed technical expertise and leadership in this area together with European industry, so it is natural that a European collaboration should be looking to the future. The idea of a large European southern millimetre array has been discussed since 1991. In 1995, an LSA Project collaboration was established between ESO, the Institut de Radio Astronomie Millimetrique (IRAM), the Onsala Space Observatory, and the Netherlands Foundation for Research in Astronomy (NFRA). This consortium of observatories agreed to pool resources to study critical technical areas and conduct site surveys in Chile. Details are available in a Messenger article (March 98). Possibilities of intercontinental collaboration An important step was taken in June 1997. A similar project is under study in the United States of America (the "Millimeter Array", MMA ). An agreement was entered into between ESO and the U.S. National Radio Astronomy Observatory (NRAO) to explore the possibility of merging the two projects into one. Until then the emphasis in Europe had been on the large collecting area provided by 16-m antennas operating at purely millimetre wavelengths, while in the U.S. the concept was a smaller array of 8-m antennas with good submillimetre performance. However, as there is also considerable interest in Europe in submillimetre observations, and in the U.S. in a larger collecting area, a compromise seemed feasible. Several joint working groups formed under the ESO-NRAO agreement were set up to explore the possibility of a collaborative project. It was concluded that a homogeneous array of 64 x 12-m antennas, providing

  15. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  16. Skin hydration analysis by experiment and computer simulations and its implications for diapered skin.

    Science.gov (United States)

    Saadatmand, M; Stone, K J; Vega, V N; Felter, S; Ventura, S; Kasting, G; Jaworska, J

    2017-11-01

    Experimental work on skin hydration is technologically challenging, and mostly limited to observations where environmental conditions are constant. In some cases, like diapered baby skin, such work is practically unfeasible, yet it is important to understand potential effects of diapering on skin condition. To overcome this challenge, in part, we developed a computer simulation model of reversible transient skin hydration effects. Skin hydration model by Li et al. (Chem Eng Sci, 138, 2015, 164) was further developed to simulate transient exposure conditions where relative humidity (RH), wind velocity, air, and skin temperature can be any function of time. Computer simulations of evaporative water loss (EWL) decay after different occlusion times were compared with experimental data to calibrate the model. Next, we used the model to investigate EWL and SC thickness in different diapering scenarios. Key results from the experimental work were: (1) For occlusions by RH=100% and free water longer than 30 minutes the absorbed amount of water is almost the same; (2) Longer occlusion times result in higher water absorption by the SC. The EWL decay and skin water content predictions were in agreement with experimental data. Simulations also revealed that skin under occlusion hydrates mainly because the outflux is blocked, not because it absorbs water from the environment. Further, simulations demonstrated that hydration level is sensitive to time, RH and/or free water on skin. In simulated diapering scenarios, skin maintained hydration content very close to the baseline conditions without a diaper for the entire duration of a 24 hours period. Different diapers/diaper technologies are known to have different profiles in terms of their ability to provide wetness protection, which can result in consumer-noticeable differences in wetness. Simulation results based on published literature using data from a number of different diapers suggest that diapered skin hydrates within

  17. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania (Black Sea)

    Science.gov (United States)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.

    2016-12-01

    The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.

  18. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  19. Hydration dynamics of hyaluronan and dextran.

    Science.gov (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P

    2012-07-03

    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Multicavity SCRF calculation of ion hydration energies

    International Nuclear Information System (INIS)

    Diercksen, B.H.F.; Karelson, M.; Tamm, T.

    1994-01-01

    The hydration energies of the proton, hydroxyl ion, and several inorganic ions were calculated using the multicavity self-consistent reaction field (MCa SCRF) method developed for the quantum-mechanical modeling of rotationally or flexible systems in dielectric media. The ionic complexes H 3 O + (H2O) 4 , OH - (H2O) 4 , NH + 4 (H2O) 4 , and Hal - (H2O) 4 , where Hal = F, Cl, or Br, have been studied. Each complex was divided between five spheres, corresponding to the central ion and four water molecules in their first coordination sphere, respectively. Each cavity was surrounded by a polarizable medium with the dielectric permittivity of water at room temperature (80). The ionic hydration energies of ions were divided into specific and nonspecific parts. After accounting for the cavity-formation energy using scaled particle theory, good agreement between the total calculated and experimental hydration energies was obtained for all ions studied

  1. Thermal expansion properties of calcium aluminate hydrates

    International Nuclear Information System (INIS)

    Song, Tae Woong

    1986-01-01

    In order to eliminate the effect of impurities and aggregates on the thermomechanical properties of the various calcium aluminate hydrates, and to prepare clinkers in which all calcium aluminates are mixed homogeneously, chemically pure CaO and Al 2 O 3 were weighed, blended and heated in various conditions. After quantitative X-ray diffractometry(QXRD), the synthesized clinker was hydrated and cured under the conditions of 30 deg C, W/C=0.5, relative humidity> 90% respectively during 24 hours. And then differential thermal analysis(DTA), thermogravimetry(TG), micro calorimetry, thermomechanical analysis(TMA) and scanning electron microanalysis(SEM) were applied to examine the thermal properties of samples containing, calcium aluminate hydrates in various quantity. (Author)

  2. THz characterization of hydrated and anhydrous materials

    Science.gov (United States)

    Sokolnikov, Andre

    2011-06-01

    The characterization of anhydrous and hydrated forms of materials is of great importance to science and industry. Water content poses difficulties for successful identification of the material structure by THz radiation. However, biological tissues and hydrated forms of nonorganic substances still may be investigated by THz radiation. This paper outlines the range of possibilities of the above characterization, as well as provides analysis of the physical mechanism that allows or prevents penetration of THz waves through the substance. THz-TDS is used to measure the parameters of the characterization of anhydrous and hydrated forms of organic and nonorganic samples. Mathematical methods (such as prediction models of time-series analysis) are used to help identifying the absorption coefficient and other parameters of interest. The discovered dependencies allow designing techniques for material identification/characterization (e.g. of drugs, explosives, etc. that may have water content). The results are provided.

  3. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  4. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  5. Irrigation port hydration in phacoemulsification surgery

    Directory of Open Access Journals (Sweden)

    Suzuki H

    2018-01-01

    Full Text Available Hisaharu Suzuki,1 Yoichiro Masuda,2 Yuki Hamajima,1 Hiroshi Takahashi3 1Department of Ophthalmology, Nippon Medical School Musashikosugi Hospital, Kawasaki City, Kanagawa, 2Department of Ophthalmology, The Jikei University, Katsushika Medical Center, Tokyo, 3Department of Ophthalmology, Nippon Medical School, Tokyo, Japan Background: In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome.Purpose: We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port.Patients and methods: The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group and 30 eyes underwent surgeries without the HYUIP technique (control. The three points evaluated during each surgery included 1 the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2 the need for conventional hydration, and 3 watertight completion at the end stage of surgery.Results: The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups.Conclusion: The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse. Keywords: cataract surgery, hydration, irrigation and aspiration, phacoemulsification, wound, self-sealing 

  6. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla

    2017-12-01

    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  7. Verifying the agreed framework between the United States and North Korea

    International Nuclear Information System (INIS)

    May, M.M.

    2001-01-01

    Under the 1994 Agreed Framework (AF) between the United States and the Democratic People Republic of Korea (DPRK), the US and its allies will provide two nuclear-power reactors and other benefits to the DPRK in exchange for an agreement by the DPRK to declare how much nuclear-weapon material it has produced; to identify, freeze, and eventually dismantle specified facilities for producing this material; and to remain a party to the nuclear Non- Proliferation Treaty (NPT) and allow the implementation of its safeguards agreement. This study assesses the verifiability of these provisions. The study concludes verification can be accomplished, given cooperation and openness from the DPRK. Special effort will be needed from the IAEA, as well as support from the US and the Republic of Korea. (author)

  8. Proposals for future activities agreed upon at the seminar on wastewater treatment in urban areas

    International Nuclear Information System (INIS)

    1987-01-01

    The programme of the seminar was divided into three different sections: - Sewerage systems, - Discharge of industrial wastewater to municipal sewerage systems, - Reduction of nitrogen. For each subject the participants of the seminar agreed upon the following proposal for future activities: Sewerage systems: a) Combined sewer overflows (CSO). Brief state-of-the-art reports should be compiled by the Contracting Parties. The reports should provide information on: - extent of combined sewers (in % of sewered area), - design practices including flow equalization, - rates of inflow/infiltration, - pollution due to CSO, - current research, - trends. A compilation of these reports may hopefully lead to the derivation of suitable effluent standards, which may be expressed as frequencies, total volumes or total amount of pollution load. The effluent standards may be expressed as monthly to yearly values

  9. Hydration Status of Adult Population of Yazd

    Directory of Open Access Journals (Sweden)

    MH Lotfi

    2008-07-01

    Full Text Available Introduction: Water is an essential nutrient for life. It comprises 75% of total body weight in infants,60% in adult males and 50% in adult females. Decrease in body water is commonly known as dehydration. Acute or chronic dehydration is a common condition in some population groups, especialy the elderly and those who participate in physical activity in warm enviroments. Potential consequences of dehydration include constipation,urinary tract and respiratory infection,urinary stone disease and there might also be an association between a low habitual fluid intake and some carcinomas,cardiovascular disease and diabetes. Many indices have been investigated to establish their role as markers of dehydration status. Body mass changes,blood indices,urine indices and bioelectrical impedance analysis have been used most widely, but current evidence and opinion tend to favour urine indices as the most convenient and sensitive methods. Methods: This cross sectional study was done for estimating the prevalence of dehydration in adult population(students,nurses,officials,workersin Yazd. These persons were selected randomly. Urine samples of two hundred and thirty persons were obtained at 10-12 AM,and urine specific gravity measured by refractometer (all of the samplesand dip stick (some samples. Finding: According to this study,96.7% of our population had some degree of dehydration.69.7% of them were significantly dehydrated(urine SG>1020 and 4.8% of them were severely dehydrated (urine SG>1030 and the mean specific gravity was 1021±5/65. This study evaluated other factors that could probably indicate hydration status like urine colour, type of drink,frequency of urination and frequency of thirst per day. Conclusion: High percentage of our population were dehydrated which was not correlated to the type of drink but was correlated to urine colour, frequency of urination and frequency of thirst. So, regular monitoring of urine to keep if clear or light

  10. Thermal decomposition of uranyl sulphate hydrate

    International Nuclear Information System (INIS)

    Sato, T.; Ozawa, F.; Ikoma, S.

    1980-01-01

    The thermal decomposition of uranyl sulphate hydrate (UO 2 SO 4 .3H 2 O) has been investigated by thermogravimetry, differential thermal analysis, X-ray diffraction and infrared spectrophotometry. As a result, it is concluded that uranyl sulphate hydrate decomposes thermally: UO 2 SO 4 .3H 2 O → UO 2 SO 4 .xH 2 O(2.5 = 2 SO 4 . 2H 2 O → UO 2 SO 4 .H 2 O → UO 2 SO 4 → α-UO 2 SO 4 → β-UO 2 SO 4 → U 3 O 8 . (author)

  11. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  12. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  13. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  14. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  15. Modelling of oceanic gas hydrate instability and methane release in response to climate change

    International Nuclear Information System (INIS)

    Reagan, M.T.; Moridis, G.J.

