WorldWideScience

Sample records for hybrid-electric sport utility

  1. Analysis of plug-in hybrid electric vehicle utility factors

    Science.gov (United States)

    Bradley, Thomas H.; Quinn, Casey W.

    Plug-in hybrid electric vehicles (PHEVs) are hybrid electric vehicles that can be fueled from both conventional liquid fuels and grid electricity. To represent the total contribution of both of these fuels to the operation, energy use, and environmental impacts of PHEVs, researchers have developed the concept of the utility factor. As standardized in documents such as SAE J1711 and SAE J2841, the utility factor represents the proportion of vehicle distance travelled that can be allocated to a vehicle test condition so as to represent the real-world driving habits of a vehicle fleet. These standards must be used with care so that the results are understood within the context of the assumptions implicit in the standardized utility factors. This study analyzes and derives alternatives to the standard utility factors from the 2001 National Highway Transportation Survey, so as to understand the sensitivity of PHEV performance to assumptions regarding charging frequency, vehicle characteristics, driver characteristics, and means of defining the utility factor. Through analysis of these alternative utility factors, this study identifies areas where analysis, design, and policy development for PHEVs can be improved by alternative utility factor calculations.

  2. Improving the performance of a hybrid electric vehicle by utilization regenerative braking energy of vehicle

    Directory of Open Access Journals (Sweden)

    Mohamed Mourad

    2011-01-01

    Full Text Available Environmentally friendly vehicles with range and performance capabilities surpassing those of conventional ones require a careful balance among competing goals for fuel efficiency, performance and emissions. It can be recuperated the energy of deceleration case of the vehicle to reuse it to recharge the storage energy of hybrid electric vehicle and increase the state of charge of batteries under the new conditions of vehicle operating in braking phase. Hybrid electric vehicle has energy storage which allows decreasing required peak value of power from prime mover, which is the internal combustion engine. The paper investigates the relationships between the driving cycle phases and the recuperation energy to the batteries system of hybrid electric vehicle. This work describes also a methodology for integrating this type of hybrid electric vehicle in a simulation program. A design optimization framework is then used to find the best position that we can utilize the recuperation energy to recharge the storage batteries of hybrid electric vehicle.

  3. Control system for a 373 kW, intercooled, two-spool gas turbine engine powering a hybrid electric world sports car class vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Shortlidge, C.C. [SatCon Technology Corp., Cambridge, MA (United States)

    1998-01-01

    SatCon technology Corporation has completed design, fabrication, and the first round of test of a 373 kW (500 hp), two-spool, intercooled gas turbine engine with integral induction type alternators. This turbine alternator is the prime mover for a World Sports Car class hybrid electric vehicle under development by Chrysler Corporation. The complete hybrid electric vehicle propulsion system features the 373 kW (500 hp) turbine alternator unit, a 373 kW (500 hp) 3.25 kW-h (4.36 hp-h) flywheel, a 559 kW (750 hp) traction motor, and the propulsion system control system. This paper presents and discusses the major attributes of the control system associated with the turbine alternator unit. Also discussed is the role and operational requirements of the turbine unit as part of the complete hybrid electric vehicle propulsion system.

  4. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev; Tang, Zhijun; Smith, Kandler; Shi, Ying

    2016-08-01

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of battery aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.

  5. Electric and hybrid electric vehicle study utilizing a time-stepping simulation

    Science.gov (United States)

    Schreiber, Jeffrey G.; Shaltens, Richard K.; Beremand, Donald G.

    1992-01-01

    The applicability of NASA's advanced power technologies to electric and hybrid vehicles was assessed using a time-stepping computer simulation to model electric and hybrid vehicles operating over the Federal Urban Driving Schedule (FUDS). Both the energy and power demands of the FUDS were taken into account and vehicle economy, range, and performance were addressed simultaneously. Results indicate that a hybrid electric vehicle (HEV) configured with a flywheel buffer energy storage device and a free-piston Stirling convertor fulfills the emissions, fuel economy, range, and performance requirements that would make it acceptable to the consumer. It is noted that an assessment to determine which of the candidate technologies are suited for the HEV application has yet to be made. A proper assessment should take into account the fuel economy and range, along with the driveability and total emissions produced.

  6. Hybrid electrical generation system utilizing wind, diesel and hydropower for operation of an underground zinc mine in southern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Gridley, Norman [Minera El Toqui (Chile); Banto, Marcelo [Seawind Chile (Chile)

    2010-07-01

    This paper presents a hybrid electrical generation system used for underground zinc mine operations that utilizes wind, diesel and hydropower. This mine is located in Coyhaique and had a total energy consumption of 32,567 MWh in 2010 which is anticipated to increase by 25% in 2011. Power generation in this mine is independent of the power grid. It consists of four main portals: ventilation, electrical and drainage systems and ramp access to all mining zones. The technical details for all the parts of the mine and the hybrid generation system are given. A tabular form shows the energy consumed every month from 2005-2010 for all three systems involved, namely wind power generation, diesel generation and the hydro generation system. Benefits of this hybrid system include stability and constant power generation under variable loads. This system can also be applied to other mines using a grid. From the study it can be concluded that the hybrid system is environmentally friendly, economical and sustainable.

  7. Use of a thermophotovoltaic generator in a hybrid electric vehicle

    Science.gov (United States)

    Morrison, Orion; Seal, Michael; West, Edward; Connelly, William

    1999-03-01

    Viking 29 is the World's first thermophotovoltaic (TPV) powered automobile. The prototype was funded by the Department of Energy and designed and built by students and faculty at the Vehicle Research Institute (VRI) at Western Washington University. Viking 29 is a series hybrid electric vehicle that utilizes TPV generators to charge its battery pack. Acceleration, speed, and handling compare to modern high performance sports cars, while emissions are cleaner than current internal combustion engine vehicles.

  8. Personal genetics: sports utility vehicle?

    Science.gov (United States)

    Grimaldi, Keith Anthony; Paoli, Antonio; Smith, Graeme John

    2012-12-01

    Personal genetic testing which is not strictly related to medicine or health is becoming more and more popular covering areas from ancestry, genealogy, nutrition& lifestyle and more recently sports and exercise. The reasons are compelling - if it were possible to read in our genes our potential sporting attributes and how to achieve them it would be valuable information. But is it possible? This overview will look at the current situation and future prospects the authors believe that there is utility in sports genetic testing exactly what can be interpreted from our genetic results needs to be precisely defined and limited to what has been demonstrated by repeated scientific studies. Current areas of interest include optimizing exercise/training routines, VO2max improvement and predisposition to some common sports related injuries such as tendonitis. The interest and the scientific progress is reflected both in increasing rate of publication of geneexercise studies as well as in patent applications concerning genetic associations with commercial potential.

  9. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  10. Design and Analysis of Electro-mechanical Hybrid Anti-lock Braking System for Hybrid Electric Vehicle Utilizing Motor Regenerative Braking

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianlong; YIN Chengliang; ZHANG Jianwu

    2009-01-01

    Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) function. When the ABS control is terminated, the motor regenerative braking is readmitted.Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure. The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.

  11. 1997 hybrid electric vehicle specifications

    Energy Technology Data Exchange (ETDEWEB)

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  12. Brazilian hybrid electric fuel cell bus

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, P.E.V.; Carreira, E.S. [Coppe-Federal Univ. of Rio de Janeiro (Brazil). Hydrogen Lab.

    2010-07-01

    The first prototype of a hybrid electric fuel cell bus developed with Brazilian technology is unveiled. It is a 12 m urban-type, low-floor, air-conditioned bus that possesses three doors, air suspension, 29 seats and reversible wheelchair site. The bus body was built based on a double-deck type monoblock vehicle that is able to sustain important load on its roof. This allowed positioning of the type 3 hydrogen tanks and the low weight traction batteries on the roof of the vehicles without dynamic stabilization problems. A novel hybrid energy configuration was designed in such a way that the low-power (77 kWe) fuel cell works on steady-state operation mode, not responding directly to the traction motor load demand. The rate of kinetic energy regeneration upon breaking was optimized by the use of an electric hybrid system with predominance of batteries and also by utilizing supercapacitors. The electric-electronic devices and the security control softwares for the auxiliary and traction systems were developed in-house. The innovative hybrid-electric traction system configuration led to the possibility to decrease the fuel cell power, with positive impact on weight and system volume reduction, as well as to significantly decrease the hydrogen consumption. (orig.)

  13. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  14. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  15. Maximizing utilization of sport halls during peak hours

    DEFF Research Database (Denmark)

    Iversen, Evald Bundgård; Forsberg, Peter

    the number of participants 7.5 persons higher pr. activity compared to club activities. This implies that clubs during peak hours could include more participants. Another possibility to increase utilization is if the management of sport facilities forced sport clubs and other organisers to adapt......BACKGROUNDDuring peak hours (4.30pm-8pm) demand for timeslots in sport halls in Denmark are high and there are few timeslots available. Further, focus on how public resources are spent most efficient is increasing (Iversen, 2013). This makes it interesting to analyse how utilization could...... be increased during peak hours. DATA AND METHODOLOGYData is collected by observation of activities during two weeks on for example whether halls are used or not; the amount of playing field used; and number of participants (Iversen, 2012). Data on 1.331 activities in 36 sport halls across 4 municipalities have...

  16. Maximizing utilization of sport halls during peak hours

    DEFF Research Database (Denmark)

    Iversen, Evald Bundgård; Forsberg, Peter

    be increased during peak hours. DATA AND METHODOLOGYData is collected by observation of activities during two weeks on for example whether halls are used or not; the amount of playing field used; and number of participants (Iversen, 2012). Data on 1.331 activities in 36 sport halls across 4 municipalities have...... been collected. RESULTS The number of participants per activity is higher during peak hours, which is expected when demand is high. However, the usage of sport floor only differs slightly between peak and low hours. Both during peak and low hours on average 80-100 per cent of floor space is used......BACKGROUNDDuring peak hours (4.30pm-8pm) demand for timeslots in sport halls in Denmark are high and there are few timeslots available. Further, focus on how public resources are spent most efficient is increasing (Iversen, 2013). This makes it interesting to analyse how utilization could...

  17. Fuel Savings from Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  18. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  19. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  20. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  1. A Comprehensive Overview of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Caiying Shen

    2011-01-01

    Full Text Available As the environmental pollution and energy crises are getting more and more remarkable, hybrid electric vehicles (HEVs have taken on an accelerated pace in the world. A comprehensive overview of HEVs is presented in this paper, with the emphasis on configurations, main issues, and energy management strategies. Conclusions are discussed finally.

  2. Velocity trajectory optimization in Hybrid Electric trucks

    NARCIS (Netherlands)

    Keulen, T. van; Jager, B. de; Foster, D.L.; Steinbuch, M.

    2010-01-01

    Hybrid Electric Vehicles (HEVs) enable fuel savings by re-using kinetic and potential energy that was recovered and stored in a battery during braking or driving down hill. Besides, the vehicle itself can be seen as a storage device, where kinetic energy can be stored and retrieved by changing the

  3. TARDEC Hybrid Electric (HE) Technology Program

    Science.gov (United States)

    2011-02-05

    System Generator /Motor...ireDifferential Differential Energy Storage System Generator / Motor Inverter Engine Generator/Motor Transmission 3-Phase AC power into Motor Inverter When...Hybrid Electric Drive Propulsion TireTire Tire Energy Storage System Generator Controller 3Ø A/C to HV DC Generator Controller rectifies AC to DC

  4. Predictive cruise control in hybrid electric vehicles

    NARCIS (Netherlands)

    Keulen, T. van; Naus, M.J.G.; Jager, B. de; Molengraft, G.J.L. van de; Steinbuch, M.; Aneke, N.P.I.

    2009-01-01

    Deceleration rates have considerable influence on the fuel economy of hybrid electric vehicles. Given the vehicle characteristics and actual/measured operating conditions, as well as upcoming route information, optimal velocity trajectories can be constructed that maximize energy recovery. To suppor

  5. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  6. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  7. Experimental Analysis of Aerodynamic Aspects of Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    DINESH Y DHANDE

    2013-07-01

    Full Text Available In an era fuel efficiency has become topic of discussion not only among the scholar researchers but also common men. As rapid and continuous increase in prizes of fuels consumers are going for most fuel efficient vehicles. By aerodynamic styling of vehicle one can not only improve the fuel efficiency but also ensure better stability and good handling characteristics of vehicles at higher speed especially on highways. The paper describes assessment of drag force (Fd and drag coefficient (Cd by conventional wind tunnel method. Theexperimental calculations were performed on subsonic wind tunnel having test section of 100cm x 30cm x 30 cm. Exact replica of model of sports utility vehicle (suv on reduced scale 1:32 is used to for experimentation to calculate Fd and Cd.

  8. Wind/Hybrid Electricity Applications

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Lori [Iowa Department of Natural Resources, Des Moines, IA (United States)

    2001-03-01

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  9. Electric and Hybrid Electric Vehicle Technologies

    Science.gov (United States)

    2007-11-02

    electric vehicles .10 In 1994, BART chose the bid submitted by U.S. Electricar to provide 45 converted Geo Prisms and to be the turnkey operator. However...Declining to Sign Contracts Rank (1 = highest) => 1 2 3 4 Cost too much per month (10) 6 2 1 1 Want to buy , not lease, an electric vehicle (4) 2 1...District DEFENSE ADVANCED RESEARCH PROJECTS AGENCY ELECTRIC AND HYBRID ELECTRIC VEHICLE TECHNOLOGIES COOPERATIVE AGREEMENT MDA972-93-1-0027 QUARTERLY

  10. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  11. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Siavash Sadeghi

    2010-04-01

    Full Text Available Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicle performance,dynamic modeling of the motor and other components is necessary. Whereas the switchedreluctance machine is well suited for electric and hybrid electric vehicles, due to the simpleand rugged construction, low cost, and ability to operate over a wide speed range atconstant power, in this paper dynamic performance of the switched reluctance motor for eseries hybrid electric vehicles is investigated. For this purpose a switched reluctance motorwith its electrical drive is modeld and simulated first, and then the other components of aseries hybrid electric vehicle, such as battery, generator, internal combusion engine, andgearbox, are designed and linked with the electric motor. Finally a typical series hybridelectric vehicle is simulated for different drive cycles. The extensive simulation results showthe dynamic performance of SRM, battery, fuel consumption, and emissions.

  12. Hybrid electric vehicle power management system

    Energy Technology Data Exchange (ETDEWEB)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  13. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  14. High Temperature Power Converters for Military Hybrid Electric Vehicles

    Science.gov (United States)

    2011-08-09

    M) MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN HIGH TEMPERATURE POWER CONVERTERS FOR MILITARY HYBRID ELECTRIC VEHICLES ABSTRACT...SUBTITLE High Temperature Power Converters for Military Hybrid Electric Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...public release High Temperature Power Converters for Military Hybrid Electric Vehicles Page 2 of 8 I. INTRODUCTION Today, wide bandgap devices

  15. Design Optimization of a Hybrid Electric Vehicle Powertrain

    Science.gov (United States)

    Mangun, Firdause; Idres, Moumen; Abdullah, Kassim

    2017-03-01

    This paper presents an optimization work on hybrid electric vehicle (HEV) powertrain using Genetic Algorithm (GA) method. It focused on optimization of the parameters of powertrain components including supercapacitors to obtain maximum fuel economy. Vehicle modelling is based on Quasi-Static-Simulation (QSS) backward-facing approach. A combined city (FTP-75)-highway (HWFET) drive cycle is utilized for the design process. Seeking global optimum solution, GA was executed with different initial settings to obtain sets of optimal parameters. Starting from a benchmark HEV, optimization results in a smaller engine (2 l instead of 3 l) and a larger battery (15.66 kWh instead of 2.01 kWh). This leads to a reduction of 38.3% in fuel consumption and 30.5% in equivalent fuel consumption. Optimized parameters are also compared with actual values for HEV in the market.

  16. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  17. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  18. Active seat isolation for hybrid electric vehicles

    Science.gov (United States)

    Leo, Donald J.; Malowicki, Mark; Buckley, Stephen J.; Naganathan, Ganapathy

    1999-07-01

    A feasibility study in the use of induced strain actuators for active seal isolation is described. The focus of the work is the isolation of lightweight automotive seats for hybrid-electric vehicles. The feasibility study is based on a numerical analysis of a three-degree-of-freedom vibration model of the seat. Mass and inertia properties are based on measurements from a powered seat that is found in current model year automobiles. Tradeoffs between vertical acceleration of the seat, actuator stroke requirements, and isolation frequency are determined through numerical analysis of the vibration model. Root mean square accelerations and actuator strokes are computed using power spectral densities that model broadband excitation and road excitation that is filtered by the vehicle suspension. Numerical results using the road excitation indicate that factors of two to three reduction in vertical acceleration are achieved when the active isolation frequency is reduced to approximately 1 Hz with damping factors on the order of 10 to 30 percent critical. More significant reductions are achieved in the case of broadband floor excitation. Root mean square actuator strokes for both case are int he range of 0.4 to 50 mm. Root mean square accelerations in the vertical direction are consistent with the levels found in standard comfort curves.

  19. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  20. Distributed Heterogeneous Simulation of a Hybrid-Electric Vehicle

    Science.gov (United States)

    2006-03-29

    operate as a generator to convert mechanical energy from the diesel t~nginc 01 from regenerative braking to electrical energy. A vehicle control module...Distributed Heterogeneous Simulation of a Hybrid- Electric Vehicle Ning Wu’, Curtis Rands t , Charles E. Lucas!, Eric A. Walters§, and Maher A...Masrurit US Army RDECOM-TARDEC, Warren, MI, 48397 Hybrid- electric military vehicles provide many advantages over conventional military vehicles powered

  1. Predictive control strategy for power management in parallel hybrid-electric vehicle

    DEFF Research Database (Denmark)

    Nodeh, Mohammad Taqi; Gholizade, Hossein; Hajizadeh, Amin

    2016-01-01

    In this paper, a hybrid model-based nonlinear optimal control method is used to compute the optimal power distribution and power management in parallel hybrid electric vehicles. In the power management strategy, for optimal power distribution between the internal combustion engine, electrical...... system and the other subsystems, nonlinear predictive control is applied. In order to achieve this goal, a hierarchical control structure is utilized. This type of control structure consists of three levels of monitoring, coordinating and local controllers. Nonlinear modeling and performance index...... in the proposed method should be formulated at the regulatory level of the controller. Discrete dynamic mode of operation (motor-generator) in hybrid electric vehicle requires to use a dual-mode switch model and to define an alternative expression of performance index for the optimal control problem...

  2. An Analysis of the Impact of Sport Utility Vehicles in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.; Truett, L.F.

    2000-08-01

    It may be labeled sport utility vehicle, SUV, sport-ute, suburban assault vehicle, or a friend of OPEC (Organization for Petroleum Exporting Countries). It has been the subject of comics, the object of high-finance marketing ploys, and the theme of Dateline. Whatever the label or the occasion, this vehicle is in great demand. The popularity of sport utility vehicles (SUVs) has increased dramatically since the late 1970s, and SUVs are currently the fastest growing segment of the motor vehicle industry. Hoping to gain market share due to the popularity of the expanding SUV market, more and more manufacturers are adding SUVs to their vehicle lineup. One purpose of this study is to analyze the world of the SUV to determine why this vehicle has seen such a rapid increase in popularity. Another purpose is to examine the impact of SUVs on energy consumption, emissions, and highway safety.

  3. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  4. The Sport-Utility Vehicle: Debating Fuel-Economy Standards in Thermodynamics

    Science.gov (United States)

    Mayer, Shannon

    2008-01-01

    This paper describes a debate about national fuel-economy standards for sport-utility vehicles (SUVs) used as a foundation for exploring a public policy issue in the physical science classroom. The subject of automobile fuel economy benefits from a familiarity with thermodynamics, specifically heat engines, and is therefore applicable to a broad…

  5. Student Perceptions of University Physical Activity Instruction Courses Taught Utilizing Sport Education

    Science.gov (United States)

    Mohr, Derek J.; Sibley, Benjamin A.; Townsend, J. Scott

    2012-01-01

    Limited research exists on effective teaching methods in university physical activity instruction (PAI) program courses. The purpose of this study was to evaluate PAI courses taught utilizing a sport education curriculum and instructional model. The Individual Development and Educational Assessment (IDEA) teaching evaluation was administered to…

  6. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    20  Figure 3: Experimental Torque Measurements [28] ......................................................... 20  Figure 4: Flight...off during loiter operation it could be restarted by powering the motor with the clutch engaged. The torque necessary to do this was substantial and...design the team tested the clutch configuration. It was discovered for this experiment that the clutch could withstand the torque , but the motor was

  7. Software architecture for hybrid electrical/optical data center network

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    This paper presents hardware and software architecture based on Software-Defined Networking (SDN) paradigm and OpenFlow/NETCONF protocols for enabling topology management of hybrid electrical/optical switching data center networks. In particular, a development on top of SDN open-source controller...... OpenDaylight is presented to control an optical switching matrix based on Micro-Electro-Mechanical System (MEMS) technology.......This paper presents hardware and software architecture based on Software-Defined Networking (SDN) paradigm and OpenFlow/NETCONF protocols for enabling topology management of hybrid electrical/optical switching data center networks. In particular, a development on top of SDN open-source controller...

  8. Competitive Balance and Revenue Sharing in Sports Leagues with Utility-Maximizing Teams

    OpenAIRE

    Helmut Dietl; Martin Grossmann; Markus Lang

    2010-01-01

    This paper develops a contest model of a professional sports league in which clubs maximize a weighted sum of profits and wins (utility maximization). The model analyzes how more win-orientated behavior of certain clubs affects talent investments, competitive balance and club profits. Moreover, in contrast to traditional models, we show that revenue sharing does not always reduce investment incentives due to the dulling effect. We identify a new effect of revenue sharing called the "sharpenin...

  9. United Parcel Service Evaluates Hybrid Electric Delivery Vans (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-02-01

    This fact sheet describes how the National Renewable Energy Laboratory's Fleet Test and Evaluation team evaluated the 12-month, in-service performance of six Class 4 hybrid electric delivery vans - fueled by regular diesel - and six comparable conventional diesel vans operated by the United Parcel Service.

  10. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    OpenAIRE

    Jia-Shiun Chen

    2015-01-01

    Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs) ar...

  11. Route-Based Control of Hybrid Electric Vehicles: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J. D.

    2008-01-01

    Today's hybrid electric vehicle controls cannot always provide maximum fuel savings over all drive cycles. Route-based controls could improve HEV fuel efficiency by 2%-4% and help save nearly 6.5 million gallons of fuel annually.

  12. Direction and Policies Needed to Support Hybrid Electric Car Research

    Directory of Open Access Journals (Sweden)

    Ridwan Arief Subekti

    2012-07-01

    Full Text Available The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the problems and finds the solutions to prevent the same failure of electric car commercialization process from happening to hybrid electric car . This study was done by collecting and analyzing the primary and secondary data through interviews, discussing electric hybrid car with stakeholders, and examining earlier study results and regulations. Based on this study, several policies to support sustainability research of hybrid electric car were proposed. Some recommendations were the making of national roadmap and regulation for the usage of hybrid electric car on the road. For policy makers at LIPI, a research focus, research coordination, and pre-commercialization program were recommended.

  13. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  14. Adaptive powertrain control for plugin hybrid electric vehicles

    Science.gov (United States)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  15. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  16. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  17. 2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Shirk; Tyler Gray; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  18. Adaptive powertrain control for plugin hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kedar-Dongarkar, Gurunath; Weslati, Feisel

    2013-10-15

    A powertrain control system for a plugin hybrid electric vehicle. The system comprises an adaptive charge sustaining controller; at least one internal data source connected to the adaptive charge sustaining controller; and a memory connected to the adaptive charge sustaining controller for storing data generated by the at least one internal data source. The adaptive charge sustaining controller is operable to select an operating mode of the vehicle's powertrain along a given route based on programming generated from data stored in the memory associated with that route. Further described is a method of adaptively controlling operation of a plugin hybrid electric vehicle powertrain comprising identifying a route being traveled, activating stored adaptive charge sustaining mode programming for the identified route and controlling operation of the powertrain along the identified route by selecting from a plurality of operational modes based on the stored adaptive charge sustaining mode programming.

  19. Multivariable speed synchronisation for a parallel hybrid electric vehicle drivetrain

    Science.gov (United States)

    Alt, B.; Antritter, F.; Svaricek, F.; Schultalbers, M.

    2013-03-01

    In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results.

  20. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    P. Suntharalingam

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  1. Unregulated emissions from light-duty hybrid electric vehicles

    Science.gov (United States)

    Suarez-Bertoa, R.; Astorga, C.

    2016-07-01

    The number of registrations of light duty hybrid electric vehicles has systematically increased over the last years and it is expected to keep growing. Hence, evaluation of their emissions becomes very important in order to be able to anticipate their impact and share in the total emissions from the transport sector. For that reason the emissions from a Euro 5 compliant hybrid electric vehicle (HV2) and a Euro 5 plug-in hybrid electric vehicle (PHV1) were investigated with special interest on exhaust emissions of ammonia, acetaldehyde and ethanol. Vehicles were tested over the World harmonized Light-duty Test Cycle (WLTC) at 23 and -7 °C using two different commercial fuels E5 and E10 (gasoline containing 5% and 10% vol/vol of ethanol, respectively). PHV1 resulted in lower emissions than HV2 due to the pure electric strategy used by the former. PHV1 and HV2 showed lower regulated emissions than conventional Euro 5 gasoline light duty vehicles. However, emissions of ammonia (2-8 and 6-15 mg km-1 at 22 and -7 °C, respectively), ethanol (0.3-0.8 and 2.6-7.2 mg km-1 at 22 and -7 °C, respectively) and acetaldehyde (∼0.2 and 0.8-2.7 mg km-1 at 22 and -7 °C, respectively) were in the same range of those recently reported for conventional gasoline light duty vehicles.

  2. sports

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    正Nowadays,high school students hold different opinions about after-class activities.There are two quite different phenomenonena.Some students are crazy about sports and some other activities.They spend much time in joining the outdoor activities and varies of groups,and also,making new friends.However,they pay a little attention to their studies.

  3. Simulating Study on Drive System Performance for Hybrid Electric Bus Based on ADVISOR

    Directory of Open Access Journals (Sweden)

    Wang Xingxing

    2017-01-01

    Full Text Available Hybrid electric bus has a number of advantages when compared with ordinary passenger cars, but in the dynamic matching and the vehicle performance are difficult to detect, thus limits its development process. In this paper, combined with the actual models, the hybrid electric bus module parameters were modified in the software of ADVISOR (Advanced Vehicle Simulator, main including: module of the vehicle, the wheel module, motor module, a battery module and engine module, three kinds of bus models for A, B and C were established, and the related performance that need to be analyzed was set up, such as acceleration, gradability, emissions and energy utilization and so on, in order to ensure the vehicle running in the same environment and convenient for comparison, a fixed vehicle driving cycles was chose, then the simulation results was analyzed, and the various performance was compared with the dynamic indicators and economic indicators which determined by referencing of traditional city bus standard and each other, and finally, the performance optimal model of B was chose out which can meet the demand, its related performance parameters of the simulation results are as follows: the best gradability is 26%, maximum speed is 72.7km/h, maximum acceleration is 1.7m/s2, 0~50km/h acceleration time is 9.5s and fuel consumption is 25L/km.

  4. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  5. The research of controller area network on hybrid electrical vehicle

    Institute of Scientific and Technical Information of China (English)

    Wu Hongxing; Song Liwei; Kou Baoquan; Cheng Shukang

    2006-01-01

    It is of increasing importance to design and implement vehicle networks for transferring information between electrical control units on Hybrid Electrical Vehicle (HEV). This paper presents a scheme of using Controller Area Network (CAN) technology to realize communication and datasharing between the electrical units on the HEV. The principle and communication protocol of Electrical Control Units (ECU) CAN node are introduced. By considering different sensitivity of the devices to the latency of data transportation, a new design procedure is proposed for the purpose of simplifying network codes and wiring harness, reducing assembly space and weight, improving assembly efficiency, and enhancing fault-diagnose in auto networks.

  6. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Lee Kenneth [Idaho National Laboratory

    2017-03-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  7. A Matlab—Based Simulation for Hybrid Electric Motorcycle

    Institute of Scientific and Technical Information of China (English)

    邵定国; 李永斌; 汪信尧; 江建中

    2003-01-01

    This paper presents a simulation and modeling package based on Matlab for a parallel hybrid electric motorcycle (HEM).The package consists of several main detailed models: internal combustion engine (ICE), motor, continuously variable transmission(CVT), battery, energy management system (EMS) etc. Each component is built as a library, and can be connected together accord-ing to the parallel HEM's topology. Simulation results, such as ICE power demand, motor power demand, battery instantaneous state-of-charge (SOC), pollution emissions etc. Are given and discussed. Lastly experimental data verify our simulation results.

  8. Plug-In Hybrid Electric Vehicle Penetration Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Patrick J.

    2008-04-03

    This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

  9. Systems Engineering Technology Readiness Assessment of Hybrid-Electric Technologies for Tactical Wheeled Vehicles

    Science.gov (United States)

    2014-09-01

    Department of Energy. 2007. Energy Efficiency and Renewable Energy. “Freedom CAR and vehicle technology program; Plug-In hybrid- electric vehicle R&D Plan...ENGINEERING TECHNOLOGY READINESS ASSESSMENT OF HYBRID- ELECTRIC TECHNOLOGIES FOR TACTICAL WHEELED VEHICLES by Eddie E. McCown September 2014 Thesis...HYBRID- ELECTRIC TECHNOLOGIES FOR TACTICAL WHEELED VEHICLES 5. FUNDING NUMBERS 6. AUTHOR(S) Eddie E. McCown 7. PERFORMING ORGANIZATION NAME(S) AND

  10. Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suction

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2014-08-01

    Full Text Available The high demand for new and improved aerodynamic drag reduction devices has led to the invention of flow control mechanisms and continuous suction is a promising strategy that does not have major impact on vehicle geometry. The implementation of this technique on sport utility vehicles (SUV requires adequate choice of the size and location of the opening as well as the magnitude of the boundary suction velocity. In this paper we introduce a new methodology to identifying these parameters for maximum reduction in aerodynamic drag. The technique combines automatic modeling of the suction slit, computational fluid dynamics (CFD and a global search method using orthogonal arrays. It is shown that a properly designed suction mechanism can reduce drag by up to 9%..

  11. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  12. SDP Policy Iteration-Based Energy Management Strategy Using Traffic Information for Commuter Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaohong Jiao

    2014-07-01

    Full Text Available This paper demonstrates an energy management method using traffic information for commuter hybrid electric vehicles. A control strategy based on stochastic dynamic programming (SDP is developed, which minimizes on average the equivalent fuel consumption, while satisfying the battery charge-sustaining constraints and the overall vehicle power demand for drivability. First, according to the sample information of the traffic speed profiles, the regular route is divided into several segments and the statistic characteristics in the different segments are constructed from gathered data on the averaged vehicle speeds. And then, the energy management problem is formulated as a stochastic nonlinear and constrained optimal control problem and a modified policy iteration algorithm is utilized to generate a time-invariant state-dependent power split strategy. Finally, simulation results over some driving cycles are presented to demonstrate the effectiveness of the proposed energy management strategy.

  13. Economical launching and accelerating control strategy for a single-shaft parallel hybrid electric bus

    Science.gov (United States)

    Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu

    2016-08-01

    This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.

  14. OPTIMIZATION APPROACH FOR HYBRID ELECTRIC VEHICLE POWERTRAIN DESIGN

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhengli; Zhang Jianwu; Yin Chengliang

    2005-01-01

    According to bench test results of fuel economy and engine emission for the real powertrain system of EQ7200HEV car, a 3-D performance map oriented quasi-linear model is developed for the configuration of the powertrain components such as internal combustion engine, traction electric motor, transmission, main retarder and energy storage unit. A genetic algorithm based on optimization procedure is proposed and applied for parametric optimization of the key components by consideration of requirements of some driving cycles. Through comparison of numerical results obtained by the genetic algorithm with those by traditional optimization methods, it is shown that the present approach is quite effective and efficient in emission reduction and fuel economy for the design of the hybrid electric car powertrain.

  15. Fuel optimal control of parallel hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    Jinhuan PU; Chenliang YIN; Jianwu ZHANG

    2008-01-01

    A mathematical model for fuel optimal control and its corresponding dynamic programming (DP) recurs-ive equation were established for an existing parallel hybrid electric vehicle (HEV). Two augmented cost func-tions for gear shifting and engine stop-starting were designed to limit their frequency. To overcome the prob-lem of numerical DP dimensionality, an algorithm to restrict the exploring region was proposed. The algorithm significantly reduced the computational complexity. The system model was converted into real-time simulation code by using MATLAB/RTW to improve computation efficiency. Comparison between the results of a chassis dynamometer test, simulation, and DP proves that the proposed method can compute the performance limita-tion of the HEV within an acceptable time period and can be used to evaluate and optimize the control strategy.

  16. 2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  17. ENERGY MANAGEMENT STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLES

    Institute of Scientific and Technical Information of China (English)

    Pu Jinhuan; Yin Chengliang; ZhangJianwu

    2005-01-01

    Energy management strategy (EMS) is the core of the real-time control algorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach with incorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize the engine fuel consumption and maintain the battery state of charge (SOC) in its operation range, while satisfying the vehicle performance and drivability requirements. The hybrid powertrain bench test is carried out to collect data of the engine, motor and battery pack, which are used in the EMS to control the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulink environment according to the bench test results. Simulation results are presented for behaviors of the engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid car control system and validated by vehicle field tests.

  18. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  19. Toxicological Investigation of Acute Carbon Monoxide Poisoning in Four Occupants of a Fuming Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    Martin Nnoli

    2014-11-01

    Full Text Available Background: This toxicological investigation involves a report on the death of four occupants of a sport utility vehicle on one of the major busy Federal roads of Nigeria where they were held for up to three hours in a traffic jam while the car was steaming. Methods: Autopsy was executed using the standard procedure and toxicological analysis was done using simple spectrophotometric method to establish the level of carboxyhaemoglobin (HbCO in peripheral blood in the four occupants. Results: The autopsy report indicated generalized cyanosis, sub-conjuctival hemorrhages, marked laryngo-trachea edema with severe hyperemia with frothy fluid discharges characteristic of carbon monoxide poisoning. Toxicological report of the level of HbCO in part per million (ppm in the peripheral blood of the four occupants was A= 650 ppm; B= 500 ppm; C= 480 ppm, and D= 495 ppm against the maximum permissible level of 50 ppm. Conclusion: The sudden death of the four occupants was due to excessive inhalation of the carbon monoxide gas from the exhaust fumes leaking into the cabin of the car. The poor road network, numerous potholes, and traffic jam in most of roads in Nigeria could have exacerbated a leaky exhaust of the smoky second hand SUV car leading to the acute carbon monoxide poisoning.

  20. AN ANALYSIS OF THE IMPACT OF SPORTS UTILITY VEHICLES IN THE UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.C.

    2000-08-16

    During the 1990s, sport utility vehicles (SUVs) became the fastest growing segment of the auto industry, especially those in the medium-size category. In 1999, SUV sales reached almost 19% of the total light vehicle market and the mix of SUVs on the road, as measured by registration data, was about 8.7%. This immense popularity has been called by some a passing fad--vehicle purchases based on the SUV ''image''. But the continued yearly increases in SUV sales seem to indicate a more permanent trend. Additional explanations for SUV popularity include the general economic well being in the United States, a perception of safety, and ''utility''. Generally larger and heavier than the typical automobile, SUVs require more fuel per mile to operate and produce greater amounts of pollutants. They are also driven further annually than are automobiles of the same vintage, a fact that exacerbates the fuel-use and emission problems. Although buyers believe that SUVs are safer than automobiles which they are in some cases, SUVs are more prone to roll-overs than are automobiles. In addition, SUVs, with their higher bumpers and greater weight, may be a threat to other vehicles on the highway, especially in side-impact crashes. With sales projected to grow to over 3 million units per year beginning in 2001, SUVs show no sign of decreasing in popularity. These vehicles are used primarily for general mobility, rather than off-road activities. An emphasis on better fuel economy and improved emissions control could address environmental and oil dependency concerns. In fact, recently, two vehicle manufacturers announced intentions of improving the fuel economy of their SUVs in the next few years. Also, tests simulating crashes involving automobiles and SUVs could provide valuable data for identifying potential safety design issues. It is clear that automobiles and SUVs will be sharing the highways for years to come.

  1. Linear engine development for series hybrid electric vehicles

    Science.gov (United States)

    Toth-Nagy, Csaba

    This dissertation argues that diminishing oil reserves, concern over global climate change, and desire to improve ambient air quality all demand the development of environment-friendly personal transportation. In certain applications, series hybrid electric vehicles offer an attractive solution to reducing fuel consumption and emissions. Furthermore, linear engines are emerging as a powerplant suited to series HEV applications. In this dissertation, a linear engine/alternator was considered as the auxiliary power unit of a range extender series hybrid electric vehicle. A prototype linear engine/alternator was developed, constructed and tested at West Virginia University. The engine was a 2-stroke, 2-cylinder, dual piston, direct injection, diesel engine. Experiment on the engine was performed to study its behavior. The study variables included mass of the translator, amount of fuel injected, injection timing, load, and stroke with operating frequency and mechanical efficiency as the basis of comparison. The linear engine was analyzed in detail and a simple simulation model was constructed to compare the trends of simulation with the experimental data and to expand on the area where the experimental data were lacking. The simulation was based on a simple and analytical model, rather than a detailed and intensely numerical one. The experimental and theoretical data showed similar trends. Increasing translator mass decreased the operating frequency and increased compression ratio. Larger mass and increased compression ratio improved the ability of the engine to sustain operation and the engine was able to idle on less fuel injected into the cylinder. Increasing the stroke length caused the operating frequency to drop. Increasing fueling or decreasing the load resulted in increased operating frequency. This projects the possibility of using the operating frequency as an input for feedback control of the engine. Injection timing was varied to investigate two different

  2. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R. H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering Science and Technology Division; Ayers, C. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering Science and Technology Division; Marlino, L. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Engineering Science and Technology Division; Chiasson, J. N. [Univ. of Tennessee, Knoxville, TN (United States); Burress, B. A. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200–1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) – Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design

  3. Economic Scheduling of Residential Plug-In (Hybrid Electric Vehicle (PHEV Charging

    Directory of Open Access Journals (Sweden)

    Maigha

    2014-03-01

    Full Text Available In the past decade, plug-in (hybrid electric vehicles (PHEVs have been widely proposed as a viable alternative to internal combustion vehicles to reduce fossil fuel emissions and dependence on petroleum. Off-peak vehicle charging is frequently proposed to reduce the stress on the electric power grid by shaping the load curve. Time of use (TOU rates have been recommended to incentivize PHEV owners to shift their charging patterns. Many utilities are not currently equipped to provide real-time use rates to their customers, but can provide two or three staggered rate levels. To date, an analysis of the optimal number of levels and rate-duration of TOU rates for a given consumer demographic versus utility generation mix has not been performed. In this paper, we propose to use the U.S. National Household Travel Survey (NHTS database as a basis to analyze typical PHEV energy requirements. We use Monte Carlo methods to model the uncertainty inherent in battery state-of-charge and trip duration. We conclude the paper with an analysis of a different TOU rate schedule proposed by a mix of U.S. utilities. We introduce a centralized scheduling strategy for PHEV charging using a genetic algorithm to accommodate the size and complexity of the optimization.

