WorldWideScience

Sample records for hybrid plasmonic system

  1. Preservation of plasmonic interactions in DLC protected robust organic-plasmonic hybrid systems

    DEFF Research Database (Denmark)

    Cielecki, Pawel Piotr; Sobolewska, Elżbieta Karolina; Kostiučenko, Oksana

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been previously shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating [1]. In this work, we investigate...... the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays [2], coated with protective layers of varying thickness. We investigate the spectral position...... response of organic nanofibers. Subsequently, we experimentally characterize the plasmonic coupling between organic nanofibers and underlying substrates by time-resolved photoluminescence spectroscopy. Our findings reveal that the optimal thickness for DLC coating, in terms of mechanical protection while...

  2. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    International Nuclear Information System (INIS)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying; Gong, Qihuang

    2014-01-01

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter for visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.

  3. Nanoengineered Plasmonic Hybrid Systems for Bio-nanotechnology

    Science.gov (United States)

    Leong, Kirsty

    Plasmonic hybrid systems are fabricated using a combination of lithography and layer-by-layer directed self-assembly approaches to serve as highly sensitive nanosensing devices. This layer-by-layer directed self-assembly approach is utilized as a hybrid methodology to control the organization of quantum dots (QDs), nanoparticles, and biomolecules onto inorganic nanostructures with site-specific attachment and functionality. Here, surface plasmon-enhanced nanoarrays are fabricated where the photoluminescence of quantum dots and conjugated polymer nanoarrays are studied. This study was performed by tuning the localized surface plasmon resonance and the distance between the emitter and the metal surface using genetically engineered polypeptides as binding agents and biotin-streptavidin binding as linker molecules. In addition, these nanoarrays were also chemically modified to support the immobilization and label-free detection of DNA using surface enhanced Raman scattering. The surface of the nanoarrays was chemically modified using an acridine containing molecule which can act as an intercalating agent for DNA. The self-assembled monolayer (SAM) showed the ability to immobilize and intercalate DNA onto the surface. This SAM system using surface enhanced Raman scattering (SERS) serves as a highly sensitive methodology for the immobilization and label-free detection of DNA applicable into a wide range of bio-diagnostic platforms. Other micropatterned arrays were also fabricated using a combination of soft lithography and surface engineering. Selective single cell patterning and adhesion was achieved through chemical modifications and surface engineering of poly(dimethylsiloxane) surface. The surface of each microwell was functionally engineered with a SAM which contained an aldehyde terminated fused-ring aromatic thiolated molecule. Cells were found to be attracted and adherent to the chemically modified microwells. By combining soft lithography and surface engineering

  4. Self-hybridization within non-Hermitian localized plasmonic systems

    Science.gov (United States)

    Lourenço-Martins, Hugo; Das, Pabitra; Tizei, Luiz H. G.; Weil, Raphaël; Kociak, Mathieu

    2018-04-01

    The orthogonal eigenmodes are well-defined solutions of Hermitian equations describing many physical situations from quantum mechanics to acoustics. However, a large variety of non-Hermitian problems, including gravitational waves close to black holes or leaky electromagnetic cavities, require the use of a bi-orthogonal eigenbasis with consequences challenging our physical understanding1-4. The need to compensate for energy losses made the few successful attempts5-8 to experimentally probe non-Hermiticity extremely complicated. We overcome this problem by considering localized plasmonic systems. As the non-Hermiticity in these systems does not stem from temporal invariance breaking but from spatial symmetry breaking, its consequences can be observed more easily. We report on the theoretical and experimental evidence for non-Hermiticity-induced strong coupling between surface plasmon modes of different orders within silver nanodaggers. The symmetry conditions for triggering this counter-intuitive self-hybridization phenomenon are provided. Similar observable effects are expected to exist in any system exhibiting bi-orthogonal eigenmodes.

  5. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    2016-01-01

    of the fibers. The experimental findings are complemented via finite-difference time-domain (FDTD) modeling. The presented results lead to a better understanding and control of hybrid-mode systems, which are crucial elements in future low-loss energy transfer devices. © (2016) COPYRIGHT Society of Photo...

  6. Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement

    Science.gov (United States)

    Gray, Stephen K.

    2018-02-01

    Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.

  7. Plasmon hybridization in complex metallic nanostructures

    Science.gov (United States)

    Hao, Feng

    With Plasmon Hybridization (PH) and Finite-Difference Time-Domain (FDTD) method, we theoretically investigated the optical properties of some complex metallic nanostructures (coupled nanoparticle/wire, nanostars, nanorings and combined ring/disk nanocavity systems). We applied the analytical formulism of PH studying the plasmonic coupling of a spherical metallic nanoparticle and an infinite long cylindrical nanowire. The plasmon resonance of the coupled system is shown shifted in frequency, which highly depends on the polarization of incident light relative to the geometry of the structure. We also showed the nanoparticle serves as an efficient antenna coupling the electromagnetic radiation into the low-energy propagating wire plasmons. We performed an experimental and theoretical analysis of the optical properties of gold nanorings with different sizes and cross sections. For light polarized parallel to the ring, the optical spectrum sensitively depends on the incident angle. When light incidence is normal to the ring, two dipolar resonance is observed. As the incident light is titled, some previously dark mulipolar plasmon resonances will be excited as a consequence of the retardation. The concept of plasmon hybridization is combined with the power of brute-force numerical methods to understand the plasmonic properties of some very complicated nanostructures. We showed the plasmons of a gold nanostar are a result of hybridization of the plasmons of the core and the tips of the particle. The core serves as a nanoantenna, dramatically enhanced the optical spectrum and the field enhancement of the nanostar. We also applied this method analyzing the plasmonic modes of a nanocavity structure composed of a nanodisk with a surrounding minoring. For the concentric combination, we showed the nature of the plasmon modes can be understood as the plasmon hybrization of an individual ring and disk. The interation results in a blueshifted and broadened superradiant antibonding

  8. Graphene-based hybrid plasmonic modulator

    International Nuclear Information System (INIS)

    Shin, Jin-Soo; Kim, Jin-Soo; Tae Kim, Jin

    2015-01-01

    A graphene-based hybrid plasmonic modulator is designed based on an asymmetric double-electrode plasmonic waveguide structure. The photonic device consists of a monolayer graphene, a thin metal strip, and a thin dielectric layer that is inserted between the grapheme and the metal strip. By electrically tuning the graphene’s refractive index, the propagation loss of the hybrid long-range surface plasmon polariton strip mode in the proposed graphene-based hybrid plasmonic waveguide is switchable, and hence the intensity of the guided modes is modulated. The highest modulation depth is observed at the graphene’s epsilon-near-zero region. The device characteristics are characterized over the entire C-band (1.530–1.565 μm). (paper)

  9. Nonlocal study of ultimate plasmon hybridization

    DEFF Research Database (Denmark)

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.

    2015-01-01

    the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation...

  10. Plasmonic hybrid nanostructure with controlled interaction strength

    Science.gov (United States)

    Grzelak, Justyna K.; Krajnik, Bartosz; Thoreson, Mark D.; Nyga, Piotr; Shalaev, Vladimir M.; Mackowski, Sebastian

    2014-03-01

    In this report we discuss the influence of plasmon excitations in a silver island film on the fluorescence of photosynthetic complex, peridinin-chlorophyll-protein (PCP). Control of the separation between these two components is obtained by fabricating a wedge layer of silica across the substrate, with a thickness from 0 to 46 nm. Continuous variation of the silica thickness allows for gradual change of interaction strength between plasmon excitations in the metallic film and the excited states of pigments comprising photosynthetic complexes. While the largest separation between the silver film and photosynthetic complexes results in fluorescence featuring a mono-exponential decay and relatively narrow distribution of intensities, the PCP complexes placed on thinner silica spacers show biexponential fluorescence decay and significantly broader distribution of total fluorescence intensities. This broad distribution is a signature of stronger sensitivity of fluorescence enhancement upon actual parameters of a hybrid nanostructure. By gradual change of the silica spacer thickness we are able to reproduce classical distance dependence of fluorescence intensity in plasmonic hybrid nanostructures on ensemble level. Experiments carried out for different excitation wavelengths indicate that the interaction is stronger for excitations resonant with plasmon absorption in the metallic layer.

  11. Plasmon-enhanced absorption in a metal nanoparticles and photosynthetic molecules hybrid system

    Science.gov (United States)

    Fan, Zhiyuan; Govorov, Alexander

    2010-03-01

    Photosystem I from cyanobacteria is one of nature's most efficient light harvesting complexes, converting light energy into electronic energy with a quantum yield of 100% and an energy yield about 58%. It is very attractive to the nanotechnology community because of its nanoscale dimensions and excellent optoelectronic properties. This protein has the potential to be utilized in devices such as solar cells, electric switches, photo-detectors, etc. However, there is one limiting factor for potential applications of a single monolayer of these photosynthetic proteins. One monolayer absorbs less than 1% of sunlight's energy, despite their excellent optoelectronic properties. Recently, experiments [1] have been conducted to enhance light absorption with the assistance of metal nanoparticles as artificial antenna for the photosystem I. Here, we present a theoretical description of the strong plasmon-assisted interactions between the metal nanoparticles and the optical dipoles of the reaction centers observed in the experiments. The resonance and off-resonance plasmon effects enhance the electromagnetic fields around the photosystem-I molecules and, in this way, lead to enhanced absorption. [4pt] [1] I. Carmeli, I. Lieberman, L. Kraversky, Zhiyuan Fan, A. O. Govorov, G. Markovich, and S. Richter, submitted.

