WorldWideScience

Sample records for hybrid reactor cthr

  1. Status report on the conceptual design of a commercial tokamak hybrid reactor (CTHR)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    A preliminary conceptual design is presented for an early twenty-first century fusion hybrid reactor called the Commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) plants. The study has been made in sufficient depth to indicate no insurmountable technical problems exist and has provided a basis for valid cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources.

  2. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  3. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  4. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  5. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  6. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K D; Donnert, H J; Yang, T F

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron temperature is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  7. Innovative hybrid biological reactors using membranes; Reactores biologico hibrido innovadores utilizando membranas

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-07-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  8. Hybrid reactors: Nuclear breeding or energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Piera, Mireia [UNED, ETSII-Dp Ingenieria Energetica, c/Juan del Rosal 12, 28040 Madrid (Spain); Lafuente, Antonio; Abanades, Alberto; Martinez-Val, J.M. [ETSII-UPM, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2010-09-15

    After reviewing the long-standing tradition on hybrid research, an assessment model is presented in order to characterize the hybrid performance under different objectives. In hybrids, neutron multiplication in the subcritical blanket plays a major role, not only for energy production and nuclear breeding, but also for tritium breeding, which is fundamental requirement in fusion-fission hybrids. All three objectives are better achieved with high values of the neutron multiplication factor (k-eff) with the obvious and fundamental limitation that it cannot reach criticality under any event, particularly, in the case of a loss of coolant accident. This limitation will be very important in the selection of the coolant. Some general considerations will be proposed, as guidelines for assessing the hybrid potential in a given scenario. Those guidelines point out that hybrids can be of great interest for the future of nuclear energy in a framework of Sustainable Development, because they can contribute to the efficient exploitation of nuclear fuels, with very high safety features. Additionally, a proposal is presented on a blanket specially suited for fusion-fission hybrids, although this reactor concept is still under review, and new work is needed for identifying the most suitable blanket composition, which can vary depending on the main objective of the hybrid. (author)

  9. Reactor mixing angle from hybrid neutrino masses

    CERN Document Server

    Sierra, D Aristizabal

    2014-01-01

    In terms of its eigenvector decomposition, the neutrino mass matrix (in the basis where the charged lepton mass matrix is diagonal) can be understood as originating from a tribimaximal dominant structure with small deviations, as demanded by data. If neutrino masses originate from at least two different mechanisms, referred to as "hybrid neutrino masses", the experimentally observed structure naturally emerges provided one mechanism accounts for the dominant tribimaximal structure while the other is responsible for the deviations. We demonstrate the feasibility of this picture in a fairly model-independent way by using lepton-number-violating effective operators, whose structure we assume becomes dictated by an underlying $A_4$ flavor symmetry. We show that if a second mechanism is at work, the requirement of generating a reactor angle within its experimental range always fixes the solar and atmospheric angles in agreement with data, in contrast to the case where the deviations are induced by next-to-leading ...

  10. Reference mirror hybrid fusion-fission reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Bender, D.J.; Lee, J.D.; Neef, W.S.

    1977-06-08

    The status of the reference mirror hybrid reactor design being performed by LLL and General Atomic is summarized. The reactor parameters have been chosen to minimize the cost of producing fissile fuel for consumption in fission power reactors. The design draws on the experience developed at LLL in previous hybrid reactor conceptual designs and on GA expertise in gas-cooling technology and fission reactor mechanical design. As in the past, we have emphasized the use of existing technology where possible and a minimum extrapolation of technology otherwise. We consider our projections for the plasma physics parameters to be conservative, in that they are well-founded on the experiments in 2XIIB and the interpretation of these experiments.

  11. Wastewater Treatment in a Hybrid Biological Reactor (HBR) :Nitrification Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIAN-LONG WANG; LI-BO WU

    2004-01-01

    To investigate the nitrifying characteristics of both suspended- and attached- biomass in a hybrid bioreactor. Methods The hybrid biological reactor was developed by introducing porous ceramic particles into the reactor to provide the surface for biomass attachment. Microorganisms immobilized on the ceramics were observed using scanning electron microscopy (SEM). All chemical analyses were performed in accordance with standard methods. Results The suspended- and attached-biomass had approximately the same nitrification activity. The nitrifying kinetic was independent of the initial biomass concentration, and the attached-biomass had a stronger ability to resist the nitrification inhibitor. Conclusion The attached biomass is superior to suspended-biomass for nitrifying wastewater, especially that containing toxic organic compounds. The hybrid biological reactor consisting of suspended- and attached-biomass is advantageous in such cases.

  12. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  13. Reference design for the standard mirror hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bender, D.J.; Fink, J.H.; Galloway, T.R.; Kastenberg, W.E.; Lee, J.D.; Devoto, R.S.; Neef, W.S. Jr.; Schultz, K.R.; Culver, D.W.; Rao, S.B.; Rao, S.R.

    1978-05-22

    This report describes the results of a two-year study by Lawrence Livermore Laboratory and General Atomic Co. to develop a conceptual design for the standard (minimum-B) mirror hybrid reactor. The reactor parameters have been chosen to minimize the cost of producing nuclear fuel (/sup 239/Pu) for consumption in fission power reactors (light water reactors). The deuterium-tritium plasma produces approximately 400 MW of fusion power with a plasma Q of 0.64. The fast-fission blanket, which is fueled with depleted uranium and lithium, generates sufficient tritium to run the reactor, has a blanket energy multiplication of M = 10.4, and has a net fissile breeding ratio of Pu/n = 1.51. The reactor has a net electrical output of 600 MWe, a fissile production of 2000 kg of plutonium per year (at a capacity factor of 0.74), and a net plant efficiency of 0.18. The plasma-containment field is generated by a Yin-Yang magnet using NbTi superconductor, and the neutral beam system uses positive-ion acceleration with beam direct conversion. The spherical blanket is based on gas-cooled fast reactor technology. The fusion components, blanket, and primary heat-transfer loop components are all contained within a prestressed-concrete reactor vessel, which provides magnet restraint and supports the primary heat-transfer loop and the blanket.

  14. Investigating the breeding capabilities of hybrid soliton reactors

    Energy Technology Data Exchange (ETDEWEB)

    Catsaros, N., E-mail: nicos@ipta.demokritos.gr [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, 27, Neapoleos Str., 15341 Aghia Paraskevi (Greece); Gaveau, B., E-mail: bernardgaveau@orange.fr [Université Pierre et Marie Curie, Campus Jussieu, 75252 Paris Cedex 05 (France); Jaekel, M.-T., E-mail: jaekel@lpt.ens.fr [Laboratoire de Physique Théorique de l’Ecole Normale Supérieure (CNRS), 24 rue Lhomond, 75231 Paris Cedex 05 (France); Jejcic, A. [Laboratoire de Physique Théorique de l’Ecole Normale Supérieure (CNRS), 24 rue Lhomond, 75231 Paris Cedex 05 (France); Maillard, J., E-mail: maillard@idris.fr [Institut National de Physique Nucléaire et de Physique des Particules (CNRS), 3 rue Michel Ange, 75794 Paris Cedex 16 (France); Institut du Développement et des Ressources en Informatique Scientifique (CNRS), Campus Universitaire d’Orsay, rue John Von Neumann, Bat 506, 91403 Orsay Cedex (France); Maurel, G., E-mail: gerard.maurel@sat.aphp.fr [Université Pierre et Marie Curie, Campus Jussieu, 75252 Paris Cedex 05 (France); Savva, P., E-mail: savvapan@ipta.demokritos.gr [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, 27, Neapoleos Str., 15341 Aghia Paraskevi (Greece); Silva, J., E-mail: jorge.silva@upmc.fr [Université Pierre et Marie Curie, Campus Jussieu, 75252 Paris Cedex 05 (France); and others

    2013-08-15

    Highlights: • ANET code simulates innovative reactor designs including Accelerator Driven Systems. • Preliminary analysis of thermal hybrid soliton reactor examines breeding capabilities. • Subsequent studies will aim at optimizing parameters examined in this analysis. • Breeding capacity could be obtained while preserving efficiency and reactor stability. -- Abstract: Nuclear energy industry asks for an optimized exploitation of available natural resources and a safe operation of reactors. A closed fuel cycle requires the mass of fissile material depleted in a reactor to be equal to or less than the fissile mass produced in the same or in other reactors. In this work, a simple closed cycle scheme is investigated, grounded on the use of a conceptual thermal water-cooled and moderated subcritical hybrid soliton reactor (HSR). The concept is a specific Accelerator Driven System (ADS) operating at lower power than usual pressurized water reactors (PWRs). This type of reactor can be inherently safe, since shutdown is achieved by simply interrupting the accelerator's power supply. In this work a preliminary investigation is attempted concerning the existence of conditions under which the operation of a thermal HSR in breeding regime is possible. For this purpose, a conceptual encapsulated core has been defined by choosing the magnitude of a set of parameters which are important from the neutronic point of view, such as core geometry and fuel composition. Indications of breeding operation regime for thermal HSR systems are sought by performing preliminary simulations of this core. For this purpose, the Monte Carlo code ANET, which is being developed based on the high energy physics code GEANT is utilized, as being capable of simulating particles’ transport and interactions produced, including also simulation of low energy neutrons transport. A simple analytical model is also developed and presented in order to investigate the conditions under which

  15. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  16. Wastewater treatment in a hybrid activated sludge baffled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tizghadam, Mostafa [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France); Dagot, Christophe [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)], E-mail: dagot@ensil.unilim.fr; Baudu, Michel [Laboratoire des Sciences de l' Eau et de l' Environnement, Universite de Limoges, ENSIL, Parc ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex (France)

    2008-06-15

    A novel hybrid activated sludge baffled reactor (HASBR), which contained both suspended and attached-growth biomass perfect mixing cells in series, was developed by installing standing and hanging baffles and introducing plastic brushes into a conventional activated sludge (CAS) reactor. It was used for the treatment of domestic wastewater. The effects on the operational performance of developing the suspended and attached-growth biomass and reactor configuration were investigated. The change of the flow regime from complete-mix to plug-flow, and the addition of plastic brushes as a support for biofilm, resulted in considerable improvements in the COD, nitrogen removal efficiency of domestic wastewater and sludge settling properties. In steady state, approximately 98 {+-} 2% of the total COD and 98 {+-} 2% of the ammonia of the influent were removed in the HASBR, when the influent wastewater concentration was 593 {+-} 11 mg COD/L and 43 {+-} 5 mg N/L, respectively, at a HRT of 10 h. These results were 93 {+-} 3 and 6 {+-} 3% for the CAS reactor, respectively. Approximately 90 {+-} 7% of the total COD was removed in the HASBR, when the influent wastewater concentration was 654 {+-} 16 mg COD/L at a 3 h HRT, and in the organic loading rate (OLR) of 5.36 kg COD m{sup -3} day{sup -1}. The result for the CAS reactor was 60 {+-} 3%. Existing CAS plants can be upgraded by changing the reactor configuration and introducing biofilm support media into the aeration tank.

  17. Hybrid Adsorption-Membrane Biological Reactors for Improved Performance and Reliability of Perchlorate Removal Processes

    Science.gov (United States)

    2008-12-01

    carbon supply for the autotrophic perchlorate reducing bacteria. The membrane used in the reactor is a hollow-fiber microfiltration membrane made from...1 HYBRID ADSORPTION- MEMBRANE BIOLOGICAL REACTORS FOR IMPROVED PERFORMANCE AND RELIABILITY OF PERCHLORATE REMOVAL PROCESSES L.C. Schideman...Center Champaign, IL 61826, USA ABSTRACT This study introduces the novel HAMBgR process (Hybrid Adsorption Membrane Biological Reactor) and

  18. Hybrid estimation technique for predicting butene concentration in polyethylene reactor

    Science.gov (United States)

    Mohd Ali, Jarinah; Hussain, M. A.

    2016-03-01

    A component of artificial intelligence (AI), which is fuzzy logic, is combined with the so-called conventional sliding mode observer (SMO) to establish a hybrid type estimator to predict the butene concentration in the polyethylene production reactor. Butene or co-monomer concentration is another significant parameter in the polymerization process since it will affect the molecular weight distribution of the polymer produced. The hybrid estimator offers straightforward formulation of SMO and its combination with the fuzzy logic rules. The error resulted from the SMO estimation will be manipulated using the fuzzy rules to enhance the performance, thus improved on the convergence rate. This hybrid estimation is able to estimate the butene concentration satisfactorily despite the present of noise in the process.

  19. Study of lower hybrid current drive for the demonstration reactor

    Energy Technology Data Exchange (ETDEWEB)

    Molavi-Choobini, Ali Asghar [Dept. of Physics, Faculty of Engineering, Islamic Azad University, Shahr-e-kord Branch, Shahr-e-kord (Iran, Islamic Republic of); Naghidokht, Ahmed [Dept. of Physics, Urmia University, Urmia (Iran, Islamic Republic of); Karami, Zahra [Dept. of Engineering, Islamic Azad University, Zanjan Branch, Zanjan (Iran, Islamic Republic of)

    2016-06-15

    Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

  20. Investigation of (n,γ) reaction in hybrid reactor zones

    Energy Technology Data Exchange (ETDEWEB)

    Guenay, Mehtap [Inoenue Univ., Malatya (Turkey). Physics Dept.

    2014-12-15

    In this study, the fluids were composed with increased mole fractions of a mixture of molten salt: heavy metals 99-95 % Li{sub 20}Sn{sub 80{sup -}}1-5 % SFG-Pu, 99-95 % Li{sub 20}Sn{sub 80{sup -}}1-5 % SFG-PuF{sub 4}, 99-95 % Li{sub 20}Sn{sub 80{sup -}}1-5 % SFG-PuO{sub 2}. In this study, the effect on conversion of each isotope ({sup 238-242}Pu) in spent fuel grade plutonium by (n,γ) reactions was investigated in liquid first wall, blanket and shield zones of the designed hybrid reactor system. Beryllium (Be) is the neutron multiplier by (n,2n) reactions. The Be zone used was 3 cm thick. 9Cr2WVT, a ferritic steel, is used as structural material. Three-dimensional nucleonic calculations were performed by using the most recent versions of the MCNPX-2.7.0 Monte Carlo code and the nuclear data library ENDF/B-VII.0.

  1. The under-critical reactors physics for the hybrid systems; La physique des reacteurs sous-critiques des systemes hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Schapira, J.P. [Institut de Physique Nucleaire, IN2P3/CNRS 91 - Orsay (France); Vergnes, J. [Electricite de France, EDF, Direction des Etudes et Recherches, 75 - Paris (France); Zaetta, A. [CEA/Saclay, Direction des Reacteurs Nucleaires, DRN, 91 - Gif-sur-Yvette (France)] [and others

    1998-03-12

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  2. Adaptive control using a hybrid-neural model: application to a polymerisation reactor

    Directory of Open Access Journals (Sweden)

    Cubillos F.

    2001-01-01

    Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.

  3. Hybrid reactor safety study. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    A preliminary generic safety evaluation of the fusion-fission hybrid reactor concept has been performed and a hybrid reactor safety program plan for guiding future safety work has been proposed. The emphasis of the work was limited to accident analysis where the main concern is for the health and safety of the public. Major radioactive sources in the hybrid were identified and their inventories compared to those of fission reactors. The means for accidental release of radioactivity to the public were identified, as were the barriers which preclude such accidental releases. Consequence analyses of hypothetical bounding accidents potentially defining the upper bound envelope of risk/consequence to the population and environment surrounding the hybrid site were performed.

  4. COMPARING THE EFFICIENCY OF UAFF AND UASB WITH HYBRID REACTOR IN TREATING WOOD FIBER WASTEWATER

    Directory of Open Access Journals (Sweden)

    B. Ayati, H. Ganjidoust

    2006-01-01

    Full Text Available There are several kinds of anaerobic systems that are widely used for municipal and industrial wastewater treatment. Upflow Anaerobic Fixed Film (UAFF, Upflow Anaerobic Sludge Blanket (UASB and hybrid reactor (combination of UASB and UAFF are the mostly used in treating industrial wastewater. As several operational problems have normally been experienced in both UASB and UAFF systems such as long start-up periods and instability, a hybrid reactor has been conceptualized which addressed these problems but retained the positive aspects of these reactors, such as, high cell concentration, good mixing and tolerance to high loading rates. The wastewater has been obtained from Iran Wood Fiber Company which is located in Hassan Rood city, Gilan Province. After period of starting up the reactors and adaptation, the amount of influent COD was being increased stepwise. After the removal rate was reached to its maximum, the next period for increased load was started as after six months, the reactors could accept about 15 Kg/m3.d with high COD removal rate of about 58.5, 58.9 and 65 percent after 3 days detention time. After 5 and 6 months, maximum growth of granule and biofilm was observed. Diameter of 6 mm and mass to surface and COD removal of 0.25 g/cm2 were the highest measured parameters. The comparison of three studied systems showed that their efficiencies were close to each other. As the effective part of UAFF in hybrid reactor was only one third of the reactor, it acted as a separator of solidliquid-gas phases and UASB had the most effect on treatment. In each UAFF and UASB, all percent removal was resulted by each reactor. It can be concluded that hybrid reactor do have the advantages of both systems with at least half of the height of two reactors. Similar results could be obtained with each UAFF or UASB if higher height can be used.

  5. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  6. Dynamical Safety Analysis of the SABR Fusion-Fission Hybrid Reactor

    Science.gov (United States)

    Sumner, Tyler; Stacey, Weston; Ghiaassian, Seyed

    2009-11-01

    A hybrid fusion-fission reactor for the transmutation of spent nuclear fuel is being developed at Georgia Tech. The Subcritical Advanced Burner Reactor (SABR) is a 3000 MWth sodium-cooled, metal TRU-Zr fueled fast reactor driven by a tokamak fusion neutron source based on ITER physics and technology. We are investigating the accident dynamics of SABR's coupled fission, fusion and heat removal systems to explore the safety characteristics of a hybrid reactor. Possible accident scenarios such as loss of coolant mass flow (LOFA), of power (LOPA) and of heat sink (LOHSA), as well as inadvertent reactivity insertions and fusion source excursion are being analyzed using the RELAP5-3D code, the ATHENA version of which includes liquid metal coolants.

  7. SABR fusion-fission hybrid transmutation reactor design concept

    Science.gov (United States)

    Stacey, Weston

    2009-11-01

    A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which may be essential for significant reduction in high-level waste repository requirements. ITER will serve as the prototype for the fusion neutron source, which means SABRs could be implemented to help close the nuclear fuel cycle during the 2^nd quarter of the century.

  8. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  9. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    Institute of Scientific and Technical Information of China (English)

    SHEN Yongjun; LEI Lecheng; ZHANG Xingwang; DING Jiandong

    2014-01-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants,two hybrid plasma discharge reactors were designed and optimized.The reactors were compared via the discharge characteristics,energy transfer efficiency,the yields of the active species and the energy utilization in dye wastewater degradation.The results showed that under the same AC input power,the characteristics of the discharge waveform of the point-to-plate reactor were better.Under the same AC input power,the two reactors both had almost the same peak voltage of 22 kV.The peak current of the point-to-plate reactor was 146 A,while that of the wire-to-cylinder reactor was only 48.8 A.The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW,respectively.The energy per pulse of the point-to-plate reactor was 0.2221 J,which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J).To remove 50% Acid Orange 7 (AO7),the energy utilizations of the point-to-plate reactor and the wireto-cylinder reactor were 1.02×10-9 mol/L and 0.61×10-9 mol/L,respectively.In the point-to-plate reactor,the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge,which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L).The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5× 10-2 mmol/L).The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone.The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid,maleic anhydride,pbenzoquinone,phenol,benzoic acid,phthalic anhydride,coumarin and 2-naphthol.Proposed degradation pathways were elucidated in light of the analyzed

  10. Fission-suppressed hybrid reactor: the fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  11. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater

    DEFF Research Database (Denmark)

    Mazioti, Aikaterini A.; Stasinakis, Athanasios S.; Psoma, Aikaterini K.;

    2017-01-01

    A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers...

  12. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Hua; GUO Hai-Ping; MOU Yun-Feng; ZHENG Pu; LIU Rong; YANG Xiao-Fei; YANG Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established.It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium.The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D+ beam of the Cockcroft-Walton neutron generator in direct current mode.The measured TPR distribution is compared with the calculated results obtained by the threedimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file.The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α,β) thermal scattering model,so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors.

  13. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  14. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  15. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Science.gov (United States)

    2011-03-01

    None From the ion chromatography results we can calculate the concentration of HNO3 in the gas leaving the plasma reactor. The small NO3- detected...resistant to decomposition by O3. Carbon and polymeric adsorbents were not considered because they would react with O3 and decompose . Potential...nor any ability to decompose ozone. A SAC-13 catalyst was obtained from Engelhard for testing also. This material is an H- Nafion Ion Exchange

  16. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  17. Effect of Different Structural Materials on Neutronic Performance of a Hybrid Reactor

    Science.gov (United States)

    Übeyli, Mustafa; Tel, Eyyüp

    2003-06-01

    Selection of structural material for a fusion-fission (hybrid) reactor is very important by taking into account of neutronic performance of the blanket. Refractory metals and alloys have much higher operating temperatures and neutron wall load (NWL) capabilities than low activation materials (ferritic/martensitic steels, vanadium alloys and SiC/SiC composites) and austenitic stainless steels. In this study, effect of primary candidate refractory alloys, namely, W-5Re, T111, TZM and Nb-1Zr on neutronic performance of the hybrid reactor was investigated. Neutron transport calculations were conducted with the help of SCALE 4.3 System by solving the Boltzmann transport equation with code XSDRNPM. Among the investigated structural materials, tantalum had the worst performance due to the fact that it has higher neutron absorption cross section than others. And W-5Re and TZM having similar results showed the best performance.

  18. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  19. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  20. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  1. Neutronic analysis of a high power density hybrid reactor using innovative coolants

    Indian Academy of Sciences (India)

    Senay Yalçin; Mustafa Übeylı; Adem Acir

    2005-08-01

    In this study, neutronic investigation of a deuterium–tritium (DT) driven hybrid reactor using ceramic uranium fuels, namely UC, UO2 or UN under a high neutron wall load (NWL) of 10 MW/m2 at the first wall is conducted over a period of 24 months for fissile fuel breeding for light water reactors (LWRs). New substances, namely, Flinabe or Li20Sn80 are used as coolants in the fuel zone to facilitate heat transfer out of the blanket. Natural lithium is also utilized for comparison to these two innovative coolants. Neutron transport calculations are performed on a simple experimental hybrid blanket with cylindrical geometry with the help of the SCALE 4·3 System by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and an S8-P3 approximation. The investigated blanket using Flinabe or Li20Sn80 shows better fissile fuel breeding and fuel enrichment characteristics compared to that with natural lithium which shows that these two innovative coolants can be used in hybrid reactors for higher fissile fuel breeding performance. Furthermore, using a high NWL of 10 MW/m2 at the first wall of the investigated blanket can decrease the time for fuel rods to reach the level for charging in LWRs.

  2. Contributions of each isotope in structural material on radiation damage in a hybrid reactor

    Science.gov (United States)

    Günay, Mehtap

    2016-11-01

    In this study, the fluids were used in the liquid first-wall, blanket and shield zones of the designed hybrid reactor system. In this study, salt-heavy metal mixtures consisting of 93-85% Li20Sn80 + 5% SFG-PuO2 and 2-10% UO2, 93-85% Li20Sn80 + 5% SFG-PuO2 and 2-10% NpO2, and 93-85% Li20Sn80 + 5% SFG-PuO2 and 2-10% UCO were used as fluids. In this study, the effect on the radiation damage of spent fuel-grade (SFG)-PuO2, UO2, NpO2 and UCO contents was investigated in the structural material of a designed fusion-fission hybrid reactor system. In the designed hybrid reactor system were investigated the effect on the radiation damage of the selected fluid according to each isotopes of structural material in the structural material for 30 full power years (FPYs). Three-dimensional analyses were performed using the most recent MCNPX-2.7.0 Monte Carlo radiation transport code and the ENDF/B-VII.0 nuclear data library.

  3. The hybrid reactor project based on the straight field line mirror concept

    Science.gov (United States)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on

  4. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Oktem, Yalcin Askin; Ince, Orhan; Sallis, Paul; Donnelly, Tom; Ince, Bahar Kasapgil

    2008-03-01

    In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.

  5. The synthesis of a copper/multi-walled carbon nanotube hybrid nanowire in a microfluidic reactor

    Science.gov (United States)

    Peng, Yitian; Chen, Quanfang

    2009-06-01

    Metallic nanowires are promising as components in nanoscale systems including nanoelectronics. However, the application of nanowires made of a single material is limited by the properties of the material used. We report here an effort to fabricate a hybrid copper-coated carbon nanotube (CNT)—Cu/CNT nanowire, using a microfluidic reactor. The fabrication of copper/multi-walled carbon nanotube (MWCNT) hybrid nanowires was realized by an electroless copper deposition technique in which MWCNT templates and an electrolyte were introduced separately into the microfluidic reactor. The morphology and structure of the Cu/MWCNT hybrid nanowire were studied by means of transmission electron microscopy (TEM), selected-area electron diffraction (SAED), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX), as well as XRD. Results reveal that the fabricated Cu/MWCNT hybrid nanowires are continuously covered by crystallized copper with a preferred crystal orientation along the (111) planes in the radial direction of the MWCNTs. These structural properties are attributed to the unique reaction environment including laminar flow and diffusion-controlled reaction.

  6. Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality.

    Science.gov (United States)

    Gogate, P R; Mededovic-Thagard, S; McGuire, D; Chapas, G; Blackmon, J; Cathey, R

    2014-03-01

    The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5-20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Science.gov (United States)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  8. Hybrid reactors: recent progress of a demonstration pilot; Reacteurs hybrides: avancees recentes pour un demonstrateur

    Energy Technology Data Exchange (ETDEWEB)

    Billebaud, Annick [Laboratoire de Physique Subatomique et de Cosmologie IN2P3-CNRS/UJF/INPG, 53 av. des Martyrs, 38026 Grenoble Cedex (France)

    2006-12-15

    Accelerator driven sub-critical reactors are subject of many research programmes since more than ten years, with the aim of testing the feasibility of the concept as well as their efficiency as a transmutation tool. Several key points like the accelerator, the spallation target, or neutronics in a subcritical medium were investigated extensively these last years, allowing for technological choices and the design of a low power European demonstration ADS (a few tens of MWth). Programmes dedicated to subcritical reactor piloting proposed a monitoring procedure to be validated in forthcoming experiments. Accelerator R and D provided the design of a LINAC for an ADS and research work on accelerator reliability is going on. A spallation target was operated at PSI and the design of a windowless target is in progress. All this research work converges to the design of a European demonstration ADS, the ETD/XT-ADS, which could be the Belgian MYRRHA project. (author)

  9. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  10. Scoping and sensitivity analyses for the Demonstration Tokamak Hybrid Reactor (DTHR)

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D.A.; Gibson, G.

    1979-03-01

    The results of an extensive set of parametric studies are presented which provide analytical data of the effects of various tokamak parameters on the performance and cost of the DTHR (Demonstration Tokamak Hybrid Reactor). The studies were centered on a point design which is described in detail. Variations in the device size, neutron wall loading, and plasma aspect ratio are presented, and the effects on direct hardware costs, fissile fuel production (breeding), fusion power production, electrical power consumption, and thermal power production are shown graphically. The studies considered both ignition and beam-driven operations of DTHR and yielded results based on two empirical scaling laws presently used in reactor studies. Sensitivity studies were also made for variations in the following key parameters: the plasma elongation, the minor radius, the TF coil peak field, the neutral beam injection power, and the Z/sub eff/ of the plasma.

  11. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Science.gov (United States)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  12. The new hybrid thermal neutron facility at TAPIRO reactor for BNCT radiobiological experiments.

    Science.gov (United States)

    Esposito, J; Rosi, G; Agosteo, S

    2007-01-01

    A new thermal neutron irradiation facility, devoted to carry out both dosimetric and radiobiological studies on boron carriers, which are being developed in the framework of INFN BNCT project, has been installed at the ENEA Casaccia TAPIRO research fast reactor. The thermal column, based on an original, hybrid, neutron spectrum shifter configuration, has been recently become operative. In spite of its low power (5 kW), the new facility is able to provide a high thermal neutron flux level, uniformly distributed inside the irradiation cavity, with a quite low gamma background. The main features and preliminary benchmark measurements of the Beam-shaping assembly are here presented and discussed.

  13. Phosphorus removal by a fixed-bed hybrid polymer nanocomposite biofilm reactor

    OpenAIRE

    Oliveira, M.; A.L. Rodrigues; Ribeiro, D.C.; Nogueira, R.; Machado, A. V.

    2014-01-01

    Eutrophication is one of the main challenges regarding the ecological quality of surface waters, phosphorus bioavailability being its main driver. In this context, a novel hybrid polymer nanocomposite (HPN-Pr) biofilm reactor aimed at integrated chemical phosphorus adsorption and biological removal was conceived. The assays pointed to removal of 1.2 mg P/g of reactive phosphorus and 1.01 mg P/g of total phosphorus under steady-state conditions. A mathematical adsorption–biological model was a...

  14. Phosphorus removal by a fixed-bed hybrid polymer nanocomposite biofilm reactor

    OpenAIRE

    Oliveira, M.; Rodrigues,A.L.; Ribeiro, D. C.; Nogueira, R.; Machado, A.V.