  4. Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion

    Science.gov (United States)

    Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.

    2015-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.

  5. Computational analysis on plug-in hybrid electric motorcycle chassis

    Science.gov (United States)

    Teoh, S. J.; Bakar, R. A.; Gan, L. M.

    2013-12-01

    Plug-in hybrid electric motorcycle (PHEM) is an alternative to promote sustainability lower emissions. However, the PHEM overall system packaging is constrained by limited space in a motorcycle chassis. In this paper, a chassis applying the concept of a Chopper is analysed to apply in PHEM. The chassis 3dimensional (3D) modelling is built with CAD software. The PHEM power-train components and drive-train mechanisms are intergraded into the 3D modelling to ensure the chassis provides sufficient space. Besides that, a human dummy model is built into the 3D modelling to ensure the rider?s ergonomics and comfort. The chassis 3D model then undergoes stress-strain simulation. The simulation predicts the stress distribution, displacement and factor of safety (FOS). The data are used to identify the critical point, thus suggesting the chassis design is applicable or need to redesign/ modify to meet the require strength. Critical points mean highest stress which might cause the chassis to fail. This point occurs at the joints at triple tree and bracket rear absorber for a motorcycle chassis. As a conclusion, computational analysis predicts the stress distribution and guideline to develop a safe prototype chassis.

  6. Research on the Interior Sound Quality in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Liao Lian Ying

    2016-01-01

    Full Text Available Even the overall level of vehicle interior noise of hybrid electric vehicle (HEV reduced to a certain degree, the vibration and noise generated by the engine, motor, generator and power split have made greater effect on the vehicle interior sound quality in HEV. In order to research the feature of vehicle interior sound quality in HEV, the HEV is used to be the research object, the binaural noise sample of the driver when playing different kinds of music in the vehicle with the speed of sixty kilometers per hour is collected. ArtemiS is used to conduct frequency division processing, so as to obtain the relative weight of each frequency band and the overall noise. The tone, roughness and sharpness of sound quality subjective evaluation parameters are quantified, the SPSS is used to establish the linear regression model of the sample, and the best masking music tracks are found out. Then, the sound samples that contains the best music tracks and the simple vehicle interior noise are re-collected, the regression model and ArtemiS are used to predict the subjective evaluation value. The research results show that when adding the music, the tone degree rises and the lowering degree decreases, thus the disturbing degree reduces, which significantly improves the sound quality in the HEV.

  7. Stochastic Optimal Control of Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feiyan Qin

    2017-02-01

    Full Text Available Energy management strategies (EMSs in hybrid electric vehicles (HEVs are highly related to the fuel economy and emission performances. However, EMS constitutes a challenging problem due to the complex structure of a HEV and the unknown or partially known driving cycles. To meet this problem, this paper adopts a stochastic dynamic programming (SDP method for the EMS of a specially designed vehicle, a pre-transmission single-shaft torque-coupling parallel HEV. In this parallel HEV, the auto clutch output is connected to the transmission input through an electric motor, which benefits an efficient motor assist operation. In this EMS, demanded torque of driver is modeled as a one-state Markov process to represent the uncertainty of future driving situations. The obtained EMS has been evaluated with ADVISOR2002 over two standard government drive cycles and a self-defined one, and compared with a dynamic programming (DP one and a rule-based one. Simulation results have shown the real-time performance of the proposed approach, and potential vehicle performance improvement relative to the rule-based one.

  8. Cascade Control Solution for Traction Motor for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zsuzsa Preitl

    2007-10-01

    Full Text Available In this paper a hybrid electric vehicle is considered, which contains both aninternal combustion engine and an electric motor (EM. Without focusing on the othercomponents of the vehicle, the EM is treated in detail, both regarding modelling aspectsand control solutions.After a brief modelling of the plant, two cascade speed control solutions are presented: firsta classical PI+PI cascade control solution is presented. The control systems related totraction electric motors (used in vehicle traction must be able to cope with differentrequests, such as variation of the reference signal, load disturbances which depend on thetransport conditions and parametric disturbances regarding changes in the total mass ofthe vehicle. For this purpose, in the design of the speed controller (external loop a specificmethodology based on extension of the symmetrical optimum method is presented. Thecontrollers are developed using the Modulus–Optimum method for the inner loop, and theExtended Symmetrical Optimum Method, corrected based on the 2p-SO-method, for theouter loop (for a more efficient disturbance rejection.In order to force the behaviour of the system regarding the reference input, a correctionterm is introduced as a non-homogenous structured PI controller solution.Simulations were performed using numerical values taken from a real applicationconsisting in a hybrid vehicle prototype, showing satisfactory behaviour.

  9. Generator voltage stabilisation for series-hybrid electric vehicles.

    Science.gov (United States)

    Stewart, P; Gladwin, D; Stewart, J; Cowley, R

    2008-04-01

    This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.

  10. Seasonal variation in orthopedic health services utilization in Switzerland: The impact of winter sport tourism

    Directory of Open Access Journals (Sweden)

    Busato André

    2006-03-01

    Full Text Available Abstract Background Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Methods Using small area analysis, orthopedic hospital service areas (HSAo were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000–2002, n = 135'460 of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area and monthly analyses of admission rates were performed. Results Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Conclusion Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal

  11. Seasonal variation in orthopedic health services utilization in Switzerland: the impact of winter sport tourism.

    Science.gov (United States)

    Matter-Walstra, Klazien; Widmer, Marcel; Busato, André

    2006-03-03

    Climate- or holiday-related seasonality in hospital admission rates is well known for many diseases. However, little research has addressed the impact of tourism on seasonality in admission rates. We therefore investigated the influence of tourism on emergency admission rates in Switzerland, where winter and summer leisure sport activities in large mountain regions can generate orthopedic injuries. Using small area analysis, orthopedic hospital service areas (HSAo) were evaluated for seasonality in emergency admission rates. Winter sport areas were defined using guest bed accommodation rate patterns of guest houses and hotels located above 1000 meters altitude that show clear winter and summer peak seasons. Emergency admissions (years 2000-2002, n = 135'460) of local and nonlocal HSAo residents were evaluated. HSAo were grouped according to their area type (regular or winter sport area) and monthly analyses of admission rates were performed. Of HSAo within the defined winter sport areas 70.8% show a seasonal, summer-winter peak hospital admission rate pattern and only 1 HSAo outside the defined winter sport areas shows such a pattern. Seasonal hospital admission rates in HSAo in winter sport areas can be up to 4 times higher in winter than the intermediate seasons, and they are almost entirely due to admissions of nonlocal residents. These nonlocal residents are in general -and especially in winter- younger than local residents, and nonlocal residents have a shorter length of stay in winter sport than in regular areas. The overall geographic distribution of nonlocal residents admitted for emergencies shows highest rates during the winter as well as the summer in the winter sport areas. Small area analysis using orthopedic hospital service areas is a reliable method for the evaluation of seasonality in hospital admission rates. In Switzerland, HSAo defined as winter sport areas show a clear seasonal fluctuation in admission rates of only nonlocal residents, whereas

  12. Hybrid-Electric and All-Electric Rotorcraft Analysis and Tool Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase I effort ESAero will draw upon its knowledge of hybrid-electric propulsion system design and analysis for fixed wing aircraft to investigate the...

  13. Twelve-Month Evaluation of UPS Diesel Hybrid Electric Delivery Vans

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M.

    2009-12-01

    Results of an NREL study of a parallel hybrid electric-diesel propulsion system in United Parcel Service-operated delivery vans show that the hybrids had higher fuel economy than standard diesel vans.

  14. Investigative Research, FMECA and PHM Modeling of Hybrid-Electric Distributed Propulsion System Architectures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development with validation and demonstrations...

  15. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs

  16. STRUCTURE DEVELOPMENT AND SIMULATION OF PLUG-IN HYBRID ELECTRIC VEHICLE

    OpenAIRE

    A. A. Marozka; Yu. N. Petrenko

    2013-01-01

    Electric-drive vehicles (EDVs) have gained attention, especially in the context of growing concerns about global warming and energy security aspects associated with road transport. The main characteristic of EDVs is that the torque is supplied to the wheels by an electric motor that is powered either solely by a battery or in combination with an internal combustion engine (ICE). This covers hybrid electric vehicles (HEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles...

  17. A comparative study of hybrid electric vehicle fuel consumption over diverse driving cycles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Environmental pollution and declining resources of fossil fuels in recent years,have increased demand for better fuel economy and less pollution for ground transportation.Among the alternative solutions provided by researchers in recent decades,hybrid electric vehicles consisted of an internal combustion engine and an electric motor have been considered as a promising solution in the short-term.In the present study,fuel economy characteristics of a parallel hybrid electric vehicle are investigated by using ...

  18. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  19. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    OpenAIRE

    Shouliang Han; Shumei Cui; Liwei Song; Ching Chuen Chan

    2014-01-01

    The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM) is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not onl...

  20. Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Application

    Science.gov (United States)

    2006-06-13

    34Approved for public release: distribution is unlimited" Isolated Bidirectional DC-DC Converter for Hybrid Electric Vehicle Applications Sonya...requirements for DC-DC converters for electric and hybrid vehicles . This paper introduces a bidirectional, isolated DC-DC converter for medium power...the design and build of a medium power DC-DC converter . Key words: Power Converter , DC-DC, Hybrid Electric Vehicle , Battery, Galvanically Isolation

  1. Hybrid Electric Vehicle Experimental Model with CAN Network Real Time Control

    Directory of Open Access Journals (Sweden)

    RATOI, M.

    2010-05-01

    Full Text Available In this paper an experimental model with a distributed control system of a hybrid electrical vehicle is presented. A communication CAN network of high speed (1 Mbps assures a distributed control of the all components. The modeling and the control of different operating regimes are realized on an experimental test-bench of a hybrid electrical vehicle. The experimental results concerning the variations of the mains variables (currents, torques, speeds are presented.

  2. Energy storage specification requirements for hybrid-electric vehicle

    Science.gov (United States)

    Burke, A. F.

    1993-09-01

    A study has been made of energy storage unit requirements for hybrid-electric vehicles. The drivelines for these vehicles included both primary energy storage units and/or pulse power units. The primary energy storage units were sized to provide 'primary energy' ranges up to 60 km. The total power capability of the drivelines were such that the vehicles had 0 to 100 km/h acceleration times of 10 to 12 s. The power density requirements for primary energy storage devices to be used in hybrid vehicles are much higher than that for devices to be used in electric vehicles. The energy density and power density requirements for pulse-power devices for hybrid vehicles, are not much different than those in an electric vehicle. The cycle life requirements for primary energy-storage units for hybrid vehicles are about double that for electric vehicles, because of the reduced size of the storage units in the hybrid vehicles. The cycle life for pulse-power devices for hybrid vehicles is about the same as for electric vehicles having battery load leveling. Because of the need for additional components in the hybrid driveline, the cost of the energy storage units in hybrid vehicles should be much less (at least a factor of two) than those in electric vehicles. There are no presently available energy storage units that meet all the specifications for hybrid vehicle applications, but ultracapacitors and bipolar lead-acid batteries are under development that have the potential for meeting them. If flywheel systems having a mechanical system energy density of 40 to 50 W(center dot)h/kg and an electrical system power density of 2 to 3 kw/kg can be developed, they would have the potential of meeting specifications for primary storage and pulse power units.

  3. Intelligent emission-sensitive routing for plugin hybrid electric vehicles.

    Science.gov (United States)

    Sun, Zhonghao; Zhou, Xingshe

    2016-01-01

    The existing transportation sector creates heavily environmental impacts and is a prime cause for the current climate change. The need to reduce emissions from this sector has stimulated efforts to speed up the application of electric vehicles (EVs). A subset of EVs, called plug-in hybrid electric vehicles (PHEVs), backup batteries with combustion engine, which makes PHEVs have a comparable driving range to conventional vehicles. However, this hybridization comes at a cost of higher emissions than all-electric vehicles. This paper studies the routing problem for PHEVs to minimize emissions. The existing shortest-path based algorithms cannot be applied to solving this problem, because of the several new challenges: (1) an optimal route may contain circles caused by detour for recharging; (2) emissions of PHEVs not only depend on the driving distance, but also depend on the terrain and the state of charge (SOC) of batteries; (3) batteries can harvest energy by regenerative braking, which makes some road segments have negative energy consumption. To address these challenges, this paper proposes a green navigation algorithm (GNA) which finds the optimal strategies: where to go and where to recharge. GNA discretizes the SOC, then makes the PHEV routing problem to satisfy the principle of optimality. Finally, GNA adopts dynamic programming to solve the problem. We evaluate GNA using synthetic maps generated by the delaunay triangulation. The results show that GNA can save more than 10 % energy and reduce 10 % emissions when compared to the shortest path algorithm. We also observe that PHEVs with the battery capacity of 10-15 KWh detour most and nearly no detour when larger than 30 KWh. This observation gives some insights when developing PHEVs.

  4. Research of Ant Colony Optimized Adaptive Control Strategy for Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2014-01-01

    Full Text Available Energy management control strategy of hybrid electric vehicle has a great influence on the vehicle fuel consumption with electric motors adding to the traditional vehicle power system. As vehicle real driving cycles seem to be uncertain, the dynamic driving cycles will have an impact on control strategy’s energy-saving effect. In order to better adapt the dynamic driving cycles, control strategy should have the ability to recognize the real-time driving cycle and adaptively adjust to the corresponding off-line optimal control parameters. In this paper, four types of representative driving cycles are constructed based on the actual vehicle operating data, and a fuzzy driving cycle recognition algorithm is proposed for online recognizing the type of actual driving cycle. Then, based on the equivalent fuel consumption minimization strategy, an ant colony optimization algorithm is utilized to search the optimal control parameters “charge and discharge equivalent factors” for each type of representative driving cycle. At last, the simulation experiments are conducted to verify the accuracy of the proposed fuzzy recognition algorithm and the validity of the designed control strategy optimization method.

  5. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.

    Published data from various sources are used to perform economic and environmental comparisons of four types of vehicles: conventional, hybrid, electric and hydrogen fuel cell. The production and utilization stages of the vehicles are taken into consideration. The comparison is based on a mathematical procedure, which includes normalization of economic indicators (prices of vehicles and fuels during the vehicle life and driving range) and environmental indicators (greenhouse gas and air pollution emissions), and evaluation of an optimal relationship between the types of vehicles in the fleet. According to the comparison, hybrid and electric cars exhibit advantages over the other types. The economic efficiency and environmental impact of electric car use depends substantially on the source of the electricity. If the electricity comes from renewable energy sources, the electric car is advantageous compared to the hybrid. If electricity comes from fossil fuels, the electric car remains competitive only if the electricity is generated on board. It is shown that, if electricity is generated with an efficiency of about 50-60% by a gas turbine engine connected to a high-capacity battery and an electric motor, the electric car becomes advantageous. Implementation of fuel cells stacks and ion conductive membranes into gas turbine cycles permits electricity generation to increase to the above-mentioned level and air pollution emissions to decrease. It is concluded that the electric car with on-board electricity generation represents a significant and flexible advance in the development of efficient and ecologically benign vehicles.

  6. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  7. Ecodriving in hybrid electric vehicles--Exploring challenges for user-energy interaction.

    Science.gov (United States)

    Franke, Thomas; Arend, Matthias Georg; McIlroy, Rich C; Stanton, Neville A

    2016-07-01

    Hybrid electric vehicles (HEVs) can help to reduce transport emissions; however, user behaviour has a significant effect on the energy savings actually achieved in everyday usage. The present research aimed to advance understanding of HEV drivers' ecodriving strategies, and the challenges for optimal user-energy interaction. We conducted interviews with 39 HEV drivers who achieved above-average fuel efficiencies. Regression analyses showed that technical system knowledge and ecodriving motivation were both important predictors for ecodriving efficiency. Qualitative data analyses showed that drivers used a plethora of ecodriving strategies and had diverse conceptualisations of HEV energy efficiency regarding aspects such as the efficiency of actively utilizing electric energy or the efficiency of different acceleration strategies. Drivers also reported several false beliefs regarding HEV energy efficiency that could impair ecodriving efforts. Results indicate that ecodriving support systems should facilitate anticipatory driving and help users locate and maintain drivetrain states of maximum efficiency. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. A Single-Degree-of-Freedom Energy Optimization Strategy for Power-Split Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2017-07-01

    Full Text Available This paper presents a single-degree-of-freedom energy optimization strategy to solve the energy management problem existing in power-split hybrid electric vehicles (HEVs. The proposed strategy is based on a quadratic performance index, which is innovatively designed to simultaneously restrict the fluctuation of battery state of charge (SOC and reduce fuel consumption. An extended quadratic optimal control problem is formulated by approximating the fuel consumption rate as a quadratic polynomial of engine power. The approximated optimal control law is obtained by utilizing the solution properties of the Riccati equation and adjoint equation. It is easy to implement in real-time and the engineering significance is explained in details. In order to validate the effectiveness of the proposed strategy, the forward-facing vehicle simulation model is established based on the ADVISOR software (Version 2002, National Renewable Energy Laboratory, Golden, CO, USA. The simulation results show that there is only a little fuel consumption difference between the proposed strategy and the Pontryagin’s minimum principle (PMP-based global optimal strategy, and the proposed strategy also exhibits good adaptability under different initial battery SOC, cargo mass and road slope conditions.

  9. Evaluation of the Plug-in Hybrid Electric Vehicle Considering Power Generation Best Mix

    Science.gov (United States)

    Shinoda, Yukio; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    In transport section, it is necessary to reduce amount of CO2 emissions and Oil dependence. Bio fuels and Fuel Cell Vehicle (FCV), Electric Vehicle (EV) and Plug-in Hybrid Electric Vehicle (PHEV) are expected to reduce CO2 emissions and Oil dependence. We focus on PHEV. PHEV can reduce total energy Consumptions because of its high efficiency and can run with both oil and electricity. Introduction of PHEV reduces oil consumptions, however it also increases electricity demands. Therefore we must evaluate PHEV's CO2 reduction potential, not only in transport section but also in power grid section. To take into account of the distribution of the daily travel distance is also very important. All energy charged in the PHEV's battery cannot always be used. That influences the evaluation. We formulate the total model that combines passenger car model and power utility grid model, and we also consider the distribution of the daily travel distance. With this model, we show the battery cost per kWh at which PHEV begins to be introduced and oil dependence in passenger car section is to be reduced to 80%. We also show PHEV's CO2 reduction potentials and effects on the power supply system.

  10. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, Robert H [ORNL; Ayers, Curtis William [ORNL; Chiasson, J. N. [University of Tennessee, Knoxville (UTK); Burress, Timothy A [ORNL; Marlino, Laura D [ORNL

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  11. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N. (U Tennessee-Knoxville); Burress, B.A. (ORISE); Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if

  12. Penalty for Fuel Economy - System Level Perspectives on the Reliability of Hybrid Electric Vehicles During Normal and Graceful Degradation Operation

    Science.gov (United States)

    2008-08-27

    the issue of system level reliability in hybrid electric vehicles from a quantitative point of view. It also introduces a quantitative meaning to the...internal combustion engine based vehicle and later transition of those to hybrid electric vehicles . The paper intends to drive the point that in HEV...Generally people tend to think only in terms of fuel economy and additional cost premium on vehicle price while discussing about hybrid electric

  13. 藏族传统体育项目的开发利用%The Development and Utilization of Tibetan Traditional Sports Project

    Institute of Scientific and Technical Information of China (English)

    张月娟

    2014-01-01

    运用文献资料法、专家访谈法等,从藏族传统体育资源的开发利用的视角对藏族传统体育项目内涵、特点进行研究,归结藏族传统体育项目丰富的文化内涵和健身功能,在科学理论的指导下合理有效地开发和利用藏族传统体育项目,为西藏人民体育文化事业的发展,为西藏高校体育课程开发利用提供借鉴。%By applying the method of documentary, expert interview and so on, from the angle of the development and utilization of Tibetan traditional sports resources, Tibetan traditional sports connotation and characteristics are studied. And abundant cultural connotation of Tibetan traditional sports and fitness function are summerised. Under the guidance of scientific theory, reasonablly and effectively developing and utilizing Tibetan traditional sports project, for the development of the Tibetan people’s sports culture, references for the development and utilization of Tibet colleges’ sports curriculum are provided.

  14. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    Science.gov (United States)

    Kong, Zehui; Zou, Yuan; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  15. Mathematical Modeling of the Three Phase Induction Motor Couple to DC Motor in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zulkarnain Lubis

    2009-01-01

    Full Text Available Problem statement: With emphasis on a cleaner environment and efficient operation, vehicles today rely more and more heavily on electrical power generation for success. Approach: Mathematical modeling the components of the HEV as the three phase induction motor couple to DC motor in hybrid electric vehicle was introduced. The controller of Induction Motor (IM was designed based on input-output feedback linearization technique. It allowed greater electrical generation capacity and the fuel economy and emissions benefits of hybrid electric automotive propulsion. Results: A typical series hybrid electric vehicle was modeled and investigated. Conclusion: Various tests, such as acceleration traversing ramp and fuel consumption and emission were performed on the proposed model of 3 phase induction motor coupler DC motor in electric hybrid vehicles drive.

  16. Predictive control strategies for energy saving of hybrid electric vehicles based on traffic light information

    Directory of Open Access Journals (Sweden)

    Kaijiang YU

    2015-10-01

    Full Text Available As the conventional control method for hybrid electric vehicle doesn’t consider the effect of known traffic light information on the vehicle energy management, this paper proposes a model predictive control intelligent optimization strategies based on traffic light information for hybrid electric vehicles. By building the simplified model of the hybrid electric vehicle and adopting the continuation/generalized minimum residual method, the model prediction problem is solved. The simulation is conducted by using MATLAB/Simulink platform. The simulation results show the effectiveness of the proposed model of the traffic light information, and that the proposed model predictive control method can improve fuel economy and the real-time control performance significantly. The research conclusions show that the proposed control strategy can achieve optimal control of the vehicle trajectory, significantly improving fuel economy of the vehicle, and meet the system requirements for the real-time optimal control.

  17. 电商模式下体育用品物流研究%Study on Sports Utility Logistics under E-commerce Environment

    Institute of Scientific and Technical Information of China (English)

    姜丽

    2015-01-01

    In this paper,we introduced the connotation of the sports utility logistics under the e-commerce environment and its difference from the traditional logistics modes,summarized the new demand for the sports utility logistics under the e-commerce environment,and at the end,further proposed the corresponding countermeasures to propel the development of the sports utility e-commerce logistics.%阐述了电商模式下体育用品物流的内涵及其与传统物流模式的区别,总结了电商模式下体育用品物流的新需求,进而提出了发展电商体育用品物流的相关对策.

  18. A New Buck-Boost Converter for a Hybrid-Electric Drive Stand

    Directory of Open Access Journals (Sweden)

    P. Mašek

    2009-01-01

    Full Text Available This paper describes work on the laboratory working stand for a hybrid-electric drive located in laboratory T2:H1-26.The basic idea is to operate the combustion engine in its optimal regime. In this regime the engine has the highest efficiency and minimal smoke exhaust. This optimal regime is only a small portion of its operation area. Because the engine has to operate in this area, it is necessary to add a new converter to the hybrid-electric stand. The new converter must be allowed to buck and boost and must operate as a current source in this regime. 

  19. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    Energy Technology Data Exchange (ETDEWEB)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  20. Electric-drive tractability indicator integrated in hybrid electric vehicle tachometer

    Science.gov (United States)

    Tamai, Goro; Zhou, Jing; Weslati, Feisel

    2014-09-02

    An indicator, system and method of indicating electric drive usability in a hybrid electric vehicle. A tachometer is used that includes a display having an all-electric drive portion and a hybrid drive portion. The all-electric drive portion and the hybrid drive portion share a first boundary which indicates a minimum electric drive usability and a beginning of hybrid drive operation of the vehicle. The indicated level of electric drive usability is derived from at least one of a percent battery discharge, a percent maximum torque provided by the electric drive, and a percent electric drive to hybrid drive operating cost for the hybrid electric vehicle.

  1. Dynamic simulation of urban hybrid electric vehicles; Dynamische Simulation von Stadthybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)

    2013-09-15

    As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)

  2. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting

  3. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance

  4. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    . Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.

  5. 混合动力车辆--现状与发展(英文)%Hybrid Electric Vehicles - Current Status and Future Trend

    Institute of Scientific and Technical Information of China (English)

    彭晖

    2015-01-01

    第一辆混合动力汽车(HEV)诞生100多年了。近15年来,技术手段趋于成熟,在美国、日本和中国有很多混合动力乘用车投入使用。然而,在中国和美国,混合动力乘用车的市场份额依然很小。为使混合动力车辆更加成功,与传统内燃机车辆相比具竞争性,混合动力车就必须价格更便宜、性能更好。本文回顾了混合动力车辆的现状与发展趋势,并讨论了几种可以运行多行星齿轮排、多模式和全轮驱动的技术方案,这些技术方案将有助于实现混合动力车辆性能突破。这些方案对于将混合动力车辆技术从乘用车扩展到轻型卡车(LTs)和运动型多用途汽车(SUVs)十分重要。%The ifrst hybrid electric vehicle (HEV) was built more than 100 years ago. Over the last 15 years, the technologies have matured and many hybrid passenger cars are offered in US, Japan and China. However their market shares are stil very smal in both China and in the US. To make HEVs more successful, they must become more affordable, and have better performance, so that they can become more competitive compared with the traditional powertrain vehicles that only run on international combustion engines. This paper reviews the current status, and discusses several technology concepts to enable multi-planetary gear, multi-mode and al-wheel drive operations. These concepts likely wil help to achieve the needed performance breakthrough. These concepts are especialy important to extend the HEV technologies beyond passenger cars, to light trucks (LTs) and Sport Utility Vehicles (SUVs).

  6. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  7. Households' Stories of Their Encounters with a Plug-In Hybrid Electric Vehicle

    Science.gov (United States)

    Caperello, Nicolette D.; Kurani, Kenneth S.

    2012-01-01

    One way to progress toward greenhouse gas reductions is for people to drive plug-in hybrid electric vehicles (PHEVs). Households in this study participated in a 4- to 6-week PHEV driving trial. A narrative of each household's encounter with the PHEV was constructed by the researchers from multiple in-home interviews, questionnaires completed by…

  8. Design, implementation, and experimental validation of optimal power split control for hybrid electric trucks

    NARCIS (Netherlands)

    Keulen, T. van; Mullem, D. van; Jager, B. van; Kessels, J.T.B.A.; Steinbuch, M.

    2012-01-01

    Hybrid electric vehicles require an algorithm that controls the power split between the internal combustion engine and electric machine(s), and the opening and closing of the clutch. Optimal control theory is applied to derive a methodology for a real-time optimal-control-based power split

  9. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module constru

  10. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  11. FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, R.

    2011-01-01

    This report summarizes the data obtained in a 12-month comparison of three gasoline hybrid electric delivery vehicles with three comparable diesel vehicles. The data show that there was no statistical difference between operating cost per mile of the two groups of vehicles. As expected, tailpipe emissions were considerably lower across all drive cycles for the gHEV than for the diesel vehicle.

  12. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module constru

  13. MATHEMATICAL MODEL OF HYBRID ELECTRIC VEHICLE HIGH-VOLTAGE BATTERY IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2010-01-01

    Full Text Available The mathematical model of hybrid electric vehicle NiMH high-voltage battery is obtained. This model allows to explore the interaction of vehicle tractive electric drive and high-voltage battery at the electric motive power motion and in the process of recuperation of braking kinetic energy.

  14. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Mourad, S.; Saakes, M.; Kluiters, C.E.; Schmal, D.; Have, P. ten

    1998-01-01

    A 80V bipolar lead-acid battery was constructed and tested using Hybrid Electric Vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7kW, equal to 1/5 of the total power profile required for the HEV studied, were run succesfully. Model calculations showed that the constructed 80V module,

  15. Research Experience with a Plug-In Hybrid Electric Vehicle: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Pesaran, A.; Kelly, K.; Thornton, M.; Nortman, P.

    2007-12-01

    This technical document reports on the exploratory research conducted by NREL on PHEV technology using a Toyota Prius that has been converted to a plug-in hybrid electric vehicle. The data includes both controlled dynamometer and on-road test results, particularly for hilly driving. The results highlight the petroleum savings and benefits of PHEV technology.

  16. Development and testing of a bipolar lead-acid battery for hybrid electric vehicles

    NARCIS (Netherlands)

    Saakes, M.; Kluiters, E.; Schmal, D.; Mourad, S.; Have, P.T.J.H. ten

    1999-01-01

    An 80 V bipolar lead-acid battery was constructed and tested using hybrid electric vehicle (HEV) drive cycles. Drive cycles with a peak power of 6.7 kW, equal to 1/5 of the total power profile required for the HEV studied, were run successfully. Model calculations showed that the 80 V module

  17. Energy management strategies for electric and plug-in hybrid electric vehicles

    CERN Document Server

    Williamson, Sheldon S

    2013-01-01

    Covers power electronics and motor drives for energy management of electric and plug-in hybrid electric vehicles Addresses specific issues and design solutions related to photovoltaic/grid based EV battery charging infrastructures and on-board battery management systems Emphasis on power electronic converter topologies for on-board battery management

  18. Development of an Auxiliary Power Unit Specification for Medium Duty Series Hybrid Electric Vehicles

    Science.gov (United States)

    1998-06-01

    As a part of the Defense Advanced Research Projects Agency (DARPA) program to develop hybrid and electric vehicles , a specification for medium duty...hybrid electric vehicles . Intended applications include medium duty commercial vehicles and buses. For the purposes of this specification an APU is

  19. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  20. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power u

  1. Optimal Policies for the Management of a Plug-In Hybrid Electric Vehicle Swap Station

    Science.gov (United States)

    2015-03-26

    news/ 1044161_the-worlds-only-electric-sports-car-2010- tesla -roadster. 60 7. Tesla motors , “Model X, Utility Meet Performance,” August 2014. Last... Tesla motors , “Road trips made easy,” 2014. Last accessed on November 20, 2014 at http://www.teslamotors.com/supercharger. 11. Tesla motors , “Battery...business/ rates/5_hour_charge.asp. 37. Tesla motors , “Specs,” 2014. Last accessed on November 23, 2014 at http: //www.teslamotors.com/models/specs. 38

  2. Dynamic Modeling and Control Strategy Optimization for a Hybrid Electric Tracked Vehicle

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2015-01-01

    Full Text Available A new hybrid electric tracked bulldozer composed of an engine generator, two driving motors, and an ultracapacitor is put forward, which can provide high efficiencies and less fuel consumption comparing with traditional ones. This paper first presents the terramechanics of this hybrid electric tracked bulldozer. The driving dynamics for this tracked bulldozer is then analyzed. After that, based on analyzing the working characteristics of the engine, generator, and driving motors, the power train system model and control strategy optimization is established by using MATLAB/Simulink and OPTIMUS software. Simulation is performed under a representative working condition, and the results demonstrate that fuel economy of the HETV can be significantly improved.

  3. MODELLING AND TORQUE TRACKING CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HYBRID ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    Mohd Sabirin Rahmat

    2013-06-01

    Full Text Available This paper presents a detailed derivation of a permanent magnet synchronous motor, which may be used as the electric power train for the simulation of a hybrid electric vehicle. A torque tracking control of the permanent magnet synchronous motor is developed by using an adaptive proportional-integral-derivative controller. Several tests such as step function, saw tooth function, sine wave function and square wave function were used in order to examine the performance of the proposed control structure. The effectiveness of the proposed controller was verified and compared with the same system under a PID controller and the desired control. The result of the observations shows that the proposed control structure proves to be effective in tracking the desired torque with a good response. The findings of this study will be considered in the design, optimisation and experimentation of series hybrid electric vehicle.

  4. An Investigation into Regenerative Braking Control Strategy for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    PENG Dong; YIN Cheng-liang; ZHANG Jian-wu

    2005-01-01

    Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.

  5. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...... the ranges of electric vehicles will increase and may even double for some family cars compared to the existing models. The average driving range in this report increases from around 150 km for existing electric vehicles to more than 200 km for near term electric vehicles (expected new models in 2012......In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected...

  6. Energy Management of Hybrid Electric Vehicles: 15 years of development at the Ohio State University

    Directory of Open Access Journals (Sweden)

    Rizzoni Giorgio

    2015-01-01

    Full Text Available The aim of this paper is to document 15 years of hybrid electric vehicle energy management research at The Ohio State University Center for Automotive Research (OSUCAR. Hybrid Electric Vehicle (HEV technology encompasses many diverse aspects. In this paper we focus exclusively on the evolution of supervisory control strategies for on-board energy management in HEV. We present a series of control algorithms that have been developed in simulation and implemented in prototype vehicles for charge-sustaining HEVs at OSU-CAR. These solutions span from fuzzy-logic control algorithms to more sophisticated model-based optimal control methods. Finally, methods developed for plug-in HEVs energy management are also discussed

  7. Substantial improvements of fuel economy. Potentials of electric and hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, K. [Technical Univ. of Denmark (Denmark); Nielsen, L.H. [Forskningscenter Risoe (Denmark)

    1996-12-01

    This paper evaluates the scope for improvement of the energy and environmental impacts of road traffic by means of electrical and hybrid electric propulsion. These technologies promise considerable improvements of the fuel economy of vehicles compared to the present vehicle types as well as beneficial effects for the energy and traffic system. The paper - based on work carried out in the project `Transportation fuel based on renewable energy`, funded by the National Energy Agency of Denmark and carried out by Department of Buildings and Energy, Technical University of Denmark and System Analysis Department, Risoe National Laboratory - assesses the potentials for reduction of the primary energy consumption and emissions, and points to the necessary technical development to reap these benefits. A case study concerning passenger cars is analysed by means of computer simulations, comparing electric and hybrid electric passenger car to an equivalent reference vehicle (a conventional gasoline passenger car). (au) 10 refs.

  8. Technology and implementation of electric vehicles and plug‐in hybrid electric vehicles

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Mathiesen, Brian Vad; Connolly, David

    2011-01-01

    In this report state of the art electric vehicle and plug‐in hybrid electric vehicle technology is presented to clarify the current and near term development. The current status of diffusion for electric vehicles in Denmark, Sweden and internationally is presented as well as the expected...... developments. Different business models and policies are also outlined along with a description of the on‐going research and demonstration projects. An analysis of the current and near term electric and plug‐in hybrid electric vehicles indicate that the cost for family cars will not change much, while...... the ranges of electric vehicles will increase and may even double for some family cars compared to the existing models. The average driving range in this report increases from around 150 km for existing electric vehicles to more than 200 km for near term electric vehicles (expected new models in 2012...

  9. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles: what in the future

    Energy Technology Data Exchange (ETDEWEB)

    Maggetto, G.; Van Mierlo, J. [Vrije Universiteit, Brussel (Belgium)

    2000-07-01

    In urban area, due to their beneficial effect on environment, electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are an important factor for improvement of traffic and more particular for a healthier environment. Moreover, the need for alternative energy source is growing and the price competition of alternatives against oil is becoming more and more realistic. Electric vehicles, hybrid electric vehicles and fuel cell electric vehicles are offering the best possibility for the use of new energy sources, because electricity can result from a transformation with high efficiency of these sources and is always used with the highest possible efficiency in systems with electric drives or components. Some basic considerations about the situation today and in a mid and long-term perspective, are presented together with the infrastructure developments.

  10. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  11. Development of hybrid electric vehicle powertrain test system based on virtue instrument

    Science.gov (United States)

    Xu, Yanmin; Guo, Konghui; Chen, Liming

    2017-05-01

    Hybrid powertrain has become the standard configuration of some automobile models. The test system of hybrid vehicle powertrain was developed based on virtual instrument, using electric dynamometer to simulate the work of engines, to test the motor and control unit of the powertrain. The test conditions include starting, acceleration, and deceleration. The results show that the test system can simulate the working conditions of the hybrid electric vehicle powertrain under various conditions.

  12. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    Science.gov (United States)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  13. Eco-efficiency optimization of Hybrid Electric Vehicle based on response surface method and genetic algorithm

    OpenAIRE

    Nzisabira, Jonathan; Louvigny, Yannick; Duysinx, Pierre

    2008-01-01

    The electric vehicles (EV) and sometimes the hybrid electric vehicle (HEV) technologies are environmentally very efficient but can not succeed on the market because of a smaller ability to satisfy customer’s requirements. Comparison of clean technologies in automotive and transportation systems has been measured using different analysis tools such as LCA (life cycle analysis). However, these instruments never account for the user’s satisfaction which partly explains the market acceptance prob...

  14. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    OpenAIRE

    Ho-Seong Lee; Moo-Yeon Lee

    2013-01-01

    This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2) for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experim...

  15. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  16. EMI Measurement and Mitigation Testing for the ARPA Hybrid Electric Vehicle Program

    Science.gov (United States)

    1996-08-27

    will be a more realistic approach for evaluating the EMI radiated from the electric vehicles . Vehicle Converter TyJ:!e OJ:!en-Field Screen Room...radiation from the electric vehicles considered were motor controllers, de to de converters , power steering motors, brake vacuum pumps, distribution...the ARPA Hybrid Electric Vehicle Program Anthony B. Bruno Engineering and Technical Services Department Oscar R. Zelaya Submarine Electromagnetic

  17. Differences in male and female injury severities in sport-utility vehicle, minivan, pickup and passenger car accidents.