  12. Hybrid colloidal plasmonic-photonic crystals.

    Science.gov (United States)

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hybrid plasmonic nanodevices: Switching mechanism for the nonlinear emission

    Energy Technology Data Exchange (ETDEWEB)

    Bragas, Andrea V. [Departamento de Física, FCEyN, Universidad de Buenos Aires, IFIBA CONICET, 1428 Buenos Aires (Argentina); Singh, Mahi R. [Department of Physics and Astronomy, Western University, London (Canada)

    2014-03-31

    Control of the light emission at the nanoscale is of central interest in nanophotonics due to the many applications in very different fields, ranging from quantum information to biophysics. Resonant excitation of surface plasmon polaritons in metal nanoparticles create nanostructured and enhanced light fields around those structures, which produce their strong interaction in a hybrid nanodevice with other plasmonic or non-plasmonic objects. This interaction may in turn also modulate the far field with important consequences in the applications. We show in this paper that the nonlinear emission from semiconductor quantum dots is strongly affected by the close presence of metal nanoparticles, which are resonantly excited. Using a pulsed laser, optical second harmonic is generated in the quantum dot, and it is highly enhanced when the laser is tuned around the nanoparticle plasmon resonance. Even more interesting is the demonstration of a switching mechanism, controlled by an external continuous-wave field, which can enhance or extinguish the SH signal, even when the pulsed laser is always on. Experimental observations are in excellent agreement with the theoretical calculations, based on the dipole-dipole near-field coupling of the objects forming the hybrid system.

  14. Hybrid plasmonic bullseye antennas for efficient photon collection

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Bozhevolnyi, Sergey I.; Shalaev, Vladimir M.

    2018-01-01

    We propose highly efficient hybrid plasmonic bullseye antennas for collecting photon emission from nm sized quantum emitters. In our approach, the emitter radiation is coupled to surface plasmon polaritons that are consequently converted into highly directional out-of-plane emission. The proposed...... configuration consists of a high-index titania bullseye grating separated from a planar silver film by a thin low-index silica spacer layer. Such hybrid systems are theoretically capable of directing 85% of the dipole emission into a 0.9 NA objective, while featuring a spectrally narrow-band tunable decay rate...... stable operation. For experimental characterization of the antenna properties, a fluorescent nanodiamond containing multiple nitrogen vacancy centers (NV-center) was deterministically placed in the bullseye center, using an atomic force microscope. Probing the NV-center fluorescence we demonstrate...

  15. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system.

    Science.gov (United States)

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-22

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS 2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits 'U-shaped' bistable FWM signals. We also map out bistability phase diagrams within the system's parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS 2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  16. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  17. Plasmon-modulated bistable four-wave mixing signals from a metal nanoparticle-monolayer MoS2 nanoresonator hybrid system

    Science.gov (United States)

    Li, Jian-Bo; Tan, Xiao-Long; Ma, Jin-Hong; Xu, Si-Qin; Kuang, Zhi-Wei; Liang, Shan; Xiao, Si; He, Meng-Dong; Kim, Nam-Chol; Luo, Jian-Hua; Chen, Li-Qun

    2018-06-01

    We present a study for the impact of exciton-phonon and exciton-plasmon interactions on bistable four-wave mixing (FWM) signals in a metal nanoparticle (MNP)-monolayer MoS2 nanoresonator hybrid system. Via tracing the FWM response we predict that, depending on the excitation conditions and the system parameters, such a system exhibits ‘U-shaped’ bistable FWM signals. We also map out bistability phase diagrams within the system’s parameter space. Especially, we show that compared with the exciton-phonon interaction, a strong exciton-plasmon interaction plays a dominant role in the generation of optical bistability, and the bistable region will be greatly broadened by shortening the distance between the MNP and the monolayer MoS2 nanoresonator. In the weak exciton-plasmon coupling regime, the impact of exciton-phonon interaction on optical bistability will become obvious. The scheme proposed may be used for building optical switches and logic-gate devices for optical computing and quantum information processing.

  18. Hybrid dielectric waveguide spectroscopy of individual plasmonic nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Cuadra

    2017-07-01

    Full Text Available Plasmonics is a mature scientific discipline which is now entering the realm of practical applications. Recently, significant attention has been devoted to on-chip hybrid devices where plasmonic nanoantennas are integrated in standard Si3N4 photonic waveguides. Light in these systems is usually coupled at the waveguide apexes by using multiple objectives and/or tapered optical fibers, rendering the analysis of spectroscopic signals a complicated task. Here, we show how by using a grating coupler and a low NA objective, quantitative spectroscopic information similar to standard dark-field spectroscopy can be obtained at the single-nanoparticle level. This technology may be useful for enabling single-nanoparticle studies in non-linear excitation regimes and/or in complex experimental environments, thus enriching the toolbox of nanophotonic methods.

  19. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature’s far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings’ 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  20. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis.

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-28

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature's far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings' 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  1. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics.

    Science.gov (United States)

    Li, Xiyuan; Li, Wei; Guo, Xin; Lou, Jingyi; Tong, Limin

    2013-07-01

    We demonstrate all-fiber hybrid photon-plasmon circuits by integrating Ag nanowires with optical fibers. Relying on near-field coupling, we realize a photon-to-plasmon conversion efficiency up to 92% in a fiber-based nanowire plasmonic probe. Around optical communication band, we assemble an all-fiber resonator and a Mach-Zehnder interferometer (MZI) with Q-factor of 6 × 10(6) and extinction ratio up to 30 dB, respectively. Using the MZI, we demonstrate fiber-compatible plasmonic sensing with high sensitivity and low optical power.

  2. Faraday effect in hybrid magneto-plasmonic photonic crystals.

    Science.gov (United States)

    Caballero, B; García-Martín, A; Cuevas, J C

    2015-08-24

    We present a theoretical study of the Faraday effect in hybrid magneto-plasmonic crystals that consist of Au-Co-Au perforated membranes with a periodic array of sub-wavelength holes. We show that in these hybrid systems the interplay between the extraordinary optical transmission and the magneto-optical activity leads to a resonant enhancement of the Faraday rotation, as compared to purely ferromagnetic membranes. In particular, we determine the geometrical parameters for which this enhancement is optimized and show that the inclusion of a noble metal like Au dramatically increases the Faraday rotation over a broad bandwidth. Moreover, we show that the analysis of the Faraday rotation in these periodically perforated membranes provides a further insight into the origin of the extraordinary optical transmission.

  3. Hybrid Surface Plasmon Polariton Modes of Subwavelength Nanowire Resonators

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2015-01-01

    -localized gap plasmon mode are studied depending on the vacuum wavelength. In order to directly compare resonators, where metal and semiconductor nanowires are employed, we consider the two resonators, both including silver slab and magnesium fluoride gap region, as is shown in figure. The two compared......We perform Comsol simulations of two types of hybrid plasmonic resonator configurations, similar to those proposed for nanowire plasmonic laser in [1] and [2]. In both references the nanowire - based plasmonic resonators are studied, which overall sizes are larger than the wavelength in vacuum....... However, it is advantageous for the nanolaser to have subwavelength sizes at least in two dimensions. Therefore, we study the two configurations and the hybrid mode behavior in the case, where resonator sizes are smaller than the half of the wavelength in vacuum. First, we assume finite dimensions...

  4. Visualizing hybridized quantum plasmons in coupled nanowires

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jensen, Kristian Lund; Mortensen, N. Asger

    2013-01-01

    of the dynamical dielectric function, which is computed using time-dependent density functional theory (TDDFT). For freestanding wires, the energy of both surface and bulk plasmon modes deviate from the classical result for low wire radii and high momentum transfer due to effects of electron spill-out, nonlocal......˚ separation, this mode is replaced by a charge-transfer plasmon, which blue shifts with decreasing separation in agreement with experiment and marks the onset of the strong tunneling regime....

  5. Hybrid plasmonic waveguide in a metal V-groove

    Directory of Open Access Journals (Sweden)

    Zhao-xian Chen

    2014-01-01

    Full Text Available We propose and investigate a type of hybrid plasmonic waveguide in a metal V-groove. A high-permittivity nanowire was placed in the metal channel covered with a dielectric film of lower permittivity. Deeper sub-wavelength confinement and much longer propagation distance were achieved in comparison with conventional channel plasmonic waveguides. The overall performance was improved as compared with the conventional hybrid plasmonic structure based on a flat metal surface. Finite element analysis showed that both the mode propagation and field profile can be adjusted by changing the nanowire radius and film thickness. Some benefits, such as a reduced scattering loss caused by the surface roughness, are also expected owing to the unique mode profile. The proposed approach has potential for application in high-level photonic integration.

  6. Long-range hybrid ridge and trench plasmonic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yusheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-23

    We report a class of long-range hybrid plasmon polariton waveguides capable of simultaneously achieving low propagation loss and tight field localization at telecommunication wavelength. The symmetric (quasi-symmetric) hybrid configurations featuring high-refractive-index-contrast near the non-uniform metallic nanostructures enable significantly improved optical performance over conventional hybrid waveguides, exhibiting considerably longer propagation distances and dramatically enhanced figure of merits for similar degrees of confinement. Compared to their traditional long-range plasmonic counterparts, the proposed hybrid waveguides put much less stringent requirements on index-matching conditions, demonstrating nice performance under a wide range of physical dimensions and robust characteristics against certain fabrication imperfections. Studies concerning crosstalk between adjacent identical waveguides further reveal their potential for photonic integrations. In addition, alternative configurations with comparable guiding properties to the structures in our case studies are also proposed, which can potentially serve as attractive prototypes for numerous high-performance nanophotonic components.

  7. Hybrid plasmonic waveguides formed by metal coating of dielectric ridges

    DEFF Research Database (Denmark)

    Zenin, Volodymyr; Choudhury, Sajid; Saha, Soham

    2017-01-01

    Bound hybrid plasmon-polariton modes supported by waveguides, which are formed by gold coating of ridges etched into a silica substrate, are analyzed using numerical simulations and investigated experimentally using near-field microscopy at telecom wavelengths (1425-1625 nm). Drastic modification...