    2014-01-01

    Eutrophication is one of the main challenges regarding the ecological quality of surface waters, phosphorus bioavailability being its main driver. In this context, a novel hybrid polymer nanocomposite (HPN-Pr) biofilm reactor aimed at integrated chemical phosphorus adsorption and biological removal was conceived. The assays pointed to removal of 1.2 mg P/g of reactive phosphorus and 1.01 mg P/g of total phosphorus under steady-state conditions. A mathematical adsorption–biological model was a...

  15. Catalysis with Soluble Hybrids of Highly Branched Macromolecules with Palladium Nanoparticles in a Continuously Operated Membrane Reactor

    OpenAIRE

    2003-01-01

    The continuous recovery and recycling of soluble metal nanoparticles by means of ultrafiltration is described, employing hybrids of palladium nanoparticles with highly branched amphiphilic polyglycerol as a catalyst for cyclohexene hydrogenation as a model reaction. In a continuously operated membrane reactor a productivity of 29000 TO over 30 exchanged reactor volumes was observed for nanoparticles of 2.2 nm size, with a maximum rate of 1200 TO h-1. Catalysis by soluble metal complexes can b...

  16. Numerical Research on Hybrid Fuel Locking Device for Upward Flow Core-Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong-Garp; Yoo, Yeon-Sik; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The assembly must be held firmly against these forces, but cannot be permanently attached to the support stand because periodic refueling of the reactor requires removal or relocation of each assembly. There are so many kinds of fuel locking device, but they are operated manually. As a part of a new project, we have investigated a hybrid fuel locking device (HFLD) for research reactor which is operated automatically. Prior method of holding down the fuel assembly includes a hybrid zero electromagnet consisting of an electromagnet and a permanent magnet. The role of an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by controlling the coil current. At this time, a HFLD is an unlocking state. On the contrary, it is locking state that only a permanent magnet works when the power of an electromagnet is off. The results of a FEM in this work lead to the following conclusions: (1) It is possible that an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by remote controlling the coil current. (2) At this time, it is able to detect remotely using proximity sensor whether a HFLD is latched or not.

  17. Study of nitrogen and organics removal in sequencing batch reactor (SBR) using hybrid media.

    Science.gov (United States)

    Thuan, Tran-Hung; Chung, Yun-Chul; Ahn, Dae-Hee

    2003-03-01

    The removal of nitrogen and organics in a sequencing batch reactor (SBR) using hybrid media were investigated in this work. The hybrid media was made by the use of polyurethane foam (PU) cubes and powdered activated carbon (PAC). The function of activated carbon of hybrid media was to offer a suitable active site, which was able to absorb organic substances and ammonia, as well as that of PU was to provide an appropriated surface onto which biomass could be attached and grown. A laboratory-scale moving-bed sequencing batch reactor (SBR) was used for investigating the efficiency of hybrid media. The removal of nitrogen and organics for synthetic wastewater (COD; 490-1,627 mg/L, NH4(+)-N; 180-210 mg/L) were evaluated at different COD/N ratio and different anoxic phase conditions, respectively. The system was operated with the organic loading rate (OLR) of 0.1, 0.16, 0.24, and 0.28 kg COD/m3 day, respectively. Each mode based on OLR was divided as the periods of 45 days of operation time, except for third mode that was operated during 30 days. After acclimatization period, effluent total COD concentrations slightly decreased and the removal efficiency of organics increased to about 90% (COD; 70 mg/L) after 60 days and achieved 98% (COD; 30 mg/L) at the end of experiments. The organics reduction seemed to be less affected by shock loading since high organic loads did not affect the removal efficiency. The NIH4(+)-N concentrations in effluent showed almost lower than 1 mg/L and NO3(-)-N concentrations were high (150 mg/L) during a very low C/N ratio (C/N=2). Over 90% of T-N removal efficiency (T-N; 16 mg/L) was obtained during the last 20 days of the operation after controlling the COD/N ratio (C/N=7). The mixing condition and COD/N ratio at anoxic phase were determined as a main operating factors. In future, the optimal operating conditions of SBR system with hybrid media will be investigated from the view of maintaining a sufficient biomass to the hybrid media under

  18. Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium

    Science.gov (United States)

    Yanqoritha, Nyimas; Turmuzi, Muhammad; Derlini

    2017-05-01

    The appropriate process to resolve sewage contamination which have a high organic using anaerobic technology. Hybrid Upflow Anaerobic Sludge Blanket reactor is one of the anaerobic process which consists of a suspended growth media and attached growth media. The reactor has the ability to work at high load rate, sludge produced easily settles, high biomass and the separation of gas, solid and liquid excelent. The purpose of research is to study the acclimatization process in the reactor of Hybrid Upflow Anaerobic Sludge Blanket using a polyvinl chloride ring as the attached growth medium. Reactor of Hybrid Upflow Anaerobic Sludge Blanket use a working volume of 8.6 L. The operation consisting of 3 L suspended reactor and 5.6 L attached reactor. Acclimatization is conducted by providing the substrate from the smallest concentration of COD up to a concentration that will be processed. During the 50th day, acclimatization process assumed the bacteria begin to work, indicated by the dissolved COD and VSS decrease and biogas production. Due to the wastewater containing the high of protein in consequence operational parameters should be controlled and some precautions should be taken to prevent process partially or totally inhibited.

  19. Optimization of the core configuration design using a hybrid artificial intelligence algorithm for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)

    2009-12-15

    To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational

  20. Sludge granulation in an UASB-moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor.

    Science.gov (United States)

    Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli

    2017-03-15

    A hybrid upflow anaerobic sludge blanket (UASB)-moving bed biofilm (MBB) and rope bed biofilm (RBB) reactor was designed for treatment of sewage. Possibility of enhancing granulation in an UASB reactor using moving media to improve sludge retention was explored while treating low-strength wastewater. The presence of moving media in the top portion of the UASB reactor allowed a high solid retention time even at very short hydraulic retention times and helped in maintaining selection pressure in the sludge bed to promote formation of different sized sludge granules with an average settling velocity of 67 m/h. These granules were also found to contain plenty of extracellular polymeric substance (EPS) such as 58 mg of polysaccharides (PS) per gram of volatile suspended solids (VSS) and protein (PN) content of 37 mg/g VSS. Enriched sludge of nitrogen-removing bacteria forming a porous biofilm on the media in RBB was also observed in a concentration of around 894 g/m(2). The nitrogen removing sludge also had a high EPS content of around 22 mg PS/g VSS and 28 mg PN/g VSS. This hybrid UASB-MBB-RBB reactor with enhanced anaerobic granular sludge treating both carbonaceous and nitrogenous matter may be a sustainable solution for decentralized sewage treatment.

  1. Study of thorium-uranium based molten salt blanket in a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing, E-mail: zhao_jing@mail.tsinghua.edu.cn [INET, Tsinghua University, Beijing 100084 (China); Yang Yongwei; Zhou Zhiwei [INET, Tsinghua University, Beijing 100084 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A molten salt blanket has been designed for the fusion-fission hybrid reactor. Black-Right-Pointing-Pointer The use of Thorium in the molten salt fuels has been studied. Black-Right-Pointing-Pointer The molten salt was consisted of F-Li-Be and with the thickness of 40 cm. Black-Right-Pointing-Pointer The concentration of {sup 6}Li was chosen to be the natural enrichment ratio. Black-Right-Pointing-Pointer The result shows that TBR is greater than 1, M is about 15-16. - Abstract: Not only solid fuels, but also liquid fuels can be used for the fusion-fission symbiotic reactor blanket. The operational record of the molten salt reactor with F-Li-Be was very successful, so the F-Li-Be blanket was chosen for research. The molten salt has several features which are suited for the fusion-fission applications. The fuel material uranium and thorium were dissolved in the F-Li-Be molten salt. A combined program, COUPLE, was used for neutronics analysis of the molten salt blanket. Several cases have been calculated and compared. Not only the influence of the different fuels have been studied, but also the thickness of the molten salt, and the concentration of the {sup 6}Li in the molten salt. Preliminary studies indicate that when thorium-uranium-plutonium fuels were added into a F-Li-Be molten salt blanket and with a component of 71% LiF-2% BeF{sub 2}-13.5% ThF{sub 4}-8.5% UF{sub 4}-5% PuF{sub 3}, and also with the molten salt thickness of 40 cm and natural concentration of {sup 6}Li, the appropriate blanket energy multiplication factor and TBR can be obtained. The result shows that thorium-uranium molten salt can be used in the blanket of a fusion-fission symbiotic reactor. The research on the molten salt blanket must be valuable for the design of fusion-fission symbiotic reactor.

  2. Novel Gas-liquid Hybrid Discharge Reactor for 4-CP Containing Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to improve 4-CP degradation efficiency, a novel gas-liquid hybrid discharge (HD) reactor was developed. Removal of 4-CP with spark-spark discharge (SSD) was higher than that with spark-corona discharge (SCD). Amount of H2O2 and O3 produced with SSD were larger than that with SCD. ·OH formation was increased by the combination of H2O2 and O3.The contribution of ·OH (38 % formed by O3 conversion) oxidation on removal of 4-CP accounted for nearly 60 %. The other effects of ultraviolet radiation, intense shock waves and pyrolysis,played partial roles in about 40 % of removal rate.

  3. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    Science.gov (United States)

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass.

  4. Predictive functional control of temperature in a pharmaceutical hybrid nonlinear batch reactor

    Directory of Open Access Journals (Sweden)

    Štampar Simon

    2013-01-01

    Full Text Available These days, in times of recession, we are forced by competitiveness and the optimization of production to lower the costs of the temperature control in pharmaceutical batch reactors and increase the quantity and quality of the produced pharmaceutical product (active pharmaceutical substances. Therefore, a control algorithm is needed which provides us rapid and precise temperature control. This paper deals with the development of a control algorithm, where two predictive functional controllers are connected in a cascade for heating and cooling the content of the hybrid batch reactor. The algorithm has to be designed to cope with the constraints and the mixed discrete and continuous nature of the process of heating and cooling. The main goal of the control law is to achieve rapid and exact tracking of the reference temperature, good disturbance rejection and, in particular, a small number of heating and cooling medium switchings. The simulation results of the proposed algorithm give us much better performance compared to a conventional cascade PI algorithm.

  5. Spent Nuclear Fuel Option Study on Hybrid Reactor for Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    DUPIC nuclear fuel can be used in hybrid reactor by compensation of subcritical level through (U-10Zr) fuel. Energy production performance of Hyb-WT with DUPIC is grateful because it has high EM factor and performs waste transmutation at the same time. However, waste transmutation performance should be improved by different fissile fuel instead of (U-10Zr) fuel. SNF (Spent Nuclear Fuel) disposal is one of the problems in the nuclear industry. FFHR (Fusion-Fission Hybrid Reactor) is one of the most attractive option on reuse of SNF as a waste transmutation system. Because subcritical system like FFHR has some advantages compared to critical system. Subcritical systems have higher safety potential than critical system. Also, there is suppressed excess reactivity at BOC (Beginning of Cycle) in critical system, on the other hand there is no suppressed reactivity in subcritical system. Our research team could have designed FFHR for waste transmutation; Hyb-WT. Various researches have been conducted on fuel and coolant option for optimization of transmutation performance. However, Hyb-WT has technical disadvantage. It is required fusion power (Pfus) which is the key design parameter in FFHR is increased for compensation of decreasing subcritical level. As a result, structure material integrity is damaged under high irradiation condition by increasing Pfus. Also, deep burn of reprocessed SNF is limited by weakened integrity of structure material. Therefore, in this research, SNF option study will be conducted on DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactor) fuel, TRU fuel and DUPIC + TRU mixed fuel for optimization of Hyb-WT performance. Goal of this research is design check for low required fusion power and high waste transmutation. In this paper, neutronic analysis is conducted on Hyb-WT with DUPIC nuclear fuel. When DUPIC nuclear fuel is loaded in fast neutron system, supplement fissile materials need to be loaded together for compensation of low criticality

  6. Evaluation of a hybrid anaerobic biofilm reactor treating winery effluents and using grape stalks as biofilm carrier.

    Science.gov (United States)

    Wahab, Mohamed Ali; Habouzit, Frédéric; Bernet, Nicolas; Jedidi, Naceur; Escudié, Renaud

    2016-01-01

    Wine production processes generate large amount of both winery wastewater and solid wastes. Furthermore, working periods, volumes and pollution loads greatly vary over the year. Therefore, it is recommended to develop a low-cost treatment technology for the treatment of winery effluents taking into account the variation of the organic loading rate (OLR). Accordingly, we have investigated the sequential operation of an anaerobic biofilm reactor treating winery effluents and using grape stalks (GSs) as biofilm carrier with an OLR ranging from 0.65 to 27 gCOD/L/d. The result showed that, during the start-up with wastewater influent, the chemical oxygen demand (COD) removal rate ranged from 83% to 93% and was about 91% at the end of the start-up period that lasted for 40 days. After 3 months of inactivity period of the reactor (no influent feeding), we have succeeded in restarting-up the reactor in only 15 days with a COD removal of 82% and a low concentration of volatile fatty acids (1 g/L), which confirms the robustness of the reactor. As a consequence, GSs can be used as an efficient carrier support, allowing a fast reactor start-up, while the biofilm conserves its activity during a non-feeding period. The proposed hybrid reactor thus permits to treat both winery effluents and GSs.

  7. Focus on CSIR research in pollution waste: Cellulose degradation, volatile fatty acid formation and biological sulphate removal operating and anaerobic hybrid reactor

    CSIR Research Space (South Africa)

    Greben, H

    2007-08-01

    Full Text Available and sulphide rich effluent of the biological reactor in a 1:1 ratio, to increase the pH and to precipitate the metals as metalsulphides. The feed water entered FR at the top to get into contact with the grass cuttings. A recycle stream (360 ℓ.../d) was installed from the fermentation part of the reactor to the top of the reactor for mixing purposes. The effluent left FR at the bottom. (Figure 2). Reactor System and Biomass A 20 ℓ perspex one stage anaerobic hybrid reactor system operating at 37...

  8. Design of an anaerobic hybrid reactor for industrial wastewater treatment; Diseno de reactores hibridos anaerobios para el tratamiento de aguas residuales industriales

    Energy Technology Data Exchange (ETDEWEB)

    Soroa del Campo, S.; Lopetegui Garnika, J.; Almandoz Peraita, A.; Garcia de las Heras, J. L.

    2005-07-01

    The application of the European legislation has promoted different strategies aimed at minimizing the biological sludge production during wastewater treatment. Anaerobic biological treatment is the clearest choice from a technical and economical point of view regarding industrial wastewater. In this context, a semi-industrial anaerobic hybrid reactor has been developed as an alternative technology to other anaerobic systems well-established in the market for the treatment of slaughterhouse wastewater. The The results have demonstrated that it is an effective, robust and easy to operate system. The sludge production has been reduced below 0.12 kg VS/kg COD removed, for COD removal efficiencies above 95%. (Author) 12 refs.

  9. Hybrid Moving Bed Biofilm Reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater.

    Science.gov (United States)

    Mazioti, Aikaterini A; Stasinakis, Athanasios S; Psoma, Aikaterini K; Thomaidis, Nikolaos S; Andersen, Henrik R

    2017-02-05

    A laboratory scale Hybrid Moving Bed Biofilm Reactor (HMBBR) was used to study the removal of five benzotriazoles and one benzothiazole from municipal wastewater. The HMBBR system consisted of two serially connected fully aerated bioreactors that contained activated sludge (AS) and K3-biocarriers and a settling tank. The average removal of target compounds ranged between 41% (4-methyl-1H-benzotriazole; 4TTR) and 88% (2-hydroxybenzothiazole; OHBTH). Except for 4TTR, degradation mainly occurred in the first bioreactor. Calculation of biodegradation constants in batch experiments and application of a model for describing micropollutants removal in the examined system showed that AS is mainly involved in biodegradation of OHBTH, 1H-benzotriazole (BTR) and xylytriazole (XTR), carriers contribute significantly on 4TTR biodegradation, while both types of biomass participate on elimination of 5-chlorobenzotriazole (CBTR) and 5-methyl-1H-benzotriazole (5TTR). Comparison of the HMBBR system with MBBR or AS systems from literature showed that the HMBBR system was more efficient for the biodegradation of the investigated chemicals. Biotransformation products of target compounds were identified using ultra high-performance liquid chromatography, coupled with a quadrupole-time-of-flight high-resolution mass spectrometer (UHPLC-QToF-MS). Twenty two biotransformation products were tentatively identified, while retention time denoted the formation of more polar transformation products than the parent compounds.

  10. Development of Subspace-based Hybrid Monte Carlo-Deterministric Algorithms for Reactor Physics Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalik, Hany S. [North Carolina State Univ., Raleigh, NC (United States); Zhang, Qiong [North Carolina State Univ., Raleigh, NC (United States)

    2014-05-20

    The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executed in the order of 103 - 105 times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.

  11. HYBRID SULFUR FLOWSHEETS USING PEM ELECTROLYSIS AND A BAYONET DECOMPOSITION REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M; William Summers, W

    2008-05-30

    A conceptual design is presented for a Hybrid Sulfur process for the production of hydrogen using a high-temperature nuclear heat source to split water. The process combines proton exchange membrane-based SO{sub 2}-depolarized electrolyzer technology being developed at Savannah River National Laboratory with silicon carbide bayonet decomposition reactor technology being developed at Sandia National Laboratories. Both are part of the US DOE Nuclear Hydrogen Initiative. The flowsheet otherwise uses only proven chemical process components. Electrolyzer product is concentrated from 50 wt% sulfuric acid to 75 wt% via recuperative vacuum distillation. Pinch analysis is used to predict the high-temperature heat requirement for sulfuric acid decomposition. An Aspen Plus{trademark} model of the flowsheet indicates 340.3 kJ high-temperature heat, 75.5 kJ low-temperature heat, 1.31 kJ low-pressure steam, and 120.9 kJ electric power are consumed per mole of H{sub 2} product, giving an LHV efficiency of 35.3% (41.7% HHV efficiency) if electric power is available at a conversion efficiency of 45%.

  12. Large-scale synthesis of lipid-polymer hybrid nanoparticles using a multi-inlet vortex reactor.

    Science.gov (United States)

    Fang, Ronnie H; Chen, Kevin N H; Aryal, Santosh; Hu, Che-Ming J; Zhang, Kang; Zhang, Liangfang

    2012-10-02

    Lipid-polymer hybrid nanoparticles combine the advantages of both polymeric and liposomal drug carriers and have shown great promise as a controlled drug delivery platform. Herein, we demonstrate that it is possible to adapt a multi-inlet vortex reactor (MIVR) for use in the large-scale synthesis of these hybrid nanoparticles. Several parameters, including formulation, polymer concentration, and flow rate, are systematically varied, and the effects of each on nanoparticle properties are studied. Particles fabricated from this process display characteristics that are on par with those made on the lab-scale such as small size, low polydispersity, and excellent stability in both PBS and serum. Using this approach, production rates of greater than 10 g/h can readily be achieved, demonstrating that use of the MIVR is a viable method of producing hybrid nanoparticles in clinically relevant quantities.

  13. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  14. Transmutation performance analysis on coolant options in a hybrid reactor system design for high level waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong-Hee; Siddique, Muhammad Tariq; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2015-11-15

    Highlights: • Waste transmutation performance was compared and analyzed for seven different coolant options. • Reactions of fission and capture showed big differences depending on coolant options. • Moderation effect significantly affects on energy multiplication, tritium breeding and waste transmutation. • Reduction of radio-toxicities of TRUs showed different trend to coolant choice from performance of waste transmutation. - Abstract: A fusion–fission hybrid reactor (FFHR) is one of the most attractive candidates for high level waste transmutation. The selection of coolant affects the transmutation performance of a FFHR. LiPb coolant, as a conventional coolant for a FFHR, has problems such as reduction in neutron economic and magneto-hydro dynamics (MHD) pressure drop. Therefore, in this work, transmutation performance is evaluated and compared for various coolant options such as LiPb, H{sub 2}O, D{sub 2}O, Na, PbBi, LiF-BeF{sub 2} and NaF-BeF{sub 2} applicable to a hybrid reactor for waste transmutation (Hyb-WT). Design parameters measuring performance of a hybrid reactor were evaluated by MCNPX. They are k{sub eff}, energy multiplication factor, neutron absorption ratio, tritium breeding ratio, waste transmutation ratio, support ratio and radiotoxicity reduction. Compared to LiPb, H{sub 2}O and D{sub 2}O are not suitable for waste transmutation because of neutron moderation effect. Waste transmutation performances with Na and PbBi are similar to each other and not different much from LiPb. Even though molten salt such as LiF-BeF{sub 2} and NaF-BeF{sub 2} is good for avoiding MHD pressure drop problem, waste transmutation performance is dropped compared with LiPb.

  15. Annual Report for Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems—Phase 1B

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Rappe, Kenneth G.; Frye, John G.

    2009-06-01

    Annual report covering the development of a hybrid nonthermal plasma single-pass filtration system for collective protection. This report covers NTP destruction testing on a high priority Toxic Industrial Material and an surrogate for a sulfur containing chemical agent (e.g. mustard), Effects of catalysts in the nonthermal plasma and catalyst poisoning by the sulfur are presented. Also presented are proof-of-principle data for utilizing ozone created in the NTP as a beneficial reactant to destroy adsorbed contaminants in-situ. Catalysts to decompose the ozone within the adsorbent bed are necessary to convert the adsorber into an ozone reactor.

  16. Strategy for nuclear wastes incineration in hybrid reactors; Strategies pour l'incineration de dechets nucleaires dans des reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, F

    1998-12-11

    The transmutation of nuclear wastes in accelerator-driven nuclear reactorsoffers undeniable advantages. But before going into the detailed study of a particular project, we should (i) examine the possible applications of such systems and (ii) compare the different configurations, in order to guide technological decisions. We propose an approach, answering both concerns, based on the complete description of hybrid reactors. It is possible, with only the transmutation objective and a few technological constraints chosen a posteriori, to determine precisely the essential parameters of such reactors: number of reactors, beam current, size of the core, sub-criticality... The approach also clearly pinpoints the strategic decisions, for which the scientist or engineer is not competent. This global scheme is applied to three distinct nuclear cycles: incineration of solid fuel without recycling, incineration of liquid fuel without recycling and incineration of liquid fuel with on-line recycling; and for two spectra, either thermal or fast. We show that the radiotoxicity reduction with a solid fuel is significant only with a fast spectrum, but the incineration times range from 20 to 30 years. The liquid fuel is appropriate only with on-line recycling, at equilibrium. The gain on the radiotoxicity can be considerable and we describe a number of such systems. The potential of ADS for the transmutation of nuclear wastes is confirmed, but we should continue the description of specific systems obtained through this approach. (author)

  17. New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system.

    Science.gov (United States)

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Zhang, Xinbo; Wang, Xiaochang C; Zhang, Qionghua; Chen, Rong

    2016-05-01

    In this study, new sponge modified plastic carriers for moving bed biofilm reactor (MBBR) was developed. The performance and membrane fouling behavior of a hybrid MBBR-membrane bioreactor (MBBR-MBR) system were also evaluated. Comparing to the MBBR with plastic carriers (MBBR), the MBBR with sponge modified biocarriers (S-MBBR) showed better effluent quality and enhanced nutrient removal at HRTs of 12h and 6h. Regarding fouling issue of the hybrid systems, soluble microbial products (SMP) of the MBR unit greatly influenced membrane fouling. The sponge modified biocarriers could lower the levels of SMP in mixed liquor and extracellular polymeric substances in activated sludge, thereby mitigating cake layer and pore blocking resistances of the membrane. The reduced SMP and biopolymer clusters in membrane cake layer were also observed. The results demonstrated that the sponge modified biocarriers were capable of improving overall MBBR performance and substantially alleviated membrane fouling of the subsequent MBR unit.

  18. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system

    Directory of Open Access Journals (Sweden)

    Boldon Lauren

    2016-01-01

    Full Text Available Small modular reactors (SMRs provide a unique opportunity for future nuclear development with reduced financial risks, allowing the United States to meet growing energy demands through safe, reliable, clean air electricity generation while reducing greenhouse gas emissions and the reliance on unstable fossil fuel prices. A nuclear power plant is comprised of several complex subsystems which utilize materials from other subsystems and their surroundings. The economic utility of resources, or thermoeconomics, is extremely difficult to analyze, particularly when trying to optimize resources and costs among individual subsystems and determine prices for products. Economics and thermodynamics cannot provide this information individually. Thermoeconomics, however, provides a method of coupling the quality of energy available based on exergy and the value of this available energy – “exergetic costs”. For an SMR exergy analysis, both the physical and economic environments must be considered. The physical environment incorporates the energy, raw materials, and reference environment, where the reference environment refers to natural resources available without limit and without cost, such as air input to a boiler. The economic environment includes market influences and prices in addition to installation, operation, and maintenance costs required for production to occur. The exergetic cost or the required exergy for production may be determined by analyzing the physical environment alone. However, to optimize the system economics, this environment must be coupled with the economic environment. A balance exists between enhancing systems to improve efficiency and optimizing costs. Prior research into SMR thermodynamics has not detailed methods on improving exergetic costs for an SMR coupled with storage technologies and renewable energy such as wind or solar in a hybrid energy system. This process requires balancing technological efficiencies and

  19. Representativeness elements of an hybrid reactor demonstrator; Elements de representativite d'un demonstrateur de reacteur hybride

    Energy Technology Data Exchange (ETDEWEB)

    Kerdraon, D.; Billebaud, A.; Brissot, R.; David, S.; Giorni, A.; Heuer, D.; Loiseaux, J.M.; Meplan, O

    2000-11-01

    This document deals with the quantification of the minimum thermal power level for a demonstrator and the definition of the physical criteria which define the representative character of a demonstrator towards a power reactor. Solutions allowing to keep an acceptable flow in an industrial core, have also been studied. The document is divided in three parts: the representativeness elements, the considered solutions and the characterization of the neutrons flows at the interfaces and the dose rates at the outer surface of the vessel. (A.L.B.)

  20. Study on the selection of nuclear fuel type for a hybrid power extraction reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong Han; Park, Won Suk [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-11-01

    The development of a subcritical transmutation reactor concept is emerging for reducing the amounts of actinides and long-lived nuclides in the spent fuel from nuclear power plants. This technology may make contribution to reduce the human risks associated with constructing radio-waste disposal facilities. One of the important issues for the design of the reactor is the selection of a suitable nuclear fuel type. Choosing the best nuclear fuel type for the reactor may not be easy since there exist several criteria associated with neutronic aspects, thermal performance, safety problem, cost problem, radiation damage in the reactor, etc. The best option should be chosen based on the maximization of our needs in this situation. This study presents a logical decision model for this issue using an analytic hierarchy process (AHP). Hierarchy is a representation of a system to study the functional relations of its components and its impact on the entire system. The study shows first how to construct hierarchy representing their relations and then measure the individual element's impact to the entire system for a quantitative decision making. Current four fuel types; metal, oxide, molten salt, and nitride, were selected and analyzed based on several characteristics with respect to overall comparison. Based on the decision model developed, the study concludes that the metal fuel type is the best choice for the transmutation reactor. The proposed approach is intended to help people be rational and logical in making decisions such complex task. 13 refs., 16 figs., 16 tabs. (Author)

  1. Highly hydrophilic poly(vinylidene fluoride)/meso-titania hybrid mesoporous membrane for photocatalytic membrane reactor in water

    Science.gov (United States)

    Wang, Meng; Yang, Guang; Jin, Peng; Tang, Hao; Wang, Huanhuan; Chen, Yong

    2016-01-01

    The high hydrophobicity of poly(vinylidene fluoride) (PVDF) membrane remains an obstacle to be applied in some purification processes of water or wastewater. Herein, a highly hydrophilic hybrid mesoporous titania membrane composed of mesoporous anatase titania (meso-TiO2) materials inside the three-dimensional (3D) macropores of PVDF membrane was successfully prepared by using the dual-templated synthesis method combined with solvent extraction and applied as the photocatalytic membrane reactor for the photodegredation of organic dye in water. The structure and the properties of as-prepared hybrid membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen adsorption-desorption and contact angle measurements. It was found that the hydrophilicity of PVDF membrane can be significantly improved by filling mesoporous TiO2 inside the 3D macropores of PVDF membrane. Moreover, such a PVDF/meso-TiO2 hybrid membrane exhibits promising photocatalytic degradation of dye in water due to the existence of mesoporous anatase TiO2 materials inside PVDF membrane. This study provides a new strategy to simultaneously introduce hydrophilicity and some desirable properties into PVDF and other hydrophobic membranes.

  2. Study on the selection of nuclear fuel type for a hybrid power extration reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, D. H.; Park, W. S. [KAERI, Taejon (Korea, Republic of)

    1999-05-01

    In order to solve the problem related to long-lived radioactive nuclides in spent fuel, development of a subcritical transmutation reactor concept is emerging. One of the important issues for the design of the reactor may be the selection of a suitable nuclear fuel type. This study presents a logical decision model for this issue using an analytic hierachy process (AHP). Hierarchy is a representation of a system to study the functional relations of its components and its impact on the entire system. The study shows first how to construct hierachy representing their relations and then measure the individual element's impact to the entire system for a quantitative decision making. Current four fuel types; metal, oxide, molten salt, and nitride, were selected and analyzed based on several characteristics with respect to overall comparison. Based on the decision model, the study concludes that the metal fuel type is the best choice for the transmutation reactor.

