WorldWideScience

Sample records for hybrid thermochemical cycle

  1. Development of the Hybrid Sulfur Thermochemical Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Summers, William A.; Steimke, John L

    2005-09-23

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  2. Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Graf, D.; Monnerie, N.; Roeb, M.; Schmitz, M.; Sattler, C. [German Aerospace Center, Institute of Technical Thermodynamics, Solar Research, Linder Hoehe, 51147 Cologne (Germany)

    2008-09-15

    Hydrogen is acclaimed to be an energy carrier of the future. Currently, it is mainly produced by fossil fuels, which release climate-changing emissions. Thermochemical cycles, represented here by the hybrid-sulfur cycle and a metal oxide based cycle, along with electrolysis of water are the most promising processes for 'clean' hydrogen mass production for the future. For this comparison study, both thermochemical cycles are operated by concentrated solar thermal power for multistage water splitting. The electricity required for the electrolysis is produced by a parabolic trough power plant. For each process investment, operating and hydrogen production costs were calculated on a 50 MW{sub th} scale. The goal is to point out the potential of sustainable hydrogen production using solar energy and thermochemical cycles compared to commercial electrolysis. A sensitivity analysis was carried out for three different cost scenarios. As a result, hydrogen production costs ranging from 3.9-5.6 EUR/kg for the hybrid-sulfur cycle, 3.5-12.8 EUR/kg for the metal oxide based cycle and 2.1-6.8 EUR/kg for electrolysis were obtained. (author)

  3. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    Science.gov (United States)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  4. Open-loop thermochemical cycles for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Conger, W.L.

    1979-01-01

    The concept of open-loop thermochemical cycles (cycles which have additional or other feedstocks than water and produce materials in addition to hydrogen and oxygen) is introduced. Preliminary analysis of possible feedstocks available indicates substantial quantities of hydrogen could possibly be produced through open-cycles. The advantages of open-cycles include the conversion of unwanted waste products to useful products while producing hydrogen. A compilation of open processes which would have SO/sub 2/ in addition to water as feedstock and which would produce sulfuric acid in addition to hydrogen and oxygen is given.

  5. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  6. Hydrogen production by water decomposition using a combined electrolytic-thermochemical cycle

    Science.gov (United States)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    A proposed dual-purpose power plant generating nuclear power to provide energy for driving a water decomposition system is described. The entire system, dubbed Sulfur Cycle Water Decomposition System, works on sulfur compounds (sulfuric acid feedstock, sulfur oxides) in a hybrid electrolytic-thermochemical cycle; performance superior to either all-electrolysis systems or presently known all-thermochemical systems is claimed. The 3345 MW(th) graphite-moderated helium-cooled reactor (VHTR - Very High Temperature Reactor) generates both high-temperature heat and electric power for the process; the gas stream at core exit is heated to 1850 F. Reactor operation is described and reactor innards are illustrated. A cost assessment for on-stream performance in the 1990's is optimistic.

  7. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  8. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  9. Hydrogen production via thermochemical cycles based on sulfur chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, M.A.; Conger, W.L.; Carty, R.H.; Funk, J.E.; Cox, K.E.

    1976-01-01

    A class of closed thermochemical cycles for hydrogen production based on sulfur chemistry is presented. This class is described by the following set of chemical reactions: M + H/sub 2/O reversible MO + H/sub 2/ (low temperature); MO + 0.5S reversible M + 0.5SO/sub 2/ (high temperature); M'O + 1.5SO/sub 2/ reversible M'SO/sub 4/ + 0.5S (low temperature); and M'SO/sub 4/ reversible M'O + SO/sub 2/ + 0.5O/sub 2/ (high temperature). Experimental investigation of some of the reactions is presented. Thermodynamic analysis indicates efficiencies of the range of 40 to 50 percent and sometimes higher. Not all of the reactions in the proposed cycles have been verified in the literature or through experimentation.

  10. High Performance Electrolyzers for Hybrid Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John W. Weidner

    2009-05-10

    Extensive electrolyzer testing was performed at the University of South Carolina (USC). Emphasis was given to understanding water transport under various operating (i.e., temperature, membrane pressure differential and current density) and design (i.e., membrane thickness) conditions when it became apparent that water transport plays a deciding role in cell voltage. A mathematical model was developed to further understand the mechanisms of water and SO2 transport, and to predict the effect of operating and design parameters on electrolyzer performance.

  11. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  12. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  13. Membranes for H2 generation from nuclear powered thermochemical cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  14. An exergetic/energetic/economic analysis of three hydrogen production processes - Electrolysis, hybrid, and thermochemical

    Science.gov (United States)

    Funk, J. E.; Eisermann, W.

    This paper presents the results of a combined first and second law analysis, along with capital and operating costs, for hydrogen production from water by means of electrolytic, hybrid, and thermochemical processes. The processes are SPE and Lurgi electrolysis with light water reactor power generation and sulfur cycle hybrid, thermochemical and SPE electrolysis with a very high temperature reactor primary energy source. Energy and Exergy (2nd law) flow diagrams for the process are shown along with the location and magnitude of the process irreversibilities. The overall process thermal (1st law) efficiencies vary from 25 to 51% and the exergetic (2nd law) efficiencies, referred to the fuel for the primary energy source, vary from 22 to 45%. Capital and operating costs, escalated to 1979 dollars, are shown for each process for both the primary energy source and the hydrogen production plant. All costs were taken from information available in the open literature and are for a plant capacity of 100 x 10 to the 6th SCF/day. Production costs vary from 10 to 18 $/GJ, based on the higher heating value of hydrogen, and are based on a 90% plant operating factor with a 21% annual charge on total capital costs.

  15. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  16. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  17. Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G. [Canada Research Chair Professor, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street, Oshawa, Ontario L1H 7K4 (Canada); Suppiah, S. [Manager, Hydrogen Isotopes Technology Branch, AECL, Chalk River, Ontario K0J 1J0 (Canada); Lewis, M. [Chemist, Chemical Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Gabriel, K. [Associate Provost, Research, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Dincer, I.; Rosen, M.A. [Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Fowler, M. [Assistant Professor of Chemical Engineering, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1 (Canada); Rizvi, G. [Assistant Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Easton, E.B. [Assistant Professor of Chemistry, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Ikeda, B.M.; Pioro, I. [Associate Professor, Faculty of Energy Systems and Nuclear Science, UOIT, 2000 Simcoe St., Oshawa, ON L1H 7K4 (Canada); Kaye, M.H.; Lu, L. [Assistant Professor, Faculty of Energy Systems and Nuclear Science, UOIT, 2000 Simcoe Street, Oshawa, Ontario L1H 7K4 (Canada); Spekkens, P. [Vice President of Science and Technology Development, Ontario Power Generation, 889 Brock Road, Pickering, Ontario (Canada); Tremaine, P. [Professor of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Canada); Mostaghimi, J. [Canada Research Chair Professor, Mechanical Engineering, University of Toronto, Toronto, Ontario M5S 3E5 (Canada); Avsec, J. [Assistant Professor, Faculty of Energy Technology, Univ. of Maribor, Hocevarjev trg 1, 8270 Krsko (Slovenia); Jiang, J. [Professor and NSERC/UNENE Senior Industrial Research Chair, Electrical and Computer Engineering, Univ. of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2009-04-15

    This paper presents recent Canadian advances in nuclear-based production of hydrogen by electrolysis and the thermochemical copper-chlorine (Cu-Cl) cycle. This includes individual process and reactor developments within the Cu-Cl cycle, thermochemical properties, advanced materials, controls, safety, reliability, economic analysis of electrolysis at off-peak hours, and integrating hydrogen plants with Canada's nuclear power plants. These enabling technologies are being developed by a Canadian consortium, as part of the Generation IV International Forum (GIF) for hydrogen production from the next generation of nuclear reactors. (author)

  18. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  19. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  20. Development of a New Thermochemical and Electrolytic Hybrid Hydrogen Production System for Sodium Cooled FBR

    Science.gov (United States)

    Nakagiri, Toshio; Kase, Takeshi; Kato, Shoichi; Aoto, Kazumi

    A new thermo-chemical and electrolytic hybrid hydrogen production system in lower temperature range is newly proposed by the Japan Nuclear Cycle Development Institute (JAEA) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeder Reactor (FBR). The system is based on sulfuric acid (H2SO4) synthesis and decomposition process developed earlier (Westinghouse process), and sulfur trioxide (SO3) decomposition process is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce the operation temperature 200-300°C lower than Westinghouse process. SO3 decomposition with the voltage lower than 0.5V was confirmed in the temperature range of 500 to 600°C and theoretical thermal efficiency of the system evaluated based on chemical reactions was within the range of 35% to 55% under the influence of H2SO4 concentration and heat recovery. Furthermore, hydrogen production experiments to substantiate the whole process were performed. Stable hydrogen and oxygen production were observed in the experiments, and maximum duration of the experiments was about 5 hours.

  1. Local hybrid functionals: an assessment for thermochemical kinetics.

    Science.gov (United States)

    Kaupp, Martin; Bahmann, Hilke; Arbuznikov, Alexei V

    2007-11-21

    Local hybrid functionals with position-dependent exact-exchange admixture are a new class of exchange-correlation functionals in density functional theory that promise to advance the available accuracy in many areas of application. Local hybrids with different local mixing functions (LMFs) governing the position dependence are validated for the heats of formation of the extended G3/99 set, and for two sets of barriers of hydrogen-transfer and heavy-atom transfer reactions (HTBH38 and NHTBH38 databases). A simple local hybrid Lh-SVWN with only Slater and exact exchange plus local correlation and a one-parameter LMF, g(r)=b(tau(W)(r)tau(r)), performs best and provides overall mean absolute errors for thermochemistry and kinetics that are a significant improvement over standard state-of-the-art global hybrid functionals. In particular, this local hybrid functional does not suffer from the systematic deterioration that standard functionals exhibit for larger molecules. In contrast, local hybrids based on generalized gradient approximation exchange tend to give rise to nonintuitive LMFs, and no improved functionals have been obtained along this route. The LMF is a real-space function and thus can be analyzed in detail. We use, in particular, graphical analyses to rationalize the performance of different local hybrids for thermochemistry and reaction barriers.

  2. Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO_2 Reduction

    OpenAIRE

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2013-01-01

    A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na+ into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO_2 reduction. Hydrogen evolution and CO_2 reduction reactions of metal oxides with a given alkali carbona...

  3. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  4. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  5. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  6. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  7. HYDRGN - a computerized technique for the analysis of thermochemical water-splitting cycles

    Energy Technology Data Exchange (ETDEWEB)

    Carty, R. H.; Conger, W. L.; Funk, J. E.; Barker, R.

    1977-06-01

    The HYDRGN computer program was designed to analyze closed thermochemical cycles for the production of hydrogen from water. This report includes the basic theory, assumptions, and methods of calculation used in this analysis along with a description of the program and its use. The source program and necessary data bank are available from the University of Kentucky. These may be obtained by sending a magnetic tape (minimum length 1200 ft) and a written request specifying the type of computer and recording characteristics of the tape. A small fee is charged for the recording and handling of the tape.

  8. Thermochemical hydrogen production via a cycle using barium and sulfur: reaction between barium sulfide and water

    Energy Technology Data Exchange (ETDEWEB)

    Ota, K.; Conger, W.L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653 to 866/sup 0/C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. The rate of formation of hydrogen can be expressed as: RH2 = 1.07 x 10/sup -2/ exp (-3180/RT) (mol H/sub 2//mol BaS s). Hydrogen sulfide was produced during the initial period of reaction and the quantity of hydrogen sulfide formed during this period decreased as the temperature of reaction was increased.

  9. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    OpenAIRE

    Rahul Bhosale; Anand Kumar; Fares AlMomani; Ujjal Ghosh; Mohammad Saad Anis; Konstantinos Kakosimos; Rajesh Shende; Marc A. Rosen

    2016-01-01

    The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and wat...

  10. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-12-15

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

  11. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  12. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange

    2016-01-01

    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  13. Copper chloride electrolyzer for the production of hydrogen via the copper-chlorine thermochemical cycle

    Science.gov (United States)

    Roy, Rahul Dev

    Hydrogen is considered a key element in solving the upcoming energy crisis, it is not the primary fuel source but an "energy carrier" similar to electricity and has to be produced using some other hydrogen rich source. Thermochemical water decomposition is a promising alternative to steam-methane reforming and electrolytic water splitting for a sustainable method of large-scale hydrogen production. The Copper-Chlorine thermochemical cycle is one of prime contenders among all the other thermochemical cycles being studied because of its low energy requirements compared to others and mild operating conditions, therefore making it available to be readily integrated to the available nuclear reactors or solar energy installations. This present work focuses on the study and development of a proton exchange membrane (PEM) electrolyzer cell for the Copper-Chlorine thermo chemical cycle to obtain a better understanding through experiments and models of this process. Different operating and design parameters such as temperature, flow rate, current density, membranes and gas diffusion layers were considered to reduce the voltage and hence increase the efficiency of the electrolyzer. The effects of catalyst and mass transfer were studied on the thin film electrode using a rotating disk electrode (RDE) setup. A mathematical model was also developed to monitor the performance of the electrolyzer by predicting the change in concentration of copper chloride in the system with respect to time. It is observed that flow rate and temperature plays a major role in decreasing the voltage drop. There was no effect of catalyst in the anode when compared to a bare anode at lower flow rates; but at higher flow rates there was significant decrease in voltage drop when a carbon cloth was placed at the anode end. High surface area carbon black has comparable activity towards CuCl oxidation with conventional catalyst like Platinum or Ruthenium oxide. It is also seen that mass transfers possess a

  14. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic binder, which can also promote ion transport. The CCE structure also has a high active surface area and is chemically and thermally robust. This paper presented an investigation of CCE materials prepared using 3-aminopropyl trimethoxysilane. Several electrochemical experiments including cyclic voltammetry and electrochemical impedance spectroscopy were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the copper-chlorine thermochemical cycle. Subsequent experiments included the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements were also presented. Specifically, the paper presented the experiment with particular reference to the CCE preparation; electrochemical experiments; thermal analysis; and scanning electron microscopy. Results were also provided. These included TGA analysis; scanning electron microscopy analysis; electrochemical characterization; and anodic polarization. Characterization of these CCE material demonstrated that they had good thermal stability, could be used at high temperatures, and were therefore, very promising anode materials. 15 refs., 7 figs.

  15. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO sub 4 systems

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. (Houston Univ., TX (United States))

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  16. Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, PremKumar; Ramasamy, Ramaraja P.; Holland, Charles E.; Weidner, John W. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Freire, Francisco J. [Chlorine Recycle Consultants, Miami Beach, FL 33140 (United States)

    2007-03-15

    The electrochemical step in two thermochemical cycles for hydrogen production is reported. One cycle involves the electrochemical oxidation of sulfur dioxide to sulfuric acid (both water and SO{sub 2} are reactants). The other cycle involves the oxidation of anhydrous hydrogen bromide to bromine (anhydrous HBr is the only reactant). In both cycles, protons are reduced at the cathode to produce hydrogen. The novelty of this work is that both anode reactions are carried out in the gas phase of a proton exchange membrane (PEM) electrolyzer, which enhances the transport rate of reactants to the electrode surface. The HBr process achieved 2.0A/cm{sup 2} at 1.91 V. The SO{sub 2} process reached 0.4A/cm{sup 2}, but behind this current density the cell experienced mass transfer limitations of water across the membrane. However, the voltage required to achieve 0.4A/cm{sup 2} was 0.835 V, compared to 1.025 V for the HBr process at this current density. (author)

  17. System and process for producing fuel with a methane thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  18. Chemical characterization of sulphur-iodine thermochemical cycle flowstreams by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, Raffaele; Falconieri, Mauro; Lanchi, Michela; Spadoni, Annarita [ENEA CR, Casaccia (Italy)

    2010-07-01

    The Sulphur-Iodine (S-I) thermochemical cycle for hydrogen production from water is one of the widest investigated cycles in the world. Considered the complexity of the S-I process scheme, the focus on chemical characterization of the flowstreams in the loop plant is crucial in order to fully understand chemical equilibriums involved at varying hydriodic acid: (HI:I{sub 2}) ratio in the mixtures and to determine HI and I{sub 2} contents as well. Raman spectroscopy has been widely used to investigate iodine solutions, however few works deals with I{sub 2} in HI aqueous mixtures. The aim of the present study is to use Raman spectroscopy for a rapid qualitative and quantitative characterization of the HI-H{sub 2}O-I{sub 2} mixtures involved in the S-I process. At this purpose, Raman spectra of solutions with known HI and I{sub 2} concentration have been recorded at varying I{sub 2} and HI compositions. It has been found that the chemistry of these solutions is highly dependant on HI:I{sub 2} molar ratio. For ratio up to 1:1, the dominant iodine compounds are I{sub 3}{sup -} and its corresponding ion pair HI{sub 3}. At higher values, close to those of the hydriodic phase HIx of the Bunsen reaction, there is experimental evidence of the formation of higher polyiodine and polyiodides compounds. (orig.)

  19. Occurrence of the Bunsen side reaction in the sulfur-iodine thermochemical cycle for hydrogen production

    Institute of Scientific and Technical Information of China (English)

    Qiao-qiao ZHU; Yan-wei ZHANG; Zhi YING; Jun-hu ZHOU; Zhi-hua WANG; Ke-fa CEN

    2013-01-01

    This study aimed to establish a closed-cycle operation technology with high thermal efficiency in the thermochemical sulfur-iodine cycle for large-scale hydrogen production.A series of experimental studies were performed to investigate the occurrence of side reactions in both the H2SO4 and HIx phases from the H2SO4/HI/I2/H2O quaternary system within a constant temperature range of 323-363 K.The effects of iodine content,water content and reaction temperature on the side reactions were evaluated.The results showed that an increase in the reaction temperature promoted the side reactions.However,they were prevented as the iodine or water content increased.The occurrence of side reactions was faster in kinetics and more intense in the H2SO4 phase than in the HIx phase.The sulfur or hydrogen sulfide formation reaction or the reverse Bunsen reaction was validated under certain conditions.

  20. Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C., E-mail: Calin.Zamfirescu@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Naterer, G.F., E-mail: Greg.Naterer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Dincer, I., E-mail: Ibrahim.Dincer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada)

    2011-01-10

    In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper-chlorine (Cu-Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to {approx}950 K, at a high COP of {approx}6.5. Based on measured data available in past literature, the authors have determined the T-s diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches {approx}2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper-chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at {approx}950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by

  1. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I. [Faculty of Energy Systems and Nuclear Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: Maria.Naidin@mycampus.uoit.ca, Sarah.Mokry@mycampus.uoit.ca, Romson.Monichan@uoit.ca, Karan.Chophla@mycampus.uoit.ca, Igor.Pioro@uoit.ca; Naterer, G.; Gabriel, K. [Faculty of Engineering and Applied Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: Greg.Naterer@uoit.ca, Kamiel.Gabriel@uoit.ca

    2009-07-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625{sup o}C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single

  2. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  3. CHOOSING DRIVING CYCLE OF HYBRID VEHICLE

    Directory of Open Access Journals (Sweden)

    A. Vorona

    2011-01-01

    Full Text Available The analysis of existing driving cycles was performed. After comparing some of the cycles, one specific driving cycle was selected for the hybrid vehicle as the most reliable in representing the real moving of the vehicle in operating conditions and which may be reproduced at experimental tests at the modeling roller stand.

  4. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, O.H. (ed.)

    1982-02-09

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  5. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.

    Science.gov (United States)

    Khoo, H H; Koh, C Y; Shaik, M S; Sharratt, P N

    2013-09-01

    An investigation of the potential to efficiently convert lipid-depleted residual microalgae biomass using thermochemical (gasification at 850 °C, pyrolysis at 550 °C, and torrefaction at 300 °C) processes to produce bioenergy derivatives was made. Energy indicators are established to account for the amount of energy inputs that have to be supplied to the system in order to gain 1 MJ of bio-energy output. The paper seeks to address the difference between net energy input-output balances based on a life cycle approach, from "cradle-to-bioenergy co-products", vs. thermochemical processes alone. The experimental results showed the lowest results of Net Energy Balances (NEB) to be 0.57 MJ/MJ bio-oil via pyrolysis, and highest, 6.48 MJ/MJ for gas derived via torrefaction. With the complete life cycle process chain factored in, the energy balances of NEBLCA increased to 1.67 MJ/MJ (bio-oil) and 7.01 MJ/MJ (gas). Energy efficiencies and the life cycle CO2 emissions were also calculated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Optimization of the Hybrid Sulfur Cycle for Nuclear Hydrogen Production Using UniSim Design

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Hun; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2009-05-15

    The sulfur-based thermochemical cycles are considered as the most promising methods to produce hydrogen. The Hybrid Sulfur (HyS) Cycle is a mixed thermochemical cycle with the sulfur-aided electrolysis as depicted in the Fig. 1. Hydrogen is produced from water by oxidizing sulfur dioxide in the low temperature electrolysis step and the sulfuric acid which is also produced in the electrolyzer proceeds to the high temperature thermochemical step. The sulfuric acid is concentrated in the concentrator first and then decomposed into steam and sulfur trioxide, which is further decomposed into sulfur dioxide and oxygen at high temperature (;1100 K) in the decomposer. After separated with oxygen in the separator, the sulfur dioxide is fed again to the electrolyzer to reduce the required electrode potential far below than that of the typical water electrolysis. Hydrogen is worth as a future energy carrier when it is produced cost effectively. In that sense, the energy efficiency of the hybrid sulfur cycle is needed to be improved as high as achievable. The flow sheet developed by Westinghouse, the first proposer of the cycle, is not optimized for the cycle efficiency. In the previous work, a detailed flow sheet model was developed and also the cycle efficiency of that was roughly estimated using the software CHEMKIN and CANARY based on the experimental data for the electrode potential and appropriate work of separation. The maximum efficiency was found to be 50.5% under the operating conditions of 10 bar and 1200K for decomposer and acid concentration of 60 mol% for decomposer, 60 wt. % for electrolyzer, respectively. In this study, more detailed flow sheet was developed and optimized by using software UniSim Design which is one of the most powerful process design and simulation tools.

  7. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    Science.gov (United States)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  8. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  9. Comparative study of the activity of nickel ferrites for solar hydrogen production by two-step thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Fresno, Fernando [Solar Concentrating Systems, CIEMAT-PSA. Avda. Complutense, 22, 28040 Madrid (Spain); Yoshida, Tomoaki; Gokon, Nobuyuki; Kodama, Tatsuya [Department of Chemistry and Chemical Engineering and Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181 (Japan); Fernandez-Saavedra, Rocio [Chemistry Division, CIEMAT. Avda. Complutense, 22, 28040 Madrid (Spain)

    2010-08-15

    In this work, we compare the activity of unsupported and monoclinic zirconia - supported nickel ferrites, calcined at two different temperatures, for solar hydrogen production by two-step water-splitting thermochemical cycles at low thermal reduction temperature. Commercial nickel ferrite, both as-received and calcined in the laboratory, as well as laboratory made supported NiFe{sub 2}O{sub 4}, are employed for this purpose. The samples leading to higher hydrogen yields, averaged over three cycles, are those calcined at 700 C in each group (supported and unsupported) of materials. The comparison of the two groups shows that higher chemical yields are obtained with the supported ferrites due to better utilisation of the active material. Therefore, the highest activity is obtained with ZrO{sub 2}-supported NiFe{sub 2}O{sub 4} calcined at 700 C. (author)

  10. Entropy production and efficiency analysis of the Bunsen reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.E.; Conger, W.L.

    1980-01-01

    An entropy production and efficiency analysis of the first reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle has been carried out by simulating the reaction including the mixing of reactants and separation of the resulting phases. The reaction: 2H/sub 2/O(L) + SO/sub 2/(g) + (excess) I/sub 2/(g) = H/sub 2/SO/sub 4/ (sol)(Phase I) + 2 HI core (Phase II) was simulated at 388 K, which is slightly above the melting point of I/sup 2/. Analysis of only this reaction shows that the reaction should be run at 15 to 25% I/sub 2/ reacted and the greatest excess of H/sub 2/O which will produce two product phases. Actual operating conditions are however dependent on the total processing scheme. An entropy production and efficiency analysis along with economic factors for the entire process is necessary to obtain these conditions.

  11. A hybrid water-splitting cycle using copper sulfate and mixed copper oxides

    Science.gov (United States)

    Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.

    1980-01-01

    The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.

  12. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    Science.gov (United States)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the

  13. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  14. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  15. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  16. Activated Carbon Catalysts for the Production of Hydrogen for the Sulfur-Iodine Thermochemical Water Splitting Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C Burch; Cristina Deiana; Hugo S. Silva; Maria F. Sardella; Dolly Granados

    2009-05-01

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of ligno-cellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a ligno-cellulosic chemically-activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Bohem’s titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest, one more time, that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well.

  17. Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Petkovic, Lucia M.; Ginosar, Daniel M.; Rollins, Harry W.; Burch, Kyle C. [Idaho National Laboratory, Interfacial Chemistry, P.O. Box 1625, Idaho Falls, ID 83415-2208 (United States); Deiana, Cristina; Silva, Hugo S.; Sardella, Maria F.; Granados, Dolly [Instituto de Ingenieria Quimica, Facultad de Ingenieria, Universidad Nacional de San Juan, Libertador 1109 (oeste) 5400 San Juan (Argentina)

    2009-05-15

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydrogen iodide (HI) to produce hydrogen, a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of lignocellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a lignocellulosic chemically activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Boehm's titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well. (author)

  18. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    Science.gov (United States)

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps.

  19. Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.; Allen, C.; Besenbruch, G.; McCorkle, K.; Norman, J.; Sharp, R.

    1980-07-01

    Portions of a bench-scale model of a sulfur-iodine thermochemical water-splitting cycle have been operated at General Atomic Company as part of a comprehensive program to demonstrate the technology for hydrogen production from nonfossil sources. The hydrogen program is funded by the US Department of Energy, the Gas Research Institute, and General Atomic Company. The bench-scale model consists of three subunits which can be operated separately or together and is capable of producing as much as 4 std liters/min (6.7 x 10/sup -5/ m/sup 3//s at standard conditions) of gaseous hydrogen. One subunit (main solution reaction) reacts liquid water, liquid iodine (I/sub 2/) and gaseous sulfur dioxide (SO/sub 2/) to form two separable liquid phases: 50 wt % sulfuric acid (H/sub 2/SO/sub 4/) and a solution of iodine in hydriodic acid (HI/sub x/). Another subunit (H/sub 2/SO/sub 4/ concentration and decomposition) concentrates the H/sub 2/SO/sub 4/ phase to the azeotropic composition, then decomposes it at high temperature over a catalyst to form gaseous SO/sub 2/ and oxygen. The third subunit (HI separation and decomposition) separates the HI from water and I/sub 2/ by extractive distillation with phosphoric acid (H/sub 3/PO/sub 4/) and decomposes the HI in the vapor phase over a catalyst to form I/sub 2/ and product hydrogen. This paper presents the results of on-going parametric studies to determine the operating characteristics, performance, and capacity limitations of major components.

  20. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  1. Thermochemical recuperative combined cycle with methane-steam reforming combustion; Tennengasu kaishitsu nensho ni yoru konbaindo saikuru hatsuden no kokoritsuka oyobi denryoku fuka heijunka taio

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, R.; Essaki, K.; Tsutsumi, A. [The University of Tokyo, Tokyo (Japan). Dept. of Chemical System Engineering; Kaganoi, S.; Kurimura, H. [Teikoku Sekiyu Co., Tokyo (Japan); Sasaki, T.; Ogawa, T. [Toshiba Co., Tokyo (Japan)

    2000-03-10

    Thermochemical recuperative combined cycles with methane-steam reforming are proposed for improving their thermal efficiency and for peak-load leveling. For targeting higher thermal efficiency, a cycle with methane-steam reforming reaction heated by gas turbine exhaust was analyzed. The inlet temperature of gas turbine was set at 1,350 degree C. Low-pressure steam extracted from a steam turbine is mixed with methane, and then this mixture is heated by part of the gas turbine exhaust to promote a reforming reaction. The rest of the exhaust heat is used to produce steam, which drives steam turbines to generate electricity. The effect of steam-to-methane ratio (S/C) on thermal efficiency of the cycle, as well as on methane conversion, is investigated by using the ASPEN Plus process simulator. The methane feed rate was fixed at constant and S/C ratio was varied from 2.25 to 4.75. Methane conversion shows an increasing trend toward the ratio and has a maximum value of 17.9 % at S/C=4.0. Thermal efficiency for the system is about 51 % higher than that calculated for a conventional 1,300 degree C class combined cycle under similar conditions. A thermochemical recuperative combined cycle is designed for peak-load leveling. In night-time operation from 20 : 00 to 8 : 00 it stores hydrogen produced by methane steam reforming at S/C=3.9 to save power generation. The gas turbine inlet temperature is 1,330 degree C. In daytime operation from 8 : 00 to 20 : 00 the chemically recuperated combined cycle operated at S/C=2.0 is driven by the mixture of a combined cycle operated at constant load with the same methane feed rate, whereas daytime operation generated power 1.26 times larger than that of the combined cycle. (author)

  2. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions

    Directory of Open Access Journals (Sweden)

    Aldo Steinfeld

    2010-11-01

    Full Text Available This article provides a comprehensive overview of the work to date on the two‑step solar H2O and/or CO2 splitting thermochemical cycles with Zn/ZnO redox reactions to produce H2 and/or CO, i.e., synthesis gas—the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1 The endothermic dissociation of ZnO to Zn and O2 using concentrated solar energy as the source for high-temperature process heat; and (2 the non-solar exothermic oxidation of Zn with H2O/CO2 to generate H2/CO, respectively; the resulting ZnO is then recycled to the first step. An outline of the underlying science and the technological advances in solar reactor engineering is provided along with life cycle and economic analyses.

  3. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  4. The Hybrid Automobile and the Atkinson Cycle

    Science.gov (United States)

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  5. Thermochemical reactivity of 5–15 mol% Fe, Co, Ni, Mn-doped cerium oxides in two-step water-splitting cycle for solar hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gokon, Nobuyuki, E-mail: ngokon@eng.niigata-u.ac.jp [Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181 (Japan); Suda, Toshinori [Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan); Kodama, Tatsuya [Department of Chemistry & Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan)

    2015-10-10

    Highlights: • 5–15 mol% M-doped ceria are examined for thermochemical two-step water-splitting. • 5 mol% Fe- and Co-doped ceria have stoichiometric production of oxygen and hydrogen. • 10–15 mol% Fe- and Mn-doped ceria showed near-stoichiometric production. - Abstract: The thermochemical two-step water-splitting cycle using transition element-doped cerium oxide (M–CeO{sub 2−δ}; M = Fe, Co, Ni, Mn) powders was studied for hydrogen production from water. The oxygen/hydrogen productivity and repeatability of M–CeO{sub 2−δ} materials with M doping contents in the 5–15 mol% range were examined using a thermal reduction (TR) temperature of 1500 °C and water decomposition (WD) temperatures in the 800–1150 °C range. The temperature, steam partial pressure, and steam flow rate in the WD step had an impact on the hydrogen productivity and production rate. 5 mol% Fe- and Co-doped CeO{sub 2−δ} enhances hydrogen productivity by up to 25% on average compared to undoped CeO{sub 2}, and shows stable repeatability of stoichiometric oxygen and hydrogen production for the cyclic thermochemical two-step water-splitting reaction. In addition, 5 mol% Mn-doped CeO{sub 2−δ}, 10 and 15 mol% Fe- and Mn-doped CeO{sub 2−δ} show near stoichiometric reactivities.

  6. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  7. Technological and chemical assessment of various thermochemical cycles: From the UT3 cycle up to the two steps iron oxide cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Lafon, C.; Romnicianu, M. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center BP17171, 30207 Bagnols-sur-Ceze Cedex (France); Charvin, P. [PROMES-CNRS-UPR 8521 BP5 - Odeillo, 66120 FONT ROMEU Cedex (France)

    2006-11-15

    The studies carried out on the UT-3 cycle lead to propose an operating mode that was tested with the Mascot Mockup. Additional investigations, partially presented in the present paper point out that the physicochemical properties of the solid and gaseous reactants will make the running of an industrial process very difficult. For instance, the sintering of the solid, the possible reactivity of the embedding matrix, ...induce additional operation and then lower very sensibly the efficiency of the cycle. Furthermore, if the toxicity of the reactants is taken into consideration, the attractivity of this cycle decreases. If other considerations than the efficiency of the cycle are taken into consideration, it is possible to investigate other cycles. The present paper shows the first results of the studies carried out on alternative cycles having either low efficiency but involving inoffensive reactants or high efficiency but without using bromine. In the first case illustrated by the iron oxide cycle, it seems that the low efficiency can be partially offset by using abundant and inexpensive energy source. In the second one illustrated by the cerium chloride cycle, the significant industrial experience regarding the chemical engineering of the chloride could make the industrial development easier. (author)

  8. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO{sub 4} systems. Final topical report, January 1, 1982--December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. [Houston Univ., TX (United States)

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  9. Fuel cell hybrid taxi life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Patricia, E-mail: patricia.baptista@ist.utl.pt [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Ribau, Joao; Bravo, Joao; Silva, Carla [IDMEC-Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa (Portugal); Adcock, Paul; Kells, Ashley [Intelligent Energy, Charnwood Building, HolywellPark, Ashby Road, Loughborough, LE11 3GR (United Kingdom)

    2011-09-15

    A small fleet of classic London Taxis (Black cabs) equipped with hydrogen fuel cell power systems is being prepared for demonstration during the 2012 London Olympics. This paper presents a Life Cycle Analysis for these vehicles in terms of energy consumption and CO{sub 2} emissions, focusing on the impacts of alternative vehicle technologies for the Taxi, combining the fuel life cycle (Tank-to-Wheel and Well-to-Tank) and vehicle materials Cradle-to-Grave. An internal combustion engine diesel taxi was used as the reference vehicle for the currently available technology. This is compared to battery and fuel cell vehicle configurations. Accordingly, the following energy pathways are compared: diesel, electricity and hydrogen (derived from natural gas steam reforming). Full Life Cycle Analysis, using the PCO-CENEX drive cycle, (derived from actual London Taxi drive cycles) shows that the fuel cell powered vehicle configurations have lower energy consumption (4.34 MJ/km) and CO{sub 2} emissions (235 g/km) than both the ICE Diesel (9.54 MJ/km and 738 g/km) and the battery electric vehicle (5.81 MJ/km and 269 g/km). - Highlights: > A Life Cycle Analysis of alternative vehicle technologies for the London Taxi was performed. > The hydrogen powered vehicles have the lowest energy consumption and CO{sub 2} emissions results. > A hydrogen powered solution can be a sustainable alternative in a full life cycle framework.

  10. The Cycle Performance of a Hybrid Carbon Battery.

    Science.gov (United States)

    Ahn, Sang-Yong; Kim, Sang-Chai; Jung, Ho-Young

    2016-02-01

    The behavior of a hybrid carbon battery is studied by using the Hg/Hg2SO4 reference electrode. The performance is confirmed in the discharge mode and a short-term cycle test. The capacities of the cell were 76.1, 60.3, 40.5, and 31.7 mAh at discharge currents of 150, 300, 600, and 900 mA, respectively. In the short-term cycle test, the capacity of the cell, 52.3 mAh at the first cycle, continuously increased to 66.7 mAh upon the fifth cycle (cut-off voltage 0.5 V in the deep cycle mode), indicating high feasibility of the hybrid carbon battery as a large-capacity energy storage system.

  11. Performance Characteristics of Absorption Hybrid Cycle Introduced Compressor

    Science.gov (United States)

    Iyoki, Shigeki; Kotani, Yuji; Uemura, Tadashi

    In this paper, four kinds of absorption hybrid cycle which introduced the compressor in the absorption cycle were proposed. As basic cycle of absorption refrigerating machine, the following were chosen: two kinds of single-stage absorption refrigerating machine and two kinds of double effect absorption refrigerating machine. As a working medium-absorbent system, NH3-H2O system, C2H5NH2-H2O system and C2H5NH2-H2O-LiBr system were adopted. Using these three kinds of working medium-absorbent system, the performance characteristics of four kinds of absorption hybrid cycle were simulated. And the performance characteristics of these cycles were compared.

  12. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  13. A hybrid multi-effect distillation and adsorption cycle

    KAUST Repository

    Thu, Kyaw

    2013-04-01

    This paper describes the development of a simple hybrid desalination system of a Multi-Effect Distillation (MED) and an adsorption (AD) cycle operating at sub-atmospheric pressures and temperatures. By hybridizing the conventional MED with an AD cycle, there is a symbiotic enhancement of performances of both cycles. The performance enhancement is attributed to (i) the cascade of adsorbent\\'s regeneration temperature and this extended the usage of thermal energy emanating from the brine heater and (ii) the vapor extraction from the last MED stage by AD cycle which provides the effect of lowering saturation temperatures of all MED stages to the extent of 5°C, resulting in scavenging of heat leaks into the MED stages from the ambient. The combined effects of the hybrid cycles increase the water production capacity of the desalination plant by nearly twofolds.In this paper, we demonstrate a hybrid cycle by simulating an 8-stage MED cycle which is coupled to an adsorption cycle for direct vapor extraction from the last MED stage. The sorption properties of silica gel is utilized (acting as a mechanical vapor compressor) to reduce the saturation temperatures of MED stages. The modeling utilizes the adsorption isotherms and kinetics of the adsorbent. +. adsorbate (silica-gel. +. water) pair along with the governing equations of mass, energy and concentration. For a 8-stage MED and AD cycles operating at assorted temperatures of 65-90°C, the results show that the water production rate increases from 60% to twofolds when compared to the MED alone. The performance ratio (PR) and gain output ratio (GOR) also improve significantly. © 2012 Elsevier Ltd.

  14. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  15. A Robust Hybrid Zn-Battery with Ultralong Cycle Life.

    Science.gov (United States)

    Li, Bing; Quan, Junye; Loh, Adeline; Chai, Jianwei; Chen, Ye; Tan, Chaoliang; Ge, Xiaoming; Hor, T S Andy; Liu, Zhaolin; Zhang, Hua; Zong, Yun

    2017-01-11

    Advanced batteries with long cycle life and capable of harnessing more energies from multiple electrochemical reactions are both fundamentally interesting and practically attractive. Herein, we report a robust hybrid zinc-battery that makes use of transition-metal-based redox reaction (M-O-OH → M-O, M = Ni and Co) and oxygen reduction reaction (ORR) to deliver more electrochemical energies of comparably higher voltage with much longer cycle life. The hybrid battery was constructed using an integrated electrode of NiCo2O4 nanowire arrays grown on carbon-coated nickel foam, coupled with a zinc plate anode in alkaline electrolyte. Benefitted from the M-O/M-O-OH redox reactions and rich ORR active sites in NiCo2O4, the battery has concurrently exhibited high working voltage (by M-O-OH → M-O) and high energy density (by ORR). The good oxygen evolution reaction (OER) activity of the electrode and the reversible M-O ↔ M-O-OH reactions also enabled smooth recharging of the batteries, leading to excellent cycling stabilities. Impressively, the hybrid batteries maintained highly stable charge-discharge voltage profile under various testing conditions, for example, almost no change was observed over 5000 cycles at a current density of 5 mA cm(-2) after some initial stabilization. With merits of higher working voltage, high energy density, and ultralong cycle life, such hybrid batteries promise high potential for practical applications.