    2008-01-01

    Methane releases from oceanic hydrates are thought to have played a significant role in climatic changes that have occurred in the past. In this study, gas hydrate accumulations subjected to temperature changes were modelled in order to assess their potential for future methane releases into the ocean. Recent ocean and atmospheric chemistry studies were used to model 2 climate scenarios. Two types of hydrate accumulations were used to represent dispersed, low-saturation deposits. The 1-D multiphase thermodynamic-hydrological model considered the properties of benthic sediments; ocean depth; sea floor temperature; the saturation and distribution of the hydrates; and the effect of benthic biogeochemical activity. Results of the simulations showed that shallow deposits undergo rapid dissociation and are capable of producing methane fluxes of 2 to 13 mol m 3 per year over a period of decades. The fluxes exceed the ability of the anaerobic sea floor environment to sequester or consume the methane. A large proportion of the methane released in the scenarios emerged in the gas phase. Arctic hydrates may pose a threat to regional and global ecological systems. It was concluded that results of the study will be coupled with global climate models in order to assess the impact of the methane releases in relation to global climatic change. 39 refs., 5 figs

  16. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change

    Science.gov (United States)

    Hunter, S. J.; Goldobin, D. S.; Haywood, A. M.; Ridgwell, A.; Rees, J. G.

    2013-04-01

    The global submarine inventory of methane hydrate is thought to be considerable. The stability of marine hydrates is sensitive to changes in temperature and pressure and once destabilised, hydrates release methane into sediments and ocean and potentially into the atmosphere, creating a positive feedback with climate change. Here we present results from a multi-model study investigating how the methane hydrate inventory dynamically responds to different scenarios of future climate and sea level change. The results indicate that a warming-induced reduction is dominant even when assuming rather extreme rates of sea level rise (up to 20 mm yr-1) under moderate warming scenarios (RCP 4.5). Over the next century modelled hydrate dissociation is focussed in the top ˜100m of Arctic and Subarctic sediments beneath business-as-usual scenario (RCP 8.5), upper estimates of resulting global sea-floor methane fluxes could exceed estimates of natural global fluxes by 2100 (>30-50TgCH4yr-1), although subsequent oxidation in the water column could reduce peak atmospheric release rates to 0.75-1.4 Tg CH4 yr-1.

  17. CO2 capture by gas hydrate crystallization: Application on the CO2-N2 mixture

    International Nuclear Information System (INIS)

    Bouchemoua, A.

    2012-01-01

    CO 2 capture and sequestration represent a major industrial and scientific challenge of this century. There are different methods of CO 2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are well developed at industrial level, they are energy intensive. Hydrate formation method is a less energy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO 2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO 2 -N 2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (Tetrabutylammonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure. In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO 2 -CH 4 and CO 2 -N 2 mixtures are presented and compared to theoretical results. (author)

  18. Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.

    Science.gov (United States)

    Brendtke, Rico; Wiehl, Michael; Groeber, Florian; Schwarz, Thomas; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.

  19. Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models.

    Directory of Open Access Journals (Sweden)

    Rico Brendtke

    Full Text Available Tissue dehydration results in three major types of exsiccosis--hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.

  20. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon; Santamarina, Carlos

    2016-01-01

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  1. Standardization and software infrastructure for gas hydrate data communications

    Energy Technology Data Exchange (ETDEWEB)

    Kroenlein, K.; Chirico, R.D.; Kazakov, A.; Frenkel, M. [National Inst. of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Div.; Lowner, R. [GeoForschungsZentrum Potsdam (Germany); Wang, W. [Chinese Academy of Science, Beijing (China). Computer Network Information Center; Smith, T. [MIT Systems, Flushing, NY (United States); Sloan, E.D. [Colorado School of Mines, Golden, CO (United States). Centre for Hydrate Research

    2008-07-01

    The perceived value of gas hydrates as an energy resource for the future has led to extensive hydrate research studies and experiments. The hydrate deposits are widely dispersed throughout the world, and many countries are now investigating methods of extracting gas hydrate resources. This paper described a gas hydrates markup language (GHML) developed as an international standard for data transfer and storage within the gas hydrates community. The language is related to a hydrates database developed to facilitate a greater understanding of naturally occurring hydrate interactions with geophysical processes, and aid in the development of hydrate technologies for resource recovery and storage. Recent updates to the GHML included the addition of ThermoML, a communication standard for thermodynamic data into the GHML schema. The standard will be used to represent all gas hydrates thermodynamic data. A new element for the description of crystal structures has also been developed, as well as a guided data capture tool. The tool is available free of charge and is publicly licensed for use by gas hydrate data producers. A web service has also been provided to ensure that access to GHML files for gas hydrates and data files are available for users. It was concluded that the tool will help to ensure data quality assurance for the conversion of data and meta-data within the database. 28 refs., 9 figs.

  2. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  3. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  4. HYDRATION PROCESS AND MECHANICAL PROPERTIES OF CEMENT PASTE WITH RECYCLED CONCRETE POWDER AND SILICA SAND POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-11-01

    Full Text Available Recycled concrete powder (RCP mostly consisting of cement paste could be reused as partial cement replacement. The aim of this paper is to compare hydration and mechanical properties of RCP and two types of silica sand powder (SSP. Comparison of those materials combined with cement can highlight the binder properties of recycled concrete powder. Using of two types of SSP also show an influence of their fines on hydration process and mechanical properties. Particle size analysis and calorimetric measurement were carried out and mechanical properties such as bulk density, dynamic Young’s modulus and compression strength were examine. Calorimetric measurement proves the presence of exposed non-hydrated particles in RCP that can react again. However lower density of old cement paste in RCP overweight the mentioned potential of RCP and mechanical properties are decreasing compared with reference cement paste and cement paste SSP.

  5. Effects of excipients on hydrate formation in wet masses containing theophylline

    DEFF Research Database (Denmark)

    Airaksinen, Sari; Luukkonen, Pirjo; Jørgensen, Anna

    2003-01-01

    its dissolution rate. The aim of this study was to investigate whether excipients, such as alpha-lactose monohydrate or the highly water absorbing silicified microcrystalline cellulose (SMCC) can influence the hydrate formation of theophylline. In particular, the aim was to study if SMCC offers...... protection against the formation of theophylline monohydrate relative to alpha-lactose monohydrate in wet masses after an overnight equilibration and the stability of final granules during controlled storage. In addition, the aim was to study the use of spectroscopic methods to identify hydrate formation...... in the formulations containing excipients. Off-line evaluation of materials was performed using X-ray powder diffractometry, near infrared and Raman spectroscopy. alpha-Lactose monohydrate with minimal water absorbing potential was not able to prevent but enhanced hydrate formation of theophylline. Even though SMCC...

  6. Hydration structure of Ti(III) and Cr(III): Monte Carlo simulation ...

    African Journals Online (AJOL)

    Classical Monte Carlo simulations were performed to investigate the solvation structures of Ti(III) and Cr(III) ions in water with only ion-water pair interaction potential and by including three-body correction terms. The hydration structures were evaluated in terms of radial distribution functions, coordination numbers and ...

  7. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage

    NARCIS (Netherlands)

    Pathak, A.D.; Gaastra-Nedea, S.V.; Duin, van A.C.T.; Zondag, H.A.; Rindt, C.C.M.; Smeulders, D.M.J.

    2016-01-01

    MgCl2 hydrates are considered as high-potential candidates for seasonal heat storage materials. These materials have high storage capacity and fast dehydration kinetics. However, as a side reaction to dehydration, hydrolysis may occur. Hydrolysis is an irreversible reaction, which produces HCl gas

  8. Hole-doping of mechanically exfoliated graphene by confined hydration layers

    NARCIS (Netherlands)

    Bollmann, Tjeerd Rogier Johannes; Antipina, L.Y.; Temmen, M.; Reichling, M.; Sorokin, P.B.

    2015-01-01

    By the use of non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM), we measure the local surface potential of mechanically exfoliated graphene on the prototypical insulating hydrophilic substrate of CaF2(111). Hydration layers confined between the graphene and the

  9. Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte–Carlo simulation

    International Nuclear Information System (INIS)

    Liu, Haoyang Haven; Lanphere, Jacob; Walker, Sharon; Cohen, Yoram

    2015-01-01

    The effect of hydration repulsion on the agglomeration of nanoparticles in aqueous suspensions was investigated via the description of agglomeration by the Smoluchowski coagulation equation using constant number Monte–Carlo simulation making use of the classical DLVO theory extended to include the hydration repulsion energy. Evaluation of experimental DLS measurements for TiO 2 , CeO 2 , SiO 2 , and α-Fe 2 O 3 (hematite) at high IS (up to 900 mM) or low |ζ-potential| (≥1.35 mV) demonstrated that hydration repulsion energy can be above electrostatic repulsion energy such that the increased overall repulsion energy can significantly lower the agglomerate diameter relative to the classical DLVO prediction. While the classical DLVO theory, which is reasonably applicable for agglomeration of NPs of high |ζ-potential| (∼>35 mV) in suspensions of low IS (∼<1 mM), it can overpredict agglomerate sizes by up to a factor of 5 at high IS or low |ζ-potential|. Given the potential important role of hydration repulsion over a range of relevant conditions, there is merit in quantifying this repulsion energy over a wide range of conditions as part of overall characterization of NP suspensions. Such information would be of relevance to improved understanding of NP agglomeration in aqueous suspensions and its correlation with NP physicochemical and solution properties. (paper)

  10. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT/Cement Composites

    Directory of Open Access Journals (Sweden)

    Bhuvaneshwari Balasubramaniam

    2017-10-01

    Full Text Available The exciting features of carbon nanotubes (CNTs, such as high elastic modulus, high thermal and electrical conductivities, robustness, and nanoscopic surface properties make them attractive candidates for the cement industry. They have the potential to significantly enhanceengineering properties. CNTs play an important and critical role as nano-anchors in concrete, which enhance the strength by bridging pores in the composite matrix, thereby ensuring robust mechanical strength. The diameter, dispersion, aspect ratio, and interfacial surface interaction of CNTs affect the physical and mechanical properties of concrete, if due care is not taken. In this paper, the usable amount of CNT is scaled down considerably from 0.5% to 0.025% by weight of the cement and the fluctuation caused by these phenomena is assessed. It is observed that the properties and exact quantities of incorporated CNTs influence the hydration and consistency of the composites. In order to address these issues, the surface functionalization of CNTs and rheological studies of the composites are performed. The hydration products and functional groups are carefully optimized and characterized by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and a Zeta potential analyzer. For Mixes 6 and 7, the compressive and tensile strength of CNTs incorporated in mortar specimens caused77% and 48% increases in split tensile strength, respectively, and 17% and 35% increases in compressive strength, respectively, after 28 days of curing and compared withthe control Mix.