  8. Spatially Probed Plasmonic Photothermic Nanoheater Enhanced Hybrid Polymeric-Metallic PVDF-Ag Nanogenerator.

    Science.gov (United States)

    Liow, Chi Hao; Lu, Xin; Tan, Chuan Fu; Chan, Kwok Hoe; Zeng, Kaiyang; Li, Shuzhou; Ho, Ghim Wei

    2018-02-01

    Surface plasmon-based photonics offers exciting opportunities to enable fine control of the site, span, and extent of mechanical harvesting. However, the interaction between plasmonic photothermic and piezoresponse still remains underexplored. Here, spatially localized and controllable piezoresponse of a hybrid self-polarized polymeric-metallic system that correlates to plasmonic light-to-heat modulation of the local strain is demonstrated. The piezoresponse is associated to the localized plasmons that serve as efficient nanoheaters leading to self-regulated strain via thermal expansion of the electroactive polymer. Moreover, the finite-difference time-domain simulation and linear thermal model also deduce the local strain to the surface plasmon heat absorption. The distinct plasmonic photothermic-piezoelectric phenomenon mediates not only localized external stimulus light response but also enhances dynamic piezoelectric energy harvesting. The present work highlights a promising surface plasmon coordinated piezoelectric response which underpins energy localization and transfer for diversified design of unique photothermic-piezotronic technology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ultrashort hybrid metal-insulator plasmonic directional coupler.

    Science.gov (United States)

    Noghani, Mahmoud Talafi; Samiei, Mohammad Hashem Vadjed

    2013-11-01

    An ultrashort plasmonic directional coupler based on the hybrid metal-insulator slab waveguide is proposed and analyzed at the telecommunication wavelength of 1550 nm. It is first analyzed using the supermode theory based on mode analysis via the transfer matrix method in the interaction region. Then the 2D model of the coupler, including transition arms, is analyzed using a commercial finite-element method simulator. The hybrid slab waveguide is composed of a metallic layer of silver and two dielectric layers of silica (SiO2) and silicon (Si). The coupler is optimized to have a minimum coupling length and to transfer maximum power considering the layer thicknesses as optimization variables. The resulting coupling length in the submicrometer region along with a noticeable power transfer efficiency are advantages of the proposed coupler compared to previously reported plasmonic couplers.

  10. Hybridized plasmon in an asymmetric cut-wire-pair structure

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Nguyen Thanh [Vietnamese Military Academy of Science and Technology, Hanoi (Viet Nam); Hanyang University, Seoul (Korea, Republic of); Rhee, Joo Yull [Sungkyunkwan University, Suwon (Korea, Republic of); Park, Jin Woo; Lee, Young Pak [Hanyang University, Seoul (Korea, Republic of)

    2010-12-15

    In this report, we discuss an electromagnetic analog of the molecular-orbital theory for metamaterial structures. We show that the electromagnetic responses of a metamagnetic structure consisting of paired cut-wires can be well understood by using the plasmon-hybridization mechanism. The simulated transmission spectra of the asymmetric cut-wire-pair structure, which were obtained utilizing the transfer-matrix method, strongly support our suggestion.

  11. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  12. Nanostructure induced changes in lifetime and enhanced second-harmonic response of organic-plasmonic hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Leißner, Till [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark); Kostiučenko, Oksana; Rubahn, Horst-Günter; Fiutowski, Jacek, E-mail: fiutowski@mci.sdu.dk [NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400 Sønderborg (Denmark); Brewer, Jonathan R. [Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense (Denmark)

    2015-12-21

    In this letter we show that the optical response of organic nanofibers, grown from functionalized para-quaterphenylene molecules, can be controlled by forming organic-plasmonic hybrid systems. The interaction between nanofibers and supporting regular arrays of nanostructures leads to a strongly enhanced second harmonic response. At the same time, the fluorescence lifetime of the nanofibers is reduced from 0.32 ns for unstructured gold films to 0.22 ns for gold nanosquare arrays, demonstrating efficient organic–plasmonic interaction. To study the origin of these effects, we applied two-photon laser scanning microscopy and fluorescence lifetime imaging microscopy. These findings provide an effective approach for plasmon-enhanced second-harmonic generation at the nanoscale, which is attractive for nanophotonic circuitry.

  13. A hybrid plasmonic microresonator with high quality factor and small mode volume

    International Nuclear Information System (INIS)

    Lu, Qijing; Chen, Daru; Wu, Genzhu; Peng, Baojin; Xu, Jiancheng

    2012-01-01

    We propose a novel hybrid plasmonic microcavity which is composed of a silver nanoring and a silica toroidal microcavity. The hybrid mode of the proposed hybrid plasmonic microcavity due to the coupling between the surface plasmon polaritons (SPPs) and the dielectric mode is demonstrated with a high quality factor (>1000) and an ultrasmall mode volume (∼0.8 μm 3 ). This microcavity shows great potential in fundamental studies of nonlinear optics and cavity quantum electrodynamics (cQED) and applications in low-threshold plasmonic microlasers. (paper)

  14. Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces

    DEFF Research Database (Denmark)

    Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham

    2017-01-01

    A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...

  15. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M

    2014-01-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  16. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    OpenAIRE

    Runyu Yan; Min Chen; Han Zhou; Tian Liu; Xingwei Tang; Ke Zhang; Hanxing Zhu; Jinhua Ye; Di Zhang; Tongxiang Fan

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the fi...

  17. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.

    Science.gov (United States)

    Xiao, Ting-Hui; Cheng, Zhenzhou; Goda, Keisuke

    2017-06-16

    Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.

  18. A hybrid plasmonic waveguide terahertz quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Degl' Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-02-23

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.

  19. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.

    Science.gov (United States)

    Alvarez, Mar; Fariña, David; Escuela, Alfonso M; Sendra, Jose Ramón; Lechuga, Laura M

    2013-01-01

    We have developed a hybrid platform that combines two well-known biosensing technologies based on quite different transducer principles: surface plasmon resonance and nanomechanical sensing. The new system allows the simultaneous and real-time detection of two independent parameters, refractive index change (Δn), and surface stress change (Δσ) when a biomolecular interaction takes place. Both parameters have a direct relation with the mass coverage of the sensor surface. The core of the platform is a common fluid cell, where the solution arrives to both sensor areas at the same time and under the same conditions (temperature, velocity, diffusion, etc.).The main objective of this integration is to achieve a better understanding of the physical behaviour of the transducers during sensing, increasing the information obtained in real time in one single experiment. The potential of the hybrid platform is demonstrated by the detection of DNA hybridization.

  20. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems.

    Science.gov (United States)

    Badalyan, S M; Shylau, A A; Jauho, A P

    2017-09-22

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q. Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.

  1. Quantum optical properties in plasmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia)

    2015-04-24

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  2. Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ajmal, Muhammad; Siddiq, Mohammad [Quaid-I-Azam University, Islamabad (Pakistan); Farooqi, Zahoor Hussain [University of the Punjab, Lahore (Pakistan)

    2013-11-15

    Multi-responsive poly(N-isopropylacrylamide-methacrylic acid-acrylamide) [P(NIPAM-MAA-AAm)] copolymer microgel was prepared by free radical emulsion polymerization. Silver nanoparticles were fabricated inside the microgel network by in-situ reduction of silver nitrate. Swelling and deswelling behavior of the pure microgels was studied under various conditions of pH and temperature using dynamic light scattering. A red shift was observed in surface plasmon resonance wavelength of Ag nanoparticles with pH induced swelling of hybrid microgel. The catalytic activity of the hybrid system was investigated by monitoring the reduction of p-nitrophenol under different conditions of temperature and amount of catalysts. For this catalytic reaction a time delay of 8 to 10min was observed at room temperature, which was reduced to 2 min at high temperature due to swelling of microgels, which facilitated diffusion of reactants to catalyst surface and increased rate of reaction.

  3. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    Science.gov (United States)

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  4. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  5. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    International Nuclear Information System (INIS)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-01-01

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field

  6. Graphene-Plasmonic Hybrid Platform for Label-Free SERS Biomedical Detection

    Science.gov (United States)

    Wang, Pu

    Surface Enhanced Raman Scattering (SERS) has attracted explosive interest for the wealth of vibrational information it provides with minimal invasive effects to target analyte. Nanotechnology, especially in the form of noble metal nanoparticles exhibit unique electromagnetic and chemical characteristics that are explored to realize ultra-sensitive SERS detection in chemical and biological analysis. Graphene, atom-thick carbon monolayer, exhibits superior chemical stability and bio-compatibility. A combination of SERS-active metal nanostructures and graphene will create various synergies in SERS. The main objective of this research was to exploit the applications of the graphene-Au tip hybrid platform in SERS. The hybrid platform consists of a periodic Au nano-pyramid substrate to provide reproducible plasmonic enhancement, and the superimposed monolayer graphene sheet, serving as "built-in" Raman marker. Extensive theoretical and experimental studies were conducted to determine the potentials of the hybrid platform as SERS substrate. Results from both Finite-Domain Time-Domain (FDTD) numerical simulation and Raman scattering of graphene suggested that the hybrid platform boosted a high density of hotspots yielding 1000 times SERS enhancement of graphene bands. Ultra-high sensitivity of the hybrid platform was demonstrated by bio-molecules including dye, protein and neurotransmitters. Dopamine and serotonin can be detected and distinguished at 10-9 M concentration in the presence of human body fluid. Single molecule detection was obtained using a bi-analyte technique. Graphene supported a vibration mode dependent SERS chemical enhancement of ˜10 to the analyte. Quantitative evaluation of hotspots was presented using spatially resolved Raman mapping of graphene SERS enhancement. Graphene plays a crucial role in quantifying SERS hotspots and paves the path for defining SERS EF that could be universally applied to various SERS systems. A reproducible and statistically

  7. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles

    OpenAIRE

    Sotiriou, Georgios A.; Hirt, Ann M.; Lozach, Pierre-Yves; Teleki, Alexandra; Krumeich, Frank; Pratsinis, Sotiris E.