  16. Hybrid Combined Cycles with Biomass and Waste Fired Bottoming Cycle - a Literature Study

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Miroslav P.

    2002-02-01

    Biomass is one of the main natural resources in Sweden. The present low-CO{sub 2} emission characteristics of the Swedish electricity production system (hydro and nuclear) can be retained only by expansion of biofuel applications for energy purposes. Domestic Swedish biomass resources are vast and renewable, but not infinite. They must be utilized as efficiently as possible, in order to make sure that they meet the conditions for sustainability in the future. Application of efficient power generation cycles at low costs is essential for meeting this challenge. This applies also to municipal solid waste incineration with energy extraction, which should be preferred to its dumping in landfills. Hybrid dual-fuel combined cycle units are a simple and affordable way to increase the electric efficiency of biofuel energy utilization, without big investments, uncertainties or loss of reliability arising from complicated technologies. Configurations of such power cycles are very flexible and reliable. Their potential for high electric efficiency in condensing mode, high total efficiency in combined heat and power mode and unrivalled load flexibility is explored in this project. The present report is a literature study that concentrates on certain biomass utilization technologies, in particular the design and performance of hybrid combined cycle power units of various configurations, with gas turbines and internal combustion engines as topping cycles. An overview of published literature and general development trends on the relevant topic is presented. The study is extended to encompass a short overview of biomass utilization as an energy source (focusing on Sweden), history of combined cycles development with reference especially to combined cycles with supplementary firing and coal-fired hybrid combined cycles, repowering of old steam units into hybrid ones and combined cycles for internal combustion engines. The hybrid combined cycle concept for municipal solid waste

  17. Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle – Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    steam in a HRSG (heat recovery steam generator). The bottoming steam cycle was modeled with two configurations: (1) a simple single pressure level and (2) a dual pressure level with both a reheat and a pre-heater. The SOFC stacks in the present SOFC-ST hybrid cycles were not pressurized. The dual...

  18. An experimental investigation on MEDAD hybrid desalination cycle

    KAUST Repository

    Shahzad, Muhammad Wakil

    2015-04-02

    This paper presents an advanced desalination cycle called "MEDAD" desalination which is a hybrid of the conventional multi-effect distillation (MED) and an adsorption cycle (AD). The combined cycles allow some of MED stages to operate below ambient temperature, as low as 5. °C in contrast to the conventional MED. The MEDAD cycle results in a quantum increase of distillate production at the same top-brine condition. Being lower than the ambient temperature for the bottom stages of hybrid cycle, ambient energy can now be scavenged by the MED processes whilst the AD cycle is powered by low temperature waste heat from exhaust or renewable sources. In this paper, we present the experiments of a 3-stage MED and MEDAD plants. These plants have been tested at assorted heat source temperatures from 15. °C to 70. °C and with portable water as a feed. All system states are monitored including the distillate production and power consumption and the measured results are expressed in terms of performance ratio (PR). It is observed that the synergetic matching of MEDAD cycle led to a quantum increase in distillate production, up to 2.5 to 3 folds vis-a-vis to a conventional MED of the same rating. © 2015 Elsevier Ltd.

  19. Validation of a hybrid life-cycle inventory analysis method.

    Science.gov (United States)

    Crawford, Robert H

    2008-08-01

    The life-cycle inventory analysis step of a life-cycle assessment (LCA) may currently suffer from several limitations, mainly concerned with the use of incomplete and unreliable data sources and methods of assessment. Many past LCA studies have used traditional inventory analysis methods, namely process analysis and input-output analysis. More recently, hybrid inventory analysis methods have been developed, combining these two traditional methods in an attempt to minimise their limitations. In light of recent improvements, these hybrid methods need to be compared and validated, as these too have been considered to have several limitations. This paper evaluates a recently developed hybrid inventory analysis method which aims to improve the limitations of previous methods. It was found that the truncation associated with process analysis can be up to 87%, reflecting the considerable shortcomings in the quantity of process data currently available. Capital inputs were found to account for up to 22% of the total inputs to a particular product. These findings suggest that current best-practice methods are sufficiently accurate for most typical applications, but this is heavily dependent upon data quality and availability. The use of input-output data assists in improving the system boundary completeness of life-cycle inventories. However, the use of input-output analysis alone does not always provide an accurate model for replacing process data. Further improvements in the quantity of process data currently available are needed to increase the reliability of life-cycle inventories.

  20. Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O' Keefe, D.R.; Allen, C.L.

    1982-05-01

    The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

  1. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  2. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW....

  3. Regions of Attraction for Hybrid Limit Cycles of Walking Robots

    CERN Document Server

    Manchester, Ian R; Levashov, Michael; Tedrake, Russ

    2010-01-01

    This paper illustrates the application of recent research in region-of-attraction analysis for nonlinear hybrid limit cycles. Three example systems are analyzed in detail: the van der Pol oscillator, the "rimless wheel", and the "compass gait", the latter two being simplified models of underactuated walking robots. The method used involves decomposition of the dynamics about the target cycle into tangential and transverse components, and a search for a Lyapunov function in the transverse dynamics using sum-of-squares analysis (semidefinite programming). Each example illuminates different aspects of the procedure, including optimization of transversal surfaces, the handling of impact maps, optimization of the Lyapunov function, and orbitally-stabilizing control design.

  4. Frequency Scale Factors for Some Double-Hybrid Density Functional Theory Procedures: Accurate Thermochemical Components for High-Level Composite Protocols.

    Science.gov (United States)

    Chan, Bun; Radom, Leo

    2016-08-09

    In the present study, we have obtained geometries and frequency scale factors for a number of double-hybrid density functional theory (DH-DFT) procedures. We have evaluated their performance for obtaining thermochemical quantities [zero-point vibrational energies (ZPVE) and thermal corrections for 298 K enthalpies (ΔH298) and 298 K entropies (S298)] to be used within high-level composite protocols (using the W2X procedure as a probe). We find that, in comparison with the previously prescribed protocol for optimization and frequency calculations (B3-LYP/cc-pVTZ+d), the use of contemporary DH-DFT methods such as DuT-D3 and DSD-type procedures leads to a slight overall improved performance compared with B3-LYP. A major strength of this approach, however, lies in the better robustness of the DH-DFT methods in that the largest deviations are notably smaller than those for B3-LYP. In general, the specific choices of the DH-DFT procedure and the associated basis set do not drastically change the performance. Nonetheless, we find that the DSD-PBE-P86/aug'-cc-pVTZ+d combination has a very slight edge over the others that we have examined, and we recommend its general use for geometry optimization and vibrational frequency calculations, in particular within high-level composite methods such as the higher-level members of the WnX series of protocols. The scale factors determined for DSD-PBE-P86/aug'-cc-pVTZ+d are 0.9830 (ZPVE), 0.9876 (ΔH298), and 0.9923 (S298).

  5. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    Science.gov (United States)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the

  6. Experimental investigation of the ecological hybrid refrigeration cycle

    Science.gov (United States)

    Cyklis, Piotr; Kantor, Ryszard; Ryncarz, Tomasz; Górski, Bogusław; Duda, Roman

    2014-09-01

    The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  7. Experimental investigation of the ecological hybrid refrigeration cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2014-09-01

    Full Text Available The requirements for environmentally friendly refrigerants promote application of CO2 and water as working fluids. However there are two problems related to that, namely high temperature limit for CO2 in condenser due to the low critical temperature, and low temperature limit for water being the result of high triple point temperature. This can be avoided by application of the hybrid adsorption-compression system, where water is the working fluid in the adsorption high temperature cycle used to cool down the CO2 compression cycle condenser. The adsorption process is powered with a low temperature renewable heat source as solar collectors or other waste heat source. The refrigeration system integrating adsorption and compression system has been designed and constructed in the Laboratory of Thermodynamics and Thermal Machine Measurements of Cracow University of Technology. The heat source for adsorption system consists of 16 tube tulbular collectors. The CO2 compression low temperature cycle is based on two parallel compressors with frequency inverter. Energy efficiency and TEWI of this hybrid system is quite promising in comparison with the compression only systems.

  8. 新型双重热化学吸附制冷热力循环研究%Study on an Innovative Combined Double-Way Thermochemical Sorption Refrigeration Cycle

    Institute of Scientific and Technical Information of China (English)

    李廷贤; 王如竹; 陈恒; 王丽伟

    2011-01-01

    本文提出了一种全新的基于吸附-再吸附技术的双重热化学吸附制冷热力循环.实验研究表明该新型双重热化学吸附制冷热力循环用于制冷空调领域是完全可行的,在每次循环过程中仅从外界热源输入一次高温解吸热,就可以实现吸附制冷和再吸附制冷两次制冷过程;相对传统热化学再吸附制冷循环和吸附制冷循环,双重热化学吸附制冷热力循环可显著提高吸附制冷系统的工作性能,在相同制冷剂循环量下,双重热化学吸附制冷循环可将制冷系数COPi分别提高60%和167%.%In this paper, an innovative combined double-way thermochemical sorption refrigeration cycle based on adsorption and resorption processes is proposed. Experimental results showed that the presented combined double-way sorption cycle is feasible for refrigeration application, and two cold productions (adsorption refrigeration and resorption refrigeration) can be obtained during one cycle at the expense of only one heat input from an external heat source. In comparison with conventional thermochemical resorption cycle or adsorption cycle, the double-way sorption cycle has a distinct advantage of higher Coefficient of Performance (COP). At the same cycled mass of refrigerant, the ideal COP can be improved by 60% and 167% when compared with conventional resorption cycle and adsorption cycle, respectively.

  9. A thermochemical energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Toyeguti, K.; Indzima, T.

    1982-08-09

    Mercury is used as the active mass of the anode in the converter and 0/sub 2/ is used as the active cathode material. The reaction of Mercury + 1/2 0/sub 2/-Hg0 occurs with a discharge. With heating to 500/sup 0/C the regeneration of the Mercury, Hg0 yields Mercury + 1/2 0/sub 2/, occurs. The device for performing the thermochenical conversion of energy contains an element body, an oxygen chamber, an oxygen electrode, a chamber with an alkaline liquid electrolyte, a separator, an auxiliary separator, an electrode and a chamber with the Mercury. The thermochemical reaction occurs in the reactor to which the Hg0 is transported along a pipe which has a refrigerator and a valve. The Mercury is fed into the element from a reservoir. The Mercury reduced in the reactor and in a reaction tower is fed into it through a closed cycle. The bellows is connected with the reactor by a pipe with a refrigerator. Through it the 0/sub 2/ goes in a closed cycle to the chamber. The current forming reactions are Hg + 20H-anion yields Hg0 + H/sub 2/0 + 2e and 1/2 0/sub 2/ + H/sub 2/0 + 2e yields 20H-anion. The voltage on the outleads of the element is approximately 0.3 volts.

  10. Performance Analysis of Hybrid Electric Vehicle over Different Driving Cycles

    Science.gov (United States)

    Panday, Aishwarya; Bansal, Hari Om

    2017-02-01

    Article aims to find the nature and response of a hybrid vehicle on various standard driving cycles. Road profile parameters play an important role in determining the fuel efficiency. Typical parameters of road profile can be reduced to a useful smaller set using principal component analysis and independent component analysis. Resultant data set obtained after size reduction may result in more appropriate and important parameter cluster. With reduced parameter set fuel economies over various driving cycles, are ranked using TOPSIS and VIKOR multi-criteria decision making methods. The ranking trend is then compared with the fuel economies achieved after driving the vehicle over respective roads. Control strategy responsible for power split is optimized using genetic algorithm. 1RC battery model and modified SOC estimation method are considered for the simulation and improved results compared with the default are obtained.

  11. Efficiency calculations and optimization analysis of a solar reactor for the high temperature step of the zinc/zinc-oxide thermochemical redox cycle

    Energy Technology Data Exchange (ETDEWEB)

    Haussener, S.

    2007-03-15

    A solar reactor for the first step of the zinc/zinc-oxide thermochemical redox cycle is analysed and dimensioned in terms of maximization of efficiency and reaction conversion. Zinc-oxide particles carried in an inert carrier gas, in our case argon, enter the reactor in absorber tubes and are heated by concentrated solar radiation mainly due to radiative heat transfer. The particles dissociate and, in case of complete conversion, a gas mixture of argon, zinc and oxygen leaves the reactor. The aim of this study is to find an optimal design of the reactor regarding efficiency, materials and economics. The number of absorber tubes and their dimensions, the cavity dimension and its material as well as the operating conditions should be determined. Therefore 2D and 3D simulations of an 8 kW reactor are implemented. The gases are modeled as ideal gases with temperature-dependent properties. Absorption and scattering of the particle gas mixture are calculated by Mie-theory. Radiative heat transfer is included in the simulation and implemented with the aid of the discrete ordinates (DO) method. The mixture is modeled as ideal mixture and the reaction with an Arrhenius-type ansatz. Temperature distribution, reaction efficiency (heat used for zinc-oxide reaction divided by input) and tube efficiency (heat going into absorber tubes divided by input) as well as reaction conversion are analyzed to find the most promising reactor design. The results show that the most significant factors for efficiencies, conversion and absorber fluid temperature are concentration of the solar incoming radiation, zinc-oxide mass flow, the number of tubes and their dimension. Higher concentration leads to solely positive effects. Zinc-oxide mass flow variations indicate the existence of an optimal flow rate for each reactor design which maximizes efficiencies and conversion. Higher zinc-oxide mass flow leads, on one hand, to higher tube efficiency but on the other hand to lower temperatures in

  12. ANALYS OF EXPERIMENTAL HYBRID CAR TESTING RESULTS ON URBAN DRIVING CYCLE

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2014-02-01

    Full Text Available The experimental hybrid car testing results are presented. The estimation of hybrid car draft-speed characteristics, energy and ecological indicators on urban driving cycle are given.

  13. Thermochemical Process Development Unit

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used to demonstrate and evaluate the thermochemical conversion of biomass to produce syngas or pyrolysis oil that can be further converted to fuels...

  14. Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Barry; McGovern, Jim [Department of Mechanical Engineering, Dublin Institute of Technology, Dublin (Ireland)

    2010-02-15

    The aim of this study was to investigate the feasibility of utilising a Stirling cycle engine as an exhaust gas waste heat recovery device for an Otto cycle internal combustion engine (ICE) in the context of an automotive power plant. The hybrid arrangement would produce increased brake power output for a given fuel consumption rate when compared to an ICE alone. The study was dealt with from an energy system perspective with design practicalities such as power train integration, location of auxiliaries, manufacture costs and other general plant design considerations neglected. The study necessitated work in two distinct areas: experimental assessment of the performance characteristics of an existing automotive Otto cycle ICE and mathematical modelling of the Stirling cycle engine based on the output parameters of the ICE. It was subsequently found to be feasible in principle to generate approximately further 30% useful power in addition to that created by the ICE by using a Stirling cycle engine to capture waste heat expelled from the ICE exhaust gases over the complete range of engine operating speeds. (author)

  15. A Systemic Approach Integrating Driving Cycles for the Design of Hybrid Locomotives

    OpenAIRE

    Jaafar, Amine; Sareni, Bruno; Roboam, Xavier

    2013-01-01

    International audience; Driving cycles are essential in hybrid locomotive design by conditioning their size and performance. This paper introduces a new systemic approach to hybrid locomotive design, taking real-world driving cycles into account. The proposed approach first exploits clustering analysis with the aim of identifying classes corresponding to particular sets of driving cycles. Then, a synthesis process of a reduced and representative profile from each class of driving cycles is pr...

  16. A hybrid model of mammalian cell cycle regulation.

    Directory of Open Access Journals (Sweden)

    Rajat Singhania

    Full Text Available The timing of DNA synthesis, mitosis and cell division is regulated by a complex network of biochemical reactions that control the activities of a family of cyclin-dependent kinases. The temporal dynamics of this reaction network is typically modeled by nonlinear differential equations describing the rates of the component reactions. This approach provides exquisite details about molecular regulatory processes but is hampered by the need to estimate realistic values for the many kinetic constants that determine the reaction rates. It is difficult to estimate these kinetic constants from available experimental data. To avoid this problem, modelers often resort to 'qualitative' modeling strategies, such as Boolean switching networks, but these models describe only the coarsest features of cell cycle regulation. In this paper we describe a hybrid approach that combines the best features of continuous differential equations and discrete Boolean networks. Cyclin abundances are tracked by piecewise linear differential equations for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcription factors whose activities are represented by discrete variables (0 or 1 and likewise for the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degradation. The discrete variables change according to a predetermined sequence, with the times between transitions determined in part by cyclin accumulation and degradation and as well by exponentially distributed random variables. The model is evaluated in terms of flow cytometry measurements of cyclin proteins in asynchronous populations of human cell lines. The few kinetic constants in the model are easily estimated from the experimental data. Using this hybrid approach, modelers can quickly create quantitatively accurate, computational models of protein regulatory networks in cells.

  17. Solar Thermochemical Hydrogen Production Plant Design

    OpenAIRE

    Littlefield, Jesse

    2012-01-01

    A plant was designed that uses a solar sulfur-ammonia thermochemical water-splitting cycle for the production of hydrogen. Hydrogen is useful as a fuel for stationary and mobile fuel cells. The chemical process simulator Aspen Plus® was used to model the plant and conduct simulations. The process utilizes the electrolytic oxidation of aqueous ammonium sulfite in the hydrogen production half cycle and the thermal decomposition of molten potassium pyrosulfate and gaseous sulfur trioxide in t...

  18. LASL thermochemical hydrogen status on September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.

    1979-01-01

    The work described in this report was accomplished during the period October 1, 1978 to September 30, 1979. Most of the effort was applied to a study of the Los Alamos Scientific Laboratory (LASL) hybrid bismuth sulfate cycle. The work included a conceptual design of the cycle and experimental work to verify the design conditions. Key findings were: a 50.8% efficiency was obtained when an improved cycle design was coupled to a fusion energy source at 1500 K; experimental results showed an endothermic heat requirement of +172 kJ/mol for the decomposition of Bi/sub 2/O/sub 3/.2SO/sub 3/ to Bi/sub 2/O/sub 3/.SO/sub 3/, and SO/sub 3/; reaction times for bismuth sulfate decomposition were determined as a function of temperature. At 1240 K, < 1.5 min were required for the first two stages of decomposition from Bi/sub 2/O/sub 3/.3SO/sub 3/ to Bi/sub 2/O/sub 3/; tests made to determine the feasibility of decomposing Bi/sub 2/O/sub 3/.2SO/sub 3/ in a 1 inch diameter rotary kiln showed that Bi/sub 2/O/sub 3/.2SO/sub 3/ could be decomposed continuously. In related work, support was given to the DOE Thermochemical Cycle Evaluation Panel (Funk). The Second Annual International Energy Agency (IEA) Workshop on Thermochemical Hydrogen Production from Water met on September 24 to 27, 1979 at Los Alamos.

  19. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  20. Fundamental study of novel mid-and low-temperature solar thermochemical energy conversion

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons.The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level.The new mechanism was used to integrate two novel solar thermal power systems:A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion,for developing highly efficient solar energy use to generate electricity.An innovative prototype of a 5-kW solar receiver/reactor,as the key process for realizing the proposed system,was designed and manu-factured.Furthermore,experimental validation of energy conversion of the mid-and low-temperature solar thermochemical processes were conducted.In addition,a second practical and viable approach to the production of hydrogen,in combination with the novel mid-and low-temperature solar thermo-chemical process,was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming.The results obtained here indicate that the development of mid-and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy,and may enable step-wise approaches to cost-effective,globally scalable solar energy systems.

  1. Fundamental study of novel mid- and low-temperature solar thermochemical energy conversion

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; HONG Hui; SUI Jun; LIU QiBin

    2009-01-01

    A new approach to application of mid- and low-temperature solar thermochemical technology was in-troduced and investigated. Concentrated solar thermal energy in the range of 150--300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons. The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level. The new mechanism was used to integrate two novel solar thermal power systems: A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion, for developing highly efficient solar energy use to generate electricity. An innovative prototype of a 5-kW solar receiver/reactor, as the key process for realizing the proposed system, was designed and manu-factured. Furthermore, experimental validation of energy conversion of the mid- and low-temperature solar thermochemical processes were conducted. In addition, a second practical and viable approach to the production of hydrogen, in combination with the novel mid- and low-temperature solar thermo-chemical process, was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming. The results obtained here indicate that the development of mid- and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy, and may enable step-wise approaches to cost-effective, globally scalable solar energy systems.

  2. An essential cell cycle regulation gene causes hybrid inviability in Drosophila.

    Science.gov (United States)

    Phadnis, Nitin; Baker, EmilyClare P; Cooper, Jacob C; Frizzell, Kimberly A; Hsieh, Emily; de la Cruz, Aida Flor A; Shendure, Jay; Kitzman, Jacob O; Malik, Harmit S

    2015-12-18

    Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle-regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.

  3. Hybrid ODE/SSA methods and the cell cycle model

    Science.gov (United States)

    Wang, S.; Chen, M.; Cao, Y.

    2017-07-01

    Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.

  4. Process design and simulation of open-loop sulfur-iodine thermo-chemical cycle for hydrogen production%热化学硫碘开路循环制氢系统的设计与模拟

    Institute of Scientific and Technical Information of China (English)

    杨剑; 王智化; 张彦威; 陈云; 周俊虎; 岑可法

    2011-01-01

    In order to optimize the process and thermal efficiency of the open-loop sulfur-iodine (SI) thermo-chemical cycle for production of hydrogen, a flowsheet of open-loop SI thermo-chemical cycle was designed and simulated by Aspen Plus. The heat and mass balance as well as thermal efficiency were first calculated. The maximum thermal efficiency of the process was 66.2% considering waste heat recoveryand pumping power. Secondly, through sensitivity analysis, the effects of 5 operating parameters like: reflux ratio at HI distillation column, pressure in HI distillation column, flow rate of HI phase, conversion ratio of HI and mass fraction of H2 SO4 were evaluated to the thermal efficiency. Results show that the flow rate of HI phase and reflux ratio of the HI distillation column are the primary paramenters influence the total efficiency, while the other parameters are not so obviously. Through optimization of the Bunsen reactor operation condition, the flow rate of the HI phase can be reduced therefore improve the whole thermal efficiency. The simulation results agree well with published datas and can be used as reference for design and optimization of the large scale SI thermo-chemical cycle H2 production system.%为了对热化学硫碘开路循环制氢系统进行优化设计及热效率评估,利用大型化工流程模拟软件AspenPlus对硫碘开路循环联产氢气和硫酸系统进行设计和模拟,计算质量、能量平衡及热效率.在考虑泵功和废热回收的情况下,开路系统的最高计算热效率达到66.2%.其次,利用灵敏度分析,分别考察HI精馏塔同流比、精馏塔压力、HI相循环量、HI分解率和产品硫酸质量分数5个设计参数对系统效率的影响.结果显示,HI相循环量和精馏塔同流比是影响系统效率的主要因素,其他参数对效率影响较小.通过优化本生反应操作条件可显著减少HI相的循环量,提高系统效率.计算结果与文献参考值接近,为今后大

  5. Thermochemical reactor systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  6. Thermochemical reactor systems and methods

    Science.gov (United States)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  7. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  8. Research Progress and Technical Analysis of High Temperature Solar Thermochemical CO2-splitting Cycle%太阳热化学循环反应分解CO2的研究进展与技术分析

    Institute of Scientific and Technical Information of China (English)

    陈伟; 张军

    2012-01-01

    在全球气候变化已成为国际性热点问题的大背景下,通过将CO2转化成高附加值的燃料,实现CO2的资源化利用是解决这一问题的可行途径之一,而将这一过程与太阳能利用相结合有助于解决因CO2化学惰性较强,其转化在热力学上不利带来能耗较高的挑战.在多种利用太阳能将CO2转化为能源载体的方法中,利用高温太阳热能进行两步热化学循环反应分解CO2以制取合成燃料是一个新兴研究方向.本文详细介绍了国外科研机构在这方面的发展现状及研究重点,并对该技术的原理和未来需要开展的基础研究工作进行了分析.未来的研究重点将集中在:(1)开展多相化学反应流辐射热传递的理论和试验基础研究;(2)设计直接受辐射的太阳能化学反应器,可直接吸收聚焦的太阳热能,辐射热传递效率较高;(3)开展高温太阳能化学反应器的材料研究.国内具有一定太阳能高温热(化学)利用工作基础的研究机构有必要开展这一领域的研究工作,为中国实现碳减排做出贡献.%In the context of the global climate change, as an international hot issue, the CO; utiliiation through its conversion into high value-added fuels is one of the possible ways to solve this problem. C02 is chemically inerl and it is difficult to convert it into other molecules thermodynamically, and these problems can be solved through the use of the solar energy. Among various approaches on converting CO2 into an energy carrier by the solar energy, a promising new method is developed for the production of the synthetic fuel from solar-driven two-step CO2-splitting thermo-chemieal cycles. In this paper, first review the research progress and research priorities in this field- We also analyzethe technical principle and the basic studies thai are required in the future. The furure research should focus on: (1) (he fundamental analysis of the radiation heat exchange coupled with the

  9. Research on Fuel Consumption of Hybrid Bulldozer under Typical Duty Cycle

    Science.gov (United States)

    Song, Qiang; Wang, Wen-Jun; Jia, Chao; Yao, You-Liang; Wang, Sheng-Bo

    The hybrid drive bulldozer adopts a dual-motor independent drive system with engine-generator assembly as its power source. The mathematical model of the whole system is constructed on the software platform of MATLAB/Simulink. And then according to the velocity data gained from a real test experiment, a typical duty cycle is build up. Finally the fuel consumption of the bulldozer is calculated under this duty-cycle. Simulation results show that, compared with the traditional mechanical one, the hybrid electric drive system can save fuel up to 16% and therefore indicates great potential for lifting up fuel economy.

  10. Preliminary Study of the Supercritical CO{sub 2} Hybrid Cycle for the HTGR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Seong Jun; Ahn, Yoonhan; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    This study was conducted to explore the potential of Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton cycle for the HTGR application. The S-CO{sub 2} cycle is being considered as a PCS due to its high thermal efficiency, simplicity, compactness and so on. Generally, the S-CO{sub 2} Brayton cycle is characterized as a highly recuperated cycle which means that to achieve high thermal efficiency, the cycle requires a highly effective recuperator. Argonne National Laboratory (ANL) showed that direct application of the standard S-CO{sub 2} recompressing Brayton cycle to the HTGR or the Very High Temperature Reactor (VHTR) is difficult to achieve high thermal efficiency due to the mismatch of the temperature difference between the temperature drop of helium as the primary reactor coolant and the temperature rise of CO{sub 2} as the PCS coolant through an Intermediate Heat Exchanger (IHX). Therefore, our research team suggests a novel S-CO{sub 2} cycle configuration, the S-CO{sub 2} Brayton and Rankine hybrid cycle, to solve this limitation. This S-CO{sub 2} hybrid concept is utilizing the waste heat of the S-CO{sub 2} Brayton cycle as heat input to the S-CO{sub 2} Rankine cycle. Dividing the thermal capacity of the heat source in to the Brayton cycle part and Rankine cycle part of the S-CO{sub 2} hybrid cycle appropriately, the temperature difference at the IHX could be reduced, therefore the net system performance and operating range can be improved. In this study, the ANL research is reviewed by the in-house cycle analysis codes developed by the Korea Advanced Institute of Science and Technology (KAIST) research team. And the S-CO{sub 2} Brayton and Rankine hybrid cycle is studied as a PCS for the VHTR condition which was utilized by ANL research team; it was assumed that the core outlet temperature to be 850 .deg. C and the core inlet temperature of 400 .deg. C.

  11. DESIGN OF HYBRID POWER GENERATION CYCLES EMPLOYING AMMONIA-WATER-CARBON DIOXIDE MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Ashish Gupta

    2002-06-01

    A power cycle generates electricity from the heat of combustion of fossil fuels. Its efficiency is governed by the cycle configuration, the operating parameters, and the working fluid. Typical. designs use pure water as the fluid. in the last two decades, hybrid cycles based on ammonia-water, and carbon-dioxide mixtures as the working fluid have been proposed. These cycles may improve the power generation efficiency of Rankine cycles by 15%. Improved efficiency is important for two reasons: it lowers the cost of electricity being produced, and by reducing the consumption of fossil fuels per unit power, it reduces the generation of environmental pollutants. The goal of this project is to develop a computational optimization-based method for the design and analysis of hybrid bottoming power cycles to minimize the usage of fossil fuels. The development of this methodology has been achieved by formulating this task as that of selecting the least cost power cycle design from all possible configurations. They employ a detailed thermodynamic property prediction package they have developed under a DOE-FETC grant to model working fluid mixtures. Preliminary results from this work suggest that a pure NH{sub 3} cycle outperforms steam or the expensive Kalina cycle.

  12. Performance Characteristics of Hybrid Cycle Combined Absorption Heat Transformer and Absorption Refrigerating Machine

    Science.gov (United States)

    Iyoki, Shigeki; Otsuka, Shin-Ichi; Uemura, Tadashi

    In this paper, four kinds of hybrid cycles which combined the single-stage absorption refrigerating machine and four kinds of absorption heat transformers were proposed. It is possible that each of these hybrid cycles gets high temperature and low temperature from one cycle, simultaneously. As basic cycle of absorption heat transformer, the following were chosen: two kinds of single-stage absorption heat transformer and two kinds of two-stage absorption heat transformer. As a working medium-absorbent system, H2O-LiBr system, H2O-LiBr-LiNO3 system, H2O-LiBr-LiNO3-LiCl system, H2O-LiBr-C2H6O2 system and H2O-LiNO3-LiCl system were adopted. Using these five kinds of working medium-absorbent system, the performance characteristics of four kinds of hybrid cycle were simulated. And the performance characteristics of these cycles were compared.

  13. Screening analysis of solar thermochemical hydrogen concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  14. High-efficient thermochemical sorption refrigeration driven by low-grade thermal energy

    Institute of Scientific and Technical Information of China (English)

    LI TingXian; WANG RuZhu; WANG LiWei

    2009-01-01

    Thermochemical sorption refrigeration powered by low-grade thermal energy is one of the en ergy-saving and environment friendly green refrigeration technologies. The operation principle of sorption refrigeration system is based on the thermal effects of reversible physicochemical reaction processes between sorbents and refrigerants. This paper presents the developing study on the differ ent thermochemical sorption refrigeration cycles, and some representative high-efficient thermo chemical sorption refrigeration cycles were evaluated and analyzed based on the conventional single-effect sorption cycle. These advanced sorption refrigeration cycles mainly include the heat and mass recovery sorption cycle, double-effect sorption cycle, multi-effect sorption cycle, combined douhie-way sorption cycle, and double-effect and double-way sorption cycle with internal heat recovery.Moreover, the developing tendency of the thermochemical sorption refrigeration is also predicted in this paper.

  15. Extension of a reactive distillation process design methodology: application to the hydrogen production through the Iodine-Sulfur thermochemical cycle; Generalisation d'une approche de conception de procedes de distillation reactive: application a la production d'hydrogene par le cycle thermochimique I-S

    Energy Technology Data Exchange (ETDEWEB)

    Belaissaoui, B

    2006-02-15

    Reactive distillation is a promising way to improve classical processes. This interest has been comforted by numerous successful applications involving reactive systems in liquid phase but never in vapour phase. In this context, general design tools have been developed for the analysis of reactive distillation processes whatever the reactive phase. A general model for open condensation and evaporation of vapour or liquid reactive systems in chemical equilibrium has been written and applied to extend the feasibility analysis, synthesis and design methods of the sequential design methodology of R. Thery (2002). The extended design methodology is applied to the industrial production of hydrogen through the iodine-sulphur thermochemical cycle by vapour phase reactive distillation. A column configuration is proposed with better performance formerly published configuration. (author)

  16. Energy Management Strategy Based on the Driving Cycle Model for Plugin Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2014-01-01

    Full Text Available The energy management strategy (EMS for a plugin hybrid electric vehicle (PHEV is proposed based on the driving cycle model and dynamic programming (DP algorithm. A driving cycle model is constructed by collecting and processing the driving data of a certain school bus. The state of charge (SOC profile can be obtained by the DP algorithm for the whole driving cycle. In order to optimize the energy management strategy in the hybrid power system, the optimal motor torque control sequence can be calculated using the DP algorithm for the segments between the traffic intersections. Compared with the traditional charge depleting-charge sustaining (CDCS strategy, the test results on the ADVISOR platform show a significant improvement in fuel consumption using the EMS proposed in this paper.

  17. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  18. Using hybrid modeling for life cycle assessment of motor bike and electric bike

    Institute of Scientific and Technical Information of China (English)

    DAI Du; LENG Ru-bo; ZHANG Cheng; WANG Cheng-tao

    2005-01-01

    Life-cycle assessment (LCA) is environmental evaluation of products, materials, and processes over their life cycle. Truncation uncertainty and corresponding uncertainty are main problems occurred in process life cycle assessment (PLCA) modeling and economic input-output life cycle assessment (EIOLCA) modeling. Through combination of these two modelings in different life cycle stage and use of an uncertainty reduction strategy, a hybrid life cycle assessment modeling method was proposed in this study. Case studies were presented on gasoline-powered motorbikes (M-bike) and electricity-powered electric bike (E-bike). Web-based software was developed to analyze process environmental impacts. Results show that the largest part of life cycle energy (LCE) is consumed at use stage. Less energy is consumed in life cycle of E-bike than that of M-bike. GWP (Global Warming Potential), CO (Carbon Monoxide), PM10 (particulate matter) emission of M-bike are higher than that of E-bike, especially at use stage, AP (acidification Potential) emission of E-bike is higher than that of M-bike. Comprehensively, E-bike is energy efficient and less emitting, and better choice for urban private transportation.

  19. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system.

    Science.gov (United States)

    Adesanya, Victoria O; Cadena, Erasmo; Scott, Stuart A; Smith, Alison G

    2014-07-01

    A life cycle assessment (LCA) was performed on a putative biodiesel production plant in which the freshwater alga Chlorella vulgaris, was grown using an existing system similar to a published commercial-scale hybrid cultivation. The hybrid system couples airlift tubular photobioreactors with raceway ponds in a two-stage process for high biomass growth and lipid accumulation. The results show that microalgal biodiesel production would have a significantly lower environmental impact than fossil-derived diesel. Based on the functional unit of 1 ton of biodiesel produced, the hybrid cultivation system and hypothetical downstream process (base case) would have 42% and 38% savings in global warming potential (GWP) and fossil-energy requirements (FER) when compared to fossil-derived diesel, respectively. Sensitivity analysis was performed to identify the most influential process parameters on the LCA results. The maximum reduction in GWP and FER was observed under mixotrophic growth conditions with savings of 76% and 75% when compared to conventional diesel, respectively.

  20. Investigations on the reduction of methanol for the development of the hydrocarbon hybrid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Biallas, B.; Weirich, W.; Kuegler, B.; Oertel, M.; Pietsch, M.; Winkelmann, U.

    1985-01-01

    The hydrocarbon hybrid cycle requires a step to reduce methyl alcohol. A sequence of reactions was investigated using iodine to reduce the cell voltage and formation of CH/sub 3/I as an intermediate compound. Electrolytic experiments show that a cell voltage of 1 V at 1 kA m/sup -2/ can be obtained. Methane results from the gas-phase reactions of CH/sub 3/I and H/sub 2/O. A mass flow balance was set up to generate a closed cycle, considering operating conditions which are suitable for steam reformer and a methanol synthesis reactor.

  1. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  2. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  3. 碘硫循环制氢中HI浓缩分离工艺的研究进展%Progress of HI concentration/separation in the iodine-sulfur thermochemical cycle for hydrogen production

    Institute of Scientific and Technical Information of China (English)

    王兆龙; 陈崧哲; 王少敏; 张平; 王来军; 徐景明

    2013-01-01

    综述了碘硫循环制氢中用于HI浓缩分离的3种主要技术路线,即磷酸萃取精馏、反应精馏以及电解电渗析预浓缩-精馏的研究进展,对各路线的过程原理、操作流程、能量利用效率等方面进行了讨论,在此基础上对比了其各自的优点和不足之处,并对其应用前景进行了展望。其中,磷酸萃取精馏开发最早,相对成熟,但操作流程复杂,运行效率需进一步提升;反应精馏流程有望以高集成度取得高效率,但所需条件非常苛刻,其设备开发、工艺实验等工作亟待展开;近年来发展较快的电解电渗析预浓缩-精馏工艺由于具有操作简单,条件温和,浓缩效率高等优点而具有较好的应用前景,其进一步工艺放大、模块化以及与精馏的高效协同等都是未来研究的重点和难点。%This paper reviewed the methods of phosphoric acid extractive distillation , reactive distillation and electro-electrodialysis pre-concentration for HI concentration and separation in iodine-sulfur thermochemical cycle. The mechanisms,energy efficiency,advantages,and prospects of these methods were discussed. Phosphoric acid extractive distillation was developed earlier than the other methods,however,its complicated operational conditions prevented the improvement of energy efficiency of this method. The high integrity level of reactive distillation could improve thermal efficiency dramatically,but experimental research concerning the practical application is very limited due to its rigorous operational conditions. Electro-electrodialysis for HI pre-concentration is a promising method because of its easy operation,mild conditions and high efficiency. Future research on this method should be focused on scale-up,modularization and the efficient cooperation with HI distillation.

  4. Corrosion Environments and Corrosion-resistant Materials for Iodine-sulfur Thermochemical Cycle%热化学碘硫循环的腐蚀环境与耐蚀材料

    Institute of Scientific and Technical Information of China (English)

    赵增华; 张平; 陈崧哲; 王来军; 徐景明

    2013-01-01

    利用核能经热化学碘硫循环制氢被认为是最有希望大规模应用的核能制氢技术.碘硫循环工艺简单、效率高,但由于反应体系为强腐蚀过程,设备材料的腐蚀问题是碘硫循环发展的一个难题.总结了碘硫循环中涉及的Bunsen反应、硫酸分解和氢碘酸分解部分的腐蚀环境;综述了金属材料、无机陶瓷材料和高分子材料在碘硫循环腐蚀环境中的耐腐蚀性能及可能的应用;并讨论了防腐蚀衬里技术应用的可能性;比较了陶瓷材料在硫酸分解设备中的应用.这些工作可为碘硫循环工程材料的选择与研发提供依据和理论参考.%The iodine-sulfur (IS) thermochemical cycle is one of the most promising,efficient,massive and CO2-free approaches for nuclear hydrogen production.One of the crucial issues for IS process is the corrosion-resistant performance of the construction materials since the strong corrosive environments are involved.The corrosion environments of Bunsen reaction,sulfuric acid decomposition and hydriodic acid decomposition reaction are discussed.The corrosion-resistant performance of the construction materials such as metals,ceramics and organic polymers used in IS process is reviewed.The potential of the anti-corrosion lining techniques in the process is discussed.The application of ceramic and polymer materials to sulfuric acid decomposition equipment manufacturers is compared.The results may offer basis and theoretical reference for the selection and development of corrosion-resistant materials for IS process.