  11. What About Their Performance Do Free Jazz Improvisers Agree Upon? A Case Study

    Directory of Open Access Journals (Sweden)

    Amandine Pras

    2017-06-01

    . But these kinds of statements were polarizing; the performers were more likely to agree with each other in their ratings of statements about the music itself and negative statements. As in Schober and Spiro (2014, the evidence supports a view that fully shared understanding is not needed for joint improvisation by professional musicians in this genre and that performing partners can agree with an outside listener more than with each other.

  12. What About Their Performance Do Free Jazz Improvisers Agree Upon? A Case Study.

    Science.gov (United States)

    Pras, Amandine; Schober, Michael F; Spiro, Neta

    2017-01-01

    were polarizing; the performers were more likely to agree with each other in their ratings of statements about the music itself and negative statements. As in Schober and Spiro (2014), the evidence supports a view that fully shared understanding is not needed for joint improvisation by professional musicians in this genre and that performing partners can agree with an outside listener more than with each other.

  13. Obsidian Hydration Dating in the Undergraduate Curriculum.

    Science.gov (United States)

    Manche, Emanuel P.; Lakatos, Stephen

    1986-01-01

    Provides an overview of obsidian hydration dating for the instructor by presenting: (1) principles of the method; (2) procedures; (3) applications; and (4) limitations. The theory of the method and one or more laboratory exercises can be easily introduced into the undergraduate geology curriculum. (JN)

  14. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.

    2012-01-01

    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  15. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    methane hydrate in sea bed near continental margin and underneath of permafrost ... clathrate structure,6,7 IR spectroscopy analysis of vibra- tional form of guest .... Hydrogen (H71) of the hydroxyl group of methanol is found to have formed ...

  16. A new approach to model mixed hydrates

    Czech Academy of Sciences Publication Activity Database

    Hielscher, S.; Vinš, Václav; Jäger, A.; Hrubý, Jan; Breitkopf, C.; Span, R.

    2018-01-01

    Roč. 459, March (2018), s. 170-185 ISSN 0378-3812 R&D Projects: GA ČR(CZ) GA17-08218S Institutional support: RVO:61388998 Keywords : gas hydrate * mixture * modeling Subject RIV: BJ - Thermodynamics Impact factor: 2.473, year: 2016 https://www.sciencedirect.com/science/article/pii/S0378381217304983

  17. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids...

  18. Hydration dynamics near a model protein surface

    International Nuclear Information System (INIS)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-01-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces

  19. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  20. Gold(III)-Catalyzed Hydration of Phenylacetylene

    Science.gov (United States)

    Leslie, J. Michelle; Tzeel, Benjamin A.

    2016-01-01

    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  1. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids sh...

  2. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  3. Gas hydrates and clathrates. Flow assurance, environmental and economic perspectives and the Nigerian liquefied natural gas project

    International Nuclear Information System (INIS)

    Gbaruko, B.C.; Igwe, J.C.; Nwokeoma, R.C.; Gbaruko, P.N.

    2007-01-01

    Gas hydrates are nonstoichiometric crystalline compounds that belong to the inclusion group known as clathrates. They occur when water molecules attach themselves together through hydrogen bonding and form cavities which can be occupied by a single gas or volatile liquid molecule. Gas hydrates, asphaltenes and waxes are three major threats to flow assurance that must be well assessed by design team uptime. Gas hydrates are also looked upon as a future energy source and as a potential climate hazard. The purpose of this review is to show the chemistry and mechanism of gas hydrate formation, the problems they pose, especially to flow assurance, their system implications, their environmental and economic perspectives with respect to their prospects as storage and transport alternative to the liquefied natural gas technology. (author)

  4. Methane Hydrate Pellet Transport Using the Self-Preservation Effect: A Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Hans Osterkamp

    2012-07-01

    Full Text Available Within the German integrated project SUGAR, aiming for the development of new technologies for the exploration and exploitation of submarine gas hydrates, the option of gas transport by gas hydrate pellets has been comprehensively re-investigated. A series of pVT dissociation experiments, combined with analytical tools such as x-ray diffraction and cryo-SEM, were used to gather an additional level of understanding on effects controlling ice formation. Based on these new findings and the accessible literature, knowns and unknowns of the self-preservation effect important for the technology are summarized. A conceptual process design for methane hydrate production and pelletisation has been developed. For the major steps identified, comprising (i hydrate formation; (ii dewatering; (iii pelletisation; (iv pellet cooling; and (v pressure relief, available technologies have been evaluated, and modifications and amendments included where needed. A hydrate carrier has been designed, featuring amongst other technical solutions a pivoted cargo system with the potential to mitigate sintering, an actively cooled containment and cargo distribution system, and a dual fuel engine allowing the use of the boil-off gas. The design was constrained by the properties of gas hydrate pellets, the expected operation on continental slopes in areas with rough seas, a scenario-defined loading capacity of 20,000 m3 methane hydrate pellets, and safety as well as environmental considerations. A risk analysis for the transport at sea has been carried out in this early stage of development, and the safety level of the new concept was compared to the safety level of other ship types with similar scopes, i.e., LNG carriers and crude oil tankers. Based on the results of the technological part of this study, and with best knowledge available on the alternative technologies, i.e., pipeline, LNG and CNG transportation, an evaluation of the economic

  5. Approaching hydrate and free gas distribution at the SUGAR-Site location in the Danube Delta

    Science.gov (United States)

    Bialas, Joerg; Dannowski, Anke; Zander, Timo; Klaeschen, Dirk; Klaucke, Ingo

    2017-04-01

    Gas hydrates did receive a lot of attention over the last decades when investigating their potential to serve as a possible source for Methane production. Among other world-wide programs the German SUGAR project sets out to investigate the entire chain from exploitation to production in Europe. Therefore research in the scope of the SUGAR project sets out to investigate a site in European EEZ for the detailed studies of hydrate and gas distribution in a permeable sediment matrix. Among others one aim of the project is to provide in situ samples of natural methane hydrate for further investigations by MEBO drilling. The Danube paleo-delta with its ancient canyon and levee systems was chosen as a possible candidate for hydrate formation within the available drilling range of 200 m below seafloor. In order to decide on the best drilling location cruise MSM34 (Bialas et al., 2014) of the German RV MARIA S MERIAN set out to acquire geophysical, geological and geochemical datasets for assessment of the hydrate content within the Danube paleo-delta, Black Sea. The Black Sea is well known for a significant gas content in the sedimentary column. Reports on observations of bottom simulating reflectors (BSR) by Popescu et al. (2007) and others indicate that free gas and hydrate occurrence can be expected within the ancient passive channel levee systems. A variety of inverted reflection events within the gas hydrate stability zone (GHSZ) were observed within the drilling range of MEBO and chosen for further investigation. Here we report on combined seismic investigations of high-resolution 2D & 3D multichannel seismic (MCS) acquisition accompanied by four component Ocean-Bottom-Seismometer (OBS) observations. P- and converted S-wave arrivals within the OBS datasets were analysed to provide overall velocity depth models. Due to the limited length of profiles the majority of OBS events are caused by near vertical reflections. While P-wave events have a significant lateral

  6. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation

    International Nuclear Information System (INIS)

    Anderson, Graydon K.

    2004-01-01

    The enthalpies of the reactions in which methane hydrate is dissociated to methane vapor and either (1) water, or (2) ice are determined by a new analysis using the Clapeyron equation. The difference in enthalpies of the two reactions is used to infer the hydration number at the quadruple point where hydrate, ice, liquid water, and methane vapor coexist. By appropriate corrections, the hydration number at points removed from the quadruple point is also determined. The most important feature of the new analysis is the direct use of the Clapeyron equation. The method avoids the use of certain simplifying assumptions that have compromised the accuracy of previous analyses in which the Clausius-Clapeyron equation was used. The analysis takes into account the finite volumes of all phases, the non-ideality of the vapor phase, and the solubility of methane in water. The results show that the enthalpy of dissociation and hydration number are constant within experimental error over the entire (hydrate, liquid, vapor) coexistence region. The results are more accurate than but entirely consistent with almost all previous studies

  7. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  8. [Clinical Practice Guidelines for Management of Schizophrenia: Evaluation Using AGREE II].

    Science.gov (United States)

    de la Hoz Bradford, Ana María; Ávila, Mauricio J; Bohórquez Peñaranda, Adriana Patricia; García Valencia, Jenny; Arenas Borrero, Álvaro Enrique; Vélez Traslaviña, Ángela; Jaramillo González, Luis Eduardo; Gómez-Restrepo, Carlos

    2014-01-01

    Colombia is developing multiple national practice guidelines from a range of diseases. Clinical practice guidelines represent a very useful tool to be able to take decision over a patient care that is widely available for the clinician. In psychiatry there are a good number of international clinical guidelines for the treatment of schizophrenia nevertheless there is no article that evaluate them scientifically In the settings of developing a Colombian schizophrenia practice guideline, a systematic search was performed in multiple databases and the results were then evaluated by two trained persons. We present the results globally and by domains. We found 164 matches for possible guidelines. After screening 7 guidelines were evaluated with the AGREE II instrument. Globally and by the different domains, the National Institute for Health and Care Excellence (NICE) was the guideline that got the best score. From the guidelines that were reviewed, 4 were from Europe and only 2 were from Latin America. None of the guidelines used GRADE methodology for the recommendations. The diversity of the schizophrenia treatment guidelines does not allow an easy adoption of the recommendation by a psychiatrist in Colombia. Copyright © 2014 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  9. How to get residents/owners in housing cooperatives to agree on sustainable renovation

    Energy Technology Data Exchange (ETDEWEB)

    Lappegard Hauge, A. [SINTEF Building and Infrastructure, P.O. Box 124, Blindern, 0314 Oslo (Norway); Thomsen, J. [SINTEF Building and Infrastructure, 7465 Trondheim (Norway); Loefstroem, E. [SINTEF Building and Infrastructure, 7491 Trondheim (Norway)

    2013-05-15

    What factors increase the chance that residents/owners in housing cooperatives agree on sustainable energy efficient renovation? Based on 30 qualitative interviews with professional advisors in cooperative housing associations and chairman/board and residents in three chosen case studies, an analysis of opportunities and barriers for making a common decision on renovation is performed. Success criteria and barriers are found on the societal level as well as on the organizational/individual level. The barriers and success criteria identified on the societal level are: knowledge level on energy-efficient renovation among relevant actors, owner structure of the housing cooperative, and existing regulations and incentives. On the organizational and individual level, the following categories influencing renovation processes were identified: the time frame and organization of the process, understanding the residents' needs, economy, the information given, and the existence of available exemplary projects and role models. Based on the results of the study, ten guidelines that contribute to more successful decision making processes and increase the chances of sustainable energy efficient renovation in housing cooperatives are presented.