    2011-01-01

    Hybrid plasmonic-magnetic nanoparticles possess properties that are attractive in bioimaging, targeted drug delivery, in vivo diagnosis and therapy. The stability and toxicity, however, of such nanoparticles challenge their safe use today. Here, biocompatible, SiO2-coated, Janus-like Ag/Fe2O3 nanoparticles are prepared by one-step, scalable flame aerosol technology. A nanothin SiO2 shell around these multifunctional nanoparticles leaves intact their morphology, magnetic and plasmonic properti...

  8. A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction

    Science.gov (United States)

    Miao, Jie; Wang, Jingsheng; Guo, Jinyang; Gao, Huiguang; Han, Kun; Jiang, Chengmin; Miao, Peng

    2016-08-01

    In this work, a novel colorimetric strategy for miRNA analysis is proposed based on hybridization chain reaction (HCR)-mediated localized surface plasmon resonance (LSPR) variation of silver nanoparticles (AgNPs). miRNA in the sample to be tested is able to release HCR initiator from a solid interface to AgNPs colloid system by toehold exchange-mediated strand displacement, which then triggers the consumption of fuel strands with single-stranded tails for HCR. The final produced long nicked double-stranded DNA loses the ability to protect AgNPs from salt-induced aggregation. The stability variation of the colloid system can then be monitored by recording corresponding UV-vis spectrum and initial miRNA level is thus determined. This sensing system involves only four DNA strands which is quite simple. The practical utility is confirmed to be excellent by employing different biological samples.

  9. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  10. Plasmonics

    DEFF Research Database (Denmark)

    Berini, P.; Bozhevolnyi, Sergey I.; Kim, D. S.

    2016-01-01

    referred to as “extraordinary optical transmission.” Surface plasmons are intimately involved in the response of “metamaterials” and “metasurfaces” constructed from deep subwavelength metallic features, producing esoteric macroscopic properties such as a negative refractive index, or a permittivity...... or localized at metal nanostructures. Light suitable for exciting surface plasmons is typically within or near the visible but may extend into the infrared and ultraviolet regions. Metallic structures that support surface plasmons are highly varied, including planar arrangements of metal films, stripes...

  11. Dephasing of LO-phonon-plasmon hybrid modes in n-type GaAs

    Science.gov (United States)

    Vallée, F.; Ganikhanov, F.; Bogani, F.

    1997-11-01

    The relaxation dynamics of coherent phononlike LO-phonon-plasmon hybrid modes is investigated in n-doped GaAs using an infrared time-resolved coherent anti-Stokes Raman scattering technique. Measurements performed for different crystal temperatures in the range 10-300 K as a function of the electron density injected by doping show a large reduction of the hybrid mode dephasing time compared to the bare LO-phonon one for densities larger than 1016 cm-3. The results are interpreted in terms of coherent decay of the LO-phonon-plasmon mixed mode in the weak-coupling regime and yield information on the plasmon and electron relaxation. The estimated average electron momentum relaxation times are smaller than those deduced from Hall mobility measurements, as expected from our theoretical model.

  12. Role of electron back action on photons in hybridizing double-layer graphene plasmons with localized photons

    Science.gov (United States)

    Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey

    2018-05-01

    In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.

  13. Collective phenomena in photonic, plasmonic and hybrid structures.

    Science.gov (United States)

    Boriskina, Svetlana V; Povinelli, Michelle; Astratov, Vasily N; Zayats, Anatoly V; Podolskiy, Viktor A

    2011-10-24

    Preface to a focus issue of invited articles that review recent progress in studying the fundamental physics of collective phenomena associated with coupling of confined photonic, plasmonic, electronic and phononic states and in exploiting these phenomena to engineer novel devices for light generation, optical sensing, and information processing. © 2011 Optical Society of America

  14. Electromagnetically induced transparency in a plasmonic system comprising of three metal-dielectric-metal parallel slabs: Plasmon- Plasmon interaction

    Directory of Open Access Journals (Sweden)

    M Moradbeigi

    2018-02-01

    Full Text Available In this paper, electromagnetically induced transparency (EIT in a system consisting of associated arrays of parallel slabs (metal-dielectric-metal is studied. The transmission coefficient, the reflection coefficient and the absorption coefficient as function of the incident light frequency by using the transfer matrix method is calculated and numerically discussed. Influence of the thickness of slab and the type of plasmonic metal on the induced transparency has been investigated. It is shown with decreasing the thickness of intermediate slab of length  (dielectric slab, the induced transparency increases due to the strong plasmon–plasmon couplings.

  15. Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform.

    Science.gov (United States)

    Nielsen, Michael P; Lafone, Lucas; Rakovich, Aliaksandra; Sidiropoulos, Themistoklis P H; Rahmani, Mohsen; Maier, Stefan A; Oulton, Rupert F

    2016-02-10

    We present an experimental demonstration of a new class of hybrid gap plasmon waveguides on the silicon-on-insulator (SOI) platform. Created by the hybridization of the plasmonic mode of a gap in a thin metal sheet and the transverse-electric (TE) photonic mode of an SOI slab, this waveguide is designed for efficient adiabatic nanofocusing simply by varying the gap width. For gap widths greater than 100 nm, the mode is primarily photonic in character and propagation lengths can be many tens of micrometers. For gap widths below 100 nm, the mode becomes plasmonic in character with field confinement predominantly within the gap region and with propagation lengths of a few microns. We estimate the electric field intensity enhancement in hybrid gap plasmon waveguide tapers at 1550 nm by three-photon absorption of selectively deposited CdSe/ZnS quantum dots within the gap. Here, we show electric field intensity enhancements of up to 167 ± 26 for a 24 nm gap, proving the viability of low loss adiabatic nanofocusing on a commercially relevant photonics platform.

  16. Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers

    International Nuclear Information System (INIS)

    Schneider, T.; Jahr, N.; Jatschka, J.; Csaki, A.; Stranik, O.; Fritzsche, W.

    2013-01-01

    The effect of DNA–DNA interaction on the localized surface plasmon resonance of single 80 nm gold nanoparticles is studied. Therefore, both the attachment of the capture DNA strands at the particle surface and the sequence-specific DNA binding (hybridization) of analyte DNA to the immobilized capture DNA is subject of investigations. The influence of substrate attachment chemistry, the packing density of DNA as controlled by an assisting layer of smaller molecules, and the distance as increased by a linker on the LSPR efficiency is investigated. The resulting changes in signal can be related to a higher hybridization efficiency of the analyte DNA to the immobilized capture DNA. The subsequent attachment of additional DNA strands to this system is studied, which allows for a multiple step detection of binding and an elucidation of the resulting resonance shifts. The detection limit was determined for the utilized DNA system by incubation with various concentration of analyte DNA. Although the method allows for a marker-free detection, we show that additional markers such as 20 nm gold particle labels increase the signal and thereby the sensitivity significantly. The study of resonance shift for various DNA lengths revealed that the resonance shift per base is stronger for shorter DNA molecules (20 bases) as compared to longer ones (46 bases).

  17. Dynamical class of a two-dimensional plasmonic Dirac system.

    Science.gov (United States)

    Silva, Érica de Mello

    2015-10-01

    A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.

  18. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  19. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  20. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  1. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  2. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  3. Polarization dependence of the metamagnetic resonance of cut-wire-pair structure by using plasmon hybridization

    International Nuclear Information System (INIS)

    Dung, Nguyen Van; Yoo, Young Joon; Lee, Young Pak; Tung, Nguyen Thanh; Tung, Bui Son; Lam, Vu Dinh

    2014-01-01

    The influence of lattice constants on the electromagnetic behavior of a cut-wire-pair (CWP) structure has been elucidated. In this report, we performed both simulations and experiments to determine the influence of polarization on the metamagnetic resonance of the CWP structure. The key finding is the result of an investigation on the plasmon hybridization between the two CWs, which showed that the polarization of the incident wave was affected. Good agreement between numerical simulation and measurement is achieved.

  4. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity

    Science.gov (United States)

    Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas

    2018-03-01

    A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.

  5. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  6. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes

    International Nuclear Information System (INIS)

    McCune, Mathew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E; Manson, Steven T

    2011-01-01

    Considering the photoionization of a two-layer fullerene-onion system, C 60 -C 240 , strong plasmonic couplings between the nested fullerenes are demonstrated. The resulting hybridization produces four cross-over plasmons generated from the bonding and antibonding mixing of excited charge clouds of individual fullerenes. This suggests the possibility of designing buckyonions exhibiting plasmon resonances with specified properties and may motivate future research to modify the resonances with encaged atoms, molecules or clusters. (fast track communication)

  7. Plasmon-mediated Energy Conversion in Metal Nanoparticle-doped Hybrid Nanomaterials

    Science.gov (United States)

    Dunklin, Jeremy R.

    Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was obtained between measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two current material limitations for efficient light harvesting: low monolayer content and lack of optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced broadband optical extinction, and energetic electron injection were probed using a combination of spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and electronic energy supports design and implementation into several emerging sustainable water and energy applications.