  5. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  6. The control system of the ecological hybrid two stages refrigerating cycle

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The compression anticlockwise cycle is mostly used for refrigeration. However due to the environmental regulations, the use of classic refrigerants: F-gases is limited by international agreements. Therefore the combined compression-adsorption hybrid cycle with natural liquids: water/carbon dioxide working as the energy carriers is a promising solution. This allows to utilize the solar or waste energy for the refrigeration purpose. In this paper application of the solar collectors as the energy source for the adsorption cycle, coupled with the low temperature (LT refrigerating carbon dioxide compression cycle is shown. The control of the system is an essential issue to reduce the electric power consumption. The control of the solar heat supply and water sprayed cooling tower, for the adsorption cycle re-cooling, is presented in this paper. The designed control system and algorithm is related to the LT compression cycle, which operates according to the need of cold for the refrigeration chamber. The results of the laboratory investigations of the full system, showing the reduction of the energy consumption and maximum utilization of the solar heat for different control methods are presented.

  7. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    Science.gov (United States)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  8. A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories.

    Science.gov (United States)

    Ramaswami, Anu; Hillman, Tim; Janson, Bruce; Reiner, Mark; Thomas, Gregg

    2008-09-01

    Greenhouse gas (GHG) accounting for individual cities is confounded by spatial scale and boundary effects that impact the allocation of regional material and energy flows. This paper develops a demand-centered, hybrid life-cycle-based methodology for conducting city-scale GHG inventories that incorporates (1) spatial allocation of surface and airline travel across colocated cities in larger metropolitan regions, and, (2) life-cycle assessment (LCA) to quantify the embodied energy of key urban materials--food, water, fuel, and concrete. The hybrid methodology enables cities to separately report the GHG impact associated with direct end-use of energy by cities (consistent with EPA and IPCC methods), as well as the impact of extra-boundary activities such as air travel and production of key urban materials (consistent with Scope 3 protocols recommended by the World Resources Institute). Application of this hybrid methodology to Denver, Colorado, yielded a more holistic GHG inventory that approaches a GHG footprint computation, with consistency of inclusions across spatial scale as well as convergence of city-scale per capita GHG emissions (approximately 25 mt CO2e/person/year) with state and national data. The method is shown to have significant policy impacts, and also demonstrates the utility of benchmarks in understanding energy use in various city sectors.

  9. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    Science.gov (United States)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  10. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    Science.gov (United States)

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  11. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    Science.gov (United States)

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A hybrid model of the CO2 geochemical cycle and its application to large impact events

    Science.gov (United States)

    Kasting, J. F.; Pollack, J. B.; Toon, O. B.; Richardson, S. M.

    1986-01-01

    The effects of a large asteriod or comet impact on modern and ancient marine biospheres are analyzed. A hybrid model of the carbonate-silicate geochemical cycle, which is capable of calculating the concentrations of carbon dioxide in the atmosphere, ocean, and sedimentary rocks, is described. The differences between the Keir and Berger (1983) model and the hybrid model are discussed. Equilibrium solutions are derived for the preindustrial atmosphere/ocean system and for a system similar to that of the late Cretaceous Period. The model data reveal that globl darkening caused by a stratospheric dust veil could destroy the existing phytoplankton within a period of several weeks or months, nd the dissolution of atmospheric NO(x) compounds would lower the pH of ocean surface waters and release CO2 into the atmosphere. It is noted that the surface temperatures could be increased by several degrees and surface oceans would be uninhabitable for calcaerous organisms for approximately 20 years.

  13. An innovative ecological hybrid refrigeration cycle for high power refrigeration facility

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2015-09-01

    Full Text Available Searching for new refrigerants is one of the most significant scientific problems in refrigeration. There are ecological refrigerants commonly known: H2O and CO2. H2O and CO2 known as natural refrigerants, but they have problems:a high freezing point of H2O and a low triple point of CO2. These problems can be solved by the application of a hybrid sorption-compression refrigeration cycle. The cycle combines the application possibility of H2O in the high temperature sorption stage and the low temperature application of CO2 in the compression stage. This solution gives significant energy savings in comparison with the two-stage compressor cycle and with the one-stage transcritical CO2 cycle. Besides, the sorption cycle may be powered by low temperature waste heat or renewable heat. This is an original idea of the authors. In the paper an analysis of the possible extension of this solution for high capacity industrial refrigeration is presented. The estimated energy savings as well as TEWI (Total Equivalent Warming Impact index for ecological gains are calculated.

  14. Thermochemical processes for hydrogen production by water decomposition. Progress report, April 1--December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, D.D.; Myers, A.L.

    1975-12-01

    The interest in hydrogen as a chemical feedstock and as a possible non-polluting fuel has continued to be high, affected by recent estimates of 1980 prices for imported natural gas in the range of $3.00/MM Btu. Our exhaustive survey of multi-step thermochemical and hybrid cycles concluded that the most promising prospects to date are (1) a modification of Abraham's ANL-4 cycle, and (2) the Rohm and Haas multi-reaction, single reactor cycle. Both sequences utilize iodine-based oxidation-reduction chemistry and each ultimately produces hydrogen via an iodide vapor decomposition, in the first case from NH/sub 4/I, in the second from HI. Process feasibility depends on demonstration of separation steps of relatively low energy requirements. Further research is proposed along four lines: (1) modeling and computation focusing on selectivity in gas-solid reactions, (2) experimental studies of solids flow and mixing, as well as mass transfer and chemical reaction in rotating and/or oscillating kiln reactors, (3) kinetics of the crucial reactions in the ANL-4 and Rohm and Haas cycles, and gas separations associated with these processes, and (4) flow sheet evaluations and preliminary economics.

  15. A synergetic hybridization of adsorption cycle with the multi-effect distillation (MED)

    KAUST Repository

    Thu, K.

    2014-01-01

    Multi-effect distillation (MED) systems are proven and energy efficient thermally-driven desalination systems for handling harsh seawater feed in the Gulf region. The high cycle efficiency is markedly achieved by latent energy re-use with minimal stage temperature-difference across the condensing steam and the evaporating saline seawater in each stage. The efficacies of MED system are (i) its low stage-temperature-difference between top brine temperature (TBT) and final condensing temperature, (ii) its robustness to varying salinity and ability to handle harmful algae Blooming (HABs) and (iii) its compact foot-print per unit water output. The practical TBT of MED systems, hitherto, is around 65 C for controllable scaling and fouling with the ambient-limited final condenser temperature, usually from 30 to 45 C. The adsorption (ADC) cycles utilize low-temperature heat sources (typically below 90 C) to produce useful cooling power and potable water. Hybridizing MED with AD cycles, they synergistically improve the water production rates at the same energy input whilst the AD cycle is driven by the recovered waste heat. We present a practical AD + MED combination that can be retrofitted to existing MEDs: The cooling energy of AD cycle through the water vapor uptake by the adsorbent is recycled internally, providing lower temperature condensing environment in the effects whilst the final condensing temperature of MED is as low as 5-10 C, which is below ambient. The increase in the temperature difference between TBT and final condensing temperature accommodates additional MED stages. A detailed numerical model is presented to capture the transient behaviors of heat and mass interactions in the combined AD + MED cycles and the results are presented in terms of key variables. It is observed that the water production rates of the combined cycle increase to give a GOR of 8.8 from an initial value of 5.9. © 2013 Elsevier Ltd. All rights reserved.

  16. Planning for hybrid-cycle OTEC experiments using the HMTSTA test facility at the Natural Energy Laboratory of Hawaii

    Science.gov (United States)

    Panchal, C.; Rabas, T.; Genens, L.

    The U.S. Department of Energy has built an experimental apparatus for studying the open-cycle Ocean Thermal Energy Conversion (OC-OTEC) system. Experiments using warm and cold seawater are currently underway to validate the performance predictions for an OC-TEC flash evaporator, surface condenser, and direct-contact condenser. The hybrid cycle is another OTEC option that produces both power and desalinated water, it is comparable in capital cost to OC-OTEC, and it eliminates the problems associated with the large steam turbine. Means are presented or modifying the existing apparatus to conduct similar experiments on hybrid-cycle OTEC heat exchangers. These data are required to validate predictive methods of the components and for the system integration that were identified in an earlier study of hybrid-cycle OTEC power plants.

  17. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    Science.gov (United States)

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  18. A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China

    Science.gov (United States)

    Yao, Yuan; Chang, Yuan; Masanet, Eric

    2014-11-01

    China is the world’s largest manufacturer of multi-crystalline silicon photovoltaic (mc-Si PV) modules, which is a key enabling technology in the global transition to renewable electric power systems. This study presents a hybrid life-cycle inventory (LCI) of Chinese mc-Si PV modules, which fills a critical knowledge gap on the environmental implications of mc-Si PV module manufacturing in China. The hybrid LCI approach combines process-based LCI data for module and poly-silicon manufacturing plants with a 2007 China IO-LCI model for production of raw material and fuel inputs to estimate ‘cradle to gate’ primary energy use, water consumption, and major air pollutant emissions (carbon dioxide, methane, sulfur dioxide, nitrous oxide, and nitrogen oxides). Results suggest that mc-Si PV modules from China may come with higher environmental burdens that one might estimate if one were using LCI results for mc-Si PV modules manufactured elsewhere. These higher burdens can be reasonably explained by the efficiency differences in China’s poly-silicon manufacturing processes, the country’s dependence on highly polluting coal-fired electricity, and the expanded system boundaries associated with the hybrid LCI modeling framework. The results should be useful for establishing more conservative ranges on the potential ‘cradle to gate’ impacts of mc-Si PV module manufacturing for more robust LCAs of PV deployment scenarios.

  19. Research report for fiscal 1998. Research concerning studies for development of thermochemical solar hybrid fuel production system; 1998 nendo chosa hokokusho. Netsukagakuteki solar hybrid nenryo seisan system no kaihatsu kenkyu ni kakawaru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A solar heat-aided system is investigated, in which CO2 is recycled, with methanol, dimethyl ether, etc., serving as carriers of the solar heat energy. In the evaluation of validity of the system as a whole, the system scale and economy and technologies necessary for the system were studied, which was to find out whether solar methanol production was commercially feasible in the sun belt. It was concluded that solar methanol was capable of competing against LNG (liquefied natural gas) in cost, that Japan was able to establish its own technologies for developing coal gasification solar reactors using overseas technologies for information, and that therefore such a system was technologically and economically valid. In the study of related technologies as is, surveys were conducted on coal gasification, natural gas reforming furnaces, methanol synthesis, dimethyl ether synthesis, light condensing technology, current state and cost of solar reactors, etc. Also investigated were the marketability of solar hybrid fuel, CO2 reduction efficiency, and the construction cost at the assumed site of construction (Australia). (NEDO)

  20. Integrating Hybrid Life Cycle Assessment with Multiobjective Optimization: A Modeling Framework.

    Science.gov (United States)

    Yue, Dajun; Pandya, Shyama; You, Fengqi

    2016-02-02

    By combining life cycle assessment (LCA) with multiobjective optimization (MOO), the life cycle optimization (LCO) framework holds the promise not only to evaluate the environmental impacts for a given product but also to compare different alternatives and identify both ecologically and economically better decisions. Despite the recent methodological developments in LCA, most LCO applications are developed upon process-based LCA, which results in system boundary truncation and underestimation of the true impact. In this study, we propose a comprehensive LCO framework that seamlessly integrates MOO with integrated hybrid LCA. It quantifies both direct and indirect environmental impacts and incorporates them into the decision making process in addition to the more traditional economic criteria. The proposed LCO framework is demonstrated through an application on sustainable design of a potential bioethanol supply chain in the UK. Results indicate that the proposed hybrid LCO framework identifies a considerable amount of indirect greenhouse gas emissions (up to 58.4%) that are essentially ignored in process-based LCO. Among the biomass feedstock options considered, using woody biomass for bioethanol production would be the most preferable choice from a climate perspective, while the mixed use of wheat and wheat straw as feedstocks would be the most cost-effective one.

  1. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.

    Science.gov (United States)

    Samaras, Constantine; Meisterling, Kyle

    2008-05-01

    Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.

  2. Taxi Fleet Renewal in Cities with Improved Hybrid Powertrains: Life Cycle and Sensitivity Analysis in Lisbon Case Study

    OpenAIRE

    António P. Castel-Branco; João P. Ribau; Silva, Carla M.

    2015-01-01

    Stringent emissions regulations in cities and the high amount of daily miles driven by taxi vehicles enforce the need to renew these fleets with more efficient and cleaner technologies. Hybrid vehicles are potential candidates due to their enhanced powertrain, and slower battery depletion and fewer lifetime issues, relative to full electric vehicles. This paper proposes a methodology to analyze the best theoretical hybrid powertrain candidate with maximum in-use efficiency, minimum life cycle...

  3. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U{sup 233}, Th+Pu{sup 239} and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  4. Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings

    Directory of Open Access Journals (Sweden)

    Kimberly Bawden

    2015-04-01

    Full Text Available We undertake Life Cycle Assessment (LCA of the cumulative energy demand (CED and global warming potential (GWP for a portfolio of 10 multi-family residences in the U.S. We argue that prior LCA studies of buildings use an inconsistent boundary for processes to be included in the supply chain: The operational phase includes all energy use in a building, but supply chains for the production of appliances, equipment and consumables associated with activities done in the building are neglected. We correct this by starting the analysis with an explicit definition of a functional unit, providing climate controlled space, and including processes associated with this functional unit. Using a hybrid LCA approach, the CED for low, mid and high-rise multi-family residences is found to increase from 30, 34, to 39 GJ/m2, respectively. This increase is due to the need for energy-intensive structural materials such as concrete and steel in taller buildings. With our approach, the share of materials and construction of total life cycle energy doubles to 26%, compared with a 13% share that would be obtained with inconsistent system boundaries used in prior studies. We thus argue that explicit definition of functional unit leads to an increase in the contribution of supply chains to building energy life cycles.

  5. Redox cycling amplified electrochemical detection of DNA hybridization: application to pathogen E. coli bacterial RNA.

    Science.gov (United States)

    Walter, Anne; Wu, Jie; Flechsig, Gerd-Uwe; Haake, David A; Wang, Joseph

    2011-03-09

    An electrochemical genosensor in which signal amplification is achieved using p-aminophenol (p-AP) redox cycling by nicotinamide adenine dinucleotide (NADH) is presented. An immobilized thiolated capture probe is combined with a sandwich-type hybridization assay, using biotin as a tracer in the detection probe, and streptavidin-alkaline phosphatase as reporter enzyme. The phosphatase liberates the electrochemical mediator p-AP from its electrically inactive phosphate derivative. This generated p-AP is electrooxidized at an Au electrode modified self-assembled monolayer to p-quinone imine (p-QI). In the presence of NADH, p-QI is reduced back to p-AP, which can be re-oxidized on the electrode and produce amplified signal. A detection limit of 1 pM DNA target is offered by this simple one-electrode, one-enzyme format redox cycling strategy. The redox cycling design is applied successfully to the monitoring of the 16S rRNA of E. coli pathogenic bacteria, and provides a detection limit of 250 CFU μL(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Online Junction Temperature Cycle Recording of an IGBT Power Module in a Hybrid Car

    Directory of Open Access Journals (Sweden)

    Marco Denk

    2015-01-01

    Full Text Available The accuracy of the lifetime calculation approach of IGBT power modules used in hybrid-electric powertrains suffers greatly from the inaccurate knowledge of application typical load-profiles. To verify the theoretical load-profiles with data from the field this paper presents a concept to record all junction temperature cycles of an IGBT power module during its operation in a test vehicle. For this purpose the IGBT junction temperature is measured with a modified gate driver that determines the temperature sensitive IGBT internal gate resistor by superimposing the negative gate voltage with a high-frequency identification signal. An integrated control unit manages the TJ measurement during the regular switching operation, the exchange of data with the system controller, and the automatic calibration of the sensor system. To calculate and store temperature cycles on a microcontroller an online Rainflow counting algorithm was developed. The special feature of this algorithm is a very accurate extraction of lifetime relevant information with a significantly reduced calculation and storage effort. Until now the recording concept could be realized and tested within a laboratory voltage source inverter. Currently the IGBT driver with integrated junction temperature measurement and the online cycle recording algorithm is integrated in the voltage source inverter of first test vehicles. Such research will provide representative load-profiles to verify and optimize the theoretical load-profiles used in today’s lifetime calculation.

  7. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.

    Science.gov (United States)

    Ermanoski, I; Miller, J E; Allendorf, M D

    2014-05-14

    Widespread adoption of solar-thermochemical fuel production depends on its economic viability, largely driven by the efficiency of use of the available solar resource. Herein, we analyze the efficiency of two-step cycles for thermochemical hydrogen production, with emphasis on efficiency. Owing to water thermodynamics, isothermal H2 production is shown to be impractical and inefficient, irrespective of reactor design or reactive oxide properties, but an optimal temperature difference between cycle steps, for which efficiency is the highest, can be determined for a wide range of other operating parameters. A combination of well-targeted pressure and temperature swing, rather than either individually, emerges as the most efficient mode of operation of a two-step thermochemical cycle for solar fuel production.

  8. Implementation of Hybrid V-Cycle Multilevel Methods for Mixed Finite Element Systems with Penalty

    Science.gov (United States)

    Lai, Chen-Yao G.

    1996-01-01

    The goal of this paper is the implementation of hybrid V-cycle hierarchical multilevel methods for the indefinite discrete systems which arise when a mixed finite element approximation is used to solve elliptic boundary value problems. By introducing a penalty parameter, the perturbed indefinite system can be reduced to a symmetric positive definite system containing the small penalty parameter for the velocity unknown alone. We stabilize the hierarchical spatial decomposition approach proposed by Cai, Goldstein, and Pasciak for the reduced system. We demonstrate that the relative condition number of the preconditioner is bounded uniformly with respect to the penalty parameter, the number of levels and possible jumps of the coefficients as long as they occur only across the edges of the coarsest elements.

  9. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  10. Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure

    Science.gov (United States)

    Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.

    2016-12-01

    Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.

  11. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    Science.gov (United States)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  12. Cycle Analysis of Micro Gas Turbine-Molten Carbonate Fuel Cell Hybrid System

    Science.gov (United States)

    Kimijima, Shinji; Kasagi, Nobuhide

    A hybrid system based on a micro gas turbine (µGT) and a high-temperature fuel cell, i.e., molten carbonate fuel cell (MCFC) or solid oxide fuel cell (SOFC), is expected to achieve a much higher efficiency than conventional distributed power generation systems. In this study, a cycle analysis method and the performance evaluation of a µGT-MCFC hybrid system, of which the power output is 30kW, are investigated to clarify its feasibility. We developed a general design strategy in which a low fuel input to a combustor and higher MCFC operating temperature result in a high power generation efficiency. A high recuperator temperature effectiveness and a moderate steam-carbon ratio are the requirements for obtaining a high material strength in a turbine. In addition, by employing a combustor for complete oxidation of MCFC effluents without additional fuel input, i.e., a catalytic combustor, the power generation efficiency of a µGT-MCFC is achieved at over 60%(LHV).

  13. OECD/NEA thermochemical database

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Song, Dae Yong; Shin, Hyun Kyoo; Park, Seong Won; Ro, Seung Gy

    1998-03-01

    This state of the art report is to introduce the contents of the Chemical Data-Service, OECD/NEA, and the results of survey by OECD/NEA for the thermodynamic and kinetic database currently in use. It is also to summarize the results of Thermochemical Database Projects of OECD/NEA. This report will be a guide book for the researchers easily to get the validate thermodynamic and kinetic data of all substances from the available OECD/NEA database. (author). 75 refs.

  14. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy a

  15. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  16. Combustion of thermochemically torrefied sugar cane bagasse.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2017-01-01

    This study compared the upgrading of sugar bagasse by thermochemical and dry torrefaction methods and their corresponding combustion behavior relative to raw bagasse. The combustion reactivities were examined by non-isothermal thermogravimetric analysis. Thermochemical torrefaction was carried out by chemical pre-treatment of bagasse with acid followed by heating at 160-300°C in nitrogen environment, while dry torrefaction followed the same heating treatment without the chemical pretreatment. The results showed thermochemical torrefaction generated chars with combustion properties that are closer to various ranks of coal, thus making it more suitable for co-firing applications. Thermochemical torrefaction also induced greater densification of bagasse with a 335% rise in bulk density to 340kg/m(3), increased HHVmass and HHVvolume, greater charring and aromatization and storage stability. These features demonstrate the potential of thermochemical torrefaction in addressing the practical challenges in using biomass such as bagasse as fuel.

  17. Recent review of thermochemical hydrogen production

    Science.gov (United States)

    Beghi, G. E.

    A survey is presented on the development to date of thermochemical water decomposition methods for the production of hydrogen. It is shown that: (1) both the technological feasibility of thermochemical processes and their competitiveness with water electrolysis have been demonstrated; (2) the scaling up of thermochemical methods to industrial production levels may proceed with existing technology; (3) the slowing down of programs concerned with the development of high temperature nuclear reactors could delay the scaling up of thermochemical hydrogen production to industrial levels; (4) this delay could, however, increase interest in such water decomposition processes as those employing photoreactions; and (5) the efficiency of thermochemical hydrogen production is highest in the case of systems with dedicated heat sources rated above 1000 MWth.

  18. Experimental and computational thermochemical study of oxindole

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Margarida S., E-mail: msmirand@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Centro de Geologia da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Matos, M. Agostinha R., E-mail: marmatos@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Morais, Victor M.F., E-mail: vmmorais@icbas.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Instituto de Ciencias Biomedicas Abel Salazar, ICBAS, Universidade do Porto, P-4099-003 Porto (Portugal); Liebman, Joel F., E-mail: jliebman@umbc.ed [Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States)

    2010-09-15

    An experimental and computational thermochemical study was performed for oxindole. The standard (p{sup 0}=0.1MPa) molar enthalpy of formation of solid oxindole was derived from the standard molar energy of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The respective standard molar enthalpy of sublimation, at T = 298.15 K, was measured by Calvet microcalorimetry. The standard molar enthalpy of formation in the gas phase was derived as -(66.8 {+-} 3.2) kJ . mol{sup -1}. Density functional theory calculations with the B3LYP hybrid functional and the 6-31G* and 6-311G** sets have also been performed in order to obtain the most stable conformation of oxindole. A comparison has been made between the structure of oxindole and that of the related two-ring molecules: indoline and 2-indanone and the one-ring molecules: pyrrolidine and 2,3-dihydropyrrole. The G3(MP2)//B3LYP method and appropriate reactions were used to obtain estimates of the standard molar enthalpy of formation of oxindole in the gas phase, at T = 298.15 K. Computationally obtained estimates of the enthalpy of formation of oxindole are in very good agreement with the experimental gas phase value. The aromaticity of oxindole was evaluated through the analysis of the nucleus independent chemical shifts (NICS) obtained from the B3LYP/6-311G** wave functions.

  19. Tomato second cycle hybrids as a source of genetic variability for fruit quality traits

    Directory of Open Access Journals (Sweden)

    Pereira da Costa JH

    2016-11-01

    Full Text Available The objective of this study was to investigate the phenotypic and molecular variability in a F2 generation derived from a SCH (Second Cycle Hybrid in order to detect QTLs for some fruit traits of tomato. Genome coverage at different levels was achieved by three types of molecular markers (polypeptides, sequence-related amplified polymorphism-SRAP and amplified restriction fragment polymorphism - AFLP. Different degrees of polymorphism were detected by SRAP and AFLP at the DNA structure level and also by polypeptides at the DNA expression level. The first two markers, associated with phenotypic variation, detected QTLs involved in important agronomic traits such as fruit shelf life, soluble solids content, pH, and titratable acidity. New gene blocks originated by recombination during the first cycle of crossing were detected. This study confirmed that the observed phenotypic differences represent a new gene rearrangement and that these new gene blocks are responsible for the presence of the genetic variability detected for these traits.

  20. Enhancements to the hybrid pressurized air receiver (HPAR) concept in the SUNDISC cycle

    Science.gov (United States)

    Heller, Lukas; Hoffmann, Jaap

    2017-06-01

    A dual-pressure air receiver has previously been proposed as part of a hybrid receiver system preheating pressurized air in a solarized gas turbine and providing hot non-pressurized air to power the bottoming cycle of a combined cycle CSP plant. The receiver, based on a bundle of metallic tubular absorbers, was found to not be able to provide the non-pressurized air at the required temperature. Three enhancements to the basic design are presented and thermally modeled: (a) Finned absorber tubes to increase the convective heat transfer, (b) quartz glass elements to alleviate convective losses and improve the flow inside the tube bundle as well as (c) additional absorber elements behind the tube bundle. It could be shown that finned absorber tubes as well as the additional absorber elements have potential to improve the thermal performance of the receiver while a quartz glass window and flow-enhancing quartz elements could be indispensable additions to either of the other enhancements.

  1. Thermochemical behavior of pretreated biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amit Kumar

    2011-07-01

    Mankind has to provide a sustainable alternative to its energy related problems. Bioenergy is considered as one of the potential renewable energy resources and as a result bioenergy market is also expected to grow dramatically in future. However, logistic issues are of serious concern while considering biomass as an alternative to fossil fuel. It can be improved by introducing pretreated wood pellet. The main objective of this thesis is to address thermochemical behaviour of steam exploded pretreated biomass. Additionally, process aspects of torrefaction were also considered in this thesis. Steam explosion (SE) was performed in a laboratory scale reactor using Salix wood chips. Afterwards, fuel and thermochemical aspects of SE residue were investigated. It was found that Steam explosion pretreatment improved both fuel and pellet quality. Pyrolysis of SE residue reveals that alerted biomass composition significantly affects its pyrolysis behaviour. Contribution from depolymerized components (hemicellulose, cellulose and lignin) of biomass was observed explicitly during pyrolysis. When devolatilization experiment was performed on pellet produced from SE residue, effect of those altered components was observed. In summary, pretreated biomass fuel characteristics is significantly different in comparison with untreated biomass. On the other hand, Process efficiency of torrefaction was found to be governed by the choice of appropriate operating conditions and the type of biomass.

  2. Traffic sounds and cycling safety : the use of electronic devices by cyclists and the quietness of hybrid and electric cars.

    NARCIS (Netherlands)

    Stelling-Konczak, A. Hagenzieker, M.P. & Wee, B. van

    2015-01-01

    The growing popularity of electric devices and the increasing number of hybrid and electric cars have recently raised concerns about the use of auditory signals by vulnerable road users. This paper consolidates current knowledge about the two trends in relation to cycling safety. Both a literature r

  3. Traffic sounds and cycling safety : the use of electronic devices by cyclists and the quietness of hybrid and electric cars.

    NARCIS (Netherlands)

    Stelling-Konczak, A. Hagenzieker, M.P. & Wee, B. van

    2015-01-01

    The growing popularity of electric devices and the increasing number of hybrid and electric cars have recently raised concerns about the use of auditory signals by vulnerable road users. This paper consolidates current knowledge about the two trends in relation to cycling safety. Both a literature

  4. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  5. Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication.

    Science.gov (United States)

    Ball, Rowena; Brindley, John

    2014-06-06

    This paper presents and tests a previously unrecognized mechanism for driving a replicating molecular system on the prebiotic earth. It is proposed that cell-free RNA replication in the primordial soup may have been driven by self-sustained oscillatory thermochemical reactions. To test this hypothesis, a well-characterized hydrogen peroxide oscillator was chosen as the driver and complementary RNA strands with known association and melting kinetics were used as the substrate. An open flow system model for the self-consistent, coupled evolution of the temperature and concentrations in a simple autocatalytic scheme is solved numerically, and it is shown that thermochemical cycling drives replication of the RNA strands. For the (justifiably realistic) values of parameters chosen for the simulated example system, the mean amount of replicant produced at steady state is 6.56 times the input amount, given a constant supply of substrate species. The spontaneous onset of sustained thermochemical oscillations via slowly drifting parameters is demonstrated, and a scheme is given for prebiotic production of complementary RNA strands on rock surfaces.

  6. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  7. Evaluation of microleakage in hybrid composite restoration with different intermediate layers and curing cycles

    Directory of Open Access Journals (Sweden)

    Mohan R Sakri

    2016-01-01

    Full Text Available Objective: To evaluate the impact of bulk or incremental curing of hybrid composite resin with different intermediate layers on interfacial microleakage. Materials and Methods: The recently extracted, sixty noncarious human mandibular molars were selected for the study. The standardized mesio-occluso-distal cavity with the occlusal cavity of 2 mm depth, 3 mm buccolingual width and proximal box dimension of 4 mm buccolingual width and 2 mm depth was prepared on all experimental teeth. The samples were divided into six groups of ten each. Group I was without an intermediate layer. Group II and III had 1 mm flowable composite liner, with incremental and bulk curing cycle, respectively. The Group IV, V, and VI had a self-cure composite liner with incremental and bulk curing. The teeth subjected to thermocycling and kept in 0.5% basic fuchsine dye for 24 h. The teeth were sectioned and observed under a stereomicroscope to grade them according to the extent of microleakage. The obtained data were statistically analyzed with Kruskal–Wallis and post hoc comparison test to understand the difference between the groups. Results: The Group II with flowable composite along incremental curing showed the least microleakage at both enamel (0.30 and cementum surface (0.50. The groups with self-cure composite liner were less effective than flowable composite. The microleakage at the enamel interface was less compared cementum interface across the groups. The groups with bulk curing were more prone to microleakage than incremental curing cycle. Conclusions: Within the limitation of the study, it was concluded that intermediate flowable composite with incremental curing was better suited to reduce microleakage.

  8. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    Science.gov (United States)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  9. High Efficiency Solar Thermochemical Reactor for Hydrogen Production.

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-09-30

    This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.

  10. Comparative evaluation of biomass power generation systems in China using hybrid life cycle inventory analysis.

    Science.gov (United States)

    Liu, Huacai; Yin, Xiuli; Wu, Chuangzhi

    2014-01-01

    There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG) systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI) approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG) emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  11. Comparative Evaluation of Biomass Power Generation Systems in China Using Hybrid Life Cycle Inventory Analysis

    Directory of Open Access Journals (Sweden)

    Huacai Liu

    2014-01-01

    Full Text Available There has been a rapid growth in using agricultural residues as an energy source to generate electricity in China. Biomass power generation (BPG systems may vary significantly in technology, scale, and feedstock and consequently in their performances. A comparative evaluation of five typical BPG systems has been conducted in this study through a hybrid life cycle inventory (LCI approach. Results show that requirements of fossil energy savings, and greenhouse gas (GHG emission reductions, as well as emission reductions of SO2 and NOx, can be best met by the BPG systems. The cofiring systems were found to behave better than the biomass-only fired system and the biomass gasification systems in terms of energy savings and GHG emission reductions. Comparing with results of conventional process-base LCI, an important aspect to note is the significant contribution of infrastructure, equipment, and maintenance of the plant, which require the input of various types of materials, fuels, services, and the consequent GHG emissions. The results demonstrate characteristics and differences of BPG systems and help identify critical opportunities for biomass power development in China.

  12. Analysis of cycle gene expression in Aedes aegypti brains by in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Samira Chahad-Ehlers

    Full Text Available Even though the blood-sucking mosquito Aedes aegypti is one of the most important disease vectors, relatively little is known about the molecular mechanisms underlying processes involved in the temporal pattern of its activity and host seeking behavior. In this study, we analyzed the expression of the cycle (cyc gene, one of the core components of the circadian clock, in Ae. aegypti brains by in situ hybridization at two different time points in light-dark conditions and compared the results with those obtained using a quantitative PCR assay (qPCR. Within the brain, differential labeling was detected according to distinct areas empirically pre-defined. Six out of seven of these areas showed significantly higher staining at ZT3 (three hours after light-on compared to ZT11 (one before light-off, which is consistent with the qPCR data. Predominant staining was observed in three of those areas which correspond to positions of the optical and antennal lobes, as well as the region where the neurons controlling activity rhythms are presumably localized.

  13. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  14. The effects of hybrid cycle training in inactive people with long-term spinal cord injury : design of a multicenter randomized controlled trial

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; de Groot, Sonja; van der Woude, Lucas H. V.; Janssen, Thomas W. J.

    2013-01-01

    Purpose: Physical activity in people with long-term spinal cord injury (SCI) is important to stay fit and healthy. The purpose of this study is to evaluate the effects of hybrid cycle training (hand cycling in combination with functional electrical stimulation-induced leg cycling) on fitness, physic

  15. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes.

    Science.gov (United States)

    Hancock, Nathan T; Black, Nathan D; Cath, Tzahi Y

    2012-03-15

    The purpose of this study was to determine the comparative environmental impacts of coupled seawater desalination and water reclamation using a novel hybrid system that consist of an osmotically driven membrane process and established membrane desalination technologies. A comparative life cycle assessment methodology was used to differentiate between a novel hybrid process consisting of forward osmosis (FO) operated in osmotic dilution (ODN) mode and seawater reverse osmosis (SWRO), and two other processes: a stand alone conventional SWRO desalination system, and a combined SWRO and dual barrier impaired water purification system consisting of nanofiltration followed by reverse osmosis. Each process was evaluated using ten baseline impact categories. It was demonstrated that from a life cycle perspective two hurdles exist to further development of the ODN-SWRO process: module design of FO membranes and cleaning intensity of the FO membranes. System optimization analysis revealed that doubling FO membrane packing density, tripling FO membrane permeability, and optimizing system operation, all of which are technically feasible at the time of this publication, could reduce the environmental impact of the hybrid ODN-SWRO process compared to SWRO by more than 25%; yet, novel hybrid nanofiltration-RO treatment of seawater and wastewater can achieve almost similar levels of environmental impact.

  16. Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2017-02-01

    Full Text Available Free-piston linear generators (FPLGs have attractive application prospects for hybrid electric vehicles (HEVs owing to their high-efficiency, low-emissions and multi-fuel flexibility. In order to achieve long-term stable operation, the hybrid system design and full-cycle operation strategy are essential factors that should be considered. A 25 kW FPLG consisting of an internal combustion engine (ICE, a linear electric machine (LEM and a gas spring (GS is designed. To improve the power density and generating efficiency, the LEM is assembled with two modular flat-type double-sided PM LEM units, which sandwich a common moving-magnet plate supported by a middle keel beam and bilateral slide guide rails to enhance the stiffness of the moving plate. For the convenience of operation processes analysis, the coupling hybrid system is modeled mathematically and a full cycle simulation model is established. Top-level systemic control strategies including the starting, stable operating, fault recovering and stopping strategies are analyzed and discussed. The analysis results validate that the system can run stably and robustly with the proposed full cycle operation strategy. The effective electric output power can reach 26.36 kW with an overall system efficiency of 36.32%.

  17. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles

    Science.gov (United States)

    Fontaras, Georgios; Pistikopoulos, Panayotis; Samaras, Zissis

    2008-06-01

    The reduction of transport-generated CO2 emissions is currently a problem of global interest. Hybrid electric vehicles (HEVs) are considered as one promising technological solution for limiting transport-generated greenhouse gas emissions. Currently, the number of HEVs in the market remains limited, but this picture will change in the years to come as HEVs are expected to pave the way for cleaner technologies in transport. In this paper, results are presented regarding fuel economy and pollutant emissions measurements of two hybrid electric production vehicles. The measurements were conducted on a Prius II and a Honda Civic IMA using both the European legislated driving cycle (New European Driving Cycle, NEDC) and real-world simulation driving cycles (Artemis). In addition to the emissions measurements, other vehicle-operating parameters were studied in an effort to better quantify the maximum CO2 reduction potential. Data from real-world operation of a Prius II vehicle were also used in the evaluation. Results indicate that in most cases both vehicles present improved energy efficiency and pollutant emissions compared to conventional cars. The fuel economy benefit of the two HEVs peaked under urban driving conditions where reductions of 60% and 40% were observed, respectively. Over higher speeds the difference in fuel economy was lower, reaching that of conventional diesel at 95 km h-1. The effect of ambient temperature on fuel consumption was also quantified. It is concluded that urban operation benefits the most of hybrid technology, leading to important fuel savings and urban air quality improvement.

  18. SUNgas: Thermochemical Approaches to Solar Fuels

    Science.gov (United States)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2

  19. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.

    Science.gov (United States)

    Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R

    2011-07-01

    Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.

  20. Thermochemical cycles for the heat and cold long-range transport. Final report of the PRI 9.2 Cold transport. Annual report of the PR 2-8; Cycles thermochimiques pour le transport de chaleur et de froid a longue distance. Rapport final du PRI 9.2. Transport de froid. Rapport annuel du PR 2-8

    Energy Technology Data Exchange (ETDEWEB)

    Luo, L.; Tondeur, D. [Laboratoire des Sciences du Genie Chimique (LSGC), 54 - Nancy (France); Mazet, N.; Neveu, P.; Stitou, D.; Spinner, B. [Institut de Science et de Genie des Materiaux et Procedes (IMP), 66 - Perpignan (France)

    2004-07-01

    This PRI deals with the use of thermochemical processes, based on solid-gas reversible transformation, to transfer heat of cold at long-range distance (> 10 km), in order to enhance the energy efficiency. Four main aspects have been studied to confirm the process feasibility: the process identification and the operating conditions, the selection of compatible reagents, the design of an auto-thermal reactor and the gas transport impact on the global performances. (A.L.B.)

  1. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cyclecycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  2. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  3. Investigation of path dependence in commercial lithium-ion cells chosen for plug-in hybrid vehicle duty cycle protocols

    Science.gov (United States)

    Gering, Kevin L.; Sazhin, Sergiy V.; Jamison, David K.; Michelbacher, Christopher J.; Liaw, Bor Yann; Dubarry, Matthieu; Cugnet, Mikael

    There is a growing need to explore path dependence of aging processes in batteries developed for long-term usage, such as lithium-ion cells used in hybrid electric vehicle (HEV) or plug-in hybrid vehicle (PHEV) applications that may then be "retired" to be utilized in grid applications. To better understand the foremost influences on path dependence in the PHEV context, this work aims to bridge the gap between ideal laboratory test conditions and PHEV field conditions by isolating the predominant aging factors in PHEV service, which would include, for example, the nature and frequency of duty cycles, as well as the frequency and severity of thermal cycles. These factors are studied in controlled and repeatable laboratory conditions to facilitate mechanistic evaluation of aging processes. This work is a collaboration between Idaho National Laboratory (INL) and the Hawaii Natural Energy Institute (HNEI). Commercial lithium-ion cells of the Sanyo Y type (18650 configuration) are used in this work covering two initial independent studies of path dependence issues. The first study considers how the magnitude of power pulses and charging rates affect the aging rate, while the second seeks to answer whether thermal cycling has an accelerating effect on cell aging. While this work is in early stages of testing, initial data trends show that cell aging is indeed accelerated under conditions of high discharge pulse power, higher charge rates, and thermal cycling. Such information is useful in developing accurate predictive models for estimating end-of-life conditions.