  10. Clinical practice guidelines for treatment of acne vulgaris: a critical appraisal using the AGREE II instrument.

    Science.gov (United States)

    Sanclemente, Gloria; Acosta, Jorge-Luis; Tamayo, Maria-Eulalia; Bonfill, Xavier; Alonso-Coello, Pablo

    2014-04-01

    A significant number of clinical practice guidelines (CPGs) about the treatment of acne vulgaris in adolescents and adults have been published worldwide. However, little is known about the quality of CPGs in this field. The aim of this study was to appraise the methodological quality of published acne vulgaris CPGs. We performed a systematic review of published CPGs on acne vulgaris therapy from July 2002 to July 2012. Three reviewers independently assessed each CPG using the AGREE II instrument. A standardized score was calculated for each of the six domains. Our search strategy identified 103 citations but just six met our inclusion criteria. Agreement among reviewers was very good: 0.981. The domains that scored better were: "scope and purpose" and "clarity and presentation". Those that scored worse were "stakeholder involvement", "rigor of development", and "applicability". The European and the Malaysian CPGs were the only recommended with no further modifications. In addition, the Mexican, Colombian and the United States guidelines were recommended with provisos, with lower scores regarding stakeholder involvement, rigor of development and applicability. Only two guidelines clearly reported outcome measures for evaluating efficacy or included quality of life outcomes. CPGs varied regarding the consideration of light/laser therapy or consideration of complementary/alternative medicines. None of them included cost considerations of drugs such as systemic isotretinoin. In conclusion, published acne vulgaris CPGs for acne therapy vary in quality with a clear need to improve their methodological rigor. This could be achieved with the adherence to current CPGs development standards.

  11. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS

    International Nuclear Information System (INIS)

    JONES, K.W.; FENG, H.; TOMOV, S.; WINTER, W.J.; EATON, M.; MAHAJAN, D.

    2004-01-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2)

  12. A geometry-based simulation of the hydration of ions and small molecules

    International Nuclear Information System (INIS)

    Plumridge, T.H.

    2001-01-01

    The behaviour of solutes in water is of universal significance, but still not fully understood. This thesis provides details of a new computer simulation technique used to investigate the hydration of ions and small molecules. In contrast to conventional techniques such as molecular dynamics, this is a purely geometric method involving no forcefield or energy terms. Molecules of interest are modelled using crystallographic data to ensure that the structures are accurate. Water molecules are added randomly at any hydrogen bonding site in chains. At each addition the chain is rotated through all available space testing for the possibility of ring formation. The constraints used by the program to decide whether a ring should be conserved, i.e. whether the ring-forming hydrogen bond is viable were derived from a survey of (i) all available ice and clathrate hydrate structures and (ii) the hydrates of small biological molecules from the Cambridge Crystallographic Data Centre. If a ring forms, it is conserved and the process restarted with the addition of another random water. If the chain reaches a certain length and no hydrogen bonding opportunities are detected, the water chain is dissolved, and the process restarted. Using these techniques structure makers such as sulfate will readily allow structured water to form around them leading to large networks, whereas structure breakers such as urea will not allow any water chains to bridge the hydrogen bonding groups. The software has been tested with a set of twenty widely varying solutes and has produced results which generally agree with experimental data for structure makers and breakers, and also agrees well with traditional techniques such as molecular dynamics and Monte Carlo techniques. (author)

  13. Seismic Characterization and Continuity Analysis of Gas Hydrate Horizons Near the Mallik Research Wells, Mackenzie Delta, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.

    2005-12-01

    Gas hydrate deposits in arctic environment generally lack the BSR signature diagnostic of their presence in marine seismic data. The absence of the BSR signature complicates the estimation of the resources within or below the permafrost and the determination of their potential impact on future energy supplies, geohazard and climate change. We present results from a detailed seismic characterization of three gas hydrate horizons (A, B and C) intersected below the permafrost in five wells of the Mallik gas hydrate field located in the Mackenzie delta (Northwest Territories, Canada). The detailed seismic characterization included attribute analyses, synthetic modeling and acoustic impedance inversion and allowed estimation of the lateral continuity of the three horizons in the vicinity of the wells. Vertical Seismic Profiling (VSP) data, 3D and 2D industry seismic data and the 5L/2L-38 geophysical logs (density, P-wave sonic velocity) were used for this study. Synthetic modeling using the sonic and density logs reveals that the base of the lower gas hydrate horizons B and C can be identified on the industry 3D and 2D seismic sections as prominent isolated reflections. The uppermost gas hydrate occurrence (horizon A) and potentially other additional smaller-scale layers are identified only on the higher-resolution VSP data. The 3D industry seismic data set processed to preserve the relative true-amplitudes was used for attribute calculations and acoustic impedance inversion. The attribute maps defined areas of continuous reflectivity for horizons B and C and structural features disrupting them. Results from impedance inversion indicate that such continuous reflectivity around the wells is most likely attributable to gas hydrates. The middle gas hydrate occurrence (horizon B) covers an area of approximately 25 000m2. Horizon C, which marks the base of gas hydrate occurrence zone, extends over a larger area of approximately 120 000m2.

  14. Structural Interpretation of the Large Slowdown of Water Dynamics at Stacked Phospholipid Membranes for Decreasing Hydration Level: All-Atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Carles Calero

    2016-04-01

    Full Text Available Hydration water determines the stability and function of phospholipid membranes as well as the interaction of membranes with other molecules. Experiments and simulations have shown that water dynamics slows down dramatically as the hydration decreases, suggesting that the interfacial water that dominates the average dynamics at low hydration is slower than water away from the membrane. Here, based on all-atom molecular dynamics simulations, we provide an interpretation of the slowdown of interfacial water in terms of the structure and dynamics of water–water and water–lipid hydrogen bonds (HBs. We calculate the rotational and translational slowdown of the dynamics of water confined in stacked phospholipid membranes at different levels of hydration, from completely hydrated to poorly hydrated membranes. For all hydrations, we analyze the distribution of HBs and find that water–lipids HBs last longer than water–water HBs and that at low hydration most of the water is in the interior of the membrane. We also show that water–water HBs become more persistent as the hydration is lowered. We attribute this effect (i to HBs between water molecules that form, in turn, persistent HBs with lipids; (ii to the hindering of the H-bonding switching between water molecules due to the lower water density at the interface; and (iii to the higher probability of water–lipid HBs as the hydration decreases. Our interpretation of the large dynamic slowdown in water under dehydration is potentially relevant in understanding membrane biophysics at different hydration levels.

  15. Molecular dynamics study on the structure I clathrate-hydrate of methane + ethane mixture

    International Nuclear Information System (INIS)

    Erfan-Niya, Hamid; Modarress, Hamid; Zaminpayma, Esmaeil

    2011-01-01

    Molecular dynamics (MD) simulations are used to study the structure I stability of methane + ethane clathrate-hydrates at temperatures 273, 275 and 277 K. NVT- and NPT-ensembles are utilized in MD simulation, and each consists of 3 x 3 x 3 replica unit cells containing 46 water molecules which are considered as the host molecules and up to eight methane + ethane molecules considered as the guest molecules. In MD simulations for host-host interactions, the potential model used was a type of simple point charge (SPC) model, and for guest-guest and host-guest interactions the potential used was Lennard-Jones model. In the process of MD simulation, achieving equilibrium of the studied system was recognized by stability in calculated pressure for NVT-ensemble and volume for NPT-ensemble. To understand the characteristic configurations of the structure I hydrate, the radial distribution functions (RDFs) of host-host, host-guest and guest-guest molecules as well as other properties including kinetic energy, potential energy and total energy were calculated. The results show that guest molecules interaction with host molecules cannot decompose the hydrate structure, and these results are consistent with most previous experimental and theoretical investigations that methane + ethane mixtures form structure I hydrates over the entire mixture composition range.

  16. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.

    2010-05-01

    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  17. The structure of hydrate bearing fine grained marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Priest, J.; Kingston, E.; Clayton, C. [Southampton Univ., Highfield (United Kingdom). School of Civil Engineering and the Environment; Schultheiss, P.; Druce, M. [Geotek Ltd., Daventry (United Kingdom)

    2008-07-01

    This paper discussed the structure of naturally occurring methane gas hydrates in fine-grained sediments from core samples recovered using in situ pressures from the eastern margin of the Indian Ocean. High resolution X-ray computed tomography (CT) images were taken of gas hydrate cores. The hydrate structure was examined and comparisons were made between low resolution X-ray images obtained on the cores prior to sub-sectioning and depressurization procedures. The X-ray images showed the presence of high-angle, sub-parallel veins within the recovered sediments. The scans indicated that the hydrates occurred as fracture filing veins throughout the core. Fracture orientation was predominantly sub-vertical. Thick millimetric hydrate veins were composed of sub-millimetric veins with variations in fracture angle. The analysis indicated that hydrate formation was episodic in nature and subject to changes in the stress regime. Results of the study showed that depressurization and subsequent freezing alter the structure of the sediment even when the gas hydrate has not been altered. A large proportion of the hydrate survived when outside of its stability region. The self-preserving behaviour of the hydrate was attributed to the endothermic nature of gas hydrate dissociation. It was concluded that the accurate physical characterization of gas hydrates can only be conducted when the core section remains under in situ stress conditions. 13 refs., 9 figs.

  18. Natural gas hydrates. Experimental techniques and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yuguang; Liu, Changling (eds.) [Qingdao Institute of Marine Geology (China). Gas Hydrate Laboratory

    2013-07-01

    Focuses on gas hydrate experiment in laboratory. Intends to provide practical significant parameters for gas hydrate exploration and exploitation in the oceanic and permafrost environments. Consists of different themes that present up-to-date information on hydrate experiments. ''Natural Gas Hydrates: Experimental Techniques and Their Applications'' attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc.

  19. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  20. A spectroscopic study of the structure and occupancies of clathrate hydrates incorporating hydrogen

    Science.gov (United States)

    Grim, R. Gary

    With the ability to store and concentrate gases inside a clean and abundant water framework, clathrate hydrates are considered to be a promising material for many applications related to gas storage, separation, and sequestration. Hydrates of hydrogen are particularly interesting, for in addition to these potential applications, the small molecular size provides an opportunity for use as a model guest in many fundamental studies such as guest diffusion, multiple guest occupancy, and quantum mechanical effects upon confinement. In attempt to study these effects and the viability of H 2 hydrates as an energy storage material, a combined experimental and theoretical approach incorporating Raman spectroscopy, X-ray and neutron diffraction, nuclear magnetic resonance, ab-initio calculations, and molecular dynamic simulations was performed. One of the most significant challenges in the application of H2 clathrate hydrates is the demanding thermodynamic requirements needed for stability. In recent years, a mechanism known as the `tuning' effect had reportedly solved this issue where thermodynamic requirements could be reduced while simultaneously maintaining high storage capacities. In this work, the viability and validity of this technique is explored and alternative explanations in the form of epitaxial hydrate growth under high driving force conditions are discussed. A second, and equally important challenge facing clathrate hydrates as a future storage material is the overall storage capacity of H2. In previous work, H2 has only been experimentally verified to occupy the small 512 and 43566 3 cages and also in the large 51264 cages of the type II clathrate, often with an energy deficient promoter. In order to achieve more robust energy densities, other hydrate cages must be accessible. Herein a new method for increasing overall hydrate energy densities is presented involving the incorporation of H2 in the large cages of the type I clathrate with CH4 as a co

  1. Humans and Deep Networks Largely Agree on Which Kinds of Variation Make Object Recognition Harder.

    Science.gov (United States)

    Kheradpisheh, Saeed R; Ghodrati, Masoud; Ganjtabesh, Mohammad; Masquelier, Timothée

    2016-01-01

    View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g., 3D rotations). Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN), which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth) as well as their magnitude, which we call "variation level." We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group) on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier). This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research.