  8. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  9. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer

    Science.gov (United States)

    Guo, Jiaohan; Black, Kevin; Hu, Jiawen; Singh, Mahi

    2018-05-01

    We developed a theory for the fluorescence (FL) for quantum emitter and double metallic nanoshell dimer hybrids using the density matrix method. The dimer is made from two identical double metallic nanoshells, which are made of a dielectric core, a gold metallic shell and a dielectric spacer layer. The quantum emitters are deposited on the surface of the spacer layers of the dimers due to the electrostatic absorptions. We consider that dimer hybrids are surrounded by biological cells. This can be achieved by injecting them into human or animal cells. The surface plasmon polaritons (SPP) are calculated for the dimer using Maxwell’s equations in the static wave approximation. The calculated SPP energy agrees with experimental data from Zhai et al (2017 Plasmonics 12 263) for the dimer made from a silica core, a gold metallic nanoshell and a silica spacer layer. We have also obtained an analytical expression of the FL using the density matrix method. We compare our theory with FL experimental data from Zhai et al (2017 Plasmonics 12 263) where the FL spectrum was measured by varying the thickness of the spacer layer from 9 nm to 40 nm. A good agreement between theory and experiment is found. We have shown that the enhancement of the FL increases as the thickness of the spacer layer decreases. We have also found that the enhancement of the FL increases as the distance between the double metallic nanoshells in the dimer decreases. These are interesting findings which are consistent with the experiments of Zhai et al (2017 Plasmonics 12 263) and can be used to control the FL enhancement in the FL-based biomedical imaging and cancer treatment. These interesting findings may also be useful in the fabrication of nanosensors and nanoswitches for applications in medicine.

  10. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    KAUST Repository

    Wang, Zhuo

    2016-05-06

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  11. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    KAUST Repository

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A.; Yang, Joel K. W.; Qiu, Cheng-Wei; Wee, Andrew T. S.

    2016-01-01

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  12. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot.

    Science.gov (United States)

    Koshelev, Alexander; Munechika, Keiko; Cabrini, Stefano

    2017-11-01

    In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.

  13. Systems for hybrid cars

    Science.gov (United States)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  14. New hybrid systems

    International Nuclear Information System (INIS)

    Bernardin, B.

    2001-01-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  15. Hybrid system concepts

    International Nuclear Information System (INIS)

    Landeyro, P.A.

    1995-01-01

    Hybrid systems studied for fissile material production, were reconsidered for minor actinide and long-lived fission product destruction as alternative to the traditional final disposal of nuclear waste. Now there are attempts to extend the use of the concepts developed for minor actinide incineration to plutonium burning. The most promising hybrid system concept considers fuel and target both as liquids. From the results obtained, the possibility to adopt composite targets seems the most promising solution, but still there remains the problem of Pu production, not acceptable in a burning system. This kind of targets can be mainly used for fissile material production, while for accelerator driven burners it is most convenient to use a liquid lead target. The most suitable solvent is heavy water for minor actinide annihilation in the blanket of a hybrid system. Due to the criticality conditions and the necessity of electric energy production, the blanket using plutonium dissolved in molten salts is the most convenient one. (author)

  16. Deep-subwavelength light routing in nanowire-loaded surface plasmon polariton waveguides: an alternative to the hybrid guiding scheme

    International Nuclear Information System (INIS)

    Bian, Yusheng; Gong, Qihuang

    2013-01-01

    Nanowire-loaded surface plasmon polariton waveguide is an extremely simple structure that can be naturally formed by directly dropping a dielectric cylinder onto a metallic substrate. However, despite the substantial emphasis devoted to its hybrid plasmonic counterparts, this waveguiding structure has been paid little attention to so far. Here in this paper, through comprehensive numerical analysis, we reveal that such a configuration can be leveraged to achieve deep-subwavelength field confinement with mode area more than one order of magnitude smaller than that of the conventional hybrid waveguide, while maintaining a moderate attenuation with propagation distance over tens of microns. Two-dimensional parameter mapping concerning physical dimension, shape and material of the nanowire as well as the refractive index of the cladding has disclosed the wide-range existence nature of this plasmonic mode and the feasibility to further balance its confinement and loss. (paper)

  17. Hybrid Techniques for Hybrid Systems

    NARCIS (Netherlands)

    Krilavicius, T.

    2006-01-01

    Computer controlled systems are almost omnipresent nowadays. We expect such systems to function properly at any time we need them. The malfunctioning of home electronics just irritates us, but glitches in a car, power plant or medical support system may threaten life, and faults in nuclear missile

  18. An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure

    Science.gov (United States)

    Sun, Chengwei; Rong, Kexiu; Gan, Fengyuan; Chu, Saisai; Gong, Qihuang; Chen, Jianjun

    2017-09-01

    Polarization beam splitters (PBSs) are one of the key components in the integrated photonic circuits. To increase the integration density, various complex hybrid plasmonic structures have been numerically designed to shrink the footprints of the PBSs. Here, to decrease the complexity of the small hybrid structures and the difficulty of the hybrid micro-nano fabrications, the radiation losses are utilized to experimentally demonstrate an ultra-small, broadband, and efficient PBS in a simple bending hybrid plasmonic waveguide structure. The hybrid plasmonic waveguide comprising a dielectric strip on the metal surface supports both the transverse-magnetic (TM) and transverse-electric (TE) waveguide modes. Because of the different field confinements, the TE waveguide mode has larger radiation loss than the TM waveguide mode in the bending hybrid strip waveguide. Based on the different radiation losses, the two incident waveguide modes of orthogonal polarization states are efficiently split in the proposed structure with a footprint of only about 2.2 × 2.2 μm2 on chips. Since there is no resonance or interference in the splitting process, the operation bandwidth is as broad as Δλ = 70 nm. Moreover, the utilization of the strongly confined waveguide modes instead of the bulk free-space light (with the spot size of at least a few wavelengths) as the incident source considerably increases the coupling efficiency, resulting in a low insertion loss of <3 dB.

  19. Plasmon hybridization in silver nanoislands as semishell arrays coupled to a thin metallic film

    DEFF Research Database (Denmark)

    Maaroof, Abbas; Nygaard, Jens Vinge; Sutherland, Duncan S

    2011-01-01

    We obtained experimentally strong plasmon interactions between localized surface plasmon with delocalized surface plasmon polaritons in a new nanosystem of silver semishells island film arrays arranged as a closed-packing structure coupled to an adjacent thin silver film. We show that plasmon int...

  20. Diversiform hybrid-polarization surface plasmon polaritons in a dielectric–metal metamaterial

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2017-04-01

    Full Text Available Hybrid-polarization surface plasmon polaritons (HSPPs at the interface between an isotropic medium and a one-dimensional metal–dielectric metamaterial (MM were discussed, where the metal-layer permittivity was described with the improved Drude model. From the obtained dispersion equations, we predicated five types of HSPPs. One type is the Dyakonov-like surface polariton and another type is the tradition-like surface polarton. The others are new types of HSPPs. We establish a numerical simulation method of the attenuated total reflection (ATR measurement to examine these HSPPs. The results from the ATR spectra are consistent with those from the dispersion equations and indicate the different polarization features of these HSPPs. The numerical results also demonstrate that the observation of each type of HSPPs requires different conditions dictated by the material parameters and the polarization direction of incident light used in the ATR spectra. These results may further widen the space of potential applications of surface plasmon polaritons.

  1. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

    Science.gov (United States)

    Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong

    2016-01-01

    Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting. PMID:26753764

  2. Hybrid rib-slot-rib plasmonic waveguide with deep-subwavelength mode confinement and long propagation length

    Directory of Open Access Journals (Sweden)

    Kai Zheng

    2016-08-01

    Full Text Available We propose a hybrid plasmonic waveguide where a combined rib-slot-rib structure is added on the metal substrate within a low-index gap region. The optical properties of the quasi-TM fundamental mode are numerically calculated using the finite element method. Compared to the traditional hybrid plasmonic waveguide, our designed waveguiding structure can support modes with tighter confinement and longer propagation length, by properly adjusting the geometry of the rib-slot-rib structure and the gap height. In details, it can provide the hybrid mode with mode area λ2/12000 and reasonable propagation distance 23.78 μm, simultaneously. Its excellent optical performance can facilitate potential applications in ultra-compact nanophotonic devices and circuits.

  3. Exciton emission from bare and hybrid plasmonic GaN nanorods

    Science.gov (United States)

    Mohammadi, Fatemesadat; Kunert, Gerd; Hommel, Detlef; Ge, Jingxuan; Duscher, Gerd; Schmitzer, Heidrun; Wagner, Hans Peter

    We study the exciton emission of hybrid gold nanoparticle/Alq3 (aluminiumquinoline)/wurtzite GaN nanorods. GaN nanorods of 1.5 μm length and 250 nm diameter were grown by plasma assisted MBE. Hybrid GaN nanorods were synthesized by organic molecular beam deposition. Temperature and power dependent time integrated (TI) and time resolved (TR) photoluminescence (PL) measurements were performed on bare and hybrid structures. Bare nanorods show donor (D0,X) and acceptor bound (A0,X) exciton emission at 3.473 eV and at 3.463 eV, respectively. TR-PL trace modeling reveal lifetimes of 240 ps and 1.4 ns for the (D0,X) and (A0,X) transition. 10 nm gold coated GaN nanorods show a significant PL quenching and (D0,X) lifetime shortening which is tentatively attributed to impact ionization of (D0,X) due to hot electron injection from the gold nanoparticles. This is supported by electron energy loss spectroscopy that shows a redshift of a midgap state transition indicating a reduction of a preexisting band-bending at the nanorod surface due to positive charging of the gold nanoparticles. Inserting a nominally 5 nm thick Alq3 spacer between the nanorod and the gold reduces the PL quenching and lifetime shortening. Plasmonic nanorods with a 30 nm thick Alq3 spacer reveal lifetimes which are nearly identical to uncoated GaN nanorods.

  4. Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing

    Science.gov (United States)

    Butt, M. A.; Khonina, S. N.; Kazanskiy, N. L.