  3. Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor

    Science.gov (United States)

    Toschi, Francesco; Orlanducci, Silvia; Guglielmotti, Valeria; Cianchetta, Ilaria; Magni, Corrado; Terranova, Maria Letizia; Pasquali, Matteo; Tamburri, Emanuela; Matassa, Roberto; Rossi, Marco

    2012-06-01

    Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes.

  4. Performance of the Full-scale Loop Hybrid Reactor Treating Coal Gasification Wastewater under Different Recirculation Modes

    Institute of Scientific and Technical Information of China (English)

    Qian Zhao; Hongjun Han; Fang Fang; Wang Bing

    2015-01-01

    This paper aims to investigate the simultaneous removal efficiencies of both COD and nitrogen in a single reactor treating coal gasification wastewater ( CGW ) . A novel loop hybrid reactor was developed and operated under different recirculation modes in order to achieve simultaneous removal of refractory compounds and total nitrogen ( TN) in a full⁃scale CGW treatment plant. Mid⁃ditch recirculation was superior to other operational modes in terms of the NH3⁃N and TN removal, resulting in a TN removal efficiency of 52. 3%. Although the system achieved equal COD removal rates under different recirculation modes, hydrophobic acid ( HPO⁃A) fraction of effluent dissolved organic matter ( DOMef) in mid⁃ditch recirculation mode accounted for 35.7%, compared to the proportions of 59. 2%, 45. 3% and 39. 4% for the other modes. The ultraviolet absorbance to dissolved organic carbon ratio test revealed that effluent under mid⁃ditch recirculation mode contained more non⁃aromatic hydrophilic components. Furthermore, appropriate recirculation and anoxic/oxic ( A/O) partitions were also demonstrated to remove some refractory metabolites ( phenols, alkanes, aniline, etc.), which reduced the chromaticity and improved the biodegradability.

  5. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  6. Characterization of the biomass of a hybrid anaerobic reactor (HAR with two types of support material during the treatment of the coffee wastewater

    Directory of Open Access Journals (Sweden)

    Vivian Galdino da Silva

    2013-06-01

    Full Text Available This study investigated the microbiology of a hybrid anaerobic reactor (HAR in the removal of pollutant loads. This reactor had the same physical structure of an UASB reactor, however with minifilters inside containing two types of support material: expanded clay and gravel. Two hydraulic retention times (HRT of 24h and 18h were evaluated at steady-state conditions, resulting in organic loading rates (OLR of 0.032 and 0.018 kgDBO5m-3d-1 and biological organic loading rates (BOLR of 0,0015 and 0.001 kgDBO5kgSVT- 1d¹, respectively. The decrease in concentration of organic matter in the influent resulted an endogenous state of the biomass in the reactor. The expanded clay was the best support material for biofilm attachment.

  7. Thermodynamic exergy analysis for small modular reactor in nuclear hybrid energy system

    OpenAIRE

    Boldon Lauren; Sabharwall Piyush; Rabiti Cristian; Bragg-Sitton Shannon M.; Liu Li

    2016-01-01

    Small modular reactors (SMRs) provide a unique opportunity for future nuclear development with reduced financial risks, allowing the United States to meet growing energy demands through safe, reliable, clean air electricity generation while reducing greenhouse gas emissions and the reliance on unstable fossil fuel prices. A nuclear power plant is comprised of several complex subsystems which utilize materials from other subsystems and their surroundings. The economic utility of resources, or ...

  8. On the potential use of F{sub 2}Be-molten-salt for hybrid reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A., E-mail: anlafuente@etsii.upm.e [ETSI Industriales, Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2. 28006 Madrid (Spain)

    2010-11-15

    Breeder reactors are considered a unique tool for fully exploiting natural nuclear resources. In current Light Water Reactors (LWR), only 0.5% of the primary energy contained in the nuclei removed from a mine is converted into useful heat. The rest remains in the depleted uranium or spent fuel. This evident need to improve resource-efficiency has stimulated interest in Fast-reactors, and with it, boosted the need to answer many of the remaining safety issues attached to such systems (i.e. coolant positive void coefficients). Among the existing candidates to overcome this fundamental drawback, the F{sub 2}Be-molten-salt, has proved to feature outstanding neutronic properties. In previous studies, in an analysis that took into account requirements for criticality, for breeding, and for safety, it was demonstrated that a design window could be found in the definition of an F{sub 2}Be-cooled system, where the safety requirement was met for a critical breeder reactor. In this paper we give a deeper insight on the neutronic features of F{sub 2}Be coolant by comparing it with the moderator par excellence; light water. Its potential use on a thorium-fuel based system will be completed by a resilience analysis of the design window along the burn-up cycle. The ultimate goal is to give a sound answer to how a F{sub 2}Be-cooled system could contribute to improve the resource-efficiency of nuclear systems without overlooking the main safety aspects. This is one of the main pending questions in the quest to sustainability.

  9. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    Science.gov (United States)

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling.

  10. A Dual-Stage Hydrothermal Flow Reactor for Green and Sustainable Synthesis of Advanced Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian Lund

    2016-01-01

    Nanocomposites are a group of materials of growing scientific interest. The combination of two different materials into a single hybrid particle on the nanoscale can result in multifunctional materials or be used to enhance existing properties through synergistic interactions. Such novel material...

  11. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    Science.gov (United States)

    Terlizzi, Stefano; Rahnema, Farzad; Zhang, Dingkang; Dulla, Sandra; Ravetto, Piero

    2015-12-01

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  12. Development of a hybrid deterministic/stochastic method for 1D nuclear reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Terlizzi, Stefano; Dulla, Sandra; Ravetto, Piero [Politecnico di Torino, Corso Duca degli Abruzzi, 24 10129, Torino (Italy); Rahnema, Farzad, E-mail: farzad@gatech.edu [Nuclear & Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, Ga, 30332-0745 (United States); Nuclear & Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, Ga, 30332-0745 (United States); Zhang, Dingkang [Nuclear & Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, 770 State Street NW, Atlanta, Ga, 30332-0745 (United States)

    2015-12-31

    A new method has been implemented for solving the time-dependent neutron transport equation efficiently and accurately. This is accomplished by coupling the hybrid stochastic-deterministic steady-state coarse-mesh radiation transport (COMET) method [1,2] with the new predictor-corrector quasi-static method (PCQM) developed at Politecnico di Torino [3]. In this paper, the coupled method is implemented and tested in 1D slab geometry.

  13. Hydrodynamics of a hybrid circulating fluidized bed reactor with a partitioned loop seal system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dal-Hee; Moon, Jong-Ho; Jin, Gyoung Tae; Shun, Dowon [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Yun, Minyoung; Park, Chan Seung; Norbeck, Joseph M. [University of California, Riverside (United States)

    2015-07-15

    A circulating fluidized bed (CFB) with a hybrid design has been developed and optimized for steam hydrogasification. The hybrid CFB is composed of a bubbling fluidized bed (BFB) type combustor and a fast fluidized bed (FB) type gasifier. Char is burnt in the combustor and the generated heat is supplied to the gasifier along with the bed materials. Two different types of fluidized beds are connected to each other with a newly developed partitioned loop seal to avoid direct contact between two separate gas streams flowing in each fluidized bed. Gas mixing tests were carried out with Air and Argon in a cold model hybrid CFB to test the loop seal efficiency. Increase in solid inventory in the loop seal can improve the gas separation efficiency. It can be realized at higher gas velocity in fast bed and with higher solid inventory in the loop seal system. In addition, bed hydrodynamics was investigated with varying gas flow conditions and particle sizes in order to obtain a full understanding of changes of solid holdup in the FB. The solid holdup in the FB increased with increasing gas velocity in the BFB. Conversely, increase in gas velocity in the FB contributed to reducing the solid holdup in the FB. It was observed that changing the particle size of bed material does not have a big impact on hydrodynamic parameters.

  14. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Courau, T.; Plagne, L.; Ponicot, A. [EDF R and D, 1, Avenue du General de Gaulle, 92141 Clamart Cedex (France); Sjoden, G. [Nuclear and Radiological Engineering, Georgia Inst. of Technology, Atlanta, GA 30332 (United States)

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadrature required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)

  15. Comparison of two mathematical models for correlating the organic matter removal efficiency with hydraulic retention time in a hybrid anaerobic baffled reactor treating molasses

    OpenAIRE

    Ghaniyari-Benis, Saeid; Martín, Antonio; Borja Padilla, Rafael; M. A. Martín; Hedayat, N.

    2012-01-01

    A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modificati...

  16. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    Science.gov (United States)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  17. A Study on the Electromagnet Thrust force Characteristics of Newly Proposed Hybrid Bottom-mounted Control Rod Drive Mechanism for Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong Garp; Choi, Myoung Hwan; Yu, Je Yong; Kim, Ji Ho; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The control rod drive mechanism (CRDM) is the part of reactor regulating system (RRS), which is located in the reactor pool top (Top-mounted) or the room below the reactor pool (Bottom-mounted). The function of the CRDM is to insert, withdraw or maintain neutron absorbing material at any required position within the reactor core, in order to the reactivity control of the core. There are so many kinds of CRDM, such as magneticjack type, hydraulic type, rack and pinion type, chain type and linear or rotary step motor and so on. As a part of a new project, we have investigated the movable coil electromagnetic drive mechanism (MCEDM) which is new scheme for the reactor control rod adopted by China Advanced Research Reactor (CARR) as shown in Fig.1. To improve a better function of the electromagnetic and magnetic characteristics, new model CRDM, which is named a hybrid bottommounted CRDM (HBCRDM), is proposed. Especially in order to achieve improved thrust force, numerical magnetic field calculations between MCEDM and HBCRDM have been carried out and the HBCRDM FEM results have been compared with the MCEDM FEM results, and FEM results are summarized in the following sections

  18. Utilization of high-strength wastewater for the production of biogas as a renewable energy source using hybrid upflow anaerobic sludge blanket (HUASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shivayogimath, C.B.; Ramanujam, T.K.

    1998-07-01

    Anaerobic digestion of distillery spentwash, a high-strength wastewater, was studied using a hybrid upflow anaerobic sludge blanket (HUASB) reactor for 240 days under ambient conditions. The HUASB reactor combined an open volume in the bottom two-thirds of the reactor for sludge blanket and polypropylene pall rings packing in the upper one-third of the reactor. The aim of the study was to achieve optimum biogas production and waste treatment. Using non-granular anaerobic sewage sludge as seed, the start-up of the HUASB reactor was successfully completed, with the production of active bacterial granules of 1--2 mm size, within 90 days. Examination of the bacterial granules under scanning electron microscope (SEM) revealed that Methanothrix like microorganisms were the dominant species besides Methanosarcina. An organic loading of 24 kg COD/m{sup 3}d at a low hydraulic retention time (HRT) of 6 hours was achieved with 82% reduction in COD. Biogas with high methane content (80%) was produced at these loadings. The specific biogas yield was 0.36 m{sup 3} CH{sub 4}/kg COD. Packing in the upper third of the reactor was very efficient as a gas-solid separator (GSS); and in addition it retained the biomass.

  19. Evaluation of anaerobic sludge volume for improving azo dye decolorization in a hybrid anaerobic reactor with built-in bioelectrochemical system.

    Science.gov (United States)

    Cui, Min-Hua; Cui, Dan; Gao, Lei; Wang, Ai-Jie; Cheng, Hao-Yi

    2017-02-01

    A hybrid anaerobic reactor with built-in bioelectrochemical system (BES) has been verified for efficiently treating mixed azo dye wastewater, yet still facing many challenges, such as uncertain reactor construction and insufficient electron donors. In this study, an up-flow hybrid anaerobic reactor with built-in BES was developed for acid orange 7 (AO7) containing wastewater treatment. Cathode and real domestic wastewater both served as electron donor for driving azo dye decolorization. The decolorization efficiency (DE) of AO7 (200 mg/L) in the hybrid reactor was 80.34 ± 2.11% with volume ratio between anaerobic sludge and cathode (VRslu:cat) of 0.5:1 and hydraulic retention time (HRT) of 6 h, which was 15.79% higher than that in BES without sludge zone. DE was improved to 86.02 ± 1.49% with VRslu:cat increased to 1:1. Further increase in the VRslu:cat to 1.5:1 and 2:1, chemical oxygen demand (COD) removal efficiency was continuously improved to 28.78 ± 1.96 and 32.19 ± 0.62%, but there was no obvious DE elevation (slightly increased to 87.62 ± 2.50 and 90.13 ± 3.10%). BES presented efficient electron utilization, the electron usage ratios (EURs) in which fluctuated between 11.02 and 13.06 mol e(-)/mol AO7. It was less than half of that in sludge zone of 24.73-32.06 mol e(-)/mol AO7. The present work optimized the volume ratio between anaerobic sludge and cathode that would be meaningful for the practical application of this hybrid system.

  20. Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine

    Science.gov (United States)

    Costamagna, P.; Magistri, L.; Massardo, A. F.

    This paper addresses the design and off-design analysis of a hybrid system (HS) based on the coupling of a recuperated micro gas turbine (MGT) with a high temperature solid oxide fuel cell (SOFC) reactor. The SOFC reactor model is presented and discussed, taking into account the influence of the reactor lay-out, the current density, the air utilisation factor, the cell operating temperature, etc. The SOFC design and off-design performance is presented and discussed; the design and off-design models of a recuperated micro-gas turbine are also presented. The operating line, the influence of the micro gas turbine "variable speed" control, and the efficiency behaviour at part load are analysed in depth. Finally, the model of the hybrid system obtained by coupling the MGT and the SOFC reactor, considering the compatibility (technological constraints) of the two systems, is presented. The model allows the evaluation of the design and off-design behaviour of the hybrid system, particularly when the MGT variable speed control system is considered. The thermal efficiency of the hybrid system, taking into account its size (250/300 kW e), is noteworthy: higher than 60% at design point, and also very high at part load conditions. Such a result is mainly due to the simultaneous positive influence of SOFC off-design behaviour and MGT variable speed control. Moreover, it is possible to recover the waste heat from the gas at the MGT recuperator outlet ( Tgas is about 250°C) for cogeneration purposes.

  1. Upgrading of a wastewater treatment plant with a hybrid moving bed biofilm reactor (MBBR

    Directory of Open Access Journals (Sweden)

    Luigi Falletti

    2014-11-01

    Full Text Available The wastewater treatment plant of Porto Tolle (RO, Italy was originally projected for 2200 person equivalent (p.e. and it was made of a pumping station, an activated sludge oxidation tank (395 m3, a settler (315 m3, and two sludge drying beds. Other units were not yet in use in 2008: a fine screen, a sand and grit removal unit, a new settler (570 m3, a disinfection tank and a sludge thickener. Effective hydraulic load was 245% higher, organic load was 46% lower and nitrogen load was 39% higher than project values. Moreover, higher pollutant loads and more strict emission limits for nitrogen were expected. So the plant was upgraded: the old settler was divided into a sector of 180 m3 that was converted into a predenitrification tank, and a sector of 100 m3 that was converted into a hybrid MBBR tank filled with 50% AnoxKaldnesTM K3 carriers; the new settler was connected to the hybrid MBBR, and the other units were started. Biofilm growth was observed two months after plant restarting, its concentration reached 1.1 gTS/m2 (0.26 kgTS/m3, while activated sludge concentration was 2.0–2.8 kgTSS/m3 in all the period of study. The upgraded plant treats 1587 m3/d wastewater with 57 kgCOD/d, 23 kgBOD/d and 13.3 kgN/d, and has a significant residual capacity; the effluent respects all emission limits.

  2. Preliminary conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR). Status report, January 1978--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.L. (ed.)

    1978-03-01

    The DTHR preliminary conceptual design consists of a magnetically confined fusion reactor fitted with a fertile thorium blanket. The fusion driver concept is based on a beam driven plasma, but at sufficiently high plasma densities that neutrons originating from the interactions of bulk plasma ions contribute significantly to the wall loading. The tokamak has a major radius of 5.2 m, a minor radius of 1.2 m, and the elongation is 1.6. All of the magnetic coil systems are superconducting Nb/sub 3/Sn based on the Large Coil Project (LCP) technology. The toroidal field (TF) coils employ an innovative concept, the ''compact D'' configuration. An engineered bundle divertor concept has been developed based on the bundle divertor design techniques developed for TNS and ISX-B. A thermal power of 150MW of 200 keV deuterium is injected into the plasma through six ducts of a positive ion, neutral beam injection system (NBIS). A water cooled, 316 stainless steel vacuum vessel concept was developed and initial scoping analyses look encouraging. The fusile fuel handling system was evaluated and defined. Details of the tritium injection system remain to be developed. Tritium breeding will be assessed in subsequent phases of the DTHR operation. The fusion driver provides a neutron first wall loading of 2MW/m/sup 2/ for fissile production in the blanket.

  3. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: use of fluorescent in situ hybridization.

    Science.gov (United States)

    Montero, B; García-Morales, J L; Sales, D; Solera, R

    2009-03-01

    Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x)+2.667] (R(2) 0.8866). The total methanogenic activity increased from 0.04x10(-8) mLCH(4) cell(-1)day(-1) to 0.38x10(-8) mLCH(4) cell(-1)day(-1) while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H(2)-utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64x10(-8) mLCH(4) cell(-1)day(-1) and 0.33x10(-8) mLCH(4) cell(-1)day(-1), respectively. The methanogenic activity of H(2)-utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process.

  4. Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water.

    Science.gov (United States)

    Mousa, Ibrahim E

    2016-08-15

    The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1min and the energy consumption was 32.6mA/cm(2). However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20L/h. Pseudo steady state was achieved after 30min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hybrid Monte Carlo deterministic and probabilistic core assessment for flaws and leak-before break for CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, P.; Mok, D.H.B. [AMEC NSS, Toronto, Ontario (Canada)

    2011-07-01

    Even though pressure tubes are major components of a CANDU reactor, only small proportions of pressure tubes are sampled for in-service inspections due to execution cost, outage duration, and site cumulative radiation exposure limits. In general, a realistic core assessment was not carried out based on all known information related to in-service degradation mechanisms. Recently, a hybrid deterministic and probabilistic core assessment (HDPCA) has been introduced to address the uncertainties associated with uninspected pressure tubes and diverse degradation mechanisms. In the present paper, the HDPCA was carried out for a CANDU unit based on cumulative operating experience and history in order to satisfy the requirements of Clause 7 of CSA Standard N285.8 by considering the uncertainties associated with the estimated distribution parameters, the limited inspected data, and pressure tube properties. The HDPCA is composed of two parts: a simulation part and a deterministic evaluation part. The outcome of the core assessment is the expected pressure tube failure frequency due to pressure tube flaws. In the simulations, pressure tube material properties were sampled from distributions derived from material surveillance and testing programs. The flaw dimensions and intensities were sampled from distributions fitted to in-service inspection data. The pressure tubes were then populated with flaws. Each simulated flaw was evaluated for DHC initiation under constant loading conditions. When Delayed Hydride Cracking initiation from a flaw was predicted, the pressure tube was evaluated for rupture in the Leak-Before-Break evaluation. Based on all the predicted pressure tube ruptures from simulations, the failure frequency was calculated on an annual basis. The largest expected mean and the 95% upper bound of the mean failure frequencies for any evaluation subinterval to the end of pressure tube design life of 210,000 EFPH are significantly below the allowable failure frequency

  6. The features of neutronic calculations for fast reactors with hybrid cores on the basis of BFS-62-3A critical assembly experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mitenkova, E. F.; Novikov, N. V. [Nuclear Safety Inst. of Russian Academy of Sciences, B. Tulskaya 52, Moscow, 115119 (Russian Federation); Blokhin, A. I. [State Scientific Center of Russian Federation, Inst. of Physics and Power Engineering Named after A.I. Leypunsky, Bondarenko Square 1, Obninsk, Kaluga Region, 249030 (Russian Federation)

    2012-07-01

    The different (U-Pu) fuel compositions are considered for next generation of sodium fast breeder reactors. The considerable discrepancies in axial and radial neutron spectra for hybrid reactor systems compared to the cores with UO{sub 2} fuel cause increasing uncertainty of generating the group nuclear constants in those reactor systems. The calculation results of BFS-62-3A critical assembly which is considered as full-scale model of BN-600 hybrid core with steel reflector specify quite different spectra in local areas. For those systems the MCNP 5 calculations demonstrate significant sensitivity of effective multiplication factor K{sub eff} and spectral indices to nuclear data libraries. For {sup 235}U, {sup 238}U, {sup 239}Pu the results of calculated radial fission rate distributions against the reconstructed ones are analyzed. Comparative analysis of spectral indices, neutron spectra and radial fission rate distributions are performed using the different versions of ENDF/B, JENDL-3.3, JENDL-4, JEFF-3.1.1 libraries and BROND-3 for Fe, Cr isotopes. For analyzing the fission rate sensitivity to the plutonium presence in the fuel {sup 239}Pu is substituted for {sup 235}U (enrichment 90%) in the FA areas containing the plutonium. For {sup 235}U, {sup 238}U, {sup 239}Pu radial fission rate distributions the explanation of pick values discrepancies is based on the group fission constants analyses and possible underestimation of some features at the experimental data recovery method (Westcott factors, temperature dependence). (authors)

  7. Investigating the role of co-substrate-substrate ratio and filter media on the performance of anammox hybrid reactor treating nitrogen rich wastewater.

    Science.gov (United States)

    Tomar, Swati; Gupta, Sunil Kumar

    2016-03-01

    This study explored the feasibility of using the anammox hybrid reactor (AHR), which combines suspended and attached growth media, for the biodegradation of ammonical nitrogen in wastewater. The study was performed in four laboratory-scale AHRs, inoculated with mixed seed culture (1:1). The anammox process was established by feeding the AHR with synthetic wastewater, containing NH(4)-N and NO(2)-N (1:1), at hydraulic retention time (HRT) of 1 day. The reactors were gradually acclimated to a higher ammonium concentration (1200 mg/l) until the pseudo-steady state was attained. Subsequently, the reactors were operated at various HRTs (0.25-3.0 days) to optimize the HRT and nitrogen loading rate (NLR). The study demonstrated that HRT of 1 day, corresponding to 95.1% of nitrogen removal was optimal. Pearson correlation analysis indicated the strong and positive correlation of HRT and sludge retention time (SRT), whereas the NLR and biomass yield correlated negatively with the nitrogen removal efficiency (NRE). The mass balance of nitrogen showed that a major fraction (79.1%) of the input nitrogen was converted into N2 gas, and 11.25% was utilized in synthesizing the biomass. The filter media in the AHR contributed to an additional 15.4% of ammonium removal and a reduction of 29% in the sludge washout rate. The nitrogen removal kinetics in the AHR followed the modified Stover-Kincannon model, whereas the Lawrence-McCarty model best described the bacterial growth kinetics. The study concludes that the hybrid configuration of the reactor demonstrated promising results and could be suitably applied for industrial applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Study of a Multi-phase Hybrid Heat Exchanger-Reaction (HEX Reactor): Part 1 - Experimental Characterization

    Science.gov (United States)

    2014-01-01

    scalability, and mixing capability compared to more traditional shell - in- tube heat exchangers or stirred tank batch reactors. This study explores the... tube heat exchangers or stirred tank batch reactors. This study explores the hydrodynamic behavior of gas-evolving reacting flows in chevron plate heat ...thermal performance and ease of maintenance. PHEs can be easily disassembled for inspection andmaintenance (in con- trast, shell -and- tube heat

  9. Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Sridevi, K; Sivaraman, E; Mullai, P

    2014-08-01

    In a hybrid upflow anaerobic sludge blanket (HUASB) reactor, biodegradation in association with biohydrogen production was studied using distillery wastewater as substrate. The experiments were carried out at ambient temperature (34±1°C) and acidophilic pH of 6.5 with constant hydraulic retention time (HRT) of 24h at various organic loading rates (OLRs) (1-10.2kgCODm(-3)d(-1)) in continuous mode. A maximum hydrogen production rate of 1300mLd(-1) was achieved. A back propagation neural network (BPNN) model with network topology of 4-20-1 using Levenberg-Marquardt (LM) algorithm was developed and validated. A total of 231 data points were studied to examine the performance of the HUASB reactor in acclimatisation and operation phase. The statistical qualities of BPNN models were significant due to the high correlation coefficient, R(2), and lower mean absolute error (MAE) between experimental and simulated data. From the results, it was concluded that BPNN modelling could be applied in HUASB reactor for predicting the biodegradation and biohydrogen production using distillery wastewater.

  10. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  11. A biodegradation and treatment of palm oil mill effluent (POME) using a hybrid up-flow anaerobic sludge bed (HUASB) Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, AB. Aziz Abdul; Daud, Zawawi; Ahmad, Zulkifli [Faculty of Civil and Enviromental Engineering, University Tun Hussein Onn (Malaysia)

    2011-07-01

    Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME). This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB). Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR) and hydraulic retention time (HRT) of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28{+-}2 C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37{+-}1 C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD) removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  12. A biodegradation and treatment of palm oil mill effluent (POME using a hybrid up-flow anaerobic sludge bed (HUASB reactor

    Directory of Open Access Journals (Sweden)

    S. A. Habeeb, AB. Aziz Abdul Latiff, Zawawi Daud, Zulkifli Ahmad

    2011-07-01

    Full Text Available Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME. This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB. Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR and hydraulic retention time (HRT of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28±2°C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37±1°C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  13. Analysis of dpa Rates in the HFIR Reactor Vessel using a Hybrid Monte Carlo/Deterministic Method*

    Directory of Open Access Journals (Sweden)

    Risner J.M.

    2016-01-01

    Full Text Available The Oak Ridge High Flux Isotope Reactor (HFIR, which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa, particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 in. below to approximately 12 in. above the height of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%.

  14. Analysis of dpa rates in the HFIR reactor vessel using a hybrid Monte Carlo/deterministic method

    Energy Technology Data Exchange (ETDEWEB)

    Blakeman, Edward [Retired

    2016-01-01

    The Oak Ridge High Flux Isotope Reactor (HFIR), which began full-power operation in 1966, provides one of the highest steady-state neutron flux levels of any research reactor in the world. An ongoing vessel integrity analysis program to assess radiation-induced embrittlement of the HFIR reactor vessel requires the calculation of neutron and gamma displacements per atom (dpa), particularly at locations near the beam tube nozzles, where radiation streaming effects are most pronounced. In this study we apply the Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) technique in the ADVANTG code to develop variance reduction parameters for use in the MCNP radiation transport code. We initially evaluated dpa rates for dosimetry capsule locations, regions in the vicinity of the HB-2 beamline, and the vessel beltline region. We then extended the study to provide dpa rate maps using three-dimensional cylindrical mesh tallies that extend from approximately 12 below to approximately 12 above the axial extent of the core. The mesh tally structures contain over 15,000 mesh cells, providing a detailed spatial map of neutron and photon dpa rates at all locations of interest. Relative errors in the mesh tally cells are typically less than 1%.

  15. Formation of hybrid gold nanoparticle network aggregates by specific host-guest interactions in a turbulent flow reactor

    NARCIS (Netherlands)

    Weinhart-Mejia, R.; Huskens, Jurriaan

    2014-01-01

    A multi-inlet vortex mixer (MIVM) was used to investigate the formation of hybrid gold nanoparticle network aggregates under highly turbulent flow conditions. To form aggregates, gold nanoparticles were functionalized with β-cyclodextrin (CD) and mixed with adamantyl (Ad)-terminated

  16. Formation of hybrid gold nanoparticle network aggregates by specific host-guest interactions in a turbulent flow reactor

    NARCIS (Netherlands)

    Mejia Ariza, Raquel; Huskens, Jurriaan

    2014-01-01

    A multi-inlet vortex mixer (MIVM) was used to investigate the formation of hybrid gold nanoparticle network aggregates under highly turbulent flow conditions. To form aggregates, gold nanoparticles were functionalized with β-cyclodextrin (CD) and mixed with adamantyl (Ad)-terminated poly(propyleneim

  17. Lead-cooled hybrid reactors and fuel regeneration for energy production and incineration evolution of physical parameters and induced radiotoxicity; Capacites des reacteurs hybrides au plomb pour la production d'energie et l'incineration avec multirecyclage des combustibles evolution des parametres physiques radiotoxicites induites

    Energy Technology Data Exchange (ETDEWEB)

    David, S

    1999-07-01

    The concept of accelerator driven subcritical reactors (hybrid reactors), as re-launched in the beginning of the 1990's by C. Rubbia and C.D. Bowman, allows to open new paths in the management of radioactive wastes. This work treats, first, of the study of the neutron multiplication characteristics in a subcritical reactor core and shows the fundamental differences with critical systems and the advantages that follow. This study is based on the series of measurements performed at Cadarache (Muse experiment), the first results of which are presented. The subcritical property of an hybrid reactor makes this system very flexible and allows to foresee different uses, like the energy production or the incineration of wastes. The second part of this work deals with the Monte Carlo simulation of the capacities of fast spectrum and lead-cooled hybrid systems to produce energy by using different fuel cycles (uranium and thorium), and in the same time regenerating the fissile matter and keeping the reactivity up without any external intervention. Different types of fuel multi-recycles are considered. The results allow to quantify the advantages linked with the use of the thorium cycle, in particular in terms of radiotoxicity abatement. The study of the intermediate steps necessary to develop this reactor technology with the present day fuels (plutonium from thermal reactors and enriched uranium) proposes an efficient management of the actinides produced by today's reactors which are used as auxiliary fissile materials. Finally, the incineration of actinides at the end of the cycle (shutdown scenario) is considered and allows to describe the advantage of lead-cooled hybrid systems for the abatement of the radiotoxicity of an inventory at the end of cycle. (J.S.)