  2. Humans and deep networks largely agree on which kinds of variation make object recognition harder

    Directory of Open Access Journals (Sweden)

    Saeed Reza Kheradpisheh

    2016-08-01

    Full Text Available View-invariant object recognition is a challenging problem that has attracted much attention among the psychology, neuroscience, and computer vision communities. Humans are notoriously good at it, even if some variations are presumably more difficult to handle than others (e.g. 3D rotations. Humans are thought to solve the problem through hierarchical processing along the ventral stream, which progressively extracts more and more invariant visual features. This feed-forward architecture has inspired a new generation of bio-inspired computer vision systems called deep convolutional neural networks (DCNN, which are currently the best models for object recognition in natural images. Here, for the first time, we systematically compared human feed-forward vision and DCNNs at view-invariant object recognition task using the same set of images and controlling the kinds of transformation (position, scale, rotation in plane, and rotation in depth as well as their magnitude, which we call variation level. We used four object categories: car, ship, motorcycle, and animal. In total, 89 human subjects participated in 10 experiments in which they had to discriminate between two or four categories after rapid presentation with backward masking. We also tested two recent DCNNs (proposed respectively by Hinton's group and Zisserman's group on the same tasks. We found that humans and DCNNs largely agreed on the relative difficulties of each kind of variation: rotation in depth is by far the hardest transformation to handle, followed by scale, then rotation in plane, and finally position (much easier. This suggests that DCNNs would be reasonable models of human feed-forward vision. In addition, our results show that the variation levels in rotation in depth and scale strongly modulate both humans' and DCNNs' recognition performances. We thus argue that these variations should be controlled in the image datasets used in vision research.

  3. Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex

    Directory of Open Access Journals (Sweden)

    Daniel James Miller

    2014-05-01

    Full Text Available Determining the cellular composition of specific brain regions is crucial to our understanding of the function of neurobiological systems. It is therefore useful to identify the extent to which different methods agree when estimating the same properties of brain circuitry. In this study, we estimated the number of neuronal and non-neuronal cells in the primary visual cortex (area 17 or V1 of both hemispheres from a single chimpanzee. Specifically, we processed samples distributed across V1 of the right hemisphere after cortex was flattened into a sheet using two variations of the isotropic fractionator cell and neuron counting method. We processed the left hemisphere as serial brain slices for stereological investigation. The goal of this study was to evaluate the agreement between these methods in the most direct manner possible by comparing estimates of cell density across one brain region of interest in a single individual. In our hands, these methods produced similar estimates of the total cellular population (approximately 1 billion as well as the number of neurons (approximately 675 million in chimpanzee V1, providing evidence that both techniques estimate the same parameters of interest. In addition, our results indicate the strengths of each distinct tissue preparation procedure, highlighting the importance of attention to anatomical detail. In summary, we found that the isotropic fractionator and the stereological optical fractionator produced concordant estimates of the cellular composition of V1, and that this result supports the conclusion that chimpanzees conform to the primate pattern of exceptionally high packing density in V1. Ultimately, our data suggest that investigators can optimize their experimental approach by using any of these counting methods to obtain reliable cell and neuron counts.

  4. Numerical simulation of gas hydrate exploitation from subsea reservoirs in the Black Sea

    Science.gov (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2017-04-01

    Natural gas (methane) is the most environmental friendly source of fossil energy. When coal is replace by natural gas in power production the emission of carbon dioxide is reduced by 50 %. The vast amount of methane assumed in gas hydrate deposits can help to overcome a shortage of fossil energy resources in the future. To increase their potential for energy applications new technological approaches are being discussed and developed worldwide. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e. g. depressurization and/or carbon dioxide injection) is numerically studied in the frame of the German research project »SUGAR - Submarine Gas Hydrate Reservoirs«. In order to simulate the exploitation of hydrate-bearing sediments in the subsea, an in-house simulation model HyReS which is implemented in the general-purpose software COMSOL Multiphysics is used. This tool turned out to be especially suited for the flexible implementation of non-standard correlations concerning heat transfer, fluid flow, hydrate kinetics, and other relevant model data. Partially based on the simulation results, the development of a technical concept and its evaluation are the subject of ongoing investigations, whereby geological and ecological criteria are to be considered. The results illustrate the processes and effects occurring during the gas production from a subsea gas hydrate deposit by depressurization. The simulation results from a case study for a deposit located in the Black Sea reveal that the production of natural gas by simple depressurization is possible but with quite low rates. It can be shown that the hydrate decomposition and thus the gas production strongly depend on the geophysical properties of the reservoir, the mass and heat transport within the reservoir, and

  5. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.; Santamarina, Carlos

    2018-01-01

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  6. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.

    2018-04-02

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  7. Concrete Hydration Heat Analysis for RCB Basemat Considering Solar Radiation

    International Nuclear Information System (INIS)

    Lee, Seong-Cheol; Son, Yong-Ki; Choi, Seong-Cheol

    2015-01-01

    The NPP especially puts an emphasis on concrete durability for structural integrity. It has led to higher cementitious material contents, lower water-cementitious-material ratios, and deeper cover depth over reinforcing steel. These requirements have resulted in more concrete placements that are subject to high internal temperatures. The problem with high internal temperatures is the increase in the potential for thermal cracking that can decrease concrete's long-term durability and ultimate strength. Thermal cracking negates the benefits of less permeable concrete and deeper cover by providing a direct path for corrosion-causing agents to reach the reinforcing steel. The purpose of this study is to develop how to analyze and estimate accurately concrete hydration heat of the real-scale massive concrete with wide large plane. An analysis method considering concrete placement sequence was studied and solar radiation effects on the real-scale massive concrete with wide large plane were reviewed through the analytical method. In this study, the measured temperatures at the real scale structure and the analysis results of concrete hydration heat were compared. And thermal stress analysis was conducted. Through the analysis, it was found that concrete placement duration, sequence and solar radiation effects should be considered to get the accurate concrete peak temperature, maximum temperature differences and crack index

  8. Ab initio thermodynamic model for magnesium carbonates and hydrates.

    Science.gov (United States)

    Chaka, Anne M; Felmy, Andrew R

    2014-09-04

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  9. Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)

    Science.gov (United States)

    Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun

    2013-01-01

    As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

  10. Combined evaluation of nutrition and hydration in dialysis patients with bioelectrical impedance vector analysis (BIVA).

    Science.gov (United States)

    Piccoli, Antonio; Codognotto, Marta; Piasentin, Paola; Naso, Agostino

    2014-08-01

    Body hydration changes continuously in hemodialysis patients. The Subjective Global Assessment (SGA) is used for the nutritional evaluation but it does not allow a direct evaluation of hydration. Bioelectrical impedance vector analysis (BIVA) is very sensitive to hydration. The potential of the combined evaluation of hydration and nutrition with SGA and BIVA is still lacking. Observational cross-sectional study on 130 (94 Male) uremic patients undergoing chronic hemodialysis three times a week. Nutritional status was evaluated with the SGA. Each subject was classified as SGA-A (normal nutritional status), SGA-B (moderate malnutrition), or SGA-C (severe malnutrition). Body hydration was evaluated with BIVA. The two vector components resistance (R) and reactance (Xc) were normalized by the subject's height and standardized as bivariate Z-score, i.e. Z(R) and Z(Xc). Undernutrition influenced impedance vector distribution both before and after a dialysis session. In pre-dialysis, the mean vector of SGA A was inside the 50% tolerance ellipse. In SGA B and C, Z(R) was increased and Z(Xc) decreased, indicating a progressive loss of soft tissue mass. Fluid removal with dialysis increased both Z(R) and Z(Xc) in SGA A and B but not in C. With ROC curve analysis on the slope of increase, we found the cutoff value of 27.8° below which undernutrition was present, either moderate or severe. The area under the ROC curve was 77.7° (95% CI 69.5-84.5, P hydration in each SGA category can be detected with BIVA. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Deep-Subsurface Marine Methane Hydrate Microbial Communities: Who's There and What Are They Doing?

    Science.gov (United States)

    Colwell, F.; Reed, D.; Fujita, Y.; Delwiche, M.; Blackwelder, D.; Uchida, T.; Fujii, T.; Lu, H.

    2001-12-01

    Natural gas hydrates are crystalline deposits of freshwater and primarily methane. They are estimated to represent a potentially vast reservoir of energy. Relatively little is known regarding microbial communities surrounding deep [>100 meters below sea floor (mbsf)] hydrate-bearing sediments. Deep sediment cores were collected in zones above, within, and below the hydrate bearing strata in an accretionary prism off the coast of Japan. Microorganisms were characterized using cultivation- and non-cultivation-based microbiological techniques to better understand the role that they play in the production and distribution of methane in gas hydrates. Direct counts show cell density at 105 cells/g throughout the hydrate strata. Lipid and 16S rDNA analyses indicate that diverse bacterial and archaeal microorganisms are represented throughout the strata. Acetate and hydrogen were utilized as an energy source for methane-producing microorganisms from each sediment depth. Although the methanogenic biomarker coenzyme M was not present above the detection limit in any of the samples, cloning and characterization of amplified 16S ribosomal RNA genes indicated the presence of methanogenic microorganisms related to the Methanobacteriales and Methanococcales. In addition, archaeal clones closely related to the hyperthermophilic Pyrodictiales were detected. Analysis of eubacterial clones indicated a more diverse eubacterial community compared to the archaea, including members from the groups of cyanobacteria, proteobacteria, gram positive bacteria, and flexibacter-cytophaga-bacteriodes. This study suggests that the diversity of microbial communities associated with the presence of methane in gas hydrate-rich deep marine sediments is greater than previously estimated.

  12. Clinical Variables Associated with Hydration Status in Acute Ischemic Stroke Patients with Dysphagia.

    Science.gov (United States)

    Crary, Michael A; Carnaby, Giselle D; Shabbir, Yasmeen; Miller, Leslie; Silliman, Scott

    2016-02-01

    Acute stroke patients with dysphagia are at increased risk for poor hydration. Dysphagia management practices may directly impact hydration status. This study examined clinical factors that might impact hydration status in acute ischemic stroke patients with dysphagia. A retrospective chart review was completed on 67 ischemic stroke patients who participated in a prior study of nutrition and hydration status during acute care. Prior results indicated that patients with dysphagia demonstrated elevated BUN/Cr compared to non-dysphagia cases during acute care and that BUN/Cr increased selectively in dysphagic patients. This chart review evaluated clinical variables potentially impacting hydration status: diuretics, parenteral fluids, tube feeding, oral diet, and nonoral (NPO) status. Exposure to any variable and number of days of exposure to each variable were examined. Dysphagia cases demonstrated significantly more NPO days, tube fed days, and parenteral fluid days, but not oral fed days, or days on diuretics. BUN/Cr values at discharge were not associated with NPO days, parenteral fluid days, oral fed days, or days on diuretics. Patients on modified solid diets had significantly higher mean BUN/Cr values at discharge (27.12 vs. 17.23) as did tube fed patients (28.94 vs. 18.66). No difference was noted between these subgroups at baseline (regular diet vs. modified solids diets). Any modification of solid diets (31.11 vs. 17.23) or thickened liquids (28.50 vs. 17.81) resulted in significantly elevated BUN/Cr values at discharge. Liquid or diet modifications prescribed for acute stroke patients with dysphagia may impair hydration status in these patients.