  4. Metabolic rate and cardiorespiratory response during hybrid cycling versus handcycling at equal subjective exercise intensity levels in people with spinal cord injury

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; de Groot, Sonja; Onderwater, Mark Q.; de Jong, Jelle; Janssen, Thomas W. J.

    2014-01-01

    Objective: To compare the metabolic rate and cardiorespiratory response during hybrid cycling versus handcycling at equal subjective exercise intensity levels in people with spinal cord injury (SCI). Design: Cross-sectional study. Setting: Amsterdam Rehabilitation Research Centre vertical bar Reade,

  5. Roles of maternal effects and nuclear genetic composition change across the life cycle of crop-wild hybrids.

    Science.gov (United States)

    Alexander, Helen M; Emry, D Jason; Pace, Brian A; Kost, Matthew A; Sparks, Kathryn A; Mercer, Kristin L

    2014-07-01

    • Premise of the study: The fitness of an offspring may depend on its nuclear genetic composition (via both parental genotypes) as well as on genetic maternal effects (via only the maternal parent). Understanding the relative importance of these two genetic factors is particularly important for research on crop-wild hybridization, since traits with important genetic maternal effects (e.g., seed size) often differ among crops and their relatives. We hypothesized that the effects of these genetic factors on fitness components would change across the life cycle of hybrids.• Methods: We followed seed, plant size, and reproductive traits in field experiments with wild and four crop-wild hybrids of sunflower (Helianthus annuus), which differed in nuclear genetic composition and maternal parent (wild or F1 hybrid).• Key results: We identified strong genetic maternal effects for early life cycle characteristics, with seeds produced on an F1 mother having premature germination, negligible seed dormancy, and greater seedling size. Increased percentages of crop alleles also increased premature germination and reduced dormancy in seeds produced on a wild mother. For mature plants, nuclear genetic composition dominated: greater percentages of crop alleles reduced height, branching, and fecundity.• Conclusions: Particular backcrosses between hybrids and wilds may differentially facilitate movement of crop alleles into wild populations due to their specific features. For example, backcross seeds produced on wild mothers can persist in the seed bank, illustrating the importance of genetic maternal effects, whereas backcross individuals with either wild or F1 mothers have high fecundity, resulting from their wild-like nuclear genetic composition.

  6. Marginal and internal adaptation of Class II ormocer and hybrid resin composite restorations before and after load cycling.

    Science.gov (United States)

    Kournetas, N; Chakmakchi, M; Kakaboura, A; Rahiotis, C; Geis-Gerstorfer, J

    2004-09-01

    To overcome the shortcomings of the conventional composite restorative materials, ormocer materials have been introduced over the past few years. The purpose of this study was to evaluate the marginal and internal adaptation of two ormocer restorative systems (Admira, Voco and Definite, Degussa) compared to a hybrid composite one (TPH Spectrum, Dentsply/ DeTrey), before and after load cycling in Class II restorations. Standardized Class II restorations with cervical margins on enamel were divided into three groups ( n=16). Teeth of each group were filled with one of the restoratives tested and its respective bonding agent. Each group was divided into two equal subgroups. The marginal and internal adaptation of the first subgroup was evaluated after 7-day water storage at room temperature and of the second after cyclic loading in a mastication simulator (1.2x10(6) cycles, 49 N, 1.6 Hz). The occlusal and cervical marginal evaluation was conducted by videomicroscope and ranked as "excellent" and "not excellent". One thin section (150 microm), in mesial-distal direction, of each restoration, was examined under metallographic microscope to determine the quality of internal adaptation. The occlusal and cervical adaptation of both ormocer restorative systems was similar and clearly worse compared with the hybrid composite restorative one before as well as after load cycling. Concerning internal adaptation, no gap-free ormocer restorations were detected, whereas all Spectrum restorations presented perfect adaptation. The bonding agents of the ormocers formed layers with unacceptable features (pores, fractures) whereas that of the hybrid composite achieved perfect bonding layer even after loading. The rheological characteristics of the bonding agents of the ormocer restorative systems are proposed to be responsible for their inferior marginal and internal quality in Class II restorations compared with the hybrid composite one.

  7. A Hybrid Algorithm for Solving the Economic Lot and Delivery Scheduling Problem in the Common Cycle Case

    DEFF Research Database (Denmark)

    Ju, Suquan; Clausen, Jens

    2004-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit. This incl......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit....... This includes the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid...

  8. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.

    Science.gov (United States)

    Yi, Jin; Zhou, Haoshen

    2016-09-08

    In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application.

  9. A comparative study of hybrid electric vehicle fuel consumption over diverse driving cycles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Environmental pollution and declining resources of fossil fuels in recent years,have increased demand for better fuel economy and less pollution for ground transportation.Among the alternative solutions provided by researchers in recent decades,hybrid electric vehicles consisted of an internal combustion engine and an electric motor have been considered as a promising solution in the short-term.In the present study,fuel economy characteristics of a parallel hybrid electric vehicle are investigated by using ...

  10. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  11. Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery

    KAUST Repository

    Valladares Linares, Rodrigo

    2015-10-19

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis – low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor – reverse osmosis – advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m3 d−1 of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m3 produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  12. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  13. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  14. Some Aspects of Thermochemical Decomposition of Peat

    Directory of Open Access Journals (Sweden)

    Y. A. Losiuk

    2008-01-01

    Full Text Available The paper considers peculiar features of thermochemical decomposition of peat as a result of quick pyrolysis. Evaluation of energy and economic expediency of the preliminary peat decomposition process for obtaining liquid and gaseous products has been made in the paper. The paper reveals prospects pertaining to application of the given technology while generating electric power and heat.

  15. Some Aspects of Thermochemical Decomposition of Peat

    OpenAIRE

    Y. A. Losiuk; S. V. Gibric; S. V. Korchinenko

    2008-01-01

    The paper considers peculiar features of thermochemical decomposition of peat as a result of quick pyrolysis. Evaluation of energy and economic expediency of the preliminary peat decomposition process for obtaining liquid and gaseous products has been made in the paper. The paper reveals prospects pertaining to application of the given technology while generating electric power and heat.

  16. 2009 Thermochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  17. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as T

  18. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as

  19. Thermochemical characteristics of chitosan-polylactide copolymers

    Science.gov (United States)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  20. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Science.gov (United States)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  1. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Directory of Open Access Journals (Sweden)

    Dhanushkodi Saravanan

    2015-12-01

    Full Text Available Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  2. Mechanisms of G1 cell cycle arrest and apoptosis in myeloma cells induced by hybrid-compound histone deacetylase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Seiko [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Okinaga, Toshinori; Ariyoshi, Wataru [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan); Takahashi, Osamu; Iwanaga, Kenjiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishino, Norikazu [Oral Biology Research Center, Kyushu Dental University (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Surgery, Kyushu Dental University (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Kyushu Dental University (Japan); Oral Biology Research Center, Kyushu Dental University (Japan)

    2013-05-10

    Highlights: •Novel histone deacetylase inhibitor Ky-2, remarkably inhibits myeloma cell growth. •Ky-2 demonstrates no cytotoxicity against normal lymphocytic cells. •Ky-2 induces cell cycle arrest through the cell cycle-associated proteins. •Ky-2 induces Bcl-2-inhibitable apoptosis through a caspase-dependent cascade. -- Abstract: Objectives: Histone deacetylase (HDAC) inhibitors are new therapeutic agents, used to treat various types of malignant cancers. In the present study, we investigated the effects of Ky-2, a hybrid-compound HDAC inhibitor, on the growth of mouse myeloma cells. Materials and methods: Myeloma cells, HS-72, P3U1, and mouse normal cells were used in this study. Effect of HDAC inhibitors on cell viability was determined by WST-assay and trypan blue assay. Cell cycle was analyzed using flow cytometer. The expression of cell cycle regulatory and the apoptosis associated proteins were examined by Western blot analysis. Hoechst’s staining was used to detect apoptotic cells. Results: Our findings showed that Ky-2 decreased the levels of HDACs, while it enhanced acetylation of histone H3. Myeloma cell proliferation was inhibited by Ky-2 treatment. Interestingly, Ky-2 had no cytotoxic effects on mouse normal cells. Ky-2 treatment induced G1-phase cell cycle arrest and accumulation of a sub-G1 phase population, while Western blotting analysis revealed that expressions of the cell cycle-associated proteins were up-regulated. Also, Ky-2 enhanced the cleavage of caspase-9 and -3 in myeloma cells, followed by DNA fragmentation. In addition, Ky-2 was not found to induce apoptosis in bcl-2 overexpressing myeloma cells. Conclusion: These findings suggest that Ky-2 induces apoptosis via a caspase-dependent cascade and Bcl-2-inhibitable mechanism in myeloma cells.

  3. Exploring the Influence of Attitudes to Walking and Cycling on Commute Mode Choice Using a Hybrid Choice Model

    Directory of Open Access Journals (Sweden)

    Chuan Ding

    2017-01-01

    Full Text Available Transport-related problems, such as automobile dependence, traffic congestion, and greenhouse emissions, lead to a great burden on the environment. In developing countries like China, in order to improve the air quality, promoting sustainable travel modes to reduce the automobile usage is gradually recognized as an emerging national concern. Though there are many studies related to the physically active modes (e.g., walking and cycling, the research on the influence of attitudes to active modes on travel behavior is limited, especially in China. To fill up this gap, this paper focuses on examining the impact of attitudes to walking and cycling on commute mode choice. Using the survey data collected in China cities, an integrated discrete choice model and the structural equation model are proposed. By applying the hybrid choice model, not only the role of the latent attitude played in travel mode choice, but also the indirect effects of social factors on travel mode choice are obtained. The comparison indicates that the hybrid choice model outperforms the traditional model. This study is expected to provide a better understanding for urban planners on the influential factors of green travel modes.

  4. Development of a new thermo-chemical and electrolytic hybrid hydrogen production process utilizing the heat from medium temperature heat source : development of the 1NL/h hydrogen production experimental apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Takai, T.; Nakagiri, T.; Inagaki, Y. [Japan Atomic Energy Agency, O-arai, Ibaraki (Japan)

    2007-07-01

    A promising energy conversion system is a high efficiency hydrogen production system that uses nuclear heat. This paper presented the results of a study that developed a 1N/L hydrogen production experimental apparatus. The paper presented the results of an experiment that was conducted to evaluate the hydrogen production efficiency and clarify technical problems for development of a large-scale hydrogen production apparatus. The paper discussed the principals and characteristics of the hybrid hydrogen production in lower temperature range (HHLT) process and presented details on the hydrogen production apparatus and experiment. This included a discussion of the experimental conditions and experimental results. This was followed by a discussion that included an evaluation of hydrogen production efficiency and influence of efficiency of sulfur trioxide electrolysis. Last the paper presented technical problems from the experimental results. It was concluded that hydrogen production efficiency was evaluated about 2 per cent by trial evaluation. A 55 per cent efficiency was expected and therefore, the apparatus required improvement and optimization in order to obtain higher efficiency in the future. 6 refs., 2 tabs., 3 figs.

  5. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  6. Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

    2012-06-01

    In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

  7. Moving bed reactor for solar thermochemical fuel production

    Science.gov (United States)

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  8. Study of molten carbonate fuel cell—microturbine hybrid power cycles

    Science.gov (United States)

    Jurado, Francisco

    The interaction realized by fuel cell—microturbine hybrids derive primarily from using the rejected thermal energy and combustion of residual fuel from a fuel cell in driving the gas turbine. This leveraging of thermal energy makes the high temperature molten carbonate fuel cells (MCFCs) ideal candidates for hybrid systems. Use of a recuperator contributes to thermal efficiency by transferring heat from the gas turbine exhaust to the fuel and air used in the system. Traditional control design approaches, consider a fixed operating point in the hope that the resulting controller is robust enough to stabilize the system for different operating conditions. On the other hand, adaptive control incorporates the time-varying dynamical properties of the model (a new value of gas composition) and considers the disturbances acting at the plant (load power variation).

  9. Performance studies on mechanical + adsorption hybrid compression refrigeration cycles with HFC 134a

    Energy Technology Data Exchange (ETDEWEB)

    Banker, N.D.; Dutta, P.; Srinivasan, K. [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560 012 (India); Prasad, M. [Thermal Systems Division, ISRO Satellite Centre, Bangalore 560 017 (India)

    2008-12-15

    This paper presents the results of an investigation on the efficacy of hybrid compression process for refrigerant HFC 134a in cooling applications. The conventional mechanical compression is supplemented by thermal compression using a string of adsorption compressors. Activated carbon is the adsorbent for the thermal compression segment. The alternatives of bottoming either mechanical or thermal compression stages are investigated. It is shown that almost 40% energy saving is realizable by carrying out a part of the compression in a thermal compressor compared to the case when the entire compression is carried out in a single-stage mechanical compressor. The hybrid compression is feasible even when low grade heat is available. Some performance indictors are defined and evaluated for various configurations. (author)

  10. A Dynamic Control Strategy for Hybrid Electric Vehicles Based on Parameter Optimization for Multiple Driving Cycles and Driving Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Zhenzhen Lei

    2017-01-01

    Full Text Available The driving pattern has an important influence on the parameter optimization of the energy management strategy (EMS for hybrid electric vehicles (HEVs. A new algorithm using simulated annealing particle swarm optimization (SA-PSO is proposed for parameter optimization of both the power system and control strategy of HEVs based on multiple driving cycles in order to realize the minimum fuel consumption without impairing the dynamic performance. Furthermore, taking the unknown of the actual driving cycle into consideration, an optimization method of the dynamic EMS based on driving pattern recognition is proposed in this paper. The simulation verifications for the optimized EMS based on multiple driving cycles and driving pattern recognition are carried out using Matlab/Simulink platform. The results show that compared with the original EMS, the former strategy reduces the fuel consumption by 4.36% and the latter one reduces the fuel consumption by 11.68%. A road test on the prototype vehicle is conducted and the effectiveness of the proposed EMS is validated by the test data.

  11. A web service infrastructure for thermochemical data.

    Science.gov (United States)

    Paolini, Christopher P; Bhattacharjee, Subrata

    2008-07-01

    W3C standardized Web Services are becoming an increasingly popular middleware technology used to facilitate the open exchange of chemical data. While several projects in existence use Web Services to wrap existing commercial and open-source tools that mine chemical structure data, no Web Service infrastructure has yet been developed to compute thermochemical properties of substances. This work presents an infrastructure of Web Services for thermochemical data retrieval. Several examples are presented to demonstrate how our Web Services can be called from Java, through JavaScript using an AJAX methodology, and within commonly used commercial applications such as Microsoft Excel and MATLAB for use in computational work. We illustrate how a JANAF table, widely used by chemists and engineers, can be quickly reproduced through our Web Service infrastructure.

  12. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery.

    Science.gov (United States)

    Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S

    2016-01-01

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  13. Hybrid reprocessing technology of fluoride volatility and solvent extraction. New reprocessing technology, FLUOREX, for LWR fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Fumio [Hitachi Ltd., Ibaraki (Japan)

    2002-11-01

    Hybrid Process of Fluoride Volatility and Solvent Extraction (FLUOREX) has been objected to develop a low cost reprocessing technology for collection of U and MOX (mixture U and Pu) in LWR fuel cycle. Outline, characteristics, technologies, problems and material balance of FLUOREX are explained. LWR spent fuel consists of about 96% U, 1% Pu and about 3% fission products (FP) and minor actinides (MA). FLUOREX method is hybrid system, which isolates about 90% U at high speed and refines by fluoride volatility process and residue about 10% U, Pu, MA and FP are processed by PUREX method after dissolution in acid. The special features are low cost by small type and lightweight, stable without gas Pu and stop of fluorine gas, reducing load of environment, resistance of nuclear proliferation, application of technologies demonstrated and flexible method for fast reactor. Three problems for development are selective fluoridation of U, transportation of oxides in the fluoride residue and dissolution of transported oxides. The preliminary examination of plan showed 800GWD/t processing volume, 200 day/year operation day, about 51 ten-thousand cubic meter volume of plant, about 1/3 Rokkasho reprocessing plant. (S.Y.)

  14. Thermochemical Modeling of the Uranium-Cerium-Oxygen System

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Stewart L [ORNL; Besmann, Theodore M [ORNL

    2010-10-01

    The objective of the Fuel Cycle R&D Program, Advanced Fuels campaign is to provide the research and development necessary to develop low loss, high quality nuclear fuels for ultra-high burnup reactor operation. Primary work in this area will be focused on the ceramic and metallic fuel systems. The goal of the current work is to enhance the understanding of ceramic nuclear fuel thermochemistry to support fuel research and development efforts. The thermochemical behavior of oxide nuclear fuel under irradiation is dependent on the oxygen to metal ratio (O:M). In fluorite-structured fuel, the actinide metal cation is bonded with {approx}2 oxygen atoms on a crystal lattice and as the metal atoms fission, fission fragments and free oxygen are created. The resulting fission fragments will contain some oxide forming elements, however these are insufficient to bind to all the liberated oxygen and therefore, there is an average increase in O:M with fuel burnup. Some of the fission products also form species that will migrate to and react with the cladding surface in a phenomenon known as Fuel Clad Chemical Interaction (FCCI). Cladding corrosion is life-limiting so it is desirable to understand influencing factors, such as oxide thermochemistry, which can be used to guide the design and fabrication of higher burn up fuel. A phased oxide fuel thermochemical model development effort is underway within the Advanced Fuels Campaign. First models of binary oxide systems are developed. For nuclear fuel system this means U-O and transuranic systems such as Pu-O, Np-O and Am-O. Next, the binary systems will be combined to form pseudobinary systems such as U-Pu-O, etc. The model development effort requires the use of data to allow optimization based on known thermochemical parameters as a function of composition and temperature. Available data is mined from the literature and supplemented by experimental work as needed. Due to the difficulty of performing fuel fabrication development

  15. Influences On The Oceanic Biogeochemical Cycling Of The Hybrid-Type Metals: Cobalt, Iron, And Manganese

    Science.gov (United States)

    2012-02-01

    chemical speciation of these three metals is also important to their nutritive utilization in the ocean and biogeochemical cycling. As all three...bioactive trace elements for marine phytoplankton nutrition has become evident. In particular, iron is now believed to limit primary productivity in major...0.4 µm FeTd 1.6 10 m 8 bottom *Td : total dissolved   93  Sta. Surf . Chl a average PP dist. to land O2 Co Fe Mn (mg m-3) (mg C m

  16. EFFECTS OF HYBRID CYCLE AND HANDCYCLE EXERCISE ON CARDIOVASCULAR DISEASE RISK FACTORS IN PEOPLE WITH SPINAL CORD INJURY : A RANDOMIZED CONTROLLED TRIAL

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; Paulson, Thomas A. W.; Bishop, Nicolette C.; Goosey-Tolfrey, Victoria L.; Stolwijk-Swuste, Janneke M.; van Kuppevelt, Dirk J.; de Groot, Sonja; Janssen, Thomas W. J.

    Objective: To examine the effects of a 16-week exercise programme, using either a hybrid cycle or a handcycle, on cardiovascular disease risk factors in people with spinal cord injury. Participants: Nineteen individuals with spinal cord injury >= 8 years. Design: Multicentre randomized controlled

  17. EFFECTS OF HYBRID CYCLE AND HANDCYCLE EXERCISE ON CARDIOVASCULAR DISEASE RISK FACTORS IN PEOPLE WITH SPINAL CORD INJURY : A RANDOMIZED CONTROLLED TRIAL

    NARCIS (Netherlands)

    Bakkum, Arjan J. T.; Paulson, Thomas A. W.; Bishop, Nicolette C.; Goosey-Tolfrey, Victoria L.; Stolwijk-Swuste, Janneke M.; van Kuppevelt, Dirk J.; de Groot, Sonja; Janssen, Thomas W. J.

    2015-01-01

    Objective: To examine the effects of a 16-week exercise programme, using either a hybrid cycle or a handcycle, on cardiovascular disease risk factors in people with spinal cord injury. Participants: Nineteen individuals with spinal cord injury >= 8 years. Design: Multicentre randomized controlled tr

  18. Thermochemical energy storage with ammonia: Aiming for the sunshot cost target

    Science.gov (United States)

    Lavine, Adrienne S.; Lovegrove, Keith M.; Jordan, Joshua; Anleu, Gabriela Bran; Chen, Chen; Aryafar, Hamarz; Sepulveda, Abdon

    2016-05-01

    Thermochemical energy storage has the potential to reduce the cost of concentrating solar thermal power. This paper presents recent advances in ammonia-based thermochemical energy storage (TCES), supported by an award from the U.S. Dept. of Energy SunShot program. Advances have been made in three areas: identification of promising approaches for underground containment of the gaseous products of the dissociation reaction, demonstration that ammonia synthesis can be used to generate steam for a supercritical-steam Rankine cycle, and a preliminary design for integration of the endothermic reactors within a tower receiver. Based on these advances, ammonia-based TCES shows promise to meet the 15/kWht SunShot cost target.

  19. Seasonal cycle of volume transport through Kerama Gap revealed by a 20-year global HYbrid Coordinate Ocean Model reanalysis

    Science.gov (United States)

    Yu, Zhitao; Metzger, E. Joseph; Thoppil, Prasad; Hurlburt, Harley E.; Zamudio, Luis; Smedstad, Ole Martin; Na, Hanna; Nakamura, Hirohiko; Park, Jae-Hun

    2015-12-01

    The temporal variability of volume transport from the North Pacific Ocean to the East China Sea (ECS) through Kerama Gap (between Okinawa Island and Miyakojima Island - a part of Ryukyu Islands Arc) is investigated using a 20-year global HYbrid Coordinate Ocean Model (HYCOM) reanalysis with the Navy Coupled Ocean Data Assimilation from 1993 to 2012. The HYCOM mean transport is 2.1 Sv (positive into the ECS, 1 Sv = 106 m3/s) from June 2009 to June 2011, in good agreement with the observed 2.0 Sv transport during the same period. This is similar to the 20-year mean Kerama Gap transport of 1.95 ± 4.0 Sv. The 20-year monthly mean volume transport (transport seasonal cycle) is maximum in October (3.0 Sv) and minimum in November (0.5 Sv). The annual variation component (345-400 days), mesoscale eddy component (70-345 days), and Kuroshio meander component (< 70 days) are separated to determine their contributions to the transport seasonal cycle. The annual variation component has a close relation with the local wind field and increases (decreases) transport into the ECS through Kerama Gap in summer (winter). Most of the variations in the transport seasonal cycle come from the mesoscale eddy component. The impinging mesoscale eddies increase the transport into the ECS during January, February, May, and October, and decrease it in March, April, November, and December, but have little effect in summer (June-September). The Kuroshio meander components cause smaller transport variations in summer than in winter.

  20. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  1. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries

    Science.gov (United States)

    Wang, Xia; Sun, Pingping; Qin, Jinwen; Wang, Jianqiang; Xiao, Ying; Cao, Minhua

    2016-05-01

    Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an anode material for lithium-ion batteries in terms of specific capacity, cycling stability and long-cycle life. It presents stable cycling performance with a high reversible capacity up to 1028 mA h g-1 at a current density of 100 mA g-1 after 100 cycles. By ex situ XRD, HRTEM, SAED and XPS analyses, the 3D porous MoP@C hybrid was found to follow the Li-intercalation reaction mechanism (MoP + xLi+ + e- LixMoP), which was further confirmed by ab initio calculations based on density functional theory.Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an

  2. Life cycle assessment of hybrid vehicles recycling: Comparison of three business lines of dismantling.

    Science.gov (United States)

    Belboom, Sandra; Lewis, Grégory; Bareel, Pierre-François; Léonard, Angélique

    2016-04-01

    This paper undertakes an environmental evaluation of hybrid vehicles recycling, using industrial data from Comet Traitement SA in Belgium. Three business lines have been modelled and analysed. The first one is relative to the business as usual with a dismantling to recover batteries and engines followed by shredding and post shredding treatments. The second one considers, in addition, the removal of electronic control units (ECU) before shredding followed by same steps than in the first line and the last one is relative to the additional removal of big plastic parts before shredding and business as usual post shredding treatments. Results show non-significant environmental benefits when ECU or large parts of plastics are recovered before shredding. Improvements in terms of environmental benefits are lower than the uncertainty of the results. Indeed, the performing usual process for end-of-life vehicles (ELV) treatment reaches 97% of the ELV which is valorised in terms of metal and energy recoveries. Post shredding treatment units include metals, plastics and energy recovery of residues. Comet business as usual route for ELV valorisation is in accordance with the requirements of the European directive and recommendations for further improvement with dismantling of other parts (ECU or plastics) before shredding are non-relevant in this case.

  3. Design and construction of a cascading pressure reactor prototype for solar-thermochemical hydrogen production

    Science.gov (United States)

    Ermanoski, Ivan; Grobbel, Johannes; Singh, Abhishek; Lapp, Justin; Brendelberger, Stefan; Roeb, Martin; Sattler, Christian; Whaley, Josh; McDaniel, Anthony; Siegel, Nathan P.

    2016-05-01

    Recent work regarding the efficiency maximization for solar thermochemical fuel production in two step cycles has led to the design of a new type of reactor—the cascading pressure reactor—in which the thermal reduction step of the cycle is completed in multiple stages, at successively lower pressures. This approach enables lower thermal reduction pressures than in single-staged reactors, and decreases required pump work, leading to increased solar to fuel efficiencies. Here we report on the design and construction of a prototype cascading pressure reactor and testing of some of the key components. We especially focus on the technical challenges particular to the design, and their solutions.

  4. Bioenergy II : Biomass Valorisation by a Hybrid Thermochemical Fractionation Approach

    NARCIS (Netherlands)

    de Wild, Paul J.; den Uil, Herman; Reith, Johannes H.; Lunshof, Anton; Hendriks, Carlijn; van Eck, Ernst R. H.; Heeres, Erik J.

    2009-01-01

    The need for green renewable sources is adamant because of the adverse effects of the increasing use of fossil fuels on our society. Biomass has been considered as a very attractive candidate for green energy carriers, chemicals and materials. The development of cheap and efficient fractionation tec

  5. An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    Science.gov (United States)

    Haruman, E.; Sun, Y.; Triwiyanto, A.; Manurung, Y. H. P.; Adesta, E. Y.

    2012-03-01

    In this study, the feasibility of using an industrial fluidized bed furnace to perform low-temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low-temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitriding-carburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low-temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen- and carbon-containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  6. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  7. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  8. Microencapsulation of salts for enhanced thermochemical storage materials

    NARCIS (Netherlands)

    Cuypers, R.; Jong, A.J. de; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage

  9. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.

    Science.gov (United States)

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H

    2010-07-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants.

  10. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    Science.gov (United States)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  11. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Felder, James L.; Kim, Hyun Dae; Brown, Gerald V.

    2009-01-01

    possibilities. The Boeing N2 hybrid-wing-body (HWB) is used as a baseline aircraft for this study. The two pylon mounted conventional turbofans are replaced by two wing-tip mounted turboshaft engines, each driving a superconducting generator. Both generators feed a common electrical bus which distributes power to an array of superconducting motor-driven fans in a continuous nacelle centered along the trailing edge of the upper surface of the wing-body. A key finding was that traditional inlet performance methodology has to be modified when most of the air entering the inlet is boundary layer air. A very thorough and detailed propulsion/airframe integration (PAI) analysis is required at the very beginning of the design process since embedded engine inlet performance must be based on conditions at the inlet lip rather than freestream conditions. Examination of a range of fan pressure ratios yielded a minimum Thrust-specific-fuel-consumption (TSFC) at the aerodynamic design point of the vehicle (31,000 ft /Mach 0.8) between 1.3 and 1.35 FPR. We deduced that this was due to the higher pressure losses prior to the fan inlet as well as higher losses in the 2-D inlets and nozzles. This FPR is likely to be higher than the FPR that yields a minimum TSFC in a pylon mounted engine. 1

  12. Hybrid QM/MM Calculations on the First Redox Step of the Catalytic Cycle of Bovine Glutathione Peroxidase GPX1.

    Science.gov (United States)

    Kóňa, Juraj; Fabian, Walter M F

    2011-08-09

    The first reaction step of the redox cycle of bovine erythrocyte glutathione peroxidase from class 1 (GPX1) was investigated using hybrid quantum mechanics/molecular mechanics (QM/MM) calculations using the ONIOM methodology. The reduction of hydrogen peroxide by the active-site selenocysteine in selenolate form assisted by the Arg177 residue was modeled based on a proposal from previous molecular dynamics simulations and pKa calculations (J. Chem. TheoryComput. 2010, 6, 1670-1681). The redox reaction is predicted as a concerted SN2 nucleophilic substitution with a concomitant proton transfer from Arg177 onto leaving hydroxide ion upon reduction of hydrogen peroxide. The height of the reaction barrier was predicted in range of 6-11 kcal mol(-1), consistent with an experimental rate constant of ca. 10(7) M(-1) s(-1). The proposed GPX1-Se(-)-Arg177H(+) mechanism for GPX1 is compared with the GPX3-SeH-Gln83 one proposed for human glutathione peroxidase from class 3 (GPX3) and with the solvent-assisted proton exchange mechanism proposed for GPX-like organic selenols. The structural and energetic parameters predicted by various density functional theory methods (B3LYP, MPW1PW91, MPW1K, BB1K, M05-2X, M06-2X, and M06) are also discussed.

  13. Environmental Life-Cycle Analysis of Hybrid Solar Photovoltaic/Thermal Systems for Use in Hong Kong

    Directory of Open Access Journals (Sweden)

    Tin-Tai Chow

    2012-01-01

    Full Text Available While sheet-and-tube absorber is generally recommended for flat-plate photovoltaic/thermal (PV/T collector design because of the simplicity and promising performance, the use of rectangular-channel absorber is also tested to be a good alternative. Before a new energy technology, like PV/T, is fully implemented, its environmental superiority over the competing options should be assessed, for instance, by evaluating its consumption levels throughout its production and service life. Although there have been a plenty of environmental life-cycle assessments on the domestic solar hot water systems and PV systems, the related works on hybrid solar PV/T systems have been very few. So far there is no reported work on the assessment of PV/T collector with channel-type absorber design. This paper reports an evaluation of the energy payback time and the greenhouse gas payback time of free-standing and building-integrated PV/T systems in Hong Kong. This is based on two case studies of PV/T collectors with modular channel-type aluminium absorbers. The results confirm the long-term environmental benefits of PV/T applications.

  14. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  15. Simulation Analysis on Driving Cycle of a Hybrid Electric Vehicle%混合动力汽车行驶工况的仿真分析

    Institute of Scientific and Technical Information of China (English)

    李东东; 程金瑞; 田源玉

    2012-01-01

    Vehicle performance is influenced by actual driving condition directly.For a hybrid electric vehicle,selection of its componemnts and formulation of control strategy are closely related to road driving cycle.Driving cycle of a vehicle is analyzed in this paper.modeling and simulation of a mini hybrid electric vehicle is comducted by using GT-DRIV.The simulation results show that the hybrid electric vehicle has obvious advantages than traditional vehicle in fuel economy.Better electric distribution will be the key point in hybrid electric vehicle design.%汽车的实际行驶条件对汽车性能具有直接影响。对于混合动力汽车,其部件的选型以及控制策略的制定都与道路行驶工况密切相关文章对汽车行驶工况做了相应的分析.利用GT—DRIVE软件对某微型混合动力汽车进行了建模与仿真仿真结果表明,在经济性方面混合动力汽车比传统汽车有明显的优势.如何更好地分配混合动力汽车功率将是混合动力汽车研究的重点.

  16. 3D-CFD Design Study And Optimization Of A Centrifugal Turbo Compressor For The Operation In A Hybrid Sorption/ Compression Heat Pump Cycle

    OpenAIRE

    Eckert, Thomas; Dostal, Leo; Helm, Martin; Schweigler, Christian

    2016-01-01

    In various applications the use of sorption chillers and heat pumps is limited by the available temperature level of the driving heat source or the heat sink for export of reject heat. These constraints can be overcome by integrating an efficient high-speed transonic turbo-compressor into the internal cycle of a thermally driven water/lithium bromide absorption heat pump. The operation in a hybrid heat pump with the refrigerant water implies specific challenges for the design of the compresso...

  17. Thermochemical factors affecting the dehalogenation of aromatics.

    Science.gov (United States)

    Sadowsky, Daniel; McNeill, Kristopher; Cramer, Christopher J

    2013-12-17

    Halogenated aromatics are one of the largest chemical classes of environmental contaminants, and dehalogenation remains one of the most important processes by which these compounds are degraded and detoxified. The thermodynamic constraints of aromatic dehalogenation reactions are thus important for understanding the feasibility of such reactions and the redox conditions necessary for promoting them. Accordingly, the thermochemical properties of the (poly)fluoro-, (poly)chloro-, and (poly)bromobenzenes, including standard enthalpies of formation, bond dissociation enthalpies, free energies of reaction, and the redox potentials of Ar-X/Ar-H couples, were investigated using a validated density functional protocol combined with continuum solvation calculations when appropriate. The results highlight the fact that fluorinated aromatics stand distinct from their chloro- and bromo- counterparts in terms of both their relative thermodynamic stability toward dehalogenation and how different substitution patterns give rise to relevant properties, such as bond strengths and reduction potentials.

  18. Thermochemical Study of Lanthanum Complex Crystal with β-Alanine

    Institute of Scientific and Technical Information of China (English)

    陈平初; 屈松生; 詹正坤; 吴新明

    2002-01-01

    Lanthanum complex crystal with β-alanine (1∶3) was synthesized. Through the DTA,TG,chemistry analysis and comparison with literature, it shows that its form is {[La2(β-ala)6* (H2O)4](ClO4)6*H2O}n, and its purity is 98.86%. The dissolution enthalpy of the reactants and products in 2 mol*L-1 HCl solution (298.15K) was measured by using the isoperibol reaction calorimetry. ΔrHm was calculated by a designed thermochemical cycle of the coordination reaction. From the results and other auxiliary quantities, the standard molar enthalpy of formation of [La2(β-ala)6*(H2O)4](ClO4)6*H2O is obtained to be ΔfHm°{[La2(β-ala)6*(H2O)4](ClO4)6*H2O} = - 7062.911 kJ*mol-1.

  19. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  20. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology

    Science.gov (United States)

    Sánchez, D.; Muñoz de Escalona, J. M.; Chacartegui, R.; Muñoz, A.; Sánchez, T.

    A proposal for high efficiency hybrid systems based on molten carbonate fuel cells is presented in this paper. This proposal is based on adopting a closed cycle bottoming gas turbine using supercritical carbon dioxide as working fluid as opposed to open cycle hot air turbines typically used in this type of power generators. First, both bottoming cycles are compared for the same operating conditions, showing that their performances do not differ as much as initially expected, even if the initial objective of reducing compression work is accomplished satisfactorily. In view of these results, a profound review of research and industrial literature is carried out in order to determine realistic specifications for the principal components of the bottoming systems. From this analysis, it is concluded that an appropriate set of specifications must be developed for each bottoming cycle as the performances of compressor, turbine and recuperator differ significantly from one working fluid to another. Thus, when the operating conditions are updated, the performances of the resulting systems show a remarkable advantage of carbon dioxide based systems over conventional air units. Actually, the proposed hybrid system shows its capability to achieve 60% net efficiency, what represents a 10% increase with respect to the reference system.

  1. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg(-1) and 47.5 Wh kg(-1) at a power density of 400 W kg(-1), respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  2. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life

    Science.gov (United States)

    Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun

    2017-10-01

    To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.

  3. The Conceptual Design of an Integrated Nuclearhydrogen Production Plant Using the Sulfur Cycle Water Decomposition System

    Science.gov (United States)

    Farbman, G. H.

    1976-01-01

    A hydrogen production plant was designed based on a hybrid electrolytic-thermochemical process for decomposing water. The sulfur cycle water decomposition system is driven by a very high temperature nuclear reactor that provides 1,283 K helium working gas. The plant is sized to approximately ten million standard cubic meters per day of electrolytically pure hydrogen and has an overall thermal efficiently of 45.2 percent. The economics of the plant were evaluated using ground rules which include a 1974 cost basis without escalation, financing structure and other economic factors. Taking into account capital, operation, maintenance and nuclear fuel cycle costs, the cost of product hydrogen was calculated at $5.96/std cu m for utility financing. These values are significantly lower than hydrogen costs from conventional water electrolysis plants and competitive with hydrogen from coal gasification plants.

  4. Fuel cycle analysis based evaluation of the fuel and emissions reduction potential of adapting the hybrid technology to tricycles

    Energy Technology Data Exchange (ETDEWEB)

    Biona, J.B.M. [Don Bosco Technical College, Mandaluyong City (Philippines); De La Salle University, Center for Engineering and Sustainable Development Research, Manila (Philippines); Culaba, A.B. [De La Salle University, Center for Engineering and Sustainable Development Research, Manila (Philippines); Purvis, M.R.I. [University of Portsmouth, Department of Mechanical Design and Engineering, Portsmouth (United Kingdom)

    2008-02-15

    A preliminary analysis has been conducted to investigate the fuel use and emissions reduction potential of incorporating hybrid systems to two stroke powered tricycles in Metro Manila. Carbureted and direct injection two stroke engine hybrid systems were investigated and compared with the impact of shifting to four stroke engines. Results showed that hybridized direct injection retrofitted two stroke powered systems would be able to provide far better environmental and fuel reduction benefits than the shift to new four strokes tricycles. It is thus recommended that the development of such technology specifically for tricycles be seriously pursued. (orig.)