    Science.gov (United States)

    Ulfarsson, Gudmundur F; Mannering, Fred L

    2004-03-01

    This research explores differences in injury severity between male and female drivers in single and two-vehicle accidents involving passenger cars, pickups, sport-utility vehicles (SUVs), and minivans. Separate multivariate multinomial logit models of injury severity are estimated for male and female drivers. The models predict the probability of four injury severity outcomes: no injury (property damage only), possible injury, evident injury, and fatal/disabling injury. The models are conditioned on driver gender and the number and type of vehicles involved in the accident. The conditional structure avoids bias caused by men and women's different reporting rates, choices of vehicle type, and their different rates of participation as drivers, which would affect a joint model of all crashes. We found variables that have opposite effects for the genders, such as striking a barrier or a guardrail, and crashing while starting a vehicle. The results suggest there are important behavioral and physiological differences between male and female drivers that must be explored further and addressed in vehicle and roadway design.

  18. The Development and Verification of a Novel ECMS of Hybrid Electric Bus

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2014-01-01

    Full Text Available This paper presents the system modeling, control strategy design, and hardware-in-the-loop test for a series-parallel hybrid electric bus. First, the powertrain mathematical models and the system architecture were proposed. Then an adaptive ECMS is developed for the real-time control of a hybrid electric bus, which is investigated and verified in a hardware-in-the-loop simulation system. The ECMS through driving cycle recognition results in updating the equivalent charge and discharge coefficients and extracting optimized rules for real-time control. This method not only solves the problems of mode transition frequently and improves the fuel economy, but also simplifies the complexity of control strategy design and provides new design ideas for the energy management strategy and gear-shifting rules designed. Finally, the simulation results show that the proposed real-time A-ECMS can coordinate the overall hybrid electric powertrain to optimize fuel economy and sustain the battery SOC level.

  19. Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System

    Science.gov (United States)

    2009-07-30

    Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System Jarrett Goodell and...TITLE AND SUBTITLE Investigation of Control Algorithms for Tracked Vehicle Mobility Load Emulation for a Combat Hybrid Electric Power System 5a...for ~ 22 ton tracked vehicle • Tested and Developed: – Motors, Generators, Batteries, Inverters, DC-DC Converters , Thermal Management, Pulse Power

  20. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis

  1. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full

  2. Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Lena Ahmadi

    2015-05-01

    Full Text Available One of the main challenges for widespread penetration of plug-in hybrid electric vehicles (PHEVs is their impact on the electricity grid. The energy sector must anticipate and prepare for this extra demand and implement long-term planning for electricity production. In this paper, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated into an electricity production planning model. A case study pertaining to Ontario energy planning is considered to optimize the value of the cost of the electricity over sixteen years (2014–2030. The objective function consists of the fuel costs, fixed and variable operating and maintenance costs, capital costs for new power plants, and the retrofit costs of existing power plants. Five different case studies are performed with different PHEVs penetration rates, types of new power plants, and CO2 emission constraints. Among all the cases studied, the one requiring the most new capacity, (~8748 MW, is assuming the base case with 6% reduction in CO2 in year 2018 and high PHEV penetration. The next highest one is the base case, plus considering doubled NG prices, PHEV medium penetration rate and no CO2 emissions reduction target with an increase of 34.78% in the total installed capacity in 2030. Furthermore, optimization results indicate that by not utilizing coal power stations the CO2 emissions are the lowest: ~500 tonnes compared to ~900 tonnes when coal is permitted.

  3. Optimal Energy Management Strategy of a Plug-in Hybrid Electric Vehicle Based on a Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2015-04-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs have been recognized as one of the most promising vehicle categories nowadays due to their low fuel consumption and reduced emissions. Energy management is critical for improving the performance of PHEVs. This paper proposes an energy management approach based on a particle swarm optimization (PSO algorithm. The optimization objective is to minimize total energy cost (summation of oil and electricity from vehicle utilization. A main drawback of optimal strategies is that they can hardly be used in real-time control. In order to solve this problem, a rule-based strategy containing three operation modes is proposed first, and then the PSO algorithm is implemented on four threshold values in the presented rule-based strategy. The proposed strategy has been verified by the US06 driving cycle under the MATLAB/Simulink software environment. Two different driving cycles are adopted to evaluate the generalization ability of the proposed strategy. Simulation results indicate that the proposed PSO-based energy management method can achieve better energy efficiency compared with traditional blended strategies. Online control performance of the proposed approach has been demonstrated through a driver-in-the-loop real-time experiment.

  4. Energy Management Strategy Implementation for Hybrid Electric Vehicles Using Genetic Algorithm Tuned Pontryagin’s Minimum Principle Controller

    Directory of Open Access Journals (Sweden)

    Aishwarya Panday

    2016-01-01

    Full Text Available To reduce apace extraction of natural resources, to plummet the toxic emissions, and to increase the fuel economy for road transportation, hybrid vehicles are found to be promising. Hybrid vehicles use batteries and engine to propel the vehicle which minimizes dependence on liquid fuels. Battery is an important component of hybrid vehicles and is mainly characterized by its state of charge level. Here a modified state of charge estimation algorithm is applied, which includes not only coulomb counting but also open circuit voltage, weighting factor, and correction factor to track the run time state of charge efficiently. Further, presence of battery and engine together needs a prevailing power split scheme for their efficient utilization. In this paper, a fuel efficient energy management strategy for power-split hybrid electric vehicle using modified state of charge estimation method is developed. Here, the optimal values of various governing parameters are firstly computed with genetic algorithm and then fed to Pontryagin’s minimum principle to decide the threshold power at which engine is turned on. This process makes the proposed method robust and provides better chance to improve the fuel efficiency. Engine efficient operating region is identified to operate vehicle in efficient regions and reduce fuel consumption.

  5. Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies

    Energy Technology Data Exchange (ETDEWEB)

    David Holloway

    2005-09-30

    Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the

  6. Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang

    2017-09-01

    Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.

  7. Electro-mechanical Braking Method in Hybrid Electric Vehicles Based on Feedback Control Theory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; YU Jun-quan; LIU Zheng-yu; CHANG Cheng

    2014-01-01

    In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, functions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What’s more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.

  8. Design of Engine-Generator Work Mode for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    何洪文; 余晓江; 孙逢春

    2004-01-01

    From electric circuit theory view, a system model of series hybrid electric vehicle was built which uses engine-generator and battery pack as its on-board energy source in this paper. Based on the analysis for the constant power work mode and constant bus voltage work mode of engine-generator, a third work mode was put forward which combined the advantages of constant power and constant bus voltage work modes. The new work mode is reasonable to keep the battery in good working conditions and to extend its life. Also the working conditions of engine can be bettered to get low pollution and high efficiency.

  9. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  10. Design tradeoff studies and sensitivity analysis, appendices B1 - B4. [hybrid electric vehicles

    Science.gov (United States)

    1979-01-01

    Documentation is presented for a program which separately computes fuel and energy consumption for the two modes of operation of a hybrid electric vehicle. The distribution of daily travel is specified as input data as well as the weights which the component driving cycles are given in each of the composite cycles. The possibility of weight reduction through the substitution of various materials is considered as well as the market potential for hybrid vehicles. Data relating to battery compartment weight distribution and vehicle handling analysis is tabulated.

  11. Modeling and Nonlinear Control of Electric Power Stage in Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Tahri, A.; El Fadil, H.; Guerrero, Josep M.;

    2014-01-01

    This paper deals with the problem of modeling and controlling the electric power stage of hybrid electric vehicle. The controlled system consists of a fuel cell (FC) as a main source, a supercapacitor as an auxiliary source, two DC-DC power converters, an inverter and a traction induction motor...... based approach is used to control the DC/DC power converters associated with the DC sources, the backstepping technique combined with the field oriented control strategy are invoked in order to control the induction motor. It is formally shown, using a theoretical analysis and simulation results...

  12. Development of Novel Bipolar Nickel/Metal Hydride Batteries for Hybrid Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    邓超; 史鹏飞; 张森

    2005-01-01

    This paper deals with the design and development of bipolar Ni/MH batteries. After optimizing the parameters of bipolar plates by adjusting electrode thickness and modifying the capacity ratio of two adjacent electrodes of a single cell, some bipolar Ni/MH stacks with a voltage of 6 V were assembled and examined. Electrochemical testing results showed that the bipolar battery has excellent high rate discharge and recharge characteristics, satisfying pulse discharge performance even in a low state of charge (SOC). Moreover, the battery showed good stability during pulse cycles as simulating hybrid electric vehicle working conditions. It would be a promising alternative for power storage system in hybrid electxic vehicles.

  13. Analysis of the Fuel Efficiency of a Hybrid Electric Drive with an Electric Power Splitter

    Directory of Open Access Journals (Sweden)

    D. Čundev

    2008-01-01

    Full Text Available This paper presents the results of an analysis of the fuel efficiency of a hybrid electric car drive, with an electric power splitter based on a double rotor synchronous permanent magnet generator. The results have been obtained through a precisely determined mathematical model and by simulating the characteristics of all essential values for the entire drive. This work is related to the experimental working stand for electric and hybrid car drive research, which has been developed at the Faculty of Electrical Engineering (FEE at CTU in Prague. 

  14. Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs

    Directory of Open Access Journals (Sweden)

    Tobias Nüesch

    2014-02-01

    Full Text Available This paper presents a novel method to solve the energy management problem for hybrid electric vehicles (HEVs with engine start and gearshift costs. The method is based on a combination of deterministic dynamic programming (DP and convex optimization. As demonstrated in a case study, the method yields globally optimal results while returning the solution in much less time than the conventional DP method. In addition, the proposed method handles state constraints, which allows for the application to scenarios where the battery state of charge (SOC reaches its boundaries.

  15. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, Robert H [ORNL; Hsu, John S [ORNL; Starke, Michael R [ORNL

    2006-09-01

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  16. Barriers to the Application of High-Temperature Coolants in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.; Staunton, M.R.; Starke, M.R.

    2006-09-30

    This study was performed by the Oak Ridge National Laboratory (ORNL) to identify practical approaches, technical barriers, and cost impacts to achieving high-temperature coolant operation for certain traction drive subassemblies and components of hybrid electric vehicles (HEV). HEVs are unique in their need for the cooling of certain dedicated-traction drive subassemblies/components that include the electric motor(s), generators(s), inverter, dc converter (where applicable), and dc-link capacitors. The new coolant system under study would abandon the dedicated 65 C coolant loop, such as used in the Prius, and instead rely on the 105 C engine cooling loop. This assessment is important because automotive manufacturers are interested in utilizing the existing water/glycol engine cooling loop to cool the HEV subassemblies in order to eliminate an additional coolant loop with its associated reliability, space, and cost requirements. In addition, the cooling of power electronic devices, traction motors, and generators is critical in meeting the U.S. Department of Energy (DOE) FreedomCAR and Vehicle Technology (FCVT) goals for power rating, volume, weight, efficiency, reliability, and cost. All of these have been addressed in this study. Because there is high interest by the original equipment manufacturers (OEMs) in reducing manufacturing cost to enhance their competitive standing, the approach taken in this analysis was designed to be a positive 'can-do' approach that would be most successful in demonstrating the potential or opportunity of relying entirely on a high-temperature coolant system. Nevertheless, it proved to be clearly evident that a few formidable technical and cost barriers exist and no effective approach for mitigating the barriers was evident in the near term. Based on comprehensive thermal tests of the Prius reported by ORNL in 2005 [1], the continuous ratings at base speed (1200 rpm) with different coolant temperatures were projected from

  17. Intelligent Energy Management Strategy for a Separated-Axle Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Naser Fallahi

    2014-03-01

    Full Text Available Hybrid electric vehicles (HEV in addition to provide the benefits of electric vehicles could satisfy consumers for some performances of conventional internal combustion engine (ICE vehicles such as acceleration and long range. On this way, suitable energy optimization strategies should be employed to get desired efficiency, less fuel consumption and pollution. One of the favorite and simple configurations of HEVs is parallel type. A student team at University of Kashan, IRAN have designed and manufactured Shaheb 2 hybrid electric vehicle. It is a separated-axle (or Through-to-Road (TTR parallel HEV type based on Pride platform. Employed energy management in Shaheb 2 is on/off strategy and three modes; motor, engine and hybrid have been implemented. This paper investigates the modeling of separated-axle (or TTR parallel type of HEV in ADVISOR software and then evaluates two control strategies for Shaheb 2; on/off strategy and an intelligent control based on fuzzy logic. On this way, maximizing the engine is considered as objective function. The simulation results indicate that the fuzzy strategy leads to less fuel consumption and lower pollution for given UDDS driving cycle rather than on/off strategy for Shaheb 2.

  18. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

    Science.gov (United States)

    Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

    2012-04-01

    The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

  19. Development and Simulation of a Type of Four-Shaft ECVT for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-02-01

    Full Text Available In hybrid electric vehicles with power-split configurations, the engine can be decoupled from the wheel and operated with improved fuel economy, while the entire efficiency of the powertrain is affected by the circular electric power flow. Two planetary gear (2-PG sets with adding brakes/clutches, namely a type of four shaft elelctric continuously variable transmission (ECVT can provide multi-mode operation for the powertrain and extend the efficient area. First, a conventional 2-PG AT (Automatic Transmission architecture is investigated. By analyzing and comparing the connection and operating modes based on the kinematic relationship and lever analogy, a feasible four-shaft ECVT architecture with two brakes and two simplified versions are picked. To make a trade-off between fuel economy and configuration complexity, an instantaneous optimal control strategy based on the equivalent consumption minimization strategy (ECMS concept is then developed and employed as the unified optimization method in the simulations of three different configurations. Finally, the simulation results show that the simplified versions are suboptimal sets and the fuel economy is sacrificed by the limits of different modes. From the viewpoint of concept design, a multi-mode power-split configuration is more suitable for hybrid electric vehicles. This research applied a systematic methodology from concept design to energy management optimization, which can provide the guidelines for researchers to select a suitable multi-mode power-split hybrid powertrain.

  20. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shouliang Han

    2014-10-01

    Full Text Available The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

  1. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2013-01-01

    Full Text Available This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2 for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experiments under various operating conditions of inlet air temperature, air flow rates for the gas cooler side and evaporator side, and electric compressor revolution respectively. As a result, cooling performances of the tested air-conditioning system for the EDC driving mode (electricity driven compressor were better than those for the BDC driving mode (belt driven compressor. The cooling capacity and cooling COP of the tested air-conditioning system for both driving modes were over 5.0 kW and 2.0, respectively. The observed cooling performance of the tested air-conditioning system may be sufficient for the cabin cooling of hybrid electric vehicles.

  2. Single-Phase PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers

    Directory of Open Access Journals (Sweden)

    Shakil Ahamed Khan

    2012-06-01

    Full Text Available In this paper, a front end ac–dc power factor correction topology is proposed for plug-in hybrid electric vehicle (PHEV battery charging. The topology can achieve improved power quality, in terms of power factor correction, reduced total harmonic distortion at input ac mains, and precisely regulated dc output. Within this context, this paper introduces a boost converter topology for implementing digital power factor correction based on low cost digital signal controller that operates the converter in continuous conduction mode, thereby significantly reducing input current harmonics. The theoretical analysis of the proposed converter is then developed, while an experimental digital control system is used to implement the new control strategy. A detailed converter operation, analysis and control strategy are presented along with simulation and experimental results for universal ac input voltage (100–240V to 380V dc output at up to 3.0 kW load and a power factor greater than 0.98. Experimental results show the advantages and flexibilities of the new control method for plug-in hybrid electric vehicle (PHEV battery charging application.

  3. Control Strategy Optimization for Parallel Hybrid Electric Vehicles Using a Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Huei Cheng

    2017-03-01

    Full Text Available Hybrid electric vehicle (HEV control strategy is a management approach for generating, using, and saving energy. Therefore, the optimal control strategy is the sticking point to effectively manage hybrid electric vehicles. In order to realize the optimal control strategy, we use a robust evolutionary computation method called a “memetic algorithm (MA” to optimize the control parameters in parallel HEVs. The “local search” mechanism implemented in the MA greatly enhances its search capabilities. In the implementation of the method, the fitness function combines with the ADvanced VehIcle SimulatOR (ADVISOR and is set up according to an electric assist control strategy (EACS to minimize the fuel consumption (FC and emissions (HC, CO, and NOx of the vehicle engine. At the same time, driving performance requirements are also considered in the method. Four different driving cycles, the new European driving cycle (NEDC, Federal Test Procedure (FTP, Economic Commission for Europe + Extra-Urban driving cycle (ECE + EUDC, and urban dynamometer driving schedule (UDDS are carried out using the proposed method to find their respectively optimal control parameters. The results show that the proposed method effectively helps to reduce fuel consumption and emissions, as well as guarantee vehicle performance.

  4. Multi-objective decoupling algorithm for active distance control of intelligent hybrid electric vehicle

    Science.gov (United States)

    Luo, Yugong; Chen, Tao; Li, Keqiang

    2015-12-01

    The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.

  5. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  6. Modeling, simulation, and concept studies of a fuel cell hybrid electric vehicle powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Oezbek, Markus

    2010-03-29

    This thesis focuses on the development of a fuel cell-based hybrid electric powertrain for smaller (2 kW) hybrid electric vehicles (HEVs). A Hardware-in-the-Loop test rig is designed and built with the possibility to simulate any load profile for HEVs in a realistic environment, whereby the environment is modeled. Detailed simulation models of the test rig are developed and validated to real physical components and control algorithms are designed for the DC/DC-converters and the fuel cell system. A state-feedback controller is developed for the DC/DC-converters where the state-space averaging method is used for the development. For the fuel cells, a gain-scheduling controller based on state feedback is developed and compared to two conventional methods. The design process of an HEV with regard to a given load profile is introduced with comparison between SuperCaps and batteries. The HEV is also evaluated with an introduction to different power management concepts with regard to fuel consumption, dynamics, and fuel cell deterioration rate. The power management methods are implemented in the test rig and compared. (orig.)

  7. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor

  8. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications

    Science.gov (United States)

    Liu, Jianxing; Laghrouche, Salah; Wack, Maxime

    2014-06-01

    In this paper, a full-bridge boost power converter topology is studied for power factor control, using output higher order sliding mode control. The AC/DC converters are used for charging the battery and super-capacitor in hybrid electric vehicles from the utility. The proposed control forces the input currents to track the desired values, which can control the output voltage while keeping the power factor close to one. Super-twisting sliding mode observer is employed to estimate the input currents and load resistance only from the measurement of output voltage. Lyapunov analysis shows the asymptotic convergence of the closed-loop system to zero. Multi-rate simulation illustrates the effectiveness and robustness of the proposed controller in the presence of measurement noise.

  9. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  10. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  11. Sports Season, Sports Bars

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ For foreigners in Beijing, the sports bar is a special place, a place to gather for watching matches and a place to feel the familiarity of home, while for some sports enthusiasts it serves as their second home.

  12. The utility of the King-Devick test as a sideline assessment tool for sport-related concussions: a narrative review.

    Science.gov (United States)

    Howitt, Scott; Brommer, Robert; Fowler, Justin; Gerwing, Logan; Payne, Julian; DeGraauw, Christopher

    2016-12-01

    The objective of this paper is to review existing literature surrounding the utility of the King-Devick test which is a commonly used sideline assessment tool for sport-related concussions. A review of the literature was performed using MEDLINE, CINHAL, and SportDiscus databases. The search was performed from the beginning of the record through November 16(th), 2015. This search strategy yielded 27 articles from aforementioned databases. Further searching in The Cochrane Library with King-Devick AND Concuss* search terms yielded one additional article, summing a total of 28 articles. After removal of duplicates and implementation of the inclusion/exclusion criteria, 8 articles for extensively reviewed. This narrative review suggests that the King-Devick test is an efficient sideline assessment tool for sport-related concussions. However, we recommend that the King-Devick should be used as a sideline screening tool, not a concussion diagnosis tool at this time. A proper baseline time including multiple tests may be recommended to negate the learning affect and to have a reliable baseline in which to measure from for future reference. A three second difference appears appropriate to identify the possibility of concussion and to remove an athlete from play. At this time, the athlete should be monitored and further evaluated as symptoms are sometimes delayed. We suggest that further research may be useful to better determine the efficacy of the K-D test in detecting concussions across a broader range of athletes and sports. We also suggest further research may investigate the K-D test a potential return-to-play tool for clinicians and medical personnel.

  13. Hybrid Electric Power Train and Control Strategies Automotive Technology Education (GATE) Program

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Frank

    2006-05-31

    Plug-in hybrid electric vehicles (PHEV) offer societal benefits through their ability to displace the use of petroleum fuels. Petroleum fuels represent a polluting and politically destabilizing energy carrier. PHEV technologies can move transportation away from petroleum fuel sources by enabling domestically generated electricity and liquids bio-fuels to serve as a carrier for transportation energy. Additionally, the All-Electric-Range (AER) offered by PHEVs can significantly reduce demand for expensive and polluting liquid fuels. The GATE funding received during the 1998 through 2004 funding cycle by the UC Davis Hybrid Electric Vehicle Center (HEVC) was used to advance and train researchers in PHEV technologies. GATE funding was used to construct a rigorous PHEV curriculum, provide financial support for HEVC researchers, and provide material support for research efforts. A rigorous curriculum was developed through the UC Davis Mechanical and Aeronautical Engineering Department to train HEVC researchers. Students' research benefited from this course work by advancing the graduate student researchers' understanding of key PHEV design considerations. GATE support assisted HEVC researchers in authoring technical articles and producing patents. By supporting HEVC researchers multiple Master's theses were written as well as journal articles and publications. The topics from these publications include Continuously Variable Transmission control strategies and PHEV cross platform controls software development. The GATE funding has been well used to advance PHEV systems. The UC Davis Hybrid Electric Vehicle Center is greatly appreciative for the opportunities GATE funding provided. The goals and objectives for the HEVC GATE funding were to nourish engineering research in PHEV technologies. The funding supplied equipment needed to allow researchers to investigate PHEV design sensitivities and to further optimize system components. Over a dozen PHEV

  14. Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2014-01-01

    Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

  15. A control strategy for parallel hybrid electric vehicles based on extremum seeking

    Science.gov (United States)

    Dinçmen, Erkin; Aksun Güvenç, Bilin

    2012-02-01

    An energy management control strategy for a parallel hybrid electric vehicle based on the extremum-seeking method for splitting torque between the internal combustion engine and electric motor is proposed in this paper. The control strategy has two levels of operation: the upper and lower levels. The upper level decision-making controller chooses the vehicle operation mode such as the simultaneous use of the internal combustion engine and electric motor, use of only the electric motor, use of only the internal combustion engine, or regenerative braking. In the simultaneous use of the internal combustion engine and electric motor, the optimum energy distribution between these two sources of energy is determined via the extremum-seeking algorithm that searches for maximum drivetrain efficiency. A dynamic programming solution is also obtained and used to form a benchmark for performance evaluation of the proposed method based on extremum seeking. Detailed simulations using a realistic model are presented to illustrate the effectiveness of the methodology.

  16. OPTIMAL TORQUE CONTROL STRATEGY FOR PARALLEL HYBRID ELECTRIC VEHICLE WITH AUTOMATIC MECHANICAL TRANSMISSION

    Institute of Scientific and Technical Information of China (English)

    GU Yanchun; YIN Chengliang; ZHANG Jianwu

    2007-01-01

    In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving sinoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.

  17. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  18. Initial position estimation strategy for a surface permanent magnet synchronous motor used in hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    Bing TIAN; Qun-tao AN; Li SUN‡; Dong-yang SUN; Jian-dong DUAN

    2016-01-01

    A novel nonlinear model for surface permanent magnet synchronous motors (SPMSMs) is adopted to estimate the initial rotor position for hybrid electric vehicles (HEVs). Usually, the accuracy of initial rotor position estimation for SPMSMs relies on magnetic saturation. To verify the saturation effect, the transient finite element analysis (FEA) model is presented first. Hybrid injection of a static voltage vector (SVV) superimposed with a high-frequency rotating voltage is proposed. The magnetic polarity is roughly identified with the aid of the saturation evaluation function, based on which an estimation of the position is performed. During this procedure, a special demodulation is suggested to extract signals of iron core saturation and rotor position. A Simulink/MATLAB platform for SPMSMs at standstill is constituted, and the effectiveness of the proposed strategy is verified. The proposed method is also validated by experimental results of an SPMSM drive.

  19. Lithium-ion Battery Degradation Assessment and Remaining Useful Life Estimation in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nabil Laayouj

    2016-06-01

    Full Text Available Abstract—Prognostic activity deals with prediction of the remaining useful life (RUL of physical systems based on their actual health state and their usage conditions. RUL estimation gives operators a potent tool in decision making by quantifying how much time is left until functionality is lost. In addition, it can be used to improve the characterization of the material proprieties that govern damage propagation for the structure being monitored. RUL can be estimated by using three main approaches, namely model-based, data-driven and hybrid approaches. The prognostics methods used later in this paper are hybrid and data-driven approaches, which employ the Particle Filter in the first one and the autoregressive integrated moving average in the second. The performance of the suggested approaches is evaluated in a comparative study on data collected from lithium-ion battery of hybrid electric vehicle.

  20. Investigation of Battery/Ultracapacitor Energy Storage Rating for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Khaligh, A.; Rasmussen, Peter Omand

    2008-01-01

    Combining high energy density batteries and high power density ultracapacitors in Fuel Cell Hybrid Electric Vehicles (FCHEV) results in a high efficient, high performance, low size, and light system. Often the batteries are rated with respect to their energy requirement in order to reduce...... their volume and mass. This does not prevent deep discharges of the batteries, which is critical to their lifetime. In this paper, the ratings of the batteries and ultracapacitors in a FCHEV are investigated. Comparison of system volume, mass, efficiency, and battery lifetime due to the rating of the energy...... storage devices are presented. It is concluded, that by sufficient rating of the battery or ultracapacitors, an appropriate balance between system volume, mass, efficiency, and battery lifetime is achievable....

  1. Sensorless torque control scheme of induction motor for hybrid electric vehicle

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Cheng SHAO

    2007-01-01

    In this paper,the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle(HEV)applications is addressed.Because motor parameter variations in HEV applications are larger than in industrial drive system,the conventional field-oriented control(FOC)provides poor performance.Therefore,a new robust PI-based extension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed in order to Improve the overall performance.Simulation results show that the proposed sensorless torque control scheme is robust with respect to motor parameter variations and loading disturbances.In addition,the operating flux of the motor is chosen optimally to minimize the consumption of electric energy,which results in a significant reduction in energy losses shown by simulations.

  2. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  3. Optimal Energy Management for a Complex Hybrid Electric Vehicle:Tolerating Power-loss of Motor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Pei-zhi; YIN Cheng-liang; ZHANG Yong; WU Zhi-wei

    2009-01-01

    The energy management may perform well under normal conditions, but may lead to poor behavior under abnormal situations. To tackle this problem, an optimal control strategy called rule-based equivalent fuel consumption minimization strategy (RECMS) is developed for a new complex hybrid electric vehicle (CHEV).It optimizes the energy efficiency and drive performance to cater for normal and power-loss operations of the tractive motor. Firstly, the strategy formulates a novel objective function based on the equivalent fuel concept.By accounting for the actual fuel cost, the equivalent fuel cost for the electric machines and virtual fuel cost for the drivability, the cost function is obtained. Furthermore, some penalty factors are presented to optimize the performance target. Finally, experiments for a practical CHEV are performed to validate a simulation model.Then simulations are carried out for both rule-based and RECMS. The results show that the optimal energy management is working well.

  4. 2011 Honda CR-Z 2982 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Tyler [Intertek Testing Services NA, Phoenix, AZ (United States). Center for Evaluation of Clean Energy Technology (CECET); Wishart, Jeffrey [Intertek Testing Services NA, Phoenix, AZ (United States). Center for Evaluation of Clean Energy Technology (CECET); Shirk, Matthew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  5. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  6. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  7. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  8. Detection and Elimination of a Potential Fire in Engine and Battery Compartments of Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Macam S. Dattathreya

    2012-01-01

    Full Text Available This paper presents a novel fuzzy deterministic noncontroller type (FDNCT system and an FDNCT inference algorithm (FIA. The FDNCT uses fuzzy inputs and produces a deterministic non-fuzzy output. The FDNCT is an extension and alternative for the existing fuzzy singleton inference algorithm. The research described in this paper applies FDNCT to build an architecture for an intelligent system to detect and to eliminate potential fires in the engine and battery compartments of a hybrid electric vehicle. The fuzzy inputs consist of sensor data from the engine and battery compartments, namely, temperature, moisture, and voltage and current of the battery. The system synthesizes the data and detects potential fires, takes actions for eliminating the hazard, and notifies the passengers about the potential fire using an audible alarm. This paper also presents the computer simulation results of the comparison between the FIA and singleton inference algorithms for detecting potential fires and determining the actions for eliminating them.

  9. Regenerative braking control strategy in mild hybrid electric vehicles equipped with automatic manual transmission

    Institute of Scientific and Technical Information of China (English)

    QIN Datong; YE Ming; LIU Zhenjun

    2007-01-01

    The actual regenerative braking force of an integrated starter/generator (ISG),which is varied with desired braking deceleration and vehicle speed,is calculated based on an analysis of the required deceleration,maximum braking force of ISG,engine braking force and state of charge (SOC) of battery.Braking force distribution strategies are presented according to the actual regenerative braking force of ISG.To recover the vehicle's kinetic energy maximally,braking shift rules for a mild hybrid electric vehicle (HEV) equipped with automatic manual transmission (AMT) are brought forward and effects of transmission ratios are considered.A test-bed is built up and regenerative braking tests are carried out.The results show that power recovered by the braking shift rules is more than that recovered by the normal braking control rules.

  10. Real-time optimization power-split strategy for hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    XIA ChaoYing; ZHANG Cong

    2016-01-01

    Energy management strategies based on optimal control theory can achieve minimum fuel consumption for hybrid electric vehicles,but the requirement for driving cycles known in prior leads to a real-time problem.A real-time optimization power-split strategy is proposed based on linear quadratic optimal control.The battery state of charge sustainability and fuel economy are ensured by designing a quadratic performance index combined with two rules.The engine power and motor power of this strategy are calculated in real-time based on current system state and command,and not related to future driving conditions.The simulation results in ADVISOR demonstrate that,under the conditions of various driving cycles,road slopes and vehicle parameters,the proposed strategy significantly improves fuel economy,which is very close to that of the optimal control based on Pontryagin's minimum principle,and greatly reduces computation complexity.

  11. DEVELOPMENT OF THE ENERGY MANAGEMENT STRATEGY FOR PARALLEL HYBRID ELECTRIC URBAN BUSES

    Institute of Scientific and Technical Information of China (English)

    HUANG Yuanjun; YIN Chengliang; ZHANG Jianwu

    2008-01-01

    A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.

  12. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  13. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... and ultracapacitor. In this paper a design method to design the power system of a FCHEV is presented. 10 cases of combining the fuel stack with either the battery, ultracapacitor, or both are investigated. The system volume, mass, efficiency, and battery lifetime are also compared. It is concluded that when...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  14. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  15. MODELING AND IMPLEMENTATION OF SPEED GOVERNOR FOR THE HYBRID ELECTRIC VEHICLE ENGINE

    Institute of Scientific and Technical Information of China (English)

    Feng Qishan; Zhang Jianwu; Yin Chengliang

    2005-01-01

    A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinder model is proposed, base on slider-crank mechanism, which is extended to develop a digital governor providing a high fidelity estimation of rotary speed oscillation for hybrid vehicle engines. A modified PID controller that P and I gain is placed in feedback path is also described for hybrid electric vehicle (HEV) engine speed regulation. By comparison between measured and estimated signals, it is demonstrated that a good agreement has been achieved and the governor behaves an excellent damping speed ripple.

  16. The prospects for hybrid electric vehicles, 2005-2020 : results of a Delphi Study.

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H. K.; Santini, D. J.; Vyas, A. D.

    1999-07-22

    The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among US automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future ''top-selling'' HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, with methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020. Survey respondents view batteries as the component that contributes the most to the HEV cost increment. The mean projection for battery-alone range is 49 km in 2005, 70 km in 2010, and 92 km in 2020. Responding to a question relating to their personal vision of the most desirable HEV and its likely characteristics when introduced in the US market in the next decade, the experts predicted their ''vision'' HEV to have attributes very similar to those of the ''top-selling'' HEV. However, the ''vision'' HEV would cost significantly less. The experts projected attributes of three leading batteries for HEVs and projected acceleration times on battery power alone. The resulting battery packs are evaluated, and their initial and replacement costs are analyzed. These and several other opinions are summarized.

  17. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  18. In-use fuel economy of hybrid-electric school buses in Iowa.

    Science.gov (United States)

    Hallmark, Shauna; Sperry, Bob; Mudgal, Abhisek

    2011-05-01

    Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

  19. Team Sports

    Science.gov (United States)

    ... and sports prosthetics, as well as expenses for training and competition. Disabled Sports USA offers nationwide sports programs to anyone with a physical disability. Activities include winter skiing, water sports, summer ...

  20. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Poch, L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Mahalik, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rousseau, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  1. FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, Daniel Harvey; Crafts, Chris C.

    2006-08-01

    This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

  2. Advanced Intelligent System Application to Load Forecasting and Control for Hybrid Electric Bus

    Science.gov (United States)

    Momoh, James; Chattopadhyay, Deb; Elfayoumy, Mahmoud

    1996-01-01

    The primary motivation for this research emanates from providing a decision support system to the electric bus operators in the municipal and urban localities which will guide the operators to maintain an optimal compromise among the noise level, pollution level, fuel usage etc. This study is backed up by our previous studies on study of battery characteristics, permanent magnet DC motor studies and electric traction motor size studies completed in the first year. The operator of the Hybrid Electric Car must determine optimal power management schedule to meet a given load demand for different weather and road conditions. The decision support system for the bus operator comprises three sub-tasks viz. forecast of the electrical load for the route to be traversed divided into specified time periods (few minutes); deriving an optimal 'plan' or 'preschedule' based on the load forecast for the entire time-horizon (i.e., for all time periods) ahead of time; and finally employing corrective control action to monitor and modify the optimal plan in real-time. A fully connected artificial neural network (ANN) model is developed for forecasting the kW requirement for hybrid electric bus based on inputs like climatic conditions, passenger load, road inclination, etc. The ANN model is trained using back-propagation algorithm employing improved optimization techniques like projected Lagrangian technique. The pre-scheduler is based on a Goal-Programming (GP) optimization model with noise, pollution and fuel usage as the three objectives. GP has the capability of analyzing the trade-off among the conflicting objectives and arriving at the optimal activity levels, e.g., throttle settings. The corrective control action or the third sub-task is formulated as an optimal control model with inputs from the real-time data base as well as the GP model to minimize the error (or deviation) from the optimal plan. These three activities linked with the ANN forecaster proving the output to the

  3. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  4. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  5. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  6. An optimal energy management development for various configuration of plug-in and hybrid electric vehicle

    Institute of Scientific and Technical Information of China (English)

    Morteza Montazeri-Gh; Mehdi Mahmoodi-K

    2015-01-01

    Due to soaring fuel prices and environmental concerns, hybrid electric vehicle (HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.

  7. Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems

    Science.gov (United States)

    Headings, Leon; Washington, Gregory; Jaworski, Christopher M.

    2008-03-01

    Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.

  8. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications

    Science.gov (United States)

    Al-Hallaj, Said; Selman, J. R.

    A major obstacle to the development of commercially successful electric vehicles (EV) or hybrid electric vehicles (HEV) is the lack of a suitably sized battery. Lithium ion batteries are viewed as the solution if only they could be "scaled-up safely", i.e. if thermal management problems could be overcome so the batteries could be designed and manufactured in much larger sizes than the commercially available near-2-Ah cells. Here, we review a novel thermal management system using phase-change material (PCM). A prototype of this PCM-based system is presently being manufactured. A PCM-based system has never been tested before with lithium-ion (Li-ion) batteries and battery packs, although its mode of operation is exceptionally well suited for the cell chemistry of the most common commercially available Li-ion batteries. The thermal management system described here is intended specifically for EV/HEV applications. It has a high potential for providing effective thermal management without introducing moving components. Thereby, the performance of EV/HEV batteries may be improved without complicating the system design and incurring major additional cost, as is the case with "active" cooling systems requiring air or liquid circulation.

  9. Development of a software platform for a plug-in hybrid electric vehicle simulator

    Science.gov (United States)

    Karlis, Athanasios; Bibeau, Eric; Zanetel, Paul; Lye, Zelon

    2012-03-01

    Electricity use for transportation has had limited applications because of battery storage range issues, although many recent successful demonstrations of electric vehicles have been achieved. Renewable biofuels such as biodiesel and bioethanol also contribute only a small percentage of the overall energy mix for mobility. Recent advances in hybrid technologies have significantly increased vehicle efficiencies. More importantly, hybridization now allows a significant reduction in battery capacity requirements compared to pure electric vehicles, allowing electricity to be used in the overall energy mix in the transportation sector. This paper presents an effort made to develop a Plug-in Hybrid Electric Vehicle (PHEV) platform that can act as a comprehensive alternative energy vehicle simulator. Its goal is to help in solving the pressing needs of the transportation sector, both in terms of contributing data to aid policy decisions for reducing fossil fuel use, and to support research in this important area. The Simulator will allow analysing different vehicle configurations, and control strategies with regards to renewable and non-renewable fuel and electricity sources. The simulation platform models the fundamental aspects of PHEV components, that is, process control, heat transfer, chemical reactions, thermodynamics and fluid properties. The outcomes of the Simulator are: (i) determining the optimal combination of fuels and grid electricity use, (ii) performing greenhouse gas calculations based on emerging protocols being developed, and (iii) optimizing the efficient and proper use of renewable energy sources in a carbon constrained world.

  10. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, D M; Kammen, D M; Farrell, A E [Energy and Resources Group, University of California, 310 Barrows Hall, Berkeley, CA 94720-3050 (United States)], E-mail: dlemoine@berkeley.edu, E-mail: kammen@berkeley.edu, E-mail: aef@berkeley.edu

    2008-01-15

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.