  13. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  14. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  15. E-learning interventions are comparable to user's manual in a randomized trial of training strategies for the AGREE II

    Directory of Open Access Journals (Sweden)

    Durocher Lisa D

    2011-07-01

    Full Text Available Abstract Background Practice guidelines (PGs are systematically developed statements intended to assist in patient and practitioner decisions. The AGREE II is the revised tool for PG development, reporting, and evaluation, comprised of 23 items, two global rating scores, and a new User's Manual. In this study, we sought to develop, execute, and evaluate the impact of two internet interventions designed to accelerate the capacity of stakeholders to use the AGREE II. Methods Participants were randomized to one of three training conditions. 'Tutorial'--participants proceeded through the online tutorial with a virtual coach and reviewed a PDF copy of the AGREE II. 'Tutorial + Practice Exercise'--in addition to the Tutorial, participants also appraised a 'practice' PG. For the practice PG appraisal, participants received feedback on how their scores compared to expert norms and formative feedback if scores fell outside the predefined range. 'AGREE II User's Manual PDF (control condition'--participants reviewed a PDF copy of the AGREE II only. All participants evaluated a test PG using the AGREE II. Outcomes of interest were learners' performance, satisfaction, self-efficacy, mental effort, time-on-task, and perceptions of AGREE II. Results No differences emerged between training conditions on any of the outcome measures. Conclusions We believe these results can be explained by better than anticipated performance of the AGREE II PDF materials (control condition or the participants' level of health methodology and PG experience rather than the failure of the online training interventions. Some data suggest the online tools may be useful for trainees new to this field; however, this requires further study.

  16. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    Science.gov (United States)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  17. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  18. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  19. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  20. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...

  1. Advances in understanding hydration of Portland cement

    International Nuclear Information System (INIS)

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-01-01

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C 3 A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed

  2. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  3. Advances in understanding hydration of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 (Switzerland); Juilland, Patrick [Sika Technology AG, Zürich (Switzerland); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California at Berkeley (United States)

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  4. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.

    1987-01-01

    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  5. Propane hydrate nucleation: Experimental investigation and correlation

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2008-01-01

    supersaturation region. The experiments showed that the gas dissolution rate rather than the induction time of propane hydrate is influenced by a change in agitation. This was especially valid at high stirring rates when the water surface was severely disturbed.Addition of polyvinylpyrrolidone (PVP......) to the aqueous phase was found to reduce the gas dissolution rate slightly. However the induction times were prolonged quite substantially upon addition of PVP.The induction time data were correlated using a newly developed induction time model based on crystallization theory also capable of taking into account...... the presence of additives. In most cases reasonable agreement between the data and the model could be obtained. The results revealed that especially the effective surface energy between propane hydrate and water is likely to change when the stirring rate varies from very high to low. The prolongation...

  6. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas

    2015-01-01

    ) hydrate formation using a rocking cell apparatus. Hydrate formation and decomposition kinetics were investigated by constant cooling (hydrate nucleation temperature) and isothermal (hydrate nucleation time) methods. Improved (synergistic) hydrate formation kinetics (hydrate nucleation and growth) were...... of these two promoters is favorable both thermodynamically and kinetically for hydrate formation from flue gas....

  7. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

  8. Global Inventory of Methane Hydrate: How Large is the Threat? (Invited)

    Science.gov (United States)

    Buffett, B. A.; Frederick, J. M.

    2010-12-01

    Methane hydrate is a dark horse in the science of climate change. The volume of methane sequestered in marine sediments is large enough to pose a potential threat, yet the expected contribution to future warming is not known. Part of the uncertainty lies in the poorly understood details of methane release from hydrate. Slow, diffusive loss of methane probably results in oxidation by sulfate and precipitation to CaCO3 in the sediments, with little effect on climate. Conversely, a direct release of methane into the atmosphere is liable to have strong and immediate consequences. Progress in narrowing the possibilities requires a better understanding of the mechanisms responsible for methane release. Improvements are also needed in our estimates of the hydrate inventory, as this sets a limit on the possible response. Several recent estimates of the hydrate inventory have been constructed using mechanistic models. Many of the model parameters (e.g. sedimentation rate and sea floor temperature) can be estimated globally, while others (e.g. vertical fluid flow) are not well known. Available observations can be used to estimate the poorly known parameters, but it is reasonable to question whether the results from a limited number of sites are representative of other locations. Fluid flow is a case in point because most hydrate locations are associated with upward flow. On the other hand, simple models of sediment compaction predict downward flow relative to the sea floor, which acts to impede hydrate formation. A variety of mechanisms can produce upward flow, including time-dependent sedimentation, seafloor topography, subsurface fractures, dehydration of clay minerals and gradual burial of methane hydrate below the stability zone. Each of these mechanisms makes specific predictions for the magnitude of flow and the proportion of sea floor that is likely to be affected. We assess the role of fluid flow on the present-day inventory and show that the current estimates for

  9. Polymorphism in Br2 clathrate hydrates.

    Science.gov (United States)

    Goldschleger, I U; Kerenskaya, G; Janda, K C; Apkarian, V A

    2008-02-07

    The structure and composition of bromine clathrate hydrate has been controversial for more than 170 years due to the large variation of its observed stoichiometries. Several different crystal structures were proposed before 1997 when Udachin et al. (Udachin, K. A.; Enright, G. D.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 1997, 119, 11481) concluded that Br2 forms only the tetragonal structure (TS-I). We show polymorphism in Br2 clathrate hydrates by identifying two distinct crystal structures through optical microscopy and resonant Raman spectroscopy on single crystals. After growing TS-I crystals from a liquid bromine-water solution, upon dropping the temperature slightly below -7 degrees C, new crystals of cubic morphology form. The new crystals, which have a limited thermal stability range, are assigned to the CS-II structure. The two structures are clearly distinguished by the resonant Raman spectra of the enclathrated Br2, which show long overtone progressions and allow the extraction of accurate vibrational parameters: omega(e) = 321.2 +/- 0.1 cm(-1) and omega(e)x(e) = 0.82 +/- 0.05 cm(-1) in TS-I and omega(e) = 317.5 +/- 0.1 cm(-1) and omega(e)x(e) = 0.70 +/- 0.1 cm(-1) in CS-II. On the basis of structural analysis, the discovery of the CS-II crystals implies stability of a large class of bromine hydrate structures and, therefore, polymorphism.

  10. The economics of exploiting gas hydrates

    International Nuclear Information System (INIS)

    Döpke, Lena-Katharina; Requate, Till

    2014-01-01

    We investigate the optimal exploitation of methane hydrates, a recent discovery of methane resources under the sea floor, mainly located along the continental margins. Combustion of methane (releasing CO2) and leakage through blow-outs (releasing CH4) contribute to the accumulation of greenhouse gases. A second externality arises since removing solid gas hydrates from the sea bottom destabilizes continental margins and thus increases the risk of marine earthquakes. We show that in such a model three regimes can occur: i) resource exploitation will be stopped in finite time, and some of the resource will stay in situ, ii) the resource will be used up completely in finite time, and iii) the resource will be exhausted in infinite time. We also show how to internalize the externalities by policy instruments. - Highlights: • We set up a model of optimal has hydrate exploitation • We incorporate to types of damages: contribution to global warming and geo-hazards • We characterize optimal exploitation paths and study decentralization with an exploitation tax. • Three regimes can occur: • i) exploitation in finite time and some of the stock remaining in situ, • ii) exploitation in finite time and the resource will be exhausted, • iii) exploitation and exhaustion in infinite time

  11. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  12. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  13. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Directory of Open Access Journals (Sweden)

    Takeshi Sugahara

    2012-05-01

    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.

  14. Risk factors of methane hydrate resource development in the concentrated zones distributed in the eastern Nankai Trough

    Science.gov (United States)

    Yamamoto, K.; Nagakubo, S.

    2009-04-01

    Some environmental and safety concerns on the offshore methane hydrate development have been raised, but the ground of such allegations are sometime not fully reasonable. The risks of methane hydrate resource development to environment and safety should be discussed upon methane hydrate occurrences condition, the production methods, and the designs of production system, under comprehensively scientific manners. In the Phase 1 of the Methane Hydrate Exploitation Program in Japan (FY2001-2008), the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) found methane hydrate concentrated zones in the eastern Nankai Trough that are potential prospects for resource development. The concentrated zones are consisted of turbidite-derived sandy sediments and hydrate crystals in pore spaces of sand grains (pore-filling type structure). The MH21 Research Consortium proposed the depressurization method as prime technique due to its efficiency of gas production in such concentrated zones, and has tried to develop conceptual designs of production systems based on the information of existing devices and facilities. Under the condition and circumstances described above, the authors tried to extract and evaluate some risk factors concerning methane hydrate development using depressurization in the area. Leakage of methane gas, that is less harmful substance to ecosystem than heavier hydrocarbons, from production system can be one possible risk. However, in the case of gas production through wellbore, even if catastrophic damages happen in the subsea production system during gas production, the leakages do not continue because the borehole could be filled by seawater and depressurization is stopped immediately. Another possible risk is a leakage of produced gas through seafloor. If methane hydrate production makes high pressure or temperature zones in sediments, the risk should be considered. However, depressurization method makes opposite condition

  15. Sorption of caesium and strontium onto calcium silicate hydrate in saline groundwater

    International Nuclear Information System (INIS)

    Sugiyama, D.; Fujita, T.

    2005-01-01

    Full text of publication follows: In the concept for radioactive waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. The sorption of radionuclides onto cement materials, which controls the aqueous concentrations of elements in the pore-water, is a very important parameter when considering the release of radionuclides from the near field of a cementitious radioactive waste repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium (10 -5 ∼ 10 -2 mol dm -3 ) and sodium (10 -4 ∼ 10 -1 mol dm -3 ) onto Calcium Silicate Hydrate (C-S-H gel, Ca/Si 0.65 ∼ 1.2) at a liquid:solid ratio of 100:1, to support the assumption. In addition, the competitive sorption between caesium or strontium, and sodium is studied by sorption measurements using a range of sodium chloride concentration to simulate different ionic strengths in saline groundwater. The initial and equilibrated aqueous compositions were measured in the sorption experiments and it was found that caesium, strontium and sodium were sorbed by substitution for Ca in C-S-H phases by examining the mass balance. Based on the experimental results, we propose a modelling approach in which the ion-exchange model is employed and the presence of some calcium sites with different ion-exchange log K values in C-S-H is assumed by considering the composition and the structure of C-S-H. The modelling calculation results predict the measured Rd values well and also describe the competition of sorption of caesium or strontium, and sodium in the experiments. The log K values for sorption of each cation element decreased as Ca/Si ratio of C-S-H gel increased. This agrees with the trend that C-S-H gel is negatively charged at low

  16. Protein Hydration Thermodynamics: The Influence of Flexibility and Salt on Hydrophobin II Hydration.

    Science.gov (United States)

    Remsing, Richard C; Xi, Erte; Patel, Amish J

    2018-04-05

    The solubility of proteins and other macromolecular solutes plays an important role in numerous biological, chemical, and medicinal processes. An important determinant of protein solubility is the solvation free energy of the protein, which quantifies the overall strength of the interactions between the protein and the aqueous solution that surrounds it. Here we present an all-atom explicit-solvent computational framework for the rapid estimation of protein solvation free energies. Using this framework, we estimate the hydration free energy of hydrophobin II, an amphiphilic fungal protein, in a computationally efficient manner. We further explore how the protein hydration free energy is influenced by enhancing flexibility and by the addition of sodium chloride, and find that it increases in both cases, making protein hydration less favorable.