  18. Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V. L., E-mail: vdov@nfi.kiae.ru [National Research Centre ' Kurchatov Institute,' (Russian Federation)

    2013-02-15

    The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) {>=} 2 and q(a) {>=} 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure {beta}{sub N} > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

  19. Current generation by helicons and lower hybrid waves in modern tokamaks and reactors ITER and DEMO. Scenarios, modeling and antennae

    Science.gov (United States)

    Vdovin, V. L.

    2013-02-01

    The innovative concept and 3D full-wave code modeling the off-axis current drive by radio-frequency (RF) waves in large-scale tokamaks, ITER and DEMO, for steady-state operation with high efficiency is proposed. The scheme uses the helicon radiation (fast magnetosonic waves at high (20-40) ion cyclotron frequency harmonics) at frequencies of 500-700 MHz propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by helicons, in conjunction with the bootstrap current, ensure the maintenance of a given value of the total current in the stability margin q(0) ≥ 2 and q( a) ≥ 4, and will help to have regimes with a negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β N > 3 (the so-called advanced scenarios) of interest for the commercial reactor. Modeling with full-wave three-dimensional codes PSTELION and STELEC showed flexible control of the current profile in the reactor plasmas of ITER and DEMO, using multiple frequencies, the positions of the antennae and toroidal wave slow down. Also presented are the results of simulations of current generation by helicons in the DIII-D, T-15MD, and JT-60AS tokamaks. Commercially available continuous-wave klystrons of the MW/tube range are promising for commercial stationary fusion reactors. The compact antennae of the waveguide type are proposed, and an example of a possible RF system for today's tokamaks is given. The advantages of the scheme (partially tested at lower frequencies in tokamaks) are a significant decline in the role of parametric instabilities in the plasma periphery, the use of electrically strong resonator-waveguide type antennae, and substantially greater antenna-plasma coupling.

  20. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Biondo, Elliott D [ORNL; Ibrahim, Ahmad M [ORNL; Mosher, Scott W [ORNL; Grove, Robert E [ORNL

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  1. A new mathematical model for nitrogen gas production with special emphasis on the role of attached growth media in anammox hybrid reactor.

    Science.gov (United States)

    Tomar, Swati; Gupta, Sunil Kumar

    2015-11-01

    The present study emphasised on the development of new mathematical models based on mass balance and stoichiometry of nitrogen removal in anammox hybrid reactor (AHR). The performance of AHR at varying hydraulic retention times (HRTs) and nitrogen loading rates (NLRs) revealed that nitrogen removal efficiency (NRE) increases with increase in HRT and was found optimal (89 %) at HRT of 2 days. Mass balance of nitrogen revealed that major fraction (74.1 %) of input nitrogen is converted into N2 gas followed by 11.2 % utilised in biomass synthesis. Attached growth media (AGM) in AHR contributed to an additional 15.4 % ammonium removal and reduced the sludge washout rate by 29 %. This also enhanced the sludge retention capacity of AHR and thus minimised the formation of nitrate in the treated effluent, which is one of the bottlenecks of anammox process. Process kinetics was also studied using various mathematical models. The mass balance model derived from total nitrogen was found most precise and predicted N2 gas with least error (1.68 ± 4.44 %). Model validation for substrate removal kinetics dictated comparatively higher correlation for Grau second-order model (0.952) than modified Stover-Kincannon model (0.920). The study concluded that owing to features of high biomass retention, less nitrate formation and consistently higher nitrogen removal efficiency, this reactor configuration is techno-economically most efficient and viable. The study opens the door for researchers and scientists for pilot-scale testing of AHR leading to its wide industrial application.

  2. Removal of metal from acid mine drainage using a hybrid system including a pipes inserted microalgae reactor.

    Science.gov (United States)

    Park, Young-Tae; Lee, Hongkyun; Yun, Hyun-Shik; Song, Kyung-Guen; Yeom, Sung-Ho; Choi, Jaeyoung

    2013-12-01

    In this study, the microalgae culture system to combined active treatment system and pipe inserted microalgae reactor (PIMR) was investigated. After pretreated AMD in active treatment system, the effluent load to PIMR in order to Nephroselmis sp. KGE 8 culture. In experiment, effect of iron on growth and lipid accumulation in microalgae were inspected. The 2nd pretreatment effluent was economic feasibility of microalgae culture and lipid accumulation. The growth kinetics of the microalgae are modeled using logistic growth model and the model is primarily parameterized from data obtained through an experimental study where PIMR were dosed with BBM, BBM added 10 mg L(-1) iron and 2nd pretreatment effluent. Moreover, the continuous of microalgae culture in PIMR can be available. Overall, this study indicated that the use of pretreated AMD is a viable method for culture microalgae and lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Optimization of radial dimension and electricity cost for compact hybrid reactor%紧凑型混合堆径向几何尺寸与发电成本的优化

    Institute of Scientific and Technical Information of China (English)

    陈美霞; 刘成岳; 吴斌

    2011-01-01

    紧凑型聚变裂变混合堆是一种新的概念设计,文章通过改变聚变系统径向几何尺寸上的等离子体大小半径,分析了紧凑型聚变裂变混合堆的发电成本并进行优化,模拟结果表明紧凑型聚变裂变混合堆较传统的标准混合堆具有更大的经济优势.%Compact fusion-fission hybrid reactor(CFFHR) is a new kind of conceptual design. In this paper, the electricity cost of CFFHR is optimized by changing the radial dimensions of plasma major radius and minor radius of the fusion system. The simulation results show that the CFFHR is more economic than the traditional hybrid reactor.

  4. 1D Burnup Calculation of Fusion-Fission Hybrid Energy Reactor%聚变-裂变混合能源堆一维计算模型燃耗分析

    Institute of Scientific and Technical Information of China (English)

    李茂生; 师学明; 伊炜伟

    2012-01-01

    Fusion-fission hybrid energy reactor is driven by Tokamak fusion source for energy production. Its subcritical zone uses the natural uranium as fuel and water as coolant. The neutron multiplication constant keff, energy multiplication factor M and tritium breeding ratio TBR of the ID hybrid energy reactor model were calculated by transport burnup code MCORGS. The neutron spectrum and nuclear density changing as a function of time show the characteristics of the hybrid energy reactors, which differs from the hybrid reactor for breed nuclear fuel and for spent fuel transmutation. The definition and results may be a reference to the other conceptual analysis.%聚变-裂变混合能源堆包括聚变中子源和以天然铀为燃料、水为冷却剂的次临界包层,主要目标是生产电力.利用输运燃耗耦合程序系统MCORGS计算了混合能源堆一维模型的燃耗,给出了中子有效增殖因数keff、能量放大倍数M、氚增殖比TBR等物理量随时间的变化.通过分析能谱和重要核素随燃耗时间的变化,说明混合能源堆与核燃料增殖、核废料嬗变混合堆的不同特点.本文给出的结果可作为混合堆中子输运、燃耗分析程序校验的参考数据,为混合堆概念研究提供了基础数据.

  5. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas, Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  6. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    DEFF Research Database (Denmark)

    Hansen, K.W.; Ahring, Birgitte Kiær; Raskin, L.

    1999-01-01

    -beta-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature of-dissociation and specificity studies, To demonstrate the usefulness of the probes for the detection and quantification of saturated......Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYE, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S, wolfei LYE was closely related...... fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria-and methanogens were compared to specific methanogenic activities...

  7. Fuel enrichment and temperature distribution in nuclear fuel rod in (D-T) driven hybrid reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Ypek [Suleyman Demirel Universitesi Muhendislik-Mimarlyk Fakultesi, Isparta (Turkey)

    2001-07-01

    In this study, melting point of the fuel rod and temperature distribution in nuclear fuel rod are investigated for different coolants under various first wall loads (P{sub w}, =5, 6, 7, 8, 9, and 10 MWm{sup -2}) in Fusion-Fission reactor fueled with 50%LWR +50%CANDU. The fusion source of neutrons of 14.1 MeV is simulated by a movable target along the main axis of cylindrical geometry as a line source. In addition, the fusion chamber was thought as a cylindrical cavity with a diameter of 300 cm that is comparatively small value. The fissile fuel zone is considered to be cooled with four different coolants, gas, flibe (Li{sub 2}BeF{sub 4}), natural lithium (Li), and eutectic lithium (Li{sub 17}Pb{sub 83}). Investigations are observed during 4 years for discrete time intervals of{delta}t= 0.5 month and by a plant factor (PF) of 75%. Volumetric ratio of coolant-to fuel is 1:1, 45.515% coolant, 45.515% fuel, 8.971% clad, in fuel zone. (author)

  8. The production of {sup 238-242}Pu(n,γ){sup 239-243}Pu fissionable fluids in a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guenay, Mehtap [Inoenue Univ., Malatya (Turkey). Physics Dept.

    2014-03-15

    In this study, the effect of spent fuel grade plutonium content on {sup 239-243}Pu was investigated in a designed hybrid reactor system. In this system, the fluids were composed of a molten salt, heavy metal mixture with increased mole fractions 99-95 % Li{sub 20}Sn{sub 80}-1-5 % SFG-Pu, 99-95 % Li{sub 20}Sn{sub 80}-1-5 % SFG-PuF{sub 4}, 99-95 % Li{sub 20}Sn{sub 80}-1-5 % SFG-PuO{sub 2}. Beryllium (Be) is a neutron multiplier by (n,2n) reactions. Thence, a Be zone of 3 cm thickness was used in order to contribute to fissile fuel breeding between the liquid first wall and a 9Cr2WVTa ferritic steel blanket which is used as structural material. The production of {sup 238-242}Pu(n,γ){sup 239-243}Pu was calculated in liquid first wall, blanket and shielding zones. Three-dimensional nucleonic calculations were performed by using the most recent version MCNPX-2.7.0 Monte Carlo code and nuclear data library ENDF/B-VII.0. (orig.)

  9. Progress in physics design of fusion-fission hybrid energy reactor%次临界能源堆物理设计进展

    Institute of Scientific and Technical Information of China (English)

    李茂生; 贾建平; 程和平; 蒋洁琼; 栗再新; 杨永伟; 吴宏春; 师学明; 刘荣; 鹿心鑫; 朱通华; 王新华; 余泳; 严钧; 唐涛

    2014-01-01

    聚变-裂变混合能源堆包括聚变中子源和次临界能源堆,主要目标是生产电能。回顾了国内外混合堆的发展历史,给出混合能源堆设计的边界条件和约束条件,说明次临界能源堆以铀锆合金为燃料、水为冷却剂的设计思想。利用输运燃耗耦合程序 MCORGS 计算了混合能源的燃耗,给出了中子有效增殖因数、能量放大倍数和氚增殖比等物理量随时间的变化。通过分析能谱和重要核素随燃耗时间的变化,说明混合能源堆与核燃料增殖、核废料嬗变混合堆的不同特点。论述了混合堆的热工设计并进行了安全分析。对于燃耗数值模拟程序,通过多家对算,保证其计算结果的可信性。针对次临界能源堆的特点,利用贫铀球壳建立了贫铀聚乙烯装置和贫铀 LiH 装置,并且专门设计加工了天然铀装置,开展铀裂变率、造钚率、产氚率等中子学积分实验,验证了数值模拟的可靠性。%In this paper,we propose a preliminary design for a fusion-fission hybrid energy reactor (FFHER),based on cur-rent fusion science and technology and well-developed fission technology.Design rules are listed and a primary concept blanket with uranium alloy as fuel and water as coolant is put forward.The uranium fuel can be natural uranium,LWR spent fuel,or de-pleted uranium.The FFHER design can increase the utilization rate of uranium in a comparatively simple way to sustain the de-velopment of nuclear energy.The interaction between the fusion neutron and the uranium fuel with the aim of achieving greater energy multiplication and tritium sustainability is studied.Other concept hybrid reactor designs are also reviewed.Integral neu-tron experiments were carried out to verify the credibility of our proposed physical design.The combination of the physical design with the related thermal hydraulic design,alloy fuel manufacture,and nuclear fuel cycle programs provides the

  10. Microbial Communities and Their Performances in Anaerobic Hybrid Sludge Bed-Fixed Film Reactor for Treatment of Palm Oil Mill Effluent under Various Organic Pollutant Concentrations

    Directory of Open Access Journals (Sweden)

    Kanlayanee Meesap

    2012-01-01

    Full Text Available The anaerobic hybrid reactor consisting of sludge and packed zones was operated with organic pollutant loading rates from 6.2 to 8.2 g COD/L day, composed mainly of suspended solids (SS and oil and grease (O&G concentrations between 5.2 to 10.2 and 0.9 to 1.9 g/L, respectively. The overall process performance in terms of chemical oxygen demands (COD, SS, and O&G removals was 73, 63, and 56%, respectively. When the organic pollutant concentrations were increased, the resultant methane potentials were higher, and the methane yield increased to 0.30 L CH4/g CODremoved. It was observed these effects on the microbial population and activity in the sludge and packed zones. The eubacterial population and activity in the sludge zone increased to 6.4 × 109 copies rDNA/g VSS and 1.65 g COD/g VSS day, respectively, whereas those in the packed zone were lower. The predominant hydrolytic and fermentative bacteria were Pseudomonas, Clostridium, and Bacteroidetes. In addition, the archaeal population and activity in the packed zone were increased from to 9.1 × 107 copies rDNA/g VSS and 0.34 g COD-CH4/g VSS day, respectively, whereas those in the sludge zone were not much changed. The most represented species of methanogens were the acetoclastic Methanosaeta, the hydrogenotrophic Methanobacterium sp., and the hydrogenotrophic Methanomicrobiaceae.

  11. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  12. Simulations of fusion chamber dynamics and first wall response in a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR)

    Energy Technology Data Exchange (ETDEWEB)

    Qi, J.M., E-mail: qjm06@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Wang, Z., E-mail: wangz_es@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Chu, Y.Y., E-mail: chuyanyun@caep.cn [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China); Center for Fusion Energy Science and Technology (CFEST), China Academy of Engineering Physics, Mianyang 621999 (China); Li, Z.H., E-mail: lee_march@sina.com [Laboratory of Advanced Nuclear Energy (LANE), Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999 (China)

    2016-03-15

    Highlights: • Z-FFR utilizes DT neutrons to drive a sub-critical fission blanket to produce energy. • A metal shell and Ar gas are employed in the fusion chamber for shock mitigation. • Massive materials can effectively mitigate the thermal heats on the chamber wall. • The W-coated Zr-alloy first wall exhibits good viability as a long-lived component. - Abstract: In a Z-pinch driven fusion–fission hybrid power reactor (Z-FFR), the fusion target will produce enormous energy of ∼1.5 GJ per pulse at a frequency of 0.1 Hz. Almost 20% of the fusion energy yield, approximately 300 MJ, is released in forms of pulsed X-rays. To prevent the first wall from fatal damages by the intense X-rays, a thin spherical metal shell and rare Ar buffer gas are introduced to mitigate the transient X-ray bursts. Radiation hydrodynamics in the fusion chamber were investigated by MULTI-1D simulations, and the corresponding thermal and mechanical loads on the first wall were also obtained. The simulations indicated that by optimizing the design parameters of the metal shell and Ar buffer gas, peak power flux of the thermal heats on the first wall could be mitigated to less than 10{sup 4} W/cm{sup 2} within a time scale of several milliseconds, while peak overpressures of the mechanical loads varying from 0.6 to 0.7 MPa. In addition, the thermomechanical response in a W–coated Zr-alloy first wall was performed by FWDR1D calculations using the derived thermal and mechanical loads as inputs. The temperature and stress fields were analyzed, and the corresponding elastic strains were conducted for primary lifetime estimations by using the Coffin–Manson relationships of both W and Zr-alloy. It was shown that the maximum temperature rises and stresses in the first wall were less than 50 K and 130 MPa respectively, and lifetime of the first wall would be in excess of 10{sup 9} cycles. The chamber exhibits good viability as a long-lived component to sustain the Z-FFR conceptual

  13. 快Z箍缩中子源混合堆界面研究进展%Development of interface options of hybrid reactor driven with fast Z-pinch neutron source

    Institute of Scientific and Technical Information of China (English)

    陈敬平; 王雄

    2011-01-01

    评述了快Z箍缩中子产生及诊断的最新进展,介绍了聚变裂变混合堆原理与结构.概述了混合堆界面的磁绝缘传输线(MITL)和碎片防护罩设计,提出了MITL电流压力建模思路,提出了PTS装置上MITL翻转柱孔汇流结构(PHC)及同轴延伸方式,这两种配置方式简便、易行.%The recent development of neutron generation and diagnostics of fast Z-pinch are reviewed. The principle and con-figuration of fusion and fission hybrid reactor are briefly introduced. Current and magnetic impulse modeling and the debris shield design are examined for the interface between Z-pinch driver and hybrid reactor. The conclusion of this work is that the interface of post hole convolute and extended coaxial magnetically insulated transmission line is feasible and easily operated at primary test stand(PTS).

  14. 聚变-裂变混合能源堆球模型参数敏感性分析%Sensitivity Analysis on Parameters of Spherical Model of Fusion-Fission Hybrid Energy Reactor

    Institute of Scientific and Technical Information of China (English)

    刘国明; 程和平; 邵增

    2012-01-01

    在聚变-裂变混合能源堆球模型基础上,使用蒙特卡罗方法中子学程序对中子源、铀水体积比、产氚区等相关参数进行了中子学的敏感性计算.分析了各参数对混合能源堆能量放大倍数M和氚增殖比TBR的影响,并总结其基本规律,为开展进一步的混合能源堆概念设计提供了重要参考.%The sensitivity analysis on neutronics parameters related to neutron source, uranium-water ratio and tritium breeding layers for spherical blanket model of fusion-fission hybrid reactor were presented. By using a Monte-Carlo method based neutron transport code, the effects of the parameters on energy multiplication factor M and tritium breeding ratio TBR were analyzed, and the general various laws of M and TBR were summarized, which were significant for the further conceptual design of fusion-fission hybrid energy reactor.

  15. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  16. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  17. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  18. Preliminary Neutronics Design of Breed Blanket for Fusion-fission Hybrid Reactor%聚变-裂变增殖堆包层的初步中子学设计

    Institute of Scientific and Technical Information of China (English)

    赵奉超; 栗再新

    2012-01-01

    基于国际热核实验堆ITER的堆芯参数和套管结构,对聚变-裂变增殖堆包层进行了初步中子学设计.基于国际热核实验堆的堆芯参数提出了采用套管结构,以天然金属铀为燃料和硅酸锂为氚增殖剂的快裂变-增殖堆包层的初步中子学设计方案.使用FENDL 2.1核数据库及MCNP程序自带的核数据库,用MCNP程序对套管结构快裂变-增殖堆包层进行一维的方案筛选及三维中子学的计算分析.计算分析包层内的一维功率密度分布、产氚率、钚增殖率分布,通过优化设计分析给出合理的包层设计方案,并计算氚增殖率TBR、能量放大倍数M、有效增值系数(Keff)、裂变增殖比等参数.%A preliminary neutronics design of breed blanket for fusion-fission hybrid reactor has been carried out based on the plasma parameters of International Thermonuclear Experimental Reactor (ITER) and casing structure. In the design of fast-fission breed blanket, the natural Uranium pebble bed is used as fuel and neutron multiplication and the Lithium silicate pebble bed is used as tritium breed material. By using FENDL2.1 nuclear database cross section library with native cross section library of MCNP nuclear database, the calculation and analysis are carried out with MCNP program. Through one-dimension calculation and analysis on different design proposals, a proper design proposal has been screened and then the three-dimension calculation and analysis have been implemented with the parameters of ITER. The calculation shows that the TBR of fusion-fission hybrid reactor is 1.13, it indicates that the design of breed blanket is able to meet self-sustaining of tritium and the calculation also indicates that the energy enlargement of fusion-ission hybrid reactor is 6.5 and Polonium breeding rate is 1.35, it means that the reactor is able to also product large quantities energy and Polonium and they could be used by light water reactor. Meanwhile, fission

  19. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  20. BOILING REACTORS

    Science.gov (United States)

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  1. Reactor assessments of advanced bumpy torus configurations

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1983-01-01

    Recently, several configurational approaches and concept improvement schemes were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These configurations include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator-snakey torus). Preliminary evaluations of reactor implications of each of these configurations have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties. Results indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.

  2. Membrane reactor. Membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Y.; Wakabayashi, K. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-08-05

    Many reaction examples were introduced of membrane reactor, to be on the point of forming a new region in the field of chemical technology. It is a reactor to exhibit excellent function, by its being installed with membrane therein, and is generally classified into catalyst function type and reaction promotion type. What firstly belongs to the former is stabilized zirconia, where oxygen, supplied to the cathodic side of membrane with voltage, impressed thereon, becomes O {sup 2 {minus}} to be diffused through the membrane and supplied, as variously activated oxygenous species, on the anodic side. Examples with many advantages can be given such as methane coupling, propylene oxidation, methanating reaction of carbon dioxide, etc. Apart, palladium film and naphion film also belong to the former. While examples of the latter comprise, among others, decomposition of hydrogen sulfide by porous glass film and dehydrogenation of cyclohexane or palladium alloy film, which are expected to be developed and materialized in the industry. 33 refs., 8 figs.

  3. Simulation on advanced operation mode for the compact fusion-fission hybrid reactor%紧凑型聚变裂变混合堆先进运行模式的数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈美霞; 刘成岳; 吴斌

    2012-01-01

    Reversed shear (RS) operation mode is simulated with Jsolver and TSC codes on some important issues, such as RS Plasma configuration, bootstrap current fraction and RS operation mode discharge simulation etc.. To some degree, the modeling results show that the RS operation mode is advanced and feasible for the compact Fusion-fission hybrid reactor.%使用Jsolver程序及托卡马克模拟程序TSC对紧凑型聚变裂变混合堆系统的反剪切平衡位形、自举电流份额及放电模拟进行数值模拟研究,以此探讨该混合堆的可行性和先进性.

  4. Cross section measurements of the yield of spallation reactions related to the study of hybrid reactor systems; Measures de sections efficaces de production de produits de reactions en rapport avec l`etude de systemes de reacteurs hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Bernas, M.; Mustapha, B.; Stephan, C. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others

    1999-11-01

    Studies presently developed on the design of hybrid systems need the knowledge of spallation products and their production rate. To obtain this information we have performed cross-section measurements using the inverse kinematical method. (authors) 2 figs.

  5. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor%Z箍缩驱动聚变-裂变混合堆总体概念研究进展

    Institute of Scientific and Technical Information of China (English)

    李正宏; 周林; 黄洪文; 王真; 陈晓军; 祁建敏; 郭海兵; 马纪敏; 肖成建; 褚衍运

    2014-01-01

    Z箍缩驱动聚变-裂变混合能源堆(Z-FFR)在核安全、经济、持久和环境友好等方面具有优良的品质,有望成为有效应对未来能源危机和环境、气候问题的新能源。从 Z箍缩驱动聚变方案与聚变靶设计、重复频率驱动器、次临界包层及产氚包层设计、燃料循环等关键问题方面,对Z-FFR工程概念总体研究情况进行了介绍。%The Z-pinch driven fusion-fission hybrid power reactor(Z-FFR)has remarkable advantages in nuclear security,e-conomy,permanence and environment-friendliness,it can promisingly be millennial energy source dealing effectively with future energy crisis and climate problem.This article introduces the status quo of the conceptual research on Z-FFR from aspects of fu-sion-target physics,low-repetitive Z-pinch driver development,sub-critical fission reactor design and fuel cycle analysis.

  6. 复合生物反应器亚硝酸型同步硝化反硝化脱氮%Nitrogen Removal by Simultaneous Nitrification and Denitrification via Nitrite in a Sequence Hybrid Biological Reactor

    Institute of Scientific and Technical Information of China (English)

    王建龙; 彭永臻; 王淑莹; 高永青

    2008-01-01

    Sequence hybrid biological reactor(SHBR)was proposed,and some key control parameters were in-vestigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification(SND)via nitrite.sND via nitrite was achieved in SHBR by controlling demand oxygen(DO)concentration.There was a pro-did not destroy the partial nitrification to nitrite.The results showed that limited air flow rate to cause oxygen defi-ciency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate.Nitrogen removal efficiency was increased with the increase in NAR,that iS,NAR was increased from 60%to 90%,and total nitrogen removal efficiency was increased from 68%t0 85%.The SHBR could tolerate high organic loading rate(OLR),COD and ammonia-nitrogen removal efficiency were greater than92%and 93.5%respectively and it even oper-biofilm positively affected the activated sludge settling capability,and sludge volume index(svi)of activated sludge in SHBR never hit more than 90 ml.g-1 throughout the experiments.

  7. Power Flattening and Rejuvenation of PWR Spent Fuel Blanket for Hybrid Fusion-Fission Reactor%功率展平的压水堆乏燃料发电包层中子学初步研究

    Institute of Scientific and Technical Information of China (English)

    马续波; 陈义学; 王继亮; 王悦; 韩静茹; 陆道纲

    2011-01-01

    The hybrid fusion-fission reactor has advantages of breeding of the nuclear fuel and transmutation of the long-life nuclear waste and having inherent safety. Meanwhile, the engineering and technological demand of hybrid reactor is significantly reduced comparing with that of pure fusion reactor. A generating electricity blanket concept using the PWR spent fuel directly was proposed, which was based on ITER parameter level achieved. Different volume fractions of the fuel in blanket enabled to realize a power flattening in the fissile zone. The results show that the peak-to-average power factor becomes less than no power flattening, and the output power of the fuel zone raises more than 21. 7%. At the end of the operation, the maximum fuel enrichment is 5. 23%. The blanket is feasible from the neutronics viewpoint.%聚变裂变混合堆在增殖核燃料、嬗变长寿命核废料及固有安全性等方面具有较大优势,同时,它比纯聚变堆在工程及技术方面要求低,因此较聚变堆更易实现.本工作基于目前国际聚变实验堆(ITER)所能达到的技术水平,提出一种直接利用乏燃料进行发电的聚变裂变混合堆包层概念,利用在不同位置放置不同乏燃料体积分数的方法对燃料增殖区实现了功率展平.计算结果表明:功率展平后的包层功率不均匀系数更小,且包层中燃料区的能量输出要比不展平情况下的能量输出高约21.7%.燃料富集度到运行末期最大可达5.23%.从中子学角度初步论证了该包层的可行性.

  8. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  9. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system

    Science.gov (United States)

    Cui, Min-Hua; Cui, Dan; Lee, Hyung-Sool; Liang, Bin; Wang, Ai-Jie; Cheng, Hao-Yi

    2016-04-01

    In this study, two modes of hybrid anaerobic digestion (AD) bioreactor with built-in BESs (electrodes installed in liquid phase (R1) and sludge phase (R2)) were tested for identifying the effect of electrodes position on azo dye wastewater treatment. Alizarin yellow R (AYR) was used as a model dye. Decolorization efficiency of R1 was 90.41 ± 6.20% at influent loading rate of 800 g-AYR/ m3·d, which was 39% higher than that of R2. The contribution of bioelectrochemical reduction to AYR decolorization (16.23 ± 1.86% for R1 versus 22.24 ± 2.14% for R2) implied that although azo dye was mainly removed in sludge zone, BES further improved the effluent quality, especially for R1 where electrodes were installed in liquid phase. The microbial communities in the electrode biofilms (dominant by Enterobacter) and sludge (dominant by Enterococcus) were well distinguished in R1, but they were similar in R2. These results suggest that electrodes installed in liquid phase in the anaerobic hybrid system are more efficient than that in sludge phase for azo dye removal, which give great inspirations for the application of AD-BES hybrid process for various refractory wastewaters treatment.

  10. Systematic analysis of biomass characteristics associated membrane fouling during start-up of a hybrid membrane bioreactor using worm reactor for sludge reduction.

    Science.gov (United States)

    Li, Zhipeng; Tian, Yu; Ding, Yi; Lu, Yaobin

    2013-05-01

    This study focused on the effect of predated sludge recycle on microbial community development in MBR coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR). The microbial activities and community were evaluated. The results indicated that the SSBWR-MBR fed with the predated sludge obtained excellent wastewater treatment performance and membrane permeability. In addition, the LIVE/DEAD staining analyses clearly showed that the viability of sludge in SSBWR-MBR was slightly lower than that in Control-MBR, indicating that SSBWR-MBR had a good ability to digest predated sludge. Changed EPS and SMP characteristics and low EPS production, as the major contributors for the mitigated membrane fouling, were closely associated with microbial community development. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the bacterial communities in the two reactors were different. Further identification of the bacterial populations suggested that decrease of Betaproteobacteria and Gammaproteobacteria and change in Alphaproteobacteria might be responsible for membrane fouling mitigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  12. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  13. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  14. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  15. Reactor Engineering

    Science.gov (United States)

    Lema, Juan M.; López, Carmen; Eibes, Gemma; Taboada-Puig, Roberto; Moreira, M. Teresa; Feijoo, Gumersindo

    In this chapter, the engineering aspects of processes catalyzed by peroxidases will be presented. In particular, a discussion of the existing technologies that utilize peroxidases for different purposes, such as the removal of recalcitrant compounds or the synthesis of polymers, is analyzed. In the first section, the essential variables controlling the process will be investigated, not only those that are common in any enzymatic system but also those specific to peroxidative reactions. Next, different reactor configurations and operational modes will be proposed, emphasizing their suitability and unsuitability for different systems. Finally, two specific reactors will be described in detail: enzymatic membrane reactors and biphasic reactors. These configurations are especially valuable for the treatment of xenobiotics with high and poor water solubility, respectively.