  11. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    Directory of Open Access Journals (Sweden)

    Cong Hou

    2014-08-01

    Full Text Available This paper proposes a total cost of ownership (TCO model for battery sizing of plug-in hybrid electric vehicles (PHEVs. The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal battery size for PHEVs in Beijing is 6–8 kWh. Several additional scenarios are also analyzed: (1 10% increase in battery price or discount rate leads to an optimal battery size of 6 kWh, and 10% increase in fuel price shifts the optimal battery size to 8 kWh; (2 the longer and more dispersive daily range distribution in the U.S. increases the optimal battery size to 14 kWh; (3 the subsidy in China results in an optimal battery size of 13 kWh, while that in the U.S. results in 17 kWh, and a fuel savings rate based subsidy policy is innovatively proposed; (4 the optimal battery size with Li4Ti5O12 batteries is 2 kWh, but the TCO of Li4Ti5O12 batteries is higher than that of LiFePO4 batteries.

  12. Power Management Strategy of Hybrid Electric Vehicles Based on Quadratic Performance Index

    Directory of Open Access Journals (Sweden)

    Chaoying Xia

    2015-11-01

    Full Text Available An energy management strategy (EMS considering both optimality and real-time performance has become a challenge for the development of hybrid electric vehicles (HEVs in recent years. Previous EMSes based on the optimal control theory minimize the fuel consumption, but cannot be directly implemented in real-time because of the requirement for a prior knowledge of the entire driving cycle. This paper presents an innovative design concept and method to obtain a power management strategy for HEVs, which is independent of future driving conditions. A quadratic performance index is designed to ensure the vehicle drivability, maintain the battery energy sustainability and average and smooth the engine power and motor power to indirectly reduce fuel consumption. To further improve the fuel economy, two rules are adopted to avoid the inefficient engine operation by switching control modes between the electric and hybrid modes according to the required driving power. The derived power of the engine and motor are related to current vehicle velocity and battery residual energy, as well as their desired values. The simulation results over different driving cycles in Advanced Vehicle Simulator (ADVISOR show that the proposed strategy can significantly improve the fuel economy, which is very close to the optimal strategy based on Pontryagin’s minimum principle.

  13. ESTIMATION METHOD ON THE BATTERY STATE OF CHARGE FOR HYBRID ELECTRIC VEHICLE

    Institute of Scientific and Technical Information of China (English)

    QIANG Jiaxi; AO Guoqiang; YANG Lin

    2008-01-01

    A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.

  14. Experimental Study on Communication Delay of Powertrain System of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Dafang Wang

    2013-01-01

    Full Text Available In order to contrast and analyze the real-time performance of the powertrain system of a plug-in hybrid electric vehicle, a mathematical model of the system delay is established under the circumstances that the transmission adopts the CAN (controller area network protocol and the TTCAN (time-triggered CAN protocol, respectively, and the interior of the controller adopts the foreground-background mode and the OSEK mode respectively. In addition, an experimental platform is developed to test communication delays of messages under 4 different implementation models. The 4 models are testing under the CAN protocol while the controller interior adopts the foreground-background mode; testing under the CAN protocol while the controller interior adopts the OSEK mode; testing under the TTCAN protocol while the controller interior adopts the foreground-background mode, and testing under the TTCAN protocol while the controller interior adopts the OSEK mode. The theoretical and testing results indicate that the communication delay of the OSEK mode is a little longer than the one of the foreground-background mode. Moreover, compared with the CAN protocol, the periodic message has a better real-time performance under the TTCAN protocol, while the nonperiodic message has a worse one.

  15. Determination of the Equivalent Consumption in Hybrid Electric Vehicles in the State-Constrained Case

    Directory of Open Access Journals (Sweden)

    Pérez Laura V.

    2016-03-01

    Full Text Available In the optimization of power management of hybrid electric vehicles, the equivalent consumption factor is often used. This parameter represents a way of penalizing the use of power from the batteries, taking into account the fuel consumption that such use eventually hides. If the problem of determining the power split between the energy sources of the vehicle that minimizes fuel consumption is stated as a non linear constrained optimal control problem, and is solved using Pontryagin Maximum Principle (PMP, the equivalent consumption factor may be computed from the adjoint state. Following this approach we compute the trajectory of the adjoint state in the case where state constraints are taken into account. The optimality conditions from PMP are a Boundary Value Problem (BVP, which is solved numerically using a code named PASVA4. Numerical examples are compared with dynamic programming solutions of the same problem. It is found that the adjoint state is continuous and its trajectory is described. The approach may be generalized to similar optimal control problems.

  16. Torque Split Strategy for Parallel Hybrid Electric Vehicles with an Integrated Starter Generator

    Directory of Open Access Journals (Sweden)

    Zhumu Fu

    2014-01-01

    Full Text Available This paper presents a torque split strategy for parallel hybrid electric vehicles with an integrated starter generator (ISG-PHEV by using fuzzy logic control. By combining the efficiency map and the optimum torque curve of the internal combustion engine (ICE with the state of charge (SOC of the batteries, the torque split strategy is designed, which manages the ICE within its peak efficiency region. Taking the quantified ICE torque, the quantified SOC of the batteries, and the quantified ICE speed as inputs, and regarding the output torque demanded on the ICE as an output, a fuzzy logic controller (FLC with relevant fuzzy rules has been developed to determine the optimal torque distribution among the ICE, the ISG, and the electric motor/generator (EMG effectively. The simulation results reveal that, compared with the conventional torque control strategy which uses rule-based controller (RBC in different driving cycles, the proposed FLC improves the fuel economy of the ISG-PHEV, increases the efficiency of the ICE, and maintains batteries SOC within its operation range more availably.

  17. Economic Value of LFC Substitution by Charge Control for Plug-in Hybrid Electric Vehicles

    Science.gov (United States)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    There are lots of global warming countermeasures. In the power sector, nuclear power plants play an important role because they do not produce CO2 emissions during production of electricity. However, if the generation share of nuclear is too high at nighttime, it becomes difficult to keep enough capacity of Load Frequency Control (LFC) because nuclear power plants do not change the output (i.e., without load following operation) in Japan. On the other hand, in the transport sector, Plug-in Hybrid Electric Vehicle (PHEV) is being developed as an environmentally friendly vehicle. The electric energy of PHEV is charged mainly during nighttime when the electricity price is low. Therefore, we have proposed a charging power control of PHEVs to compensate LFC capacity in nighttime. In this study, we evaluated the economic value of charging power control by using an optimal generation planning model, and obtained the following results. Charging power control is effective in reduction of CO2 emissions and enhancement of economic efficiency of power system. Particularly, even in the low market share of PHEVs, the charge control has a high economic value because it substitutes nuclear power plant, base-load provider with low fuel cost, for LNG-CC, LEC provider with high fuel cost.

  18. Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach

    Science.gov (United States)

    Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo

    2017-10-01

    Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.

  19. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  20. Energy efficient non-road hybrid electric vehicles advanced modeling and control

    CERN Document Server

    Unger, Johannes; Jakubek, Stefan

    2016-01-01

    Analyzing the main problems in the real-time control of parallel hybrid electric powertrains in non-road applications, which work in continuous high dynamic operation, this book gives practical insight in to how to maximize the energetic efficiency and drivability of such powertrains. The book addresses an energy management control structure, which considers all constraints of the physical powertrain and uses novel methodologies for the prediction of the future load requirements to optimize the controller output in terms of an entire work cycle of a non-road vehicle. The load prediction includes a methodology for short term loads as well as for an entire load cycle by means of a cycle detection. A maximization of the energetic efficiency can so be achieved, which is simultaneously a reduction in fuel consumption and exhaust emissions. Readers will gain a deep insight into the necessary topics to be considered in designing an energy and battery management system for non-road vehicles and that only a combinatio...

  1. Optimization of Key Parameters of Energy Management Strategy for Hybrid Electric Vehicle Using DIRECT Algorithm

    Directory of Open Access Journals (Sweden)

    Jingxian Hao

    2016-11-01

    Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.

  2. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    Science.gov (United States)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  4. Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus

    Science.gov (United States)

    Zeng, Xiaohua; Yang, Nannan; Wang, Junnian; Song, Dafeng; Zhang, Nong; Shang, Mingli; Liu, Jianxin

    2015-08-01

    Parameter-matching methods and optimal control strategies of the top-selling hybrid electric vehicle (HEV), namely, power-split HEV, are widely studied. In particular, extant research on control strategy focuses on the steady-state energy management strategy to obtain better fuel economy. However, given that multi-power sources are highly coupled in power-split HEVs and influence one another during mode shifting, conducting research on dynamic coordination control strategy (DCCS) to achieve riding comfort is also important. This paper proposes a predictive-model-based DCCS. First, the dynamic model of the objective power-split HEV is built and the mode shifting process is analyzed based on the developed model to determine the reason for the system shock generated. Engine torque estimation algorithm is then designed according to the principle of the nonlinear observer, and the prediction model of the degree of shock is established based on the theory of model predictive control. Finally, the DCCS with adaptation for a complex driving cycle is realized by combining the feedback control and the predictive model. The presented DCCS is validated on the co-simulation platform of AMESim and Simulink. Results show that the shock during mode shifting is well controlled, thereby improving riding comfort.

  5. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2002-07-31

    as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  6. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  7. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  8. Sports physical

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000673.htm Sports physical To use the sharing features on this page, ... routine checkups. Why do you Need a Sports Physical? The sports physical is done to: Find out ...

  9. Double Resonant Topology for 72V Battery Charger used in a Hybrid Electric Locomotive - Study and Experimental Validation

    OpenAIRE

    BUTTERBACH, S; DE-BERNARDINIS, A; Lallemand, R; Coquery, G.; JEUNESSE, A; EVAIN, Y; AUBIN, PH

    2010-01-01

    This work deals with the study, adaptation and experimental validation of a 9kW lead-acid battery charger used to feed the 72VDC bus inside the hybrid electric locomotive demonstrator in the frame of the French research project PLATHEE. The topology of the charger is based on a high frequency double resonant series-parallel circuit which allows soft switching, losses minimization, reduction of passive component weight and facilitates system integration. Specific charging and floating modes we...

  10. Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008

    OpenAIRE

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2008-01-01

    This report discusses the development of advanced batteries for plug-in hybrid electric vehicle (PHEV) applications. We discuss the basic design concepts of PHEVs, compare three sets of influential technical goals, and explain the inherent trade-offs in PHEV battery design. We then discuss the current state of several battery chemistries, including nickel-metal hydride (NiMH) and lithium-ion (Li-Ion), comparing their abilities to meet PHEV goals, and potential trajectories for further improve...

  11. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Tribioli, L., E-mail: laura.tribioli@unicusano.it; Cozzolino, R. [Dept. of Industrial Engineering, University of Rome Niccolo’ Cusano (Italy); Barbieri, M. [Engineering Dept., University of Naples Parthenope, Centro Direzionale-Isola C4, 80143 Naples (Italy)

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  12. Energy Optimization and Fuel Economy Investigation of a Series Hybrid Electric Vehicle Integrated with Diesel/RCCI Engines

    OpenAIRE

    2016-01-01

    Among different types of low temperature combustion (LTC) regimes, eactively controlled compression ignition (RCCI) has received a lot of attention as a promising advanced combustion engine technology with high indicated thermal efficiency and low nitrogen oxides ( NO x ) and particulate matter (PM) emissions. In this study, an RCCI engine for the purpose of fuel economy investigation is incorporated in series hybrid electric vehicle (SHEV) architecture, which allows the engine to run c...

  13. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor

  14. Sport tourism

    Directory of Open Access Journals (Sweden)

    Eva Schwartzhoffová

    2010-03-01

    Full Text Available Sport tourism is one specific type of travel and tourism. The goal of this article is to introduce the definition and importance of sport tourism to academic and sports professionals. At present, sport tourism is a diverse social, economic and cultural phenomenon arising from the unique interaction of activity, people and place. The second part of this article reports about sports events as an important part of sport tourism.

  15. A New Method to Optimize Semiactive Hybrid Energy Storage System for Hybrid Electrical Vehicle by Using PE Function

    Directory of Open Access Journals (Sweden)

    Cong Zhang

    2015-01-01

    Full Text Available Although both battery and super-capacitor are important power sources for hybrid electric vehicles, there is no accurate configuration theory to match the above two kinds of power sources which have significantly different characteristics on energy and power storage for the goal of making good use of their individual features without size wasting. In this paper, a new performance is presented that is used for analysis and optimal design method of battery and super-capacitor for hybrid energy storage system of a parallel hybrid electrical vehicle. In order to achieve optimal design with less consumption, the power-energy function is applied to establish direct mathematical relationship between demand power and the performance. During matching process, firstly, three typical operating conditions are chosen as the basis of design; secondly, the energy and power capacity evaluation methods for the parameters of battery and super-capacitor in hybrid energy storage system are proposed; thirdly, the mass, volume, and cost of the system are optimized simultaneously by using power-energy function. As a result, there are significant advantages on mass, volume, and cost for the hybrid energy storage system with the matching method. Simulation results fit well with the results of analysis, which confirms that the optimized design can meet the demand of hybrid electric vehicle well.

  16. Further validation of artificial neural network-based emissions simulation models for conventional and hybrid electric vehicles.

    Science.gov (United States)

    Tóth-Nagy, Csaba; Conley, John J; Jarrett, Ronald P; Clark, Nigel N

    2006-07-01

    With the advent of hybrid electric vehicles, computer-based vehicle simulation becomes more useful to the engineer and designer trying to optimize the complex combination of control strategy, power plant, drive train, vehicle, and driving conditions. With the desire to incorporate emissions as a design criterion, researchers at West Virginia University have developed artificial neural network (ANN) models for predicting emissions from heavy-duty vehicles. The ANN models were trained on engine and exhaust emissions data collected from transient dynamometer tests of heavy-duty diesel engines then used to predict emissions based on engine speed and torque data from simulated operation of a tractor truck and hybrid electric bus. Simulated vehicle operation was performed with the ADVISOR software package. Predicted emissions (carbon dioxide [CO2] and oxides of nitrogen [NO(x)]) were then compared with actual emissions data collected from chassis dynamometer tests of similar vehicles. This paper expands on previous research to include different driving cycles for the hybrid electric bus and varying weights of the conventional truck. Results showed that different hybrid control strategies had a significant effect on engine behavior (and, thus, emissions) and may affect emissions during different driving cycles. The ANN models underpredicted emissions of CO2 and NO(x) in the case of a class-8 truck but were more accurate as the truck weight increased.

  17. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network.

    Science.gov (United States)

    Harmon, Frederick G; Frank, Andrew A; Joshi, Sanjay S

    2005-01-01

    A Simulink model, a propulsion energy optimization algorithm, and a CMAC controller were developed for a small parallel hybrid-electric unmanned aerial vehicle (UAV). The hybrid-electric UAV is intended for military, homeland security, and disaster-monitoring missions involving intelligence, surveillance, and reconnaissance (ISR). The Simulink model is a forward-facing simulation program used to test different control strategies. The flexible energy optimization algorithm for the propulsion system allows relative importance to be assigned between the use of gasoline, electricity, and recharging. A cerebellar model arithmetic computer (CMAC) neural network approximates the energy optimization results and is used to control the parallel hybrid-electric propulsion system. The hybrid-electric UAV with the CMAC controller uses 67.3% less energy than a two-stroke gasoline-powered UAV during a 1-h ISR mission and 37.8% less energy during a longer 3-h ISR mission.

  18. Cost Effectiveness Analysis of Quasi-In-Motion Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses from Fleet Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud; Markel, Tony

    2016-05-16

    This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.

  19. ePHM System Development, Hardware-in-the-Loop Testing, Fault Tree, and FMECA Applied to and Integrated on NASA Hybrid Electric Testbeds Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development with validation and demonstrations...

  20. Hybrid-Electric Aircraft TOGW Development Tool with Empirically-Based Airframe and Physics-Based Hybrid Propulsion System Component Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-Electric distributed propulsion (HEDP) is becoming widely accepted and new tools will be required for future development. This Phase I SBIR proposal creates a...

  1. 高校体育场馆的开发和利用研究%The Development and Utilization of Research Universities Sports Venues

    Institute of Scientific and Technical Information of China (English)

    高小爱; 雍世仁

    2016-01-01

    运用走访调查法、文献资料法,分析了天水师范学院体育场馆开发和利用现状,分析认为:天水师范学院体育场馆运营存在的主要问题:缺乏市场运营机制,学校体育场馆对外开放性不够,造成大部分体育场馆闲置和亏损。并针对这一问题提出建议:充分利用天水师范学院体育场馆的优势,从人力资源、物力资源和时间资源等方面对体育场馆进行开发和利用,提高体育场馆的使用效率和经济效益。%Using visiting survey method,the method of literature,analysis of the development of sports venues in Tianshui Nor-mal University and utilization situation.The analysis thinks that the main problems existing in Tianshui Normal University stadi-um operations:is the lack of market operation mechanism,school sports venues to open the lack of society,resulting in wide-spread loss of idle and stadiums.And puts forward some suggestions to solve this problem:make full use of the advantages of the Tianshui Normal University stadium,from human resources,material resources and time resources and other aspects of the stadium for the development and use of improved stadiums the use efficiency and the economic efficiency.

  2. Modeling, Simulation Design and Control of Hybrid-Electric Vehicle Drives

    Energy Technology Data Exchange (ETDEWEB)

    Giorgio Rizzoni

    2005-09-30

    Ohio State University (OSU) is uniquely poised to establish such a center, with interdisciplinary emphasis on modeling, simulation, design and control of hybrid-electric drives for a number of reasons, some of which are: (1) The OSU Center for Automotive Research (CAR) already provides an infrastructure for interdisciplinary automotive research and graduate education; the facilities available at OSU-CAR in the area of vehicle and powertrain research are among the best in the country. CAR facilities include 31,000 sq. feet of space, multiple chassis and engine dynamometers, an anechoic chamber, and a high bay area. (2) OSU has in excess of 10 graduate level courses related to automotive systems. A graduate level sequence has already been initiated with GM. In addition, an Automotive Systems Engineering (ASE) program cosponsored by the mechanical and electrical engineering programs, had been formulated earlier at OSU, independent of the GATE program proposal. The main objective of the ASE is to provide multidisciplinary graduate education and training in the field of automotive systems to Masters level students. This graduate program can be easily adapted to fulfill the spirit of the GATE Center of Excellence. (3) A program in Mechatronic Systems Engineering has been in place at OSU since 1994; this program has a strong emphasis on automotive system integration issues, and has emphasized hybrid-electric vehicles as one of its application areas. (4) OSU researchers affiliated with CAR have been directly involved in the development and study of: HEV modeling and simulation; electric drives; transmission design and control; combustion engines; and energy storage systems. These activities have been conducted in collaboration with government and automotive industry sponsors; further, the same researchers have been actively involved in continuing education programs in these areas with the automotive industry. The proposed effort will include: (1) The development of a

  3. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  4. Transmission network-based energy and environmental assessment of plug-in hybrid electric vehicles

    Science.gov (United States)

    Valentine, Keenan; Acquaviva, Jonathan; Foster, E. J.; Zhang, K. Max

    2011-03-01

    The introduction of plug-in hybrid electric vehicles (PHEVs) is expected to have a significant impact on regional power systems and pollutant emissions. This paper analyzes the effects of various penetrations of PHEVs on the marginal fuel dispatch of coal, natural gas and oil, and on pollutant emissions of CO2, NOx, SO2 in the New York Metropolitan Area for two battery charging scenarios in a typical summer and winter day. A model of the AC transmission network of the Northeast Power Coordinating Council (NPCC) region with 693 generators is used to realistically incorporate network constraints into an economic dispatch model. A data-based transportation model of approximately 1 million commuters in NYMA is used to determine battery charging pattern. Results show that for all penetrations of PHEVs network-constrained economic dispatch of generation is significantly more realistic than unconstrained cases. Coal, natural gas and oil units are on the margin in the winter, and only natural gas and oil units are on the margin in the summer. Hourly changes in emissions from transportation and power production are dominated by vehicular activity with significant overall emissions reductions for CO2 and NOx, and a slight increase for SO2. Nighttime regulated charging produces less overall emissions than unregulated charging from when vehicles arrive home for the summer and vice versa for the winter. As PHEVs are poised to link the power and transportation sectors, data-based models combining network constraints and economic dispatch have been shown to improve understanding and facilitate control of this link.

  5. Development of ultra-battery for hybrid-electric vehicle applications

    Science.gov (United States)

    Lam, L. T.; Louey, R.

    Transport is one of the largest sources of human-induced greenhouse gas emissions and fossil-fuels consumption. This has lead to a growing demand for hybrid-electric vehicles (HEVs) to reduce air pollution and consumption of fossil fuels. CSIRO Energy Technology has developed the ultra-battery, a new technology that will reduce the cost and boost the performance of batteries in HEVs. The ultra-battery is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cell, taking the best from both technologies without the need for extra electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer in discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The ultra-battery has been subjected to a variety of tests. To date, results show that the discharge and charge power of the ultra-battery is ∼50% higher and its cycle-life is at least three times longer than that of the conventional lead-acid counterpart. Furthermore, the ultra-battery is able to be produced as either flooded-electrolyte or valve-regulated designs in the existing lead-acid factory and also able to reconfigure for a variety of applications, such as conventional automobile, power tool, forklift, high-power uninterruptible power supply and remote-area power supply. The prototype ultra-batteries have been constructed and are under laboratory evaluation and field trial. The success of the ultra-battery will obviously make HEVs more affordable and widespread. This, in turn, will reduce greenhouse gas emissions in the urban environment and the consumption of limited supplies of fossil fuels.

  6. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  7. Electric and hybrid electric vehicles. Report of the International Evaluation Committee. June 96

    Energy Technology Data Exchange (ETDEWEB)

    Kahlen, H. [Univ. Kaiserslautern (Germany); Maggetto, G. [Vrije Univ., Brussel (Belgium); Scrosati, B. [Univ. di Roma (Italy); Srinivasan, S. [Texas A and M Univ., College Station (United States)

    1996-11-01

    As requested by NUTEK our task was to evaluate the results and progress achieved in the electric and hybrid electric vehicles programme. This is a multidisciplinary research programme involving 12 projects at four universities and is planned to be extended over two three-year periods, i.e. 1993-1996 and 1997-1999 at a level of 8 MSKR (about USD 1,2M) per year. The programme has been launched to stimulate the development of electric vehicle technology in Sweden and is supporting projects to optimize the material processes, improve battery and engine components and promote of their production by the Swedish industry. In addition, the programme is directed to: 1. improve the knowledge and experience in the field at the academic level; 2. to support long time research on the subject and, 3. promote collaboration nationally and internationally. Our first comment is that the latter aspect appears to be satisfactorily accomplished. Most of the groups we have visited demonstrate an acquired experience in the field and presented their results with competence and enthusiasm. In many cases, we found valid interactions on ongoing projects in Swedish universities and established collaborations with high rank international groups. The programme has provided the material and the motivation for high-quality thesis work and, consequently, the formation of a class of well prepared and professionally competent students. Since electric vehicle technology is fast developing and is expected to have important fall-outs not only in the car industry but also in battery and electric engine manufacturing, the training of competent scientists and engineers in the field is of paramount relevance for Sweden where these types of industries are active and spread out. Therefore, we believe that as far as educational promotion is concerned, the funds distribution was worthwhile in all the projects which we evaluated

  8. Sports Nutrition: What the Future may Bring

    OpenAIRE

    Campbell Bill; Kalman Douglas S

    2004-01-01

    Abstract The field of sports nutrition is a dynamic one. Core competencies in exercise physiology, psychology, integrated metabolism and biochemistry are the initial parameters for a successful career in sports nutrition. In addition to the academic fundamentals, it is imperative that the sports nutritionist understand the sport in which our client participates. This sport specific understanding should manifest itself in fuel utilization, mechanics of movement, as well as psychological proces...

  9. Bone imaging in sports medicine.

    Directory of Open Access Journals (Sweden)

    Shikare S

    1997-07-01

    Full Text Available Increased participation in sports by the general public leads to increase in sports induced injuries including stress fractures, shin splints, arthritis and host of musculotendenous maladies. We have studied twenty patients referred from sports clinic for bone scanning to evaluate clinically difficult problems. It showed stress fracture in twelve patients, bilateral shin splint in five patients and normal bone scan in three patients. Present study highlights the utility of bone imaging for the diagnosis of various sports injuries in sports medicine.

  10. Evaluating the Degradation Mechanism and State of Health of LiFePO4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-01-01

    Full Text Available Accurate determination of the performance and precise prediction of the state of health (SOH of lithium-ion batteries are necessary to ensure reliability and efficiency in real-world application. However, most SOH offline studies were based on dynamic stress tests, which only reflect the universal rule of degradation, but are not necessarily applicable for real-world applications. This paper presents an experimental evaluation of two different operations of real-world plug-in hybrid electric vehicles with LiFePO4 batteries as energy-storage systems. First, the LiFePO4 batteries were subjected to a set of comparative experimental tests that consider the effects of charge depleting (CD and charge sustaining (CS operations. Then, different voltage analysis along with the close-to-equilibrium open circle voltage was utilized to evaluate the performance of the batteries in life cycles. Finally, a qualitative relationship between the external factors (the percentage of time of CD/CS operations during the entire driving range and the degradation mechanism was built with the help of the proposed methods. Results indicated that the external factors affect the degree of the batteries degradation, but not up to the point when the capacity fading stage occurs. This relationship contributes to the foundation for plug-in hybrid electric vehicles’ (PHEVs’ energy management strategy or battery management system control strategy.

  11. 湘西民俗旅游对传统体育文化遗产的保护与利用%Protection and Utilization of Xiangxi Folk Tourism for Traditional Sports Cultural Heritage

    Institute of Scientific and Technical Information of China (English)

    梁金娥; 艾显斌

    2015-01-01

    With the methods of literature, on-the-spot investigation, the paper does the analysis of Xiangxi traditional sports cultural heritage content, exploring the interactive relationship between Xiangxi folk tourism and traditional sports cultural heritage protection, and offers some proposals for Xiangxi traditional sports cultural heritage protection and utilization: using the overall advantages of Xiangxi folk tourism and traditional sports cultural heritage to reach the mutual promotion and common development; for folk tourism market to promote the industrialization development of traditional sports cultural heritage; to deal with traditional sports cultural heritage resources development and protection, the relationship between the sustainable development of Xiangxi traditional sports and cultural heritage.%文章采用文献资料法、实地考察等研究方法,分析湘西传统体育文化遗产内容,探寻湘西民俗旅游与传统体育文化遗产保护的互动关系,并对湘西传统体育文化遗产的保护与利用提出建议:利用湘西民俗旅游和传统体育文化遗产的整体优势,相互促进,共同发展;面向民俗旅游市场,促进传统体育文化遗产产业化发展;处理好传统体育文化遗产资源开发与保护之间的关系,旨在为湘西传统体育文化遗产的可持续发展提供借鉴。

  12. Bandwidth based methodology for designing a hybrid energy storage system for a series hybrid electric vehicle with limited all electric mode

    Science.gov (United States)

    Shahverdi, Masood

    The cost and fuel economy of hybrid electrical vehicles (HEVs) are significantly dependent on the power-train energy storage system (ESS). A series HEV with a minimal all-electric mode (AEM) permits minimizing the size and cost of the ESS. This manuscript, pursuing the minimal size tactic, introduces a bandwidth based methodology for designing an efficient ESS. First, for a mid-size reference vehicle, a parametric study is carried out over various minimal-size ESSs, both hybrid (HESS) and non-hybrid (ESS), for finding the highest fuel economy. The results show that a specific type of high power battery with 4.5 kWh capacity can be selected as the winning candidate to study for further minimization. In a second study, following the twin goals of maximizing Fuel Economy (FE) and improving consumer acceptance, a sports car class Series-HEV (SHEV) was considered as a potential application which requires even more ESS minimization. The challenge with this vehicle is to reduce the ESS size compared to 4.5 kWh, because the available space allocation is only one fourth of the allowed battery size in the mid-size study by volume. Therefore, an advanced bandwidth-based controller is developed that allows a hybridized Subaru BRZ model to be realized with a light ESS. The result allows a SHEV to be realized with 1.13 kWh ESS capacity. In a third study, the objective is to find optimum SHEV designs with minimal AEM assumption which cover the design space between the fuel economies in the mid-size car study and the sports car study. Maximizing FE while minimizing ESS cost is more aligned with customer acceptance in the current state of market. The techniques applied to manage the power flow between energy sources of the power-train significantly affect the results of this optimization. A Pareto Frontier, including ESS cost and FE, for a SHEV with limited AEM, is introduced using an advanced bandwidth-based control strategy teamed up with duty ratio control. This controller

  13. Sports Tourism

    Directory of Open Access Journals (Sweden)

    Gozalova Marina

    2014-07-01

    Full Text Available Introduction. This article is devoted to sports tourism. The purpose of this article is to examine theoretical material on sports tourism, to analyze sports tourism in Russia and to search for promising areas for the study of sports tourism in our country. Material and methods. In this part the authors develop the idea of the role of doing sports and keeping fit. For anyone who really wants to be healthy, fitness has become an integral part of their lives. Results. The purpose of this research is to study theoretical material on sports tourism, to analyze sports tourism in Russia and to search for promising areas for the study of sports tourism in our country. On the basis of their research the authors come to the conclusion that sports and tourism are interconnected. There are important factors affecting the situation of sports tourism in Russia. The paper examines sports tourism attractions in Russia. Conclusion. The authors conclude that there exists a high correlation dependence of foreign and domestic development of sports tourism on resources allocated for sports infrastructure. All in all, sports tourism tours draw visitors to their favorite sporting event, facility, or destination throughout the world.

  14. The Value and Utilization of Sports Games in College-based Curriculum Development%体育游戏在校本课程开发中的价值与运用

    Institute of Scientific and Technical Information of China (English)

    张志明

    2014-01-01

    体育游戏在校本课程中的应用,有利于体育教学的发展,不仅有益于学生的身体素质,而且对学生的智力发展,以及学生各方面能力的培养都起到了重要作用。为了使体育游戏在高校体育教学中发挥巨大作用,真正益于学生的发展,本文针对其在校本课程开发中的价值和运用进行了分析和探究。%The utilization of sports games in college-based cur-riculum is conducive to the development of sports teaching, the improvement of students' physical quality and their intelligence development,as well as the cultivation of students' all-round a-bilities. In order to give full play to the role of sports games in college sports teaching and make it feasibly help students' devel-opment, this paper analyzed and explored its value and utilization in college-based curriculum development.

  15. Plug-in hybrid electric vehicles as a source of distributed frequency regulation

    Science.gov (United States)

    Mullen, Sara Kathryn

    The movement to transform the North American power grid into a smart grid may be accomplished by expanding integrated sensing, communications, and control technologies to include every part of the grid to the point of end-use. Plug-in hybrid electric vehicles (PHEV) provide an opportunity for small-scale distributed storage while they are plugged-in. With large numbers of PHEV and the communications and sensing associated with the smart grid, PHEV could provide ancillary services for the grid. Frequency regulation is an ideal service for PHEV because the duration of supply is short (order of minutes) and it is the highest priced ancillary service on the market offering greater financial returns for vehicle owners. Using Simulink a power system simulator modeling the IEEE 14 Bus System was combined with a model of PHEV charging and the controllers which facilitate vehicle-to-grid (V2G) regulation supply. The system includes a V2G controller for each vehicle which makes regulation supply decisions based on battery state, user preferences, and the recommended level of supply. A PHEV coordinator controller located higher in the system has access to reliable frequency measurements and can determine a suitable local automatic generation control (AGC) raise/lower signal for participating vehicles. A first step implementation of the V2G supply system where battery charging is modulated to provide regulation was developed. The system was simulated following a step change in loading using three scenarios: (1) Central generating units provide frequency regulation, (2) PHEV contribute to primary regulation analogous to generator speed governor control, and (3) PHEV contribute to primary and secondary regulation using an additional integral term in the PHEV control signal. In both cases the additional regulation provided by PHEV reduced the area control error (ACE) compared to the base case. Unique contributions resulting from this work include: (1) Studied PHEV energy systems

  16. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  17. Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements

    Science.gov (United States)

    Koprubasi, Kerem

    The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV

  18. Hybrid electric system based on fuel cell and battery and integrating a single dc/dc converter for a tramway

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)

    2011-05-15

    Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.

  19. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  20. Impact of Plug-in Hybrid Electric Vehicle on Power Distribution System Considering Vehicle to Grid Technology: A Review

    Directory of Open Access Journals (Sweden)

    A. Aljanad

    2015-08-01

    Full Text Available This study presents a comprehensive review of the potential technical impacts of plug-in hybrid electric vehicles on power distribution and transmission systems. This review also presents various power quality impacts on the power system in several aspects. This review conveys a detailed analysis of electric vehicle charging strategies on electrical distribution networks. The two charging aspects (coordinated/uncoordinated and intelligent scheduling of charging are discussed in terms of their impacts on power systems. Vehicle to grid technology are investigated, elaborated and evaluated based on technical, suitability and configuration aspects.

  1. Engine control strategy for a series hybrid electric vehicle incorporating load-leveling and computer controlled energy management

    Energy Technology Data Exchange (ETDEWEB)

    Hochgraf, C.G.; Ryan, M.J.; Wiegman, H.L. [Univ. of Wisconsin, Madison, WI (United States)

    1996-09-01

    This paper identifies important engine, alternator and battery characteristics needed for determining an appropriate engine control strategy for a series hybrid electric vehicle. Examination of these characteristics indicates that a load-leveling strategy applied to the small engine will provide better fuel economy than a power-tracking scheme. An automatic energy management strategy is devised whereby a computer controller determines the engine-alternator turn-on and turn-off conditions and controls the engine-alternator autonomously. Battery state of charge is determined from battery voltage and current measurements. Experimental results of the system`s performance in a test vehicle during city driving are presented.

  2. Sports Injuries

    Science.gov (United States)

    ... sometimes you can injure yourself when you play sports or exercise. Accidents, poor training practices, or improper ... can also lead to injuries. The most common sports injuries are Sprains and strains Knee injuries Swollen ...

  3. Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics

    Directory of Open Access Journals (Sweden)

    Noshin Omar

    2012-08-01

    Full Text Available In this paper, the performances of various lithium-ion chemistries for use in plug-in hybrid electric vehicles have been investigated and compared to several other rechargeable energy storage systems technologies such as lead-acid, nickel-metal hydride and electrical-double layer capacitors. The analysis has shown the beneficial properties of lithium-ion in the terms of energy density, power density and rate capabilities. Particularly, the nickel manganese cobalt oxide cathode stands out with the high energy density up to 160 Wh/kg, compared to 70–110, 90 and 71 Wh/kg for lithium iron phosphate cathode, lithium nickel cobalt aluminum cathode and, lithium titanate oxide anode battery cells, respectively. These values are considerably higher than the lead-acid (23–28 Wh/kg and nickel-metal hydride (44–53 Wh/kg battery technologies. The dynamic discharge performance test shows that the energy efficiency of the lithium-ion batteries is significantly higher than the lead-acid and nickel-metal hydride technologies. The efficiency varies between 86% and 98%, with the best values obtained by pouch battery cells, ahead of cylindrical and prismatic battery design concepts. Also the power capacity of lithium-ion technology is superior compared to other technologies. The power density is in the range of 300–2400 W/kg against 200–400 and 90–120 W/kg for lead-acid and nickel-metal hydride, respectively. However, considering the influence of energy efficiency, the power density is in the range of 100–1150 W/kg. Lithium-ion batteries optimized for high energy are at the lower end of this range and are challenged to meet the United States Advanced Battery Consortium, SuperLIB and Massachusetts Institute of Technology goals. Their association with electric-double layer capacitors, which have low energy density (4–6 Wh/kg but outstanding power capabilities, could be very interesting. The study of the rate capability of the lithium-ion batteries has

  4. Nutrition for winter sports.

    Science.gov (United States)

    Meyer, Nanna L; Manore, Melinda M; Helle, Christine

    2011-01-01

    Winter sports are played in cold conditions on ice or snow and often at moderate to high altitude. The most important nutritional challenges for winter sport athletes exposed to environmental extremes include increased energy expenditure, accelerated muscle and liver glycogen utilization, exacerbated fluid loss, and increased iron turnover. Winter sports, however, vary greatly regarding their nutritional requirements due to variable physiological and physique characteristics, energy and substrate demands, and environmental training and competition conditions. What most winter sport athletes have in common is a relatively lean physique and high-intensity training periods, thus they require greater energy and nutrient intakes, along with adequate food and fluid before, during, and after training. Event fuelling is most challenging for cross-country skiers competing in long events, ski jumpers aiming to reduce their body weight, and those winter sport athletes incurring repeated qualification rounds and heats. These athletes need to ensure carbohydrate availability throughout competition. Finally, winter sport athletes may benefit from dietary and sport supplements; however, attention should be paid to safety and efficacy if supplementation is considered.

  5. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    Science.gov (United States)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  6. Estimation Method of State-of-Charge For Lithium-ion Battery Used in Hybrid Electric Vehicles Based on Variable Structure Extended Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    SUN Yong; MA Zilin; TANG Gongyou; CHEN Zheng; ZHANG Nong

    2016-01-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5%to 10%comparing with the range of 20%to 30%using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  7. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  8. A Novel Torque Coordination Control Strategy of a Single-Shaft Parallel Hybrid Electric Vehicle Based on Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Jing Sun

    2015-01-01

    Full Text Available The torque coordination control during mode transition is a very important task for hybrid electric vehicle (HEV with a clutch serving as the key enabling actuator element. Poor coordination will deteriorate the drivability of the driver and lead to excessive wearing to the clutch friction plates. In this paper, a novel torque coordination control strategy for a single-shaft parallel hybrid electric vehicle is presented to coordinate the motor torque, engine torque, and clutch torque so that the seamless mode switching can be achieved. Different to the existing model predictive control (MPC methods, only one model predictive controller is needed and the clutch torque is taken as an optimized variable rather than a known parameter. Furthermore, the successful idea of model reference control (MRC is also used for reference to generate the set-point signal required by MPC. The parameter sensitivity is studied for better performance of the proposed model predictive controller. The simulation results validate that the proposed novel torque coordination control strategy has less vehicle jerk, less torque interruption, and smaller clutch frictional losses, compared with the baseline method. In addition, the sensitivity and adaptiveness of the proposed novel torque coordination control strategy are evaluated.