  5. Active Thermochemical Tables: thermochemistry for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Ruscic, Branko [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Pinzon, Reinhardt E [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laszewski, Gregor von [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Kodeboyina, Deepti [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Burcat, Alexander [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Leahy, David [Sandia National Laboratories, Livermore, CA 94551 (United States); Montoy, David [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wagner, Albert F [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2005-01-01

    Active Thermochemical Tables (ATcT) are a good example of a significant breakthrough in chemical science that is directly enabled by the US DOE SciDAC initiative. ATcT is a new paradigm of how to obtain accurate, reliable, and internally consistent thermochemistry and overcome the limitations that are intrinsic to the traditional sequential approach to thermochemistry. The availability of high-quality consistent thermochemical values is critical in many areas of chemistry, including the development of realistic predictive models of complex chemical environments such as combustion or the atmosphere, or development and improvement of sophisticated high-fidelity electronic structure computational treatments. As opposed to the traditional sequential evolution of thermochemical values for the chemical species of interest, ATcT utilizes the Thermochemical Network (TN) approach. This approach explicitly exposes the maze of inherent interdependencies normally ignored by the conventional treatment, and allows, inter alia, a statistical analysis of the individual measurements that define the TN. The end result is the extraction of the best possible thermochemistry, based on optimal use of all the currently available knowledge, hence making conventional tabulations of thermochemical values obsolete. Moreover, ATcT offer a number of additional features that are neither present nor possible in the traditional approach. With ATcT, new knowledge can be painlessly propagated through all affected thermochemical values. ATcT also allows hypothesis testing and evaluation, as well as discovery of weak links in the TN. The latter provides pointers to new experimental or theoretical determinations that can most efficiently improve the underlying thermochemical body of knowledge.

  6. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  7. Thermochemical energy storage : critical review and recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Haji Abedin, A.; Rosen, M.A. [University of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The global increase in energy demand and environmental concerns are promoting the use of more efficient and cleaner energy technologies. Examples include advanced systems for waste energy recovery and energy integration. Thermochemical thermal energy storage (TES) is an emerging method with the potential for high energy density storage. It is not yet commercial and research and development is needed to better understand and design the technology and to resolve other practical aspects before commercial implementation can occur. TES is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. This paper presented the principles of thermochemical TES and recent advances. Thermochemical TES was also critically assessed and compared with other TES types. The advantages and disadvantages of thermochemical TES were also considered as they relate to other TES types. It was concluded that thermochemical TES has the highest potential to achieve the required compact thermal energy storage where space is limited. 13 refs., 2 tabs., 1 fig.

  8. Thermochemical valorization and characterization of household biowaste.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Vekkos, K; Baratieri, M

    2016-04-15

    Valorization of municipal solid waste (MSW), by means of energy and material recovery, is considered to be a crucial step for sustainable waste management. A significant fraction of MSW is comprised from food waste, the treatment of which is still a challenge. Therefore, the conventional disposal of food waste in landfills is being gradually replaced by recycling aerobic treatment, anaerobic digestion and waste-to-energy. In principle, thermal processes like combustion and gasification are preferred for the recovery of energy due to the higher electrical efficiency and the significantly less time required for the process to be completed when compared to biological process, i.e. composting, anaerobic digestion and transesterification. Nonetheless, the high water content and the molecular structure of biowaste are constraining factors in regard to the application of thermal conversion pathways. Investigating alternative solutions for the pre-treatment and more energy efficient handling of this waste fraction may provide pathways for the optimization of the whole process. In this study, by means of utilizing drying/milling as an intermediate step, thermal treatment of household biowaste has become possible. Household biowaste has been thermally processed in a bench scale reactor by means of torrefaction, carbonization and high temperature pyrolysis. According to the operational conditions, fluctuating fractions of biochar, bio-oil (tar) and syngas were recovered. The thermochemical properties of the feedstock and products were analyzed by means of Simultaneous Thermal Analysis (STA), Ultimate and Proximate analysis and Attenuated Total Reflectance (ATR). The analysis of the products shows that torrefaction of dried household biowaste produces an energy dense fuel and high temperature pyrolysis produces a graphite-like material with relatively high yield.

  9. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  10. New Developments in Thermo-Chemical Diffusion Processes

    Institute of Scientific and Technical Information of China (English)

    Bernd Edenhofer

    2004-01-01

    Thermo-chemical diffusion processes like carburising, nitriding and boronizing play an important part in modern manufacturing technologies. They exist in many varieties depending on the type of diffusing element used and the respective process procedure. The most important industrial heat treatment process is case-hardening, which consists of thermochemical diffusion process carburising or its variation carbonitriding, followed by a subsequent quench. The latest developments of using different gaseous carburising agents and increasing the carburising temperature are one main area of this paper. The other area is the evolvement of nitriding and especially the ferritic nitrocarburising process by improved process control and newly developed process variations using carbon, nitrogen and oxygen as diffusing elements in various process steps. Also boronizing and special thermo-chemical processes for stainless steels are discussed.

  11. A techno-economic review of thermochemical cellulosic biofuel pathways.

    Science.gov (United States)

    Brown, Tristan R

    2015-02-01

    Recent advances in the thermochemical processing of biomass have resulted in efforts to commercialize several cellulosic biofuel pathways. Until commercial-scale production is achieved, however, techno-economic analysis is a useful methodology for quantifying the economic competitiveness of these pathways with petroleum, providing one indication of their long-term feasibility under the U.S. revised Renewable Fuel Standard. This review paper covers techno-economic analyses of thermochemical cellulosic biofuel pathways in the open literature, discusses and compares their results, and recommends the adoption of additional analytical methodologies that will increase the value of future pathway analyses.

  12. Thermochemical production of hydrogen via multistage water splitting processes

    Science.gov (United States)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  13. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

  14. Critical Evaluation of Thermochemical Properties of C1-C4 Species: Updated Group-Contributions to Estimate Thermochemical Properties

    Science.gov (United States)

    Burke, S. M.; Simmie, J. M.; Curran, H. J.

    2015-03-01

    A review of literature on enthalpies of formation and molar entropies for alkanes, alkenes, alcohols, hydroperoxides, and their associated radicals has been compiled and critically evaluated. By comparing literature values, the overall uncertainty in thermochemical properties of small hydrocarbons and oxygenated hydrocarbons can be highlighted. In general, there is good agreement between heat of formation values in the literature for stable species; however, there is greater uncertainty in the values for radical species and for molar entropy values. Updated values for a group-additivity method for the estimation of thermochemical properties based on the evaluated literature data are proposed. The new values can be used to estimate thermochemical data for larger, combustion-relevant species for which no calculations or measurements currently exist, with increased confidence.

  15. Assessment of thermochemical data on steel deoxidation

    Directory of Open Access Journals (Sweden)

    Gómez, P.

    2009-08-01

    Full Text Available It is proposed to develop a method to judge the certainty on the information regarding to deoxidation equilibria of iron melts. To accomplish this objective, thermochemical data was collated and then evaluated. The basic knowledge on deoxidation conditions are framed by the non-ideal Henrian behaviour of diluted solutions of both deoxidizer and oxygen in liquid iron in equilibrium with a pure oxide. Conventional deoxidation reactions were considered at 1,873 K such that in their equilibrium constants, only first order interaction coefficients were considered. The criteria in selecting the most appropriated free energy equation was based on evaluating them under two critical composition points: 1 where they satisfy an oxygen to deoxidizer ratio dictated by its stoichiometry and 2 where oxygen contents at a given amount of deoxidizer reaches a minimum value. These data were plotted on logarithmic scales to appreciate the effects of deoxidizer’s valences. Once such information was classified, under restrictions 1 and 2, previous compositions were related to deoxidizer´s electronegativities.

    El presente artículo propone desarrollar un método para juzgar la certidumbre de la información pertinente al equilibrio de desoxidación de fundidos de hierro. Para lograr este objetivo, se recolectaron y evaluaron datos termoquímicos existentes. Las teorías sobre desoxidación se describen mediante el comportamiento Henriano de soluciones diluidas del agente desoxidante y el hierro fundido en equilibrio con un óxido. En este estudio, solo se consideran reacciones convencionales a 1.873 K, de forma tal que se consideraron las constantes de equilibrio y coeficientes de interacción de primer orden. El criterio empleado para utilizar la expresión más adecuada de la energía libre se basó en evaluar dos puntos críticos: uno, donde se satisface una relación oxígeno/desoxidante dictada por la estequiometría y dos,cuando el contenido de ox

  16. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  17. Pre-design and life cycle cost analysis of a hybrid power system for rural and remote communities in Afghanistan

    Directory of Open Access Journals (Sweden)

    Mir Sayed Shah Danish

    2014-08-01

    Full Text Available In view of the present situation of the Afghanistan electricity sector, the photovoltaic and diesel generator stand-alone hybrid power system is increasingly attractive for application in rural and remote communities. Thousands of rural communities in Afghanistan depend solely on traditional kerosene for illumination and rarely have access to electricity sources such as DC battery for radio and other small appliances. This study is conducted to offer real-life solution to this problem. The hybrid system is investigated to meet the domestic load demand that is estimated based on the communities’ electricity consumption culture. At first, customary pre-design is pursued. Afterwards, the break-even point and net present value algorithms are applied for economic analysis. That makes this study differ from the previous academic literature. The concepts developed in this study are targeted for a cost-effective hybrid system, which is appropriate for rural and remote residents’ lifestyle change and improvement. Based on the academic research methods, overall analysis procedures can fit as an analogy, especially for developing countries.

  18. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation c

  19. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  20. Thermochemical conversion of waste tyres-a review.

    Science.gov (United States)

    Labaki, Madona; Jeguirim, Mejdi

    2016-10-27

    A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.

  1. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  2. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  3. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Goodwin

    2008-12-31

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in

  4. Thermochemical processes for water splitting - status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.; Behr, F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Reaktortechnik); Knoche, K.F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Technische Thermodynamik und Inst. fuer Thermodynamik); Barnert, H. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung)

    1984-04-01

    In this paper we discuss the proposals for processes which have already been realised in form of bench scale units or which have been planned, as well as those which have a high degree of development potential. A part of these cycles have in common the splitting of sulfuric acids which causes corrosion problems unsolved up to now. The essential part of the metal/metal hydride-processes is a hydrogen permeable membrane which separates the hydrogen acceptor from the water containing electrolyte melt. Actually we are intending to build up a lab cycle using a TiNi-basis membrane. The metal membranes offer a number of further interesting applications, such as (1) hydrogen production from gas mixtures at high temperatures, and (2) tritium separation from the helium of the HTR primary cooling circuit. A further promising process is the hydrocarbon hybrid cycle, in which the reduction of methanol to methane and oxygen is the key reaction. Till now we can detect a methane yield of up to 50%. An interesting combined procedure for the production of hydrogen and electricity is proposed, where sulphuric acid is decomposed by means of coal. The detailed mass and energy balance shows an efficiency of up to 57%. Thermodynamic analysis for the watersplitting cycles indicates efficiencies up to 50%. Further research and development work is necessary in order to solve material problems and to demonstrate the suitability and availability of the techniques using larger scale laboratory and prototype units.

  5. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  6. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  7. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  8. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation.

    Science.gov (United States)

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-19

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  9. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation for Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Pihl, Josh A [ORNL; Conklin, Jim [ORNL

    2010-01-01

    We present a detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine Second Law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane the estimated Second Law efficiency increases for constant volume reforming are 9% and 11%, respectively. The Second Law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  10. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C Stuart [ORNL; Pihl, Josh A [ORNL; Chakravarthy, Veerathu K [ORNL; Conklin, Jim [ORNL

    2010-01-01

    A detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction is presented. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine second law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane, the estimated second law efficiency increases for constant volume reforming are 9 and 11%, respectively. The second law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with the gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  11. Thermoeconomic analysis of pressurized hybrid SOFC systems with CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Franzoni, A.; Magistri, L.; Traverso, A.; Massardo, A.F. [TPG-DiMSET, Universita di Genova, via Montallegro 1, 16145 Genoa (Italy)

    2008-02-15

    In this paper, the results of the thermodynamic and economic analyses of distributed power generation plants (1.5 MWe) are described and compared. The results of an exergetic analysis are also reported, as well as the thermodynamic details of the most significant streams of the plants. The integration of different hybrid solid oxide fuel cell (SOFC) system CO{sub 2} separation technologies characterizes the power plants proposed. A hybrid system with a tubular SOFC fed with natural gas with internal reforming has been taken as reference plant. Two different technologies have been considered for the same base system to obtain a low CO{sub 2} emission plant. The first technology involved a fuel decarbonization and CO{sub 2} separation process placed before the system feed, while the second integrated the CO{sub 2} separation and the energy cycle. The first option employed fuel processing, a technology (amine chemical absorption) viable for short-term implementation in real installations while the second option provided the CO{sub 2} separation by condensing the steam from the system exhaust. The results obtained, using a Web-based Thermo Economic Modular Program software, developed by the Thermochemical Power Group of the University of Genoa, showed that the thermodynamic and economic impact of the adoption of zero emission cycle layouts based on hybrid systems was relevant. (author)

  12. Numerical investigation of a straw combustion boiler – Part I: Modelling of the thermo-chemical conversion of straw

    Directory of Open Access Journals (Sweden)

    Dernbecher Andrea

    2016-01-01

    Full Text Available In the framework of a European project, a straw combustion boiler in conjunction with an organic Rankine cycle is developed. One objective of the project is the enhancement of the combustion chamber by numerical methods. A comprehensive simulation of the combustion chamber is prepared, which contains the necessary submodels for the thermo-chemical conversion of straw and for the homogeneous gas phase reactions. Part I introduces the modelling approach for the thermal decomposition of the biomass inside the fuel bed, whereas part II deals with the simulation of the gas phase reactions in the freeboard.

  13. A hybrid algorithm for solving the economic lot and delivery scheduling problem in the common cycle case

    DEFF Research Database (Denmark)

    Clausen, Jens; Ju, S.

    2006-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different types to a consumer in batches. The task is to determine the cycle time, i.e., the time between deliveries, which minimizes the total cost per time unit. This includes the d...... is both optimal and efficient. (c) 2005 Elsevier B.V. All rights reserved....

  14. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project

    Science.gov (United States)

    Karagiannakis, George; Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.; Tescari, Stefania; Singh, Abhishek; Roeb, Martin; Lange, Matthias; Marcher, Johnny; Jové, Aleix; Prieto, Cristina; Rattenbury, Michael; Chasiotis, Andreas

    2017-06-01

    The present work provides an overview of activities performed in the framework of the EU-funded collaborative project RESTRUCTURE, the main goal of which was to develop and validate a compact structured reactor/heat exchanger for thermochemical storage driven by 2-step high temperature redox metal oxide cycles. The starting point of development path included redox materials qualification via both theoretical and lab-scale experimental studies. Most favorable compositions were cobalt oxide/alumina composites. Preparation of small-scale structured bodies included various approaches, ranging from perforated pellets to more sophisticated honeycomb geometries, fabricated by extrusion and coating. Proof-of-concept of the proposed novel reactor/heat exchanger was successfully validated in small-scale structures and the next step included scaling up of redox honeycombs production. Significant challenges were identified for the case of extruded full-size bodies and the final qualified approach related to preparation of cordierite substrates coated with cobalt oxide. The successful experimental evaluation of the pilot reactor/heat exchanger system constructed motivated the preliminary techno-economic evaluation of the proposed novel thermochemical energy storage concept. Taking into account experimental results, available technologies and standard design aspects a model for a 70.5 MWe CSP plant was defined. Estimated LCOE costs were calculated to be in the range of reference values for Combined Cycle Power Plants operated by natural gas. One of main cost contributors was the storage system itself, partially due to relatively high cost of cobalt oxide. This highlighted the need to identify less costly and equally efficient to cobalt oxide redox materials.

  15. Experimental proof of concept of a pilot-scale thermochemical storage unit

    Science.gov (United States)

    Tescari, Stefania; Singh, Abhishek; de Oliveira, Lamark; Breuer, Stefan; Agrafiotis, Christos; Roeb, Martin; Sattler, Christian; Marcher, Johnny; Pagkoura, Chrysa; Karagiannakis, George; Konstandopoulos, Athanasios G.

    2017-06-01

    The present study presents installation and operation of the first pilot scale thermal storage unit based on thermochemical redox-cycles. The reactive core is composed of a honeycomb ceramic substrate, coated with cobalt oxide. This concept, already analyzed and presented at lab-scale, is now implemented at a larger scale: a total of 280 kg of storage material including 90 kg of cobalt oxide. The storage block was implemented inside an existing solar facility and connected to the complete experimental set-up. This experimental set-up is presented, with focus on the measurement system and the possible improvement for a next campaign. Start-up and operation of the system is described during the first complete charge-discharge cycle. The effect of the chemical reaction on the stored capacity is clearly detected by analysis of the temperature distribution data obtained during the experiments. Furthermore two consecutive cycles show no evident loss of reactivity inside the material. The system is cycled between 650°C and 1000°C. In this temperature range, the total energy stored was about 50 kWh, corresponding to an energy density of 630 kJ/kg. In conclusion, the concept feasibility was successfully shown, together with a first calculation on the system performance.

  16. High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides

    Science.gov (United States)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-09-01

    Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above 15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.

  17. HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

    2009-04-15

    The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer

  18. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury : a 16-week randomized controlled trial

    NARCIS (Netherlands)

    Bakkum, A. J. T.; de Groot, S.; Stolwijk-Swuste, J. M.; van Kuppevelt, D. J.; van der Woude, L. H. V.; Janssen, T. W. J.

    2015-01-01

    Study design: This is an open randomized controlled trial. Objective: The objective of this study was to investigate the effects of a 16-week hybrid cycle versus handcycle exercise program on fitness and physical activity in inactive people with long-term spinal cord injury (SCI). Setting: The study

  19. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  20. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  1. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  2. Thermochemical water decomposition. [hydrogen separation for energy applications

    Science.gov (United States)

    Funk, J. E.

    1977-01-01

    At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.

  3. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    CERN Document Server

    Blecic, Jasmina; Bowman, M Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...

  4. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed.

  5. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...... in determining crustal seismic discontinuities. In the second chapter, I deal about the possibility to disentangle the dynamic and isostatic contribution in shaping the Earth's surface topography. Dynamic topography is directly linked to mantle convection driven by mantle thermo-chemical anomalies, and can...... argue therefore that our understandings of the lithosphere density structure, needed to determine the isostatic topography, and of the mantle density and viscosity, required to compute the dynamic topography, are still too limited to allow a robust determination of mantle convection effects on the Earth...

  6. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  7. Thermochemical data for CVD modeling from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  8. Reduction of hazards from copper(I) chloride in a Cu-Cl thermochemical hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Ghandehariun, Samane, E-mail: samane.ghandehariun@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Wang, Zhaolin, E-mail: zhaolin.wang@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rosen, Marc A., E-mail: marc.rosen@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Naterer, Greg F., E-mail: greg.naterer@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Hazards are quantified for each process of the cycle where the CuCl may be present. Black-Right-Pointing-Pointer Using Cu{sub 2}OCl{sub 2} to absorb CuCl vapour is the most preferable option. Black-Right-Pointing-Pointer Utilization of a cooler at the outlet of the oxygen reactor is unadvisable. Black-Right-Pointing-Pointer If an atomization method is used for heat recovery, the fluid should be circulated. - Abstract: The copper-chlorine cycle of thermochemical water splitting, using various heat sources, is a promising technology for hydrogen production. The chemical hazards accompanying the new technology affect significantly the industrialization of the cycle, but have scarcely been examined. This paper addresses this need by examining the copper(I) chloride (CuCl) hazards that may be generated in the cycle. Regardless of the variations of Cu-Cl cycle, copper(I) chloride is always present, serving as an intermediate compound that may cause health concerns. In this paper, the CuCl hazards are quantified for each process from the generation source of the hazards along with the paths where the CuCl may be present. The processes of greatest relevance include oxygen production, heat recovery, solidification, and dissolution. The options for reducing the CuCl hazards in a Cu-Cl thermochemical hydrogen production plant are evaluated from the perspectives of variations of the Cu-Cl cycle, process integration, heat recovery, and equipment design. It is concluded that using the intake reactant Cu{sub 2}OCl{sub 2} for the oxygen production step to absorb CuCl vapor is the most preferable option compared with other alternatives such as absorbing CuCl vapor with water or CuCl{sub 2}, building additional structures inside the oxygen production reactor, and cooling the exiting gas at the outlet of the oxygen reactor.

  9. Vertically Discontinuous Seismic Signatures From Continuous Thermochemical Plumes

    Science.gov (United States)

    Harris, A. C.; Kincaid, C.; Savage, B.

    2008-12-01

    To interpret seismic signatures associated with mantle upwellings, we must understand the distribution of thermochemical heterogeneities within mantle plumes. Thermochemical heterogeneities are expected to arise within plumes by the incorporation of subducted lithosphere (Eclogite and Harzburgite) that has reached the plume source region (thermal boundary layers in the mantle). We analyze laboratory experiments in conjunction with seismic velocity models to predict the seismic signature of thermochemical plumes. Laboratory experiments are fully three-dimensional and use glucose syrup (Rayleigh number: 106) to model the mantle and a two-layer subducted lithosphere, where composition (viscosity and density) is controlled by water content. Experiments show heterogeneous upwellings with variations in both temperature and composition that are more complex than predicted in previous plume models. Spatial distributions for temperature and composition in representative, repeatable types of thermochemical upwellings are tracked through time, scaled to mantle values and used to calculate predicted seismic velocities. Apparent seismic velocity signals are estimated for patterns in thermochemical heterogeneity with length scales ranging from 1 to 300 km and excess temperatures from 50 to 300°C. Results show that if plumes are purely thermal they can be identified in the usual way, by slow velocities. However, if plumes are a mixture of compositions, as predicted by laboratory models, their velocity structure is more complex. An Ecolgite lens within a plume at ~300km depth with an excess temperature of 250°C can have the same velocity as regular mantle with no excess temperature. A Harzburgite lobe of a plume head (up to half of the plume volume) at 300km depth with an excess temperature of 225°C can have the same Vs as regular mantle with no excess temperature, but can only mask up to 55°C in Vp. Spatial variations in temperature control velocity structure above 300km

  10. Discovery of Novel Perovskites for Solar Thermochemical Water Splitting from High-Throughput First-Principles Calculations

    Science.gov (United States)

    Emery, Antoine; Wolverton, Chris

    Among the several possible routes of hydrogen synthesis, thermochemical water splitting (TWS) cycles is a promising method for large scale production of hydrogen. The choice of metal oxide used in a TWS cycle is critical since it governs the rate and efficiency of the gas splitting process. In this work, we present a high-throughput density functional theory (HT-DFT) study of ABO3 perovskite compounds to screen for thermodynamically favorable two-step thermochemical water splitting materials. We demonstrate the use of two screens, based on thermodynamic stability and oxygen vacancy formation energy, on 5,329 different compositions to predict 139 stable potential candidate materials for water splitting applications. Several of these compounds have not been experimentally explored yet and present promising avenues for further research. Additionally, the large dataset of compounds and stability in our possession allowed us to revisit the structural maps for perovskites. This study shows the benefit of using first-principles calculations to efficiently screen an exhaustively large number of compounds at once. It provides a baseline for further studies involving more detailed exploration of a restricted number of those compounds.

  11. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    Directory of Open Access Journals (Sweden)

    Brad Seely

    Full Text Available Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine for established stands due to increased moisture stress mortality.

  12. Stage efficiency in the analysis of thermochemical water decomposition processes. [Procedure using the figure of merit is expanded to include individual stage efficiencies and loss coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Conger, W.L.; Funk, J.E.; Carty, R.H.; Soliman, M.A.; Cox, K.E.

    1976-01-01

    The procedure for analyzing thermochemical water-splitting processes using the figure of merit is expanded to include individual stage efficiencies, and loss coefficients. The use of these quantities to establish the thermodynamic inefficiencies of each stage is shown. A number of processes are used to illustrate these concepts and procedures and to demonstrate the facility with which process steps contributing most to the cycle efficiency are found. The procedure allows attention to be directed to those steps of the process where the greatest increase in total cycle efficiency can be obtained.

  13. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  14. Thermochemical heat storage. State-of-the-art report

    Energy Technology Data Exchange (ETDEWEB)

    Oelert, G.; Behret, H.; Friedel, W.; Hennemann, B.; Hodgett, D.; Purper, G.; Nelson, B.; Westermark, M.

    1982-01-01

    In practically all areas of energy conservation R and D (solar, waste heat, heat pumps, production processes) the storage of energy has been identified as a critical requirement in the optimization of systems. The energy storage densities theoretically achievable in thermochemical storage are much higher than those of sensible or latent heat storage and furthermore, thermochemical heat storage (TCHS), in contrast to the two former techniques, has been considered in the past to be theoretically free of heat losses. This project was designed to: characterize the major areas of possible TCHS use in Sweden; analyze the state of TCHS development worldwide; assess the prospects of TCHS in Sweden; and identify TCHS R and D needs as complementary efforts within energy conservation development. The approach, background, and the chemical, technical and social/economical investigations as well as the overall assessment of TCHS technology and the R and D recommendations are compiled in this report. The result of the study shows that the economy for long term thermochemical heat storage is not very favorable. However, this is true for any long term storage under the assumption that oil will be available at a reasonable price even at the end of this century. If by then oil is not available at all for heating of buildings, it is important to know what other systems can possibly be used. An important conclusion of the study is that practical design problems have often been underestimated. It is also clear that it could still be worthwhile to continue work on some systems.

  15. Estimating Equivalency of Explosives Through A Thermochemical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L

    2002-07-08

    The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, and show comparisons with equivalency data from other sources.

  16. Non-equilibrium thermochemical heat storage in porous media

    DEFF Research Database (Denmark)

    Nagel, T.; Shao, H.; Singh, Ashok

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also...... compressible gas flow through a porous solid is presented along with its finite element implementation where solid-gas reactions occur and both phases have individual temperature fields. The model is embedded in the Theory of Porous Media and the derivation is based on the evaluation of the Clausius...

  17. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After pre-

  18. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment

    Science.gov (United States)

    Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale

    2011-01-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...

  19. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    DEFF Research Database (Denmark)

    Rafique, Rashad; Poulsen, Tjalfe; Nizami, Abdul-Sattar

    2010-01-01

    -treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 degrees C-150 degrees C). Results showed that thermo-chemical pretreatment has high effect...

  20. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  1. Low temperature thermochemical treatment of stainless steel; bridging from science to technology

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the fundamental scientific aspects of low temperature thermochemical treatment of stainless steel, in particular the characterisation of socalled expanded austenite is addressed. Selected technological examples of thermochemical treatment...... of stainless steel are presented....

  2. ABO3 (A = La, Ba, Sr, K; B = Co, Mn, Fe) perovskites for thermochemical energy storage

    Science.gov (United States)

    Babiniec, Sean M.; Coker, Eric N.; Ambrosini, Andrea; Miller, James E.

    2016-05-01

    The use of perovskite oxides as a medium for thermochemical energy storage (TCES) in concentrating solar power systems is reported. The known reduction/oxidation (redox) active perovskites LaxSr1-xCoyMn1-yO3 (LSCM) and LaxSr1-xCoyFe1-yO3 (LSCF) were chosen as a starting point for such research. Materials of the LSCM and LSCF family were previously synthesized, their structure characterized, and thermodynamics reported for TCES operation. Building on this foundation, the reduction onset temperatures are examined for LSCM and LSCF compositions. The reduction extents and onset temperatures are tied to the crystallographic phase and reaction enthalpies. The effect of doping with Ba and K is discussed, and the potential shortcomings of this subset of materials families for TCES are described. The potential for long-term stability of the most promising material is examined through thermogravimetric cycling, scanning electron microscopy, and dilatometry. The stability over 100 cycles (450-1050 °C) of an LSCM composition is demonstrated.

  3. 太阳能热化学储能研究进展%Research progress of solar thermochemical energy storage

    Institute of Scientific and Technical Information of China (English)

    吴娟; 龙新峰

    2014-01-01

    should be focused on design of energy storage reactor,cycle performance investigation in the energy storage and release process,selection of appropriate energy storage system and scale-up study of thermochemical energy storage system.

  4. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment (LCA) model combining Process LCA and Economic Input-Output LCA.

    Science.gov (United States)

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2017-08-10

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far only focused on the environmental impacts from direct emissions and included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one media to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer and human health non-cancer, caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 gCO2-eq /MJ) of the biofuels are still less than those of petroleum-based fuels (94 gCO2-eq /MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except the eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and can't be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environment impacts of the biofuels more

  5. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Daniel

    2011-11-11

    In the first part of this thesis the methodics of the non-collinear, optically parametric amplification of chirped light pulses (NOPCPA) for the generation of few-cycle light pulses in the visible (Vis) and near infrared (NIR) with of 5-8 fs half-width are essential further developed. Fundamental parametric influences, like the existence of a parametrically induced phase and the generation of optically parametric fluorescence (OPF), are studied both by theoretical analyses and numerical simulations and by concrete experiments. Experimentally in the framework of this thesis fwe-cycle light pulses with a pulse width of 7.9 fs, 130 mJ energy, at 805 nm central wavelength and a very high seed-pulse-limited prepulse contrast of 11 and 8 orders of magnitude are reached at 30 ps and approximately 3 ps. One the one hand it has been succeeded to accelerate with the broad-band pulse amplifier quasi-monoenergetic electrons with energies of up to 50 MeV. For this the light pulse is focussed to relativistic intensities of several W/cm{sup 2} in a helium gas jet. On the other hand XUV light was produced up to the 20th harmonic of the generated light pulse from the broad-band pulse amplifier by its sub-cycle interaction with solid surfaces. In the framework of this thesis furthermore new, extended concepts for still broader-band NOPCPA over one octave were developed and characterized, which contain the application of two pump pulses in one NOPCPA stage and the application of two different pump wavelength in two subsequent NOPCPA stages. In the second part of this thesis broad-band white-light spectra and by means of NOPCPA spectrally tunable light pulses are applied in order to realize a transient absorption spectrometer with multichannel detection. This new excitation-query construction combines a very broad-band UV-Vis-NIR query with a high time resolution of 40 fs and high sensitivity for the transient change of the optical density of less than 10{sup -4}. By this it has in

  6. Fes cycling

    Directory of Open Access Journals (Sweden)

    Berkelmans Rik

    2008-01-01

    Full Text Available Many research with functional electrical stimulation (FES has been done to regain mobility and for health benefits. Better results have been reported for FES-cycling than for FES-walking. The majority of the subjects during such research are people with a spinal cord injury (SCI, cause they often lost skin sensation. Besides using surface stimulation also implanted stimulators can be used. This solves the skin sensation problem, but needs a surgery. Many physiological effects of FES-cycling has been reported, e.g., increase of muscles, better blood flow, reduction of pressure ulcers, improved self-image and some reduction of bone mineral density (BMD loss. Also people with an incomplete SCI benefit by FES-cycling, e.g. cycling time without FES, muscle strength and also the walking abilities increased. Hybrid exercise gives an even better cardiovascular training. Presently 4 companies are involved in FES-cycling. They all have a stationary mobility trainer. Two of them also use an outdoor tricycle. One combined with voluntary arm cranking. By optimizing the stimulation parameters the power output and fatigue resistance will increase, but will still be less compared to voluntary cycling.

  7. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    Science.gov (United States)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  8. Interaction of stress and phase transformations during thermochemical surface engineering

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard

    Low temperature nitriding of austenitic stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. During nitriding huge residual stresses are introduced in the treated zone, arising from the volume...... expansion that accompanies the dissolution of high nitrogen contents in expanded austenite. An intriguing phenomenon during low-temperature nitriding, is that the residual stresses evoked by dissolution of nitrogen in the solid state, affect the thermodynamics and the diffusion kinetics of nitrogen...... dissolution. The present project is devoted to understanding the mutual interaction of stresses and phase transformations during thermochemical surface engineering by combining numerical modelling with experimental materials science. The modelling was done by combining solid mechanics with thermodynamics...

  9. Thermo-Chemical Convection in Europa's Icy Shell with Salinity

    Science.gov (United States)

    Han, L.; Showman, A. P.

    2005-01-01

    Europa's icy surface displays numerous pits, uplifts, and chaos terrains that have been suggested to result from solid-state thermal convection in the ice shell, perhaps aided by partial melting. However, numerical simulations of thermal convection show that plumes have insufficient buoyancy to produce surface deformation. Here we present numerical simulations of thermochemical convection to test the hypothesis that convection with salinity can produce Europa's pits and domes. Our simulations show that domes (200-300 m) and pits (300-400 m) comparable to the observations can be produced in an ice shell of 15 km thick with 5-10% compositional density variation if the maximum viscosity is less than 10(exp 18) Pa sec. Additional information is included in the original extended abstract.

  10. Characteristics of thermochemical treated EN10090 X50 steel

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, S.; Graf, K.; Scheid, A., E-mail: scheid@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Moreno, A. [SDS Plasma, Sao Jose dos Pinhais, PR (Brazil)

    2014-07-01

    EN10090 X50 steel is commonly used for engine valves to withstand severe operation conditions involving high temperature and corrosion from fuel and combustion gas. Usually, to enhance wear performance, valves undergo nitriding thermochemical treatment by salt baths. The aim of this work is to produce diffusion layers at least 20μm thick with hardness higher than 700HV by plasma surface treatment with no continuous compounds layer using nitrogen and methane based atmospheres. Samples were characterized by laser Confocal and scanning electron microscopy, X-ray diffraction and Vickers hardness. Salt bath treatment induced formation of undesirable compounds layer at the surface and a diffusion layer thicker than 40μm, with hardness arising 1280HV{sub 0,010}. Plasma surface treatment produced diffusion layer thicker than 40μm with no continuous compounds layer and mean hardness varying from 750 to 960HV{sub 0,010}. (author)

  11. Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    The incorporation of nitrogen or carbon in steel is widely applied to provide major improvements in materials performance with respect to fatigue, wear, tribology and atmospheric corrosion. These improvements rely on a modification of the surface adjacent region of the material, by the (internal......) precipitation of alloying element nitrides/carbides or by the development of a continuous layer of iron-based (carbo-) nitrides. The evolution of the microstructure during thermochemical treatments is not only determined by solid state diffusion, but in many cases also by the kinetics of the surface reactions...... and the interplay with mechanical stress. In the present article a few examples, covering research on the interaction of carbon and/or nitrogen with iron-based metals, are included to illustrate the various aspects of gas-metal interactions....

  12. Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres

    CERN Document Server

    Blecic, Jasmina

    2016-01-01

    This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...

  13. An approach to thermochemical modeling of nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Beahm, E.C. [Oak Ridge National Lab., TN (United States); Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)

    1998-11-01

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-realistic conditions designed to accelerate processes that occur on a geologic time scale. The often-used assumption that the activity of a species is either unity or equal to the overall concentration of the metal can also yield misleading results. The associate species model, a recent development in thermochemical modeling, will be applied to these systems to more accurately predict chemical activities in such complex systems as waste glasses.

  14. Non-equilibrium thermochemical heat storage in porous media

    DEFF Research Database (Denmark)

    Nagel, T.; Shao, H.; Singh, Ashok

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also...... compressible gas flow through a porous solid is presented along with its finite element implementation where solid-gas reactions occur and both phases have individual temperature fields. The model is embedded in the Theory of Porous Media and the derivation is based on the evaluation of the Clausius......-Duhem inequality. Special emphasis is placed on the interphase coupling via mass, momentum and energy interaction terms and their effects are partially illustrated using numerical examples. Novel features of the implementation of the described model are verified via comparisons to analytical solutions...

  15. Thermochemical Nonequilibrium Analysis of Oxygen in Shock Tube Flows

    Science.gov (United States)

    Neitzel, Kevin; Kim, Jae Gang; Boyd, Iain D.

    The successful development of hypersonic vehicles requires a detailed knowledge of the flow physics around the vehicle. The physics knowledge and modeling confidence drives the development of the major vehicle flight systems including the thermal protection system and flight control system. Specifically, an understanding of the thermochemical nonequilibrium behavior is crucial for this flight regime. The hypersonic flight regime involves an extremely high level of energy so a small error in the modeling of the energy processes can result in drastic changes in the vehicle design, including prohibitive design requirements. This emphasizes the need for a deep understanding of the underlying flow phenomena and molecular energy transfer processes in order to adequately design a hypersonic vehicle computationally.

  16. Thermochemical treatment of biogas digestate solids to produce organic fertilisers

    DEFF Research Database (Denmark)

    Pantelopoulos, Athanasios

    Anaerobic digestion of animal manures has been proposed as a process with twofold advantage. The production of biogas, a renewable source of energy, and the treatment of animal manures to increase their agronomic value and reduce their environmental impact. However, the residual of anaerobic...... velocity during thermal treatment influence the evaporation rate of water from the manure solids. At the same time, they also influence the ammonia emission rates, Lowering manure pH (controlling the NH4+ - NH3 equilibrium) can potentially reduce the loss rate. Furthermore, the changes occurring...... digestate nitrogen content (Paper I), ii) determine their C and N dynamics after soil incorporation (Paper II) and iii) assess the plant N and P uptake of ryegrass amended with different thermochemical treatments of the solids (Paper III). For a more mechanistic understanding of the processes involved...

  17. Thermochemical and thermophysical properties of alkaline-earth perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Shinsuke [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan)]. E-mail: yamanaka@nucl.eng.osaka-u.ac.jp; Kurosaki, Ken [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Maekawa, Takuji [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Matsuda, Tetsushi [Nuclear Fuel Industries, Ltd., Ohaza-Noda 950, Kumatori-cho, Sennan-gun, Osaka 590-0481 (Japan); Kobayashi, Shin-ichi [Nuclear Fuel Industries, Ltd., Ohaza-Noda 950, Kumatori-cho, Sennan-gun, Osaka 590-0481 (Japan); Uno, Masayoshi [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan)

    2005-09-01

    In order to contribute to safety evaluation of high burnup oxide fuels, we studied the thermochemical and thermophysical properties of alkaline-earth perovskites known as oxide inclusions. Polycrystalline samples of alkaline-earth perovskites, BaUO{sub 3}, BaZrO{sub 3}, BaCeO{sub 3}, BaMoO{sub 3}, SrTiO{sub 3}, SrZrO{sub 3}, SrCeO{sub 3}, SrMoO{sub 3}, SrHfO{sub 3} and SrRuO{sub 3}, were prepared and the thermal expansion coefficient, melting temperature, elastic moduli, Debye temperature, microhardness, heat capacity, and thermal conductivity were measured. The relationship between some physical properties was studied.

  18. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Naoya [Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki, E-mail: miyaoka@h2.hiroshima-u.ac.jp [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2013-12-15

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition.

  19. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    Science.gov (United States)

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-07-01

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint.

  20. Thermochemical Study of Coordination of Holmium Chloride Hydrate with Diethylammonium Diethyldithiocarbamate

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-qi; CHEN San-ping; JIAO Bao-juan; REN Yi-xia; GAO Sheng-li; SHI Qi-zhen

    2004-01-01

    The complex of holmium chloride hydrate with diethylammonium diethyldithiocarbamate(D-DDC) was synthesized via mixing their solutions in absolute alcohol under a dry N2 atmosphere. The elemental and chemical analyses show that the complex has the general formula Et2NH2[Ho(S2CNEt2)4]. It was also characterized by IR spectroscopy. The enthalpies of the dissolution of holmium chloride hydrate and D-DDC in absolute alcohol at 298.15 K, and the enthalpy changes of liquid-phase reactions of the formation of Et2NH2[Ho(S2CNEt2)4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters(the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters(the apparent activation energy, the pre-exponential constant and the reaction order) of the liquid-phase reaction of the complex formation were obtained. The enthalpy change of the solid-phase complex formation reaction at 298.15 K was calculated by means of a thermochemical cycle.