    2018-05-01

    A highly sensitive refractive index sensor based on an integrated hybrid plasmonic waveguide (HPWG) and a Metal-Insulator-Metal (M-I-M) micro-ring resonator is presented. In our design, there are two slot-waveguide-based micro-rings that encircle a gold disc. The outer slot WG is formed by the combination of Silicon-Air-Gold ring and the inner slot-waveguide is formed by Gold ring-Air-Gold disc. The slot-waveguide rings provide an interaction length sufficient to accumulate a detectable wavelength shift. The transmission spectrum and electric field distribution of this sensor structure are simulated using Finite Element Method (FEM). The sensitivity of this micro-ring resonator is achieved at 800 nm/RIU which is about six times higher than that of the conventional Si ring with the same geometry. Our proposed sensor design has a potential to find further applications in biomedical science and nano-photonic circuits.

  5. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  6. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  7. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time......-derivatives in modelling continuous-time dynamics. The generalized differential action has an intuitively appealing predicate transformer semantics, which we show to be both conjunctive and monotonic. In addition, we show that differential actions blend smoothly with conventional actions in action systems, even under...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...

  8. Dynamic Control of Plasmon-Exciton Coupling in Au Nanodisk–J-Aggregate Hybrid Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing; Juluri, Bala Krishna; Jensen, Linlin; Jensen, Lasse; Huang, Tony Jun

    2009-01-01

    We report the dynamic control of plasmon-exciton coupling in Au nanodisk arrays adsorbed with J-aggregate molecules by incident angle of light. The angle-resolved spectra of an array of bare Au nanodisks exhibit continuous shifting of localized surface plasmon resonances. This characteristic enables the production of real-time, controllable spectral overlaps between molecular and plasmonic resonances, and the efficient measurement of plasmon-exciton coupling as a function of wavelength with one or fewer nanodisk arrays. Experimental observations of varying plasmon-exciton coupling match with coupled dipole approximation calculations.

  9. Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field

    Science.gov (United States)

    Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.

    2018-02-01

    The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.

  10. Demonstration of Improved Charge Transfer in Graphene/Au Nanorods Plasmonic Hybrids Stabilized by Benzyl Thiol Linkers

    Directory of Open Access Journals (Sweden)

    Giuseppe Valerio Bianco

    2016-01-01

    Full Text Available Hybrids based on graphene decorated with plasmonic gold (Au nanostructures are being investigated as possible materials combination to add to graphene functionalities of tunable plasmon resonance and enhanced absorption at selected wavelength in the visible-near-infrared region of the spectrum. Here, we report a solution drop-casting approach for fabricating stable hybrids based on chemical vapor deposition (CVD graphene and Au nanorods, which are able to activate effective charge transfer from graphene. We demonstrate that CVD graphene functionalization by benzyl thiol (BZT provides the linker to strong anchoring, via S-Au bonds, Au nanorods to graphene. Optical measurements by spectroscopic ellipsometry give evidence of the introduction of plasmon resonances at 1.85 and 2.25 eV in the Au nanorods/BZT/graphene hybrids, which enable surface enhanced Raman scattering (SERS detection. Furthermore, an effective electron transfer from graphene to Au nanorods, resulting in an enhancement of p-type doping of graphene with a consequent decrease of its sheet resistance, is probed by Raman spectroscopy and corroborated by electrical measurements.

  11. A fast and accurate surface plasmon resonance system

    Science.gov (United States)

    Espinosa Sánchez, Y. M.; Luna Moreno, D.; Noé Arias, E.; Garnica Campos, G.

    2012-10-01

    In this work we propose a Surface Plasmon Resonance (SPR) system driven by Labview software which produces a fast, simple and accuracy measurements of samples. The system takes 2000 data in a range of 20 degrees in 20 seconds and 0.01 degrees of resolution. All the information is sent from the computer to the microcontroller as an array of bytes in hexadecimal format to be analyzed. Besides to using the system in SPR measurement is possible to make measurement of the critic angle, and Brewster angle using the Abeles method.

  12. A Hybrid Circuit for Spoof Surface Plasmons and Spatial Waveguide Modes to Reach Controllable Band-Pass Filters.

    Science.gov (United States)

    Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun

    2015-11-10

    We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.

  13. Effects of inter-fullerene π-band mixings in the photoexcitation of hybrid plasmons in the C60@C240 molecule

    Science.gov (United States)

    de, Rume; Madjet, Mohamed; Chakraborty, Himadri

    2013-05-01

    We perform a detailed study of the ground state electronic structure of a two-layer fullerene onion molecule C60@C240. Calculations are carried out in a quantum mechanical framework of local density approximation (LDA) where the onion's ion-core of sixty C4+ ions from C60 and two hundred and forty of those from C240 is smeared into a classical jellium distribution. Significant inter-fullerene mixing between the bands of single-node radial symmetry, the π-bands, is found. We then compute the photoionization from all the levels of the system using a time-dependent version of LDA at photon energies where the ionization is dominated by the inter-layer hybridization of collective plasmon resonances. It is determined, by comparing the isolated fullerene cross sections with the cross section of the onion system for both π and σ (having nodeless radial waves) symmetry, that the π-band mixing is predominantly responsible for the production of plasmon hybrids. Supported by NSF and DOE.

  14. Hybrid powertrain system

    Science.gov (United States)

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  15. Enhanced Plasmonic Biosensors of Hybrid Gold Nanoparticle-Graphene Oxide-Based Label-Free Immunoassay

    Science.gov (United States)

    Chiu, Nan-Fu; Chen, Chi-Chu; Yang, Cheng-Du; Kao, Yu-Sheng; Wu, Wei-Ren

    2018-05-01

    In this study, we propose a modified gold nanoparticle-graphene oxide sheet (AuNP-GO) nanocomposite to detect two different interactions between proteins and hybrid nanocomposites for use in biomedical applications. GO sheets have high bioaffinity, which facilitates the attachment of biomolecules to carboxyl groups and has led to its use in the development of sensing mechanisms. When GO sheets are decorated with AuNPs, they introduce localized surface plasmon resonance (LSPR) in the resonance energy transfer of spectral changes. Our results suggest a promising future for AuNP-GO-based label-free immunoassays to detect disease biomarkers and rapidly diagnose infectious diseases. The results showed the detection of antiBSA in 10 ng/ml of hCG non-specific interfering protein with dynamic responses ranging from 1.45 nM to 145 fM, and a LOD of 145 fM. Considering the wide range of potential applications of GO sheets as a host material for a variety of nanoparticles, the approach developed here may be beneficial for the future integration of nanoparticles with GO nanosheets for blood sensing. The excellent anti-interference characteristics allow for the use of the biosensor in clinical analysis and point-of-care testing (POCT) diagnostics of rapid immunoassay products, and it may also be a potential tool for the measurement of biomarkers in human serum.

  16. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide.

    Science.gov (United States)

    Chang, Ken-Wei; Huang, Chia-Chien

    2016-01-20

    We propose an ultracompact broadband polarization beam splitter (PBS) based on a combined hybrid plasmonic waveguide (HPW). The proposed PBS separates transverse-electric (TE) and transverse-magnetic (TM) modes using a bent lower HPW with vertical nanoscale gaps and a straight upper HPW with a horizontal nanoscale gap, respectively, without relying on an additional coupling region. This design considerably reduces the length of the PBS to the submicron scale (920 nm, the shortest PBS reported to date) while offering polarization extinction ratios (PERs) of ~19 dB (~18 dB) and insertion losses (ILs) of ~0.6 dB (~0.3 dB) for the TE (TM) mode over an extremely broad band of 400 nm (from λ = 1300 nm to 1700 nm, covering entirely second and third telecom windows). The length of the designed PBS can be reduced further to 620 nm while still offering PERs of 15 dB, realizing a densely photonic integrated circuit. Considering the fabrication tolerance, the designed PBS allows for large geometrical deviations of ± 20 nm while restricting PER variations to within 1 dB, except for those in the nanoscale gaps smaller than 10nm. Additionally, we also address the input and ouput coupling efficiencies of the proposed PBS.

  17. Ultracompact on-chip photothermal power monitor based on silicon hybrid plasmonic waveguides

    Directory of Open Access Journals (Sweden)

    Wu Hao

    2017-01-01

    Full Text Available We propose and demonstrate an ultracompact on-chip photothermal power monitor based on a silicon hybrid plasmonic waveguide (HPWG, which consists of a metal strip, a silicon core, and a silicon oxide (SiO2 insulator layer between them. When light injected to an HPWG is absorbed by the metal strip, the temperature increases and the resistance of the metal strip changes accordingly due to the photothermal and thermal resistance effects of the metal. Therefore, the optical power variation can be monitored by measuring the resistance of the metal strip on the HPWG. To obtain the electrical signal for the resistance measurement conveniently, a Wheatstone bridge circuit is monolithically integrated with the HPWG on the same chip. As the HPWG has nanoscale light confinement, the present power monitor is as short as ~3 μm, which is the smallest photothermal power monitor reported until now. The compactness helps to improve the thermal efficiency and the response speed. For the present power monitor fabricated with simple fabrication processes, the measured responsivity is as high as about 17.7 mV/mW at a bias voltage of 2 V and the power dynamic range is as large as 35 dB.

  18. Imaging Plasmon Hybridization of Fano Resonances via Hot-Electron-Mediated Absorption Mapping.

    Science.gov (United States)

    Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A

    2018-05-04

    The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.