  16. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  17. Fouling potential evaluation of soluble microbial products (SMP) with different membrane surfaces in a hybrid membrane bioreactor using worm reactor for sludge reduction.

    Science.gov (United States)

    Li, Zhipeng; Tian, Yu; Ding, Yi; Chen, Lin; Wang, Haoyu

    2013-07-01

    The fouling characteristics of soluble microbial products (SMP) in the membrane bioreactor coupled with Static Sequencing Batch Worm Reactor (SSBWR-MBR) were tested with different types of membranes. It was noted that the flux decrements of S-SMP (SMP in SSBWR-MBR) with cellulose acetate (CA), polyvinylidene fluoride (PVDF) and polyether sulfones (PES) membranes were respectively 6.7%, 8.5% and 9.5% lower compared to those of C-SMP (SMP in Control-MBR) with corresponding membranes. However, for both the filtration of the C-SMP and S-SMP, the CA membrane exhibited the fastest diminishing rate of flux among the three types of membranes. The surface morphology analysis showed that the CA membrane exhibited more but smaller protuberances compared to the PVDF and PES. The second minimums surrounding each protruding asperity on CA membrane were more than those on the PVDF and PES membranes, enhancing the attachment of SMP onto the membrane surface. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Optimization of main factors associated with nitrogen removal in hybrid sludge sequencing batch reactor with step-feeding of swine wastewater.

    Science.gov (United States)

    Han, Zhiying; Wu, Weixiang; Ding, Ying; Zhu, Jun; Chen, Yingxu

    2008-02-01

    To attain a high nitrogen removal efficiency and good sludge settleability in a step-fed sequencing batch reactor (SFSBR) treating swine wastewater, L(9)(3(4)) orthogonal experiments were carried out to optimize main factors associated with nitrogen removal, namely, the influent C/N ratio, feeding volume ratio, nitrogen loading rate and aeration intensity. Results showed that nitrogen loading rate contributed most for the build-up of NO(2)(-)-N, NO(3)(-)-N and NH(4)(+)-N in the effluent, while aeration intensity was the most important factor for net nitrogen removal efficiency based on the initial and final nitrogen concentrations in the SFSBR cycle. Additionally, the periodic starvation created by stepwise feeding was the major inducing force for granulation in the SFBSR process and the influent C/N ratio had a profound influence on sludge settleability and granular sludge stability in terms of sludge volume index (SVI) and the fraction of granular sludge with diameter over 0.5 mm (f(0.5 mm)), respectively. Considering the most and secondary important control factor for individual response index, the optimal operating condition for nitrogen removal of SFSBR treating swine wastewater was determined as A(3)B(3)C(1)D(2), i.e., influent C/N ratio 7.0 mg COD/mg NH(4)(+)-N, feeding volume ratio 3:1, nitrogen loading rate 0.026 g NH(4)(+)-N/gVSS . d and aeration intensity 4.2 L/m(3) . s, respectively. Under the optimal operating conditions, inorganic nitrogen concentration in the effluent, net nitrogen removal efficiency, SVI and f(0.5 mm) reached 21 mg/L, 72 %, 40.7 mL/g and 4.3 %, respectively.

  19. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor.

    Science.gov (United States)

    Zagrodnik, R; Łaniecki, M

    2017-01-01

    Hydrogen production from starch by a co-culture hybrid dark and photofermentation under repeated fed-batch conditions at different organic loading rates (OLR) was studied. Effective cooperation between bacteria in co-culture during initial days was observed at controlled pH 7.0. However, at pH above 6.5 dark fermentation phase was redirected from H2 formation towards production of formic acid, lactic acid and ethanol (which are not coupled with hydrogen production) with simultaneous lower starch removal efficiency. This resulted in decrease in the hydrogen production rate. The highest H2 production in co-culture process (3.23LH2/Lmedium - after 11days) was achieved at OLR of 1.5gstarch/L/day, and it was twofold higher than for dark fermentation process (1.59LH2/Lmedium). The highest H2 yield in the co-culture (2.62molH2/molhexose) was obtained at the OLR of 0.375gstarch/L/day. Different pH requirements of bacteria were proven to be a key limitation in co-culture system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Tritium management in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II.

  1. Bioconversion reactor

    Science.gov (United States)

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  2. Optimised utilisation of existing incinerators by installation of upstream reactors for treatment of waste with high calorifica value - HYBRID waste treatment plants; Optimierte Nutzung bestehender Abfallverbrennungsanlagen durch Errichtung vorgeschalteter Reaktoren zur Behandlung heizwertreicher Abfaelle - HYBRID-Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    El Labani, M.

    2000-07-01

    Waste incineration plants are based on the process of thermal waste treatment, i.e. the generation of power from the controlled conversion of organic reactive residue waste. Statutory requirements forced operators to install powerful flue gas cleaning systems into their existing waste incineration plants. This led to a tremendous increase in cost and treatment prices generating pressure to optimize the process. Currently, markets demand additional capacities for the treatment of waste of elevated heating value ({proportional_to}5,0 MWh/Mg). It is possible to treat this type of waste in a conventional waste incineration plant. However, the elevated heating value dictates a reduction in throughput with ever increasing pressure on costs. This is why current concepts consider the treatment of waste of elevated heating value in specific, so called de-centralized plants. These plants are usually of low throughput with accordingly high specific cost of developing the infrastructure. The capacity of existing waste incineration plants has been investigated in order to assess the potential for optimization. Extensive test runs at the Municipal Solid Waste Incineration Plant (MSW) Darmstadt revealed a capacity gap in the flue gas cleaning system even with the incineration unit running at full capacity. This gap could be filled with an additional incineration plant for waste of elevated heating value, whose capacity is matched accordingly. Such additional incineration plant defines in conjunction with the existing waste incineration plant a so called HYBRID Waste Treatment Plant. It is the aim of this treatise to develop an instrument to support the decision making process related to the planning of such plants. (orig.) [German] Abfallverbrennungsanlagen basieren auf dem Verfahren der thermischen Abfallbehandlung; das ist die Energieerzeugung aus der kontrollierten Umwandlung organischer, reaktionsfaehiger Restabfaelle. Aufgrund gesetzlicher Vorgaben mussten bestehende

  3. 聚变-裂变混合能源堆球模型中子学对算研究%Comparative Study on Spherical Model of Fusion-Fission Hybrid Energy Reactor

    Institute of Scientific and Technical Information of China (English)

    邵增; 程和平; 刘国明

    2012-01-01

    利用蒙特卡罗程序和自主开发的蒙特卡罗-燃耗耦合程序MOCouple-s,对北京应用物理与计算数学研究所提出的聚变-裂变混合能源堆球模型进行了对算研究.对初始时刻及各燃耗时刻下的有效增殖因数、能量倍增因子、氚增殖比、中子源强度等堆芯参数进行了比较,结果总体符合较好.对寿期末重要核素的成分进行了详细比较,除个别核素外,偏差很小,表明所采用的计算程序与核参数库一致性良好.对核参数库的选择、铀水体积比等对燃耗计算结果的影响进行敏感性分析,并对外中子源驱动的次临界堆芯的燃耗计算进行详细讨论,提出可行的燃耗计算基准.%The comparative study on fusion-fission hybrid spherical model proposed by the Institute of Applied Physics and Computational Mathematics was performed with Monte-Carlo code and MOCouple-s code. Comparisons of reactor parameters, such as neutron effective multiplication factor, energy multiplication factor, tritium breeding ratio and neutron source intensity, were made. The results agree well with the reference as a whole. The concentrations of important isotopes were also compared in detail. Most of the biases are very small except a tiny fraction of the iotopes. It proves that both codes and nuclear data library have very good consistency. In calculation of the model used, the burnup sensitivity of nuclear data and uranium-water ratio employed in the simulation model were analyzed. For such a fixed external source driven subcritical reactor core, detailed discussion was made about the burnup calculation method, and a feasible burnup calculation benchmark was proposed.

  4. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  5. Reactor assessments of advanced bumpy torus configurations

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A.; Owen, L.W.; Spong, D.A.; Miller, R.L.; Ard, W.B.; Pipkins, J.F.; Schmitt, R.J.

    1984-02-01

    Recently, several innovative approaches were introduced for enhancing the performance of the basic ELMO Bumpy Torus (EBT) concept and for improving its reactor potential. These include planar racetrack and square geometries, Andreoletti coil systems, and bumpy torus-stellarator hybrids (which include twisted racetrack and helical axis stellarator - snakey torus). Preliminary evaluations of reactor implications of each approach have been carried out based on magnetics (vacuum) calculations, transport and scaling relationships, and stability properties deduced from provisional configurations that implement the approach but are not necessarily optimized. Further optimization is needed in all cases to evaluate the full potential of each approach. Results of these studies indicate favorable reactor projections with a significant reduction in reactor physical size as compared to conventional EBT reactor designs carried out in the past.

  6. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  7. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  8. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  9. Start-up and steady-state conditions of an Anaerobic Hybrid Reactor (AHR) using mini-filters composed with two types of support medium operating under low loading rates

    National Research Council Canada - National Science Library

    Silva, Vivian Galdino da; Campos, Cláudio Milton Montenegro; Pereira, Erlon Lopes; Silva, Júlia Ferreira da

    2011-01-01

    ...) removing organic matter of coffee wastewater with low concentration. The AHR was built similar to an UASB reactor, however the interior was filled with mini-filters composed by two types of support materials...

  10. Reactor and method of operation

    Science.gov (United States)

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  11. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  12. Biodegradation of pharmaceuticals in hospital wastewater by staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Chhetri, Ravi Kumar; Ooi, Gordon Tze Hoong

    2015-01-01

    for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted......Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution...

  13. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  14. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  15. Attrition reactor system

    Science.gov (United States)

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  16. Preliminary three-dimensional neutronics design and analysis of helium-cooled blanket for a multi-functional experimental fusion-fission hybrid reactor%多功能聚变裂变混合实验堆FDS-MFX氦冷包层三维中子学初步设计与分析

    Institute of Scientific and Technical Information of China (English)

    刘金超; FDS团队; 金鸣; 王明煌; 蒋洁琼; 王国忠; 邱岳峰; 宋婧; 邹俊; 吴宜灿

    2011-01-01

    FDS-MFX(Multi-Functional eXperimental fusion-fission hybrid reactor)是一个基于现实可行技术的多功能聚变裂变混合实验堆概念,分3个阶段相继开展实验研究,分别采用纯氚增殖包层、铀燃料包层和乏燃料包层.本文重点对其中铀燃料包层后期阶段中高浓缩铀模块的摆放方式和尺寸进行优化,给出一个区平均最大功率密度约为100 MW/m3,235U装料量约为1 t,氚增殖率为1.05的三维初步中子学方案.%A multi-functional experimental fusion-fission hybrid reactor concept named FDS-MFX , which is based on viable fusion and fission technologies, has been proposed. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this paper,the design optimization for the layout and the size of high enriched uranium modules inlater stage of uranium-fueled blanket has been performed.Finally,proposing a preliminarythree-dimension neutronies design with maximum average Power Density(Pdmax)100 MW/m3,loaded mass of the 235U 1 000 kg and TBR(Tritium Breeding Ratio)1.05.

  17. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  18. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  19. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  20. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  1. A Novel Dual-Stage Hydrothermal Flow Reactor

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    2015-01-01

    The dual-stage reactor is a novel continuous flow reactor with two reactors connected in series. It is designed for hydrothermal flow synthesis of nanocomposites, in which a single particle consists of multiple materials. The secondary material may protect the core nanoparticle from oxidation...... and agglomeration, enhance catalytic or optical properties or combine properties into a multifunctional material. Such hybrids form the frontier of materials science, but the methods that provide strong synthesis control typically only yields minute quantitites which prohibits any real application of the materials...

  2. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  3. Conversion of Biomass Syngas to DME Using a Microchannel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianli; Wang, Yong; Cao, Chunshe; Elliott, Douglas C.; Stevens, Don J.; White, James F.

    2005-03-01

    The capability of a microchannel reactor for direct synthesis of dimethylether (DME) from biomass syngas was explored. The reactor was operated in conjunction with a hybrid catalyst system consisting of methanol synthesis and dehydration catalysts, and the influence of reaction parameters on syngas conversion was investigated. The activities of different dehydration catalysts were compared under DME synthesis conditions. Reaction temperature and pressure exhibited similar positive effects on DME formation. A catalytic stability test of the hybrid catalyst system was performed for 880 hours, during which CO conversion only decreased from 88% to 81%. In the microchannel reactor, the catalyst deactivation rate appeared to be much slower than in a tubular fixed-bed reactor tested for comparison. Test results also indicated that the dehydration reaction rate and the water depletion rate via a water-gas-shift reaction should be compatible in order to achieve high selectivity to DME. Using the microchannel reactor, it was possible to achieve a space time yield almost three times higher than commercially demonstrated performance results. A side-by-side comparison indicated that the heat removal capability of the microchannel reactor was at least six times greater than that of a commercial slurry reactor under similar reaction conditions.

  4. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  5. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  6. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rana Pratap, E-mail: ranayadav97@gmail.com; Kumar, Sunil; Kulkarni, S. V. [Thapar University, Patiala, Punjab 147004, India and Institute for Plasma Research, Gandhinagar 382428 (India)

    2016-01-15

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  7. SNTP program reactor design

    Science.gov (United States)

    Walton, Lewis A.; Sapyta, Joseph J.

    1993-06-01

    The Space Nuclear Thermal Propulsion (SNTP) program is evaluating the feasibility of a particle bed reactor for a high-performance nuclear thermal rocket engine. Reactors operating between 500 MW and 2,000 MW will produce engine thrusts ranging from 20,000 pounds to 80,000 pounds. The optimum reactor arrangement depends on the power level desired and the intended application. The key components of the reactor have been developed and are being tested. Flow-to-power matching considerations dominate the thermal-hydraulic design of the reactor. Optimal propellant management during decay heat cooling requires a three-pronged approach. Adequate computational methods exist to perform the neutronics analysis of the reactor core. These methods have been benchmarked to critical experiment data.

  8. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  9. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  10. INVAP's Research Reactor Designs

    Directory of Open Access Journals (Sweden)

    Eduardo Villarino

    2011-01-01

    Full Text Available INVAP, an Argentine company founded more than three decades ago, is today recognized as one of the leaders within the research reactor industry. INVAP has participated in several projects covering a wide range of facilities, designed in accordance with the requirements of our different clients. For complying with these requirements, INVAP developed special skills and capabilities to deal with different fuel assemblies, different core cooling systems, and different reactor layouts. This paper summarizes the general features and utilization of several INVAP research reactor designs, from subcritical and critical assemblies to high-power reactors.

  11. Multi purpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raina, V.K. [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: vkrain@magnum.barc.ernet.in; Sasidharan, K. [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sengupta, Samiran [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, Tej [Research Reactor Services Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2006-04-15

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor.

  12. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A., E-mail: anlafuente@etsii.upm.e [ETSII-UPM, c/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Piera, M. [ETSII:UNED, c/Juan del Rosal, 12, 28040 Madrid (Spain)

    2010-06-15

    Breeder reactors are considered a unique tool for fully exploiting natural nuclear resources. In current Light Water Reactors (LWR), only 0.5% of the primary energy contained in the nuclei removed from a mine is converted into useful heat. The rest remains in the depleted uranium or spent fuel. The need to improve resource-efficiency has stimulated interest in Fast-Reactor-based fuel cycles, which can exploit a much higher fraction of the energy content of mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles also offer several potential advantages over a uranium fuel cycle. The coolant initially selected for most of the FBR programs launched in the 1960s was sodium, which is still considered the best candidate for these reactors. However, Na-cooled FBRs have a positive void reactivity coefficient. Among other factors, this fundamental drawback has resulted in the canceled deployment of these reactors. Therefore, it seems reasonable to explore new options for breeder coolants. In this paper, a proposal is presented for a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would require an extensive R and D program, this paper presents the very appealing properties of this salt when using a specific type of fuel that is similar to that of pebble bed reactors. The F{sub 2}Be concept was studied over a typical MOX composition and extended to a thorium-based cycle. The general analysis took into account the requirements for criticality (opening the option of hybrid subcritical systems); the requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window was found in the definition of a F{sub 2}Be cooled reactor where the safety requirement was met, unlike for molten metal-cooled reactors, which always have positive void

  13. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  14. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  15. Light water reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  16. Tratamento de esgoto sanitário em reator híbrido em bateladas sequenciais: eficiência e estabilidade na remoção de matéria orgânica e nutrientes (N, P Sewage treatment in a sequencing batch hybrid reactor: efficiency and stability in organic matter and nutrient (N, P removal

    Directory of Open Access Journals (Sweden)

    Luiz Gonzaga Lamego Neto

    2011-12-01

    Full Text Available Este trabalho apresenta os resultados de estudo sobre o comportamento de um reator híbrido, operado em bateladas sequenciais, na remoção conjunta de matéria carbonácea, nitrogênio e fósforo de esgoto sanitário. Operado em ciclos de 8 horas de duração, o reator possuía em seu interior um suporte fixo com rede de nylon. Foram testadas cargas compreendidas entre 0,39 e 1,35 kgDQO.m-3.dia-1, 42 e 60 gN-NH4-.m-3.dia e 51 e 70 gP-PO4-.m-3.dia. O reator funcionou como um sistema estável e apresentou boas condições de depuração. A remoção da matéria carbonácea mostrou-se elevada, com eficiências médias de 92% de DBO5 e 80% de DQO. A remoção de nutrientes variou entre 59 e 71% para nitrogênio total e entre 45 e 67% para fósforo total. Tanto no lodo em suspensão, quanto no biofilme, foi observada a ocorrência de bactérias oxidadoras de amônio e micro-organismos responsáveis pela desnitrificação e remoção biológica de fósforo.This paper presents the results about the behavior of a sequencing batch hybrid reactor on combined removal of carbonaceous matter, nitrogen and phosphorus from sewage. Operated in 8-hour cycles, the reactor had a nylon net fixed inside. Loads between 0.39 and 1.35 kg COD.m-3.day-1, 42 and 60 gN-NH4-m-3.day-1 and 51 and 70 gP-PO4-m-3.day-1 were tested. The reactor operated as a stable system and showed good depuration conditions. The carbonaceous matter removal was high, with 92 and 80% efficiencies average to BOD5 and COD, respectively. The nutrients removal varied between 59 and 71% for total nitrogen and between 45 and 67% for total phosphorus. In both, sludge in suspension and the biofilm, occurrence of ammonium-oxidizing bacteria and microorganisms responsible for denitrification and biological phosphorus removal was observed.

  17. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  18. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  19. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  20. 紧凑型聚变裂变混合堆自举电流的数值模拟研究%Simulation on bootstrap current for the compact fusion-fission hybrid reactor

    Institute of Scientific and Technical Information of China (English)

    陈美霞; 刘成岳; 舒双宝

    2015-01-01

    On the basis of the equilibrium code Jsolver, the compact fusion-fission hybrid reactor’s advanced equilibrium configuration design is carried out, especially for the reversed shear operation mode. And the calculation, distribution and fraction of bootstrap current are also simulated.%以平衡程序Jsolver为基础开展了紧凑型聚变裂变混合堆先进等离子体平衡位形设计,重点研究了反剪切运行模式,并在此位形下研究了自举电流的计算、分布及份额。

  1. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  2. ADM1 applications for a hybrid up-flow anaerobic sludge-filter bed reactor performance and for a batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge

    Directory of Open Access Journals (Sweden)

    lván Ramirez

    2012-01-01

    Full Text Available Los procesos de la digestión anaerobia comprenden una red completa de reacciones bioquimicas y fisicoquímicas, secuenciales y paralelas. Los digestores anaerobios a menudo exhiben importantes problemas de estabilidad que sólo pueden ser evitados a través de apropiadas estrategias de control. Tales estrategias requieren, en general, para su implementación, del desarrollo de modelos matemáticos cuya finalidad es el de permitirnos mejor comprensión y optimización de los procesos de la digestión anaerobia, describiendo estas reacciones de una manera estructurada. Este trabajo revisa el modelo ADMI de la IWAy discute dos aplicaciones del modelo: la digestión anaerobia de las aguas residuales vinazas de las destilerias de vino corno sustrato en un reactor hibrido (UASFB y la digestión anaerobia termófila en batch de lodos activados con pre-tratamiento térmico. Las predicciones del modelo, usando los parámetros establecidos en este estudio, concuerdan bien con los resultados de las mediciones en las diferentes condiciones ensayadas. Los modelos resultantes explicaron la evolución dinámica de las principales variables, tanto en la fase liquida corno la fase gaseosa.

  3. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  4. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  5. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  6. Exploring new coolants for nuclear breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lafuente, A. [ETSI Industriales-Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2. 28006 Madrid (Spain)

    2010-07-01

    Breeder reactors are considered the unique tool for fully exploiting the natural nuclear resources. In current LWR, only a 0.5% of the primary energy contained in the nuclei removed from the mine is converted into useful heat, with the rest remaining in the depleted uranium or in the spent fuel. The objective of resource-efficiency stimulated the interest in Fast- Reactor-based fuel cycles which can exploit a much higher fraction of the energy content of the mined uranium by burning U-238, mainly after conversion into Pu-239. Thorium fuel cycles would also offers several potential advantages over a uranium fuel cycle. The coolant initially chosen for most of the FBR programs launched in the 60's was sodium, which still is considered the best candidate for these reactors. However, Na-cooled FBR have a positive void reactivity coefficient, which has been among others, a fundamental drawback that has cancelled the deployment of these reactors. Therefore, it seems reasonable to explore totally new options on coolants for breeders. In this paper, a proposal is presented on a new molten salt (F{sub 2}Be) coolant that could overcome the safety issues related to the positive void reactivity coefficient of molten metal coolants. Although it is a very innovative proposal that would need an extensive R and D programme, this paper presents the very appealing properties of this salt, in the case of using a specific type of fuel, similar to that of pebble bed reactors. The concept will be studied over a typical MOX composition and extended to a Thorium-based cycle. The general analysis takes into account requirements for criticality (opening the option of hybrid subcritical systems); requirements for breeding; and the safety requirement of having a negative coolant void reactivity coefficient. A design window is found in the definition of a F{sub 2}Be cooled reactor where the safety requirement is met, unlike for molten metal cooled reactors which always have positive void

  7. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Zhang, Xiaoqin [The Ohio State Univ., Columbus, OH (United States); Kim, Inhun [The Ohio State Univ., Columbus, OH (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  8. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  9. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  10. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  11. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  12. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  13. Future Reactor Experiments

    OpenAIRE

    He, Miao

    2013-01-01

    The measurement of the neutrino mixing angle $\\theta_{13}$ opens a gateway for the next generation experiments to measure the neutrino mass hierarchy and the leptonic CP-violating phase. Future reactor experiments will focus on mass hierarchy determination and the precision measurement of mixing parameters. Mass hierarchy can be determined from the disappearance of reactor electron antineutrinos based on the interference effect of two separated oscillation modes. Relative and absolute measure...

  14. Reactor Neutrino Experiments

    OpenAIRE

    Cao, Jun

    2007-01-01

    Precisely measuring $\\theta_{13}$ is one of the highest priority in neutrino oscillation study. Reactor experiments can cleanly determine $\\theta_{13}$. Past reactor neutrino experiments are reviewed and status of next precision $\\theta_{13}$ experiments are presented. Daya Bay is designed to measure $\\sin^22\\theta_{13}$ to better than 0.01 and Double Chooz and RENO are designed to measure it to 0.02-0.03. All are heading to full operation in 2010. Recent improvements in neutrino moment measu...

  15. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  16. Helias reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C.D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Grieger, G. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Harmeyer, E. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kisslinger, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Karulin, N. [Nuclear Fusion Institute, Moscow (Russian Federation); Maurer, W. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Nuehrenberg, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Rau, F. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Wobig, H. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1995-10-01

    The present status of Helias reactor studies is characterised by the identification and investigation of specific issues which result from the particular properties of this type of stellarator. On the technical side these are issues related to the coil system, while physics studies have concentrated on confinement, alpha-particle behaviour and ignition conditions. The usual assumptions have been made in those fields which are common to all toroidal fusion reactors: blanket and shield, refuelling and exhaust, safety and economic aspects. For blanket and shield sufficient space has been provided, a detailed concept will be developed in future. To date more emphasis has been placed on scoping and parameter studies as opposed to fixing a specific set of parameters and providing a detailed point study. One result of the Helias reactor studies is that physical dimensions are on the same order as those of tokamak reactors. However, it should be noticed that this comparison is difficult in view of the large spectrum of tokamak reactors ranging from a small reactor like Aries, to a large device such as SEAFP. The notion that the large aspect ratio of 10 or more in Helias configurations also leads to large reactors is misleading, since the large major radius of 22 m is compensated by the average plasma radius of 1.8 m and the average coil radius of 5 m. The plasma volume of 1400 m{sup 3} is about the same as the ITER reactor and the magnetic energy of the coil system is about the same or even slightly smaller than envisaged in ITER. (orig.)

  17. INVAP's Research Reactor Designs

    OpenAIRE

    Eduardo Villarino; Alicia Doval

    2011-01-01

    INVAP, an Argentine company founded more than three decades ago, is today recognized as one of the leaders within the research reactor industry. INVAP has participated in several projects covering a wide range of facilities, designed in accordance with the requirements of our different clients. For complying with these requirements, INVAP developed special skills and capabilities to deal with different fuel assemblies, different core cooling systems, and different reactor layouts. This paper ...

  18. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  19. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  20. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  1. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  2. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  3. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  4. REACTOR GROUT THERMAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  5. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  6. Coupling of α-channeling to |k∥| upshift in lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, I. E. [Harvard University, Cambridge, MA (United States). Department of Physics.; Bertelli, N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fisch, N. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-26

    Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic α particles born from fusion reactions in eventual tokamak reactors.

  7. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi; Iida, Masaaki; Moriki, Yasuyuki

    1994-10-18

    A reactor core is divided into a plurality of coolants flowrate regions, and electromagnetic pumps exclusively used for each of the flowrate regions are disposed to distribute coolants flowrates in the reactor core. Further, the flowrate of each of the electromagnetic pumps is automatically controlled depending on signals from a temperature detector disposed at the exit of the reactor core, so that the flowrate of the region can be controlled optimally depending on the burning of reactor core fuels. Then, the electromagnetic pumps disposed for every divided region are controlled respectively, so that the coolants flowrate distribution suitable to each of the regions can be attained. Margin for fuel design is decreased, fuels are used effectively, as well as an operation efficiency can be improved. Moreover, since the electromagnetic pump has less flow resistance compared with a mechanical type pump, and flow resistance of the reactor core flowrate control mechanism is eliminated, greater circulating flowrate can be ensured after occurrence of accident in a natural convection using a buoyancy of coolants utilizable for after-heat removal as a driving force. (N.H.).

  8. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  9. Operation of Reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 Annual Report of SPR Operation Chu Shaochu Having overseen by National Nuclear Safety Administration and specialists, the reactor restarted up successfully after Safety renovation on April 16, 1996. In August 1996 the normal operation of SPR was approved by the authorities of Naitonal Nuclear Safety Administration. 1 Operation status In 1996, the reactor operated safely for 40 d and the energy released was about 137.3 MW·d. The operation status of SPR is shown in table 1. The reactor started up to higher power (power more than 1 MW) and lower power (for physics experiments) 4 times and 14 times respectively. Measurement of control rod efficiency and other measurement tasks were 2 times and 5 times respectively.

  10. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  11. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  12. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    Science.gov (United States)

    1985-02-01

    Public Affairs Office and is releasaole to the National Technical Information Services (NTIS). At NTIS, it will be available to the general public...Reactors that use deu- terium (heavy water) as a coolant can use natural uranium as a fuel. The * Canadian reactor, CANDU , utilizes this concept...reactor core at the top and discharged at the Dotton while the reactor is in operation. The discharged fuel can then b inspected to see if it can De used

  13. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  14. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  15. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  16. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  17. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  18. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  19. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  20. Configurational analysis of an EBT reactor in various magnetic geometries

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L.W.; Uckan, N.A.

    1980-01-01

    Optimization of vacuum field particle confinement in an ELMO Bumpy Torus (EBT) reactor has been considered. Several methods of improving the efficient utilization of magnetic fields and the particle confinement characteristics of a reactor have been analyzed. These include the use of (1) magnets with a large mirror ratio, (2) high field Nb/sub 3/Sn or Nb/sub 3/Sn/NbTi hybrid mirror coils, (3) split-wedge mirror coils, (4) aspect ratio enhancement (ARE) coils, and (5) recently developed field symmetrizing (SYM) coils. Of these, particle drift orbits and three-dimensional tensor pressure equilibrium calculations have shown that the ARE and SYM coils used in conjunction with high field magnets offer the most promise of good plasma performance in a smaller size (up to 50%) EBT reactor. The relative merits of each magnetic configuration are discussed, and the design characteristics are given.