  9. Energy management strategy for a parallel hybrid electric vehicle equipped with a battery/ultra-capacitor hybrid energy storage system

    Institute of Scientific and Technical Information of China (English)

    Jun-yi LIANG; Jian-long ZHANG; Xi ZHANG; Shi-fei YUAN; Cheng-liang YIN

    2013-01-01

    To solve the low power density issue of hybrid electric vehicular batteries,a combination of batteries and ultracapacitors(UCs)could be a solution.The high power density feature of UCs can improve the performance of battery/UC hybrid energy storage systems(HESSs).This paper presents a parallel hybrid electric vehicle(HEV)equipped with an internal combustion engine and an HESS.An advanced energy management strategy(EMS),mainly based on fuzzy logic,is proposed to improve the fuel economy of the HEV and the endurance of the HESS.The EMS is capable of determining the ideal distribution of output power among the internal combustion engine,battery,and UC according to the propelling power or regenerative braking power of the vehicle.To validate the effectiveness of the EMS,numerical simulation and experimental validations are carried out.The results indicate that EMS can effectively control the power sources to work within their respective efficient areas.The battery load can be mitigated and prolonged battery life can be expected.The electrical energy consumption in the HESS is reduced by 3.91%compared with that in the battery only system.Fuel consumption of the HEV is reduced by 24.3% compared with that of the same class conventional vehicles under Economic Commission of Europe driving cycle.

  10. Design study and performance analysis of 12S-14P field excitation flux switching motor for hybrid electric vehicle

    Science.gov (United States)

    Husin, Zhafir Aizat; Sulaiman, Erwan; Khan, Faisal; Mazlan, Mohamed Mubin Aizat; Othman, Syed Muhammad Naufal Syed

    2015-05-01

    This paper presents a new structure of 12slot-14pole field excitation flux switching motor (FEFSM) as an alternative candidate of non-Permanent Magnet (PM) machine for HEV drives. Design study, performance analysis and optimization of field excitation flux switching machine with non-rare-earth magnet for hybrid electric vehicle drive applications is done. The stator of projected machine consists of iron core made of electromagnetic steels, armature coils and field excitation coils as the only field mmf source. The rotor is consisted of only stack of iron and hence, it is reliable and appropriate for high speed operation. The design target is a machine with the maximum torque, power and power density, more than 210Nm, 123kW and 3.5kW/kg, respectively, which competes with interior permanent magnet synchronous machine used in existing hybrid electric vehicle. Some design feasibility studies on FEFSM based on 2D-FEA and deterministic optimization method will be applied to design the proposed machine.

  11. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Science.gov (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  12. Towards a Friendly Energy Management Strategy for Hybrid Electric Vehicles with Respect to Pollution, Battery and Drivability

    Directory of Open Access Journals (Sweden)

    Guillaume Colin

    2014-09-01

    Full Text Available The paper proposes a generic methodology to incorporate constraints (pollutant emission, battery health, drivability into on-line energy management strategies (EMSs for hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs. The integration of each constraint into the EMS, made with the Pontryagin maximum principle, shows a tradeoff between the fuel consumption and the constraint introduced. As state dynamics come into play (catalyst temperature, battery cell temperature, etc., the optimization problem becomes more complex. Simulation results are presented to highlight the contribution of this generic strategy, including constraints compared to the standard approach. These results show that it is possible to find an energy management strategy that takes into account an increasing number of constraints (drivability, pollution, aging, environment, etc.. However, taking these constraints into account increases fuel consumption (the existence of a trade-off curve. This trade-off can be sometimes difficult to find, and the tools developed in this paper should help to find an acceptable solution quickly

  13. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    Science.gov (United States)

    Borhan, Hoseinali

    result in the need for repeated control system redesign. To address these shortcomings, we formulate the power management problem as a nonlinear and constrained optimal control problem. Solution of this optimal control problem in real-time on chronometric- and memory-constrained automotive microcontrollers is quite challenging; this computational complexity is due to the highly nonlinear dynamics of the powertrain subsystems, mixed-integer switching modes of their operation, and time-varying and nonlinear hard constraints that system variables should satisfy. The main contribution of the first part of the dissertation is that it establishes methods for systematic and step-by step improvements in fuel economy while maintaining the algorithmic computational requirements in a real-time implementable framework. More specifically a linear time-varying model predictive control approach is employed first which uses sequential quadratic programming to find sub-optimal solutions to the power management problem. Next the objective function is further refined and broken into a short and a long horizon segments; the latter approximated as a function of the state using the connection between the Pontryagin minimum principle and Hamilton-Jacobi-Bellman equations. The power management problem is then solved using a nonlinear MPC framework with a dynamic programming solver and the fuel economy is further improved. Typical simplifying academic assumptions are minimal throughout this work, thanks to close collaboration with research scientists at Ford research labs and their stringent requirement that the proposed solutions be tested on high-fidelity production models. Simulation results on a high-fidelity model of a hybrid electric vehicle over multiple standard driving cycles reveal the potential for substantial fuel economy gains. To address the control calibration challenges, we also present a novel and fast calibration technique utilizing parallel computing techniques. ^ The second

  14. [Sport medicine].

    Science.gov (United States)

    Epstein, Yoram

    2012-02-01

    It is only since the late 20th century that Sport and Exercise Medicine has emerged as a distinct entity in health care. In Israel, sports medicine is regulated by a State Law and a sport physician is certified after graduating a structured program. In the past, sports medicine was related to the diagnosis and treatment of injuries encountered by top athletes. In recent years, the scope of sport medicine has broadened to reflect the awareness of modern society of the dangers of physical inactivity. In this perspective the American College of Sport Medicine (ACSM) recently launched a program--"Exercise is Medicine", to promote physical activity in order to improve health and well-being and prevention of diseases through physical activity prescriptions. This program is from doctors and healthcare providers, adjusted to the patient or trainee. The sport physician does not replace a medical specialist, but having a thorough understanding about the etiology of a sport-related injury enables him to better focus on treatment and prevention. Therefore, Team Physicians in Elite Sport often play a role regarding not only the medical care of athletes, but also in the physiological monitoring of the athlete and correcting aberrations, to achieve peak physical performance. The broad spectrum of issues in sport and exercise medicine cannot be completely covered in one issue of the Journal. Therefore, the few reports that are presented to enhance interest and understanding in the broad spectrum of issues in sports and exercise medicine are only the tip of the iceberg.

  15. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.

    2008-04-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

  16. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  17. 谈谈乡土体育器材的开发和利用%Talk about the Development and Utilization of Local Sports Equipment

    Institute of Scientific and Technical Information of China (English)

    马秀梅

    2014-01-01

    Sports equipment for rural schools can not meet the needs of students in this actual sports activities,physical education teachers can fully mobilize the enthusiasm of students to collect domestic waste,for sports teaching service. According to the teaching of our life experiences and characteristics of the project,starting from the actual school,teachers and students collaboratively innovate,homemade sports equipment,compose sports games,optimize physical education,and strive to create a high-school physical education class.%针对农村学校体育器材不能满足学生体育活动的需要这一实际,体育教师可以充分调动学生积极性收集生活废弃物,为体育教学服务。教师根据生活经验和教学项目特点,从学校实际出发,师生合作创新,自制体育器材,创编体育游戏,优化体育教学,努力创建学校体育教学的高效课堂。

  18. Design of a Permanent Magnet Synchronous Machine for a Flywheel Energy Storage System within a Hybrid Electric Vehicle

    Science.gov (United States)

    Jiang, Ming

    As an energy storage device, the flywheel has significant advantages over conventional chemical batteries, including higher energy density, higher efficiency, longer life time, and less pollution to the environment. An effective flywheel system can be attributed to its good motor/generator (M/G) design. This thesis describes the research work on the design of a permanent magnet synchronous machine (PMSM) as an M/G suitable for integration in a flywheel energy storage system within a large hybrid electric vehicle (HEV). The operating requirements of the application include wide power and speed ranges combined with high total system efficiency. Along with presenting the design, essential issues related to PMSM design including cogging torque, iron losses and total harmonic distortion (THD) are investigated. An iterative approach combining lumped parameter analysis with 2D Finite Element Analysis (FEA) was used, and the final design is presented showing excellent performance.

  19. Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Tobias Nüesch

    2014-05-01

    Full Text Available Motivated by the fact that the real driving NOx emissions (RDE of conventional diesel vehicles can exceed the legislation norms by far, a concept for the control of RDE with a diesel parallel hybrid electric vehicle (HEV is proposed. By extending the well-known equivalent consumption minimization strategy (ECMS, the power split degree of freedom is used to control the NOx emissions and the battery state of charge (SOC simultaneously. Through an appropriate formulation of the problem, the feedback control is shown to be separable into two dependent PI controllers. By hardware-in-the-loop (HIL experiments, as well as by simulations, the proposed method is shown to minimize the fuel consumption while tracking a given reference trajectory for both the NOx emissions and the battery SOC.

  20. Comparative Study of Dynamic Programming and Pontryagin’s Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Huei Peng

    2013-04-01

    Full Text Available This paper compares two optimal energy management methods for parallel hybrid electric vehicles using an Automatic Manual Transmission (AMT. A control-oriented model of the powertrain and vehicle dynamics is built first. The energy management is formulated as a typical optimal control problem to trade off the fuel consumption and gear shifting frequency under admissible constraints. The Dynamic Programming (DP and Pontryagin’s Minimum Principle (PMP are applied to obtain the optimal solutions. Tuning with the appropriate co-states, the PMP solution is found to be very close to that from DP. The solution for the gear shifting in PMP has an algebraic expression associated with the vehicular velocity and can be implemented more efficiently in the control algorithm. The computation time of PMP is significantly less than DP.

  1. STEADY-STATE AND IDLE OPTIMIZA- TION OF INTERNAL COMBUSTION ENGINE CONTROL STRATEGIES FOR HYBRID ELECTRIC VEHICLES

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; MAO Xiaojian; YANG Lin; ZHUO Bin

    2008-01-01

    A novel steady-state optimization (SSO) of internal combustion engine (ICE) strategy is proposed to maximize the efficiency of the overall powertrain for hybrid electric vehicles, in which the ICE efficiency, the efficiencies of the electric motor (EM) and the energy storage device are all explicitly taken into account. In addition, a novel idle optimization of ICE strategy is implemented to obtain the optimal idle operating point of the ICE and corresponding optimal parking generation power of the EM using the view of the novel SSO of ICE strategy. Simulations results show that potential fuel economy improvement is achieved relative to the conventional one which only optimized the ICE efficiency by the novel SSO of ICE strategy, and fuel consumption per voltage increment decreases a lot during the parking charge by the novel idle optimization of ICE strategy.

  2. Study on Forward-Facing Model and Real-Time Simulation for a Series Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xudong Liu

    2011-10-01

    Full Text Available To shorten design period and reduce development costs, computer modeling and simulation is important for HEV design and development. In this paper, real-time simulation for a Series Hybrid Electric Vehicle (SHEV is made to verify its fuzzy logic control strategy based on dSPACE-DS1103 development kits. The whole real-time simulation schematic is designed and the vehicle forward-facing simulation model is set up. Modeling methods for the driver, controller and vehicle (includes engine, generator, motor, battery, etc. under MATLAB/Simulink environment are discussed in detail. Driver behavior is simulated by two potentiometers and introduced into the real-time system to realize close-loop control. A real-time monitoring interface is also developed to observe the experiment results. Experiment results show that the real-time simulation platform works well and the SHEV fuzzy logic control strategy is effective.

  3. Research on Gear Shifting Process without Disengaging Clutch for a Parallel Hybrid Electric Vehicle Equipped with AMT

    Directory of Open Access Journals (Sweden)

    Hui-Long Yu

    2014-01-01

    Full Text Available Dynamic models of a single-shaft parallel hybrid electric vehicle (HEV equipped with automated mechanical transmission (AMT were described in different working stages during a gear shifting process without disengaging clutch. Parameters affecting the gear shifting time, components life, and gear shifting jerk in different transient states during a gear shifting process were deeply analyzed. The mathematical models considering the detailed synchronizer working process which can explain the gear shifting failure, long time gear shifting, and frequent synchronizer failure phenomenon in HEV were derived. Dynamic coordinated control strategy of the engine, motor, and actuators in different transient states considering the detailed working stages of synchronizer in a gear shifting process of a HEV is for the first time innovatively proposed according to the state of art references. Bench test and real road test results show that the proposed control strategy can improve the gear shifting quality in all its evaluation indexes significantly.

  4. Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2009-01-01

    Combining high-energy-density batteries and high-power-density ultracapacitors in fuel cell hybrid electric vehicles (FCHEVs) results in a high-performance, highly efficient, low-size, and light system. Often, the battery is rated with respect to its energy requirement to reduce its volume and mass....... This does not prevent deep discharges of the battery, which are critical to the lifetime of the battery. In this paper, the ratings of the battery and ultracapacitors are investigated. Comparisons of the system volume, the system mass, and the lifetime of the battery due to the rating of the energy storage...... devices are presented. It is concluded that not only should the energy storage devices of a FCHEV be sized by their power and energy requirements, but the battery lifetime should also be considered. Two energy-management strategies, which sufficiently divide the load power between the fuel cell stack...

  5. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  6. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  7. Simulation Analysis on Driving Cycle of a Hybrid Electric Vehicle%混合动力汽车行驶工况的仿真分析

    Institute of Scientific and Technical Information of China (English)

    李东东; 程金瑞; 田源玉

    2012-01-01

    Vehicle performance is influenced by actual driving condition directly.For a hybrid electric vehicle,selection of its componemnts and formulation of control strategy are closely related to road driving cycle.Driving cycle of a vehicle is analyzed in this paper.modeling and simulation of a mini hybrid electric vehicle is comducted by using GT-DRIV.The simulation results show that the hybrid electric vehicle has obvious advantages than traditional vehicle in fuel economy.Better electric distribution will be the key point in hybrid electric vehicle design.%汽车的实际行驶条件对汽车性能具有直接影响。对于混合动力汽车,其部件的选型以及控制策略的制定都与道路行驶工况密切相关文章对汽车行驶工况做了相应的分析.利用GT—DRIVE软件对某微型混合动力汽车进行了建模与仿真仿真结果表明,在经济性方面混合动力汽车比传统汽车有明显的优势.如何更好地分配混合动力汽车功率将是混合动力汽车研究的重点.

  8. Eye Injuries in Sports

    Science.gov (United States)

    ... in Sports Which sports cause the most eye injuries?Sports cause more than 40,000 eye injuries each ... and racquet sports.When it comes to eye injuries, sports can be classified as low risk, high risk ...

  9. Flow Regime Transition in Inner Grooved Minichannel Cold Plates for Cooling Hybrid Electric Power Electronics

    Science.gov (United States)

    2013-01-01

    system to create a military base microgrid (1). There are several motivations for replacing the traditional internal combustion (IC) motors and...appropriate control electronics, several HEVs can form a microgrid with a robust source of utility power (1). This use of HEVs can reduce the need for

  10. 基于物联网的体育用品供应链管理系统的研究与设计%Study and Design of Sports Utilities SCM System Based on IOT

    Institute of Scientific and Technical Information of China (English)

    乔立波; 郭明; 贡勇强

    2013-01-01

    In this paper,in view of the problems afflicting the sports utilities supply chain,we proposed to apply the IOT technologies to its management and then established and designed the model of the system.%针对当前体育用品供应链管理存在运作效率、信息化水平、管理水平等方面的诸多问题,提出将物联网技术应用到体育用品供应链管理,并进行了系统模型构建和设计.

  11. Teaching Sport as History, History through Sport

    Science.gov (United States)

    Wheeler, Robert F.

    1978-01-01

    Describes an undergraduate history course based on two themes: sport as a reflection of society and sport as a socializing agent affecting society. The course focuses on sports and industrialization, traditional and modern sports, political and economic aspects of sport, and inequality and discrimination in sports. (Author/JK)

  12. Sports Medicine

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2004-01-01

    Sports medicine has become one of the biggest and fastest growing medical fields in recent years. That is because sports have become a major part of most societies. As work becomes more stressful (紧张的,压力重

  13. Sports Physicals

    Science.gov (United States)

    ... Prepare for Your Sports Season Choosing the Right Sport for You Contact Us Print Resources Send to a Friend Permissions Guidelines Note: Clicking these links will take you to a site outside of KidsHealth's control. About TeensHealth Nemours.org Reading ...

  14. Sport Toekomstverkenning

    NARCIS (Netherlands)

    Marieke van Bakel; Ine Pulles; Annet Tiessen-Raaphorst; Frank den Hertog; Robert Vonk; Casper Schoemaker

    2017-01-01

    Deze publicatie verschijnt enkel digitaal op www.sporttoekomstverkenning.nl. Welke maatschappelijke veranderingen beïnvloeden de sport in Nederland? Waar gaat het heen met de sport tussen nu en 2040? Welke kansen, maar ook keuzes biedt dit voor de sportsector en het sportbeleid? Deze vragen

  15. Sports Physicals

    Science.gov (United States)

    ... more specific about athletic issues. During a regular physical, however, your doctor will address your overall well-being, which may include things that are unrelated to sports. You can ask your doctor to give you both types of ... if your sports physical exam doesn't reveal any problems, it's always ...

  16. Sports Nutrition.

    Science.gov (United States)

    Missouri State Dept. of Health, Jefferson City.

    This guide deals with various aspects of sports and nutrition. Twelve chapters are included: (1) "Sports and Nutrition"; (2) "Eat to Compete"; (3) "Fit Folks Need Fit Food"; (4) "The Food Guide Pyramid"; (5) "Fat Finder's Guide"; (6) "Pre- and Post-Event Meals"; (7) "Tips for the…

  17. Paralympic Sports

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The sport movement for persons with a disability has changed dramatically over the last dec- ades with even more changes ahead.Public awareness has increased.More and more individuals with a disability of all ages find interest in sport.

  18. Sport Management.

    Science.gov (United States)

    Parkhouse, Bonnie L., Ed.; And Others

    1984-01-01

    Traditional teaching and coaching positions have become scarce but the expanding field of sport management has created its own job market, demanding new skills and preparation. Three articles are offered that explore different aspects and possibilities for a sport management career. (DF)

  19. Battery Test Manual For 12 Volt Start/Stop Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Belt, Jeffrey R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This manual was prepared by and for the United Stated Advanced Battery Consortium (USABC) Electrochemical Energy Storage Team. It is based on the targets established for 12 Volt Start/Stop energy storage development and is similar (with some important changes) to an earlier manual for the former FreedomCAR program. The specific procedures were developed primarily to characterize the performance of energy storage devices relative to the USABC requirements. However, it is anticipated that these procedures will have some utility for characterizing 12 Volt Start/Stop hybrid energy storage device behavior in general.

  20. Hybrid electric system for an Hydrogen Fuel Cell Vehicle and its energy management

    OpenAIRE

    DA FONSECA, Ramon Naiff; BIDEAUX, Eric; Gerard, Mathias; DESBOIS-RENAUDIN, Matthieu; JEANNERET, Bruno

    2012-01-01

    Fuel cell vehicles, (FCV) are characterized by the utilization on the same electric bus of an hydrogen fuel cell (FC) as a primary energy source and of storage elements like batterie s as a secondary source. In our project, the fuel c ell is a Polymer Electrolyte Membrane (PEM), which is well adapted for transport field applications. A Lithium rechargeable battery , more specifically a LiFePO4, is used to supplement the FC over the driv ing cycle. According to the requirements of the dri ...

  1. Rapportage sport 2008

    NARCIS (Netherlands)

    Koen Breedveld; Carlijn Kamphuis; Annet Tiessen-Raaphorst

    2008-01-01

    Sport boeit. Sport bindt. Sport bevordert de gezondheid. En sport betaalt. Sport is anno 2008 ongekend populair. Tweederde van de Nederlanders doet aan sport. Na zwemmen en fietsen is fitness de meest populaire sport geworden. Daarnaast zetten anderhalf miljoen Nederlanders zich als vrijwilliger

  2. The SPOrt mission on ISSA

    Science.gov (United States)

    Cortiglioni, S.; Cecchini, S.; Orsini, M.; Boella, G.; Gervasi, M.; Sironi, G.; Fabbri, R.; Monari, J.; Orfei, A.; Ng, K.-W.; Nicastro, L.; Pisani, U.; Tascone, R.; Popa, L.; Strukov, I. A.

    1999-01-01

    In the framework of the International Space Station (ISSA) utilization a project to measure the sky diffuse polarized emission at microwave frequencies has been presented to the ESA AO. After its selection by ESA the Sky Polarization Observatory (SPOrt) has been slightly modified, within ISSA constrains, to meet better its scientific goal. In this paper the current design of SPOrt is presented with emphasis on changes which have a major impact on the overall performances and that were imposed by the ISSA environment.

  3. Modeling and Control of a Flux-Modulated Compound-Structure Permanent-Magnet Synchronous Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-01-01

    Full Text Available The compound-structure permanent-magnet synchronous machine (CS-PMSM, comprising a double rotor machine (DRM and a permanent-magnet (PM motor, is a promising electronic-continuously variable transmission (e-CVT concept for hybrid electric vehicles (HEVs. By CS-PMSM, independent speed and torque control of the vehicle engine is realized without a planetary gear unit. However, the slip rings and brushes of the conventional CS-PMSM are considered a major drawback for vehicle application. In this paper, a brushless flux-modulated CS-PMSM is investigated. The operating principle and basic working modes of the CS-PMSM are discussed. Mathematical models of the CS-PMSM system are given, and joint control of the two integrated machines is proposed. As one rotor of the DRM is mechanically connected with the rotor of the PM motor, special rotor position detection and torque allocation methods are required. Simulation is carried out by Matlab/Simulink, and the feasibility of the control system is proven. Considering the complexity of the controller, a single digital signal processor (DSP is used to perform the interconnected control of dual machines instead of two separate ones, and a typical hardware implementation is proposed.

  4. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind

    Directory of Open Access Journals (Sweden)

    Dae Shik Kim, PhD

    2012-04-01

    Full Text Available A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV with an artificially generated sound (Vehicle Sound for Pedestrians [VSP], an HEV without the VSP, and a comparable internal combustion engine (ICE vehicle. The VSP vehicle (mean +/– standard deviation [SD] = 38.3 +/– 14.8 m was detected at a significantly farther distance than the HEV (mean +/– SD = 27.5 +/– 11.5 m, t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/– SD = 34.5 +/– 14.3 m, t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA, no significant difference in detection distance between the test sites was observed, F(1, 13 = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98 = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.

  5. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    Science.gov (United States)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  6. Design and development of split-parallel through-the road retrofit hybrid electric vehicle with in-wheel motors

    Science.gov (United States)

    Zulkifli, S. A.; Syaifuddin Mohd, M.; Maharun, M.; Bakar, N. S. A.; Idris, S.; Samsudin, S. H.; Firmansyah; Adz, J. J.; Misbahulmunir, M.; Abidin, E. Z. Z.; Syafiq Mohd, M.; Saad, N.; Aziz, A. R. A.

    2015-12-01

    One configuration of the hybrid electric vehicle (HEV) is the split-axle parallel hybrid, in which an internal combustion engine (ICE) and an electric motor provide propulsion power to different axles. A particular sub-type of the split-parallel hybrid does not have the electric motor installed on board the vehicle; instead, two electric motors are placed in the hubs of the non-driven wheels, called ‘hub motor’ or ‘in-wheel motor’ (IWM). Since propulsion power from the ICE and IWM is coupled through the vehicle itself, its wheels and the road on which it moves, this particular configuration is termed ‘through-the-road’ (TTR) hybrid. TTR configuration enables existing ICE-powered vehicles to be retrofitted into an HEV with minimal physical modification. This work describes design of a retrofit- conversion TTR-IWM hybrid vehicle - its sub-systems and development work. Operating modes and power flow of the TTR hybrid, its torque coupling and resultant traction profiles are initially discussed.

  7. Design and Validation of Real-Time Optimal Control with ECMS to Minimize Energy Consumption for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiyun Gao

    2017-01-01

    Full Text Available A real-time optimal control of parallel hybrid electric vehicles (PHEVs with the equivalent consumption minimization strategy (ECMS is presented in this paper, whose purpose is to achieve the total equivalent fuel consumption minimization and to maintain the battery state of charge (SOC within its operation range at all times simultaneously. Vehicle and assembly models of PHEVs are established, which provide the foundation for the following calculations. The ECMS is described in detail, in which an instantaneous cost function including the fuel energy and the electrical energy is proposed, whose emphasis is the computation of the equivalent factor. The real-time optimal control strategy is designed through regarding the minimum of the total equivalent fuel consumption as the control objective and the torque split factor as the control variable. The validation of the control strategy proposed is demonstrated both in the MATLAB/Simulink/Advisor environment and under actual transportation conditions by comparing the fuel economy, the charge sustainability, and parts performance with other three control strategies under different driving cycles including standard, actual, and real-time road conditions. Through numerical simulations and real vehicle tests, the accuracy of the approach used for the evaluation of the equivalent factor is confirmed, and the potential of the proposed control strategy in terms of fuel economy and keeping the deviations of SOC at a low level is illustrated.

  8. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  9. Effect of battery state of charge on fuel use and pollutant emissions of a full hybrid electric light duty vehicle

    Science.gov (United States)

    Duarte, G. O.; Varella, R. A.; Gonçalves, G. A.; Farias, T. L.

    2014-01-01

    This research work focuses on evaluating the effect of battery state of charge (SOC) in the fuel consumption and gaseous pollutant emissions of a Toyota Prius Full Hybrid Electric Vehicle, using the Vehicle Specific Power Methodology. Information on SOC, speed and engine management was obtained from the OBD interface, with additional data collected from a 5 gas analyzer and GPS receiver with barometric altimeter. Compared with average results, 40-50% battery SOC presented higher fuel consumption (57%), as well as higher CO2 (56%), CO (27%) and NOx (55.6%) emissions. For battery SOC between 50 and 60%, fuel consumption and CO2 were 9.7% higher, CO was 1.6% lower and NOx was 20.7% lower than average. For battery SOC between 60 and 70%, fuel consumption was 3.4% lower, CO2 was 3.6% lower, CO was 6.9% higher and NOx was 24.4% higher than average. For battery SOC between 70 and 80%, fuel consumption was 39.9% lower, CO2 was 38% lower, CO was 33.9% lower and NOx was 61.4% lower than average. The effect of engine OFF periods was analyzed for CO and NOx emissions. For OFF periods higher than 30 s, increases of 63% and 73% respectively were observed.

  10. Energy Optimization and Fuel Economy Investigation of a Series Hybrid Electric Vehicle Integrated with Diesel/RCCI Engines

    Directory of Open Access Journals (Sweden)

    Ali Solouk

    2016-12-01

    Full Text Available Among different types of low temperature combustion (LTC regimes, eactively controlled compression ignition (RCCI has received a lot of attention as a promising advanced combustion engine technology with high indicated thermal efficiency and low nitrogen oxides ( NO x and particulate matter (PM emissions. In this study, an RCCI engine for the purpose of fuel economy investigation is incorporated in series hybrid electric vehicle (SHEV architecture, which allows the engine to run completely in the narrow RCCI mode for common driving cycles. Three different types of energy management control (EMC strategies are designed and implemented to achieve the best fuel economy. The EMC strategies encompass rule-based control (RBC, offline, and online optimal controllers, including dynamic programing (DP and model predictive control (MPC, respectively. The simulation results show a 13.1% to 14.2% fuel economy saving by using an RCCI engine over a modern spark ignition (SI engine in SHEV for different driving cycles. This fuel economy saving is reduced to 3% in comparison with a modern compression ignition (CI engine, while NO x emissions are significantly lower. Simulation results show that the RCCI engine offers more fuel economy improvement in more aggressive driving cycles (e.g., US06, compared to less aggressive driving cycles (e.g., UDDS. In addition, the MPC results show that sub-optimal fuel economy is achieved by predicting the vehicle speed profile for a time horizon of 70 s.

  11. Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2015-04-01

    Full Text Available This paper presents an indirect matrix converter (IMC topology for hybrid electric vehicle (HEV application with three-phase and single-phase outputs. The HEV includes mechanical, electrical, control, and electrochemical systems among others. In the mechanical system, a traction motor and a compressor motor are used to drive the HEV. The traction motor and the compressor motor are usually operated as three-phase and single-phase motors, respectively. In this respect, a dual AC-drive system can operate the traction and the compressor motor simultaneously. Furthermore, compared to a conventional dual matrix converter system, the proposed topology can reduce the number of switches that the dual outputs share with a DC-link. The application of this system for HEV has advantages, like long lifetime and reduced volume due to the lack of a DC-link. The proposed control strategy and modulation schemes ensure the sinusoidal input and output waveforms and bidirectional power transmission. The proposed system for the HEV application is verified by simulation and experiments.

  12. Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles

    Science.gov (United States)

    Martel, François; Kelouwani, Sousso; Dubé, Yves; Agbossou, Kodjo

    2015-01-01

    This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

  13. Optimal Line Pressure Control for an Automatic Transmission-Based Parallel Hybrid Electric Vehicle considering Mode Change and Gear Shift

    Directory of Open Access Journals (Sweden)

    Minseok Song

    2014-05-01

    Full Text Available An optimal line pressure control algorithm was proposed for the fuel economy improvement of an AT-based parallel hybrid electric vehicle (HEV. By performing lever analysis at each gear step, the required line pressure was obtained considering the torque ratio of the friction elements. In addition, the required line pressure of the mode clutch was calculated. Based on these results, the optimal line pressure map at each gear step of the EV and HEV modes was presented. Using the line pressure map, an optimal line pressure was performed for the AT input torque and mode. To investigate the proposed line pressure control algorithm, a HEV performance simulator was developed based on the powertrain model of the target HEV, and fuel economy improvement was evaluated. Simulation results showed that as the gear step became higher, the optimal line pressure control could reduce the hydraulic power loss, which gave a 2.2% fuel economy improvement compared to the existing line pressure control for the FTP-72 mode.

  14. A Control Strategy for Mode Transition with Gear Shifting in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kyuhyun Sim

    2017-07-01

    Full Text Available The mode transition from electric propulsion mode to hybrid propulsion mode is important with regard to the power management strategy of plug-in hybrid electric vehicles (PHEVs. This is because mode transitions can occur frequently depending on the power management strategies and driving cycles, and because inadequate mode transitions worsen the fuel efficiency and drivability. A pre-transmission parallel PHEV uses a clutch between the internal combustion engine (ICE and the electric motor (EM to connect or disconnect the power source of the ICE for a mode transition. The mode transition requires additional energy consumption for clutch speed synchronization, and is accompanied by a drivetrain shock due to clutch engagement. This paper proposes a control strategy for the mode transition with gear-shifting to resolve the problems of energy consumption and drivetrain shock. Through the development of a PHEV performance simulator, we analyze the mode transition characteristics and propose a control strategy considering the vehicle acceleration and gear state. The control strategy reduces the duration required for the mode transition by moving the start time of the mode transition. This helps to improve energy efficiency while maintaining adequate drivability.

  15. Multi-objective comprehensive optimization of fuel consumption and emission for hybrid electric vehicles 

    Institute of Scientific and Technical Information of China (English)

    WEI Han-bing; LIU Xiao-fei; HE Yi-tuan; PENG Zhi-yuan

    2014-01-01

    Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multi-objective optimization for fuel consumption and HC/CO emission from a TWC (three-way catalytic converter) outlet is presented in this paper. DP (dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC (state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine’s load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.

  16. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  17. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Malikopoulos, Andreas [ORNL

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  18. A Method for Identification of Driving Patterns in Hybrid Electric Vehicles Based on a LVQ Neural Network

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    2012-09-01

    Full Text Available Driving patterns exert an important influence on the fuel economy of vehicles, especially hybrid electric vehicles. This paper aims to build a method to identify driving patterns with enough accuracy and less sampling time compared than other driving pattern recognition algorithms. Firstly a driving pattern identifier based on a Learning Vector Quantization neural network is established to analyze six selected representative standard driving cycles. Micro-trip extraction and Principal Component Analysis methods are applied to ensure the magnitude and diversity of the training samples. Then via Matlab/Simulink, sample training simulation is conducted to determine the minimum neuron number of the Learning Vector Quantization neural network and, as a result, to help simplify the identifier model structure and reduce the data convergence time. Simulation results have proved the feasibility of this method, which decreases the sampling window length from about 250–300 s to 120 s with an acceptable accuracy. The driving pattern identifier is further used in an optimized co-simulation together with a parallel hybrid vehicle model and improves the fuel economy by about 8%.

  19. Control and Performance Evaluation of Multiphase FSPM Motor in Low-Speed Region for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Feng Yu

    2015-09-01

    Full Text Available The flux-switching permanent-magnet (FSPM motor has been viewed as a highly reliable machine with both armature windings and magnets on the stator. Owing to the high torque-production capability with low torque ripple, FSPM motors with a higher number of phases are potential candidates for traction applications in hybrid electric vehicles (HEVs. However, existing research has mostly focused on the principles and static performance of multiphase FSPM motors, and little attention has been paid to advanced control strategies. In this paper, the fully decoupled current control of a 36/34-pole nine-phase FSPM (NP-FSPM motor is developed and the performance under different operating conditions is investigated. The aim of the design is to alleviate cross coupling effects and unwanted low-order stator harmonic currents, to guarantee fast transient response and small steady-state error. In addition, its fault-tolerance is further elaborated. These features are very important in automotive applications where low torque pulsation, high fault-tolerant capability and high dynamic performance are of major importance. Firstly, the research status of multiphase FSPM motors is briefly reviewed. Secondly, the mathematical model in the dq reference frames and control strategies are presented. Then, the control and performance of the NP-FSPM motor are evaluated by using MATLAB/Simulink. Finally, experiments on an NP-FSPM motor prototype are carried out to validate the study.

  20. Evaluation of the Effect of Operating Parameters on Thermal Performance of an Integrated Starter Generator in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2015-08-01

    Full Text Available The belt-driven-type integrated starter generator motor in a hybrid electric vehicle is vulnerable to thermal problems owing to its high output power and proximity to the engine. These problems may cause demagnetization and insulation breakdown, reducing the performance and durability of the motor. Hence, it is necessary to evaluate the thermal performance and enhance the cooling capacity of the belt-driven type Integrated Starter Generator. In this study, the internal temperature variations of the motor were investigated with respect to the operating parameters, particularly the rotation speed and environment temperature. At a maximum ambient temperature of 105 °C and rotation speed (motor design point of 4500 rpm, the coil of the motor was heated to approximately 189 °C in generating mode. The harsh conditions of the starting mode were analyzed by assuming that the motor operates during the start-up time at a maximum ambient temperature of 105 °C and rotation speed (motor design point of 800 rpm; the coil was heated to approximately 200 °C, which is close to the insulation temperature limit. The model for analyzing the thermal performance of the ISG was verified by comparing its results with those obtained through a generating-mode-based experiment

  1. Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Sung Chul Kim

    2013-11-01

    Full Text Available If the integrated starter generator (ISG motor and inverter operate under continuously high loading conditions, the system’s performance and durability will decrease and the heat dissipation requirements will increase. Therefore, in this study, we developed two cooling designs for the ISG motor and inverter, and then carried out both a model analysis and an experiment on the fluid flow and thermal characteristics of the system under various operating conditions. As the outdoor temperature increased from 25 °C to 95 °C, the coil temperature of the air-cooled motor increased by about 82 °C. Under the harsh-air condition of 95 °C, the coil of the air-cooled motor increased to a maximum temperature of about 158.5 °C. We also determined that the temperature of the metal-oxide-semiconductor field-effect transistor (MOSFET chip in the liquid-cooled inverter increased to a maximum temperature of about 96.8 °C under a coolant flow rate of 4 L/min and a coolant temperature of 65 °C. The observed thermal performance of the ISG motor and inverter using the proposed cooling structures was found to be sufficient for heat loads under various real driving conditions for a hybrid electric vehicle (HEV.

  2. Impact of adding artificially generated alert sound to hybrid electric vehicles on their detectability by pedestrians who are blind.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-01-01

    A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV) with an artificially generated sound (Vehicle Sound for Pedestrians [VSP]), an HEV without the VSP, and a comparable internal combustion engine (ICE) vehicle. The VSP vehicle (mean +/- standard deviation [SD] = 38.3 +/- 14.8 m) was detected at a significantly farther distance than the HEV (mean +/- SD = 27.5 +/- 11.5 m), t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/- SD = 34.5 +/- 14.3 m), t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA), no significant difference in detection distance between the test sites was observed, F(1, 13) = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98) = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.

  3. Map-Based Power-Split Strategy Design with Predictive Performance Optimization for Parallel Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jixiang Fan

    2015-09-01

    Full Text Available In this paper, a map-based optimal energy management strategy is proposed to improve the consumption economy of a plug-in parallel hybrid electric vehicle. In the design of the maps, which provide both the torque split between engine and motor and the gear shift, not only the current vehicle speed and power demand, but also the optimality based on the predicted trajectory of vehicle dynamics are considered. To seek the optimality, the equivalent consumption, which trades off the fuel and electricity usages, is chosen as the cost function. Moreover, in order to decrease the model errors in the process of optimization conducted in the discrete time domain, the variational integrator is employed to calculate the evolution of the vehicle dynamics. To evaluate the proposed energy management strategy, the simulation results performed on a professional GT-Suit simulator are demonstrated and the comparison to a real-time optimization method is also given to show the advantage of the proposed off-line optimization approach.

  4. A Dynamic Control Strategy for Hybrid Electric Vehicles Based on Parameter Optimization for Multiple Driving Cycles and Driving Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Zhenzhen Lei

    2017-01-01

    Full Text Available The driving pattern has an important influence on the parameter optimization of the energy management strategy (EMS for hybrid electric vehicles (HEVs. A new algorithm using simulated annealing particle swarm optimization (SA-PSO is proposed for parameter optimization of both the power system and control strategy of HEVs based on multiple driving cycles in order to realize the minimum fuel consumption without impairing the dynamic performance. Furthermore, taking the unknown of the actual driving cycle into consideration, an optimization method of the dynamic EMS based on driving pattern recognition is proposed in this paper. The simulation verifications for the optimized EMS based on multiple driving cycles and driving pattern recognition are carried out using Matlab/Simulink platform. The results show that compared with the original EMS, the former strategy reduces the fuel consumption by 4.36% and the latter one reduces the fuel consumption by 11.68%. A road test on the prototype vehicle is conducted and the effectiveness of the proposed EMS is validated by the test data.