  1. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  2. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  3. RELAÇÕES HÍDRICAS EM DOIS HÍBRIDOS DE MILHO SOB DOIS CICLOS DE DEFICIÊNCIA HÍDRICA WATER RELATIONS IN TWO HYBRIDS OF CORN UNDER TWO CYCLES OF WATER STRESS

    Directory of Open Access Journals (Sweden)

    CARLOS PIMENTEL

    1999-11-01

    Full Text Available Neste trabalho foram estudadas as relações hídricas de dois híbridos de milho (Zea mays L., em casa de vegetação: o IAC 8222 (híbrido com tolerância ambiental e o DINA 10 (híbrido comum; submetidos a um ou a dois ciclos de estresse, aos 30 e 46 DAP. O IAC 8222 manteve o potencial hídrico de folha (psihf superior ao do DINA no primeiro ciclo de estresse e no segundo ciclo, em plantas que sofreram os dois ciclos (com endurecimento, no sexto e último dia de deficiência hídrica, não havendo diferenças em relação ao conteúdo hídrico relativo (CHR entre os híbridos. Houve um aumento da concentração de açúcares solúveis e de aminoácidos com a deficiência hídrica, sem diferenças entre os híbridos no primeiro ciclo de déficit hídrico, e com aumento significativo somente na concentração de aminoácidos no DINA 10 submetido aos dois ciclos, no último dia do segundo ciclo. A concentração de K+ não variou nem com os ciclos nem entre híbridos. Portanto, só houve diferenças na acumulação de solutos osmóticos entre os híbridos, quanto ao teor de aminoácidos no DINA 10 submetido aos dois ciclos, no segundo ciclo. Contudo, o IAC 8222 manteve o seu psihf alto, podendo ter promovido um ajuste do coeficiente de extensibilidade de parede, que foi acentuado com o endurecimento.A study was conducted to evaluate the water relations of two corn (Zea mays L. hybrids in a greenhouse experiment: IAC 8222 (hybrid adapted to environmental stress and DINA 10 (common hybrid, under one or two cycles of water stress applied at 30 and 46 days after sowing. During the first water deficit cycle, and at the second cycle for plants submitted to both cycles, the leaf water potential (psihf of IAC 8222 was higher than the psihf of DINA 10, at the 6th and last day of water stress, with no difference for the relative water content (CHR between the hybrids. The soluble sugars and amino acids accumulated during the water stress, but no

  4. Performance Analysis of a Modified Novel Absorption-compression Hybrid GAX Cycle%一种改进的吸收-压缩混合GAX制冷循环理论性能分析

    Institute of Scientific and Technical Information of China (English)

    陈光明; 石玉琦; 洪大良

    2016-01-01

    吸收式制冷是热能利用的重要形式之一,氨吸收式制冷中的 GAX(发生–吸收热交换器)循环具有相对较高的效率,吸收–压缩耦合的混合GAX循环可以进一步提高GAX循环效率。为了应对GAX循环中GAXA(发生–吸收热交换器吸收器)和GAXG(发生–吸收热交换器发生器)热量匹配问题,提出了一个改进的吸收–压缩混合 GAX 循环。研究了蒸发温度、冷凝温度、放气范围和换热温差对新循环和基础GAX 循环的影响。新循环较基础 GAX 循环性能在大部分工况下有显著提升,COP 提高可达30%以上,尽管如此,模拟现实新循环仍具有一定的适用范围。%Absorption refrigeration is one of the most important method on utilizing thermal energy. GAX (generator-absorber heat exchanger) cycle has a relatively high performance in ammonia absorption refrigeration family. Absorption-compression coupled hybrid GAX cycle can further improve the efficiency of GAX cycle. In order to solve the heat marching problem of GAXA (generator-absorber heat exchanger absorber) and GAXG (generator-absorber heat exchanger generator) heat exchangers, a modified novel absorption-compression hybrid GAX cycle was proposed. Effect of evaporation temperature, cooling temperature, degassing range and approach temperature on performance of new cycle and basic GAX cycle was studied. Performance of new cycle has a significant improvement, compared to basic GAX cycle, which 30% improvement can be achieved. Nevertheless, the scope of application of the new cycle varies with working conditions.

  5. Ceria based inverse opals for thermochemical fuel production: Quantification and prediction of high temperature behavior

    Science.gov (United States)

    Casillas, Danielle Courtney

    Solar energy has the potential to supply more than enough energy to meet humanity's energy demands. Here, a method for thermochemical solar energy storage through fuel production is presented. A porous non-stoichiometric oxide, ceria, undergoes partial thermal reduction and oxidation with concentrated solar energy as a heat source, and water as an oxidant. The resulting yields for hydrogen fuel and oxygen are produced in two discrete steps, while the starting material maintains its original phase. Ordered porosity has been shown superior to random porosity for thermochemical fuel production applications, but stability limits for these structures are currently undefined. Ceria-based inverse opals are currently being investigated to assess the architectural influence on thermochemical hydrogen production. Low tortuosity and continuous interconnected pore network allow for facile gas transport and improved reaction kinetics. Ceria-based ordered materials have recently been shown to increase maximum hydrogen production over non-ordered porous ceria. Thermal stability of ordered porosity was quantified using quantitative image analysis. Fourier analysis was applied to SEM images of the material. The algorithm results in an order parameter gamma that describes the degree of long range order maintained by these structures, where gamma>4 signifies ordered porosity. According to this metric, a minimum zirconium content of 20 atomic percent (at%) is necessary for these architectures to survive aggressive annealing up to 1000°C. Zirconium substituted ceria (ZSC) with Zr loadings in excess of 20at% developed undesired tetragonal phases. Through gamma, we were able to find a balance between the benefit of zirconium additions on structural stability and its negative impact on phase. This work demonstrates the stability of seemingly delicate architectures, and the operational limit for ceria based inverse opals to be 1000°C for 1microm pore size. Inverse opals having sub

  6. Current hybrid-electric powertrain architectures:Applying empirical design data to life cycle assessment and whole-life cost analysis

    OpenAIRE

    Hutchinson, Timothy W; Burgess, Stuart C; Herrmann, Guido

    2014-01-01

    The recent introduction of hybrid-electric powertrain technology has disrupted the automotive industry, causing significant powertrain design divergence. As this radical powertrain innovation matures, will hybrid vehicles dominate the future automotive market and does this represent a positive shift in the environmental impact of the industry? The answer to this question is sought within this paper. It seeks to take advantage of the position that the industry has reached, replacing previous t...

  7. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).

    Energy Technology Data Exchange (ETDEWEB)

    Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

    2005-07-29

    The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

  8. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    NARCIS (Netherlands)

    Woitke, P.; Kamp, I.; Thi, W. -F.

    Context. Emission lines from protoplanetary disks originate mainly in the irradiated surface layers, where the gas is generally warmer than the dust. Therefore, interpreting emission lines requires detailed thermo-chemical models, which are essential to converting line observations into

  9. Thermochemical Ablation Therapy of VX2 Tumor Using a Permeable Oil-Packed Liquid Alkali Metal

    OpenAIRE

    2015-01-01

    Objective Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors. Methods Permeable oil-packed sodium–potassium (NaK) was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluat...

  10. Enhanced Adhesion of Continuous Nanoporous Au Layers by Thermochemical Oxidation of Glassy Carbon

    Directory of Open Access Journals (Sweden)

    Lori Ana Bromberg

    2014-07-01

    Full Text Available The fabrication of a nanoporous gold (NPG-based catalyst on a glassy carbon (GC support results normally in large isolated and poorly adhering clusters that suffer considerable material loss upon durability testing. This work exploits thermochemical oxidation of GC, which, coupled with the utilization of some recent progress in fabricating continuous NPG layers using a Pd seed layer, aims to enhance the adhesion to the GC surface. Thermochemical oxidation causes interconnected pores within the GC structure to open and substantially improves the wettability of the GC surface, which are both beneficial toward the improvement of the overall quality of the NPG deposit. It is demonstrated that thermochemical oxidation neither affects the efficiency of the Au0.3Ag0.7 alloy (NPG precursor deposition nor hinders the achievement of continuity in the course of the NPG fabrication process. Furthermore, adhesion tests performed by a rotating disk electrode setup on deposits supported on thermochemically-oxidized and untreated GCs ascertain the enhanced adhesion on the thermochemically-oxidized samples. The best adhesion results are obtained on a continuous NPG layer fabricated on thermochemically-oxidized GC electrodes seeded with a dense network of Pd clusters.

  11. Hybrid propulsion technology program

    Science.gov (United States)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  12. Thermochemical Fragment Energy Method for Biomolecules: Application to a Collagen Model Peptide.

    Science.gov (United States)

    Suárez, Ernesto; Díaz, Natalia; Suárez, Dimas

    2009-06-09

    Herein, we first review different methodologies that have been proposed for computing the quantum mechanical (QM) energy and other molecular properties of large systems through a linear combination of subsystem (fragment) energies, which can be computed using conventional QM packages. Particularly, we emphasize the similarities among the different methods that can be considered as variants of the multibody expansion technique. Nevertheless, on the basis of thermochemical arguments, we propose yet another variant of the fragment energy methods, which could be useful for, and readily applicable to, biomolecules using either QM or hybrid quantum mechanical/molecular mechanics methods. The proposed computational scheme is applied to investigate the stability of a triple-helical collagen model peptide. To better address the actual applicability of the fragment QM method and to properly compare with experimental data, we compute average energies by carrying out single-point fragment QM calculations on structures generated by a classical molecular dynamics simulation. The QM calculations are done using a density functional level of theory combined with an implicit solvent model. Other free-energy terms such as attractive dispersion interactions or thermal contributions are included using molecular mechanics. The importance of correcting both the intermolecular and intramolecular basis set superposition error (BSSE) in the QM calculations is also discussed in detail. On the basis of the favorable comparison of our fragment-based energies with experimental data and former theoretical results, we conclude that the fragment QM energy strategy could be an interesting addition to the multimethod toolbox for biomolecular simulations in order to investigate those situations (e.g., interactions with metal clusters) that are beyond the range of applicability of common molecular mechanics methods.

  13. Observation of a new turbulence-driven limit-cycle state in H-modes with lower hybrid current drive and lithium-wall conditioning in the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Guo, H.Y.;

    2012-01-01

    -frequency oscillation, termed a limit-cycle state, appears at the edge during the quiescent phase with good energy and particle confinement. Detailed measurements by edge Langmuir probes show modulation interaction and strong three-wave coupling between the low-frequency oscillations and high-frequency-broadband (80......The first high confinement H-mode plasma has been obtained in the Experimental Advanced Superconducting Tokamak (EAST) with about 1 MW lower hybrid current drive after wall conditioning by lithium evaporation and real-time injection of Li powder. Following the L–H transition, a small-amplitude, low....... And the measurements demonstrate that the energy gain of zonal flows is of the same order as the energy loss of turbulence. This strongly suggests the interactions between zonal flows and high-frequency turbulences at the pedestal during the limit-cycle state....

  14. Hybrid wind-PV-diesel system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland

    OpenAIRE

    Gan, Leong Kit; Shek, Jonathan; Mueller, Markus

    2015-01-01

    The concept of off-grid hybrid wind energy system is financially attractive and more reliable than stand-alone power systems since it is based on more than one electricity generation source. One of the most expensive components in a stand-alone wind-power system is the energy storage system as very often it is oversized to increase system autonomy. In this work, we consider a hybrid system which consists of wind turbines, photovoltaic panels, diesel generator and battery storage. One of the m...

  15. Thermochemical scanning probe lithography of protein gradients at the nanoscale

    Science.gov (United States)

    Albisetti, E.; Carroll, K. M.; Lu, X.; Curtis, J. E.; Petti, D.; Bertacco, R.; Riedo, E.

    2016-08-01

    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro.

  16. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  17. Environmental impacts of thermochemical biomass conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  18. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  19. Thermochemical hydrogen generation of indium oxide thin films

    Science.gov (United States)

    Lim, Taekyung; Ju, Sanghyun

    2017-03-01

    Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD) and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  20. Testing of an advanced thermochemical conversion reactor system

    Science.gov (United States)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.

  1. Thermochemical Properties and Decomposition Kinetics of Ammonium Magnesium Phosphate Monohydrate

    Institute of Scientific and Technical Information of China (English)

    WU,Jian; YUAN,Ai-Qun; HUANG,Zai-Yin; TONG,Zhang-Fa; CHEN,Jie; LIANG,Rong-Lan

    2007-01-01

    Ammonium magnesium phosphate monohydrate NH4MgPO4·H2O was prepared via solid state reaction at room temperature and characterized by XRD, FT-IR and SEM. Thermochemical study was performed by an isoperibol solution calorimeter, non-isothermal measurement was used in a multivariate non-linear regression analysis to determine the kinetic reaction parameters. The results show that the molar enthalpy of reaction above is (28.795±0.182) kJ/mol (298.15 K), and the standard molar enthalpy of formation of the title complex is (-2185.43±13.80)kJ/mol (298.15 K). Kinetics analysis shows that the second decomposition of NH4MgPO4·H2O acts as a double-step reaction: an nth-order reaction (Fn) with n=4.28, E1=147.35 kJ/mol, A1=3.63×1013 s-1 is followed by a second-order reaction (F2) with E2=212.71 kJ/mol, A2= 1.82×1018 s-1.

  2. A Thermo-Chemical Reactor for analytical atomic spectrometry

    Science.gov (United States)

    Gilmutdinov, A. Kh.; Nagulin, K. Yu.

    2009-01-01

    A novel atomization/vaporization system for analytical atomic spectrometry is developed. It consists of two electrically and thermally separated parts that can be heated separately. Unlike conventional electrothermal atomizers in which atomization occurs immediately above the vaporization site and at the same instant of time, the proposed system allows analyte atomization via an intermediate stage of fractional condensation as a two stage process: Vaporization → Condensation → Atomization. The condensation step is selective since vaporized matrix constituents are mainly non-condensable gases and leave the system by diffusion while analyte species are trapped on the cold surface of a condenser. This kind of sample distillation keeps all the advantages of traditional electrothermal atomization and allows significant reduction of matrix interferences. Integration into one design a vaporizer, condenser and atomizer gives much more flexibility for in situ sample treatment and thus the system is called a Thermo-Chemical Reactor (TCR). Details of the design, temperature measurements, vaporization-condensation-atomization mechanisms of various elements in variety of matrices are investigated in the TCR with spectral, temporal and spatial resolution. The ability of the TCR to significantly reduce interferences and to conduct sample pyrolysis at much higher temperatures as compared to conventional electrothermal atomizers is demonstrated. The analytical potential of the system is shown when atomic absorption determination of Cd and Pb in citrus leaves and milk powder without the use of any chemical modification.

  3. Design Principles of Perovskites for Thermochemical Oxygen Separation.

    Science.gov (United States)

    Ezbiri, Miriam; Allen, Kyle M; Gàlvez, Maria E; Michalsky, Ronald; Steinfeld, Aldo

    2015-06-08

    Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar-driven synthesis of liquid hydrocarbon fuels from CO2 , H2 O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through "thermochemical pumping" of O2 against a pO2 gradient with low-grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high-temperature X-ray diffraction for SrCoO3-δ , BaCoO3-δ and BaMnO3-δ perovskites and Ag2 O and Cu2 O references confirm the predicted performance of SrCoO3-δ , which surpasses the performance of state-of-the-art Cu2 O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3-δ(-1) exchanged at 12.1 μmol O 2 min(-1)  g(-1) at 600-900 K. The redox trends are understood due to lattice expansion and electronic charge transfer.

  4. A thermochemically derived global reaction mechanism for detonation application

    Science.gov (United States)

    Zhu, Y.; Yang, J.; Sun, M.

    2012-07-01

    A 4-species 4-step global reaction mechanism for detonation calculations is derived from detailed chemistry through thermochemical approach. Reaction species involved in the mechanism and their corresponding molecular weight and enthalpy data are derived from the real equilibrium properties. By substituting these global species into the results of constant volume explosion and examining the evolution process of these global species under varied conditions, reaction paths and corresponding rates are summarized and formulated. The proposed mechanism is first validated to the original chemistry through calculations of the CJ detonation wave, adiabatic constant volume explosion, and the steady reaction structure after a strong shock wave. Good agreement in both reaction scales and averaged thermodynamic properties has been achieved. Two sets of reaction rates based on different detailed chemistry are then examined and applied for numerical simulations of two-dimensional cellular detonations. Preliminary results and a brief comparison between the two mechanisms are presented. The proposed global mechanism is found to be economic in computation and also competent in description of the overall characteristics of detonation wave. Though only stoichiometric acetylene-oxygen mixture is investigated in this study, the method to derive such a global reaction mechanism possesses a certain generality for premixed reactions of most lean hydrocarbon mixtures.

  5. Testing of an advanced thermochemical conversion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  6. Two cycles of recurrent maternal half-sib selection reduce foliar late blight in a diploid hybrid Solanum phureja-S. stenotomum population by two-thirds

    Science.gov (United States)

    Foliar late blight, caused by Phytophthora infestans, is an important disease problem worldwide. Foliar resistance to late blight was found in a hybrid population of the cultivated diploid species Solanum phureja-S. stenotomum (phu-stn). The objective of this study was to determine if resistance t...

  7. Effects of One Cycle of Recurrent Selection for Early Blight Resistance in a Diploid Hybrid Solanum phureja-S. stenotomum Population

    Science.gov (United States)

    Early blight, caused by Alternaria solani, is the second most important foliar disease in potatoes, after late blight, around the world. Heritable early blight resistance was previously identified in a diploid hybrid population of Solanum phureja-S. stenotomum (phu-stn). Seventy-two clones, consis...

  8. Ex situ Annual Egg—Laying Cycles of Rhinoclemmys melanosterna, R. diademata and their Hybrids (Reptilia: Testudines: Emydidae: Batagurinae Ciclos de postura anual ex situ de Rhinoclemmys melanosterna, R. diademata y de sus hibridos (Reptilia: Testudines: Emydidae: Batagurinae

    Directory of Open Access Journals (Sweden)

    Ramírez-Perilla Jaime

    2005-12-01

    Full Text Available R. melanosterna, R. diademata and their hybrids (R. melanosterna x R. diademata present annual continuous egg-laying cycles with maximum frequency during the rainy season. The period of maximal annual egg-laying for hybrid R. melanosterna x R. diademata is earlier than its parents. Aparently there is not direct relation between the ad libitum food offer and Rhinoclemmys sp egg-laying cycles.Registros históricos de postura ex situ de huevos de tortugas del género Rhinoclemmys en la Estación de Biología Tropical Roberto Franco (EBTRF, correspondientes a los años 1991-1999, fueron analizados en relación con factores climáticos locales. Rhinoclemmys melanosterna, Rhinoclemmys diademata y sus híbridos presentan ciclos de postura continuos durante el año con máxima frecuencia durante la estación lluviosa. La época de postura máxima durante un ciclo anual del híbrido R. melanosterna x R. diademata es más temprana que la de sus progenitores de origen. No parece existir relación directa entre la oferta de alimento ad libitum y los ciclos de postura de Rhinoclemmys sp.

  9. Fast field cycling NMR relaxometry characterization of biochars obtained from an industrial thermochemical process

    Energy Technology Data Exchange (ETDEWEB)

    De Pasquale, Claudio; Marsala, Valentina; Alonzo, Giuseppe; Conte, Pellegrino [Universita degli Studi di Palermo (Italy). Dipt. dei Sistemi Agro-Ambientali; Berns, Anne E. [Forschungszentrum Juelich GmbH (Germany). Inst. of Bio- and Geosciences (IBG-3); Valagussa, Massimo [M.A.C. Minoprio Analisi e Certificazioni S.r.l., Vertemate con Minoprio, CO (Italy); Pozzi, Alessandro [A.G.T. Advanced Gasification Technology S.r.l., Arosio, CO (Italy)

    2012-09-15

    Purpose: Biochar has unique properties which make it a powerful tool to increase soil fertility and to contribute to the decrease of the amount of atmospheric carbon dioxide through the mechanisms of C sequestration in soils. Chemical and physical biochar characteristics depend upon the technique used for its production and the biomass nature. For this reason, biochar characterization is very important in order to address its use either for agricultural or environmental purposes. Materials and methods: Three different biochars obtained from an industrial gasification process were selected in order to establish their chemical and physical peculiarities for a possible use in agronomical practices. They were obtained by charring residues from the wine-making industry (marc) and from poplar and conifer forests. Routine analyses such as pH measurements, elemental composition, and ash and metal contents were performed together with the evaluation of the cross-polarization magic angle spinning (CPMAS) {sup 13}C NMR spectra of all the biochar samples. Finally, relaxometry properties of water-saturated biochars were retrieved in order to obtain information on pore size distribution. Results and discussion: All the biochars revealed basic pH values due to their large content of alkaline metals. The quality of CPMAS {sup 13}C NMR spectra, which showed the typical signal pattern for charred systems, was not affected by the presence of paramagnetic centers. Although paramagnetism was negligible for the acquisition of solid state spectra, it was effective in some of the relaxometry experiments. For this reason, no useful information could be retrieved about water dynamics in marc char. Conversely, both relaxograms and nuclear magnetic resonance dispersion profiles of poplar and conifer chars indicated that poplar char is richer in small-sized pores, while larger pores appear to be characteristic for the conifer char. Conclusions: This study showed the potential of relaxometry in revealing chemical-physical information on industrially produced biochar. This knowledge is of paramount importance to properly direct biochar agronomical uses. (orig.)

  10. Liquid fuel utilization in SOFC hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Marco; Traverso, Alberto; Magistri, Loredana [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2009-10-15

    The interest in solid oxide fuel cell systems comes from their capability of converting the chemical energy of traditional fuels into electricity, with high efficiency and low pollutant emissions. In this paper, a study of the design space of solid oxide fuel cell and gas turbine hybrids fed by methanol and kerosene is presented for stationary power generation in isolated areas (or transportation). A 500 kW class hybrid system was analysed using WTEMP original software developed by the Thermochemical Power Group of the University of Genoa. The choice of fuel-processing strategy and the influence of the main design parameters on the thermoeconomic characteristics of hybrid systems were investigated. The low capital and fuel cost of methanol systems make them the most attractive solutions among those investigated here. (author)

  11. Cycle killer... qu'est-ce que c'est? On the comparative approximability of hybridization number and directed feedback vertex set

    CERN Document Server

    Kelk, Steven; Lekic, Nela; Linz, Simone; Scornavacca, Celine; Stougie, Leen

    2011-01-01

    We show that the problem of computing the hybridization number of two rooted binary phylogenetic trees on the same set of taxa X has a constant factor polynomial-time approximation if and only if the problem of computing a minimum-size feedback vertex set in a directed graph (DFVS) has a constant factor polynomial-time approximation. The latter problem, which asks for a minimum number of vertices to be removed from a directed graph to transform it into a directed acyclic graph, is one of the problems in Karp's seminal 1972 list of 21 NP-complete problems. However, despite considerable attention from the combinatorial optimization community it remains to this day unknown whether a constant factor polynomial-time approximation exists for DFVS. Our result thus places the (in)approximability of hybridization number in a much broader complexity context, and as a consequence we obtain that hybridization number inherits inapproximability results from the problem Vertex Cover. On the positive side, we use results fro...

  12. Thermochemical Evolution of Earth's Core with Magnesium Precipitation

    Science.gov (United States)

    O'Rourke, J. G.; Stevenson, D. J.

    2014-12-01

    Vigorous convection within Earth's outer core drives a dynamo that has sustained a global magnetic field for at least 3.5 Gyr. Traditionally, people invoke three energy sources for the dynamo: thermal convection from cooling and freezing, compositional convection from light elements expelled by the growing inner core, and, perhaps, radiogenic heating from potassium-40. New theoretical and experimental work, however, indicates that the thermal and electrical conductivities of the outer core may be as much as three times higher than previously assumed. The implied increase in the adiabatic heat flux casts doubt on the ability of the usual mechanisms to explain the dynamo's longevity. Here, we present a quantitative model of the crystallization of magnesium-bearing minerals from the cooling core—a plausible candidate for the missing power source. Recent diamond-anvil cell experiments suggest that magnesium can partition into core material if thermodynamic equilibrium is achieved at high temperatures (>5000 K). We develop a model for core/mantle differentiation in which most of the core forms from material equilibrated at the base of a magma ocean as Earth slowly grows, but a small portion (~10%) equilibrated at extreme conditions in the aftermath of a giant impact. We calculate the posterior probability distribution for the original concentrations of magnesium and other light elements (chiefly oxygen and silicon) in the core, constrained by partitioning experiments and the observed depletion of siderophile elements in Earth's mantle. We then simulate the thermochemical evolution of cores with plausible compositions and thermal structures from the end of accretion to the present, focusing on the crystallization of a few percent of the initial core as ferropericlase and bridgmanite. Finally, we compute the associated energy release and verify that our final core compositions are consistent with the available seismological data.

  13. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  14. The computation of thermo-chemical nonequilibrium hypersonic flows

    Science.gov (United States)

    Candler, Graham

    1989-01-01

    Several conceptual designs for vehicles that would fly in the atmosphere at hypersonic speeds have been developed recently. For the proposed flight conditions the air in the shock layer that envelops the body is at a sufficiently high temperature to cause chemical reaction, vibrational excitation, and ionization. However, these processes occur at finite rates which, when coupled with large convection speeds, cause the gas to be removed from thermo-chemical equilibrium. This non-ideal behavior affects the aerothermal loading on the vehicle and has ramifications in its design. A numerical method to solve the equations that describe these types of flows in 2-D was developed. The state of the gas is represented with seven chemical species, a separate vibrational temperature for each diatomic species, an electron translational temperature, and a mass-average translational-rotational temperature for the heavy particles. The equations for this gas model are solved numerically in a fully coupled fashion using an implicit finite volume time-marching technique. Gauss-Seidel line-relaxation is used to reduce the cost of the solution and flux-dependent differencing is employed to maintain stability. The numerical method was tested against several experiments. The calculated bow shock wave detachment on a sphere and two cones was compared to those measured in ground testing facilities. The computed peak electron number density on a sphere-cone was compared to that measured in a flight test. In each case the results from the numerical method were in excellent agreement with experiment. The technique was used to predict the aerothermal loads on an Aeroassisted Orbital Transfer Vehicle including radiative heating. These results indicate that the current physical model of high temperature air is appropriate and that the numerical algorithm is capable of treating this class of flows.

  15. Development of a laboratory cycle for a thermochemical water-splitting process (Me/MeH cycle)

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.; Biallas, B.; Kuegler, B.; Oertel, M.; Pietsch, M.; Winkelmann, U.

    1986-01-01

    Metal-metal hydride (Me/MeH) processes for water splitting using HTR heat are being developed at the Institute for Nuclear Reactor Technology. The research work is concentrated on setting up a laboratory facility and developing metal membranes. It is planned to perform the first experiments as from the beginning of 1986. These will be investigations in the transport of Me/MeH suspensions and long-term tests with the metal membranes. TiNi-base alloys and coated materials will be used as membranes. TiNi-alloys did not exhibit any loss of weight due to corrosion in electrolytic experiments lasting more than 500 h. The permeation rates were constant and amounted to approximately 500 A m/sup -2/ (s = 50 ..mu..m, rhosub(H2) = 1 bar). Pd/Cu-coatings on Ta or Nb, in contrast to pure Pd-coatings are resistant for long duration. Annealing tests at 500/sup 0/C lasting 4000 h verify this behaviour.

  16. Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application

    Science.gov (United States)

    Shoaib, Anwer; Huang, Yongxin; Liu, Jia; Liu, Jiajia; Xu, Meng; Wang, Ziheng; Chen, Renjie; Zhang, Jiatao; Wu, Feng

    2017-02-01

    In view of the growing concern about energy management issues, sodium ion batteries (SIBs) as cheap and environmentally friendly devices have increasingly received wide research attentions. The high current rate and long cycle-life of SIBs are considered as two key parameters determining its potential for practical applications. In this work, the rigid single-crystalline anatase TiO2 nanosheets (NSs) with a thickness of ∼4 nm has been firstly prepared, based on which a stable nanostructured network consisting of ultrathin anatase TiO2 NSs homogeneously anchored on graphene through chemical bonding (TiO2 NSs-G) has fabricated by hydrothermal process and subsequent calcination treatment. The morphology, crystallization, chemical compositions and the intimate maximum contact between TiO2 NSs and graphene are confirmed by TEM, SEM, XRD, XPS and Raman characterizations. The results of electrochemical performance tests indicated that the TiO2 NSs-G hybrid network could be consider as a promising anode material for SIBs, in assessment of its remarkably high current rate and long cycle-life aside from the improved specific capacity, rate capability and cycle stability.

  17. Effects of thermochemical pretreatment on the biodegradability of sludge from a biological wastewater treatment system

    Directory of Open Access Journals (Sweden)

    Ick-Tae Yeom

    2010-07-01

    Full Text Available The effects of thermochemical pretreatment on the sludge biodegradability were examined. Two types of tests were conducted: aerobic biodegradation and denitrification using thermochemically pretreated sludge as carbon source. In the aerobic biodegradation tests, the biodegradation efficiency for the sludge pretreated at 60, 70, 80 and 90oC (pH 11 was 1.4-2.2 times higher than that for the untreated sludge. The biodegradation efficiency for the supernatant was also about 1.9 times higher than that for the particulates. The biodegradation enhancement for the thermochemically pretreated sludge was demonstrated in denitrification tests. The supernatant showed its potential as a carbon source for the denitrification process.

  18. Estimativa do filocrono em milho para híbridos com diferentes ciclos de desenvolvimento vegetativo Estimating the phyllocron in maize hybrids with different cycles of vegetative development

    Directory of Open Access Journals (Sweden)

    Juliano Dalcin Martins

    2012-05-01

    Full Text Available O filocrono é definido como o tempo térmico necessário para o aparecimento de folhas sucessivas na haste principal de uma planta. Através do filocrono, pode-se calcular a duração do período vegetativo e, portanto, a época de florescimento em função da temperatura do ar. O presente trabalho teve por objetivo determinar o filocrono de diferentes híbridos de milho. Foram conduzidos três experimentos a campo, nos anos agrícolas de 2007/08, 2008/09 e 2009/2010. O delineamento experimental foi o de blocos ao acaso com três repetições. Os tratamentos constituíram-se de 18, 22 e 24 híbridos de milho, nos anos agrícolas de 2007/08, 2008/09 e 2009/2010, respectivamente. O filocrono foi estimado pelo inverso do coeficiente angular da regressão linear entre o número de folhas e a soma térmica acumulada a partir de emergência (temperatura base = 10°C. O filocrono calculado variou de 44,3 a 34,4°C dia-1 folha-1 entre os híbridos avaliados, estando o valor de filocrono dos híbridos diretamente relacionados com a precocidade do período vegetativo.The phyllochron is defined as the thermal time needed for the appearance of successive leaves on the plant main stem. Through the phyllochron it is possible to calculate the length of the growing period and thus the flowering period based on the air temperature. This study aimed to determine the phyllochron from different maize hybrids. Three field experiments were carried out during the agricultural years of 2007/08, 2008/09 and 2009/2010. The experimental design was one of randomized blocks with three repetitions. The treatments consisted of 18, 22 and 24 maize hybrid during the three agricultural years of 2007/08, 2008/09 and 2009/2010, respectively. The phyllochron was estimated by the inverse of the angular coefficient of the linear regression between the number of leaves and the accumulated thermal sum from emergence on (base temperature = 10°C. The calculated phyllochron varied from

  19. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  20. THERMOCHEMICAL ENERGY STORAGE FOR SEASONAL BALANCE OF SURPLUS ELECTRICITY AND HEAT DEMAND IN DOMESTIC BUILDINGS

    OpenAIRE

    Schmidt, Matthias; Linder, Marc Philipp

    2016-01-01

    Thermochemical storage systems are predestined to store thermal energy for a long time since the storage principle itself is free of losses and allows for very high energy densities. Therefore we developed a new approach where electricity, p. e. from private PV-panels in the summer, is used to charge a thermochemical reaction system. The reaction product then can be stored in an inexpensive tank at room temperature. If there is heat demand during the winter part of the material can be supplie...

  1. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...

  2. Importance of the ligand basis set in ab initio thermochemical calculations of transition metal species

    Science.gov (United States)

    Plascencia, Cesar; Wang, Jiaqi; Wilson, Angela K.

    2017-10-01

    The impact of basis set choice has been considered for a series of transition metal (TM) species. The need for higher level correlation consistent basis sets on both the metal and ligand has been investigated, and permutations in the pairings of basis set used for TM's and basis set used for ligands can lead to effective routes to complete basis set (CBS) limit extrapolations of thermochemical energetics with little change in thermochemical predictions as compared to those resulting from the use of traditional basis set pairings, while enabling computational cost savings. Basis set superposition errors (BSSE) that can arise have also been considered.

  3. Density functional investigation of the thermophysical and thermochemical properties of talc [Mg3Si4O10(OH)2

    Science.gov (United States)

    Ulian, Gianfranco; Valdrè, Giovanni

    2015-02-01

    The knowledge of the P, T behavior of talc is very important in mineralogical-petrological and geophysical research fields because talc can be considered a hydrous phase that can recycle water into the Earth's mantle and also an important mineral in both industrial and technological applications. However, very few works have been presented to fully characterize the thermodynamic properties of this mineral, especially at atomic scale. In a previous work, we modeled the structural and mechanical properties of talc using the B3LYP-D* hybrid density functional, which included a correction for the dispersive forces and all-electron Gaussian-type orbital basis sets. The results were in good agreement with single-crystal X-ray and neutron diffraction experimental data. Here, we extend the investigation to the thermochemical and thermophysical properties of talc using the same density functional approach and the quasi-harmonic approximation, providing the thermal equation of state, the heat capacity and the entropy of the mineral at different P, T conditions.

  4. Espaçamentos e densidades de milho com diferentes ciclos no oeste de Santa Catarina, Brazil Spacing and plant populations of hybrids with different cycles in the west of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Roger Delmar Flesch

    2004-02-01

    Full Text Available Com o objetivo de determinar a densidade populacional e espaçamento entre fileiras ideais para milho no Oeste Catarinense, foram conduzidos dois experimentos (um com híbrido de ciclo precoce e outro com híbrido de ciclo normal nos anos agrícolas 1995/96, 1996/1997 e 1997/98, em Chapecó. O delineamento experimental foi blocos casualizados arranjados em parcelas subdivididas, com a parcela principal composta de quatro espaçamentos entre fileiras (70, 85, 100 e 115cm e a sub-parcela de quatro densidades populacionais (30000, 50000, 70000 e 90000 plantas ha-1. Os híbridos responderam de forma quadrática ao aumento da população de plantas, apresentando máxima eficiência técnica ao redor de 74000 plantas ha-1. As populações de 50000, 70000 e 90000 plantas ha-1, de ambos os híbridos, tiveram produtividade de grãos semelhantes entre si e superiores a 30000 plantas ha-1. O híbrido de ciclo precoce foi mais produtivo a 70 e 85cm do que a 115cm, enquanto o híbrido de ciclo normal não teve diferença entre os espaçamentos. O aumento da população de plantas reduziu significativamente o peso de mil grãos, o número de grãos/espiga e o número de espigas/planta.To determine the ideal plant population and row spacing for corn, two trials were carried out (one with earlier hybrid and other with normal cycle hybrid during the growing seasons of 1995/96, 1996/97 and 1997/98, in Chapecó, in the West of Santa Catarina, Brazil. The experimental design of both trials was complete randomized blocks arranged in split-plots, with main plot composed of four row spacings (70, 85, 100 and 115cm and subplot composed of four stands (30000, 50000, 70000 and 90000 plants ha-1. Both hybrids had quadratic response to the increase in plant population with maximum technical efficiency around 74000 plants ha-1. Populations of 50000, 70000 and 90000 plants ha-1 of both hybrids had similar grain yields and superior to 30000 plants ha-1. The earlier hybrid had

  5. Study on Jet-Compression Hybrid Refrigeration Cycle Driven by Heat and Power%热-电驱动喷射压缩复合制冷循环特性研究

    Institute of Scientific and Technical Information of China (English)

    王林; 谈莹莹; 梁坤峰; 安方涛; 陈宁

    2014-01-01

    Autocascade refrigeration can achieve lower refrigeration temperature easily,but it totally consumes high grade energy and its COP is low.Jet refrigeration can achieve the refrigeration effect by utilizing low grade heat sources.However,its refrigeration temperature is high.In order to utilize low grade heat to the domain of cryogenic freezing,jet/compression hybrid refrigeration cycle with mixed refrigerants driven by low grade heat and power was presented.The new cycle contributes to improving the efficiency of refrigeration significantly and achieving lower refrigeration temperature.On a basis of its mathematical model,the influences of compression ratio of the ejector and compressor on mechanical and thermal coefficient of performance(COPme/COPth) were analyzed.The results indicate that refrigeration efficiency of the hybrid refrigeration cycle is much higher than that of the traditional autocascade refrigeration cycle.%自复叠制冷循环具有获得制冷温度低优点,但其完全消耗的是高品位电能或机械能;喷射制冷具有利用低品位低温热源(60~100℃)制取冷量、且制冷温度较高时制冷效率高等优点,但难以获得较低制冷温度.因此,为了实现低品位热在低温冷冻领域高效利用并节省高品位电能,本文提出一种由低品位低温热源与电能联合驱动的混合工质喷射/压缩复合制冷循环.建立组成新循环各部件热力学数学模型,分析喷射器压缩比和压缩机压缩比对复合式制冷循环的热性能系数和机械性能系数影响,并与传统的自复叠制冷循环特性进行比较分析.研究表明,低品位热源与电能联合驱动喷射/压缩复合制冷循环较传统自复叠制冷循环可显著提高制冷效率并获得更低制冷温度.

  6. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  7. Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  8. Thermochemical properties for isooctane and carbon radicals: computational study.

    Science.gov (United States)

    Snitsiriwat, Suarwee; Bozzelli, Joseph W

    2013-01-17

    Thermochemical properties for isooctane, its internal rotation conformers, and radicals with corresponding bond energies are determined by use of computational chemistry. Enthalpies of formation are determined using isodesmic reactions with B3LYP density function theory and composite CBS-QB3 methods. Application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities are determined using geometric parameters, internal rotor potentials, and frequencies from B3LYP/6-31G(d,p) calculations for the lowest energy conformer. Internal rotor potentials are determined for the isooctane parent and for the primary, secondary, and tertiary radicals in order to identify isomer energies. Intramolecular interactions are shown to have a significant effect on the enthalpy of formation of the isooctane parent and its radicals. The computed standard enthalpy of formation for the lowest energy conformers of isooctane from this study is -54.40 ± 1.60 kcal mol(-1), which is 0.8 kcal mol(-1) lower than the evaluated experimental value -53.54 ± 0.36 kcal mol(-1). The standard enthalpy of formation for the primary radical for a methyl on the quaternary carbon is -5.00 ± 1.69 kcal mol(-1), for the primary radical on the tertiary carbon is -5.18 ± 1.69 kcal mol(-1), for the secondary isooctane radical is -9.03 ± 1.84 kcal mol(-1), and for the tertiary isooctane radical is -12.30 ± 2.02 kcal mol(-1). Bond energy values for the isooctane radicals are 100.64 ± 1.73, 100.46 ± 1.73, 96.41 ± 1.88 and 93.14 ± 2.05 kcal mol(-1) for C3•CCCC2, C3CCCC2•, C3CC•CC2, and C3CCC•C2, respectively. Entropy and heat capacity values are reported for the lowest energy homologues.