  1. Evaluation of a catalytic fixed bed reactor for sulphur trioxide decomposition / Barend Frederik Stander

    OpenAIRE

    Stander, Barend Frederik

    2014-01-01

    The world energy supply and demand, together with limited available resources have resulted in the need to develop alternative energy sources to ensure sustainable and expanding economies. Hydrogen is being considered a viable option with particular application to fuel cells. The Hybrid Sulphur cycle has been identified as a process to produce clean hydrogen (carbon free process) and can have economic benefits when coupled to nuclear reactors (High Temperature Gas Reactor) or solar heaters fo...

  2. REACTOR FUEL ELEMENTS TESTING CONTAINER

    Science.gov (United States)

    Whitham, G.K.; Smith, R.R.

    1963-01-15

    This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

  3. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  4. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  5. MULTISTAGE FLUIDIZED BED REACTOR

    Science.gov (United States)

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  6. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  7. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  8. The First Reactor.

    Science.gov (United States)

    Department of Energy, Washington, DC.

    On December 2, 1942, in a racquet court underneath the West Stands of Stagg Field at the University of Chicago, a team of scientists led by Enrico Fermi created the first controlled, self-sustaining nuclear chain reaction. This updated and revised story of the first reactor (or "pile") is based on postwar interviews (as told to Corbin…

  9. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  10. Chromatographic and Related Reactors.

    Science.gov (United States)

    1988-01-07

    special information about effects of surface heteroge- neity in the methanation reaction. Studies of an efficient multicolumn assembly for measuring...of organic basic catalysts such as pyridine and 4-methylpicoline. It was demonstrated that the chromatographic reactor gave special information about...Programmed Reaction to obtain special information about surface heterogeneity in the methanation reaction. Advantages of stopped flow over steady state

  11. New concepts for shaftless recycle reactors

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.; Berty, I.J.

    1987-01-01

    Berty Reaction Engineers, Ltd. (BREL) is developing two new laboratory recycle reactors, the ROTOBERTY and the TURBOBERTY. These new reactors are basically improved versions of the original Berty reactor. To understand why the reactors have the features that they do, it is first necessary to briefly review laboratory reactors in general and specifically the original Berty reactor.

  12. Brazilian multipurpose reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Brazilian Multipurpose Reactor (RMB) Project is an action of the Federal Government, through the Ministry of Science Technology and Innovation (MCTI) and has its execution under the responsibility of the Brazilian National Nuclear Energy Commission (CNEN). Within the CNEN, the project is coordinated by the Research and Development Directorate (DPD) and developed through research units of this board: Institute of Nuclear Energy Research (IPEN); Nuclear Engineering Institute (IEN); Centre for Development of Nuclear Technology (CDTN); Regional Center of Nuclear Sciences (CRCN-NE); and Institute of Radiation Protection and Dosimetry (IRD). The Navy Technological Center in Sao Paulo (CTMSP) and also the participation of other research centers, universities, laboratories and companies in the nuclear sector are important and strategic partnerships. The conceptual design and the safety analysis of the reactor and main facilities, related to nuclear and environmental licensing, are performed by technicians of the research units of DPD / CNEN. The basic design was contracted to engineering companies as INTERTHECNE from Brazil and INVAP from Argentine. The research units from DPD/CNEN are also responsible for the design verification on all engineering documents developed by the contracted companies. The construction and installation should be performed by specific national companies and international partnerships. The Nuclear Reactor RMB will be a open pool type reactor with maximum power of 30 MW and have the OPAL nuclear reactor of 20 MW, built in Australia and designed by INVAP, as reference. The RMB reactor core will have a 5x5 configuration, consisting of 23 elements fuels (EC) of U{sub 3}Si{sub 2} dispersion-type Al having a density of up to 3.5 gU/cm{sup 3} and enrichment of 19.75% by weight of {sup 23{sup 5}}U. Two positions will be available in the core for materials irradiation devices. The main objectives of the RMB Reactor and the other nuclear and radioactive

  13. Modeling Chemical Reactors I: Quiescent Reactors

    CERN Document Server

    Michoski, C E; Schmitz, P G

    2010-01-01

    We introduce a fully generalized quiescent chemical reactor system in arbitrary space $\\vdim =1,2$ or 3, with $n\\in\\mathbb{N}$ chemical constituents $\\alpha_{i}$, where the character of the numerical solution is strongly determined by the relative scaling between the local reactivity of species $\\alpha_{i}$ and the local functional diffusivity $\\mathscr{D}_{ij}(\\alpha)$ of the reaction mixture. We develop an operator time-splitting predictor multi-corrector RK--LDG scheme, and utilize $hp$-adaptivity relying only on the entropy $\\mathscr{S}_{\\mathfrak{R}}$ of the reactive system $\\mathfrak{R}$. This condition preserves these bounded nonlinear entropy functionals as a necessarily enforced stability condition on the coupled system. We apply this scheme to a number of application problems in chemical kinetics; including a difficult classical problem arising in nonequilibrium thermodynamics known as the Belousov-Zhabotinskii reaction where we utilize a concentration-dependent diffusivity tensor $\\mathscr{D}_{ij}(...

  14. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  15. Reactor monitoring using antineutrino detectors

    Science.gov (United States)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  16. Reactor vessel support system. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  17. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  18. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  19. Optimization of coolant arrangement for fusion-fission hybrid reactor and analysis of ex-core nature circulation%聚变-裂变混合堆冷却剂布置优化及堆外自然循环分析

    Institute of Scientific and Technical Information of China (English)

    喻章程; 解衡

    2013-01-01

    The simulation and numerical computation with FLUENT code are conducted for the fuel zone of fusion-fission hybrid reactor.Two coolant flowing arrangement schemes,uniform flow,and proportional flow based on the gross heat of each fuel cell,are compared for optimization.The results of the numerical computation show that the heat conduction between adjacent fuel cells is weak and the heat is carried away by the coolant in the duct,and it is almost completely equal to the heat produced by corresponding fuel cell except the fuel cell 1.Then the value of heat structure of the coolant duct is the gross heat of each fuel cell that means there is no need to remodel the fuel zone with system analysis program.The fuel zone has lower maximum temperature and more even temperature distribution in the case of proportional flow compared with uniform flow,but the effect of flattening temperature is not obvious.The capacity of heat transfer of ex-core nature circulation in the imaginary LOCA is also evaluated.The results show that the reactor core will be melted within 520s after shut-down without the nature circulation and the maximum temperature in the fuel region will be only elevated to 584.4℃ within 1000s after shut-down if with the nature circulation.%根据聚变-裂变混合堆概念堆型的燃料区水冷设计,通过FLUENT建模和模拟计算,比较了均匀流量和按燃料单元发热量比例分配流量两种冷却剂布置方案.数值计算结果表明,这两种布置方案中燃料单元之间的导热很小,除燃料单元1中冷却管道外,其余的冷却管道带走的热量几乎等于相应燃料单元的发热量,在用系统分析程序等效建模时,不必重新确定冷却管道的热构件;对后一种布置方案燃料区的最高温度更低,温度分布更均匀,但温度展平效果并不明显.计算了堆外自然循环系统在假设的失水事故(LOCA)中的导热能力.结果表明,如果不采用自然循环系统,停堆后520s

  20. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  1. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  2. MEANS FOR COOLING REACTORS

    Science.gov (United States)

    Wheeler, J.A.

    1957-11-01

    A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.

  3. Integrated Microfluidic Reactors.

    Science.gov (United States)

    Lin, Wei-Yu; Wang, Yanju; Wang, Shutao; Tseng, Hsian-Rong

    2009-12-01

    Microfluidic reactors exhibit intrinsic advantages of reduced chemical consumption, safety, high surface-area-to-volume ratios, and improved control over mass and heat transfer superior to the macroscopic reaction setting. In contract to a continuous-flow microfluidic system composed of only a microchannel network, an integrated microfluidic system represents a scalable integration of a microchannel network with functional microfluidic modules, thus enabling the execution and automation of complicated chemical reactions in a single device. In this review, we summarize recent progresses on the development of integrated microfluidics-based chemical reactors for (i) parallel screening of in situ click chemistry libraries, (ii) multistep synthesis of radiolabeled imaging probes for positron emission tomography (PET), (iii) sequential preparation of individually addressable conducting polymer nanowire (CPNW), and (iv) solid-phase synthesis of DNA oligonucleotides. These proof-of-principle demonstrations validate the feasibility and set a solid foundation for exploring a broad application of the integrated microfluidic system.

  4. Reactor Neutrino Spectra

    OpenAIRE

    Hayes, A. C.; Vogel, Petr

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we ...

  5. REACTOR MODERATOR STRUCTURE

    Science.gov (United States)

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  6. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  7. The OPAL reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.; Irwin, T. [Australian Nuclear Science and Technology Organisation, Sydney (Australia); Ordonez, J.P. [INVAP SE, Bariloche (Argentina)

    2007-07-01

    The project to provide a replacement for Australia's HIFAR reactor began with governmental approval in September 1997 and reached its latest milestone with the achievement of the first full power operation of the OPAL reactor in November 2006. OPAL is a pool-type reactor with a thermal power of 20 MW and a fuel enrichment maximum of 20 per cent. This has been a successful project for both ANSTO (Australian Nuclear Science and Technology Organisation) and the contractor INVAP SE. This project was characterised by extensive interaction with the project's stake-holders during project definition and the use of a performance-based turnkey contract which gave the contractor the maximum opportunity to optimise the design to achieve performance and cost effectiveness. The contactor provided significant in-house resources as well as capacity to manage an international team of suppliers and sub-contractors. A key contributor to the project's successful outcomes has been the development and maintenance of an excellent working relationship between ANSTO and INVAP project teams. Commissioning was undertaken in accordance with the IAEA recommended stages. This paper presents the approaches used to define the project requirements, to choose the supplier and to deliver the project. The main results of hot commissioning are reviewed and the problems encountered examined. Operational experience since hot commissioning is also reviewed.

  8. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  9. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  10. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic

  11. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  12. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified.

  13. Nuclear fuels for hybrid reactors; Combustiveis para reatores hibridos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio T. e; Souza, Ubiratan C. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Reatores. E-mail: teixeira@net.ipen.br

    2000-07-01

    This paper presents thermal and thermal-hydraulics analysis for two core types proposed for a Fast Energy Amplifier utilizing, respectively, mixed oxides and metallic fuels. The mixed oxide fuels is of type ThO{sub 2} + 0,1{sup 233} U, and the metallic fuel is of type {sup 232} Th + 30% TRU. The analysis results permit to establish the necessary design parameters to be utilized in an irradiation performance analysis of these fuels. (author)

  14. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  15. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...

  16. New reactors for laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.

    1978-02-01

    Recent developments in design of laboratory and bench-scale reactors reflect mostly the developments in reaction engineering; that is the improved understanding of physical and chemical rate limiting processes, their interactions, and their effects on commercial-scale reactor performance. Whether a laboratory reactor is used to study the fundamentals of a commercial process or for pure scientific interest, it is important to know what physical or chemical process is limiting or influencing the rate and selectivity. To clarify this, a definition is required of the regime where physical influences exist, and study the intrinsic kinetics at conditions where physical processes do not affect the rate. Reactors are illustrated whose design was influenced by the above considerations. These reactors produce results which are independent of the reactors in which they were measured, and which can be scaled up with up-to-date reaction engineering techniques.

  17. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  18. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  19. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  20. Hydrogen Production in Fusion Reactors

    OpenAIRE

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M; Uenosono, C.

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  1. Fast reactor programme in India

    Indian Academy of Sciences (India)

    P Chellapandi; P R Vasudeva Rao; Prabhat Kumar

    2015-09-01

    Role of fast breeder reactor (FBR) in the Indian context has been discussed with appropriate justification. The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the same are the major highlights of this paper.

  2. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  3. Accelerator based fusion reactor

    Science.gov (United States)

    Liu, Keh-Fei; Chao, Alexander Wu

    2017-08-01

    A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.

  4. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  5. Continuity Controlled Hybrid Automata

    OpenAIRE

    Bergstra, J. A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...

  6. Biparticle fluidized bed reactor

    Science.gov (United States)

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  7. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  8. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  9. Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate

    NARCIS (Netherlands)

    Calli, B.; Mertoglu, B.; Roest, C.; Inanc, B.

    2006-01-01

    Laboratory scale anaerobic upflow filter, sludge blanket and hybrid bed reactors were operated for 860 days in the treatment of high ammonia landfill leachate. Organic loading was gradually increased from 1.3 to 23.5 kg COD/m3 day in the start-up period and then fluctuated according to the COD conce

  10. Fast Reactor Fuel Type and Reactor Safety Performance

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; J. Cahalan

    2009-09-01

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and

  11. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  12. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  13. Hybridized tetraquarks

    Directory of Open Access Journals (Sweden)

    A. Esposito

    2016-07-01

    Full Text Available We propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X,Z particles. Considerations on a state with the same quantum numbers as the X(5568 are also made.

  14. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  15. Chemical-vapor-deposition reactor

    Science.gov (United States)

    Chern, S.

    1979-01-01

    Reactor utilizes multiple stacked trays compactly arranged in paths of horizontally channeled reactant gas streams. Design allows faster and more efficient deposits of film on substrates, and reduces gas and energy consumption. Lack of dead spots that trap reactive gases reduces reactor purge time.

  16. Thermochemical reactor systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  17. Test reactor risk assessment methodology

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R.H.; Rawlins, J.K.; Stewart, M.E.

    1976-04-01

    A methodology has been developed for the identification of accident initiating events and the fault modeling of systems, including common mode identification, as these methods are applied in overall test reactor risk assessment. The methods are exemplified by a determination of risks to a loss of primary coolant flow in the Engineering Test Reactor.

  18. Studies on a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, K.; Govind, R.

    1988-10-01

    Simulation is used to evaluate the performance of a catalytic reactor with permeable wall (membrane reactor) in shifting the equilibrium of three reversible reactions (cyclohexane dehydrogenation, hydrogen iodide decomposition, and propylene disproportionation). It is found that the preferred choice of cocurrernt or countercurrent operation is dependent on the physical properties and operating conditions. Methods of enhancing conversion are suggested and temperature effects are discussed.

  19. Thermochemical reactor systems and methods

    Science.gov (United States)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  20. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  1. Development of the Hybrid Sulfur Thermochemical Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Summers, William A.; Steimke, John L

    2005-09-23

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  2. Metallic fuels for advanced reactors

    Science.gov (United States)

    Carmack, W. J.; Porter, D. L.; Chang, Y. I.; Hayes, S. L.; Meyer, M. K.; Burkes, D. E.; Lee, C. B.; Mizuno, T.; Delage, F.; Somers, J.

    2009-07-01

    In the framework of the Generation IV Sodium Fast Reactor Program, the Advanced Fuel Project has conducted an evaluation of the available fuel systems supporting future sodium cooled fast reactors. This paper presents an evaluation of metallic alloy fuels. Early US fast reactor developers originally favored metal alloy fuel due to its high fissile density and compatibility with sodium. The goal of fast reactor fuel development programs is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional fast spectrum nuclear fuel while destroying recycled actinides. This will provide a mechanism for closure of the nuclear fuel cycle. Metal fuels are candidates for this application, based on documented performance of metallic fast reactor fuels and the early results of tests currently being conducted in US and international transmutation fuel development programs.

  3. A model of reactor kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.S.; Thompson, B.R.

    1988-09-01

    The analytical model of nuclear reactor transients, incorporating both mechanical and nuclear effects, simulates reactor kinetics. Linear analysis shows the stability borderline for small power perturbations. In a stable system, initial power disturbances die out with time. With an unstable combination of nuclear and mechanical characteristics, initial disturbances persist and may increase with time. With large instability, oscillations of great magnitude occur. Stability requirements set limits on the power density at which particular reactors can operate. The limiting power density depends largely on the product of two terms: the fraction of delayed neutrons and the frictional damping of vibratory motion in reactor core components. As the fraction of delayed neutrons is essentially fixed, mechanical damping largely determines the maximum power density. A computer program, based on the analytical model, calculates and plots reactor power as a nonlinear function of time in response to assigned values of mechanical and nuclear characteristics.

  4. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  5. Unsteady processes in catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Matros, Yu.Sh.

    1985-01-01

    In recent years a realization has occurred that reaction and reactor dynamics must be considered when designing and operating catalytic reactors. In this book, the author has focussed on both the processes occurring on individual porous-catalyst particles as well as the phenomena displayed by collections of these particles in fixed-bed reactors. The major topics discussed include the effects of unsteady-state heat and mass transfer, the influence of inhomogeneities and stagnant regions in fixed beds, and reactor operation during forced cycling of operating conditions. Despite the title of the book, attention is also paid to the determination of the number and stability of fixed-bed steady states, with the aim of describing the possibility of controlling reactors at unstable steady states. However, this development is somewhat dated, given the recent literature on multiplicity phenomena and process control.

  6. Antineutrino Monitoring of Thorium Reactors

    CERN Document Server

    Akindele, Oluwatomi A; Norman, Eric B

    2015-01-01

    Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuels types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring.Thorium molten salt reactors (MSR) breed U-233, that if diverted constitute an IAEA direct use material. The antineutrino spectrum from the fission of U-233 has been determined, the feasibility of detecting the diversion of a significant quantity, 8 kg of U-233, within the IAEA timeliness goal of 30 days has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario at a 25 meter standoff by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos. It was found that the diversion of a signifi...

  7. Technologies for Upgrading Light Water Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  8. Statistical parametric study of non-parallel inductive reactors

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, E.R.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1997-12-31

    Parameterization of new plasma processing is a very time consuming process. By combining statistical techniques with computer simulation, one can construct a numerical design of experiment (NDOE), which minimizes the time required for the investigation. Here the authors present the results of such an NDOE, applied to a generic non-parallel inductively coupled reactor, as there has recently been interest in inductive reactors with a dome shaped quartz top. They use a statistical design of experiment software too, Echip{copyright}, to construct the experiment and then perform the experiment with the Hybrid Plasma Equipment Model (HPEM). Echip{copyright} is also used in the post-experiment analysis. The goal is to determine functional relationships between ion and neutral flux uniformity to the wafer and geometrical parameters such as focus ring height, reactor height, and reactor radius. Additionally, they consider several non-geometrical variables such as substrate bias and pressure. By combining numerical modeling with statistics software they have been able to determine optimal parameters sets for different gas systems. Of the geometric parameters, focus ring height appears to have the strongest correlation with the ion and neutral flux uniformity. Correlation becomes worse at higher pressures for most parameters.

  9. Current drive for stability of thermonuclear plasma reactor

    Science.gov (United States)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  10. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  11. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  12. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  13. University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Eric C. Woolstenhulme; Dana M. Hewit

    2008-09-01

    The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

  14. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  15. Neutrino Experiments at Reactors

    Science.gov (United States)

    Reines, F.; Gurr, H. S.; Jenkins, T. L.; Munsee, J. H.

    1968-09-09

    A description is given of the electron-antineutrino program using a large fission reactor. A search has been made for a neutral weak interaction via the reaction (electron antineutrino + d .> p + n + electron antineutrino), the reaction (electron antineutrino + d .> n + n + e{sup +}) has now been detected, and an effort is underway to observe the elastic scattering reaction (electron antineutrino + e{sup -} .> electron antineutrino + e{sup -}) as well as to measure more precisely the reaction (electron antineutrino + p .> n + e{sup+}). The upper limit on the elastic scattering reaction which we have obtained with our large composite NaI, plastic, liquid scintillation detector is now about 50 times the predicted value.

  16. Prospects of steady state magnetic diagnostic of fusion reactors based on metallic Hall sensors

    Science.gov (United States)

    Ďuran, I.; Sentkerestiová, J.; Kovařík, K.; Viererbl, L.

    2012-06-01

    Employment of sensors based on Hall effect (Hall sensors) is one of the candidate approaches to detection of almost steady state magnetic fields in future fusion reactors based on magnetic confinement (tokamaks, stellarators etc.), and also in possible fusion-fission hybrid systems having these fusion reactors as a neutron source and driver. This contribution reviews the initial considerations concerning application of metallic Hall sensors in fusion reactor harsh environment that include high neutron loads (>1018 cm-2) and elevated temperatures (>200°C). In particular, the candidate sensing materials, candidate technologies for sensors production, initial analysis of activation and transmutation of sensors under reactor relevant neutron loads and the tests of the the first samples of copper Hall sensors are presented.

  17. Fission Fusion Hybrids: a nearer term application of Fusion

    Science.gov (United States)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2011-10-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power at a much lower level of technical development than a competitive fusion power plant. For waste incineration, hybrids burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs). The number of hybrids needed is 5-10 times less than the corresponding number of fast reactors (FRs). The highly sub-critical hybrids, with a thermal/epithermal spectrum, incinerate > 95% of the waste in decades rather than the centuries needed for FRs. For fuel production, hybrids can produce fuel for 3-4 times as many LWRs with no fuel reprocessing. Thorium fuel rods exposed to neutrons in the hybrid reach fissile concentrations that enable efficient burning in LWR without the proliferation risks of reprocessing. The proliferation risks of this method are far less than other fuel breeding approaches, including today's gas centrifuge. With this cycle, US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ~ 2.5-3.5 m), which is made feasible by the super-X divertor.

  18. Accelerator-driven transmutation reactor analysis code system (ATRAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu; Tsujimoto, Kazufumi; Takizuka, Takakazu; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    JAERI is proceeding a design study of the hybrid type minor actinide transmutation system which mainly consist of an intense proton accelerator and a fast subcritical core. Neutronics and burnup characteristics of the accelerator-driven system is important from a view point of the maintenance of subcriticality and energy balance during the system operation. To determine those characteristics accurately, it is necessary to involve reactions at high-energy region, which are not treated on ordinary reactor analysis codes. The authors developed a code system named ATRAS to analyze the neutronics and burnup characteristics of accelerator-driven subcritical reactor systems. ATRAS has a function of burnup analysis taking account of the effect of spallation neutron source. ATRAS consists of a spallation analysis code, a neutron transport codes and a burnup analysis code. Utility programs for fuel exchange, pre-processing and post-processing are also incorporated. (author)

  19. Systems study of tokamak fusion--fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations.

  20. Assessing reactor physics codes capabilities to simulate fast reactors on the example of the BN-600 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir [Scientific and Engineering Centre for Nuclear and Radiation Safety (SES NRS), Moscow (Russian Federation); Bousquet, Jeremy [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work aims to assess the capabilities of reactor physics codes (initially validated for thermal reactors) to simulate fast sodium cooled reactors. The BFS-62-3A critical experiment from the BN-600 Hybrid Core Benchmark Analyses was chosen for the investigation. Monte-Carlo codes (KENO from SCALE and SERPENT 2.1.23) and the deterministic diffusion code DYN3D-MG are applied to calculate the neutronic parameters. It was found that the multiplication factor and reactivity effects calculated by KENO and SERPENT using the ENDF/B-VII.0 continuous energy library are in a good agreement with each other and with the measured benchmark values. Few-groups macroscopic cross sections, required for DYN3D-MG, were prepared in applying different methods implemented in SCALE and SERPENT. The DYN3D-MG results of a simplified benchmark show reasonable agreement with results from Monte-Carlo calculations and measured values. The former results are used to justify DYN3D-MG implementation for sodium cooled fast reactors coupled deterministic analysis.

  1. Reactor service life extension program

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R.; Sindelar, R.L.; Ondrejcin, R.S.; Baumann, E.W.

    1990-12-31

    A review of the Savannah River Site production reactor systems was initiated in 1980 and led to implementation of the Reactor Materials Program in 1984 to assess reactor safety and reactor service life. The program evaluated performance of the reactor tanks, primary coolant piping, and thermal shields, components of welded construction that were fabricated from Type 304 stainless steel. The structural integrity analysis of the primary coolant system has shown that the pressure boundary is not susceptible to gross rupture, including a double ended guillotine break or equivalent large area bank. Residual service life is potentially limited by two material degradation modes, irradiation damage and intergranular stress corrosion cracking. Analysis of the structural integrity of the tanks and piping has shown that continued safe operation of the reactors for several additional decades is not limited by the material performance of the primary coolant system. Although irradiation damage has not degraded material behavior to an unacceptable level, past experience has revealed serious difficulties with repair welding on irradiated stainless steel. Stress corrosion can be mitigated by newly identified limits on impurity concentrations in the coolant water and by stress mitigation of weld residual stresses. Work continues in several areas: the effects of helium on mechanical behavior of irradiated stainless steel; improved weld methods for piping and the reactor tanks; and a surveillance program to track irradiation effects on the tank walls.

  2. Reactor service life extension program

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R.; Sindelar, R.L.; Ondrejcin, R.S.; Baumann, E.W.

    1990-01-01

    A review of the Savannah River Site production reactor systems was initiated in 1980 and led to implementation of the Reactor Materials Program in 1984 to assess reactor safety and reactor service life. The program evaluated performance of the reactor tanks, primary coolant piping, and thermal shields, components of welded construction that were fabricated from Type 304 stainless steel. The structural integrity analysis of the primary coolant system has shown that the pressure boundary is not susceptible to gross rupture, including a double ended guillotine break or equivalent large area bank. Residual service life is potentially limited by two material degradation modes, irradiation damage and intergranular stress corrosion cracking. Analysis of the structural integrity of the tanks and piping has shown that continued safe operation of the reactors for several additional decades is not limited by the material performance of the primary coolant system. Although irradiation damage has not degraded material behavior to an unacceptable level, past experience has revealed serious difficulties with repair welding on irradiated stainless steel. Stress corrosion can be mitigated by newly identified limits on impurity concentrations in the coolant water and by stress mitigation of weld residual stresses. Work continues in several areas: the effects of helium on mechanical behavior of irradiated stainless steel; improved weld methods for piping and the reactor tanks; and a surveillance program to track irradiation effects on the tank walls.

  3. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2007-10-01

    Full Text Available A catalytic - DBD plasma reactor was designed and developed for co-generation of synthesis gas and C2+ hydrocarbons from methane. A hybrid Artificial Neural Network - Genetic Algorithm (ANN-GA was developed to model, simulate and optimize the reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of catalytic DBD plasma reactor was explored. The Pareto optimal solutions and corresponding optimal operating parameters ranges based on multi-objectives can be suggested for catalytic DBD plasma reactor owing to two cases, i.e. simultaneous maximization of CH4 conversion and C2+ selectivity, and H2 selectivity and H2/CO ratio. It can be concluded that the hybrid catalytic DBD plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and showed better than the conventional fixed bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity for CO2 OCM process. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: I. Istadi, N.A.S. Amin. (2007. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 37-44.  doi:10.9767/bcrec.2.2-3.8.37-44][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.8.37-44 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/8][Cited by: Scopus 1 |

  4. Assessment of torsatrons as reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, J.F. (Oak Ridge National Lab., TN (United States)); Painter, S.L. (Australian National Univ., Canberra, ACT (Australia))

    1992-12-01

    Stellarators have significant operational advantages over tokamaks as ignited steady-state reactors because stellarators have no dangerous disruptions and no need for continuous current drive or power recirculated to the plasma, both easing the first wall, blanket, and shield design; less severe constraints on the plasma parameters and profiles; and better access for maintenance. This study shows that a reactor based on the torsatron configuration (a stellarator variant) could also have up to double the mass utilization efficiency (MUE) and a significantly lower cost of electricity (COE) than a conventional tokamak reactor (ARIES-I) for a range of assumptions. Torsatron reactors can have much smaller coil systems than tokamak reactors because the coils are closer to the plasma and they have a smaller cross section (higher average current density because of the lower magnetic field). The reactor optimization approach and the costing and component models are those used in the current stage of the ARIES-I tokamak reactor study. Typical reactor parameters for a 1-GW(e) Compact Torsatron reactor example are major radius R[sub 0] = 6.6-8.8 m, on-axis magnetic field B[sup 0] = 4.8-7.5 T, B[sub max] (on coils) = 16 T, MUE 140-210 kW(e)/tonne, and COE (in constant 1990 dollars) = 67-79 mill/kW(e)h. The results are relatively sensitive to assumptions on the level of confinement improvement and the blanket thickness under the inboard half of the helical windings but relatively insensitive to other assumptions.

  5. Safety of VVER-440 reactors

    CERN Document Server

    Slugen, Vladimir

    2011-01-01

    Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety pri

  6. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  7. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  8. Concept for LEU Burst Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kimpland, Robert Herbert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    Design and performance of a proposed LEU burst reactor are sketched. Salient conclusions reached are the following: size would be ~1,500 kg or greater, depending on the size of the central cavity; internal stresses during burst require split rings for relief; the reactor would likely require multiple control and safety rods for fine control; the energy spectrum would be comparable to that of HEU machines; and burst yields and steady-state power levels will be significantly greater in an LEU reactor.

  9. Nuclear reactor downcomer flow deflector

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  10. Fuel Fabrication and Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF6. UF6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF6 is converted into UO2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  11. Effect of plasma processing reactor circuitry on plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, S.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1997-12-31

    It is well known that external circuitry greatly influences the performance of plasma processing reactors. Simulation of external circuits difficult since the time in which the external circuit attains the steady-state is several orders of magnitude longer than typical plasma simulation time scales. In this paper, the authors present a technique to simulate the external circuit concurrently with the plasma, and implement it into the Hybrid Plasma Equipment Model (HPEM). The resulting model is used to investigate the influence of external circuitry on plasma behavior.