  17. Indian continental margin gas hydrate prospects : results of the Indian National Gas Hydrate Program (NGHP) expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Collett, T [United States Geological Survey, Denver, CO (United States); Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences; Cochran, J.R. [Columbia Univ., Palisades, NY (United States). Lamont Doherty Earth Observatory; Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Kumar, P. [Pushpendra Kumar Oil and Natural Gas Corp. Ltd., Mumbai (India). Inst. of Engineering and Ocean Technology; Sathe, A.V. [Oil and Natural Gas Corp. Ltd., Uttaranchal (India). KDM Inst. of Petroleum Exploration

    2008-07-01

    The geologic occurrence of gas hydrate deposits along the continental margins of India were investigated in the first expedition of the Indian National Gas Hydrate Program (NGHP). The objective was to determine the regional context and characteristics of the gas hydrate deposits through scientific ocean drilling, logging, and analytical activities. A research drill ship was the platform for the drilling operation. The geological and geophysical studies revealed 2 geologically distinct areas with inferred gas hydrate occurrences, notably the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The NGHP Expedition 01 focused on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these 2 diverse settings. The study established the presence of gas hydrates in Krishna-Godavari, Mahanadi and Andaman basins. Site 10 in the Krishna-Godavari Basin was discovered to be the one of the richest gas hydrate accumulations yet documented, while site 17 in the Andaman Sea had the thickest and deepest gas hydrate stability zone yet known. The existence of a fully-developed gas hydrate system in the Mahanadi Basin was also discovered. Most of the gas hydrate occurrences discovered during this expedition appeared to contain mostly methane which was generated by microbial processes. However, there was also evidence of a thermal origin for a portion of the gas within the hydrates of the Mahanadi Basin and the Andaman offshore area. Gas hydrate in the Krishna-Godavari Basin appeared to be closely associated with large scale structural features, in which the flux of gas through local fracture systems, generated by the regional stress regime, controlled the occurrence of gas hydrate. 3 refs., 1 tab., 2 figs.

  18. Cruise report for a seismic investigation of gas hydrates in the Mississippi Canyon region, northern Gulf of Mexico; cruise M1-98-GM

    Science.gov (United States)

    Cooper, Alan K.; Hart, Patrick E.; Pecher, Ingo

    1998-01-01

    During June 1998, the U.S. Geological Survey (USGS) and the University of Mississippi Marine Minerals Technology Center (MMTC) conducted a 12-day cruise in the Mississippi Canyon region of the Gulf of Mexico (Fig. 1). The R/V Tommy Munro, owned by the Marine Research Institute of the University of Southern Mississippi, was chartered for the cruise. The general objective was to acquire very high resolution seismic-reflection data across of the upper and middle continental slope (200-1200-m water depths) to study the acoustic character, distribution and potential effects of gas hydrates within the shallow subsurface, extending from the sea floor down to the base of the gas-hydrate stability zone. The Gulf of Mexico is well known for hydrocarbon resources that include petroleum and related gases. Areas of the Gulf that lie in waters deeper than about 250 m potentially have conditions (e.g., pressure, temperature, near-surface gas content, etc.) that are right for the shallow-subsurface formation of the ice-like substance (gas and water) known as gas hydrate (Kvenvolden, 1993). Gas hydrates have previously been sampled in sea-floor cores and observed as massive mounds in several parts of the northern Gulf, including the Mississippi Canyon region (e.g., Anderson et al., 1992). Extensive seismic data have been recorded in the Gulf, in support of commercial drilling efforts, but few very high resolution data exist in the public domain to aid in gas-hydrate studies. Studies of long-term interest include those on the resource potential of gas hydrates, the geologic hazards associated with dissociation and formation of hydrates, and the impact, if any, of gas-hydrate dissociation on atmospheric warming (i.e., via release of methane, a "greenhouse" gas). Several very high resolution seismic systems (surface-towed, deep-towed, and sea-floor) were used during the cruise to test the feasibility of using such data for detailed structural (geometric) and stratigraphic (physical

  19. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  20. Thermal conductivity measurements in unsaturated hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Cha, Jong-Ho; Rosenbaum, Eilis J.; Zhang, Wu; Seol, Yongkoo

    2015-08-01

    Current database on the thermal properties of hydrate-bearing sediments remains limited and has not been able to capture their consequential changes during gas production where vigorous phase changes occur in this unsaturated system. This study uses the transient plane source (TPS) technique to measure the thermal conductivity of methane hydrate-bearing sediments with various hydrate/water/gas saturations. We propose a simplified method to obtain thermal properties from single-sided TPS signatures. Results reveal that both volume fraction and distribution of the pore constituents govern the thermal conductivity of unsaturated specimens. Thermal conductivity hysteresis is observed due to water redistribution and fabric change caused by hydrate formation and dissociation. Measured thermal conductivity increases evidently when hydrate saturation Sh > 30-40%, shifting upward from the geometric mean model prediction to a Pythagorean mixing model. These observations envisage a significant drop in sediment thermal conductivity when residual hydrate/water saturation falls below ~40%, hindering further gas production.

  1. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Tsouris, Costas

    2006-01-01

    Carbon dioxide dissolution at intermediate ocean depths was studied using physical and mass transfer models. Particle density and hydrate layer thickness were determined using existing field data. Pseudo-homogeneous and heterogeneous mass transfer models were proposed to study the dissolution process. Pseudo-homogeneous models do not seem to represent the dissolution process well. Although heterogeneous models interpret the physical behavior better, unresolved issues related to hydrate dissolution still remain. For example, solid hydrate forms on one side of the hydrate film while it dissolves on the other. Dissolution is a complex process that comprises at least two sequential steps. The global process is controlled by mass transfer inside the hydrate layer or by a dissolution reaction at the hydrate-water interface

  2. Natural gas storage in hydrates with the presence of promoters

    International Nuclear Information System (INIS)

    Sun Zhigao; Wang Ruzhu; Ma Rongsheng; Guo Kaihua; Fan Shuanshi

    2003-01-01

    Hydrate technology is being developed for the storage and transport of natural gas. Micellar surfectant solutions were found to increase the gas hydrate formation rate and storage capacity. An anionic surfactant, a nonionic surfactant, their mixtures and cyclopentane were used to improve the hydrate formation of a synthetic natural gas (methane=92.05 mol%, ethane=4.96 mol%, propane=2.99 mol%) in a quiescent system in this work. The effect of an anionic surfactant (sodium dodecyl sulfate) on natural gas storage in hydrates is more pronounced compared to the effect of a nonionic surfactant (dodecyl polysaccharide glycoside). Cyclopentane could reduce hydrate formation induction time but could not improve the hydrate formation rate and storage capacity

  3. Thermodynamic of hydration of a Wyoming montmorillonite saturated with Ca, Mg, Na and K

    International Nuclear Information System (INIS)

    Vieillard, P.; Blanc, P.; Gailhanou, H.; Gaboreau, S.; Giffaut, E.

    2010-01-01

    and the four Margules parameters (W H1 W H2 , W S1 and W S2 ) in the other hand, with the ionic potential of the interlayer cation are observed for alkaline and alkali-earth cations. Validation of standard state thermodynamic properties of hydration of end members has been done in two fields: - by comparing behaviour of hydration during exchange between two any end-members with experimental isotherms of Na/Ca Wyoming montmorillonite; - by plotting the dehydration of the four Wyoming Montmorillonite with temperature, showing a full dehydration in the temperature range 160-190 deg. C in the order 160 deg. < K ≅ Na< Ca< Mg< 190 deg. C. Then, the acquisition of standard state thermodynamic properties of hydration and the number of moles of interlayer water are then fully available for a given temperature and relative humidity and would imply to solve many questions like: the behavior of exchange between two cations and the number of moles of water transferred during exchange for a given temperature, the selectivity for a given relative humidity. However, from a limited number of measurements, it is possible to extend the results to different compositions, by using predictive models, to provide theoretical thermodynamic values of formation of some hydrated smectites and calibrated with measured data from both the literature and acquired within the framework of this project. (authors)

  4. Hydration properties of briquetted wheat straw biomass feedstock

    DEFF Research Database (Denmark)

    Zhang, Heng; Fredriksson, Maria; Mravec, Jozef

    2017-01-01

    Biomass densification elevates the bulk density of the biomass, providing assistance in biomass handling, transportation, and storage. However, the density and the chemical/physical properties of the lignocellulosic biomass are affected. This study examined the changes introduced by a briquetting...... process with the aim of subsequent processing for 2nd generation bioethanol production. The hydration properties of the unprocessed and briquetted wheat straw were characterized for water absorption via low field nuclear magnetic resonance and sorption balance measurements. The water was absorbed more...... rapidly and was more constrained in the briquetted straw compared to the unprocessed straw, potentially due to the smaller fiber size and less intracellular air of the briquetted straw. However, for the unprocessed and briquetted wheat straw there was no difference between the hygroscopic sorption...

  5. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    Korsse, J.

    1983-01-01

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni 2+ , Co 2+ and Cu 2+ . Rates of the reactions of the complexes with e - (aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e - (aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  6. Obsidian hydration profiles measured by sputter-induced optical emission.

    Science.gov (United States)

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  7. Small angle neutron scattering from hydrated cement pastes

    International Nuclear Information System (INIS)

    Sabine, T.M.; Bertram, W.K.; Aldridge, L.P.