  19. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  20. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  1. Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Ae; Jang, Sung Min; Kim, Sung June [School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742 (Korea, Republic of); Byun, Kyung Min [Department of Biomedical Engineering, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Kyujung; Kim, Donghyun [Program of Nanomedical Science and Technology, Yonsei University, Seoul 120-749 (Korea, Republic of); Ma, Kyungjae; Oh, Youngjin [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Sung Guk [College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 (United States); Shuler, Michael L, E-mail: kmbyun@khu.ac.kr [Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2010-09-03

    We demonstrated enhanced localized surface plasmon resonance (SPR) biosensing based on subwavelength gold nanoarrays built on a thin gold film. Arrays of nanogratings (1D) and nanoholes (2D) with a period of 200 nm were fabricated by electron-beam lithography and used for the detection of avian influenza DNA hybridization. Experimental results showed that both nanoarrays provided significant sensitivity improvement and, especially, 1D nanogratings exhibited higher SPR signal amplification compared with 2D nanohole arrays. The sensitivity enhancement is associated with changes in surface-limited reaction area and strong interactions between bound molecules and localized plasmon fields. Our approach is expected to improve both the sensitivity and sensing resolution and can be applicable to label-free detection of DNA without amplification by polymerase chain reaction.

  2. Modification of electric and magnetic dipole emission in anisotropic plasmonic systems.

    Science.gov (United States)

    Noginova, N; Hussain, R; Noginov, M A; Vella, J; Urbas, A

    2013-10-07

    In order to investigate the effects of plasmonic environments on spontaneous emission of magnetic and electric dipoles, we have studied luminescence of Eu³⁺ ions in close vicinity to gold nanostrip arrays. Significant changes in the emission kinetics, emission polarization, and radiation patterns have been observed in the wavelength range corresponding to the plasmonic resonance. The effect of the plasmonic resonance on the magnetic dipole transition ⁵D₀-->⁷F₁ is found to be very different from its effect on the electric dipole transitions. This makes Eu³⁺₋ containing complexes promising for mapping local distributions of magnetic and electric fields in metamaterials and plasmonic systems.

  3. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  4. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  5. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  6. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.

    Science.gov (United States)

    He, Yong; Zhu, Ka-Di

    2017-06-20

    In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP) and the excitons in semiconductor quantum dots (SQDs) in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  7. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    Directory of Open Access Journals (Sweden)

    Yong He

    2017-06-01

    Full Text Available In this paper, we review the investigation for the light-matter interaction between surface plasmon field in metal nanoparticle (MNP and the excitons in semiconductor quantum dots (SQDs in hybrid SQD-MNP system under the full quantum description. The exciton-plasmon interaction gives rise to the modified decay rate and the exciton energy shift which are related to the exciton energy by using a quantum transformation method. We illustrate the responses of the hybrid SQD-MNP system to external field, and reveal Fano effect shown in the absorption spectrum. We demonstrate quantum entanglement between two SQD mediated by surface plasmon field. In the absence of a laser field, concurrence of quantum entanglement will disappear after a few ns. If the laser field is present, the steady states appear, so that quantum entanglement produced will reach a steady-state entanglement. Because one of all optical pathways to induce Fano effect refers to the generation of quantum entangled states, It is shown that the concurrence of quantum entanglement can be obtained by observation for Fano effect. In a hybrid system including two MNP and a SQD, because the two Fano quantum interference processes share a segment of all optical pathways, there is correlation between the Fano effects of the two MNP. The investigations for the light-matter interaction in hybrid SQD-MNP system can pave the way for the development of the optical processing devices and quantum information based on the exciton-plasmon interaction.

  8. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  9. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...

  10. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  11. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Directory of Open Access Journals (Sweden)

    Chatdanai Lumdee

    2016-06-01

    Full Text Available The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  12. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    Science.gov (United States)

    Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa

    2017-01-01

    Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850

  13. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    Directory of Open Access Journals (Sweden)

    Raed Alharbi

    2017-01-01

    Full Text Available Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local sensitivity than a regular surface plasmon resonance (SPR sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection.

  14. Design of a hybrid silicon-plasmonic co-propagating coupler operating close to coherent perfect absorption

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Simone; Melloni, Andrea [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2016-04-28

    By hybrid integration of plasmonic and dielectric waveguide concepts, it is shown that nearly perfect coherent absorption can be achieved in a co-propagating coupler geometry. First, the operating principle of the proposed device is detailed in the context of a more general 2 × 2 lossy coupler formalism. Then, it is shown how to tune the device in a wide region of possible working points, its broadband operation, and the tolerance to fabrication uncertainties. Finally, a complete picture of the electromagnetic modes inside the hybrid structure is analyzed, shining light onto the potentials which the proposed device holds in view of classical and quantum signal processing, nonlinear optics, polarization control, and sensing.

  15. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    Science.gov (United States)

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-11-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics.

  16. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide.

    Science.gov (United States)

    Guan, Xiaowei; Wu, Hao; Shi, Yaocheng; Dai, Daoxin

    2014-01-15

    A novel polarization beam splitter (PBS) with an extremely small footprint is proposed based on a multimode interference (MMI) coupler with a silicon hybrid plasmonic waveguide. The MMI section, covered with a metal strip partially, is designed to achieve mirror imaging for TE polarization. On the other hand, for TM polarization, there is almost no MMI effect since the higher-order TM modes are hardly excited due to the hybrid plasmonic effect. With this design, the whole PBS including the 1.1 μm long MMI section as well as the output section has a footprint as small as ∼1.8 μm×2.5 μm. Besides, the fabrication process is simple since the waveguide dimension is relatively large (e.g., the input/output waveguides widths w ≥300 nm and the MMI width w(MMI)=800 nm). Numerical simulations show that the designed PBS has a broad band of ∼80 nm for an ER >10 dB as well as a large fabrication tolerance to allow a silicon core width variation of -30 nm<Δw<50 nm and a metal strip width variation of -200 nm<Δw(m)<0.

  17. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  18. Formal Description of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhou, Chaochen; Ji, Wang; Ravn, Anders P.

    1996-01-01

    A language to describe hybrid systems, i.e. networks of communicating discrete and continuous processes, is proposed. A semantics of the language is given in Extended Duration Calculus, a real-time interval logic with a proof system that allows reasoning in mathematical analysis about continuous ...

  19. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle

    Science.gov (United States)

    Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  20. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  1. On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform.

    Science.gov (United States)

    Luo, Ye; Chamanzar, Maysamreza; Apuzzo, Aniello; Salas-Montiel, Rafael; Nguyen, Kim Ngoc; Blaize, Sylvain; Adibi, Ali

    2015-02-11

    The enhancement and confinement of electromagnetic radiation to nanometer scale have improved the performances and decreased the dimensions of optical sources and detectors for several applications including spectroscopy, medical applications, and quantum information. Realization of on-chip nanofocusing devices compatible with silicon photonics platform adds a key functionality and provides opportunities for sensing, trapping, on-chip signal processing, and communications. Here, we discuss the design, fabrication, and experimental demonstration of light nanofocusing in a hybrid plasmonic-photonic nanotaper structure. We discuss the physical mechanisms behind the operation of this device, the coupling mechanisms, and how to engineer the energy transfer from a propagating guided mode to a trapped plasmonic mode at the apex of the plasmonic nanotaper with minimal radiation loss. Optical near-field measurements and Fourier modal analysis carried out using a near-field scanning optical microscope (NSOM) show a tight nanofocusing of light in this structure to an extremely small spot of 0.00563(λ/(2n(rmax)))(3) confined in 3D and an exquisite power input conversion of 92%. Our experiments also verify the mode selectivity of the device (low transmission of a TM-like input mode and high transmission of a TE-like input mode). A large field concentration factor (FCF) of about 4.9 is estimated from our NSOM measurement with a radius of curvature of about 20 nm at the apex of the nanotaper. The agreement between our theory and experimental results reveals helpful insights about the operation mechanism of the device, the interplay of the modes, and the gradual power transfer to the nanotaper apex.

  2. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  3. Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/Pt nanostructure

    Science.gov (United States)

    Liu, Chunxu; Zhang, Jisen; Chen, Yongyi; Jing, Pengtao; Zhang, Ligong; Zhao, Haifeng; Fu, Xihong; Wang, Lijun

    2018-02-01

    Photoluminescence (PL) and time-resolved spectroscopic studies on plasmonically coupled semiconductor nanoparticles (SNPs) have demonstrated the PL quenched and lifetime enhanced of SNPs in the presence of metal nanoparticles (MNPs). The hybrid colloidal CsPbBr3 perovskite SNPs/Pt MNPs (S-M) structures exhibit novel optical properties due to the synergetic interaction between the individual components. In hybrid S-M nanostructures colloidal chemistry incorporates SNP and MNP into a single unit resulting in the formation of plexciton (or excimon) which has now been established in a series of hybrid structures. The experimental results of femtosecond transient absorption (TA) spectroscopy based on the time-resolved pump-probe confirm the transformation from excitons to plexcitons. It was found that the experimental data can’t be well described by the theory based on conventional Fӧster resonance energy transfer (FRET). The differences between theory and experiment may be due to the missing some PbBr2 PL peaks, the reason will be revealed further.

  4. Plasmonic colour generation

    DEFF Research Database (Denmark)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.

    2016-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic...... colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances...... and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk–hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large...

  5. Constructing decidable hybrid systems with velocity bounds

    NARCIS (Netherlands)

    Belta, C.; Habets, L.C.G.J.M.

    2004-01-01

    In this paper, the question of bi-similarity between hybrid systems and their discrete quotients is studied from a new point of view. We consider two classes of hybrid systems: piecewise affine hybrid systems on simplices and piecewise multi-affine systems on multi-dimensional rectangles. Given a

  6. Hybrid expert system

    International Nuclear Information System (INIS)

    Tsoukalas, L.; Ikonomopoulos, A.; Uhrig, R.E.