  9. Modeling cloud microphysics using a two-moments hybrid bulk/bin scheme for use in Titan’s climate models: Application to the annual and diurnal cycles

    Science.gov (United States)

    Burgalat, J.; Rannou, P.; Cours, T.; Rivière, E. D.

    2014-03-01

    Microphysical models describe the way aerosols and clouds behave in the atmosphere. Two approaches are generally used to model these processes. While the first approach discretizes processes and aerosols size distributions on a radius grid (bin scheme), the second uses bulk parameters of the size distribution law (its mathematical moments) to represent the evolution of the particle population (moment scheme). However, with the latter approach, one needs to have an a priori knowledge of the size distributions. Moments scheme for Cloud microphysics modeling have been used and enhanced since decades for climate studies of the Earth. Most of the tools are based on Log-Normal law which are suitable for Earth, Mars or Venus. On Titan, due to the fractal structure of the aerosols, the size distributions do not follow a log-normal law. Then using a moment scheme in that case implies to define the description of the size distribution and to review the equations that are widely published in the literature. Our objective is to enable the use of a fully described microphysical model using a moment scheme within a Titan's Global Climate Model. As a first step in this direction, we present here a moment scheme dedicated to clouds microphysics adapted for Titan's atmosphere conditions. We perform comparisons between the two kinds of schemes (bin and moments) using an annual and a diurnal cycle, to check the validity of our moment description. The various forcing produce a time-variable cloud layer in relation with the temperature cycle. We compare the column opacities and the temperature for the two schemes, for each cycles. We also compare more detailed quantities as the opacity distribution of the cloud events at different periods of these cycles. Results show that differences between the two approaches have a small impact on the temperature (less than 1 K) and range between 1% and 10% for haze and clouds opacities. Both models behave in similar way when forced by an annual and

  10. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    Science.gov (United States)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  11. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  12. Electric/Hybrid Vehicle Simulation

    Science.gov (United States)

    Slusser, R. A.; Chapman, C. P.; Brennand, J. P.

    1985-01-01

    ELVEC computer program provides vehicle designer with simulation tool for detailed studies of electric and hybrid vehicle performance and cost. ELVEC simulates performance of user-specified electric or hybrid vehicle under user specified driving schedule profile or operating schedule. ELVEC performs vehicle design and life cycle cost analysis.

  13. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case...

  14. A new high-flux solar furnace for high-temperature thermochemical research

    Energy Technology Data Exchange (ETDEWEB)

    Haueter, P.; Seitz, T.; Steinfeld, A. [Paul Scherrer Inst., Villigen (Switzerland). Solar Process Technology Group

    1999-02-01

    A new high-flux solar furnace, capable of delivering up to 40 kW at peak concentration ratios exceeding 5000, is operational at PSI. Its optical design characteristics, main engineering features, and operating performance are described. This solar concentrating facility will be used principally for investigating the thermochemical processing of solar fuels at temperatures as high as 2500 K.

  15. Potential of summer legumes for thermochemical conversion to synthetic fuel in the southeast USA

    Science.gov (United States)

    Fallow periods during the summer in some crop rotations of the Southeast USA could potentially be used to grow feedstocks for energy production. The objective of this study was to evaluate Crotolaria juncea and cowpeas (Vigna unguiculata) as species to be used as feedstocks for thermochemical conver...

  16. A review on the properties of salt hydrates for thermochemical storage

    NARCIS (Netherlands)

    Trausel, F.; Jong, A.J. de; Cuypers, R.

    2014-01-01

    Solar energy is capable of supplying enough energy to answer the total demand of energy in dwellings. However, because of the discrepancy between energy supply and energy demand, an efficient way of storing thermal energy is crucial. Thermochemical storage of heat in salt hydrates provides an effici

  17. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    Science.gov (United States)

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  18. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span (relea

  19. Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions

    NARCIS (Netherlands)

    Kruidhof, H.; Vries, de K.J.; Burggraaf, A.J.

    1990-01-01

    The thermochemical stability of fast oxygen ion conducting yttria stabilized bismuthoxide (YSB) solid solutions containing 22.0–32.5 mol% of yttria was investigated. It was shown that in the temperature range between 650–740 C the stabilized cubic δ-phase containing less than 31.8 mol% of yttria is

  20. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    NARCIS (Netherlands)

    Woitke, P.; Kamp, I.; Thi, W. -F.

    2009-01-01

    Context. Emission lines from protoplanetary disks originate mainly in the irradiated surface layers, where the gas is generally warmer than the dust. Therefore, interpreting emission lines requires detailed thermo-chemical models, which are essential to converting line observations into understandin

  1. Improving Students' Chemical Literacy Levels on Thermochemical and Thermodynamics Concepts through a Context-Based Approach

    Science.gov (United States)

    Cigdemoglu, Ceyhan; Geban, Omer

    2015-01-01

    The aim of this study was to delve into the effect of context-based approach (CBA) over traditional instruction (TI) on students' chemical literacy level related to thermochemical and thermodynamics concepts. Four eleventh-grade classes with 118 students in total taught by two teachers from a public high school in 2012 fall semester were enrolled…

  2. Improving Students' Chemical Literacy Levels on Thermochemical and Thermodynamics Concepts through a Context-Based Approach

    Science.gov (United States)

    Cigdemoglu, Ceyhan; Geban, Omer

    2015-01-01

    The aim of this study was to delve into the effect of context-based approach (CBA) over traditional instruction (TI) on students' chemical literacy level related to thermochemical and thermodynamics concepts. Four eleventh-grade classes with 118 students in total taught by two teachers from a public high school in 2012 fall semester were enrolled…

  3. Thermo-chemical simultion of a composite offshore vertical axis wind turbine blade

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The

  4. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    Science.gov (United States)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  5. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research Inst., Durham, NC (United States); Muto, Andrew [Southern Research Inst., Durham, NC (United States)

    2017-08-30

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precision Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat

  6. The role of labile sulfur compounds in thermochemical sulfate reduction

    Science.gov (United States)

    Amrani, A.; Zhang, T.; Ma, Q.; Ellis, G.S.; Tang, Y.

    2008-01-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S??, organic S) at temperatures of 330 and 356 ??C under a constant confining pressure. The in-situ pH was buffered to 3.5 (???6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (???0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  7. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    Science.gov (United States)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    ) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.

  8. The role of labile sulfur compounds in thermochemical sulfate reduction

    Science.gov (United States)

    Amrani, Alon; Zhang, Tongwei; Ma, Qisheng; Ellis, Geoffrey S.; Tang, Yongchun

    2008-06-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  9. 两级双效溴化锂制冷-热泵复合循环%Hybrid Two-stage and Double-effect Lithium Bromide Refrigeration-heat Pump Compound Cycle

    Institute of Scientific and Technical Information of China (English)

    黄少君; 卢玫; 朱家贤; 李凌

    2012-01-01

    在热电冷联产系统中,溴化锂吸收式制冷机在制冷过程中排放了大量的废热,这些废热品味低,难以直接回收利用.在此提出了两级双效溴化锂制冷-热泵复合循环,该循环具有冷凝温度较高的特点,便于直接回收冷凝排放热.系统以背压汽轮机的背压蒸汽为热源,制冷的同时利用循环所排出的废热加热锅炉补充水至较高温度.以具有相同功效的双效溴冷机与单效溴化锂热泵联合运行作为对比循环,制冷-热泵复合循环系统省去了一台蒸发器与冷凝器,减少了两个换热温差,并且通过热力计算、能量分析和(火用)分析表明,该循环的能量利用率与(火用)效率均有很大的提高,(火用)效率比对比循环提高了45%.%CCHP system, The waste heat quantity emitted from lithium bromide absorption refrigeration is large and low grade, so it is difficult to use directly. This paper proposes a hybrid two-stage and double-effect Lithium Bromide refrigeration - heat pump compound cycle. In this cycle, the condenser could emit higher temperature heat, which could increase the utilization rate of emitted waste heat. The cycle's heat source is the back pressure steam, and it can take advantage of the low-grade thermal energy emitted from the refrigeration process to heat up the boiler make-up water. This paper takes existiag double-effect lithium bromide absorption refrigeration and the single effect lithium bromide heat pump as contrast, the refrigeration - heat pump compound cycle system omits an evaporator and a condenser, which could decrease the temperature difference in heat exchange. And the energy analysis and the exergy analysis show that the compound cycle can improve exergy efficiency and energy utilization efficiency.

  10. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Science.gov (United States)

    Senthilkumar, R.; Arunkumar, N.; Manzoor Hussian, M.

    Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014) alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  11. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  12. Thermochemical water decomposition cyle for hydrogen production%热化学循环分解水制氢

    Institute of Scientific and Technical Information of China (English)

    杨运嘉

    2001-01-01

    the thermochemical water decomposition cycle which consists of four gas-solid reaction of ca and Fe compounds for hydrogen production is discussed. The reactivity was improved by the introduction as a preparation method of the alkoxide and addition of graphite and lauric acid. Fine reactant Fe2O3 particles were homogeneously dispersed in the porous matrix of inert FeaTiOs with the sufficient strength of pellet.%文章所讨论的热化学循环分解水制氢是由Ca和Fe化合物的四步气-固反应所组成。在制备方法上,通过引入醇盐法并添加石墨和月桂酸将反应物Fe2O3颗粒均匀地分散在作为粘合剂的多孔惰性Fe2TeO5基质中,做成具有足够强度的丸,而使反应性得到改进。

  13. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  14. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    OpenAIRE

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel pr...

  15. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    Adaptive search heuristics are known to be valuable in approximating solutions to hard search problems. However, these techniques are problem dependent. Inspired by the idea of life cycle stages found in nature, we introduce a hybrid approach called the LifeCycle model that simultaneously applies...

  16. The LifeCycle model

    DEFF Research Database (Denmark)

    Krink, Thiemo; Løvbjerg, Morten

    2002-01-01

    Adaptive search heuristics are known to be valuable in approximating solutions to hard search problems. However, these techniques are problem dependent. Inspired by the idea of life cycle stages found in nature, we introduce a hybrid approach called the LifeCycle model that simultaneously applies...

  17. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  18. Avaliação de cultivares e híbridos de bananeira em quatro ciclos de produção Evaluation of banana cultivars and hybrids in four production cycles

    Directory of Open Access Journals (Sweden)

    Sebastião de Oliveira e Silva

    2002-11-01

    Full Text Available Híbridos superiores de bananeira com alta produtividade, frutos vistosos e resistência a doenças estão sendo gerados no programa de melhoramento genético da Embrapa-Centro Nacional de Pesquisa de Mandioca e Fruticultura Tropical. Este trabalho objetivou avaliar alguns desses genótipos em quatro ciclos de produção, visando sua recomendação aos agricultores. O experimento foi realizado em delineamento inteiramente casualizado, com 18 repetições, em Cruz das Almas, BA. Avaliaram-se as cultivares Grande-Naine, Nanica, Nam, Thap Maeo, Mysore, Caipira, Prata-Comum, Pacovan e Prata-Anã e os híbridos Pioneira, PA03-22, FHIA-18, PV03-76, PV03-44 e JV03-15. Analisaram-se os caracteres altura da planta, diâmetro do pseudocaule, peso do cacho, número de frutos, comprimento do fruto e ciclo. Ao longo dos ciclos, a 'Nanica' apresentou o menor porte, enquanto a 'Prata-Anã' se destacou no diâmetro do pseudocaule, seguida pela 'Prata-Comum' e pelo JV03-15. A 'Thap Maeo' sobressaiu-se no peso do cacho e no número de frutos, seguida pelo FHIA-18, no primeiro caráter, e pela 'Mysore', pela 'Caipira' e pelo FHIA-18, no segundo caráter. A 'GrandeNaine' e a 'Nanica' apresentaram o maior comprimento do fruto, enquanto o FHIA-18 e o PA03-22 destacaram-se na precocidade. A 'Thap Maeo' tem potencial para substituir a 'Mysore' e os híbridos avaliados apresentam qualidade para vir a ser recomendados aos agricultores.New productive banana hybrids, presenting good fruits and disease resistant, have been generated at Embrapa-Centro Nacional de Pesquisa de Mandioca e Fruticultura Tropical. The objective of this work was to evaluate some of these genotypes in four production cycles, to recommend them to the farmers. The experiment was carried out in the completely randomized design with 18 replications in Cruz das Almas, BA, Brazil. The genotypes evaluated were the varieties Grande-Naine, Nanica, Nam, Thap Maeo, Mysore, Caipira, Prata-Comum, Pacovan and

  19. 氯化镧与甘氨酸配位反应的热化学研究%Thermochemical Study of the Reaction of Lanthanum Chloride Coordinated with Glycine

    Institute of Scientific and Technical Information of China (English)

    周传佩; 陈文生; 刘义; 李林尉; 屈松生

    2000-01-01

    The reaction enthalpy of coordination reaction of lanthanum chloride with Glycine is determined by solution calorimetry in an isoperibel reaction calorimeter. The calormetric solvent is the solution of hydrochloric acid (2 mol·L- 1), a new thermochemical cycle is designed. According to the results, the following date:()(298.2 K)=- 4.310 kJ·mol- 1()(La(Gly)3Cl3· 5H2O, s, 298.2 K)=- 4222.93 kJ·mol- 1 were obtained.

  20. Energy Management Strategies for a Pneumatic-Hybrid Engine Based on Sliding Window Pattern Recognition Stratégies de gestion de l’énergie pour un moteur hybride pneumatique basées sur la reconnaissance du cycle de conduite

    Directory of Open Access Journals (Sweden)

    Ivanco A.

    2009-11-01

    Full Text Available This paper presents energy management strategies for a new hybrid pneumatic engine concept which is specific by its configuration in that it is not the vehicle but only the engine itself which is hybridized. Different energy management strategies are proposed in this paper. The first is called Causal Strategy (CS and implements a rule-based control technique. The second strategy, called Constant Penalty Coefficient (CPC, is based on the minimization of equivalent consumption, where the use of each energy source is formulated in a comparative unit. The balance between the consumption of different energy sources (chemical or pneumatic is achieved by the introduction of an equivalence factor. The third strategy is called Variable Penalty Coefficient (VPC. In fact, it is beneficial to consider the equivalence coefficient as variable within the amount of pneumatic energy stored in the air-tank i.e. state of charge, because the choice of propulsion mode should be different if the tank is full or empty. In this case, the penalty coefficient appears as a non linear function of the air-tank state of charge. Another way to adapt the penalty coefficient is to recognize a reference pattern during the driving cycle. The coefficient value can then be changed according to an optimized value found for each of the reference cycles. This strategy is called Driving Pattern Recognition (DPR. It involves a technique of sliding window pattern recognition. The concept is to convert the whole driving cycle into smaller pieces to which the equivalence factor can be appropriately adapted. This strategy is based on the assumption that the current driving situation does not change rapidly and thus the pattern is likely to continue into the near future. The identification window size is a parameter which has to be adjusted to attain the maximum of identification success over the reference cycle. We propose to define reference patterns as statistical models. The pattern

  1. High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria

    National Research Council Canada - National Science Library

    William C. Chueh; Christoph Falter; Mandy Abbott; Danien Scipio; Philipp Furler; Sossina M. Haile; Aldo Steinfeld

    2010-01-01

    .... By using a solar cavity-receiver reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO 2 and H 2...

  2. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed

    OpenAIRE

    Michel, Benoit; Mazet, Nathalie; Mauran, Sylvain; Stitou, Driss; Jing XU

    2012-01-01

    International audience; This paper focuses on the characterization and modeling of a solid/gas thermochemical reaction between a porous reactive bed and moist air flowing through it. The aim is the optimization of both energy density and permeability of the reactive bed, in order to realize a high density thermochemical system for seasonal thermal storage for house heating application. Several samples with different implementation parameters (density, binder, diffuser, porous bed texture) hav...

  3. Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios

    Science.gov (United States)

    Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca

    2016-05-01

    The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.

  4. Thermo-chemical, mechanical and resin flow integrated analysis in pultrusion

    Science.gov (United States)

    Carlone, Pierpaolo; Rubino, Felice; Palazzo, Gaetano S.

    2016-10-01

    The present work discusses some numerical outcomes provided by an integrated analysis of impregnation, thermo-chemical and stress/strain aspects in a conventional pultrusion process. The impregnation models describes resin flow and pressure distribution in the initial portion of the die, solving a non-homogeneous non-isothermal/reactive multiphase problem, using a finite volume scheme. The thermochemical model describes the heat transfer and degree of cure evolution of the processing resin. Finally, the stress/strain model computes the part distortion and in process stresses due to thermal, chemical, mechanical strains. An applicative case study is presented, simulating the impregnation step of the pultrusion process of a fiberglass-epoxy resin composite rod.

  5. A thermochemical calculation of the pyroxene saturation surface in the system diopside-albite-anorthite

    Science.gov (United States)

    Hon, R.; Henry, D. J.; Navrotsky, A.; Weill, D. F.

    1981-01-01

    The pyroxene saturation surface in the system diopside-albite-anorthite may be calculated to + or - 10 C from thermochemical data over most of its composition range. The thermochemical data used are the experimentally determined enthalpies of mixing of the ternary liquids and the enthalpy of fusion of diopside. These are combined with a mixing model for the configurational entropy in the melt and the activity of CaMgSi2O6 in the clinopyroxene, which is less than unity due to departures from CaMgSi2O6 stoichiometry. The two-lattice melt model appears to work satisfactorily throughout the pyroxene primary phase field but probably needs modification at more anorthite-rich compositions.

  6. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2012-10-01

    Full Text Available Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  7. Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity

    Directory of Open Access Journals (Sweden)

    Li Wei-Jie

    2014-01-01

    Full Text Available Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented results indicate, the thermochemical ablation rate of a solid rocket nozzle calculated by using actual thermal conductivity, which is a function of temperature, is higher than that by a constant thermal conductivity, so the effect of thermal conductivity on the ablation rate of a solid rocket nozzle made of carbon/carbon composites cannot be neglected.

  8. Thermochemical sulphate reduction and Huayuan lead-zinc ore deposit in Hunan, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In recent years, some arguments with regard to the organicmineralization of MVT lead-zinc ore deposit are focused on the thermochemical sulphate reduction in the presence of organic matter. Based on the research into the organic geochemistry and C, O, S isotopes of mineralized host rocks, mineral gas fluid inclusion and solid bitumen from Huayuan (W. Hunan, China) lead-zinc ore deposit formed in the algal limestones of Qingxudong formation, Lower Cambrian, the authors consider that a lot of organic matter occurred and participated in mineralization. The organic matter from different sources participated in the mineralization with two main forms: thermochemical sul-phate reduction and thermal degradation which supplied abundant H2S for the precipitation.

  9. Properties of 15HN Steel after Various Thermo-Chemical Treatments

    Directory of Open Access Journals (Sweden)

    L. Klimek

    2007-07-01

    Full Text Available The aim of conducted research was to find universal steel that may serve to regenerate machine elements by MULTIPLEX method – or cladding of alloy steel and then subjecting to thermo-chemical treatment. This paper presents the results of metallographic examination, hardness distribution and selected tribological properties of vacuum carburized, sulphonitrided and vacuum nitrided layers obtained on 15HN steel. The results demonstrate that on 15HN steel (carburizing steel, nitrided and sulphonitrided layers show good durability and tribological properties. Therefore, it is possible to use it to regenerate machine elements by cladding method and then treat them by different thermo-chemical ways in order to obtain desired properties.

  10. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid.

  11. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [University of South Carolina, Columbia; McMurray, Jake W [ORNL; Simunovic, Srdjan [ORNL

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  12. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    OpenAIRE

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; de Jong, A. J.; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span (released by adsorption) of 20 – 51 K which is by all means suitable for space heating.

  13. Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies

    OpenAIRE

    Leng, Wei; Zhong, Shijie

    2011-01-01

    Numerical modeling of mantle convection is challenging. Owing to the multiscale nature of mantle dynamics, high resolution is often required in localized regions, with coarser resolution being sufficient elsewhere. When investigating thermochemical mantle convection, high resolution is required to resolve sharp and often discontinuous boundaries between distinct chemical components. In this paper, we present a 2-D finite element code with adaptive mesh refinement techniques for si...

  14. Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations.

    Science.gov (United States)

    Morales, Giovanni; Martínez, Ramiro

    2009-07-30

    This research's main goals were to analyze ketene dimers' relative stability and expand group additivity value (GAV) methodology for estimating the thermochemical properties of high-weight ketene polymers (up to tetramers). The CBS-Q multilevel procedure and statistical thermodynamics were used for calculating the thermochemical properties of 20 cyclic structures, such as diketenes, cyclobutane-1,3-diones, cyclobut-2-enones and pyran-4-ones, as well as 57 acyclic base compounds organized into five groups. According to theoretical heat of formation predictions, diketene was found to be thermodynamically favored over cyclobutane-1,3-dione and its enol-tautomeric form (3-hydroxycyclobut-2-enone). This result did not agree with old combustion experiments. 3-Hydroxycyclobut-2-enone was found to be the least stable dimer and its reported experimental detection in solution may have been due to solvent effects. Substituted diketenes had lower stability than substituted cyclobutane-1,3-diones with an increased number of methyl substituents, suggesting that cyclobutane-1,3-dione type dimers are the major products because of thermodynamic control of alkylketene dimerization. Missing GAVs for the ketene dimers and related structures were calculated through linear regression on the 57 acyclic base compounds. Corrections for non next neighbor interactions (such as gauche, eclipses, and internal hydrogen bond) were needed for obtaining a highly accurate and precise regression model. To the best of our knowledge, the hydrogen bond correction for GAV methodology is the first reported in the literature; this correction was correlated to MP2/6-31Gdagger and HF/6-31Gdagger derived geometries to facilitate its application. GAVs assessed by the linear regression model were able to reproduce acyclic compounds' theoretical thermochemical properties and experimental heat of formation for acetylacetone. Ring formation and substituent position corrections were calculated by consecutively

  15. Effect of thermochemical treatment on the surface morphology and hydrophobicity of heterogeneous ion-exchange membranes

    Science.gov (United States)

    Vasil'eva, V. I.; Pismenskaya, N. D.; Akberova, E. M.; Nebavskaya, K. A.

    2014-08-01

    A comparative analysis is performed on the effect thermochemical treatment in aqueous, alkali, and acid media has on the surface morphology and hydrophobicity of swelling heterogeneous ion-exchanged membranes. A correlation between changes in surface morphology and hydrophobicity is established. It is shown that under prolonged (50 h) membrane thermal treatment above room temperature, hydrophobicity is reduced due to substantial enlargement of cavities and cracks resulting from the partial destruction of inert binder (polyethylene) and reinforcing poly-ɛ-caproamide fabric (capron).

  16. New developments of the CARTE thermochemical code: I-parameter optimization

    Science.gov (United States)

    Desbiens, N.; Dubois, V.

    We present the calibration of the CARTE thermochemical code that allows to compute the properties of a wide variety of CHON explosives. We have developed an optimization procedure to obtain an accurate multicomponents EOS (fluid phase and condensed phase of carbon). We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and we extensively compare our calculations with measured detonation properties for several explosives.

  17. New developments of the CARTE thermochemical code: I-parameter optimization

    Directory of Open Access Journals (Sweden)

    Dubois V.

    2011-01-01

    Full Text Available We present the calibration of the CARTE thermochemical code that allows to compute the properties of a wide variety of CHON explosives. We have developed an optimization procedure to obtain an accurate multicomponents EOS (fluid phase and condensed phase of carbon. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and we extensively compare our calculations with measured detonation properties for several explosives.

  18. Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity

    OpenAIRE

    2014-01-01

    Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented re...

  19. Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter

    Energy Technology Data Exchange (ETDEWEB)

    Klausner, James F.; Petrasch, Joerg

    2017-06-06

    A solar thermochemical reactor contains an outer member, an inner member disposed within an outer member, wherein the outer member surrounds the inner member and wherein the outer member has an aperture for receiving solar radiation. An inner cavity and an outer cavity are formed by the inner member and outer member and a reactive material that is capable of being magnetically stabilized is disposed in the outer cavity between the inner member and the outer member.

  20. Techniques for the estimation of Heats of Explosion (HEX) using thermochemical codes

    Science.gov (United States)

    Fifer, Robert A.; Morris, Jeffrey B.

    1993-09-01

    Procedures are outlined for calculating the heats of explosion (HEX) of neat energetic materials or propellant/explosive formulations using thermochemical codes. The 'exact' method and three approximate techniques are described; the approximate techniques either eliminate the need to sum the internal energies of the predicted products, or eliminate the need to specify a freeze-out temperature. The various techniques are illustrated for HMX and a nitrocellulose/nitroglycerine (NC/NG) mixture.

  1. Global thermochemical inversion of seismic waveforms, gravity satellite data, and topography

    Science.gov (United States)

    Fullea, J.; Lebedev, S.; Martinec, Z.

    2016-12-01

    Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of Earth's rocks. However, modelling and interpretation of multiple data provide a multifaceted image of the true thermochemical structure of the Earth that needs to be consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth. In fact, global Earth models based on different observables often lead to rather different images of the Earth. A breakthrough in global and consistent imaging of the fine-scale thermochemical hydrous and rheological structure of the Earth's lithosphere and underlying mantle is needed. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite geophysical data over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. Here we present a method for self-consistent joint inversion of multiple data sets, including seismic, satellite gravity and surface topography data, applied to obtain a detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. This project combines state-of-the-art seismic

  2. Thermo-chemical process with sewage sludge by using CO2.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Kwon, Hyun-Han

    2013-10-15

    This work proposed a novel methodology for energy recovery from sewage sludge via the thermo-chemical process. The impact of CO2 co-feed on the thermo-chemical process (pyrolysis and gasification) of sewage sludge was mainly investigated to enhance thermal efficiency and to modify the end products from the pyrolysis and gasification process. The CO2 injected into the pyrolysis and gasification process enhance the generation of CO. As compared to the thermo-chemical process in an inert atmosphere (i.e., N2), the generation of CO in the presence of CO2 was enhanced approximately 200% at the temperature regime from 600 to 900 °C. The introduction of CO2 into the pyrolysis and gasification process enabled the condensable hydrocarbons (tar) to be reduced considerably by expediting thermal cracking (i.e., approximately 30-40%); thus, exploiting CO2 as chemical feedstock and/or reaction medium for the pyrolysis and gasification process leads to higher thermal efficiency, which leads to environmental benefits. This work also showed that sewage sludge could be a very strong candidate for energy recovery and a raw material for chemical feedstock.

  3. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    Science.gov (United States)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  4. Application of program LAURA to thermochemical nonequilibrium flow through a nozzle

    Science.gov (United States)

    Gnoffo, Peter A.

    1991-01-01

    Program LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3D viscous hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite-volume formulation in which the inviscid components of flux across cell walls are described with a modified Roe's averaging and with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. The code has been applied to Problem 8.2 of this workshop for the case of thermochemical nonequilibrium flow through a nozzle. Chemical reaction rates are defined with the model of Park (1987). Thermal nonequilibrium is modeled using a two-temperature approximation in which the vibrational energies of all molecules are assumed to be in equilibrium at a single temperature which is generally different from the translational-rotational temperature. Two grids were used to define the flow for the original problem, with a stagnation temperature of 6500 K. A third case with a stagnation temperature of 10,000 K is also presented. The solution domain includes the converging nozzle, subsonic flow domain in which the gas is substantially in thermochemical equilibrium and the diverging nozzle, hypersonic flow domain in which the gas is substantially in thermochemical nonequilibrium.

  5. Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues

    Science.gov (United States)

    Simkó, Irén; Furtenbacher, Tibor; Hrubý, Jan; Zobov, Nikolai F.; Polyansky, Oleg L.; Tennyson, Jonathan; Gamache, Robert R.; Szidarovszky, Tamás; Dénes, Nóra; Császár, Attila G.

    2017-06-01

    Accurate temperature-dependent ideal-gas internal partition functions, Qint(T), and several derived thermochemical functions are reported for heavy water, with an oxygen content corresponding to the isotopic composition of Vienna Standard Mean Ocean Water (VSMOW), and its constituent isotopologues, D216O, D217O, and D218O, for temperatures between 0 and 6000 K. The nuclear-spin-dependent partition functions are obtained by the direct summation technique, involving altogether about 16 000 measured and more than nine million computed bound rovibrational energy levels for the three molecules. Reliable standard uncertainties, as a function of temperature, are estimated for each thermochemical quantity determined, including the enthalpy, the entropy, and the isobaric heat capacity of the individual nuclear-spin-equilibrated isotopologues and of heavy water. The accuracy of the heavy-water ideal-gas Cp(T) is unprecedented, below 0.01% up to 1800 K. All the thermochemical functions are reported, in 1 K increments, in the supplementary material.

  6. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol, and the Related Thermochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruscic, Branko

    2015-07-16

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C–H, C–C, C–O, and O–H bond dissociation enthalpies at 298.15 K (BDE298) and bond dissociation energies at 0 K (D0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CHn, n = 4–0 species (methane, methyl, methylene, methylidyne, and carbon atom), C2Hn, n = 6–0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHn, n = 4–0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO2 and H2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species.

  7. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  8. Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production.

    Science.gov (United States)

    Passos, Fabiana; Felix, Leonardo; Rocha, Hemyle; Pereira, Jackson de Oliveira; de Aquino, Sérgio

    2016-06-01

    This study assessed thermochemical pretreatment of microalgae harvested from a full-scale wastewater treatment pond prior to its anaerobic digestion using acid and alkaline chemical doses combined with thermal pretreatment at 80°C. Results indicated that alkaline and thermal pretreatment contributed mostly to glycoprotein and pectin solubilisation; whilst acid pretreatment solubilised mostly hemicellulose, with lower effectiveness for proteins. Regarding the anaerobic biodegradability, biochemical methane potential (BMP) tests showed that final methane yield was enhanced after almost all pretreatment conditions when compared to non-pretreated microalgae, with the highest increase for thermochemical pretreatment at the lowest dose (0.5%), i.e. 82% and 86% increase for alkaline and acid, respectively. At higher doses, salt toxicity was revealed by K(+) concentrations over 5000mg/L. All BMP data from pretreated biomass was successfully described by the modified Gompertz model and optimal condition (thermochemical 0.5% HCl) showed an increase in final methane yield and the process kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Deep Structures and Initiation of Plate Tectonics in Thermochemical Mantle Convection Models

    Science.gov (United States)

    Hansen, U.; Stein, C.

    2015-12-01

    Recently deep thermochemical structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume.In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. We present a systematic 2D parameter study exploring the time of plate initiation and discuss the resulting deep thermal and thermochemical structures in a self-consistent thermochemical mantle convection system.

  10. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Renwei [Univ. of Florida, Gainesville, FL (United States). Dept. of Mechanical and Aerospace Engineering

    2015-06-15

    Phase I concludes with significant progress made towards the SunShot ELEMENTS goals of high energy density, high power density, and high temperature by virtue of a SrO/SrCO3 based material. A detailed exploration of sintering inhibitors has been conducted and relatively stable materials supported by YSZ or SrZO3 have been identified as the leading candidates. In 15 cycle runs using a 3 hour carbonation duration, several materials demonstrated energy densities of roughly 1500 MJ/m3 or greater. The peak power density for the most productive materials consistently exceeded 40 MW/m3—an order of magnitude greater than the SOPO milestone. The team currently has a material demonstrating nearly 1000 MJ/m3 after 100 abbreviated (1 hour carbonation) cycles. A subsequent 8 hour carbonation after the 100 cycle test exhibited over 1500 MJ/m3, which is evidence that the material still has capacity for high storage albeit with slower kinetics. Kinetic carbonation experiments have shown three distinct periods: induction, kinetically-controlled, and finally a diffusion-controlled period. In contrast to thermodynamic equilibrium prediction, higher carbonation temperatures lead to greater conversions over a 1 hour periods, as diffusion of CO2 is more rapid at higher temperatures. A polynomial expression was fit to describe the temperature dependence of the linear kinetically-controlled regime, which does not obey a traditional Arrhenius relationship. Temperature and CO2 partial pressure effects on the induction period were also investigated. The CO2 partial pressure has a strong effect on the reaction progress at high temperatures but is insignificant at temperatures under 900°C. Tomography data for porous SrO/SrCO3 structures at initial stage and after multiple carbonation/decomposition cycles have been obtained. Both 2D slices and 3D reconstructed representations have

  11. 煤与秸秆成型燃料的复合生命周期对比评价%Hybrid life cycle analysis for coal versus straw briquettes

    Institute of Scientific and Technical Information of China (English)

    林成先; 杨尚宝; 陈景文; 王莹; 郑洪波; 杨凤林

    2009-01-01

    Life cycle energy consumption, environmental impacts, and economics of coal and straw briquettes were studied using hybrid life cycle analysis ( LCA). Energy return ratio, resource depletion index, environment impact load and life cycle cost were considered in the analysis. To balance energy, environmental and economic indicators, EEE (Energy, Environment, and Economics) indicators were adopted as a combined indicator to evaluate coal and straw briquettes. For the whole life cycle, the energy return ratio and resource depletion index of straw briquettes were lower than coal. Straw briquettes also had lower potential for global wanning, acidification, eutrophication, smoke and dust, and solid waste production. The EEE indicator of straw briquettes was 79.8% lower than coal. Thus, the environment impact load for straw briquettes is low, and straw briquettes have the potential to displace coal, taking the energy, environmental and economic aspects into consideration. However, the life cycle cost of straw briquettes is slightly higher than coal, so the extended application of straw briquettes needs the financial support of the government.%利用复合生命周期对比评价方法,引入能量返还率、资源耗竭系数、环境影响负荷和生命周期成本4个参数.对煤和秸秆成型燃料在整个生命周期内的能源消耗、环境影响和经济性做了对比分析.同时,为了平衡能源、环境与经济三者之间的关系,建立EEE(Energy,Environment,Economic)综合指标进行整体评价.结果表明,在整个生命周期内,与煤相比,秸秆成型燃料的能量返还率低、资源耗竭系数小.秸秆成型燃料的全球变暖潜值、酸化潜值、富营养化潜值、工业烟尘、粉尘潜值及固体废弃物潜值均比煤小,因此,秸秆成型燃料的环境影响负荷比煤小.秸秆成型燃料的EEE指标值比煤小79.8%,所以,从平衡生命周期能源消耗、环境排放和经济性角度出发,秸秆成型燃料

  12. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  13. Menstrual Cycle

    Science.gov (United States)

    ... Luteal (after egg release) Changes During the Menstrual Cycle The menstrual cycle is regulated by the complex interaction of ... egg release) Luteal (after egg release) The menstrual cycle begins with menstrual bleeding (menstruation), which marks the first day of ...

  14. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    Science.gov (United States)

    Rao, C. N. R.; Dey, Sunita

    2016-10-01

    Generation of H2 and CO by splitting H2O and CO2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H2O or CO2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H2O or CO2. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln1-xAxMn1-yMyO3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y0.5Sr0.5MnO3 which releases 483 μmol/g of O2 at 1673 K and produces 757 μmol/g of CO from CO2 at 1173 K. The production of H2 from H2O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H2 based on the Mn3O4/NaMnO2 cycle briefly.

  15. Military Hybrid Vehicle Survey

    Science.gov (United States)

    2011-08-03

    Furthermore, a standard duty cycle that is accepted for measuring fuel economy does not exist nor does a focus towards a particular technology. This...expanded into mild hybrid with the addition of a clutch connecting the generator to the transmission and additional energy storage [16-17...speed control and one for engine/generator torque [35]. Urban, Highway, Composite 33%, 27.9%, 49% General vehicle simulation [30]. Urban 19.0

  16. Thermochemical methane reforming using WO{sub 3} as an oxidant below 1173 K by a solar furnace simulator

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Shimizu, K. [Niigata Univ., Graduate School of Science and Technology, Niigata (Japan); Kitayama, Y.; Kodama, T. [Niigata Univ., Dept. of Chemistry and Chemical Engineering, Niigata (Japan)

    2001-07-01

    Thermochemical methane reforming by a reactive redox system of WO{sub 3} was demonstrated under direct irradiation of the metal oxide by a concentrated, solar-simulated Xe-lamp beam below 1173 K, for the purpose of converting solar high-temperature heat to chemical fuels. In the proposed cycling redox process, the metal oxide is expected to react with methane as an oxidant to produce syngas with a H{sub 2}/CO ratio of two, which is suitable for the production of methanol, and the reduced metal oxide which is oxidised back with steam in a separate step to generate hydrogen uncontaminated with carbon oxide. The ZrO{sub 2}-supported WO{sub 3} gave about 45% of CO yield and 55% of H{sub 2} yield with a H{sub 2}/CO ratio of about 2.4 in a temperature range of 1080-1160 K at a W/F ratio of 0.167 g min Ncm {sup -3} (W is the weight of WO{sub 3} phase and F is the flow rate of CH{sub 4}). The activity data under the solar simulation were compared to those for the WO{sub 3}/ZrO{sub 2} heated by irradiation of an infrared light. This comparison indicated that the CO selectivity was much improved to 76-85% in the solar-simulated methane reforming, probably by photochemical effect due to WO{sub 3} phase. The main solid product of WO{sub 2} in the reduced WO{sub 3}/ZrO{sub 2} was reoxidised to WO{sub 3} with steam to generate hydrogen below 1173 K. (Author)

  17. Control Strategy of SOC Open-Loop of Hybrid Electric Bus Based on Driving Cycle Prediction%基于道路工况预测混合动力公交车SOC开环控制策略

    Institute of Scientific and Technical Information of China (English)

    朱道伟; 谢辉; 严英

    2012-01-01

    混合动力车辆一般采用基于荷电状态(SOC)闭环的控制策略,对蓄电池组进行频繁充电,使SOC维持在较高水平,影响制动能量的回收,从而导致燃油经济性不理想.为此,利用BP神经网络并结合城市公交运行特点,提出SOC开环控制策略,对公交车未来站点间的运行工况进行预测,减少蓄电池组的充电次数,降低蓄电池组的荷电状态.试验表明,采用该控制策略可以显著降低电池组充电时间和次数,有利于制动能量的回收,百公里油耗降低了3%.%The conventional strategy of hybrid electric vehicle was based on the state of charge (SOC) closed-loop which charged the battery frequently to sustain a high-level SOC and decreased the fuel efficiency because the energy from the regenerative braking couldn't be stored any more. SOC open-loop control strategy was proposed using the BP neural network and considering the trait of city bus to predict the next driving cycles between two stops in short future. Experiment result shows that the control strategy is useful to decrease charging times and time-period, which improve fuel efficiency by 3% higher than the vehicle on the route with the control strategy of SOC closed-loop because of enhanced regenerative braking energy.