    1996-01-01

    Small angle neutron scattering (SANS) was used to study the microstructure of hydrating cement made with, and without silica fume. Some significant differences were found between the SANS spectra of pastes made from OPC (ordinary Portland cement) and DSP (made with silica fume and superplasticiser). The SANS spectra are interpreted in terms of scattering from simple particles. Particle growth was monitored during hydration and it was found that the growth correlated with the heat of hydration of the cement

  8. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States); Macelloni, Leonardo [Univ. of Mississippi, Oxford, MS (United States); D' Emidio, Marco [Univ. of Mississippi, Oxford, MS (United States); Dunbar, John [Univ. of Mississippi, Oxford, MS (United States); Higley, Paul [Univ. of Mississippi, Oxford, MS (United States)

    2015-01-31

    detect short-term changes within the hydrates system, identify relationships/impacts of local oceanographic parameters on the hydrates system, and improve our understanding of how seafloor instability is affected by hydrates-driven changes. A 2009 DCR survey of MC118 demonstrated that we could image resistivity anomalies to a depth of 75m below the seafloor in water depths of 1km. We reconfigured this system to operate autonomously on the seafloor in a pre-programmed mode, for periods of months. We designed and built a novel seafloor lander and deployment capability that would allow us to investigate the seafloor at potential deployment sites and deploy instruments only when conditions met our criteria. This lander held the DCR system, controlling computers, and battery power supply, as well as instruments to record oceanographic parameters. During the first of two cruises to the study site, we conducted resistivity surveying, selected a monitoring site, and deployed the instrumented lander and DCR, centered on what appeared to be the most active locations within the site, programmed to collect a DCR profile, weekly. After a 4.5-month residence on the seafloor, the team recovered all equipment. Unfortunately, several equipment failures occurred prior to recovery of the instrument packages. Prior to the failures, however, two resistivity profiles were collected together with oceanographic data. Results show, unequivocally, that significant changes can occur in both hydrate volume and distribution during time periods as brief as one week. Occurrences appear to be controlled by both deep and near-surface structure. Results have been integrated with seismic data from the area and show correspondence in space of hydrate and structures, including faults and gas chimneys.

  9. Vapor hydration and subsequent leaching of transuranic-containing SRL and WV glasses

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Gerding, T.J.

    1989-09-01

    Prior to contact by liquid water and subsequent leaching, high-level nuclear waste glass subject to disposal in the unsaturated environment at Yucca Mountain, Nevada, will be altered through contact with humid air. Conditions could range from temperatures as high as 200 degree C to ambient repository temperature after cooling and relative humidities up to 100% depending on the air flow and heat transport dynamics of the waste package and near field environments. However, under any potential set of temperature/humidity conditions, the glass will undergo alteration via well-established vapor phase hydration processes. In the present paper, the results of a set of parametric experiments are described, whereby vapor phase hydrated glasses were subjected to leaching under static conditions. The purpose of the experiments was to (1) compare the leaching of vapor phase altered glass to that of fresh glass, (2) to develop techniques for determining the radionuclide content of secondary phases that formed during the hydration reaction, and (3) to provide a basis for performing long-term saturated and unsaturated testing of vapor hydrated glass. 3 refs., 2 figs., 2 tabs

  10. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, Northwest China.

    Science.gov (United States)

    Wang, Pingkang; Zhang, Xuhui; Zhu, Youhai; Li, Bing; Huang, Xia; Pang, Shouji; Zhang, Shuai; Lu, Cheng; Xiao, Rui

    2014-12-01

    The gas hydrate petroleum system in the permafrost of the Qilian Mountains, which exists as an epigenetic hydrocarbon reservoir above a deep-seated hydrocarbon reservoir, has been dynamic since the end of the Late Pleistocene because of climate change. The permafrost limits the occurrence of gas hydrate reservoirs by changing the pressure-temperature (P-T) conditions, and it affects the migration of the underlying hydrocarbon gas because of its strong sealing ability. In this study, we reconstructed the permafrost structure of the Qilian Mountains using a combination of methods and measured methane permeability in ice-bearing sediment permafrost. A relationship between the ice saturation of permafrost and methane permeability was established, which permitted the quantitative evaluation of the sealing ability of permafrost with regard to methane migration. The test results showed that when ice saturation is >80%, methane gas can be completely sealed within the permafrost. Based on the permafrost properties and genesis of shallow gas, we suggest that a shallow "gas pool" occurred in the gas hydrate petroleum system in the Qilian Mountains. Its formation was related to a metastable gas hydrate reservoir controlled by the P-T conditions, sealing ability of the permafrost, fault system, and climatic warming. From an energy perspective, the increasing volume of the gas pool means that it will likely become a shallow gas resource available for exploitation; however, for the environment, the gas pool is an underground "time bomb" that is a potential source of greenhouse gas.

  11. Development of Magnesium Silicate Hydrate cement system for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Zhang, T.; Vandeperre, L.J.; Cheeseman, C.R.

    2012-01-01

    A novel low pH cement system for encapsulating nuclear industry wastes containing aluminium has been developed using blends of MgO and silica fume (SF). Identification of the hydrated phases in MgO/silica fume samples showed that brucite formed in early stages of hydration and then reacted with the silica fume to produce a magnesium silicate hydrate (M-S-H) gel phase. When all brucite reacts with silica fume a cement system with an equilibrium pH just below 10 was achieved. Selected mixes have been characterized for hydration reactions, setting time and strength development. Mortar samples with w/s ratios of 0.5 and 50% by weight of sand added achieved compressive strengths in excess of 95 MPa after 28 days. The addition of MgCO 3 buffered the early pH and the addition of fine sand particles eliminated shrinkage cracking. The interaction of the optimised mortar with Al metal has been investigated. Al metal strips were firmly bound into the MgO:SF:sand samples and no H 2 gas detected, and this indicates that the novel systems developed in this work have potential for encapsulating certain types of problematic legacy wastes from the nuclear industry. (authors)

  12. Effects of CO2 hydrate on deep-sea foraminiferal assemblages

    International Nuclear Information System (INIS)

    Ricketts, E. R.; Kennett, J. P.; Hill, T. M.; Barry, J. P.

    2005-01-01

    This study, conducted with the Monterey Bay Aquarium Research Institute (MBARI), is the first to investigate potential effects of carbon dioxide (CO2) hydrates on benthic microfossils, specifically oraminifera. The experiment was conducted in September 2003 aboard the R/V Western Flier using the ROV Tiburon. Experimental (CO2 exposed) and control cores were collected at 3600m and stained to distinguish live (stained) from dead (unstained) individuals. Foraminifera are ideal for these investigations because of differing test composition (calcareous and agglutinated) and thickness, and diverse epifaunal and infaunal depth preferences. The effects of the CO2 on assemblages have been tracked both vertically (10cm depth) and horizontally, and between live and dead individuals. Increased mortality and dissolution of calcareous forms resulted from exposure to CO2 hydrate. Preliminary results suggest several major effects on surface sediment assemblages: 1) total number of foraminifera in a sample decreases; 2) foraminiferal diversity decreases in both stained and unstained specimens. The number of planktonic and hyaline calcareous tests declines greatly, with milliolids being more resistant to dissolution when stained; and 3) percentage of stained (live) forms is higher. Down-core trends (up to 10cm) indicate: 1) percent agglutinated forms decline and calcareous forms increasingly dominate; 2) agglutinated diversity decreases with depth; and 3) assemblages become increasingly similar with depth to those in control cores not subjected to CO2 hydrate. These results imply almost complete initial mortality and dissolution upon CO2 hydrate emplacement in the corrals. (Author)

  13. Hydration interactions and stability of soluble microbial products in aqueous solutions.

    Science.gov (United States)

    Wang, Ling-Ling; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2013-10-01

    Soluble microbial products (SMP) are organic compounds excreted by microorganisms in their metabolism and decay and the main constituents in effluent from biological wastewater treatment systems. They also have an important contribution to the dissolved organic matters in natural aqueous systems. So far the interactions between SMP colloids have not been well explored. In this work, the interactions between SMP colloids in water and salt solutions were studied by using a combination of static and dynamic light scattering, Fourier transform infrared spectra, Zeta potential and acid-base titration techniques. The second osmotic virial coefficient had a larger value in a 750-mM salt solution than that in a 50-mM solution, indicating that repulsion between SMP colloids increased with an increase in salt concentration, which is contrary with the classic Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Such a repulsion was attributed to water structuring and enhanced by the accumulation of hydrophilic counter ions around SMP colloids and the formed hydration force. The repulsion and hydration effect led to the dispersing and deeper draining structure, accompanied by a decreased hydrodynamic radius and increased diffusion coefficient. This hydration force was related to so-called ion specific effect, and electrolyte sodium chloride had a more substantial effect on hydration force than KCl, CsCl, NaBr and NaI. Our results provide an experimental approach to explore the SMP structures, inter-colloid interactions and confirm the non-DLVO forces. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Novel nanotechnology for efficient production of binary clathrate hydrates of hydrogen and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Di Profio, P.; Arca, S.; Germani, R.; Savelli, G. [Perugia Univ., Perugia (Italy). Dept. of Chemistry, Center of Excellence on Innovative Nanostructured Materials

    2008-07-01

    The development of a hydrogen-based economy depends on finding ways to store hydrogen, but current hydrogen storage methods have significant disadvantages. One main challenge in storing sufficient amounts of hydrogen (up to 4 weight per cent) into a clathrate matrix is that of a kinetic origin, in that the mass transfer of hydrogen gas into clathrate structures is significantly limited by the macroscopic scale of the gas-liquid or gas-ice interfaces involved. This paper discussed the possibility of storing hydrogen in clathrate hydrates. It presented a newly developed method for preparing binary hydrogen hydrates that is based on the formation of amphiphile-aided nanoemulsions. Nanotechnology is used to reduce the size of hydrate particles to a few nanometers, thereby minimizing the kinetic hindrance to hydrate formation. This process has potential for increasing the amount of hydrogen stored, as it has provided ca. 1 weight per cent of hydrogen. Two new co-formers were also successfully tested, namely cyclopentane and tetrahydrothiophene. 23 refs., 10 figs.

  15. Hydration dynamics in water clusters via quantum molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, Budapest 112, P. O. Box 32, H-1518 (Hungary)

    2014-05-28

    We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of

  16. Hydrate-bearing Submarine Landslides in the Orca Basin, Gulf of Mexico

    Science.gov (United States)

    Sawyer, D.; Mason, A.; Cook, A.; Portnov, A.; Hillman, J.

    2017-12-01

    The co-occurrence of submarine landslides and hydrate-bearing sediment suggests that hydrates may play a role in landslide triggering and/or the mobility and dynamic characteristics of the submarine landslide. In turn, the removal of large sections of seafloor perturbs the hydrate stability field by removing overburden pressure and disturbing the temperature field. These potential hydrate-landslide feedbacks are not well understood. Here we combine three-dimensional seismic and petrophysical logs to characterize the deposits of submarine landslides that failed from hydrate-bearing sediments in the Orca Basin in the northern Gulf of Mexico. The Orca Basin contains a regionally mappable bottom simulating reflector, hydrate saturations within sands and muds, as well as numerous landslides. In addition, the Orca Basin features a well-known 123 km2 anoxic hypersaline brine pool that is actively being fed by outcropping salt. Lying at the bottom of the brine pool are deposits of submarine landslides. Slope instability in the Orca Basin is likely associated with near-seafloor salt tectonics. The most prominent landslide scar observable on the seafloor has a correlative deposit that now lies at the bottom of the brine pool 11.6 km away. The headwall is amphitheater-shaped with an average height of 80 meters and with only a minor amount of rubble remaining near the headwall. A total of 8.7 km3 of material was removed and deposited between the lower slopes of the basin and the base of the brine pool. Around the perimeter of the landslide headwall, two industry wells were drilled and well logs show elevated resistivity that are likely caused by gas hydrate. The slide deposits have a chaotic seismic facies with large entrained blocks and the headwall area does not retain much original material, which together suggests a relatively mobile style of landslide and therefore may have generated a wave upon impacting the brine pool. Such a slide-induced wave may have sloshed

  17. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year,