  5. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.

    Science.gov (United States)

    Graver, Brandon M; Frey, H Christopher; Choi, Hyung-Wook

    2011-10-15

    Plug-in hybrid electric vehicles (PHEVs) could reduce transportation air emissions and energy use. However, a method is needed for estimating on-road emissions of PHEVs. To develop a framework for quantifying microscale energy use and emissions (EU&E), measurements were conducted on a Toyota Prius retrofitted with a plug-in battery system on eight routes. Measurements were made using the following: (1) a data logger for the hybrid control system; (2) a portable emissions measurement system; and (3) a global positioning system with barometric altimeter. Trends in EU&E are estimated based on vehicle specific power. Energy economy is quantified based on gasoline consumed by the engine and grid energy consumed by the plug-in battery. Emissions from electricity consumption are estimated based on the power generation mix. Fuel use is approximately 30% lower during plug-in battery use. Grid emissions were higher for CO₂, NO(x), SO₂, and PM compared to tailpipe emissions but lower for CO and hydrocarbons. EU&E depends on engine and plug-in battery operation. The use of two energy sources must be addressed in characterizing fuel economy; overall energy economy is 11% lower if including grid energy use than accounting only for fuel consumption.

  6. Evaluation of the Plug-in Hybrid Electric Vehicle Considering Learning Curve on Battery and Power Generation Best Mix

    Science.gov (United States)

    Shinoda, Yukio; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    Plug-in Hybrid Electric Vehicle (PHEV) is one of the technologies to reduce amount of CO2 emissions in transport section. This paper presents one of the scenarios that shows how widely used the PHEVs will be in the future. And this paper also presents how amount of CO2 will be reduced by the introduction of PHEVs, and whether there are any serious effects on power supply system in those scenarios. PHEV can run with both gasoline and electricity. Therefore we evaluate CO2 emissions not only from gasoline consumption but also from electricity consumption. To consider a distribution of daily-trip-distance is important for evaluating the economical merit and CO2 emissions by introducing of PHEV. Also, the battery cost in the future is very important for making a PHEV's growth scenario. The growth of the number of PHEV makes battery cost lower. Then, we formulate the total model that combines passenger car sector and power supply sector with considering a distribution of daily-trip-distance and Learning Curve on battery costs. We use the iteration method to consider a Learning Curve that is non- linear. Therefore we set battery cost only in the first year of the simulation. Battery costs in the later year are calculated in the model. We focus on the 25-year time frame from 2010 in Japan, with divided in 5 terms (1st∼5th). And that model selects the most economical composition of car type and power sources.

  7. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  8. Sports nutrition

    Directory of Open Access Journals (Sweden)

    Tomanić Milena

    2016-01-01

    Full Text Available Due to higher energy consumption, physically active people have higher nutritional requirements. In addition to other important factors for sports, such as good health and physical predisposition, adequate nutrition is a fundamental component. Sports nutrition must be well planned and individually adapted based on physical characteristics, tendencies towards gaining or losing weight, frequency, duration and intensity of training sessions. Studies have shown that a well-balanced ratio of macro and micronutrients, with the support of supplements and adequate hydration, can significantly improve athletic performance and plays a key role in achieving better results. An optimally designed nutritional program, with realistic and achievable goals, which complements a well-planned training program, is the basis for success in sports. Only when nutritional requirements are met, deficits can be prevented and performance in sport pushed to the limit.

  9. Sports fractures.

    OpenAIRE

    DeCoster, T. A.; Stevens, M. A.; Albright, J. P.

    1994-01-01

    Fractures occur in athletes and dramatically influence performance during competitive and recreational activities. Fractures occur in athletes as the result of repetitive stress, acute sports-related trauma and trauma outside of athletics. The literature provides general guidelines for treatment as well as a variety of statistics on the epidemiology of fractures by sport and level of participation. Athletes are healthy and motivated patients, and have high expectations regarding their level o...

  10. Sports Accidents

    CERN Multimedia

    Kiebel

    1972-01-01

    Le Docteur Kiebel, chirurgien à Genève, est aussi un grand ami de sport et de temps en temps médecin des classes genevoises de ski et également médecin de l'équipe de hockey sur glace de Genève Servette. Il est bien qualifié pour nous parler d'accidents de sport et surtout d'accidents de ski.

  11. Environmental and energy implications of plug-in hybrid-electric vehicles.

    Science.gov (United States)

    Stephan, Craig H; Sullivan, John

    2008-02-15

    We analyze the effect of charging a significant number of plug-in hybrid vehicles (PHEVs) in the United States using presently available night-time spare electric capacity in the shortterm and new base-load capacity in the long term. Nationwide, there is currently ample spare night-time utility capacityto charge even a large fleet of PHEVs. Using the mix of generating plants expected to be used for PHEV charging, we find that, while driving on battery power, PHEVs compared to their conventional hybrid counterparts reduce CO2 emissions by 25% in the short term and as much as 50% in the long term. The shortterm fractional increase in demand for margin fuels such as natural gas is found to be roughly twice the fractional penetration of PHEVs into the nationwide light-duty vehicle fleet. We also compare, on an energy basis, the CO2 savings of replacing coal plants versus replacing conventional vehicles with PHEVs. The result is found to depend critically on the fuel economy of the vehicles displaced by the PHEVs.

  12. Vehicle surge detection and pathway discrimination by pedestrians who are blind: Effect of adding an alert sound to hybrid electric vehicles on performance.

    Science.gov (United States)

    Kim, Dae Shik; Emerson, Robert Wall; Naghshineh, Koorosh; Pliskow, Jay; Myers, Kyle

    2012-05-01

    This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him.

  13. Real World Operation of a Complex Plug-in Hybrid Electric Vehicle: Analysis of Its CO 2 Emissions and Operating Costs

    OpenAIRE

    2014-01-01

    Plug-in hybrid electric vehicles (pHEVs) could represent the stepping stone to move towards a more sustainable mobility and combine the benefits of electric powertrains with the high range capability of conventional vehicles. Nevertheless, despite the huge potential in terms of CO 2 emissions reduction, the performance of such vehicles has to be deeply investigated in real world driving conditions considering also the CO 2 production related to battery recharge which, on the contrary, is curr...

  14. Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses

    OpenAIRE

    Hanho Son; Hyunsoo Kim

    2016-01-01

    A near-optimal rule-based mode control (RBC) strategy was proposed for a target plug-in hybrid electric vehicle (PHEV) taking into account the drivetrain losses. Individual loss models were developed for drivetrain components including the gears, planetary gear (PG), bearings, and oil pump, based on experimental data and mathematical governing equations. Also, a loss model for the power electronic system was constructed, including loss from the motor-generator while rotating in the unloaded s...

  15. The novel application of optimization and charge blended energy management control for component downsizing within a plug-in hybrid electric vehicle

    OpenAIRE

    Shankar, R; Marco, James; Assadian, Francis

    2012-01-01

    The adoption of Plug-in Hybrid Electric Vehicles (PHEVs) is widely seen as an interim solution for the decarbonization of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, design and integ...

  16. Current hybrid-electric powertrain architectures:Applying empirical design data to life cycle assessment and whole-life cost analysis

    OpenAIRE

    Hutchinson, Timothy W; Burgess, Stuart C; Herrmann, Guido

    2014-01-01

    The recent introduction of hybrid-electric powertrain technology has disrupted the automotive industry, causing significant powertrain design divergence. As this radical powertrain innovation matures, will hybrid vehicles dominate the future automotive market and does this represent a positive shift in the environmental impact of the industry? The answer to this question is sought within this paper. It seeks to take advantage of the position that the industry has reached, replacing previous t...

  17. Enhancement of absorption and resistance of motion utilizing a multi-channel opto-electronic sensor to effectively monitor physiological signs during sport exercise

    Science.gov (United States)

    Alzahrani, Abdullah; Hu, Sijung; Azorin-Peris, Vicente; Barrett, Laura; Esliger, Dale; Hayes, Matthew; Akbare, Shafique; Achart, Jérôme; Kuoch, Sylvain

    2015-03-01

    This study presents an effective engineering approach for human vital signs monitoring as increasingly demanded by personal healthcare. The aim of this work is to study how to capture critical physiological parameters efficiently through a well-constructed electronic system and a robust multi-channel opto-electronic patch sensor (OEPS), together with a wireless communication. A unique design comprising multi-wavelength illumination sources and a rapid response photo sensor with a 3-axis accelerometer enables to recover pulsatile features, compensate motion and increase signal-to-noise ratio. An approved protocol with designated tests was implemented at Loughborough University a UK leader in sport and exercise assessment. The results of sport physiological effects were extracted from the datasets of physical movements, i.e. sitting, standing, waking, running and cycling. t-test, Bland-Altman and correlation analysis were applied to evaluate the performance of the OEPS system against Acti-Graph and Mio-Alpha.There was no difference in heart rate measured using OEPS and both Acti-Graph and Mio-Alpha (both pfunction.

  18. Impact of real world driving pattern and all-electric range on battery sizing and cost of plug-in hybrid electric two-wheeler

    Science.gov (United States)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Varman, K. Sri Raja; Arjunan, T. V.

    2011-03-01

    This study addresses the impact of an actual drive pattern on the sizing and cost of a battery pack for a plug-in hybrid electric two-wheeler. To estimate the daily average travel distance in fixing the all-electric range of two wheelers, a study conducted in Coimbatore city is presented. A MATLAB simulation model developed for estimating the energy and power requirements in an all-electric strategy using an Indian driving cycle (IDC) and a real-world driving pattern are discussed. The simulation results reveal the impact of the real-world driving pattern on energy consumption and also the influence of all-electric range in sizing the battery pack. To validate the results, a plug-in hybrid electric two-wheeler developed by modifying a standard two-wheeler has been tested on the road with the help of the IDC simulator kit. An annual battery cost comparison shows that nickel-metal-hydride batteries are more economical and suitable for in plug-in hybrid electric two-wheelers.

  19. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and

  20. Sports and Exercise Safety

    Science.gov (United States)

    ... Injuries Sports and Concussions Strains and Sprains Sports Physicals 5 Ways to Prepare for Your Sports Season Handling Sports Pressure and Competition Knee Injuries Runner's Knee Bike Safety Strength Training Dehydration Anterior Cruciate Ligament (ACL) Injuries Medial Collateral ...

  1. Facial Sports Injuries

    Science.gov (United States)

    ... Find an ENT Doctor Near You Facial Sports Injuries Facial Sports Injuries Patient Health Information News media interested in ... should receive immediate medical attention. Prevention Of Facial Sports Injuries The best way to treat facial sports injuries ...

  2. Investigating sport celebrity endorsement and sport event ...

    African Journals Online (AJOL)

    \\' attitudes and the effect of sport event sponsorship and sport ... Results indicate that sport event sponsorship was perceived by participants as a product ... affecting consumers\\' pre-purchase attitudes that may influence buyer behaviour.

  3. Sports Nutrition: What the Future may Bring

    Directory of Open Access Journals (Sweden)

    Campbell Bill

    2004-05-01

    Full Text Available Abstract The field of sports nutrition is a dynamic one. Core competencies in exercise physiology, psychology, integrated metabolism and biochemistry are the initial parameters for a successful career in sports nutrition. In addition to the academic fundamentals, it is imperative that the sports nutritionist understand the sport in which our client participates. This sport specific understanding should manifest itself in fuel utilization, mechanics of movement, as well as psychological processes that motivate the participant to perform optimally. Sports nutrition as a field has grown substantially over the past 50 years, from glycogen loading to today's scientifically validated ergogenic aids. The last ten years has seen the largest advancement of sports nutrition, with the following areas driving much of the research: the effects of exercise on protein utilization, meal timing to maximize the anabolic response, the potential for ribose to benefit those engaged in high-energy repetitive sports, and creatine and its uses within athletics and medicine. The future of sports nutrition will dictate that we 1 collectively strive for a higher standard of care and education for counseling athletes and 2 integrate different disciplines. We are in an era of unprecedented growth and the new knowledge is constantly evolving. The International Society of Sports Nutrition (ISSN will contribute to this exciting field in many ways, and we ask for your contribution by sharing your passion, stories, research, and life experiences with us.

  4. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  5. Managing Collegiate Sport Clubs.

    Science.gov (United States)

    Matthews, David O., Ed.

    This book is written for the administrators of college sport clubs. It is comprised of a collection of articles on the topics of: (1) Sport Club Administration and Organization; (2) Student Development through Sport Clubs; (3) Sport Club Financing and Fund-Raising; (4) Liability Concerns of Sport Clubs; and (5) Sport Club Program Surveys.…

  6. Plug-in Hybrid Electric Vehicles in the Smart Grid Environment: An Economic Model of Load Management by Demand Response

    Directory of Open Access Journals (Sweden)

    Poudineh R.

    2012-10-01

    Full Text Available Environmental concern regarding the consumption of fossil fuels is among the most serious challenges facing the world. As a result, utilisation of more renewable resources and promotion of a clean transport system such as the use of Plug in Hybrid Electric Vehicles (PHEVs became the forefront of the new energy policies. However, the breakthrough of PHEVs in the automotive fleet increases concerns around the stability of power system and in particular, the power network. This research simulates the aggregate load profile of the UK with presence of PHEVs based upon different price scenarios. The results show that under the fixed rate and time of use programmes in the current grid, the extra load of the electric vehicles intensifies the consumption profile and also creates new critical points. Thus, there should always be excess standby capacity to satisfy peak demand even for a short period of time. On the other hand, when the consumers do not pay the price based on the actual cost of supply, those who consume less in peak hours subsidise the ones who consume more and this cross subsidy raises a regulatory issue. On the contrary, a smart grid can accommodate PHEVs without creating technical and regulatory problems. This positive consequence is the result of demand response to the real time pricing. From a technical point of view, the biggest chunk of PHEVs' load will be shifted to the late evening and the hours of minimum demand. Besides, from a welfare analysis standpoint, real time pricing creates no deadweight losses and corresponding demand response will limit the ability of suppliers to increase the spot market clearing price above its equilibrium level.

  7. The Role of Interaction Patterns with Hybrid Electric Vehicle Eco-Features for Drivers' Eco-Driving Performance.

    Science.gov (United States)

    Arend, Matthias G; Franke, Thomas

    2017-03-01

    The objective of the present research was to understand drivers' interaction patterns with hybrid electric vehicles' (HEV) eco-features (electric propulsion, regenerative braking, neutral mode) and their relationship to fuel efficiency and driver characteristics (technical system knowledge, eco-driving motivation). Eco-driving (driving behaviors performed to achieve higher fuel efficiency) has the potential to reduce CO2 emissions caused by road vehicles. Eco-driving in HEVs is particularly challenging due to the systems' dynamic energy flows. As a result, drivers are likely to show diverse eco-driving behaviors, depending on factors like knowledge and motivation. The eco-features represent an interface for the control of the systems' energy flows. A sample of 121 HEV drivers who had constantly logged their fuel consumption prior to the study participated in an online questionnaire. Drivers' interaction patterns with the eco-features were related to fuel efficiency. A common factor was identified in an exploratory factor analysis, characterizing the intensity of actively dealing with electric energy, which was also related to fuel efficiency. Driver characteristics were not related to this factor, yet they were significant predictors of fuel efficiency. From the perspective of user-energy interaction, the relationship of the aggregated factor to fuel efficiency emphasizes the central role of drivers' perception of and interaction with energy conversions in determining HEV eco-driving success. To arrive at an in-depth understanding of drivers' eco-driving behaviors that can guide interface design, authors of future research should be concerned with the psychological processes that underlie drivers' interaction patterns with eco-features.

  8. Real-world fuel economy and CO{sub 2} emissions of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energiepolitik und Energiesysteme

    2015-07-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO{sub 2} emissions of these PHEV are 42 gCO{sub 2}/km and the annual CO{sub 2} savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  9. A Fuzzy Logic Global Power Management Strategy for Hybrid Electric Vehicles Based on a Permanent Magnet Electric Variable Transmission

    Directory of Open Access Journals (Sweden)

    Shumei Cui

    2012-04-01

    Full Text Available The major contribution of this paper is to propose a Fuzzy Logic Global Power Management Strategy for Hybrid Electric Vehicles (HEVs that are driven by the PM-EVT (PM machine—Electric Variable Transmission powertrain, such that the PM-EVT will have superior advantages over other types of powertrains, including the current Toyota Prius powertrain for series-parallel HEVs. This has been investigated throughout three aspects. The first is the optimum power splitting between the Internal Combustion Engine (ICE and the PM-EVT. The second is maximizing the vehicle’s energy capture during the braking process. Finally, sustaining the State of Charge (SOC of the battery is adopted by a robust ON/OFF controller of the ICE. These goals have been accomplished by developing three fuzzy logic (FL controllers. The FL controllers are designed based on the state of charge of the battery, vehicle’s velocity, traction torque, and the vehicle’s requested power. The integration of the studied system is accomplished via the Energetic Macroscopic Representation (EMR simulation model strategy based on the software Matlab/Simulink. The PM-EVT based HEV system with the proposed power management strategy is validated by comparing to the Toyota Prius HEV. The vehicle’s performances have been analyzed throughout a combined long-trip driving cycle that represents the normal and the worst operating conditions. The simulation results show that global control system is effective to control the engine’s operating points within the highest efficiency region, exploiting of EVT machines for capturing maximum braking energy, as well as to sustain the SOC of the battery while satisfy the drive ability. The proposed control strategy for the studied HEVs sounds interesting and feasible as supported by a large amount of simulation results.

  10. Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Christian-Simon, E-mail: ernst@ika.rwth-aachen.de [Institute for Automotive Engineering (ika), RWTH Aachen University, Steinbachstrasse 7, 52074 Aachen (Germany); Hackbarth, Andre; Madlener, Reinhard [Institute for Future Energy Consumer Needs and Behavior (FCN), School of Business and Economics/E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany); Lunz, Benedikt; Uwe Sauer, Dirk [Institute for Power Generation and Storage Systems (PGS), E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany); Eckstein, Lutz [Institute for Automotive Engineering (ika), RWTH Aachen University, Steinbachstrasse 7, 52074 Aachen (Germany)

    2011-10-15

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortization time of a PHEV also depends on the recharging strategy (once a day, once a night, after each trip), the battery size, and the battery costs. We find that PHEVs with a 4 kWh battery and at current lithium-ion battery prices reach the break-even point after about 6 years (5 years when using the lower night-time electricity tariffs). With higher battery capacities the amortization time becomes significantly longer. Even for the small battery size and assuming the EU-15 electricity mix, a PHEV is found to emit only around 60% of the CO{sub 2} emissions of a comparable conventional car. Thus, with the PHEV concept a cost-effective introduction of electric mobility and reduction of greenhouse gas emissions per vehicle can be reached. - Highlights: > Total cost of ownership of a PHEV and a conventional car are compared for the average German car user. > PHEVs with a 4 kWh battery reach the break-even after 5-6 years at current Li-Ion battery prices.> Even with a small battery, PHEVs emit about 40% less CO{sub 2} emissions than the average conventional car.

  11. Benefits of Hybrid-Electric Propulsion to Achieve 4x Increase in Cruise Efficiency for a VTOL Aircraft

    Science.gov (United States)

    Fredericks, William J.; Moore, Mark D.; Busan, Ronald C.

    2013-01-01

    Electric propulsion enables radical new vehicle concepts, particularly for Vertical Takeoff and Landing (VTOL) aircraft because of their significant mismatch between takeoff and cruise power conditions. However, electric propulsion does not merely provide the ability to normalize the power required across the phases of flight, in the way that automobiles also use hybrid electric technologies. The ability to distribute the thrust across the airframe, without mechanical complexity and with a scale-free propulsion system, is a new degree of freedom for aircraft designers. Electric propulsion is scale-free in terms of being able to achieve highly similar levels of motor power to weight and efficiency across a dramatic scaling range. Applying these combined principles of electric propulsion across a VTOL aircraft permits an improvement in aerodynamic efficiency that is approximately four times the state of the art of conventional helicopter configurations. Helicopters typically achieve a lift to drag ratio (L/D) of between 4 and 5, while the VTOL aircraft designed and developed in this research were designed to achieve an L/D of approximately 20. Fundamentally, the ability to eliminate the problem of advancing and retreating rotor blades is shown, without resorting to unacceptable prior solutions such as tail-sitters. This combination of concept and technology also enables a four times increase in range and endurance while maintaining the full VTOL and hover capability provided by a helicopter. Also important is the ability to achieve low disc-loading for low ground impingement velocities, low noise and hover power minimization (thus reducing energy consumption in VTOL phases). This combination of low noise and electric propulsion (i.e. zero emissions) will produce a much more community-friendly class of vehicles. This research provides a review of the concept brainstorming, configuration aerodynamic and mission analysis, as well as subscale prototype construction and

  12. Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Axsen, Jonn [Institute of Transportation Studies, Univ. of California at Davis, 2028 Academic Surge, One Shields Avenue, Davis, CA 95616 (United States); Mountain, Dean C. [DeGroote School of Business, McMaster Univ., 1280 Main Street West, Hamilton, ON L8S 4M4 (Canada); Jaccard, Mark [School of Resource and Environmental Management, Simon Fraser Univ., 8888 Univ. Drive, Burnaby, BC V5A 1S6 (Canada)

    2009-08-15

    According to intuition and theories of diffusion, consumer preferences develop along with technological change. However, most economic models designed for policy simulation unrealistically assume static preferences. To improve the behavioral realism of an energy-economy policy model, this study investigates the ''neighbor effect'', where a new technology becomes more desirable as its adoption becomes more widespread in the market. We measure this effect as a change in aggregated willingness to pay under different levels of technology penetration. Focusing on hybrid-electric vehicles (HEVs), an online survey experiment collected stated preference (SP) data from 535 Canadian and 408 Californian vehicle owners under different hypothetical market conditions. Revealed preference (RP) data was collected from the same respondents by eliciting the year, make and model of recent vehicle purchases from regions with different degrees of HEV popularity: Canada with 0.17% new market share, and California with 3.0% new market share. We compare choice models estimated from RP data only with three joint SP-RP estimation techniques, each assigning a different weight to the influence of SP and RP data in coefficient estimates. Statistically, models allowing more RP influence outperform SP influenced models. However, results suggest that because the RP data in this study is afflicted by multicollinearity, techniques that allow more SP influence in the beta estimates while maintaining RP data for calibrating vehicle class constraints produce more realistic estimates of willingness to pay. Furthermore, SP influenced coefficient estimates also translate to more realistic behavioral parameters for CIMS, allowing more sensitivity to policy simulations. (author)

  13. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper

  14. Investigation of a Co-Axial Dual-Mechanical Ports Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Wei Hua

    2015-12-01

    Full Text Available In this paper, a co-axial dual-mechanical ports flux-switching permanent magnet (CADMP-FSPM machine for hybrid electric vehicles (HEVs is proposed and investigated, which is comprised of two conventional co-axial FSPM machines, namely one high-speed inner rotor machine and one low-speed outer rotor machine and a non-magnetic ring sandwiched in between. Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced; secondly, the control system of the proposed electronically-controlled continuously-variable transmission (E-CVT system is given; thirdly, the key design specifications of the CADMP-FSPM machine are determined based on a conventional dual-mechanical ports (DMP machine with a wound inner rotor. Fourthly, the performances of the CADMP-FSPM machine and the normal DMP machine under the same overall volume are compared, and the results indicate that the CADMP-FSPM machine has advantages over the conventional DMP machine in the elimination of brushes and slip rings, improved thermal dissipation conditions for the inner rotor, direct-driven operation, more flexible modes, lower cogging torque and torque ripple, lower total harmonic distortion (THD values of phase PM flux linkage and phase electro-motive force (EMF, higher torque output capability and is suitable for the E-CVT systems. Finally, the pros and cons of the CADMP-FSPM machine are highlighted. This paper lays a theoretical foundation for further research on CADMP-FSPM machines used for HEVs.

  15. In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

    2013-10-01

    This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

  16. The UltraBattery-A new battery design for a new beginning in hybrid electric vehicle energy storage

    Science.gov (United States)

    Cooper, A.; Furakawa, J.; Lam, L.; Kellaway, M.

    The UltraBattery, developed by CSIRO Energy Technology in Australia, is a hybrid energy storage device which combines an asymmetric super-capacitor and a lead-acid battery in single unit cells. This takes the best from both technologies without the need for extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The initial performance of the prototype UltraBatteries was evaluated according to the US FreedomCAR targets and was shown to meet or exceed these in terms of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist hybrid electric vehicles (HEVs). Other laboratory cycling tests showed a fourfold improvement over previous state-of-the-art lead-acid batteries under the RHOLAB test profile and better life than commercial nickel/metal hydride (NiMH) cells used in a Honda Insight when tested under the EUCAR HEV profile. As a result of this work, a set of twelve 12 V modules was built by The Furukawa Battery Co., Ltd. in Japan and were fitted into a Honda Insight instead of the NiMH battery by Provector Ltd. The battery pack was fitted with full monitoring and control capabilities and the car was tested at Millbrook Proving Ground under a General Motors road test simulation cycle for an initial target of 50 000 miles which was extended to 100 000 miles. This was completed on 15th January 2008 without any battery problems. Furthermore, the whole test was completed without the need for any conditioning or equalisation of the battery pack.

  17. Effects on CO2 Reduction Potential of the Accelerated Introduction of Plug-in Hybrid Electric Vehicle in the Market

    Science.gov (United States)

    Shinoda, Yukio; Yabe, Kuniaki; Tanaka, Hideo; Akisawa, Atsushi; Kashiwagi, Takao

    In this paper we consider that there are two economical social behaviors when new technologies are introduced. One is on the short-term economic basis, the other one is on the long-tem economic basis. If we consider a learning curve on the technology, it is more economical than short-term behavior to accelerate the introduction of the technology much wider in the earlier term than that on short-term economic basis. The costs in the accelerated term are higher, but the introduction costs in the later terms are cheaper by learning curve. This paper focuses on the plug-in hybrid electric vehicles (PHEVs). The ways to derive the results on short-term economic basis and the results on long-term economic basis are shown. The result of short-term behaviors can be derived by using the iteration method in which the battery costs in every term are adjusted to the learning curve. The result of long-term behaviors can be derived by seeking to the way where the amount of battery capacity is increased. We also estimate that how much subsidy does it need to get close to results on the long-term economic basis when social behavior is on the short-term economic basis. We assume subsidy for PHEV's initial costs, which can be financed by charging fee on petroleum consumption. In that case, there is no additional cost in the system. We show that the greater the total amount of money to that subsidy is, the less the amount of both CO2 emissions and system costs.

  18. THE PLACE AND ROLE OF SPORT AND SOCIETY IN THE 21ST CENTURY NIGERIA

    OpenAIRE

    Danjuma Moudu Momoh

    2017-01-01

    The role of sport in contemporary society needs no emphasis. Sport has become an inexorable part of the modern society with influence being felt in all facets of national life. Sport has also become a symbol of national unity. Governments utilize sport to legitimate themselves. Sport in society is studied because they are closely linked with how people think about and see the world. The overwhelming influence of sports in nations has lent to the evolvement of extensive bureaucracy to support ...

  19. STUDY ON PHYSICAL EDUCATION AND SPORT

    Directory of Open Access Journals (Sweden)

    G. Raiola

    2013-01-01

    Full Text Available MIUR enacted last year the new Guidelines of Physical Education and Sport to improve the sport activity into the school through the sport school association and gives, for this aim, only 33% of amount of economical resources that, in the past years, allocated for extra activity of physical education and sport. From a case study to compare data between 2 years of a sample of 10 schools of Naples, 6 schools decreased sports activity, 4 schools increased little bit and only 1 increased because had added own economical resource. Furthermore this one also deliberated a school sport association in collaboration to sport association as suggests new Guidelines. The aim of this study is to know which process the school adopted. Method is case study to describe the process and steps. All 10 schools confirm the past sport activities in different forms with several percentages among the schools are very good in consideration of the bad actual context of public school. But the significant decrease of number of students, which are generally distributed in every school, must do a reflection on general situation of high sport left. The 7 schools utilized only the economical ministerial resource and only 2 schools utilized economical ministerial resources is the demonstration of low culture in physical education and sport into school. Furthermore, the low additional own economical resources is relevant to demonstrate the gravity of situation. The datum of only 1 school added own economical resource in congruent amount means that just the 10% of schools understand the spirit of change according to the new Guidelines of Physical Education and Sport. The study suggests to start an investigation on public sport education service offered by school and by sport association and to establish a specific committee to research on this phenomenon to carry out the data to know every aspect of it.

  20. Sports Marketing.

    Science.gov (United States)

    Ohio State Dept. of Education, Columbus. Div. of Career-Technical and Adult Education.

    This document presents the Ohio Integrated Technical and Academic Competency profile for sports marketing. The profile is to serve as the basis for curriculum development in Ohio's secondary, adult, and postsecondary programs. The profile includes a comprehensive listing of 999 specialty key indicators for evaluating mastery of 113 competencies in…

  1. Sports Gala

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This year’s 11th National Games saw 21 new world and Asian records set Fans were treated to all the highs and lows of sport during China’s 11th National Games, billed as the country’s mini-Olympics, which witnessed both record-breaking feats and doping

  2. Sports Ballistics

    Science.gov (United States)

    Clanet, Christophe

    2015-01-01

    This review describes and classifies the trajectories of sports projectiles that have spherical symmetry, cylindrical symmetry, or (almost) no symmetry. This classification allows us to discuss the large diversity observed in the paths of spherical balls, the flip properties of shuttlecocks, and the optimal position and stability of ski jumpers.

  3. Sports Nation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China is working to become a global sports power International Olympic Committee President Jacques Rogge watched China’s 11th National Games at Jinan’s stadium in Shandong Province on October 16, 2009. His high-profile attendance has set the

  4. Racket sports.

    Science.gov (United States)

    Jayanthi, Neeru; Esser, Stephen

    2013-01-01

    Tennis may be considered a static and dynamic form of exercise with many well-demonstrated health benefits. Tennis has similar rates of injury to other individual recreational sports and junior competitive sports, without the catastrophic risk of contact/collision sports. Classifying tennis players into junior and elite categories versus adult recreational players may help in outlining volume of play recommendations, exposure risk, and types of injuries. Junior and elite players tend to tolerate higher volumes, have more acute and lower extremity injuries, and have more serious overuse stress injuries. Adult recreational players tend to tolerate lower volumes, have more overuse and upper extremity injuries, and more conditions that are degenerative. Many tennis players also develop asymmetric musculoskeletal adaptations, which may increase risk of specific injury. Tennis-specific evaluations may identify these at-risk segments, help guide preventive strategies including technical errors, and assist in developing return-to-play recommendations. Other racket sports such as squash, badminton, and racquetball have less data available but report both acute and traumatic injuries less commonly seen in tennis.

  5. Sports Fitness

    Science.gov (United States)

    ... motivator. Physically, you need strength and endurance. Your training will vary with your sport. You would not train the same way for pole vaulting as for swimming. You might, however, cross train. Cross training simply means that you include a variety of ...

  6. Racquet Sports.

    Science.gov (United States)

    Zebas, Carole J., Ed.; Groppel, Jack L., Ed.

    1983-01-01

    In six articles on racquet sports, the origins of the games are traced, methods for teaching skills such as footwork, racquetball strategy, and badminton techniques are discussed, and the biomechanics of the one- and two-handed backhand in tennis are reviewed. Information about paddle tennis is included. (PP)

  7. Near-term hybrid vehicle program, phase 1. Appendix B: Design trade-off studies. [various hybrid/electric power train configurations and electrical and mechanical drive-line components

    Science.gov (United States)

    1979-01-01

    The relative attractiveness of various hybrid/electric power train configurations and electrical and mechanical drive-line components was studied. The initial screening was concerned primarily with total vehicle weight and economic factors and identified the hybrid power train combinations which warranted detailed evaluation over various driving cycles. This was done using a second-by-second vehicle simulation program which permitted the calculations of fuel economy, electricity usage, and emissions as a function of distance traveled in urban and highway driving. Power train arrangement possibilities were examined in terms of their effect on vehicle handling, safety, serviceability, and passenger comfort. A dc electric drive system utilizing a separately excited motor with field control and battery switching was selected for the near term hybrid vehicle. Hybrid vehicle simulations showed that for the first 30 mi (the electric range of the vehicle) in urban driving, the fuel economy was 80 mpg using a gasoline engine and 100 mpg using a diesel engine. In urban driving the hybrid would save about 75% of the fuel used by the conventional vehicle and in combined urban/highway driving the fuel saving is about 50%.

  8. Hybrid-Electric Passenger Car Carbon Dioxide and Fuel Consumption Benefits Based on Real-World Driving.

    Science.gov (United States)

    Holmén, Britt A; Sentoff, Karen M

    2015-08-18

    Hybrid-electric vehicles (HEVs) have lower fuel consumption and carbon dioxide (CO2) emissions than conventional vehicles (CVs), on average, based on laboratory tests, but there is a paucity of real-world, on-road HEV emissions and performance data needed to assess energy use and emissions associated with real-world driving, including the effects of road grade. This need is especially great as the electrification of the passenger vehicle fleet (from HEVs to PHEVs to BEVs) increases in response to climate and energy concerns. We compared tailpipe CO2 emissions and fuel consumption of an HEV passenger car to a CV of the same make and model during real-world, on-the-road network driving to quantify the in-use benefit of one popular full HEV technology. Using vehicle specific power (VSP) assignments that account for measured road grade, the mean CV/HEV ratios of CO2 tailpipe emissions or fuel consumption defined the corresponding HEV "benefit" factor for each VSP class (1 kW/ton resolution). Averaging over all VSP classes for driving in all seasons, including temperatures from -13 to +35 °C in relatively steep (-13.2 to +11.5% grade), hilly terrain, mean (±SD) CO2 emission benefit factors were 4.5 ± 3.6, 2.5 ± 1.7, and 1.4 ± 0.5 for city, exurban/suburban arterial and highway driving, respectively. Benefit factor magnitude corresponded to the frequency of electric-drive-only (EDO) operation, which was modeled as a logarithmic function of VSP. A combined model explained 95% of the variance in HEV benefit for city, 75% for arterial and 57% for highway driving. Benefit factors consistently exceeded 2 for VSP classes with greater than 50% EDO (i.e., only city and arterial driving). The reported HEV benefits account for real-world road grade that is often neglected in regulatory emissions and fuel economy tests. Fuel use HEV benefit factors were 1.3 and 2 for the regulatory highway (HWFET) and city (FTP) cycles, respectively, 18% and 31% higher than the EPA adjusted

  9. Research and development on power coupling device of hybrid electric tractor%混合动力拖拉机动力耦合装置的研制

    Institute of Scientific and Technical Information of China (English)

    邓晓亭; 朱思洪; 钱忠祥; 张莹

    2012-01-01

    近年来,农用车辆特别是拖拉机对环境和资源造成的压力逐年增大,开展节能环保拖拉机特别是混合动力拖拉机的研发已成为迫在眉睫的重要课题,而动力耦合装置是混合动力拖拉机的核心.该文根据拖拉机工作特性和传动特性要求,对混合动力拖拉机动力耦合装置传动比、特征参数和齿数匹配等进行了设计.根据传动载荷需求和制造工艺要求进行了结构设计和强度校核,研制了适用于并联式混合动力拖拉机的动力耦合装置.在自行搭建的混合动力拖拉机试验台上对该耦合装置进行了测试.试验结果表明,该装置能够满足拖拉机工作状态下的工作特性要求,输出端转速对动力源的转速变化很敏感,实时变化性能优,而输出端转矩对动力源转速变化不敏感.该耦合装置的研制为混合动力拖拉机的研发提供了基础.%In recent years, effects of agricultural vehicles, especially tractors on the environment and resources are increasing year by year, so carrying out the research and development of energy-conservation and environmental protection tractors, especially hybrid electric tractors has become the imminent important subject. And the power coupling is the core of hybrid electric drive system. According to the requirements of working properties and transmission characteristics of tractors, the transmission ratio, characteristic parameters and matching number of gear teeth of power coupling device for hybrid electric tractor were designed. Based on the requirement of transmission load and manufacturing technology, the structure design and strength check were processed. Then a new power coupling for parallel hybrid electric tractor was developed, which was also tested on self-developed hybrid electric tractor test-bed. The results showed that the power coupling device can meet the needs of working characteristic under working condition. In addition, the output speeds were

  10. A modular function architecture for adaptive and predictive energy management in hybrid electric vehicles; Eine modulare Funktionsarchitektur fuer adaptives und vorausschauendes Energiemanagement in Hybridfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Andreas

    2009-10-27

    Due to the relatively low energy density of electrical energy storage devices, the control strategy of hybrid electric vehicles has to fulfil a variety of requirements in order to provide both, the availability of hybrid functions, and their efficient execution. Energy consuming functions such as electric drive or electric boost need a high amount of energy stored in the battery. On the other hand for the optimum use of the energy regeneration function a lower state of charge is preferable in order to enable storage of the kinetic energy of the vehicle in all situations, including upon deceleration from high speeds or downhill driving. These diverging requirements yield a conflict of objectives for the charging strategy of hybrid electric vehicles. This work proposes a way to overcome the restrictions on efficiency in hybrid electric vehicles without deteriorating overall driving performance by charging or discharging the traction battery, and by setting the energy management parametres according to the current and forthcoming driving situation. Specific charging and electric drive strategies are presented for various driving situations which are identified by sensors such as navigation systems, cameras or radar. Necessary sensor data fusion methods for driving situation identification are described and a modular function architecture for predictive energy management is derived that is plug-and-play compatible with a broad fleet of vehicles. In order to evaluate its potential, this work also focuses on the simulation of the energy functions and their implementation into an experimental vehicle. This allows measurements under real traffic conditions and a sensivity analysis of the main module interactions within the architecture. (orig.)

  11. 高职院校休闲体育课程资源开发利用研究*%On the Development and Utilization of Leisure Sports Curriculum Resources in Higher Vocational Colleges

    Institute of Scientific and Technical Information of China (English)

    唐莺; 石兰萍

    2013-01-01

    对于我国高职院校体育教育领域来说,对课程资源改革开发的认识只是局限于教材的修改、更新和引进上,使得大量鲜活的体育课程资源未得到开发和利用,这说明对于体育课程资源的界定有一定的误区。为了使体育课程更加契合地域和学校的具体教学特点,通过查阅大量文献来界定体育资源,分析了我国体育休闲教育课程存在的主要问题,提出了合理开发和利用体育课程资源的建议。%As far as physical education in Higher Vocational Colleges in our country is concerned,the re-form and development of curriculum resources is simply confined to the revision,updating and introduction of textbooks,making a large number of live sports curriculum resources inadequately developed and uti-lized,which shows some misunderstanding of the definition of physical education curriculum resources.By consulting a lot of literature to properly define sports resources,this paper analyzes the main problems in leisure physical education curriculum in China.To better adapt to the local condition and specific teaching need,some suggestions of rational development and utilization of curriculum resources are put forward.