  18. Design optimisation of a flywheel hybrid vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kok, D.B.

    1999-11-04

    during the engine start-up and shutdown periods. Correct throttle valve control ensures that hydrocarbon emissions are not critical for legislative emission limits, but the engine's standard lambda control cannot prevent an increase of nitric oxides. In order to improve tailpipe emissions, the thermo-chemical behaviour of the catalytic converter is investigated and adapted for hybrid vehicle application. In cold-start situations, the fuel consumption and exhaust gas emissions of a mechanical driveline with internal combustion engine increase. A detailed numerical investigation of the thermal behaviour of the hybrid driveline showed that the energy-efficient operation of the engine decreases thermal waste energy that is available to warm up driveline components. Therefore, a redesign of the cooling circuitry and thermal management of the driveline was required to improve system warm-up. A computer model has been developed that combines the functional description of the flywheel hybrid vehicle with the calculation of energy losses. Apart from standardised European drive cycles, velocity profiles that represent more realistic vehicle utilisation are used to assess and optimise the hybrid vehicle's fuel economy, exhaust gas emission and acceleration performance. Subdivision of energy consumption enabled the classification of those systems and components that have a major effect on fuel consumption. Of these, the optimised flywheel system, the hydraulic system, and the transmission consume energy of comparable magnitude in city driving. It is shown that the system's fuel economy is mainly a result of the improved engine operation. Regenerative braking has only limited effect on vehicle fuel consumption. Experiments with an early prototype of the hybrid driveline yielded no gains in fuel consumption when compared to a conventional CVT reference vehicle due to high storage losses in the flywheel system. However, the improved prototype of the flywheel hybrid

  19. Use of detailed thermochemical databases to model chemical interactions in the Severe Accident codes

    Energy Technology Data Exchange (ETDEWEB)

    Barrachin, M. [IPSN/DRS, CEA Cadarache (France)

    2001-07-01

    For the prevention, mitigation and management of severe accidents, many problems related to core melt have to be solved: fuel degradation, melting and relocation, convection in the core melt(s), coolability of the core melt(s), fission product release, hydrogen production, behavior of the materials of the protective layers, ex-vessel spreading of the core melt(s).. To solve these problems such properties like thermal conductivity, heat capacity, density, viscosity, evaporation or sublimation of melts, the solidification behavior (solid/liquid fraction), the tendency to trap or to release the fission products, the stratification of melts notably metallic and oxide, must be known. However most of these properties are delicate to measure directly at high temperature and/or in the radio-active environment produced by the fission products. Therefore some of them must be derived by calculations from the physical-chemical description of the melt: number of phases, phase compositions, proportions of solids and liquids and their respective oxidation state, miscibility of the liquids, solubility of one phase in another, etc. This information is given by the phase diagrams of the materials in presence. Since more than ten years, IPSN has developed in collaboration with THERMODATA (Grenoble, France) a very detailed thermochemical database for the complex system U-O-Zr-Fe-Ni-La-Ba-Ru-Sr-Si-Mg-Ca-Al-(H-Ar). The direct coupling between the severe accident (SA) Codes and a thermochemical code with its database is not actually possible because of the computer time consuming and the size of the database. For this reason, most of the Severe Accident codes usually have a very simplified description for the phase diagrams which are not in agreement with the status of the art. In this presentation, alternative methodologies are detailed with their respective difficulties, the goal being to build an interface between a thermochemical database and a SA Code and to get a fast, accurate and

  20. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel

    Science.gov (United States)

    Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2013-10-01

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  1. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  2. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery.

    Science.gov (United States)

    Olorunsola, Emmanuel O; Bhatia, Partap G; Tytler, Babajide A; Adikwu, Michael U

    2016-01-01

    Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG) extracted from exudates of Anacardium occidentale L. and khaya gum (KYG) extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG). The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs.

  3. New developments of the CARTE thermochemical code: Calculation of detonation properties of high explosives

    Science.gov (United States)

    Dubois, Vincent; Desbiens, Nicolas; Auroux, Eric

    2010-07-01

    We present the improvements of the CARTE thermochemical code which provides thermodynamic properties and chemical compositions of CHON systems over a large range of temperature and pressure with a very small computational cost. The detonation products are split in one or two fluid phase (s), treated with the MCRSR equation of state (EOS), and one condensed phase of carbon, modeled with a multiphase EOS which evolves with the chemical composition of the explosives. We have developed a new optimization procedure to obtain an accurate multicomponents EOS. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and measured detonation properties for several explosives.

  4. Thermochemical characterization of pigeon pea stalk for its efficient utilization as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Katyal, S.K.; Iyer, P.V.R.

    2000-05-01

    Pigeon pea stalk is a widely available biomass species in India. In this article the potential use of pigeon pea stalk as a fuel source through thermochemical conversion methods such as combustion, gasification, and pyrolysis has been investigated through experimentation using a thermogravimetric analyzer and pilot-plant-scale equipment. It has been proposed that pigeon pea stalks can be effectively utilized in two ways. The first is to pyrolyze the material to produce value-added products such as char, tar, and fuel gas. The second alternative is to partially pyrolyze the material to remove tar-forming volatiles, followed by gasification of reactive char to generate producer gas.

  5. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2009-07-01

    Full Text Available A review was conducted on the use of thermochemical biomass gasification for producing biofuels, biopower and chemicals. The upstream processes for gasification are similar to other biomass processing methods. However, challenges remain in the gasification and downstream processing for viable commercial applications. The challenges with gasification are to understand the effects of operating conditions on gasification reactions for reliably predicting and optimizing the product compositions, and for obtaining maximal efficiencies. Product gases can be converted to biofuels and chemicals such as Fischer-Tropsch fuels, green gasoline, hydrogen, dimethyl ether, ethanol, methanol, and higher alcohols. Processes and challenges for these conversions are also summarized.

  6. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  7. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Vincent, E-mail: vincent-jp.dubois@cea.fr; Pineau, Nicolas [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-01-07

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  8. Interest of thermochemical data bases linked to complex equilibria calculation codes for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cenerino, G. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations; Chevalier, P.Y.; Fischer, E. [Thermodata, 38 -Saint-Martin-d`Heres (France); Marbeuf, A. [Centre National de la Recherche Scientifique (CNRS), 92 - Meudon-Bellevue (France). Lab. de Magnetisme et de Physique du Solide; Frenk, A. [Ecole Polytechnique Federale, Lausanne (Switzerland); Vahlas, C. [Laboratoire Marcel Mathieu, Centre Helioparc, 64 - Pau (France)

    1992-12-31

    Since 1974, Thermodata has been working on developing an Integrated Information System in Inorganic Chemistry. A major effort was carried on the thermochemical data assessment of both pure substances and multicomponent solution phases. The available data bases are connected to powerful calculation codes (GEMINI = Gibbs Energy Minimizer), which allow to determine the thermodynamical equilibrium state in multicomponent systems. The high interest of such an approach is illustrated by recent applications in as various fields as semi-conductors, chemical vapor deposition, hard alloys and nuclear safety. (author). 26 refs., 6 figs.

  9. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  10. Synthesis and design of optimal biorefinery using an expanded network with thermochemical and biochemical biomass conversion platforms

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    2013-01-01

    This study presents the development of an expanded biorefinery processing network for producing biofuels that combines biochemical and thermochemical conversion platforms. The expanded network is coupled to a framework that uses a superstructure based optimization approach to generate and compare...... of 72 processing intervals . This superstructure was integrated with an earlier developed superstructure for biochemical conversion routes thereby forming a formidable number of biorefinery alternatives. The expanded network was demonstrated to be versatile and useful as a decision support tool...... of a large number of alternatives at their optimal points. In this study the superstructure for thermochemical conversion route is formulated by using NREL studies of thermochemical conversion of biomass considering 3 biomass feedstocks, 2 products, 3 by-products and 18 processing intervals with combination...

  11. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

    DEFF Research Database (Denmark)

    Khan, A.; Zunino, Andrea; Deschamps, F.

    2013-01-01

    models of the thermochemical and anisotropic structure of the mantle to 450 km depth. Dispersion data are linked to thermochemical parameters through a thermodynamic formalism for computing mantle mineral phase equilibria and physical properties. The inverse problem is solved using a probabilistic...

  12. System efficiency for two-step metal oxide solar thermochemical hydrogen production – Part 2: Impact of gas heat recuperation and separation temperatures

    KAUST Repository

    Ehrhart, Brian D.

    2016-09-22

    The solar-to-hydrogen (STH) efficiency is calculated for various operating conditions for a two-step metal oxide solar thermochemical hydrogen production cycle using cerium(IV) oxide. An inert sweep gas was considered as the O2 removal method. Gas and solid heat recuperation effectiveness values were varied between 0 and 100% in order to determine the limits of the effect of these parameters. The temperature at which the inert gas is separated from oxygen for an open-loop and recycled system is varied. The hydrogen and water separation temperature was also varied and the effect on STH efficiency quantified. This study shows that gas heat recuperation is critical for high efficiency cycles, especially at conditions that require high steam and inert gas flowrates. A key area for future study is identified to be the development of ceramic heat exchangers for high temperature gas-gas heat exchange. Solid heat recuperation is more important at lower oxidation temperatures that favor temperature-swing redox processing, and the relative impact of this heat recuperation is muted if the heat can be used elsewhere in the system. A high separation temperature for the recycled inert gas has been shown to be beneficial, especially for cases of lower gas heat recuperation and increased inert gas flowrates. A higher water/hydrogen separation temperature is beneficial for most gas heat recuperation effectiveness values, though the overall impact on optimal system efficiency is relatively small for the values considered. © 2016 Hydrogen Energy Publications LLC.

  13. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  14. Biogeochemical Cycling

    Science.gov (United States)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  15. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    OpenAIRE

    Jia-Shiun Chen

    2015-01-01

    Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs) ar...

  16. Seismic evidence for a chemically distinct thermochemical reservoir in Earth's deep mantle beneath Hawaii

    Science.gov (United States)

    Zhao, Chunpeng; Garnero, Edward J.; McNamara, Allen K.; Schmerr, Nicholas; Carlson, Richard W.

    2015-09-01

    Nearly antipodal continent-sized zones of reduced seismic shear wave velocities exist at the base of Earth's mantle, one beneath the Pacific Ocean, the other beneath the South Atlantic Ocean and Africa. Geophysicists have attributed the low velocity zones to elevated temperatures associated with large-scale mantle convection processes, specifically, hot mantle upwelling in response to cooler subduction-related downwelling currents. Hypotheses have included superplumes, isochemical heterogeneity, and stable as well as metastable basal thermochemical piles. Here we analyze waveform broadening and travel times of S waves from 11 deep focus earthquakes in the southwest Pacific recorded in North America, resulting in 8500 seismograms studied that sample the deep mantle beneath the Pacific. Waveform broadening is referenced to a mean S-wave shape constructed for each event, to define a relative "misfit". Large misfits are consistent with multipathing that can broaden wave pulses. Misfits of deep mantle sampling S-waves infer that the structure in the northeast part of the low velocity province beneath the Pacific has a sharp side as well as a sloping sharp top to the feature. This sharp boundary morphology is consistent with geodynamic predictions for a stable thermochemical reservoir. The peak of the imaged pile is below Hawaii, supporting the hypothesis of a whole mantle plume beneath the hotspot.

  17. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian

    2011-09-01

    Sewage sludge ash (SSA) is a suitable raw material for fertilizers due to its high phosphorus (P) content. However, heavy metals must be removed before agricultural application and P should be transferred into a bioavailable form. The utilization of gaseous hydrochloric acid for thermochemical heavy metal removal from SSA at approximately 1000 °C was investigated and compared to the utilization of alkaline earth metal chlorides. The heavy metal removal efficiency increased as expected with higher gas concentration, longer retention time and higher temperature. Equivalent heavy metal removal efficiency were achieved with these different Cl-donors under comparable conditions (150 g Cl/kg SSA, 1000 °C). In contrast, the bioavailability of the P-bearing compounds present in the SSA after thermal treatment with gaseous HCl was not as good as the bioavailability of the P-bearing compounds formed by the utilization of magnesium chloride. This disadvantage was overcome by mixing MgCO(3) as an Mg-donor to the SSA before thermochemical treatment with the gaseous Cl-donor. A test series under systematic variation of the operational parameters showed that copper removal is more depending on the retention time than the removal of zinc. Zn-removal was declined by a decreasing ratio of the partial pressures of ZnCl(2) and water.

  18. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes.

    Science.gov (United States)

    Virmond, Elaine; De Sena, Rennio F; Albrecht, Waldir; Althoff, Christine A; Moreira, Regina F P M; José, Humberto J

    2012-10-01

    In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.14 MJkg(-1), on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation.

  19. Surface Cleaning or Activation?Control of Surface Condition Prior to Thermo-Chemical Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Brigitte Haase; Juan Dong; Jens Heinlein

    2004-01-01

    Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts' surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part's surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface's activity or passivity can be detected electrochemically, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.

  20. Thermochemical nanolithography fabrication and atomic force microscopy characterization of functional nanostructures

    Science.gov (United States)

    Wang, Debin

    This thesis presents the development of a novel atomic force microscope (AFM) based nanofabrication technique termed as thermochemical nanolithography (TCNL). TCNL uses a resistively heated AFM cantilever to thermally activate chemical reactions on a surface with nanometer resolution. This technique can be used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. This thesis research is focused on three main objectives. The first objective is to study the fundamentals of TCNL writing aspects. We have conducted a systematic study of the heat transfer mechanism using finite element analysis modeling, Raman spectroscopy, and local glass transition measurement. In addition, based on thermal kinetics analysis, we have identified several key factors to achieve high resolution fabrication of nanostructures during the TCNL writing process. The second objective is to demonstrate the use of TCNL on a variety of systems and thermochemical reactions. We show that TCNL can be employed to (1) modify the wettability of a polymer surface at the nanoscale, (2) fabricate nanoscale templates on polymer films for assembling nano-objects, such as proteins and DNA, (3) fabricate conjugated polymer semiconducting nanowires, and (4) reduce graphene oxide with nanometer resolution. The last objective is to characterize the TCNL nanostructures using AFM based methods, such as friction force microscopy, phase imaging, electric force microscopy, and conductive AFM. We show that they are useful for in situ characterization of nanostructures, which is particularly challenging for conventional macroscopic analytical tools, such as Raman spectroscopy, IR spectroscopy, and fluorescence microscopy.

  1. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  2. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg‑1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  3. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass.

    Science.gov (United States)

    Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan

    2013-02-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    Science.gov (United States)

    Cataldo, Franco

    2013-01-01

    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value.

  5. A thermochemical pathway for controlled synthesis of AlN nanoparticles in non-isothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nersisyan, Hayk H. [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); RASOM, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Yoo, Bung Uk [Graduate School of Energy Science and Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Kab Ho [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Graduate School of Energy Science and Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); RASOM, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2015-03-20

    Highlights: • A non-isothermal combustion process was developed for synthesizing AlN nanoparticles. • Temperature-time profiles and combustion parameters were recorded and discussed. • AlN nanoparticles (50–200 nm) with a specific surface of 7.9–20.8 m{sup 2}/g were prepared. • The thermochemical mechanism of AlN formation in the combustion wave was clarified. - Abstract: The synthesis of AlN nanoparticles in non-isothermal high-temperature conditions was developed. The process involved Al{sub 2}O{sub 3}–Mg–NH{sub 4}Cl mixtures preparation and combustion in nitrogen atmosphere. Temperature profiles in the combustion waves were recorded by thermocouples, and the values of combustion temperature and wave velocity were determined from the recorded profiles. The existence of two independed combustion regimes with maximum temperatures of about 850 °C and 1400–1600 °C were revealed based on concentrations of NH{sub 4}Cl. AlN nanocrystals were obtained and investigated by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller surface area. AlN nanocrystals prepared under non-isothermal combustion process were comprised well distributed multi-faceted particles with an average size of 50–200 nm. The chemical reactions in the combustion wave were discussed and a possible thermochemical pathway for the synthesis of AlN nanoparticles was proposed.

  6. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Kenji [NASA Glenn Research Center, OAI, 22800 Cedar Point Rd, Cleveland, OH 44142 (United States); Panesi, Marco, E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Lab, 104 S. Wright St., Urbana, IL 61801 (United States); Prudhomme, Serge [Département de mathématiques et de génie industriel, Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7 (Canada)

    2015-10-01

    The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  7. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies.

    Science.gov (United States)

    Lee, Xin Jiat; Lee, Lai Yee; Gan, Suyin; Thangalazhy-Gopakumar, Suchithra; Ng, Hoon Kiat

    2017-03-22

    This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin(-1) N2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg(-1)) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential.

  8. Production of activated carbon by waste tire thermochemical degradation with CO2.

    Science.gov (United States)

    Betancur, Mariluz; Martínez, Juan Daniel; Murillo, Ramón

    2009-09-15

    The thermochemical degradation of waste tires in a CO(2) atmosphere without previous treatment of devolatilization (pyrolysis) in order to obtain activated carbons with good textural properties such as surface area and porosity was studied. The operating variables studied were CO(2) flow rate (50 and 150 mL/min), temperature (800 and 900 degrees C) and reaction time (1, 1.5, 2, 2.5 and 3h). Results show a considerable effect of the temperature and the reaction time in the porosity development. Kinetic measurements showed that the reactions involved in the thermochemical degradation of waste tire with CO(2), are similar to those developed in the pyrolysis process carried out under N(2) atmosphere and temperatures below 760 degrees C, for particles sizes of 500 microm and heating rate of 5 degrees C/min. For temperatures higher than 760 degrees C the CO(2) starts to oxidize the remaining carbon black. Activated carbon with a 414-m(2)/g surface area at 900 degrees C of temperature, 150 mL/min of CO(2) volumetric flow and 180 min of reaction time was obtained. In this work it is considering the no reactivity of CO(2) for devolatilization of the tires (up to 760 degrees C), and also the partial oxidation of residual char at high temperature for activation (>760 degrees C). It is confirmed that there are two consecutive stages (devolatilization and activation) developed from the same process.

  9. Contrasting effects of sulfur dioxide on cupric oxide and chloride during thermochemical formation of chlorinated aromatics.

    Science.gov (United States)

    Fujimori, Takashi; Nishimoto, Yoshihiro; Shiota, Kenji; Takaoka, Masaki

    2014-12-01

    Sulfur dioxide (SO2) gas has been reported to be an inhibitor of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation in fly ash. However, other research has suggested little or no inhibitory effect of SO2 gas. Although these studies focused on reactions between SO2 gas and gas-phase chlorine (Cl) species, no attention was paid to thermochemical gas-solid reactions. In this study, we found contrasting effects of SO2 gas depending on the chemical form of copper (CuO vs CuCl2) with a solid-phase inorganic Cl source (KCl). Chlorinated aromatics (PCDD/Fs, polychlorinated biphenyls, and chlorobenzenes) increased and decreased in model fly ash containing CuO + KCl and CuCl2 + KCl, respectively, with increased SO2 injection. According to in situ Cu K-edge and S K-edge X-ray absorption spectroscopy, Cl gas and CuCl2 were generated and then promoted the formation of highly chlorinated aromatics after thermochemical reactions of SO2 gas with the solid-phase CuO + KCl system. In contrast, the decrease in aromatic-Cls in a CuCl2 + KCl system with SO2 gas was caused mainly by the partial sulfation of the Cu. The chemical form of Cu (especially the oxide/chloride ratio) may be a critical factor in controlling the formation of chlorinated aromatics using SO2 gas.

  10. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  11. Directly irradiated fluidized bed reactors for thermochemical processing and energy storage: Application to calcium looping

    Science.gov (United States)

    Tregambi, Claudio; Montagnaro, Fabio; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Directly irradiated fluidized bed reactors are very promising in the context of concentrated solar power applications, as they can be operated at process temperatures high enough to perform thermochemical storage reactions with high energy density. Limestone calcination-carbonation is an appealing reaction for thermochemical storage applications due to the cheapness of the raw material, and the interesting value of the reaction enthalpy at fairly high process temperatures. Moreover, limestone calcination-carbonation is intensively studied in Calcium Looping (CaL) application for post combustion CO2 capture and sequestration. In this work, the dynamics of a directly irradiated 0.1 m ID fluidized bed reactor exposed to a 12 kWel simulated solar furnace is analyzed with specific reference to temperature distribution at the surface and in the bulk of the bed. Simulation of the solar radiation was performed through an array of three short arc Xe-lamps coupled with elliptical reflectors, yielding a peak flux of nearly 3000 kW m-2 and a total power of nearly 3 kW incident on the bed surface. Moreover, the directly irradiated fluidized bed reactor has been used to perform CaL tests by alternating solar-driven limestone calcination and autothermal recarbonation of lime. CaL has been investigated with the twofold perspective of: a) accomplishing energy storage by solar-driven calcination of limestone; b) perform solar-aided CO2 capture from flue gas to be embodied in carbon capture and sequestration schemes.

  12. The Deep Water Abundance on Jupiter: New Constraints from Thermochemical Kinetics and Diffusion Modeling

    CERN Document Server

    Visscher, Channon; Saslow, Sarah A

    2010-01-01

    We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter's atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the Jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) x 10^-3 in Jupiter's deep troposphere, corresponding to an enrichment of 0.3 to 7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 x 10^-4). Our results suggest that Jupiter's oxygen enrichment is roughly similar to that for carb...

  13. Benchmark Study of the Structural and Thermochemical Properties of a Dihydroazulene/Vinylheptafulvene Photoswitch

    DEFF Research Database (Denmark)

    Koerstz, Mads; Elm, Jonas; Mikkelsen, Kurt Valentin

    2017-01-01

    We investigate the performance of four different density functional theory (DFT) functionals (M06-2X, ωB97X-D, PBE0, and B3LYP-D3BJ) for calculating the structural and thermochemical properties of the dihydroazulene/vinylheptafulvene photoswitch (DHA/VHF). We find that all the tested DFT function......We investigate the performance of four different density functional theory (DFT) functionals (M06-2X, ωB97X-D, PBE0, and B3LYP-D3BJ) for calculating the structural and thermochemical properties of the dihydroazulene/vinylheptafulvene photoswitch (DHA/VHF). We find that all the tested DFT......, indicating that the largest source of error when calculating storage free energies originates from errors in the calculated single point energies. It was found that ωB97X-D and M06-2X performed decently for predicting storage energies. While B3LYP-D3BJ and PBE0 generally underestimated the storage energy...

  14. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.

    Science.gov (United States)

    Wu, May; Wu, Ye; Wang, Michael

    2006-01-01

    We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.

  15. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  16. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  17. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  18. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  19. Using a Laboratory Inquiry with High School Students to Determine the Reaction Stoichiometry of Neutralization by a Thermochemical Approach

    Science.gov (United States)

    Journal of Chemical Education, 2015

    2015-01-01

    This paper presents the design and practical application of a laboratory inquiry at high school chemistry level for systematic chemistry learning, as exemplified by a thermochemical approach to the reaction stoichiometry of neutralization using Job's method of continuous variation. In the laboratory inquiry, students are requested to propose the…

  20. Using a Laboratory Inquiry with High School Students to Determine the Reaction Stoichiometry of Neutralization by a Thermochemical Approach

    Science.gov (United States)

    Journal of Chemical Education, 2015

    2015-01-01

    This paper presents the design and practical application of a laboratory inquiry at high school chemistry level for systematic chemistry learning, as exemplified by a thermochemical approach to the reaction stoichiometry of neutralization using Job's method of continuous variation. In the laboratory inquiry, students are requested to propose the…

  1. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  2. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid.

    Science.gov (United States)

    Nam, Seong-Nam; Jeong, Seongkyeong; Lim, Hojoo

    2014-01-30

    In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5N sulfuric acid-digestive destruction was incorporated with 10-24-h heating at 100°C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30-100°C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer - a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method.

  3. Wankel engine for hybrid powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Butti, A. [Univ. of Florence (Italy); Site, V.D.

    1995-12-31

    The Wankel engine is suited to be used to drive hybrid propulsion systems. The main disadvantage of hybrid propulsion systems is the complexity that causes a high weight and large dimensions. For these reason hybrid systems are more suitable for large size vehicle (buses, vans) rather than for small passenger cars. A considerable reduction of hybrid systems weight and dimensions can be obtained using a Wankel rotary engine instead of a conventional engine. The Wankel engine is light, compact, simple, and produces low noise and low vibrations. Therefore a Wankel engine powered hybrid system is suited to be used on small cars. In this paper a 1,000 kg parallel hybrid car with continuously variable transmission and a 6,000 kg series hybrid minibus both equipped with Wankel engines are considered. The Wankel engine works at steady state to minimize fuel consumption and exhaust emissions. The simulation of the behavior of these two vehicles during a ECE + EUDC test cycle is presented in order to evaluate the performances of the systems.

  4. FES cycling.

    Science.gov (United States)

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  5. The calculation of specific heats for some important solid components in hydrogen production process based on CuCl cycle

    Directory of Open Access Journals (Sweden)

    Avsec Jurij

    2014-01-01

    Full Text Available Hydrogen is one of the most promising energy sources of the future enabling direct production of power and heat in fuel cells, hydrogen engines or furnaces with hydrogen burners. One of the last remainder problems in hydrogen technology is how to produce a sufficient amount of cheap hydrogen. One of the best options is large scale thermochemical production of hydrogen in combination with nuclear power plant. copper-chlorine (CuCl cycle is the most promissible thermochemical cycle to produce cheap hydrogen.This paper focuses on a CuCl cycle, and the describes the models how to calculate thermodynamic properties. Unfortunately, for many components in CuCl cycle the thermochemical functions of state have never been measured. This is the reason that we have tried to calculate some very important thermophysical properties. This paper discusses the mathematical model for computing the thermodynamic properties for pure substances and their mixtures such as CuCl, HCl, Cu2OCl2 important in CuCl hydrogen production in their fluid and solid phase with an aid of statistical thermodynamics. For the solid phase, we have developed the mathematical model for the calculation of thermodynamic properties for polyatomic crystals. In this way, we have used Debye functions and Einstein function for acoustical modes and optical modes of vibrations to take into account vibration of atoms. The influence of intermolecular energy we have solved on the basis of Murnaghan equation of state and statistical thermodynamics.

  6. Geodynamically Consistent Interpretation of Seismic Tomography for Thermal and Thermochemical Mantle Plumes

    Science.gov (United States)

    Samuel, H.; Bercovici, D.

    2006-05-01

    Recent theoretical developments as well as increased data quality and coverage have allowed seismic tomographic imaging to better resolve narrower structures at both shallow and deep mantle depths. However, despite these improvements, the interpretation of tomographic images remains problematic mainly because of: (1) the trade off between temperature and composition and their different influence on mantle flow; (2) the difficulty in determining the extent and continuity of structures revealed by seismic tomography. We present two geodynamic studies on mantle plumes which illustrate the need to consider both geodynamic and mineral physics for a consistent interpretation of tomographic images in terms of temperature composition and flow. The first study aims to investigate the coupled effect of pressure and composition on thermochemical plumes. Using both high resolution 2D numerical modeling and simple analytical theory we show that the coupled effect of composition and pressure have a first order impact on the dynamics of mantle thermochemical plumes in the lower mantle: (1) For low Si enrichment of the plume relative to a reference pyrolitic mantle, an oscillatory behavior of the plume head is observed; (2) For Si-enriched plume compositions, the chemical density excess of the plume increases with height, leading to stagnation of large plume heads at various depths in the lower mantle. As a consequence, these thermochemical plumes may display broad (~ 1200 km wide and more) negative seismic velocity anomalies at various lower mantle depths, which may not necessarily be associated with upwelling currents. The second study focuses on the identification of thermal mantle plumes by seismic tomography beneath the Hawaiian hot spot: we performed a set of 3D numerical experiments in a spherical shell to model a rising plume beneath a moving plate. The thermal structure obtained is converted into P and S wave seismic velocities using mineral physics considerations. We

  7. Global thermochemical imaging of the lithosphere using satellite and terrestrial observations

    Science.gov (United States)

    Fullea, Javier; Lebedev, Sergei; Martinec, Zdenek; Celli, Nicolas

    2017-04-01

    Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of the rocks within the Earth. However, modelling and interpretation of multiple data sets provide a multifaceted image of the true thermochemical structure of the Earth that needs to be appropriately and consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth involved. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite (e.g., Swarm and GOCE ESA missions) geophysical data sets over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. This project combines state-of-the-art seismic waveform tomography (using both surface and body waves), newly available global gravity satellite data (geoid and gravity anomalies and new gradiometric measurements from ESA's GOCE mission) and surface heat flow and elevation within a self-consistent thermodynamic framework. The aim is to develop a method for detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. In a preliminary study, we convert a state-of-the-art global

  8. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seong-Nam, E-mail: namsn76@gmail.com [Engineering Research Institute, Seoul National University, Daehak-dong, Gwanak-gu 151-744 (Korea, Republic of); Jeong, Seongkyeong [Environmental Resource Recirculation Division, National Institute of Environmental Research, Environmental Research Complex, Kyeongseo-dong, Seo-gu, Incheon 404-708 (Korea, Republic of); Lim, Hojoo [Indoor Environment and Noise Division, National Institute of Environmental Research, Environmental Research Complex, Kyeongseo-dong, Seo-gu, Incheon 404-708 (Korea, Republic of)

    2014-01-30

    Highlights: • Asbestos-containing roofing slates (ACS) were thermochemically treated. • 5 N H{sub 2}SO{sub 4} with 100 °C heating for 10–24 h showed complete disappearance. • Asbestiform of ACS was changed to non-asbestiform after treatment. • Favorable destruction was occurred at the Mg(OH){sub 2} layer rather than SiO{sub 2} sheet. • Equivalent treatability of waste acid brightened the feasibility of this approach. -- Abstract: In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5 N sulfuric acid-digestive destruction was incorporated with 10–24-h heating at 100 °C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30–100 °C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer – a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method.

  9. On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions.

    Science.gov (United States)

    Peterson, Kirk A; Shepler, Benjamin C; Figgen, Detlev; Stoll, Hermann

    2006-12-28

    A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core-valence correlation, relativistic effects (scalar and spin-orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin-orbit coupling effects. Spectroscopic constants for the spin-orbit excited X2(2)III(1/2) states are also reported for each species. The predicted bond lengths and harmonic frequencies for the closed-shell anions are expected to be accurate to within about 0.001 A and 2 cm-1, respectively. The dissociation energies of the radicals have been determined by both direct calculation and through use of negative ion thermochemical cycles, which made use of a small amount of accurate experimental data. The resulting values of D0, 63.5, 55.8, and 54.2 kcal/mol for ClO, BrO, and IO, respectively, are the most accurate ab initio values to date, and those for ClO and BrO differ from their experimental values by just 0.1 kcal/mol. These dissociation energies lead to heats of formation, DeltaH(f) (298 K), of 24.2 +/- 0.3, 29.6 +/- 0.4, and 29.9 +/- 0.6 kcal/mol for ClO, BrO, and IO, respectively. Also, the final calculated electron affinities are all within 0.2 kcal/mol of their experimental values. Improved pseudopotential parameters for the iodine atom are also reported, together with revised correlation

  10. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2).

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2012-11-01

    The enhanced thermo-chemical process (i.e., pyrolysis/gasification) of various macroalgae using carbon dioxide (CO(2)) as a reaction medium was mainly investigated. The enhanced thermo-chemical process was achieved by expediting the thermal cracking of volatile chemical species derived from the thermal degradation of the macroalgae. This process enables the modification of the end products from the thermo-chemical process and significant reduction of the amount of condensable hydrocarbons (i.e., tar, ∼50%), thereby directly increasing the efficiency of the gasification process.

  11. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  12. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust.

    Science.gov (United States)

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Fan, Shiyang; Li, Juan

    2016-04-01

    To improve the reducing sugar production from catalpa sawdust, thermo-chemical pretreatments were examined and the chemicals used including NaOH, Ca(OH)2, H2SO4, and HCl. The hemicellulose solubilization and cellulose crystallinity index (CrI) were significantly increased after thermo-alkaline pretreatments, and the thermo-Ca(OH)2 pretreatment showed the best improvement for reducing sugar production comparing to other three pretreatments. The conditions of thermo-Ca(OH)2 pretreatment and enzymatic hydrolysis were systematically optimized. Under the optimal conditions, the reducing sugar yield increased by 1185.7% comparing to the control. This study indicates that the thermo-Ca(OH)2 pretreatment is ideal for the saccharification of catalpa sawdust and that catalpa sawdust is a promising raw material for biofuel.

  13. 3D Thermochemical Numerical Model of a Convergent Zone With an Overriding Plate

    Science.gov (United States)

    Mason, W. G.; Moresi, L.; Betts, P. G.

    2008-12-01

    We have created a new three dimensional thermochemical numerical model of a convergent zone, in which a viscoplastic oceanic plate subducts beneath a viscous overriding plate, using the finite element Geoscience research code Underworld. Subduction is initiated by mantle flow induced by the gravitational instability of a slab tip, and buoyancy of the overriding plate. A cold thermal boundary layer envelopes both plates, and is partially dragged into the mantle along with the subducting slab. The trench rolls back as the slab subducts, and the overriding plate follows the retreating trench without being entrained into the upper mantle. The model is repeated with the overriding plate excluded, to analyse the influence of the overriding plate. The overriding plate retards the rate of subduction. Maximum strain rates, evident along the trench in the absence of an overriding plate, extend to a greater depth within the subducted portion of the slab in the presence of an overriding plate.

  14. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    Science.gov (United States)

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain.

  15. Thermochemical studies on complex of [Sm(o-NBA)_3phen]_2

    Institute of Scientific and Technical Information of China (English)

    肖圣雄; 张建军; 李旭; 李强国; 任宁; 李环

    2010-01-01

    A ternary complex [Sm(o-NBA)3phen]2 (o-NBA: o-Nitrobenzoate; phen: 1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR, molar conductance, and thermogravimetric analysis. The dissolution enthalpies of SmCl3·6H2O(s), o-HNBA(s) and phen·H2O(s) in mixed solvent (VHCl :VDMF :VDMSO=2:2:1) were determined by calorimetry at 298.15 K. The enthalpy change of the reaction was determined to be rHmΔθ=252.49±1.60 kJ/mol. Using the relevant data in the literature and a thermochemical recycle ...

  16. Thermochemical recycling of mixture of scrap tyres and waste lubricating oil into high caloric value products

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Raouf, Manar E.; Maysour, Nermine E.; Abdul-Azim, Abdul-Azim A. [Egyptian Petroleum Research Institute, Nasr City, Cairo (Egypt); Amin, Mahasen S. [Faculty of Science, Benha University, Benha (Egypt)

    2010-06-15

    Scrap tyres and used lubricating oils represent together growing environmental problem because they are not biodegradable and their components cannot readily be recovered. In the present investigation, the thermochemical recycling of mixture of old tyres with waste lubricating oil by pyrolysis and the value of the products obtained have been studied. First, thermobalance experiments were carried out, studying the influence of the following variables: temperature, type of catalyst and catalyst concentration on the pyrolysis reaction of a mixture of 1/1 wt./wt. oil/tyre ratio. These thermobalance results were thoroughly investigated to study the effect of the main process variables on yields of derived products: oils, gases and solid residue. (author)

  17. Onboard Hydrogen Generation for a Spark Ignition Engine via Thermochemical Recuperation

    Science.gov (United States)

    Silva, Isaac Alexander

    A method of exhaust heat recovery from a spark-ignition internal combustion engine was explored, utilizing a steam reforming thermochemical reactor to produce a hydrogen-rich effluent, which was then consumed in the engine. The effects of hydrogen in the combustion process have been studied extensively, and it has been shown that an extension of the lean stability limit is possible through hydrogen enrichment. The system efficiency and the extension of the operational range of an internal combustion engine were explored through the use of a methane fueled naturally aspirated single cylinder engine co-fueled with syngas produced with an on board methane steam reformer. It was demonstrated that an extension of the lean stability limit is possible using this system.

  18. Thermochemical prediction of chemical form distributions of fission products in LWR mixed oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kouki; Furuya, Hirotaka [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-06-01

    Radial distribution of chemical forms of fission products (FPs) in LWR mixed oxide (MOX) fuel pins was theoretically predicted by a thermochemical computer code SOLGASMIX-PV. The amounts of fission products generated in the fuel were calculated by ORIGEN-2 code, and the radial distributions of temperature and oxygen potential were calculated by taking the neutron depression and oxygen redistribution in the fuel into account. A fuel pellet was radially divided into 51 sections and chemical forms of FPs were calculated in each section. The effects of linear heat rating (LHR) and average O/U ratio on radial distribution of chemical form were evaluated. It was found that the radial distribution of chemical forms depends strongly on the LHR and the O/M ratio, and is not proportional to that of burnup. (author)

  19. Thermochemical Water Splitting for Hydrogen Production Utilizing Nuclear Heat from an HTGR

    Institute of Scientific and Technical Information of China (English)

    WU Xinxin; ONUKI Kaoru

    2005-01-01

    A very promising technology to achieve a carbon free energy system is to produce hydrogen from water, rather than from fossil fuels. Iodine-sulfur (IS) thermochemical water decomposition is one promising process. The IS process can be used to efficiently produce hydrogen using the high temperature gas-cooled reactor (HTGR) as the energy source supplying gas at 1000℃. This paper describes that demonstration experiment for hydrogen production was carried out by an IS process at a laboratory scale. The results confirmed the feasibility of the closed-loop operation for recycling all the reactants besides the water, H2, and O2. Then the membrane technology was developed to enhance the decomposition efficiency. The maximum attainable one-pass conversion rate of HI exceeds 90% by membrane technology, whereas the equilibrium rate is about 20%.

  20. A Perspective on Thermochemical and Electrochemical Processes for Titanium Metal Production

    Science.gov (United States)

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Zheng, Shili; Xia, Yang; Free, Michael

    2017-10-01

    Titanium metal is produced commercially by the costly and energy-intensive Kroll process, which is highly matured and optimized. In the last several decades, many new methods have been proposed to reduce the production cost of Ti metal and thus widen its applications. These new methods can be categorized into two main groups: thermochemical and electrochemical methods. Even though detailed operations for different processes vary, the various processes in each category share the same principles. This article outlines the differences and the challenges between different processes on the basis of these shared principles, with an emphasis on the developmental processes. Although several of these new processes are at the laboratory or pilot-plant development stage, it is recognized that systematic fundamental research and open scientific exchanges are still sorely needed in this area to improve the new technologies.