  12. Nuclear reactor PBMR and cogeneration; Reactor nuclear PBMR y cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Alonso V, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In recent years the nuclear reactor designs for the electricity generation have increased their costs, so that at the moment costs are managed of around the 5000 US D for installed kw, reason for which a big nuclear plant requires of investments of the order of billions of dollars, the designed reactors as modular of low power seek to lighten the initial investment of a big reactor dividing the power in parts and dividing in modules the components to lower the production costs, this way it can begin to build a module and finished this to build other, differing the long term investment, getting less risk therefore in the investment. On the other hand the reactors of low power can be very useful in regions where is difficult to have access to the electric net being able to take advantage of the thermal energy of the reactor to feed other processes like the water desalination or the vapor generation for the processes industry like the petrochemical, or even more the possible hydrogen production to be used as fuel. In this work the possibility to generate vapor of high quality for the petrochemical industry is described using a spheres bed reactor of high temperature. (Author)

  13. Breeder Reactors, Understanding the Atom Series.

    Science.gov (United States)

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  14. Evolution of the tandem mirror reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Logan, B.G.

    1982-03-09

    We discuss the evolution of the tandem mirror reactor concept from the original conceptual reactor design (1977) through the first application of the thermal barrier concept to a reactor design (1979) to the beginning of the Mirror Advanced Reactor Study (1982).

  15. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  16. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  17. ADAPTIVE CONTROL SYSTEM OF INDUSTRIAL REACTORS

    Directory of Open Access Journals (Sweden)

    Vyacheslav K. Mayevski

    2014-01-01

    Full Text Available This paper describes a mathematical model of an industrial chemical reactor for production of synthetic rubber. During reactor operation the model parameters vary considerably. To create a control algorithm performed transformation of mathematical model of the reactor in order to obtain a dependency that can be used to determine the model parameters are changing during reactor operation.

  18. Nuclear research reactors activities in INVAP

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Juan Pablo [INVAP, Bariloche (Argentina)

    2013-07-01

    This presentation describes the different activities in the research reactor field that are being carried out by INVAP. INVAP is presently involved in the design of three new research reactors in three different countries. The RA-10 is a multipurpose reactor, in Argentina, planned as a replacement for the RA-3 reactor. INVAP was contracted by CNEA for carrying out the preliminary engineering for this reactor, and has recently been contracted by CNEA for the detailed engineering. CNEA groups are strongly involved in the design of this reactor. The RMB is a multipurpose reactor, planned by CNEN from Brazil. CNEN, through REDETEC, has contracted INVAP to carry out the preliminary engineering for this reactor. As the user requirements for RA-10 and RMB are very similar, an agreement was signed between Argentina and Brasil governments to cooperate in these two projects. The agreement included that both reactors would use the OPAL reactor in Australia, design and built by INVAP, as a reference reactor. INVAP has also designed the LPRR reactor for KACST in Saudi Arabia. The LPRR is a 30 kw reactor for educational purposes. KACST initially contracted INVAP for the engineering for this reactor and has recently signed the contract with INVAP for building the reactor. General details of these three reactors will be presented.

  19. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase 1 effort was to demonstrate the technical feasibility of the Advanced Carbothermal Electric (ACE) Reactor concept. Unlike...

  20. Thermal Analysis for Mobile Reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Mobile reactor design in the paper is consisted of two grades of thermal electric conversion. The first grade is the thermionic conversion inside the core and the second grade is thermocouple conversion

  1. Advanced Carbothermal Electric Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop the Advanced Carbothermal Electric (ACE) reactor to efficiently extract oxygen from lunar regolith. Unlike state-of-the-art carbothermal...

  2. Teaching About Nature's Nuclear Reactors

    CERN Document Server

    Herndon, J M

    2005-01-01

    Naturally occurring nuclear reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactor beneath Staggs Field in 1942. In the story of their discovery, there are important lessons to be learned about scientific inquiry and scientific discovery. Now, there is evidence to suggest that the Earth's magnetic field and Jupiter's atmospheric turbulence are driven by planetary-scale nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating classroom discussions about the nature and implications of planetary energy sources and about the geomagnetic field. But more importantly, the subject can help to bring into focus the importance of discussing, debating, and challenging current thinking in a variety of areas.

  3. Reactor containment research and development

    Energy Technology Data Exchange (ETDEWEB)

    Weil, N. A.

    1963-06-15

    An outline is given of containment concepts, sources and release rates of energy, responses of containment structures, effects of projectiles, and leakage rates of radioisotopes, with particular regard to major reactor accidents. (T.F.H.)

  4. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, L.R.; Hayes, D.W.; Hunter, C.H.; Marter, W.L.; Moyer, R.A.

    1989-12-01

    This volume is a reactor operation environmental information document for the Savannah River Plant. Topics include meteorology, surface hydrology, transport, environmental impacts, and radiation effects. 48 figs., 56 tabs. (KD)

  5. Advanced Catalytic Hydrogenation Retrofit Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reinaldo M. Machado

    2002-08-15

    Industrial hydrogenation is often performed using a slurry catalyst in large stirred-tank reactors. These systems are inherently problematic in a number of areas, including industrial hygiene, process safety, environmental contamination, waste production, process operability and productivity. This program proposed the development of a practical replacement for the slurry catalysts using a novel fixed-bed monolith catalyst reactor, which could be retrofitted onto an existing stirred-tank reactor and would mitigate many of the minitations and problems associated with slurry catalysts. The full retrofit monolith system, consisting of a recirculation pump, gas/liquid ejector and monolith catalyst, is described as a monolith loop reactor or MLR. The MLR technology can reduce waste and increase raw material efficiency, which reduces the overall energy required to produce specialty and fine chemicals.

  6. Unique features of space reactors

    Science.gov (United States)

    Buden, David

    Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K.

  7. Jules Horowitz Reactor, basic design

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, Y.; Bouilloux, Y.; Chantoin, P.; Guigon, B.; Bravo, X.; Germain, C.; Rommens, M.; Tremodeux, P

    2003-07-01

    Since the shutdown of the SILOE reactor in 1997, the OSIRIS reactor has ensured the needs regarding technological irradiation at CEA including those of its industrial partners and customers. The Jules Horowitz Reactor will replace it. It has the ambition to provide the necessary nuclear data and maintain a fission research capacity in Europe after 2010. This capacity should be service-oriented. It will be established in Cadarache. The Jules Horowitz reactor will also: - represent a significant step in term of performances and experimental capabilities, - be designed with a high flexibility, in order to satisfy the current demand from European industry, research and be able to accommodate future requirements, - reach a high level of safety, according to the best current practice. This paper will present the main functionalities and the design options resulting from the 'preliminary design' studies. (authors)

  8. Current drive at plasma densities required for thermonuclear reactors.

    Science.gov (United States)

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  9. Solid State Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, G.T.

    2004-03-10

    The Solid State Reactor (SSR) is an advanced reactor concept designed to take advantage of Oak Ridge National Laboratory's (ORNL's) recently developed graphite foam that has enhanced heat transfer characteristics and excellent high-temperature mechanical properties, to provide an inherently safe, self-regulated, source of heat for power and other potential applications. This work was funded by the U.S. Department of Energy's Nuclear Energy Research Initiative (NERI) program (Project No. 99-064) from August 1999 through September 30, 2002. The initial concept of utilizing the graphite foam as a basis for developing an advanced reactor concept envisioned that a suite of reactor configurations and power levels could be developed for several different applications. The initial focus was looking at the reactor as a heat source that was scalable, independent of any heat removal/power conversion process. These applications might include conventional power generation, isotope production and destruction (actinides), and hydrogen production. Having conducted the initial research on the graphite foam and having performed the scoping parametric analyses from neutronics and thermal-hydraulic perspectives, it was necessary to focus on a particular application that would (1) demonstrate the viability of the overall concept and (2) require a reasonably structured design analysis process that would synthesize those important parameters that influence the concept the most as part of a feasible, working reactor system. Thus, the application targeted for this concept was supplying power for remote/harsh environments and a design that was easily deployable, simplistic from an operational standpoint, and utilized the new graphite foam. Specifically, a 500-kW(t) reactor concept was pursued that is naturally load following, inherently safe, optimized via neutronic studies to achieve near-zero reactivity change with burnup, and proliferation resistant. These four major areas

  10. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    Science.gov (United States)

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  11. Reactor antineutrinos and nuclear physics

    Science.gov (United States)

    Balantekin, A. B.

    2016-11-01

    Short-baseline reactor neutrino experiments successfully measured the neutrino parameters they set out to measure, but they also identified a shape distortion in the 5-7 MeV range as well as a reduction from the predicted value of the flux. Nuclear physics input into the calculations of reactor antineutrino spectra needs to be better refined if this anomaly is to be interpreted as due to sterile neutrino states.

  12. Microchannel Reactors for ISRU Applications

    Science.gov (United States)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon; Ward, Benjamin J.

    2005-02-01

    Affordable planning and execution of prolonged manned space missions depend upon the utilization of local resources and the waste products which are formed in manned spacecraft and surface bases. Successful in-situ resources utilization (ISRU) will require component technologies which provide optimal size, weight, volume, and power efficiency. Microchannel reactors enable the efficient chemical processing of in situ resources. The reactors can be designed for the processes that generate the most benefit for each mission. For instance, propellants (methane) can be produced from carbon dioxide from the Mars atmosphere using the Sabatier reaction and ethylene can be produced from the partial oxidation of methane. A system that synthesizes ethylene could be the precursor for systems to synthesize ethanol and polyethylene. Ethanol can be used as a nutrient for Astrobiology experiments, as well as the production of nutrients for human crew (e.g. sugars). Polyethylene can be used in the construction of habitats, tools, and replacement parts. This paper will present recent developments in miniature chemical reactors using advanced Micro Electro Mechanical Systems (MEMS) and microchannel technology to support ISRU of Mars and lunar missions. Among other applications, the technology has been demonstrated for the Sabatier process and for the partial oxidation of methane. Microchannel reactors were developed based on ceramic substrates as well as metal substrates. In both types of reactors, multiple layers coated with catalytic material are bonded, forming a monolithic structure. Such reactors are readily scalable with the incorporation of extra layers. In addition, this reactor structure minimizes pressure drop and catalyst settling, which are common problems in conventional packed bed reactors.

  13. The resonance absorption controlled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Caro, R.

    1977-07-01

    In this report a new method of reactor control based on tho isotopic moderator composition variation is studied, taking as a reference a D{sub 2}O/H{sub 2}O system. With this method an spectacular increment in the burn-up degree and a sensible reduction of the conventional control system is obtained. An important part of this work has been the detailed analysis of the parameters affecting the neutron spectrum in a heterogeneous reactor. (Author) 50 refs.

  14. Calculation of reactor antineutrino spectra in TEXONO

    CERN Document Server

    Chen Dong Liang; Mao Ze Pu; Wong, T H

    2002-01-01

    In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out

  15. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo

    1996-06-21

    In an LMFBR type reactor, partitions are disposed to a coolant channel at positions lower than the free liquid level, and the width of the partitions is adapted to have a predetermined condition. Namely, when low temperature fluid overflowing the wall of the coolant channel, flows down and collided against the free liquid surface in the coolant channel, since the dropping speed thereof is reduced abruptly, large pressure waves are caused by kinetic force of the low temperature fluid. However, if appropriate numbers of partitions having an appropriate shape are formed, the dropping speed of the low temperature fluid is moderated to reduce the pressure waves. In addition, since the pressure waves are dispersed to the circumferential and lateral directions of the coolant flow channel respectively, the propagation of the pressure waves can be prevented effectively. Further, when the flow of the low temperature fluid is changed to the circumferential direction, for example, by earthquakes, since the partitions act as members resisting against the circumferential change of the low temperature fluid, the change of the direction can be suppressed. (N.H.)

  16. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  17. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  18. Optimization of the fission--fusion hybrid concept

    Energy Technology Data Exchange (ETDEWEB)

    Saltmarsh, M.J.; Grimes, W.R.; Santoro, R.T.

    1979-04-01

    One of the potentially attractive applications of controlled thermonuclear fusion is the fission--fusion hybrid concept. In this report we examine the possible role of the hybrid as a fissile fuel producer. We parameterize the advantages of the concept in terms of the performance of the fusion device and the breeding blanket and discuss some of the more troublesome features of existing design studies. The analysis suggests that hybrids based on deuterium--tritium (D--T) fusion devices are unlikely to be economically attractive and that they present formidable blanket technology problems. We suggest an alternative approach based on a semicatalyzed deuterium--deuterium (D--D) fusion reactor and a molten salt blanket. This concept is shown to emphasize the desirable features of the hybrid, to have considerably greater economic potential, and to mitigate many of the disadvantages of D--T-based systems.

  19. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  20. Establishment of licensing process for development reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik (and others)

    2006-02-15

    A study on licensing processes for development reactors has been performed to prepare the licensing of development reactors developed in Korea. The contents and results of the study are summarized as follows. The licensing processes for nuclear reactors in Korea, U.S.A., Japan, France, U.K., Canada, and IAEA were surveyed and analyzed to obtain technical bases necessary for establishing licensing processes applicable to development reactors in Korea. Based on the technical bases obtained the above analysis, the purpose, power output, and design characteristics of development reactors were analyzed in detail. The analysis results suggested that development reactors should be classified as a new reactor category (called as 'development reactor') separated from the current reactor categories such as the research reactor and the power reactor. Therefore, it is proposed to establish a new reactor category classified as 'development reactor' for the development reactors. And licensing processes, including licensing technical requirements, licensing document requirements, and other regulatory requirements, were also proposed for the development reactors. In order to institutionalize the licensing processes developed in this study, it is necessary to revise the current laws. Therefore, draft provisions of Atomic Energy Act, Enforcement Decree of the Atomic Energy Act, and Enforcement Regulation of the Atomic Energy Act have been developed for the preparation of the future legalization of the licensing processes proposed for the development reactors. Conclusively, a proposal of licensing processes and draft provisions of laws have been developed for the development reactors. The results proposed in this study can be applied directly to the licensing of the future development reactors. Furthermore, they will also contribute to establishing successfully the licensing processes of the development reactors.

  1. A Metropolis algorithm combined with Nelder-Mead Simplex applied to nuclear reactor core design

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Wagner F. [Depto. de Modelagem Computacional, Instituto Politecnico, Universidade do Estado do Rio de Janeiro, R. Alberto Rangel, s/n, P.O. Box 972285, Nova Friburgo, RJ 28601-970 (Brazil)], E-mail: wfsacco@iprj.uerj.br; Filho, Hermes Alves; Henderson, Nelio [Depto. de Modelagem Computacional, Instituto Politecnico, Universidade do Estado do Rio de Janeiro, R. Alberto Rangel, s/n, P.O. Box 972285, Nova Friburgo, RJ 28601-970 (Brazil); Oliveira, Cassiano R.E. de [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2008-05-15

    A hybridization of the recently introduced Particle Collision Algorithm (PCA) and the Nelder-Mead Simplex algorithm is introduced and applied to a core design optimization problem which was previously attacked by other metaheuristics. The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak-factor in a three-enrichment-zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. The new metaheuristic performs better than the genetic algorithm, particle swarm optimization, and the Metropolis algorithms PCA and the Great Deluge Algorithm, thus demonstrating its potential for other applications.

  2. Repairing liner of the reactor; Reparacion del liner del reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2001-07-15

    Due to the corrosion problems of the aluminum coating of the reactor pool, a periodic inspections program by ultrasound to evaluate the advance grade and the corrosion speed was settled down. This inspections have shown the necessity to repair some areas, in those that the slimming is significant, of not making it can arrive to the water escape of the reactor pool. The objective of the repair is to place patches of plates of 1/4 inch aluminum thickness in the areas of the reactor 'liner', in those that it has been detected by ultrasound a smaller thickness or similar to 3 mm. To carry out this the fuels are move (of the core and those that are decaying) to a temporary storage, the structure of the core is confined in a tank that this placed inside the pool of the reactor, a shield is placed in the thermal column and it is completely extracted the water for to leave uncover the 'liner' of the reactor. (Author)

  3. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  4. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....

  5. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  6. Hybrid Management in Hospitals

    DEFF Research Database (Denmark)

    Byrkjeflot, Haldor; Jespersen, Peter Kragh

    2010-01-01

    Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...

  7. Reactor Simulator Testing

    Science.gov (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise Jon

    2013-01-01

    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz. Keywords: fission, space power, nuclear, liquid metal, NaK.

  8. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  9. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  10. Realizing the Hybrid Library.

    Science.gov (United States)

    Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter

    1998-01-01

    Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…

  11. Homoploid hybrid expectations

    Science.gov (United States)

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  12. Hybrid armature projectile

    Science.gov (United States)

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  13. Intraply Hybrid Composite Design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  14. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  15. Reactivity determination in accelerator driven reactors using reactor noise analysis

    Directory of Open Access Journals (Sweden)

    Kostić Ljiljana 1

    2002-01-01

    Full Text Available Feynman-alpha and Rossi-alpha methods are used in traditional nuclear reactors to determine the subcritical reactivity of a system. The methods are based on the measurement of the mean value, variance and the covariance of detector counts for different measurement times. Such methods attracted renewed attention recently with the advent of the so-called accelerator driven reactors (ADS proposed some time ago. The ADS systems, intended to be used either in energy generation or transuranium transmutation, will use a subcritical core with a strong spallation source. A spallation source has statistical properties that are different from those traditionally used by radioactive sources. In such reactors the monitoring of the subcritical reactivity is very important, and a statistical method, such as the Feynman-alpha method, is capable of resolving this problem.

  16. Thermonuclear Reflect AB-Reactor

    CERN Document Server

    Bolonkin, Alexander

    2008-01-01

    The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical pr...

  17. Heterogeneous Transmutation Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Bays

    2007-09-01

    The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.

  18. Entropy Production in Chemical Reactors

    Science.gov (United States)

    Kingston, Diego; Razzitte, Adrián C.

    2017-06-01

    We have analyzed entropy production in chemically reacting systems and extended previous results to the two limiting cases of ideal reactors, namely continuous stirred tank reactor (CSTR) and plug flow reactor (PFR). We have found upper and lower bounds for the entropy production in isothermal systems and given expressions for non-isothermal operation and analyzed the influence of pressure and temperature in entropy generation minimization in reactors with a fixed volume and production. We also give a graphical picture of entropy production in chemical reactions subject to constant volume, which allows us to easily assess different options. We show that by dividing a reactor into two smaller ones, operating at different temperatures, the entropy production is lowered, going as near as 48 % less in the case of a CSTR and PFR in series, and reaching 58 % with two CSTR. Finally, we study the optimal pressure and temperature for a single isothermal PFR, taking into account the irreversibility introduced by a compressor and a heat exchanger, decreasing the entropy generation by as much as 30 %.

  19. Simplifying Microbial Electrosynthesis Reactor Design

    Directory of Open Access Journals (Sweden)

    Cloelle G.S. Giddings

    2015-05-01

    Full Text Available Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata, which reduces carbon dioxide to acetate. In traditional ‘H-cell’ reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a poteniostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

  20. Hanford reactor and separations facility advantages

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-27

    This document describes the advantages and limitations of Hanford production facilities. In addition to summarizing the technical parameters of the reactors and separations plants and their mechanical features, the unique aspects of these facilities to the production of special materials in which the Commission may be interested have been discussed. As the primary difference between the B-C-D-DR-F-H reactors and the K reactors and the K reactors is in the number and length of process channels. This report is addressed primarily to the 2000-tube reactors. K reactor characteristics are within the range of lattice and flexibility parameters described.

  1. Imaging Fukushima Daiichi reactors with muons

    Directory of Open Access Journals (Sweden)

    Haruo Miyadera

    2013-05-01

    Full Text Available A study of imaging the Fukushima Daiichi reactors with cosmic-ray muons to assess the damage to the reactors is presented. Muon scattering imaging has high sensitivity for detecting uranium fuel and debris even through thick concrete walls and a reactor pressure vessel. Technical demonstrations using a reactor mockup, detector radiation test at Fukushima Daiichi, and simulation studies have been carried out. These studies establish feasibility for the reactor imaging. A few months of measurement will reveal the spatial distribution of the reactor fuel. The muon scattering technique would be the best and probably the only way for Fukushima Daiichi to make this determination in the near future.

  2. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  3. Microbial Community Analysis of Anaerobic Reactors Treating Soft Drink Wastewater

    Science.gov (United States)

    Narihiro, Takashi; Kim, Na-Kyung; Mei, Ran; Nobu, Masaru K.; Liu, Wen-Tso

    2015-01-01

    The anaerobic packed-bed (AP) and hybrid packed-bed (HP) reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG) and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95%) after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs). Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR) increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR. PMID:25748027

  4. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  5. Computer simulation of FCC riser reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. L.; Golchert, B.; Lottes, S. A.; Petrick, M.; Zhou, C. Q.

    1999-04-20

    A three-dimensional computational fluid dynamics (CFD) code, ICRKFLO, was developed to simulate the multiphase reacting flow system in a fluid catalytic cracking (FCC) riser reactor. The code solve flow properties based on fundamental conservation laws of mass, momentum, and energy for gas, liquid, and solid phases. Useful phenomenological models were developed to represent the controlling FCC processes, including droplet dispersion and evaporation, particle-solid interactions, and interfacial heat transfer between gas, droplets, and particles. Techniques were also developed to facilitate numerical calculations. These techniques include a hybrid flow-kinetic treatment to include detailed kinetic calculations, a time-integral approach to overcome numerical stiffness problems of chemical reactions, and a sectional coupling and blocked-cell technique for handling complex geometry. The copyrighted ICRKFLO software has been validated with experimental data from pilot- and commercial-scale FCC units. The code can be used to evaluate the impacts of design and operating conditions on the production of gasoline and other oil products.

  6. The hydrogen hybrid option

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  7. Sludge Bed Granules’ Growth in the HUASB Reactor Treating High Strength Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Sinan Abood Habeeb

    2014-12-01

    Full Text Available The development of anaerobic sludge granules in a hybrid up-flow anaerobic sludge bed (HUASB reactor in terms of granular size and solids content was observed. After appropriate pre-treatment of the palm oil mill effluent (POME, it was continuously fed to the HUASB reactor under room temperature condition (27°C.  Particle size analysis and solids content examination were conducted for 196 days. A volatile solid ratio was ranging from 0.36 to 0.51 which was quite low, and granules particle size of less than 1 mm diameter was reported during the operating period. Results obtained in this study indicated that sludge bed development based on the sludge particle size distribution and the volatile solid ratio, was quite slow due to the bulk solids that entering the reactor resulting in certain inhibition of the anaerobes’ activity. It has been concluded that anaerobic wastewater treatment process in anaerobic reactors such as the HUASB reactor, can be significantly affected by the organic loading rate, hydraulic retention time applied to the reactor and the wastewater characteristics.

  8. Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration.

    Science.gov (United States)

    Hu, Baolan; He, Zhanfei; Geng, Sha; Cai, Chen; Lou, Liping; Zheng, Ping; Xu, Xinhua

    2014-09-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is mediated by bacteria that anaerobically oxidize methane coupled with nitrite reduction and is a potential bioprocess for wastewater treatment. In this work, the effect of reactor configuration on n-damo bacterial cultivation was investigated. A magnetically stirred gas lift reactor (MSGLR), a sequencing batch reactor (SBR), and a continuously stirred tank reactor (CSTR) were selected to cultivate the bacteria. Microbial community was monitored by using quantitative PCR, 16S rRNA gene sequencing, pmoA gene sequencing, and fluorescence in situ hybridization (FISH). The effects of substrate inhibition, methane mass transfer, and biomass washout in the three reactors were focused on. The results indicated that the MSGLR had the best performance among the three reactor systems, with the highest total and specific n-damo activities. Its maximum volumetric nitrogen removal rate was up to 76.9 mg N L(-1) day(-1), which was higher than previously reported values (5.1-37.8 mg N L(-1) d(-1)).

  9. A tubular focused sonochemistry reactor

    Institute of Scientific and Technical Information of China (English)

    ZHOU GuangPing; LIANG ZhaoFeng; LI ZhengZhong; ZHANG YiHui

    2007-01-01

    This paper presents a new sonochemistry reactor, which consists of a cylindrical tube with a certain length and piezoelectric transducers at tube's end with the longitudinal vibration. The tube can effectively transform the longitudinal vibration into the radial vibration and thereby generates ultrasound. Furthermore, ultrasound can be focused to form high-intensity ultrasonic field inside tube. The reactor boasts of simple structure and its whole vessel wall can radiate ultrasound so that the electroacoustic transfer efficiency is high. The focused ultrasonic field provides good condition for sonochemical reaction. The length of the reactor can be up to 2 meters, and liquids can pass through it continuously, so it can be widely applied in liquid processing such as sonochemistry.

  10. A compact Tokamak transmutation reactor

    Institute of Scientific and Technical Information of China (English)

    QiuLi-Jian; XiaoBing-Jia

    1997-01-01

    The low aspect ration tokamak is proposed for the driver of a transmutation reactor.The main parameters of the reactor core,neutronic analysis of the blanket are given>the neutron wall loading can be lowered from the magnitude order of 1 MW/m2 to 0.5MW/m2 which is much easier to reach in the near future,and the transmutation efficiency (fission/absorption ratio)is raised further.The blanket power density is about 200MW/m3 which is not difficult to deal with.The key components such as diverter and center conductor post are also designed and compared with conventional TOkamak,Finally,by comparison with the other drivers such as FBR,PWR and accelerator,it can be anticipated that the low aspect ratio transmutation reactor would be one way of fusion energy applications in the near future.

  11. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  12. Investigation of KW reactor incident

    Energy Technology Data Exchange (ETDEWEB)

    Sturges, D G [USAEC Hanford Operations Office, Richland, WA (United States); Hauff, T W; Greager, O H [General Electric Co., Richland, WA (United States). Hanford Atomic Products Operation

    1955-02-11

    The new KW reactor was placed in operation on January 4, 1955, and had been running at relatively low power levels for only 17 hours when it was shut down because of a process tube water leak which appeared to be associated with a slug rupture. After several days of unrewarding effort to remove the slugs and tube by customary methods, it developed that considerable melting of the tube and slugs had taken place. It was then evident that removal of the stuck mass and repairs to the damaged tube channel would require unusual measures that were certain to extend the reactor outage for several weeks. This report documents the work and findings of the Committee which investigated the KW reactor incident. Its content represents unanimous agreement among the three Committee members.

  13. Gaseous fuel nuclear reactor research

    Science.gov (United States)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  14. Nuclear Reactor Engineering Analysis Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-12-31

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels.

  15. Utilisation of thorium in reactors

    Science.gov (United States)

    Anantharaman, K.; Shivakumar, V.; Saha, D.

    2008-12-01

    India's nuclear programme envisages a large-scale utilisation of thorium, as it has limited deposits of uranium but vast deposits of thorium. The large-scale utilisation of thorium requires the adoption of closed fuel cycle. The stable nature of thoria and the radiological issues associated with thoria poses challenges in the adoption of a closed fuel cycle. A thorium fuel based Advanced Heavy Water Reactor (AHWR) is being planned to provide impetus to development of technologies for the closed thorium fuel cycle. Thoria fuel has been loaded in Indian reactors and test irradiations have been carried out with (Th-Pu) MOX fuel. Irradiated thorium assemblies have been reprocessed and the separated 233U fuel has been used for test reactor KAMINI. The paper highlights the Indian experience with the use of thorium and brings out various issues associated with the thorium cycle.

  16. Hybridization and extinction.

    Science.gov (United States)

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.

  17. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  18. External fuel thermionic reactor system.

    Science.gov (United States)

    Mondt, J. F.; Peelgren, M. L.

    1971-01-01

    Thermionic reactors are prime candidates for nuclear electric propulsion. The national thermionic reactor effort is concentrated on the flashlight concept with the external-fuel concept as the backup. The external-fuel concept is very adaptable to a completely modular power subsystem which is attractive for highly reliable long-life applications. The 20- to 25-cm long, externally-fueled converters have been designed, fabricated, and successfully tested with many thermal cycles by electrical heating. However, difficulties have been encountered during encapsulation for nuclear heated tests and none have been started to date. These nuclear tests are required to demonstrate the concept feasibility.

  19. Analysis of Adiabatic Batch Reactor

    Directory of Open Access Journals (Sweden)

    Erald Gjonaj

    2016-05-01

    Full Text Available A mixture of acetic anhydride is reacted with excess water in an adiabatic batch reactor to form an exothermic reaction. The concentration of acetic anhydride and the temperature inside the adiabatic batch reactor are calculated with an initial temperature of 20°C, an initial temperature of 30°C, and with a cooling jacket maintaining the temperature at a constant of 20°C. The graphs of the three different scenarios show that the highest temperatures will cause the reaction to occur faster.

  20. PITR: Princeton Ignition Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection.

  1. Reactor shutdown delays medical procedures

    Science.gov (United States)

    Gwynne, Peter

    2008-01-01

    A longer-than-expected maintenance shutdown of the Canadian nuclear reactor that produces North America's entire supply of molybdenum-99 - from which the radioactive isotopes technetium-99 and iodine-131 are made - caused delays to the diagnosis and treatment of thousands of seriously ill patients last month. Technetium-99 is a key component of nuclear-medicine scans, while iodine-131 is used to treat cancer and other diseases of the thyroid. Production eventually resumed, but only after the Canadian government had overruled the Canadian Nuclear Safety Commission (CNSC), which was still concerned about the reactor's safety.