  12. The Impact of Hybrid Electric Vehicles Incentives on Demand and the Determinants of Hybrid-Vehicle Adoption

    Science.gov (United States)

    Riggieri, Alison

    According to the Energy Information Administration, transportation currently accounts for over 60% of U.S. oil demand (E.I.A. 2010). Improving automobile energy efficiency could therefore reduce oil consumption and the negative environmental effects of automobile use. Subsidies for energy-efficient technologies such as hybrid-electric vehicles have gained political popularity since their introduction into the market and therefore have been implemented with increasing frequency. After the introduction of hybrid-electric vehicles into the U.S. market, the federal government initially implemented a 2000 federal tax deduction for these vehicles (later increased to a 3500 credit). Many states followed, offering various exemptions, such as high-occupancy vehicle (HOV) lane use, and excise-tax, sales-tax, and income-tax exemptions. Because not all states have implemented these subsidies, this policy topic is an ideal candidate for an outcome evaluation using an observational study postulation. States adopt incentives for different reasons based on factors that make adoption more attractive, however, so it is first necessary to identify these differences that predict policy adoption. This allows for the evaluative work to control for self selection bias. Three classes of internal determinants of policy adoption, political context, problem severity, and institutional support, and one type of external diffusion factor, are tested using logistic regression. Results suggest that the number of neighboring states that have already adopted incentives are consistently a determinant of diffusion for all three types of incentives test, HOV lane exemptions, sales-tax exemptions, and income-tax exemptions. In terms of internal factors, constituent support, a type of political context, predicts, sale-tax, income-tax, and HOV lane exemptions, but that the other two classes of determinants, problem severity and institutional support, were not universally significant across types of

  13. Report on Sport 2003

    NARCIS (Netherlands)

    Koen Breedveld; Rob Goossens; Maarten van Bottenburg; Wil Ooijendijk; Vincent Hildebrandt; Maarten Stiggelbout; Jo Lucassen; Hugo van der Poel

    2003-01-01

    Original title: Rapportage Sport 2003. There has been a huge increase in the interest in sport in recent decades. The number of people taking part in sport has grown strongly and more sport is broadcast on television than ever before. The government has invested a great deal in sport, not least bec

  14. Sport for life

    NARCIS (Netherlands)

    Annet Tiessen-Raaphorst; Desiree Verbeek; Jos de Haan; Koen Breedveld

    2010-01-01

    Original title: Sport: een leven lang. Many Dutch people are involved in sport: by participating themselves, performing voluntary work for a sports club, following the sporting achievements of others via the media or attending sporting events. In this report we look at each of these forms of involv

  15. Sports massage. A comprehensive review.

    Science.gov (United States)

    Moraska, A

    2005-09-01

    The science of sports massage is of interest to many populations including athletes, athletic trainers, coaches, as well as sports physiologists. While evidence to support or refute the effects of massage on sports performance is insufficient to make definitive statements, new reports and trends within data help formulate an understanding of sports massage. This article will review sports massage research on topics including lactate clearance, delayed onset of muscle soreness (DOMS), muscle fatigue, the psychological effect of massage, and injury prevention and treatment. Articles referenced in Medline, Cochrane Database, the authors library, and references from articles are included in this review. Most studies contain methodological limitations including inadequate therapist training, insufficient duration of treatment, few subjects, or over or under working of muscles that limit a practical conclusion. Muscle soreness associated with DOMS is reduced with massage, although whether force recovers more quickly is still unclear. The research literature to date is insufficient to conclude whether massage facilitates recovery from a fatiguing effort. Both tissue healing and a psychological effect of massage are areas that may prove promising with further research. Results from published literature support a positive trend for massage to benefit athletic recovery and performance; a need for further research into sports massage, especially well-designed studies utilizing therapists specifically trained to administer this type of therapy, is warranted.

  16. Interfacing Sport

    DEFF Research Database (Denmark)

    Andersen, Tem Frank

    these media (expressiveness, reflexivity, identity), or ar media making us run (nudging, persuasion, societal benefits). The study includes theory on interactivity, media sociology, followed by cases (twitter and personal branding, selftracking and selfreflexivity, social media and club organization, fandom......This study tries to map out the possible interplay between interactive digital media (including mobile and wearable technologies) and sport as performance and participation. The ambition is to create a model providing the analytical framework for understanding questions like "are we running...

  17. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  18. Financing Professional Sports Facilities

    OpenAIRE

    Baade, Robert A.; Victor A. Matheson

    2011-01-01

    This paper examines public financing of professional sports facilities with a focus on both early and recent developments in taxpayer subsidization of spectator sports. The paper explores both the magnitude and the sources of public funding for professional sports facilities.

  19. PRESENT TIMES SPORT MANAGEMENT

    OpenAIRE

    Silvia GRĂDINARU

    2016-01-01

    The goal of this paper is to play as introduction for the sport management science, both as academic and professional major. The paper provides a broad overview of sport management rather than detailed instructions about how sport management is seen. The professional career in sport management should be built on a strong conceptual foundation. Sport managers who can think critically about sport – related issues will be competent, reflective professionals who have the potential to become influ...

  20. High voltage energy storage system design for a parallel-through-the-road plug-in hybrid electric vehicle

    Science.gov (United States)

    Belt, Bryan Whitney D.

    A parallel-through-the-road (PTTR) plug-in hybrid electric vehicle (PHEV) pairs an engine powering the front wheels of a vehicle with an electric motor powering the rear wheels. This arrangement gives the flexibility of being able to operate the vehicle in an all-electric mode, an all biodiesel mode, or a combination of both to create maximum power. For this work, a 1.7 L CIDI engine running on biodiesel will be the engine being used and a 103 kW Magna motor will power the rear wheels. In order to power the motor, a high voltage (HV) energy storage system (ESS) needs to be designed and integrated into the vehicle. The goal for the mechanical design of the ESS is to create a structure that will enclose all of the batteries and battery control modules to protect them from environmental factors such as dirt and water as well as to prevent them from becoming dislodged in the event of a collision. The enclosure will also serve as a means to protect the consumer from the dangers of HV. The mechanical design also entailed designing a cooling system that will keep the batteries operating in an acceptable temperature range while they are charging and discharging. The electrical design focused on designing a HV system that could adequately supply enough current flow to each component to meet the peak loading condition yet be able to disconnect should a fault occur to prevent component damage. The system was also designed with safety in mind. Controllers will constantly be monitoring both the HV and LV systems to make sure that each is isolated from the other. Should a controller detect a problem, it will disconnect the HV system. The electrical system will have a high voltage interlock loop (HVIL). The HVIL will be a continuous LV circuit that passes through every HV connector and various switches, so that, if a connector is unplugged or a switch is flipped, the circuit will open. A controller will be monitoring the HVIL for LV. Should it not detect LV, the controller will

  1. Simulating the potential effects of plug-in hybrid electric vehicles on the energy budget and tax revenues for Onondaga County, New York

    Science.gov (United States)

    Balogh, Stephen B.

    My objectives were to predict the energetic effects of a large increase in plug-in hybrid electric vehicles (PHEV) and their implications on fuel tax collections in Onondaga County. I examined two alternative taxation policies. To do so, I built a model of county energy consumption based on prorated state-level energy consumption data and census data. I used two scenarios to estimate energy consumption trends over the next 30 years and the effects of PHEV on energy use and fuel tax revenues. I found that PHEV can reduce county gasoline consumption, but they would curtail fuel tax revenues and increase residential electricity demand. A one-cent per VMT tax on PHEV users provides insufficient revenue to replace reduced fuel tax collection. A sales tax on electricity consumption generates sufficient replacement revenue at low PHEV market shares. However, at higher shares, the tax on electricity use would exceed the current county tax rate. Keywords: electricity, energy, gasoline, New York State, Onondaga County, plug-in hybrid electric vehicles, transportation model, tax policy

  2. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  3. 混合动力汽车超级电容能量控制研究%Research on hybrid electric vehicle supercapacitor energy control

    Institute of Scientific and Technical Information of China (English)

    陈坤华; 孙玉坤; 王富良; 项倩雯

    2015-01-01

    超级电容的高功率密度特性可作为混合动力汽车辅助电源。研究了超级电容数学模型,给出了超级电容荷电状态估计方法,在分析升降压双向直流功率电路基础上,提出了超级电容能量存储系统控制策略,在超级电容荷电状态允许范围内,该控制策略满足混合动力汽车启动、加速、制动要求,实验证明该能量存储系统能适应各种负载变换情况。%Hybrid electric vehicle can use high power density supercapacitor as auxiliary power. The maths model of supercapacitor was studied. The estimation method of state of charge of supercapacitor was given. Based on the analysis of the buck-boost converter, the control strategy of supercapacitor energy storage was proposed. At the permitted range of state of charge of supercapacitor, the control strategy can meet the needs of hybrid electric vehicle start, acceleration and brake. Experiments prove the energy storage system can adapt various changes of loads.

  4. 混合动力电动汽车混合制动技术分析%Hybrid Braking Technology for Hybrid Electric Vehicle

    Institute of Scientific and Technical Information of China (English)

    俞剑波; 何仁

    2013-01-01

    以提高混合动力电动汽车的制动安全性、稳定性和制动能量回收充分性为目标,介绍了混合制动系统的结构与工作原理,分析了混合制动系统的关键技术;指出目前混合制动系统的研究重点任务;探讨了混合制动技术的发展趋势.%In order to improve the safety of brake,stability and energy recovery of braking for hybrid electric vehicle,the structure and work principles of hybrid braking system are introduced.And the key techniques of hybrid braking system are also analyzed.Then the present key tasks of hybrid electric vehicle are pointed out.Finally,the future trend of hybrid braking system is discussed.

  5. Global Optimal Energy Management Strategy Research for a Plug-In Series-Parallel Hybrid Electric Bus by Using Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2013-01-01

    Full Text Available Energy management strategy influences the power performance and fuel economy of plug-in hybrid electric vehicles greatly. To explore the fuel-saving potential of a plug-in hybrid electric bus (PHEB, this paper searched the global optimal energy management strategy using dynamic programming (DP algorithm. Firstly, the simplified backward model of the PHEB was built which is necessary for DP algorithm. Then the torque and speed of engine and the torque of motor were selected as the control variables, and the battery state of charge (SOC was selected as the state variables. The DP solution procedure was listed, and the way was presented to find all possible control variables at every state of each stage in detail. Finally, the appropriate SOC increment is determined after quantizing the state variables, and then the optimal control of long driving distance of a specific driving cycle is replaced with the optimal control of one driving cycle, which reduces the computational time significantly and keeps the precision at the same time. The simulation results show that the fuel economy of the PEHB with the optimal energy management strategy is improved by 53.7% compared with that of the conventional bus, which can be a benchmark for the assessment of other control strategies.

  6. Writing lives in sport

    DEFF Research Database (Denmark)

    Christensen, Mette Krogh

    Writing lives in sport is a book of stories about sports-persons. The people concerned include sports stars, sports people who are not quite so famous, and relatively unknown physical education teachers and sports scientists.Writing lives in sport raises questions about writing biographies...... in the academis world of sport studies. It does not set out to be a methodological treatise but through the writing of lives in sports does raise questions of method. Each essay in this collection deals with problems of writing sports-people's lives. These essays could be said to fall along a spectrum from those...... of the essays fails to recognise problems of sport-biography. Indeed, several focus explicitly on exemplifications of these problems and as such the book raises important questions for writing in a variety of sporting and educational disciplines....

  7. Creating sport consumers in Dutch sport policy

    NARCIS (Netherlands)

    van der Roest, Jan Willem; Vermeulen, Jeroen; van Bottenburg, Maarten; LS Sportontw. & Managing Social Issues; UU LEG Research USG Public Matters Managing Social Issues; LS Management van Cultuur en Zingeving

    2014-01-01

    This article deals with the tension between the association logic and the market logic that appears in the domain of voluntary sport clubs (VSCs). We present a qualitative analysis of sport policy texts of fifteen Dutch national sport organizations (NSOs) and the national umbrella organization to ex

  8. Creating sport consumers in Dutch sport policy

    NARCIS (Netherlands)

    van der Roest, Jan Willem; Vermeulen, Jeroen; van Bottenburg, Maarten; LS Sportontw. & Managing Social Issues; UU LEG Research USG Public Matters Managing Social Issues; LS Management van Cultuur en Zingeving

    2014-01-01

    This article deals with the tension between the association logic and the market logic that appears in the domain of voluntary sport clubs (VSCs). We present a qualitative analysis of sport policy texts of fifteen Dutch national sport organizations (NSOs) and the national umbrella organization to ex

  9. Creating sport consumers in Dutch sport policy

    NARCIS (Netherlands)

    van der Roest, Jan Willem; Vermeulen, Jeroen; van Bottenburg, Maarten

    2015-01-01

    This article deals with the tension between the association logic and the market logic that appears in the domain of voluntary sport clubs (VSCs). We present a qualitative analysis of sport policy texts of fifteen Dutch national sport organizations (NSOs) and the national umbrella organization to ex

  10. Creating sport consumers in Dutch sport policy

    NARCIS (Netherlands)

    van der Roest, Jan Willem; Vermeulen, Jeroen; van Bottenburg, Maarten

    2015-01-01

    This article deals with the tension between the association logic and the market logic that appears in the domain of voluntary sport clubs (VSCs). We present a qualitative analysis of sport policy texts of fifteen Dutch national sport organizations (NSOs) and the national umbrella organization to

  11. Creating sport consumers in Dutch sport policy

    NARCIS (Netherlands)

    van der Roest, Jan Willem; Vermeulen, Jeroen; van Bottenburg, Maarten; LS Sportontw. & Managing Social Issues; UU LEG Research USG Public Matters Managing Social Issues; LS Management van Cultuur en Zingeving

    2014-01-01

    This article deals with the tension between the association logic and the market logic that appears in the domain of voluntary sport clubs (VSCs). We present a qualitative analysis of sport policy texts of fifteen Dutch national sport organizations (NSOs) and the national umbrella organization to

  12. Creating sport consumers in Dutch sport policy

    NARCIS (Netherlands)

    van der Roest, Jan Willem; Vermeulen, Jeroen; van Bottenburg, Maarten

    2015-01-01

    This article deals with the tension between the association logic and the market logic that appears in the domain of voluntary sport clubs (VSCs). We present a qualitative analysis of sport policy texts of fifteen Dutch national sport organizations (NSOs) and the national umbrella organization to ex

  13. Enhancement in Sport, and Enhancement outside Sport.

    Science.gov (United States)

    Douglas, Thomas

    2007-12-01

    Sport is one of the first areas in which enhancement has become commonplace. It is also one of the first areas in which the use of enhancement technologies has been heavily regulated. Some have thus seen sport as a testing ground for arguments about whether to permit enhancement. However, I argue that there are fairness-based objections to enhancement in sport that do not apply as strongly in some other areas of human activity. Thus, I claim that there will often be a stronger case for permitting enhancement outside of sport than for permitting enhancement in sport. I end by considering some methodological implications of this conclusion.

  14. Sports Culture and Sports in Turkey

    Directory of Open Access Journals (Sweden)

    Yılmaz KAPLAN

    2014-08-01

    Full Text Available Sports culture indicates all kinds of morals, products, and behavior. This study aims to argue sports as a cultural element and its appearence in Turkey. This is a descriptive study based on theoretical argument. It is periodic since it is limited to a given term and it is also relied upon literature review. People's adaptations to living conditions are related to culture. We can specify this, “all the patt erns of living and behavior which are special to small units within a large and structurally developed society.” ( Erdemli , 2002In Turkey; it’s more accurate to say that, it’s understood football when you think about sports and sport culture is football culture. This condition can not only induce cultural diversity and wealth but it also leads to a transformation into a society who likes watching sports, talking about sports (saying more precisely football rather than doing sports. Sport magazine has sur passed the sport itself. Representation of sport in media does not make a favorable contribution. Sport media invites violence with its manner of representation of news by acting with the concerns of rating and curcilation although they, at every turn, dec lare that they are against violence. Discourses which include violence, nationalism, sexism, and slang has increased in media as an extensive research also suggested ( Talimciler , 2003.Culture, is a phenomenon which is considerably about quality and accumu lation. Processes are as important as results; sometimes even more. In this sense sport is much more than the score. In a country, a sport branch can be attracting more attention than the other ones; however, Limiting sports to football, also limiting fo otball to several football clubs, and ignoring many of sports branches, those who are interested in them, and who are amateurs is an unfair and reductive approach. On the other hand; sports opportunities could not be created for millions of young and adul t people in our country

  15. Microforms and Sport History.

    Science.gov (United States)

    Levine, Peter

    1986-01-01

    Explores the importance of sport history as it reflects the social and cultural history of the United States. Discussion covers the various sport history materials that are available in microform, including the Spalding Collection, twentieth-century microfilm sources, and sports and social history (Sports Periodicals microfilm series). (EJS)

  16. Report on Sport 2008

    NARCIS (Netherlands)

    Koen Breedveld; Carlijn Kamphuis; Annet Tiessen-Raaphorst

    2008-01-01

    Original title: Rapportage sport 2008. Sport: it appeals to people; it brings people together; it promotes health; and it is profitable. Today, in 2008, sport is enjoying popularity as never before. Two-thirds of the Dutch population take part in some form of sport. After swimming and cycling,

  17. Report on Sport 2008

    NARCIS (Netherlands)

    Koen Breedveld; Carlijn Kamphuis; Annet Tiessen-Raaphorst

    2008-01-01

    Original title: Rapportage sport 2008. Sport: it appeals to people; it brings people together; it promotes health; and it is profitable. Today, in 2008, sport is enjoying popularity as never before. Two-thirds of the Dutch population take part in some form of sport. After swimming and cycling, fitn

  18. Sport participation styles revisited

    NARCIS (Netherlands)

    Steven Vos; Erik Thibaut; Bart Vanreusel; Julie Borgers; Hanne Vandermeerschen; Jeroen Scheerder

    2013-01-01

    Social changes have been influencing determinants for sports participation since the introduction of the Sport for All ideology in the early 1970s. Consistent with Crum’s sportisation theory, today’s modes of sports practices, as well as the network of sport services, have diversified and

  19. Building Character through Sports

    Science.gov (United States)

    Lumpkin, Angela

    2011-01-01

    Sports are a focus of millions of Americans as they attend, view, and participate in sports. The World Series, Final Four, and Super Bowl often bring back memories of fun-filled parties and celebrations, but there may be several reasons why sports are so popular in the United States. The popularity of sports, however, does not necessarily mean it…

  20. PRESENT TIMES SPORT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Silvia GRĂDINARU

    2016-06-01

    Full Text Available The goal of this paper is to play as introduction for the sport management science, both as academic and professional major. The paper provides a broad overview of sport management rather than detailed instructions about how sport management is seen. The professional career in sport management should be built on a strong conceptual foundation. Sport managers who can think critically about sport – related issues will be competent, reflective professionals who have the potential to become influential agents of change. The sport management will face many challenges in the future, as examination of the ethics, social responsibility and principled decision making but in the meantime will offer opportunities towards society.

  1. Sport and measurement of competition

    NARCIS (Netherlands)

    Koning, R.H.

    2009-01-01

    Sport is becoming an activity of increasing importance: over time more people participate in sport (active sport consumption), more time is spent watching sport (passive sport consumption). An important part of sport consumption is passive sport consumption where production and consumption are separ

  2. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  3. Demand Response and Economic Dispatch of Power Systems Considering Large-Scale Plug-in Hybrid Electric Vehicles/Electric Vehicles (PHEVs/EVs: A Review

    Directory of Open Access Journals (Sweden)

    Xiaohui Xu

    2013-08-01

    Full Text Available Increasing concerns about global environmental issues have led to the urgent development of green transportation. The enthusiasm of governments should encourage the prosperity of the plug-in hybrid electric vehicles/electric vehicles (PHEVs/EVs industry in the near future. PHEVs/EVs are not only an alternative to gasoline but are also burgeoning units for power systems. The impact of large-scale PHEVs/EVs on power systems is of profound significance. This paper discusses how to use PHEVs/EVs as a useful new tool for system operation and regulation from a review of recent studies and mainly considers two mainstream methods: demand response and economic dispatch. The potential of using PHEVs/EVs to coordinate renewable energy resources is also discussed in terms of accepting more renewable resources without violating the safety and the reliability of power systems or increasing the operation cost significantly.

  4. Long-term assessment of economic plug-in hybrid electric vehicle battery lifetime degradation management through near optimal fuel cell load sharing

    Science.gov (United States)

    Martel, François; Dubé, Yves; Kelouwani, Sousso; Jaguemont, Joris; Agbossou, Kodjo

    2016-06-01

    This work evaluates the performance of a plug-in hybrid electric vehicle (PHEV) energy management process that relies on the active management of the degradation of its energy carriers - in this scenario, a lithium-ion battery pack and a polymer electrolyte membrane fuel cell (PEMFC) - to produce a near economically-optimal vehicle operating profile over its entire useful lifetime. This solution is obtained through experimentally-supported PHEV models exploited by an optimal discrete dynamic programming (DDP) algorithm designed to efficiently process vehicle usage cycles over an extended timescale. Our results demonstrate the economic and component lifetime gains afforded by our strategy when compared with alternative rule-based PHEV energy management benchmarks.

  5. A Study of Fuel Economy Improvement in a Plug-in Hybrid Electric Vehicle using Engine on/off and Battery Charging Power Control Based on Driver Characteristics

    Directory of Open Access Journals (Sweden)

    Seulgi Lee

    2015-09-01

    Full Text Available In this study, driving data for various types of drivers are collected using a VIDE (virtual integrated driving environment, and a driver model is developed. To represent the driver tendencies quantitatively, the DDA (degree of driver aggression is proposed based on fuzzy logic. DDA has a 0-1 value; the closer the DDA is to one, the more aggressive the driver. Using the DDA, an engine on/off and battery charging power control algorithm are developed to improve the fuel economy of a power-split-type plug-in hybrid electric vehicle. The engine on/off control reduces the frequent engine on/off caused by aggressive driving, whereas the battery charging power control maintains the battery state of charge (SOC by operating the engine according to the DDA. It is found that the proposed control algorithm improves fuel economy by 17.3% compared to the existing control for an aggressive driver.

  6. Research and Development of Hybrid Electric Vehicles CAN-Bus Data Monitor and Diagnostic System through OBD-II and Android-Based Smartphones

    Directory of Open Access Journals (Sweden)

    Yalian Yang

    2013-01-01

    Full Text Available With the rapid development of the smartphone market, future cars seem to have more connections with intelligent cell phone and Internet. Intelligent transportation system (ITS and telematics system have become research focus in recent years. There is an increasing demand for remote monitoring and diagnostic system as the further research of hybrid electric vehicle (HEV goes on. In this paper, a remote controller area network bus (CAN-Bus data monitor and diagnostic system for HEV is presented using on board diagnostic version-II (OBD-II and Android-based smartphone. It is low-cost, convenient, and extensible with smartphone used in the system to realize communication with ELM327 and remote monitoring center wirelessly. The prototype of client and server is developed in Java language, and it is proved by the test that the system works stably and the collected data have practical values.

  7. Transfer impedance simulation and measurement methods to analyse shielding behaviour of HV cables used in Electric-Vehicles and Hybrid-Electric-Vehicles

    Science.gov (United States)

    Mushtaq, Abid; Frei, Stephan

    2016-09-01

    In the power drive system of the Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs), High Voltage (HV) cables play a major role in evaluating the EMI of the whole system. Transfer impedance (ZT) is the most commonly used performance parameter for the HV cable. To analyse and design HV cables and connectors with better shielding effectiveness (SE), appropriate measurement and simulation methods are required. In this paper, Ground Plate Method (GPM) with improvements has been proposed to measure ZT. Use of low-frequency ferrites to avoid ground-loop effects has also been investigated. Additionally, a combination of analytical model with a circuit model has been implemented to simulate limitations (frequency response) of the test setup. Also parametrical studies using the analytical model have been performed to analyse the shielding behaviour of HV cables.

  8. A hybrid algorithm combining EKF and RLS in synchronous estimation of road grade and vehicle' mass for a hybrid electric bus

    Science.gov (United States)

    Sun, Yong; Li, Liang; Yan, Bingjie; Yang, Chao; Tang, Gongyou

    2016-02-01

    This paper proposes a novel hybrid algorithm for simultaneously estimating the vehicle mass and road grade for hybrid electric bus (HEB). First, the road grade in current step is estimated using extended Kalman filter (EKF) with the initial state including velocity and engine torque. Second, the vehicle mass is estimated twice, one with EKF and the other with recursive least square (RLS) using the estimated road grade. A more accurate value of the estimated mass is acquired by weighting the trade-off between EKF and RLS. Finally, the road grade and vehicle mass thus obtained are used as the initial states for the next step, and two variables could be decoupled from the nonlinear vehicle dynamics by performing the above procedure repeatedly. Simulation results show that in different starting conditions, the proposed algorithm provides higher accuracy and faster convergence speed, compared with the results using EKF or RLS alone.

  9. Analysis of Sport Management Literature: European Sport Management Quarterly

    Directory of Open Access Journals (Sweden)

    Brenda Pitts

    2014-01-01

    Full Text Available A profession must be built upon a sound body of knowledge in order for its professional status to be recognized and considered credible by society (Zeigler, 1987. The body of literature should also reflect and define the field (Fielding, Pitts, & Miller, 1991. To that end, examining the state of a body of literature is essential as the findings can reveal such significant information as content, trends, author collaboration, and topical gaps and disparities. The purpose of this study was to examine the European Sport Management Quarterly and its predecessor the European Journal for Sport Management. A content analysis of the journal from 1994 to 2012 was the methodology employed. Results determined that a vast majority of the papers are in four content areas – “Management and Organizational Skills in Sport”, “Sport Business in the Social Context”, “Sport Marketing”, and “Sport Economics”. Sport business industry segments as a focus of the papers stayed relatively the same over the years, although “International Sport” increased much more than any other industry segment. The gender focus of the articles was primarily male, and the authorship and editorial membership was also male-focused. The geographical dispersion of both authors and editorial review board members has broadened over time to be less European. Academics may find information from this study useful in developing strategies and lines of inquiry in research agendas. As well, editors of journals may utilize the findings to plan strategies related to addressing gaps or disparities.

  10. Validación de una escala reducida de utilidad percibida la práctica de la actividad física y el deporte. Validation of a reduce scale of perceived utility of physical and sport practice.

    Directory of Open Access Journals (Sweden)

    Arruza Gabilondo, José Antonio

    2007-04-01

    Full Text Available ResumenEl establecimiento de un nexo que relacione el lenguaje y las expresiones de los entrenadores con la terminología y los principios biomecánicos es la clave para el aprovechamiento de la información y de los resultados del trabajo realizado por entrenadores y biomecánicos, encaminado al control del entrenamiento, la mejora de la técnica y del rendimiento deportivo. El propósito de este estudio fue elaborar un cuadro de indicadores de eficacia que clasifique, ordene la información y permita la valoración de la técnica deportiva basándose en criterios biomecánicas, tomando como ejemplo el lanzamiento de disco. La metodología seguida se basó en un análisis cualitativo, pero asociado a datos cuantitativos procedentes de la bibliografía, y constó de varias etapas: 1.Recopilar información del gesto técnico; 2.Fijar su objetivo final; 3.Dividir el movimiento en fases; 4.Determinar los criterios de eficacia de cada fase. 5.Identificar los aspectos técnicos utilizados por los entrenadores para enseñar la técnica y mejorarla; 6.Identificar y definir las variables biomecánicas relacionadas con dichos aspectos técnicos; 7.Señalar los criterios de valoración de cada variable; 8.Anotar los valores aportados por la bibliografía para dichas variables biomecánicas, incluyendo los aportados por nuestro grupo de investigación. El resultado del estudio fue el diseño del que se denominó Cuadro de Indicadores de Eficacia Técnica-Biomecánica que permite: i Relacionar el lenguaje de los entrenadores con el de los biomecánicos; ii Facilitar la interpretación de variables biomecánicas y su valoración objetiva y iii Contrastar los resultados procedentes de nuevos estudios con los de la literatura, ofreciendo soluciones claras a problemas concretos.AbstractThe main purpose of this study was to validate a short form of a Perceived utility of Physical Activity and Sport Scale with the reference of the Sanchez, Mendizabal and Velasco

  11. 四驱混合动力轿车分布式卡尔曼车速估计%Vehicle Speed Estimation Based on Distributed Kalman Filter for Four Wheel Drive Hybrid Electric Car

    Institute of Scientific and Technical Information of China (English)

    赵治国; 杨杰; 吴枭威

    2015-01-01

    The driving mode of hybrid electric car can be two-wheel or four-wheel drive. The speed estimation designed for a specific driving mode can hardly achieve high estimated accuracy in all modes. Focus on the changeable driving mode, a kind of distributed Kalman filter with two levels is proposed, by means of utilize vehicle sensors signals, the driving torque of rear in-wheel motors and the torque of front driving wheels at the given gear state. Considering the strongly nonlinear of the model, UKF is adopted to design the filter, and to improve the filter’s robustness on modeling error and signal noise, measurement noise mean and covariance is self-adaptive. Firstly, based on UniTire Model and recursive equation of slip rate, the sub-filter is developed; secondly, based on the vehicle Kinematics model, the master-filter can be developed; at last, in consideration of different driving modes, a more accurate velocity estimation is obtained by fusing information from each sub-filters. With the help of Carsim and Simulink, the simulation platform about four wheel drive hybrid electric car is developed, and the proposed speed estimation algorithm is tested on this platform under the pure electric drive mode and the hybrid drive mode. The results show that the proposed algorithm has not only high precision, but also strong robustness on modeling error, measurement noise and the changeable driving mode.%四驱混合动力轿车存在两轮/四轮多种驱动模式,针对某一驱动模式所设计的车速估计算法难以满足其他模式下车速估计的精度。考虑车辆不同驱动模式,利用车载传感器信号、后轮毂电机转矩信息以及既定档位下前轮转矩信息,提出两级分布式卡尔曼车速估计方法。考虑模型的强非线性,采用无味卡尔曼滤波(Unscented Kalman filter,UKF)算法设计主/子滤波器。同时为了提高UKF算法对模型误差、信号干扰的鲁棒性,实现了量测噪声均值和方

  12. Writing lives in sport

    DEFF Research Database (Denmark)

    Christensen, Mette Krogh

    Writing lives in sport is a book of stories about sports-persons. The people concerned include sports stars, sports people who are not quite so famous, and relatively unknown physical education teachers and sports scientists.Writing lives in sport raises questions about writing biographies...... in the academis world of sport studies. It does not set out to be a methodological treatise but through the writing of lives in sports does raise questions of method. Each essay in this collection deals with problems of writing sports-people's lives. These essays could be said to fall along a spectrum from those...... dealing with anonymous individuals, whose anonymity results from the confidentiality requirements of a social scientific research methodology, to those leaning more towards the literary-historical traditions of 'conventional' biographical writing. However, these examples are polar extremes and none...

  13. [Sports medicine in Germany].

    Science.gov (United States)

    Dickhuth, H-H

    2005-08-01

    Sports medicine covers many different aspects, ranging from clinical specialties, such as internal medicine, orthopedics or pediatrics to physiology and sports sciences. The requirements for sports medicine evolve mainly from exercise physiology (elite, leisure and health oriented physical activity), orthopedics and traumatology as well as from preventive and rehabilitative issues. In the new German curriculum, sports medicine is defined as a subspecialty. Historically, sports medicine in Germany has a federal structure with a governing body (Deutsche Gesellschaft für Sportmedizin und Prävention). Due to these facts, University Departments of Sports Medicine (which vary greatly in size and performance) are either attached to Medical or non-Medical Faculties, such as Sports Sciences. In medical schools, sports medicine can be selected as an elective subject. However, the main part of teaching sports medicine is covered by Sports Science Faculties. In an international context, the strength of German sports medicine is its clinical orientation and close cooperation with the sport itself, especially high-performance sports. In the future, like in the Anglo- American countries, sports medicine in Germany will play a major role in health prevention and rehabilitation.

  14. Major international sport profiles.

    Science.gov (United States)

    Patel, Dilip R; Stier, Bernhard; Luckstead, Eugene F

    2002-08-01

    Sports are part of the sociocultural fabric of all countries. Although different sports have their origins in different countries, many sports are now played worldwide. International sporting events bring athletes of many cultures together and provide the opportunity not only for athletic competition but also for sociocultural exchange and understanding among people. This article reviews five major sports with international appeal and participation: cricket, martial arts, field hockey, soccer, and tennis. For each sport, the major aspects of physiological and biomechanical demands, injuries, and prevention strategies are reviewed.

  15. Globalization of the sports economy

    OpenAIRE

    Wladimir Andreff

    2008-01-01

    Introduction – 1. Major features of a globalized sports economy – 2. International economic flows in a global sports economy – 3. Globalization as geographical spread of the sports economy – 4. Globalization of professional sports – Conclusion – References

  16. Metabolic markers in sports medicine.

    Science.gov (United States)

    Banfi, Giuseppe; Colombini, Alessandra; Lombardi, Giovanni; Lubkowska, Anna

    2012-01-01

    be interpreted considering the athlete's body-mass index (BMI) and phase of the competitive season; use of cystatin C could be a reliable alternative to creatinine. Exercise and training induce adaptations in glucose metabolism which improve glucose utilization in athletes and are beneficial for reducing insulin insensitivity in nonathletes. Glucose metabolism differs slightly for different sports disciplines, as revealed in laboratory levels. Sport activities induce a blood lipid profile superior to that of sedentary subjects. There are few reports for a definitive conclusion, however. The differences between athletes and sedentary subjects are mainly due to high-density lipoprotein cholesterol (HDLC) concentrations in physically active individuals, although some differences among sport disciplines exist. The effect of sports on serum and urinary markers for bone metabolism is not univocal; further studies are needed to establish the real and effective influence of sport on bone turnover and especially to establish its beneficial effect.

  17. 串联式混合动力拖拉机驱动系设计%Design of drive system for series hybrid electric tractor

    Institute of Scientific and Technical Information of China (English)

    徐立友; 刘孟楠; 周志立

    2014-01-01

    Aimed at the drawbacks of traditional tractors, such as complicated transmissions, inefficient transmission systems, heavy fuel consumption rates, and high exhaust gas emissions, the design method of the tractor’s series hybrid electric drive systems was put forward by calculating its plough operation rated traction. A feasible formation was given and included design methods of the electric tractive motor, weight parameters, and prime energy systems, which consist of a diesel engine and a generator of the powerful tractor’s hybrid electric drive systems. Transmission ratios of the series hybrid electric tractor drive systems were designed to follow with differences of working load rates under commonly used working conditions, while making sure of the efficiency and capacity of transmission systems. Its storage battery parameters were designed to fill the traction power requirement, which is from the changing load situation when the tractor worked under a light gear. The YTO-1804 wheeled tractor has been taken as the investigative object, its series hybrid electric drive systems have been designed by using the aforementioned method. Upon analysis of its tractive characteristics, the results conveyed that the installed tractor’s working adaptability and tractive characteristics are better when it compared with the original tractor. Output of the electric motor is suitable with the requirements of a heavy load working circumstance. The curve portrayed that the relation between the traction force and the traction power of the installed tractor could cover the original tractor’s working area. The installed tractor’s transmission is more efficient and its structure is simpler. Combined with the relevant slippage test results to analyze the installed tractor’s slippage situation, changes in slippage rate followed with changes in driving force are acceptable. Based on the analysis of the difference of equivalent fuel consumption rates between the two types of

  18. What Are Sports Injuries?

    Science.gov (United States)

    ... 06:02 Size: 11.7 MB November 2014 What Are Sports Injuries? Fast Facts: An Easy-to- ... Research Is Being Done on Treating Sports Injuries? What’s the Difference Between an Acute and a Chronic ...

  19. Sports and Concussions

    Science.gov (United States)

    ... Help Someone Who's Being Bullied? Volunteering Sports and Concussions KidsHealth > For Teens > Sports and Concussions Print A ... completely helps prevent long-term problems. How Do Concussions Happen? The brain is soft. The body protects ...

  20. Sports Stars Shine

    Institute of Scientific and Technical Information of China (English)

    Yu Yan

    2012-01-01

    Alive and exciting award ceremony drew the attention of numerous Chinese households on the night of January 15.The most popular Chinese sports stars attended the 2011 CCTV Sports Personality Award Ceremony at the National Indoor Stadium in Beijing.

  1. DRUGS IN SPORT

    Directory of Open Access Journals (Sweden)

    David R. Mottram

    2005-12-01

    Full Text Available This new edition includes fresh information regarding drugs use and abuse in sport and the updated worldwide anti-doping laws, and changes to the prohibited and therapeutic use exemption lists. The objectives of the book are to review/discuss the latest information on drugs in sport by considering i actions of drugs and hormones, ii medication and nutritional supplements in sport, iii the latest doping control regulations of the WADA, iv the use of banned therapeutic drugs in sport, v an assessment of the prevalence of drug taking in sport. FEATURES A common, uniform strategy and evidence-based approach to organizing and interpreting the literature is used in all chapters. This textbook is composed of twelve parts with sub-sections in all of them. The topics of the parts are: i An introduction to drugs and their use in sport, ii Drug use and abuse in sport, iii Central nervous system stimulants, iv WADA regulations in relation to drugs used in the treatment of respiratory tract disorders, v Androgenic anabolic steroids, vi Peptide and glycoprotein hormones and sport, vii Blood boosting and sport, viii Drug treatment of inflammation in sports injuries, ix Alcohol, anti-anxiety drugs and sport, x Creatine, xi Doping control and sport, xii Prevalence of drug misuse in sport. Each specific chapter has been systematically developed from the data available in prospective, retrospective, case-control, and cross-sectional studies. The tables and figures are numerous, helpful and very useful. AUDIENCE The book provides a very useful resource for students on sports related courses, coaches and trainers, researchers, nutritionists, exercise physiologists, pharmacologists, healthcare professionals in the fields of sports medicine and those involved in the management and administration side of sport. The readers are going to discover that this is an excellent reference book. Extensively revised new edition of this book is also a first-rate resource for

  2. Drugs in sport

    OpenAIRE

    Mottram, David R

    2007-01-01

    This new edition includes fresh information regarding drugs use and abuse in sport and the updated worldwide anti-doping laws, and changes to the prohibited and therapeutic use exemption lists. The objectives of the book are to review/discuss the latest information on drugs in sport by considering i) actions of drugs and hormones, ii) medication and nutritional supplements in sport, iii) the latest doping control regulations of the WADA, iv) the use of banned therapeutic drugs in sport, v) an...

  3. Relationship between sport commitment and sport consumer behavior

    Directory of Open Access Journals (Sweden)

    Norberta Elisa Fernandes

    2013-12-01

    Full Text Available The purpose of this study was to examine the relationships between sport commitment and three types of sport consumer behaviors: participation frequency, sporting goods and media consumption. A survey was conducted among sport participants of both individual and team sports, fitness and outdoor activities (n= 900. The survey included questions related to demographic information, measures of sport commitment and sport consumption behavior. The results analyzed trough structural equation modeling showed that the sport commitment influences positively the participation frequency, sporting goods consumption and media consumption. Implications of these results are discussed and suggestions for future research on sport consumers are provided.

  4. LAW IMPLEMENTATION IN SPORT

    Directory of Open Access Journals (Sweden)

    Mexhid Krasniqi

    2011-09-01

    Full Text Available This work offers a short review of sports marketing and management. It presents different ways of advertising some products either in sports events or throng electronic mediums. In addition, it reviles different aspects of the influence that politics and discrimination has on sport as well as the way of solving eventual arguments of any kind.

  5. Changing spaces for sports

    DEFF Research Database (Denmark)

    Kural, René

    2010-01-01

    The author argues that the fundamental values associated with sports seem to have changed. Accordingly spaces for sports are also undergoing change.The essay gives a number of examples of these new sports spaces. Their common denominator lies in their urban proximity, the combination of previously...

  6. Concussion in Winter Sports

    Science.gov (United States)

    ... Heads Up! Tool Kit Prevent Concussions Prevent Head Injuries Sports Safety Students Play Safe Youth Sports Safety Download ... — United States, 2001–2009 Nonfatal Traumatic Brain Injuries from Sports and Recreation Activities — United States, 2001–2005 ( ...

  7. On Sporting Integrity

    NARCIS (Netherlands)

    Archer, Alfred

    2016-01-01

    It has become increasingly popular for sports fans, pundits, coaches and players to appeal to ideas of ‘sporting integrity’ when voicing their approval or disapproval of some aspect of the sporting world. My goal in this paper will be to examine whether there is any way to understand this idea in a

  8. Report on Sport 2014

    NARCIS (Netherlands)

    Annet Tiessen-Raaphorst

    2015-01-01

    More than half the Dutch population participated in sport on a weekly basis in 2014. Fitness training and running are the most popular sports among adults. Government interventions at the level of neighbourhoods, primary schools, secondary schools and sports clubs are intended to persuade more peopl

  9. 4 Corruption in Sport

    OpenAIRE

    Andreff, Wladimir

    2016-01-01

    International audience; A typology of sport corruption differentiates petty corruption, barter corruption, corruption at the level of sport governing bodies, betting scandals and point-shaving. A deeper analysis goes further as regards match fixing-related bets and global online fraudulent sport betting networks and suggests new tools for combatting match fixing.

  10. Sport Specialization, Part I

    Science.gov (United States)

    Myer, Gregory D.; Jayanthi, Neeru; Difiori, John P.; Faigenbaum, Avery D.; Kiefer, Adam W.; Logerstedt, David; Micheli, Lyle J.

    2015-01-01

    Context: There is increased growth in sports participation across the globe. Sports specialization patterns, which include year-round training, participation on multiple teams of the same sport, and focused participation in a single sport at a young age, are at high levels. The need for this type of early specialized training in young athletes is currently under debate. Evidence Acquisition: Nonsystematic review. Study Design: Clinical review. Level of Evidence: Level 4. Conclusion: Sports specialization is defined as year-round training (greater than 8 months per year), choosing a single main sport, and/or quitting all other sports to focus on 1 sport. Specialized training in young athletes has risks of injury and burnout, while the degree of specialization is positively correlated with increased serious overuse injury risk. Risk factors for injury in young athletes who specialize in a single sport include year-round single-sport training, participation in more competition, decreased age-appropriate play, and involvement in individual sports that require the early development of technical skills. Adults involved in instruction of youth sports may also put young athletes at risk for injury by encouraging increased intensity in organized practices and competition rather than self-directed unstructured free play. Strength-of-Recommendation Taxonomy (SORT): C. PMID:26502420

  11. Cold-Weather Sports

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Cold-Weather Sports KidsHealth > For Teens > Cold-Weather Sports A A A What's in this article? ... Equipment Ahh, winter! Shorter days. Frigid temperatures. Foul weather. What better time to be outdoors? Winter sports ...

  12. Sport in the Netherlands

    NARCIS (Netherlands)

    Annet Tiessen-Raaphorst; Koen Breedveld

    2007-01-01

    Sport is a popular pastime in the Netherlands; 10 million people take part in at least one sport. To do this, they can choose from more than 27,000 non-profit sports clubs, or more than 5,000 commercial providers such as fitness centres or riding stables. These clubs and commercial providers make us

  13. China Sports Museum

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    THE China Sports Museum,inside the National Olympic Sports Center on 3A Anding Road,Andingmenwai, Beijing, is China's First museum dedicated to the nation's sporting history.Its exterior is in the shape of an octagonal spiral, with white

  14. American Orthopaedic Society for Sports Medicine

    Science.gov (United States)

    ... of Sports Medicine Sports Health: A Multidisciplinary Approach Orthopaedic Journal of Sports Medicine Journal Apps Sports Medicine ... Tweets by @AOSSM_SportsMed A world leader in Orthopaedic Sports Medicine Education, Research, Publishing, Communication and Fellowship ...

  15. SPORTS MARKETING AS A BUSINESS FUNCTION IN MODERN SPORTS

    OpenAIRE

    Danilo Aćimović; Omer Špirtović

    2013-01-01

    Discussion about sport marketing implies its theoretical definition and generalization, and then its actual definition in sport environment. Sport marketing, belongs to the newer type of the marketing. It appeared in time of increasing activity and significance of sport in the world. Huge human potential, with which sport as an activity disposes, implied the need to organize more properly and use it purposefully. “Sport marketing belongs to business function of sport organization and represen...

  16. Girls' Participation in Sports: An Important Tool in Teen Pregnancy Prevention. Policy Brief.

    Science.gov (United States)

    Solomon, Nancy M.

    This policy brief highlights the interrelationship between sports participation and teen pregnancy prevention, noting barriers that have prevented sports from being utilized in teen pregnancy prevention. Discrimination against girls and women in school sports persists 30 years after Congress enacted Title IX, and this prevents girls and young…

  17. Adventure and Extreme Sports.

    Science.gov (United States)

    Gomez, Andrew Thomas; Rao, Ashwin

    2016-03-01

    Adventure and extreme sports often involve unpredictable and inhospitable environments, high velocities, and stunts. These activities vary widely and include sports like BASE jumping, snowboarding, kayaking, and surfing. Increasing interest and participation in adventure and extreme sports warrants understanding by clinicians to facilitate prevention, identification, and treatment of injuries unique to each sport. This article covers alpine skiing and snowboarding, skateboarding, surfing, bungee jumping, BASE jumping, and whitewater sports with emphasis on epidemiology, demographics, general injury mechanisms, specific injuries, chronic injuries, fatality data, and prevention. Overall, most injuries are related to overuse, trauma, and environmental or microbial exposure.

  18. Marketing of sport tourism

    OpenAIRE

    A.S. Teletov; V.I. Karpets

    2015-01-01

    The aim of the article. The aim of the article is to clarify the concept of «sport tourism marketing», to examine the state of its objects and to determine prospects for development of sport tourism in Ukraine. The paper singles out the role of sport in life; compares different types of cities in terms of provision the infrastructure for tourism development in the field of sports. Authors show the example of the campaign. The results of the analysis. The article deals with sport tourism as...

  19. FUNCTION of MANAGEMENT IN SPORT

    Directory of Open Access Journals (Sweden)

    Srećko Novaković

    2011-03-01

    Full Text Available In the sport management coordination represents the basic deposit of management, and terms through numerous activities. Brother-in-law activity in sport has the specific management so speak about the management of sport event, management of sports facilities, management of management to the human activities, financial management in sport etc. The sportively management has presumed the specific management related to sports activities whose basic task of coordinations of sports activities. Management of sport organisations have been confided sport managers of special profile which differs towards the type of sport, rank of contest etc. The sport managers could utter survived the statement that in sport have not been educated special diameters manager, besides sport coaches. Specifically, in the role of manager in sport prevails almost all diameters of professional in professional or the volunteer relationship.

  20. Technology and Sport

    DEFF Research Database (Denmark)

    Møller, Rasmus Bysted; Møller, Verner

    2015-01-01

    The relationship between sport and technology is close and can be both fruitful and destructive. Technology has a constitutive function in sport as it makes the activity possible and it can enhance performance as well as the sporting experience. The use of football boots is clearly more comfortable...... and effective than playing in bare feet in a game of football. However, sport challenges its athletes by demanding the employment of less efficient means rather than more efficient means in pursuit of sport specific goals. Therefore technology can potentially subtract from the sporting experience and even...... threaten the internal logic of sport. If as an example very efficient hail cartridges were allowed for use in double trap shooting it would reduce the skills required to excel at that discipline reducing its value for participants and spectators alike. The use of forbidden performance enhancing substances...

  1. Is Sport Nationalism Justifiable?

    Directory of Open Access Journals (Sweden)

    José Luis Pérez Triviño

    2015-07-01

    Full Text Available The article aims to clarify the deep relationships established between sport and nationalism by considering, among other factors, the instrumentalisation of sport by political elites, political apathy of citizens, economic resources for sport, the question of violence or identitarian matters. In order to define if the combination of sport and nationalism is admissible, the paper defines sport nationalism and distinguishes the political use of sport for purposes of domestic and foreign policy. In the first section the analysis focuses on whether a causal link with respect to the contribution to violence can be established and with respect to its use in the internal politics of a state, the paper differentiates between normal political circumstances and political crises in order to properly address the question of whether there are grounds to assert that sport can distract citizens from asserting their genuine interests.

  2. Is Sport Nationalism Justifiable?

    Directory of Open Access Journals (Sweden)

    José Luis Pérez Triviño

    2012-01-01

    Full Text Available The article aims to clarify the deep relationships established between sport and nationalism by considering, among other factors, the instrumentalisation of sport by political elites, political apathy of citizens, economic resources for sport, the question of violence or identitarian matters. In order to define if the combination of sport and nationalism is admissible, the paper defines sport nationalism and distinguishes the political use of sport for purposes of domestic and foreign policy. In the first section the analysis focuses on whether a causal link with respect to the contribution to violence can be established and with respect to its use in the internal politics of a state, the paper differentiates between normal political circumstances and political crises in order to properly address the question of whether there are grounds to assert that sport can distract citizens from asserting their genuine interests.

  3. Sport and migrants' acculturation

    DEFF Research Database (Denmark)

    Morela, Eleftheria

    was to explore the acculturation attitudes of Greek adolescents as a function of sport participation, and, for those participating in sport, to investigate the role of the motivationalenvironment. The results showed that athletes scored higher than non-athletes on attitudes towards multicultural contact...... multiculturalism. Sport is considered to be a vehicle for bringing people together, and recently there has been an increasing policy interest in the use of sport as a venue for promoting social integration and intercultural dialogue. Regardless of its political significance, research on the integrative role...... of sport is limited and findings seem equivocal. Overall the purpose of the present study was to investigate whether participation in organized sport can affect the acculturation process of young adolescents from both minority and majority populations in Greece, and to explore features ofthe sporting...

  4. THE SPORT MARKETING MANAGEMENT MODEL

    OpenAIRE

    Alexandru Lucian MIHAI

    2015-01-01

    Sport marketing involves marketing fundamentals applied in one industry, the sport business industry. The development of sport marketing fundamentals is therefore based on basic marketing principles. The practice and activities of sport marketing are also based on basic marketing activities, but are modified and adapted to the sport business industry. Therefore, sport marketing is based on its primary and parent discipline - marketing. Sport marketing is one of the most important function...

  5. THE SPORT MARKETING MANAGEMENT MODEL

    OpenAIRE

    Alexandru Lucian MIHAI

    2015-01-01

    Sport marketing involves marketing fundamentals applied in one industry, the sport business industry. The development of sport marketing fundamentals is therefore based on basic marketing principles. The practice and activities of sport marketing are also based on basic marketing activities, but are modified and adapted to the sport business industry. Therefore, sport marketing is based on its primary and parent discipline - marketing. Sport marketing is one of the most important function...

  6. SPORTS MARKETING AS A BUSINESS FUNCTION IN MODERN SPORTS

    Directory of Open Access Journals (Sweden)

    Danilo Aćimović

    2013-07-01

    Full Text Available Discussion about sport marketing implies its theoretical definition and generalization, and then its actual definition in sport environment. Sport marketing, belongs to the newer type of the marketing. It appeared in time of increasing activity and significance of sport in the world. Huge human potential, with which sport as an activity disposes, implied the need to organize more properly and use it purposefully. “Sport marketing belongs to business function of sport organization and represents primarily an economical process of connecting production (sport organizations with sportsmen and coaches and consumption (sport and other public. It can be seen in the fact besides promoting sport it conducts certain (limited productive activity (exchange of sport equipment, exchange of sport requisites and material goods that create sport clubs through competitions.

  7. Application of simplified model for the analysis of a novel battery used in General Motors' Precept hybrid electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Verbrugge, M.W. [General Motors Corp., Troy, MI (United States). Advanced Technology Vehicles

    2000-07-01

    The challenges facing the integration of a battery module into an electric vehicle (EV) was discussed and some simple approaches to address these challenges were proposed. The cost of EV batteries inhibits large-scale commercialization. Other challenges include the current, potential and state of charge (SOC) as well as the thermal system requirements and design. One solution is to develop hybrid electric vehicles (HEV) which would mean the battery size could be significantly reduced because the engine would supply most of the needed energy to power the vehicle. The author suggested a simple mathematical method to analyze HEV batteries and conduct trade-offs in order to optimize a car's energy storage, high voltage and thermal systems. A newly developed HEV nickel-metal hydride battery system which is found in General Motors' Precept HEV was used to test the approach. The analysis is partly based on understanding how the past charges and discharges influence the apparent hysteresis characterizing the SOC versus open-circuit potential relationship. The method does not address the temperature deviations with the battery pack. The difference between liquid and air cooling was also determined. It is hoped that battery suppliers will adopt this method to speed the advancement of this sector of development. refs., tabs., figs.

  8. Real World Operation of a Complex Plug-in Hybrid Electric Vehicle: Analysis of Its CO2 Emissions and Operating Costs

    Directory of Open Access Journals (Sweden)

    Federico Millo

    2014-07-01

    Full Text Available Plug-in hybrid electric vehicles (pHEVs could represent the stepping stone to move towards a more sustainable mobility and combine the benefits of electric powertrains with the high range capability of conventional vehicles. Nevertheless, despite the huge potential in terms of CO2 emissions reduction, the performance of such vehicles has to be deeply investigated in real world driving conditions considering also the CO2 production related to battery recharge which, on the contrary, is currently only partially considered by the European regulation to foster the diffusion of pHEVs. Therefore, this paper aims to assess, through numerical simulation, the real performance of a test case pHEV, the energy management system (EMS of which is targeted to the minimization of its overall CO2 emissions. The paper highlights, at the same time, the relevance of the CO2 production related to the battery recharge from the power grid. Different technologies mixes used to produce the electricity required for the battery recharge are also taken into account in order to assess the influence of this parameter on the vehicle CO2 emissions. Finally, since the operating cost still represents the main driver in orienting the customer’s choice, an alternative approach for the EMS, targeted to the minimization of this variable, is also analyzed.

  9. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)], E-mail: bsovacool@nus.edu.sg; Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)], E-mail: richard@vt.edu

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition-and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world.

  10. Beyond batteries. An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition - and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world. (author)

  11. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  12. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  13. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  14. A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2017-01-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs can be considered as a hybrid system (HS which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC strategy for PHEVs based on the mixed logical dynamical (MLD model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial improvement in fuel economy in the simulation results.

  15. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2015-01-01

    Full Text Available The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs. An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several online useful control rules are established based on the offline optimization results of DP. With the above efforts, an online energy management strategy is proposed finally. The presented energy management strategy concerns the prolongation of all-electric driving range as well as the energy saving performance. A simulation study is deployed to evaluate the control performance of the proposed energy management approach. All-electric range of the plug-in HEV can be prolonged by up to 2.86% for a certain driving condition. The energy saving performance is relative to the driving distance. The presented energy management strategy brings a little higher energy cost when driving distance is short, but for a long driving distance, it can reduce the energy consumption by up to 5.77% compared to the traditional CD-CS strategy.

  16. The Novel Application of Optimization and Charge Blended Energy Management Control for Component Downsizing within a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Ravi Shankar

    2012-11-01

    Full Text Available  The adoption of Plug-in Hybrid Electric Vehicles (PHEVs is widely seen as an interim solution for the decarbonization of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, design and integration of battery systems is often cited as one of the main barriers to vehicle commercialization. The ability to integrate the optimization of the energy management control system with the sizing of key PHEV powertrain components presents a significant area of research. Contained within this paper is an optimization study in which a charge blended strategy is used to facilitate the downsizing of the electrical machine, the internal combustion engine and the high voltage battery. An improved Equivalent Consumption Method has been used to manage the optimal power split within the powertrain as the PHEV traverses a range of different drivecycles. For a target CO2 value and drivecycle, results show that this approach can yield significant downsizing opportunities, with cost reductions on the order of 2%–9% being realizable.

  17. Multiobjective Synergistic Scheduling Optimization Model for Wind Power and Plug-In Hybrid Electric Vehicles under Different Grid-Connected Modes

    Directory of Open Access Journals (Sweden)

    Liwei Ju

    2014-01-01

    Full Text Available In order to promote grid’s wind power absorptive capacity and to overcome the adverse impacts of wind power on the stable operation of power system, this paper establishes benefit contrastive analysis models of wind power and plug-in hybrid electric vehicles (PHEVs under the optimization goal of minimum coal consumption and pollutant emission considering multigrid connected modes. Then, a two-step adaptive solving algorithm is put forward to get the optimal system operation scheme with the highest membership degree based on the improved ε constraints method and fuzzy decision theory. Thirdly, the IEEE36 nodes 10-unit system is used as the simulation system. Finally, the sensitive analysis for PHEV’s grid connected number is made. The result shows the proposed algorithm is feasible and effective to solve the model. PHEV’s grid connection could achieve load shifting effect and promote wind power grid connection. Especially, the optimization goals reach the optimum in fully optimal charging mode. As PHEV’s number increases, both abandoned wind and thermal power generation cost would decrease and the peak and valley difference of load curve would gradually be reduced.

  18. Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses

    Directory of Open Access Journals (Sweden)

    Hanho Son

    2016-05-01

    Full Text Available A near-optimal rule-based mode control (RBC strategy was proposed for a target plug-in hybrid electric vehicle (PHEV taking into account the drivetrain losses. Individual loss models were developed for drivetrain components including the gears, planetary gear (PG, bearings, and oil pump, based on experimental data and mathematical governing equations. Also, a loss model for the power electronic system was constructed, including loss from the motor-generator while rotating in the unloaded state. To evaluate the effect of the drivetrain losses on the operating mode control strategy, backward simulations were performed using dynamic programming (DP. DP selects the operating mode, which provides the highest efficiency for given driving conditions. It was found that the operating mode selection changes when drivetrain losses are included, depending on driving conditions. An operating mode schedule was developed with respect to the wheel power and vehicle speed, and based on the operating mode schedule, a RBC was obtained, which can be implemented in an on-line application. To evaluate the performance of the RBC, a forward simulator was constructed for the target PHEV. The simulation results show near-optimal performance of the RBC compared with dynamic-programming-based mode control in terms of the mode operation time and fuel economy. The RBC developed with drivetrain losses taken into account showed a 4%–5% improvement of the fuel economy over a similar RBC, which neglected the drivetrain losses.

  19. Enhancement in Sport, and Enhancement outside Sport

    OpenAIRE

    Douglas, Thomas

    2007-01-01

    Sport is one of the first areas in which enhancement has become commonplace. It is also one of the first areas in which the use of enhancement technologies has been heavily regulated. Some have thus seen sport as a testing ground for arguments about whether to permit enhancement. However, I argue that there are fairness-based objections to enhancement in sport that do not apply as strongly in some other areas of human activity. Thus, I claim that there will often be a stronger case for permit...

  20. Relationship between Sport Nourishment Supplement and Athletes' Sports Abilities

    Directory of Open Access Journals (Sweden)

    Mingjiang Zhu

    2015-06-01

    Full Text Available It is very important for the athlete's body recovery and rehabilitation to have sport nourishment supplement. In this study, it analyzed the effect of sport nourishment supplement with the overview of sport nourishment supplements, discussing the influence of sports nutrition supplement on sports abilities of athletes.

  1. Comparison of eSports and Traditional Sports Consumption Motives

    Science.gov (United States)

    Lee, Donghun; Schoenstedt, Linda J.

    2011-01-01

    With recognition of the need for studying eSports in this interactive digital communication era, this study explored 14 motivational factors affecting the time spent on eSports gaming. Using a sample of 515 college students and athletic event attendees, we further compared eSports game patterns to their non-eSport or traditional sport involvements…

  2. Neuropsychological testing as it relates to recovery from sports-related concussion.

    Science.gov (United States)

    Putukian, Margot

    2011-10-01

    Concussion is a challenging injury for the sports medicine team, and neuropsychological testing has been used as an adjunct to other clinical measures for assessment and management, and to guide return-to-play decisions. Understanding the limitations as well as the role of neuropsychological testing in the evaluation and management of sports-related concussion is important for the sports medicine team. This article will review the evidence regarding the utility of neuropsychological testing as it relates to concussion in sports.

  3. Application of the Fuel-Optimal Energy Management in Design Study of a Parallel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Afshin Pedram Pourhashemi

    2014-01-01

    Full Text Available In spite of occasional criticism they have attracted, hybrid vehicles (HVs have been warmly welcomed by industry and academia alike. The key advantages of an HV, including fuel economy and environment friendliness, however, depend greatly on its energy management strategy and the way its design parameters are “tuned.” The optimal design and sizing of the HV remain a challenge for the engineering community, due to the variety of criteria and especially dynamic measures related to nature of its working conditions. This paper proposes an optimal design scheme that begins with presenting an energy management strategy based on minimum fuel consumption in finite driving cycle horizon. The strategy utilizes a dynamic programming approach and is consistent with charge sustenance. The sensitivity of the vehicle’s performance metrics to multiple design parameters is then studied using a design of experiments (DOE methodology. The proposed scheme provides the designer with a reliable tool for investigating various design scenarios and achieving the optimal one.

  4. Hybrid Electric Vehicle Power Management Solutions Based on Isolated and Non-Isolated Configurations of MMCCC Converter

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Faisal H [ORNL; Tolbert, Leon M [ORNL; Webb, William E [Oak Ridge National Laboratory (ORNL)

    2009-01-01

    This paper presents the various configurations of a multilevel modular capacitor-clamped converter (MMCCC), and it reveals many useful and new formations of the original MMCCC for transferring power in either an isolated or nonisolated manner. The various features of the original MMCCC circuit are best suited for a multibus system in future plug-in hybrid or fuel-cell-powered vehicles' drive train. The original MMCCC is capable of bidirectional power transfer using multilevel modular structure with capacitor-clamped topology. It has a nonisolated structure, and it offers very high efficiency even at partial loads. This circuit was modified to integrate single or multiple high-frequency transformers by using the intermediate voltage nodes of the converter. On the other hand, a special formation of the MMCCC can exhibit dc outputs offering limited isolation without using any isolation transformer. This modified version can produce a high conversion ratio from a limited number of components and has several useful applications in providing power to multiple low-voltage loads in a hybrid or electric automobile. This paper will investigate the origin of generating ac outputs from the MMCCC and shows how the transformer-free version can be modified to create limited isolation from the circuit. In addition, this paper will compare various modified forms of the MMCCC topology with existing dc-dc converter circuits from compactness and component utilization perspectives.

  5. San Juanico, BCS, Mexico, hybrid electric plant renewable energies in the rural communities development; Planta electrica hibrida San Juanico, B.C.S., Mexico, las energias renovables en el desarrollo de las comunidades rurales

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Rios, Serafin [Gerencia de Proyectos Geotermoelectricos, Comision Federal de Electricidad (Mexico)

    1999-08-01

    The hybrid electric plant of San Juanico, B.C.S., Mexico, is described in terms of its environmental goals, operating process and contribution to the development of that rural community of the Baja California Peninsula. San Juanico hybrid electric plant is organized in three electrical generation systems that work in parallel: one uses solar energy, another wind energy and a third one uses diesel fuel. [Spanish] Se describe la planta hibrida de San Juanico, BCS, Mexico, en terminos de los objetivos ambientales que condujeron a su realizacion, asi como de su proceso operativo y de la participacion que tiene en el desarrollo de esa comunidad rural de la peninsula de Baja California, Mexico. La planta hibrida de San Juanico esta constituida por tres sistemas de generacion de electrcicidad que operan en paralelo: uno utiliza energia radiante del sol, otro energia del viento y un tercero utiliza diesel.

  6. [Sport and rheumatoid arthritis].

    Science.gov (United States)

    Proschek, D; Rehart, S

    2014-06-01

    Sport is becoming increasingly more important in our society. Due to the changing age spectrum with a greater number of elderly and substantially more active people, an increasing number of people with underlying orthopedic diseases are becoming interested in participating in sport. This article deals with the possibilities and effects of sporting activities for people with rheumatoid arthritis within the framework of a conservative therapy. A literature search was carried out using medical search engines, in particular PubMed, and also via the recommendations of specialist societies and patient help groups. The quality of life of patients with rheumatoid arthritis consists of physical, mental and social components. Sport as a means of rehabilitation influences all of these components. Sport should be comprehended as a form of therapy and be adapted to the needs of the individual patient. The willingness to actively participate in sport should always be highly rated and encouraged. Sport is therefore an important pillar of therapy in a conservative total concept. The main aspects of sport therapeutic activities are functional, pedagogical and experience-oriented aspects. The clinical symptoms, extent of damage and physical impairment must, however, be evaluated and taken into consideration for the therapeutic concept. The amount of data on the complex topic of sport and rheumatoid arthritis is low and is mainly dealt with as retrospective reviews. A prospective randomized study basis is lacking. The aim must therefore be to confirm the currently available recommendations for various types of sport in controlled studies.

  7. On the Development and Utilization of National Folk Sports Curriculum Resources in the Schools of Xiangxi Ethnic Minority Areas%民族民间体育课程资源在湘西少数民族地区学校的开发与利用

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      湘西少数民族地区拥有丰富的民族民间体育资源,但由于历史原因、地域问题,导致在新一轮的体育课程改革中没有得到及时的开发和利用,课改步伐严重滞后,文章针对目前存在的问题,采用文献资料法、问卷调查法、实地考察法、数理统计法、逻辑分析法等研究方法,就湘西少数民族地区学校如何利用和开发好这些优质的民族民间体育课程资源进行了阐述,旨在为湘西少数民族体育教育改革的加速发展提供理论参考依据。研究结果表明:湘西少数民族地区学校教师师资力量雄厚完全具备了开发民族民间体育课程的能力;民族民间体育课程资源、自然地理环境资源丰富;教师和学生获取民族民间体育资源的渠道比较单一;体育教师对新课程实施标准了解程度相对较低;体育教学场地设施可以满足民族民间体育课程的开发条件;学生从不参加课外活动或较少参与课外活动。%Xiangxi minority area has rich national folk sports resources, but due to historical reasons, regional problems, these resources in a new round of curriculum reform of sports don't get the timely development and utilization, lagging in the pace of curriculum reform. Aiming at the problems at present, this paper adopts literature, questionnaire, on-the-spot investigation, mathematical statistics, logic analysis and other research methods, studies Xiangxi minority areas schools how to use and develop these high-quality national folk sports curriculum resources, aiming at accelerating the development of Xiangxi ethnic minority sports education reform to provide theoretical reference. The research results show that Xiangxi minority areas faculty teachers completely have the ability to develop the national folk sports curriculum; National folk sports curriculum resources, natural geographical environment, ARE rich in resources; teachers and

  8. Development of HFF6120G03SHEV Plug-in Hybrid Electric Bus%HFF6120G03SHEV插电式混合动力客车开发

    Institute of Scientific and Technical Information of China (English)

    王少凯

    2015-01-01

    简要介绍HFF6120G03SHEV插电式混合动力客车整车的开发和驱动控制系统的设计,以及整车动力电池组布置技术方案.%The author briefly introduces the whole vehicle development, drive control system design and the vehicle power battery layout scheme of HFF6120G03SHEV plug-in hybrid electric bus.

  9. Parameter Matching and Simulation of a Plug-in Hybrid Electric City Bus%Plug—in混合动力城市公交车参数匹配与仿真

    Institute of Scientific and Technical Information of China (English)

    杨攀; 赵又群

    2011-01-01

    We rebuild a conventional city bus to a parallel plug-in hybrid electric city bus, and the structure and parameters of the power system are designed. Ni-MH battery and permanent magnet synchronous motor are used in this hybrid electric city bus. Based on the result of simulation in ADVISOR, the plug-in hybrid electric bus has almost equal kinetic performance to the prototype bus, but the fuel economy increases by at least 20% compared with the prototype bus.%将一种传统城市公交车改造成单轴并联结构的Plug-in混合动力公交车,并对动力系统进行参数匹配和设计。该混合动力公交车的储能原件采用镍氢电池,电机采用永磁同步电机。在电动汽车仿真软件ADVISOR中进行建模仿真的结果表明,Plug-in混合动力公交车的动力性与原型车相当,经济性与原型车相比提高了20%以上,达到了预期开发设计的目标。

  10. Sports Medicine: What is a Sports Medicine Specialist?

    Science.gov (United States)

    ... both the treatment and prevention of illness and injury. The Sports Medicine Specialist helps patients maximize function and minimize ... of these conditions. However, approximately 90% of all sports injuries are non-surgical. The Sports Medicine Specialist can ...

  11. The importance of sport psychology in school sport | le Roux ...

    African Journals Online (AJOL)

    The importance of sport psychology in school sport. ... of values associated with sport, the prevention of burnout in a young athlete, how to ... These findings can mainly be attributed to a lack of knowledge regarding the psychology of the child.

  12. SPORTS ACTIVITIES SPONSORSHIP

    Directory of Open Access Journals (Sweden)

    DURBĂCEA - BOLOVAN MARIAN

    2016-12-01

    Full Text Available Sports and economy have discovered each other, hoping to serve common interests. In view of transferring in a more efficient way the information about their products or services to consumers, the business operator finances sports activities for advertising purposes. A company involved in sports sponsorship can instantly transmit the message about its products to millions of potential buyers, thus increasing the market share and hence the profit that it generates. By sponsoring sport it is meant any agreement / convention, under which one party the sponsor makes available to the beneficiary the material resources, financial and / or other benefits in exchange for its association with a sport or sportsman and especially the promise to use this association with sport or sportsman for the purpose of advertising, especially TV advertising. The growing use of athletes as spokespersons for a product is largely due to the ability of athletes to attract public attention and the credibility they enjoy

  13. Refleksiv Sports Management

    DEFF Research Database (Denmark)

    Adamsen, Billy

    2013-01-01

    Sports management and its development is closely linked to the development of modern society and modern rationality. This article applies sociological theories and practical management philosophy to shed light on how sports management and its rationality in Denmark (Europe) and the United States...... have changed and undergone different phases for more than a century, and to show that, in late modernity, they are entering a new phase in which they seem to be more reflexive and communicative. This trend is evident in American sports management and will also soon be reflected in Danish sports...... management. My analysis of this development will also be based on a specific case study from the American world of sports, namely the story of Oakland Athletics baseball club’s reorganisation in the 1990s, because it both provides a rare insight into a modern sports organisation and demonstrates...

  14. Ethics in sports medicine.

    Science.gov (United States)

    Dunn, Warren R; George, Michael S; Churchill, Larry; Spindler, Kurt P

    2007-05-01

    Physicians have struggled with the medical ramifications of athletic competition since ancient Greece, where rational medicine and organized athletics originated. Historically, the relationship between sport and medicine was adversarial because of conflicts between health and sport. However, modern sports medicine has emerged with the goal of improving performance and preventing injury, and the concept of the "team physician" has become an integral part of athletic culture. With this distinction come unique ethical challenges because the customary ethical norms for most forms of clinical practice, such as confidentiality and patient autonomy, cannot be translated easily into sports medicine. The particular areas of medical ethics that present unique challenges in sports medicine are informed consent, third parties, advertising, confidentiality, drug use, and innovative technology. Unfortunately, there is no widely accepted code of sports medicine ethics that adequately addresses these issues.

  15. MOTIVATION IN ADAPTED SPORT

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Torralba

    2014-05-01

    Full Text Available This study examines the motivation for practice of sport of people with disabilities that form part to a federated sport.The sample was composed of 134 athletes of both genders and different disabilities.The “Participation Motivation Inventory Questionnaire” by Gill, Gross and Huddleston was used. The instrument was adapted to Paralympic sport and describes the main reasons that encourage the sports activity practice. The results haven´t found significant difference between men´s and women´s or between blind - visually impaired physical and motor disabilities. About the motivation of the practice of sport, worth highlighting the importance given to factors of fitness and health, like sport practice, improve the level, to compete, feel good and have fun, well above being popular, influenced by coaches or satisfy to parents.

  16. Sport-related concussions

    Directory of Open Access Journals (Sweden)

    Jéssica Natuline Ianof

    Full Text Available ABSTRACT Traumatic brain injury (TBI is a major cause of lifelong disability and death worldwide. Sport-related traumatic brain injury is an important public health concern. The purpose of this review was to highlight the importance of sport-related concussions. Concussion refers to a transient alteration in consciousness induced by external biomechanical forces transmitted directly or indirectly to the brain. It is a common, although most likely underreported, condition. Contact sports such as American football, rugby, soccer, boxing, basketball and hockey are associated with a relatively high prevalence of concussion. Various factors may be associated with a greater risk of sport-related concussion, such as age, sex, sport played, level of sport played and equipment used. Physical complaints (headache, fatigue, dizziness, behavioral changes (depression, anxiety, irritability and cognitive impairment are very common after a concussion. The risk of premature return to activities includes the prolongation of post-concussive symptoms and increased risk of concussion recurrence.

  17. Refleksiv Sports Management

    DEFF Research Database (Denmark)

    Adamsen, Billy

    2013-01-01

    Sports management and its development is closely linked to the development of modern society and modern rationality. This article applies sociological theories and practical management philosophy to shed light on how sports management and its rationality in Denmark (Europe) and the United States...... have changed and undergone different phases for more than a century, and to show that, in late modernity, they are entering a new phase in which they seem to be more reflexive and communicative. This trend is evident in American sports management and will also soon be reflected in Danish sports...... management. My analysis of this development will also be based on a specific case study from the American world of sports, namely the story of Oakland Athletics baseball club’s reorganisation in the 1990s, because it both provides a rare insight into a modern sports organisation and demonstrates...

  18. SYSTEMATIZATION OF SPORTS AND SPORT DISCIPLINES ACCORDING TO THE ASPECT OF SPORT TRAINING

    OpenAIRE

    Duško Bjelica

    2006-01-01

    According to the aspect of sport training, it's necessary to do the systematization of sports according to their content. The content of sports is presented by qualitative and quantitative structure of development, and the classification of sports is performed by the amount of participation of elementary bio-motor dimensions in sports, respectivly.

  19. Sports Specialization, Part II

    Science.gov (United States)

    Myer, Gregory D.; Jayanthi, Neeru; DiFiori, John P.; Faigenbaum, Avery D.; Kiefer, Adam W.; Logerstedt, David; Micheli, Lyle J.

    2016-01-01

    Context: Many coaches, parents, and children believe that the best way to develop elite athletes is for them to participate in only 1 sport from an early age and to play it year-round. However, emerging evidence to the contrary indicates that efforts to specialize in 1 sport may reduce opportunities for all children to participate in a diverse year-round sports season and can lead to lost development of lifetime sports skills. Early sports specialization may also reduce motor skill development and ongoing participation in games and sports as a lifestyle choice. The purpose of this review is to employ the current literature to provide evidence-based alternative strategies that may help to optimize opportunities for all aspiring young athletes to maximize their health, fitness, and sports performance. Evidence Acquisition: Nonsystematic review with critical appraisal of existing literature. Study Design: Clinical review. Level of Evidence: Level 4. Conclusion: Based on the current evidence, parents and educators should help provide opportunities for free unstructured play to improve motor skill development and youth should be encouraged to participate in a variety of sports during their growing years to influence the development of diverse motor skills. For those children who do choose to specialize in a single sport, periods of intense training and specialized sport activities should be closely monitored for indicators of burnout, overuse injury, or potential decrements in performance due to overtraining. Last, the evidence indicates that all youth should be involved in periodized strength and conditioning (eg, integrative neuromuscular training) to help them prepare for the demands of competitive sport participation, and youth who specialize in a single sport should plan periods of isolated and focused integrative neuromuscular training to enhance diverse motor skill development and reduce injury risk factors. Strength of Recommendation Taxonomy (SORT): B. PMID

  20. Sport-related concussions

    OpenAIRE

    2014-01-01

    ABSTRACT Traumatic brain injury (TBI) is a major cause of lifelong disability and death worldwide. Sport-related traumatic brain injury is an important public health concern. The purpose of this review was to highlight the importance of sport-related concussions. Concussion refers to a transient alteration in consciousness induced by external biomechanical forces transmitted directly or indirectly to the brain. It is a common, although most likely underreported, condition. Contact sports such...