  2. Fundamentals of Nuclear Reactor Physics

    CERN Document Server

    Lewis, E E

    2008-01-01

    This new streamlined text offers a one-semester treatment of the essentials of how the fission nuclear reactor works, the various approaches to the design of reactors, and their safe and efficient operation. The book includes numerous worked-out examples and end-of-chapter questions to help reinforce the knowledge presented. This textbook offers an engineering-oriented introduction to nuclear physics, with a particular focus on how those physics are put to work in the service of generating nuclear-based power, particularly the importance of neutron reactions and neutron behavior. Engin

  3. Scaledown of a methanol reactor

    Energy Technology Data Exchange (ETDEWEB)

    Berty, J.M.

    1983-07-01

    This article shows how it is possible to define operating conditions for pilot plants and development labs by scaling down a commercial reactor. Points out that scaledown consideration and experiment planning can be done in a similar manner for the boiling water-cooled, Lurgi-type reactor. Explains that although the design of large, single-train plants to produce methanol for fuel use has different economic objectives, product specifications, and technical constraints from the traditional commercial methanol plants, the same fundamental laws of thermodynamics and reaction kinetics apply to both types of operation.

  4. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  5. Reactor Antineutrino Signals at Morton and Boulby

    CERN Document Server

    Dye, Steve

    2016-01-01

    Increasing the distance from which an antineutrino detector is capable of monitoring the operation of a registered reactor, or discovering a clandestine reactor, strengthens the Non-Proliferation of Nuclear Weapons Treaty. This report presents calculations of reactor antineutrino interactions, from quasi-elastic neutrino-proton scattering and elastic neutrino-electron scattering, in a water-based detector operated >10 km from a commercial power reactor. It separately calculates signal from the proximal reactor and background from all other registered reactors. The main results are interaction rates and kinetic energy distributions of charged leptons scattered from quasi-elastic and elastic processes. Comparing signal and background distributions evaluates reactor monitoring capability. Scaling the results to detectors of different sizes, target media, and standoff distances is straightforward. Calculations are for two examples of a commercial reactor (P_th~3 GW) operating nearby (L~20 km) an underground facil...

  6. Oregon State University TRIGA Reactor annual report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.V.; Johnson, A.G.; Bennett, S.L.; Ringle, J.C.

    1979-08-31

    The use of the Oregon State University TRIGA Reactor during the year ending June 30, 1979, is summarized. Environmental and radiation protection data related to reactor operation and effluents are included.

  7. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  8. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  9. Methods and strategies for future reactor safety goals

    Science.gov (United States)

    Arndt, Steven Andrew

    There have been significant discussions over the past few years by the United States Nuclear Regulatory Commission (NRC), the Advisory Committee on Reactor Safeguards (ACRS), and others as to the adequacy of the NRC safety goals for use with the next generation of nuclear power reactors to be built in the United States. The NRC, in its safety goals policy statement, has provided general qualitative safety goals and basic quantitative health objectives (QHOs) for nuclear reactors in the United States. Risk metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been used as surrogates for the QHOs. In its review of the new plant licensing policy the ACRS has looked at the safety goals, as has the NRC. A number of issues have been raised including what the Commission had in mind when it drafted the safety goals and QHOs, how risk from multiple reactors at a site should be combined for evaluation, how the combination of a new and old reactor at the same site should be evaluated, what the criteria for evaluating new reactors should be, and whether new reactors should be required to be safer than current generation reactors. As part of the development and application of the NRC safety goal policy statement the Commissioners laid out the expectations for the safety of a nuclear power plant but did not address the risk associated with current multi-unit sites, potential modular reactor sites, and hybrid sites that could contain current generation reactors, new passive reactors, and/or modular reactors. The NRC safety goals and the QHOs refer to a "nuclear power plant," but do not discuss whether a "plant" refers to only a single unit or all of the units on a site. There has been much discussion on this issue recently due to the development of modular reactors. Additionally, the risk of multiple reactor accidents on the same site has been largely ignored in the probabilistic risk assessments (PRAs) done to date, and in most risk

  10. Development of a novel ceramic microchannel reactor for methane steam reforming

    Science.gov (United States)

    Murphy, Danielle M.

    Microchannel heat exchanger and reactor technology has recently gained interest as an innovative way to improve heat-exchanger efficiency, reduce size and weight, and utilize thermal management capabilities to improve conversion, yield, selectivity, and catalyst life. Among many other possible applications, this technology is suitable for advanced recuperated engines, oxy-fired combustion processes for oxygen separation, gas-cooled nuclear reactors, recuperative heat exchanger and reformer units for solid oxide fuel cell systems, and chemical processing. This work presents the design, fabrication, and performance of novel ceramic microchannel reactors in heat-exchanger and fuel-reforming applications. Although most microchannel devices are made of metal materials, ceramics offer an alternative which enables significantly higher operating temperatures, improved tolerance to harsh chemical environments, and improved adherence of ceramic-based catalyst washcoats. Significant cost savings in materials and manufacturing methods for high-volume manufacturing can also be achieved. High-temperature performance of the ceramic microchannel reactor is measured through non-reactive heat-exchanger experiments within a dedicated test stand. Heat-exchanger effectiveness of up to 88% is experimentally established. After coating catalyst material over half of the reactor layers, use of the ceramic microchannel reactor in methane fuel-processing applications is demonstrated. As a fuel reformer, the ceramic microchannel reactor achieves process intensification by combining heat-exchanger and catalytic-reactor functions to produce syngas. Gas hourly space velocities (GHSV) up to 50,000 hr-1 with methane conversion higher than 85% are achieved. A complete computational fluid dynamics (CFD) model, as well as a geometrically simplified hybrid CFD/chemical kinetics model, is used in conjunction with experimentation to examine heat transfer, fluid flow, and chemical kinetics within the

  11. Dominant bacteria correlated with elimination of sludge in an innovative reactor

    Institute of Scientific and Technical Information of China (English)

    Shanshan Lin; Ying Wang; Jifang Lin; Xinrui Wang; Huili Gong

    2009-01-01

    This study was conducted to identify bacteria responsible for the elimination of sludge in an innovative gravel contact oxidation reactor (GCOR) and a conventional activated sludge reactor (ASR),Fluorescent in situ hybridization revealed that α-,β-,γ-and ε-Proteobacteria and Bacteroidetes were present in both reactors.In the GCOR,γ-Proteobacteria accounted for 13% of the biofilm biomass on the carrier,while α-,ε-and β-Proteobacteria accounted for 12%.However,the predominant bacteria in the pores of the carrier in the GCOR were Bacteroidetes (18%),ε-Proteobacteria (13%),β-and α-Proteobacteria (10%) and γ-Proteobacteria (9%).Conversely,β-Proteobacteria (18%),Bacteroidetes (13%),α-and γ-Proteobacteria (12%) and ε-Proteobacteria (5%) dominated the sediment community of the ASR.

  12. Heavy Water Reactor; Reacteurs a eau lourde

    Energy Technology Data Exchange (ETDEWEB)

    Yu, St.; HOpwood, J.; Meneley, D. [Energie Atomique du Canada (Canada)

    2000-04-01

    This document deals with the Heavy Water Reactor (HWR) technology and especially the Candu (Canada Deuterium Uranium) reactor. This reactors type offers many advantages that promote them for the future. General concepts, a description of the Candu nuclear power plants, the safety systems, the fuel cycle and economical and environmental aspects are included. (A.L.B.)

  13. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...

  14. Some new viewpoints in reactor noise analysis

    Institute of Scientific and Technical Information of China (English)

    罗征培; 李富; 等

    1996-01-01

    It is propsed that the linearity criterion and order criterion via frequency spectrum features without any limitation of the model's phase can be used in reactor noise analysis.The time constant,natural frequency as well as the recovered transfer function of reactors can bhe obtained via the analyzable model based on reactor noise.

  15. Operating Modes Of Chemical Reactors Of Polymerization

    Directory of Open Access Journals (Sweden)

    Meruyert Berdieva

    2012-05-01

    Full Text Available In the work the issues of stable technological modes of operation of main devices of producing polysterol reactors have been researched as well as modes of stable operation of a chemical reactor have been presented, which enables to create optimum mode parameters of polymerization process, to prevent emergency situations of chemical reactor operation in industrial conditions.

  16. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  17. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    immobilized artificial membrane chromatography and lysophospholipid micellar electrokinetic chromatography . J. Chromatogr. A 1998, 810, 95-103. 50...Journal of Liquid Chromatography and Related Technologies. Air Force Research Laboratory Materials and Manufacturing Directorate Airbase...immobilized enzyme reactors (IMERs) can also be integrated directly to further analytical methods such as liquid chromatography or mass spectrometry.[6] In

  18. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, Warren G.; Basaran, Osman A.; Harris, Michael T.

    1995-01-01

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.

  19. A Simple Tubular Reactor Experiment.

    Science.gov (United States)

    Hudgins, Robert R.; Cayrol, Bertrand

    1981-01-01

    Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)

  20. High temperature catalytic membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  1. Nuclear Reactors and Technology; (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. (eds.)

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  2. British high flux beam reactor.

    Science.gov (United States)

    Egelstaff, P A

    1970-10-24

    The neutron scattering technique has become an accepted method for the study of condensed matter. Because of the great scientific and technical value of neutron experiments and the growing body of users, several proposals have been made during the past decade for a nuclear reactor devoted primarily to this technique. This article reviews the reasons for and history behind these proposals.

  3. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  4. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, F-13108 Saint Paul lez Durance (France); Vacelet, H. [CERCA, Romans (France); Dornbusch, D. [Technicatome, Aix en Provence (France)

    2000-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs from activation analysis to power reactor fuel qualification. In this paper the main characteristics of the Jules Horowitz Reactor are presented. Safety criteria are explained. Finally, merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel are discussed. (author)

  5. Heterogeneous Recycling in Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  6. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria;

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  7. BSA Hybrid Synthesized Polymer

    Institute of Scientific and Technical Information of China (English)

    Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO

    2006-01-01

    Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.

  8. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  9. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  10. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  12. Hybrid Unifying Variable Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the

  13. Large Unifying Hybrid Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.

  14. Reactor monitoring and safeguards using antineutrino detectors

    CERN Document Server

    Bowden, N S

    2008-01-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

  15. Neutrino Mixing Discriminates Geo-reactor Models

    CERN Document Server

    Dye, S T

    2009-01-01

    Geo-reactor models suggest the existence of natural nuclear reactors at different deep-earth locations with loosely defined output power. Reactor fission products undergo beta decay with the emission of electron antineutrinos, which routinely escape the earth. Neutrino mixing distorts the energy spectrum of the electron antineutrinos. Characteristics of the distorted spectrum observed at the earth's surface could specify the location of a geo-reactor, discriminating the models and facilitating more precise power measurement. The existence of a geo-reactor with known position could enable a precision measurement of the neutrino oscillation parameter delta-mass-squared.

  16. Refurbishment of existing research reactors for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.E.; Gessaghi, V. [INVAP S.E., de Bariloche (Argentina)

    1997-12-01

    Some research reactors have been selected for the development of boron neutron capture therapy (BNCT) in the United States like the Massachusetts Institute of Technology research reactor, the University of Missouri research reactor 2 or the Brookhaven Medical Research Reactor, among others. These reactors have received excellent analyses and designs to accommodate extremely optimized beam shaping assemblies (BSAs) for the proper tuning of neutron spectra and absorption of undesired particles such as photons and fast neutrons. Due to the importance of BNCT in these facilities, the physicists and engineers have used many degrees of freedom for the optimization process.

  17. Tandem Mirror Reactor Systems Code (Version I)

    Energy Technology Data Exchange (ETDEWEB)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  18. Hybrid Rocket Technology

    National Research Council Canada - National Science Library

    Sankaran Venugopal; K K Rajesh; V Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...

  19. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  20. Savannah River Site production reactor technical specifications. K Production Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  1. CFD Simulation on Ethylene Furnace Reactor Tubes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Different mathematical models for ethylene furnace reactor tubes were reviewed. On the basis of these models a new mathematical simulation approach for reactor tubes based on computational fluid dynamics (CFD) technique was presented. This approach took the flow, heat transfer, mass transfer and thermal cracking reactions in the reactor tubes into consideration. The coupled reactor model was solved with the SIMPLE algorithm. Some detailed information about the flow field, temperature field and concentration distribution in the reactor tubes was obtained, revealing the basic characteristics of the hydrodynamic phenomena and reaction behavior in the reactor tubes. The CFD approach provides the necessary information for conclusive decisions regarding the production optimization, the design and improvement of reactor tubes, and the new techniques implementation.

  2. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2015-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  3. Advanced reactor physics methods for heterogeneous reactor cores

    Science.gov (United States)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  4. Reactor pulse repeatability studies at the annular core research reactor

    Energy Technology Data Exchange (ETDEWEB)

    DePriest, K.R. [Applied Nuclear Technologies, Sandia National Laboratories, Mail Stop 1146, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States); Trinh, T.Q. [Nuclear Facility Operations, Sandia National Laboratories, Mail Stop 0614, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States); Luker, S. M. [Applied Nuclear Technologies, Sandia National Laboratories, Mail Stop 1146, Post Office Box 5800, Albuquerque, NM 87185-1146 (United States)

    2011-07-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories is a water-moderated pool-type reactor designed for testing many types of objects in the pulse and steady-state mode of operations. Personnel at Sandia began working to improve the repeatability of pulse operations for experimenters in the facility. The ACRR has a unique UO{sub 2}-BeO fuel that makes the task of producing repeatable pulses difficult with the current operating procedure. The ACRR produces a significant quantity of photoneutrons through the {sup 9}Be({gamma}, n){sup 8}Be reaction in the fuel elements. The photoneutrons are the result of the gammas produced during fission and in fission product decay, so their production is very much dependent on the reactor power history and changes throughout the day/week of experiments in the facility. Because the photoneutrons interfere with the delayed-critical measurements required for accurate pulse reactivity prediction, a new operating procedure was created. The photoneutron effects at delayed critical are minimized when using the modified procedure. In addition, the pulse element removal time is standardized for all pulse operations with the modified procedure, and this produces less variation in reactivity removal times. (authors)

  5. In-reactor performance of pressure tubes in CANDU reactors

    Science.gov (United States)

    Rodgers, D. K.; Coleman, C. E.; Griffiths, M.; Bickel, G. A.; Theaker, J. R.; Muir, I.; Bahurmuz, A. A.; Lawrence, S. St.; Resta Levi, M.

    2008-12-01

    The pressure tubes in CANDU reactors have been operating for times up to about 25 years. The in-reactor performance of Zr-2.5Nb pressure tubes has been evaluated by sampling and periodic inspection. This paper describes the behaviour and discusses the factors controlling the behaviour of these components in currently operating CANDU reactors. The mechanical properties (such as ultimate tensile strength, UTS, and fracture toughness), and delayed-hydride-cracking properties (crack growth rate Vc, and threshold stress intensity factor, KIH) change with irradiation; the former reach a limiting value at a fluence of Pressure tubes exhibit elongation and diametral expansion. The deformation behaviour is a function of operating conditions and material properties that vary from tube-to-tube and as a function of axial location. Semi-empirical predictive models have been developed to describe the deformation response of average tubes as a function of operating conditions. For corrosion and, more importantly deuterium pickup, semi-empirical predictive models have also been developed to represent the behaviour of an average tube. The effect of material variability on corrosion behaviour is less well defined compared with other properties. Improvements in manufacturing have increased fracture resistance by minimising trace elements, especially H and Cl, and reduced variability by tightening controls on forming parameters, especially hot-working temperatures.

  6. Gas-liquid autoxidation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Paludetto, R.; Carra, S.

    1986-01-01

    A procedure for the simulation of autoxidation gas-liquid reactors has been developed based both on mathematical models and laboratory experiments. It has been shown that the complex radical chain mechanism of the autoxidation process can be simulated through two global parallel reactions, whose rates are obtained by assuming pseudo-steady-state concentration values for all the radical species involved. Using ethylbenzene autoxidation as a model reaction, an experimental analysis has been performed in order to estimate all the kinetic parameters of the model. The effect of the interaction between gas-liquid mass-transfer phenomena and the complex kinetic mechanism on the overall performance of an autoxidation reactor has been examined in detail within the framework of the liquid film model.

  7. Transport simulation for EBT reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, T.; Uckan, N.A.; Jaeger, E.F.

    1983-08-01

    Transport simulation and modeling studies for the ELMO Bumpy Torus (EBT) reactor are carried out by using zero-dimensional (0-D) and one-and-one-half-dimensional (1 1/2-D) transport calculations. The time-dependent 0-D model is used for global analysis, whereas the 1 1/2-D radial transport code is used for accurate determination of density, temperature, and ambipolar potential profiles and of the role of these profiles in reactor plasma performance. Analysis with the 1 1/2-D transport code shows that profile effects near the outer edge of the hot electron ring lead to enhanced confinement by at least a factor of 2 to 5 beyond the simple scaling that is obtained from the global analysis. The radial profiles of core plasma density and temperatures (or core pressure) obtained from 1 1/2-D transport calculations are found to be similar to those theoretically required for stability.

  8. Nuclear reactor alignment plate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  9. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  10. Fast breeder reactor protection system

    Science.gov (United States)

    van Erp, J.B.

    1973-10-01

    Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)

  11. Estimates of power requirements for a manned Mars rover powered by a nuclear reactor

    Science.gov (United States)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are met using an SP-100 type reactor. The primary electric power needs, which include 30-kWe net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine (FPSE) yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle (CBC) using He/Xe as the working fluid. The specific mass of the nuclear reactor power systrem, including a man-rated radiation shield, ranged from 150-kg/kWe to 190-kg/kWe and the total mass of the Rover vehicle varied depend upon the cruising speed.

  12. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas).

    Science.gov (United States)

    Escolà Casas, Mònica; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h(-1), from 0 to 7.78 × 10(-1)h(-1), from 0 to 7.86 × 10(-1)h(-1) and from 0 to 1.07 × 10(-1)h(-1) for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step. Such increase

  13. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  14. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  15. A Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars

    contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial...

  16. Hybrid trajectory spaces

    NARCIS (Netherlands)

    Collins, P.J.

    2005-01-01

    In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na

  17. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  18. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  19. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas)

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark); Chhetri, Ravi Kumar [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Ooi, Gordon [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark); Hansen, Kamilla M.S. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Litty, Klaus [Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C (Denmark); Christensson, Magnus [AnoxKaldnes, Klosterängsvägen 11A, 226 47 Lund (Sweden); Kragelund, Caroline [Department of Chemistry and Biotechnology, Danish Technological Institute, Kongsvang Allé 29, 8000 Aarhus C (Denmark); Andersen, Henrik R. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kgs. Lyngby (Denmark); Bester, Kai, E-mail: kb@envs.au.dk [Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde (Denmark)

    2015-10-15

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h{sup −1}, from 0 to 7.78 × 10{sup −1} h{sup −1}, from 0 to 7.86 × 10{sup −1} h{sup −1} and from 0 to 1.07 × 10{sup −1} h{sup −1} for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase

  20. The ARIES tokamak reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  1. Actinide transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bultman, J.H.

    1995-01-17

    An optimization method is developed to maximize the burning capability of the ALMR while complying with all constraints imposed on the design for reliability and safety. This method leads to a maximal transuranics enrichment, which is being limited by constraints on reactivity. The enrichment can be raised by using the neutrons less efficiently by increasing leakage from the fuel. With the developed optimization method, a metallic and an oxide fueled ALMR were optimized. Both reactors perform equally well considering the burning of transuranics. However, metallic fuel has a much higher heat conductivity coefficient, which in general leads to better safety characteristics. In search of a more effective waste transmuter, a modified Molten Salt Reactor was designed. A MSR operates on a liquid fuel salt which makes continuous refueling possible, eliminating the issue of the burnup reactivity loss. Also, a prompt negative reactivity feedback is possible for an overmoderated reactor design, even when the Doppler coefficient is positive, due to the fuel expansion with fuel temperature increase. Furthermore, the molten salt fuel can be reprocessed based on a reduction process which is not sensitive to the short-lived spontaneously fissioning actinides. (orig./HP).

  2. Hybrid propulsion technology program

    Science.gov (United States)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  3. Assessment of the thorium fuel cycle in power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Homan, F.J.; Allen, E.J.

    1977-01-01

    A study was conducted at Oak Ridge National Laboratory to evaluate the role of thorium fuel cycles in power reactors. Three thermal reactor systems were considered: Light Water Reactors (LWRs); High-Temperature Gas-Cooled Reactors (HTGRs); and Heavy Water Reactors (HWRs) of the Canadian Deuterium Uranium Reactor (CANDU) type; most of the effort was on these systems. A summary comparing thorium and uranium fuel cycles in Fast Breeder Reactors (FBRs) was also compiled.

  4. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  5. Advanced Safeguards Approaches for New Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  6. Investigation of molten salt fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Konomura, Mamoru [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2002-05-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  7. Research on stellarator-mirror fission-fusion hybrid

    Science.gov (United States)

    Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.

    2014-09-01

    The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.

  8. Performance of a multipurpose research electrochemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Henquin, E.R. [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Bisang, J.M., E-mail: jbisang@fiq.unl.edu.ar [Programa de Electroquimica Aplicada e Ingenieria Electroquimica (PRELINE), Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2011-07-01

    Highlights: > For this reactor configuration the current distribution is uniform. > For this reactor configuration with bipolar connection the leakage current is small. > The mass-transfer conditions are closely uniform along the electrode. > The fluidodynamic behaviour can be represented by the dispersion model. > This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of {+-}10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  9. Molten-Salt Depleted-Uranium Reactor

    CERN Document Server

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  10. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  11. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    OpenAIRE

    Kramer, Kevin James

    2010-01-01

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by ...

  12. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  13. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  14. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by

  15. Reactor Bolshoi Moshchnosti Kalani; Reacteurs RBMK

    Energy Technology Data Exchange (ETDEWEB)

    Bastien, D. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    2000-01-01

    The Reactor Bolshoi Molshchnosti Kalani (RBMK) are pressure tubes reactor, boiling light water cooled. Exported since 1990 from the ex-USSR, they are today in three independent countries: Russian, Ukraine and Lithuania. Since this date, data exchange with the occident allowed the better knowledge of this reactor type. The design, the technical description (core, fuel, primary system), the safety and the improvement since Chernobyl are detailed. (A.L.B.)

  16. D-D tokamak reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K.E. Jr.; Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Finn, P.A.; Jung, J.; Mattas, R.F.; Misra, B.; Smith, D.L.; Stevens, H.C.

    1980-11-01

    A tokamak D-D reactor design, utilizing the advantages of a deuterium-fueled reactor but with parameters not unnecessarily extended from existing D-T designs, is presented. Studies leading to the choice of a design and initial studies of the design are described. The studies are in the areas of plasma engineering, first-wall/blanket/shield design, magnet design, and tritium/fuel/vacuum requirements. Conclusions concerning D-D tokamak reactors are stated.

  17. NASA Reactor Facility Hazards Summary. Volume 1

    Science.gov (United States)

    1959-01-01

    The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.

  18. Plasma spark discharge reactor and durable electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup

    2017-01-10

    A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.

  19. Heat for industry from nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Novikov, V.M.

    Two factors which incline nations toward the use of heat from nuclear reactors for industrial use are: 1) exhaustion of cheap fossil fuel resources, and 2) ecological problems associated both with extraction of fossil fuel from the earth and with its combustion. In addition to the usual problems that beset nuclear reactors, special problems associated with using heat from nuclear reactors in various industries are explored.

  20. Experimental Breeder Reactor I Preservation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun

    2006-10-01

    Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

  1. Initiating Events for Multi-Reactor Plant Sites

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, Michael David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Inherent in the design of modular reactors is the increased likelihood of events that initiate at a single reactor affecting another reactor. Because of the increased level of interactions between reactors, it is apparent that the Probabilistic Risk Assessments (PRAs) for modular reactor designs need to specifically address the increased interactions and dependencies.

  2. Development of Blumlein Line Generator and Reactor for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Zainuddin Nawawi

    2013-11-01

    Full Text Available Nowadays the harm effects of wastewater from industrial sectors toward the environment become one of public major concern. There are several wastewater treatment methods and techniques which have been introduced such as by using biological, chemical, and physical process. However, it is found that there are some shortcomings in the current available methods and techniques. For instance, the application of chlorine can cause bacterial disinfection but produce secondary harmful carcinogenic disinfection.  And the application of ozone treatment –  which is one of the most reliable technique – requires improvement in term of ozone production and treatment system. In order to acquire a better understanding in wastewater treatment process, a study of wastewater treatment system and Hybrid Discharge reactor – to acquire gas-liquid phase corona like discharge – is carried out. In addition to the laboratory experiment, designing and development of the Blumlein pulse power circuit, and modification of reactor for wastewater treatment are accomplished as well.

  3. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  4. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  5. Hybrid Bloch Brane

    CERN Document Server

    Bazeia, D; Losano, L

    2016-01-01

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.

  6. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  7. Hybrid silicon evanescent devices

    Directory of Open Access Journals (Sweden)

    Alexander W. Fang

    2007-07-01

    Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.

  8. Optimization of an ionized metal physical vapor deposition reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-31

    Conventional sputtering for microelectronic fabrication produces poorly collimated neutral atom fluxes. Ion fluxes, however, can be accelerated and collimated by using a conventional dc or rf substrate bias. Hence, magnetron ionized metal physical vapor deposition (IMPVD) can produce highly ionized metal fluxes that can be used to fill high-aspect-ratio vias and trenches in microelectronic devices. Hopwood and Qian have examined design issues in IMPVD systems. In this study, a Design of Experiment (DOE) has been numerically performed for an IMPVD reactor using an inductively coupled plasma and a capacitively biased substrate. Gas pressure, reactor geometry, ICP power, and number of inductive coils are the design variables. Uniformity, magnitude, and ionization fraction of the depositing fluxes are the response variables. The influence of the design variables on the response variables is examined, with the goals of obtaining high uniformity, high magnitude, and high ionization fraction of the depositing metal fluxes. The computational tool used in this study is the two-dimensional Hybrid Plasma Equipment Model (HPEM). The aspect ratio of the reactor (height/radius) ranges from 0.5 to 1.0, the gas pressure ranges from 10 to 40 mTorr, the ICP power ranges from 0.5 to 2.0 kW, and the number of ICP coils ranges from 2 to 6. It was found that: (a) uniformity maximizes at high aspect ratio, low power, and high pressure; (b) flux magnitude maximizes at low aspect ratio, high power, and low pressure; (c) ionization fraction maximizes at high aspect ratio, high power, and high pressure.

  9. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  10. High Performance Photocatalytic Oxidation Reactor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  11. NCSU reactor sharing program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, P.B.

    1997-01-10

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996.

  12. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  13. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  14. Advanced nuclear reactor types and technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V. [ed.; Feinberg, O.; Morozov, A. [Russian Research Centre `Kurchatov Institute`, Moscow (Russian Federation); Devell, L. [Studsvik Eco and Safety AB, Nykoeping (Sweden)

    1995-07-01

    The document is a comprehensive world-wide catalogue of concepts and designs of advanced fission reactor types and fuel cycle technologies. Two parts have been prepared: Part 1 Reactors for Power Production and Part 2 Heating and Other Reactor Applications. Part 3, which will cover advanced waste management technology, reprocessing and disposal for different nuclear fission options is planned for compilation during 1995. The catalogue was prepared according to a special format which briefly presents the project title, technical approach, development status, application of the technology, reactor type, power output, and organization which developed these designs. Part 1 and 2 cover water cooled reactors, liquid metal fast reactors, gas-cooled reactors and molten salt reactors. Subcritical accelerator-driven systems are also considered. Various reactor applications as power production, heat generation, ship propulsion, space power sources and transmutation of such waste are included. Each project is described within a few pages with the main features of an actual design using a table with main technical data and figure as well as references for additional information. Each chapter starts with an introduction which briefly describes main trends and approaches in this field. Explanations of terms and abbreviations are provided in a glossary.

  15. Neutron imaging on the VR-1 reactor

    Science.gov (United States)

    Crha, J.; Sklenka, L.; Soltes, J.

    2016-09-01

    Training reactor VR-1 is a low power research reactor with maximal thermal power of 1 kW. The reactor is operated by the Faculty of Nuclear Science and Physical Engineering of the Czech Technical University in Prague. Due to its low power it suits as a tool for education of university students and training of professionals. In 2015, as part of student research project, neutron imaging was introduced as another type of reactor utilization. The low available neutron flux and the limiting spatial and construction capabilities of the reactor's radial channel led to the development of a special filter/collimator insertion inside the channel and choosing a nonstandard approach by placing a neutron imaging plate inside the channel. The paper describes preliminary experiments carried out on the VR-1 reactor which led to first radiographic images. It seems, that due to the reactor construction and low reactor power, the neutron imaging technique on the VR-1 reactor is feasible mainly for demonstration or educational and training purposes.

  16. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  17. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    Science.gov (United States)

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  18. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  19. Microchannel Methanation Reactors Using Nanofabricated Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  20. Phosphorus removal in aerated stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ghigliazza, R.; Lodi, A.; Rovatti, M. [Inst. of Chemical and Process Engineering ``G.B. Bonino``, Univ. of Genoa (Italy)

    1999-03-01

    The possibility to obtain biological phosphorus removal in strictly aerobic conditions has been investigated. Experiments, carried out in a continuous stirred tank reactor (CSTR), show the feasibility to obtain phosphorus removal without the anaerobic phase. Reactor performance in terms of phosphorus abatement kept always higher then 65% depending on adopted sludge retention time (SRT). In fact increasing SRT from 5 days to 8 days phosphorus removal and reactor performance increase but overcoming this SRT value a decreasing in reactor efficiency was recorded. (orig.) With 6 figs., 3 tabs., 18 refs.