    1991-01-01

    This paper presents a methodology that couples rule-based expert systems using fuzzy logic, to pre-trained artificial neutral networks (ANN) for the purpose of transient identification in Nuclear Power Plants (NPP). In order to provide timely concise, and task-specific information about the may aspects of the transient and to determine the state of the system based on the interpretation of potentially noisy data a model-referenced approach is utilized. In it, the expert system performs the basic interpretation and processing of the model data, and pre-trained ANNs provide the model. having access to a set of neural networks that typify general categories of transients, the rule based system is able to perform identification functions. Membership functions - condensing information about a transient in a form convenient for a rule-based identification system characterizing a transient - are the output of neural computations. This allows the identification function to be performed with a speed comparable to or faster than that of the temporal evolution of the system. Simulator data form major secondary system pipe rupture is used to demonstrate the methodology. The results indicate excellent noise-tolerance for ANN's and suggest a new method for transient identification within the framework of Fuzzy Logic

  7. Combinatorial Hybrid Systems

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Wisniewski, Rafal; Grunnet, Jacob Deleuran

    2008-01-01

    indicates for a given face the future simplex. In the suggested definition we allow nondeterminacy in form of splitting and merging of solution trajectories. The combinatorial vector field gives rise to combinatorial counterparts of most concepts from dynamical systems, such as duals to vector fields, flow......, flow lines, fixed points and Lyapunov functions. Finally it will be shown how this theory extends to switched dynamical systems and an algorithmic overview of how to do supervisory control will be shown towards the end....

  8. Low Intensity Post Process Tuning of Optical Properties of Polymer-Plasmonic Nanoparticle Hybrids

    Science.gov (United States)

    Mahoney, Clare; Park, Kyoungweon; Vaia, Richard

    The ability to fabricate flat optics with graded refractive indices through patterned plasmonic properties is attractive for compact photonics devices. Because simultaneous self-assembly of different nanostructures within a singular film is challenging, recent efforts have shifted towards post processing methods. For example, lasers coupled to surface plasmon resonances (SPR) can induce reshaping, but often times require intense power densities that damage the matrix. Herein, we demonstrate a lower temperature approach to nanostructure reshaping based on photo-thermal triggered local redox chemistry. Xe-lamp is shown to provide volume-conserved reshaping of gold nanrods (AuNRs) dispersed within polyvinyl alcohol . Within seconds, the aspect ratio can be reduced from 5.5 to 1 (>500 nm shift in the LSPR) while maintaining particle dispersion and alignment. Using the irradiation profile and matrix thermal diffusivity, gradient resolutions of 3 nm LSPR shift per micron are seen both spatially and through thickness. Furthermore, the polarization sensitivity of the LSPR enables polarization control in reshaping. Such scalable and energy efficient plasmonic post processes will be crucial to optical-nanocomposites into future technologies. National Academy of Sciences, NRC.

  9. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    gramians. Generalized gramians are the solutions to the observability and controllability Lyapunov inequalities. In the first framework the projection matrices are found based on the common generalized gramians. This framework preserves the stability of the original switched system for all switching...... is guaranteed to be preserved for arbitrary switching signal. To compute the common generalized gramians linear matrix inequalities (LMI’s) need to be solved. These LMI’s are not always feasible. In order to solve the problem of conservatism, the second framework is presented. In this method the projection......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...

  10. Generation of Localized Surface Plasmon Resonance Using Hybrid Au–Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2016-08-01

    Full Text Available In this study, the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs. First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77 by observing the wavelength to reveal the maximum extinction efficiency (λmax. We show that the adhesion of β-cyclodextrins (SH-β-CD on the hybrid Au–Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs.

  11. The Physics and Applications of a 3D Plasmonic Nanostructure

    Science.gov (United States)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  12. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  13. Investigating oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor method

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Zítová, Alice; Lachmanová, Markéta; Štepánek, J.; Králíková, Šárka; Liboska, Radek; Rejman, Dominik; Rosenberg, Ivan; Homola, Jiří

    2006-01-01

    Roč. 82, č. 4 (2006), s. 394-398 ISSN 0006-3525. [European Conference on the Spectroscopy of Biological Molecules - ECSBM 2005 /11./. Aschaffenburg, 03.09.2005-08.09.2005] R&D Projects: GA ČR(CZ) GA303/03/0249; GA ČR(CZ) GA102/03/0633; GA ČR(CZ) GA202/05/0628 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z40550506 Keywords : surface plasmon resonance * biosensors * optical sensors Subject RIV: BO - Biophysics Impact factor: 2.480, year: 2006

  14. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties

    OpenAIRE

    Du, Jingshan; Yu, Junjie; Xiong, Yalin; Lin, Zhuoqing; Zhang, Hui; Yang, Deren

    2014-01-01

    Anisotropic Au nanoparticles show unique localized surface plasmon resonance (LSPR) properties, which make it attractive in optical, sensing, and biomedical applications. In this contribution, we report a general and facile strategy towards aqueous synthesis of Au and M@Au (M = Pd, CuPt) hybrid nanostars by reducing HAuCl4 with ethanolamine in the presence of cetyltrimethylammonium bromide (CTAB). According to electron microscopic observation and spectral monitoring, we found that the layered...

  15. Observation of the X-mode anomalous absorption in the plasma filament associated with the two upper-hybrid-plasmon decay

    Directory of Open Access Journals (Sweden)

    Simonchik Leanid

    2017-01-01

    Full Text Available The strong anomalous absorption of the X-mode wave associated with the two upper-hybrid-plasmon decay in the plasma at density higher than the UH resonance value for the half frequency of the pump by means of optical and microwave diagnostics is observed. The threshold and growth rate of the anomalous phenomena are estimated and compared to the theory predictions. The low frequency waves excited in plasma are investigated using the enhanced scattering diagnostics.

  16. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  17. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  18. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  19. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  20. Controlling the shapes and sizes of metallic nanoantennas for detection of biological molecules using hybridization phase of plasmon resonances and photonic lattice modes

    Science.gov (United States)

    Gutha, Rithvik R.; Sharp, Christina; Wing, Waylin J.; Sadeghi, Seyed M.

    2018-02-01

    Chemical sensing based on Localized Surface Plasmonic Resonances (LSPR) and the ultra-sharp optical features of surface lattice resonances (SLR) of arrays of metallic nanoantennas have attracted much attention. Recently we studied biosensing based on the transition between LSPR and SLR (hybridization phase), demonstrating significantly higher refractive index sensitivity than each of these resonances individually. In this contribution we study the impact of size and shape of the metallic nanoantennas on the hybridization process and the way they influence application of this process for biosensing, wherein miniscule variation of the refractive index of the environment leads to dramatic changes in the spectral properties of the arrays.

  1. Hybrid context aware recommender systems

    Science.gov (United States)

    Jain, Rajshree; Tyagi, Jaya; Singh, Sandeep Kumar; Alam, Taj

    2017-10-01

    Recommender systems and context awareness is currently a vital field of research. Most hybrid recommendation systems implement content based and collaborative filtering techniques whereas this work combines context and collaborative filtering. The paper presents a hybrid context aware recommender system for books and movies that gives recommendations based on the user context as well as user or item similarity. It also addresses the issue of dimensionality reduction using weighted pre filtering based on dynamically entered user context and preference of context. This unique step helps to reduce the size of dataset for collaborative filtering. Bias subtracted collaborative filtering is used so as to consider the relative rating of a particular user and not the absolute values. Cosine similarity is used as a metric to determine the similarity between users or items. The unknown ratings are calculated and evaluated using MSE (Mean Squared Error) in test and train datasets. The overall process of recommendation has helped to personalize recommendations and give more accurate results with reduced complexity in collaborative filtering.

  2. Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor

    Science.gov (United States)

    Pal, Sarika; Verma, Alka; Raikwar, S.; Prajapati, Y. K.; Saini, J. P.

    2018-05-01

    In this paper, graphene-coated black phosphorus at the metal surface for the detection of DNA hybridization event is numerically demonstrated. The strategy consists of placing the sensing medium on top of black phosphorus-graphene-coated SPR which interfaces with phosphate-buffered saline solution carrying single-stranded DNA. Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The proposed sensor exhibits a sensitivity (125 ο/RIU), detection accuracy (0.95) and quality factor (13.62 RIU-1) for complementary DNA. In comparison with other reported papers, our suggested sensor provides much better performance. Thus, this label-free DNA detection platform should spur off new interest towards the use of black phosphorus-graphene-coated SPR interfaces.

  3. Plasmonic Landau damping in active environments

    Science.gov (United States)

    Thakkar, Niket; Montoni, Nicholas P.; Cherqui, Charles; Masiello, David J.

    2018-03-01

    Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we present an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our approach to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.

  4. Multi-scale theory-assisted nano-engineering of plasmonic-organic hybrid electro-optic device performance

    Science.gov (United States)

    Elder, Delwin L.; Johnson, Lewis E.; Tillack, Andreas F.; Robinson, Bruce H.; Haffner, Christian; Heni, Wolfgang; Hoessbacher, Claudia; Fedoryshyn, Yuriy; Salamin, Yannick; Baeuerle, Benedikt; Josten, Arne; Ayata, Masafumi; Koch, Ueli; Leuthold, Juerg; Dalton, Larry R.

    2018-02-01

    Multi-scale (correlated quantum and statistical mechanics) modeling methods have been advanced and employed to guide the improvement of organic electro-optic (OEO) materials, including by analyzing electric field poling induced electro-optic activity in nanoscopic plasmonic-organic hybrid (POH) waveguide devices. The analysis of in-device electro-optic activity emphasizes the importance of considering both the details of intermolecular interactions within organic electro-optic materials and interactions at interfaces between OEO materials and device architectures. Dramatic improvement in electro-optic device performance-including voltage-length performance, bandwidth, energy efficiency, and lower optical losses have been realized. These improvements are critical to applications in telecommunications, computing, sensor technology, and metrology. Multi-scale modeling methods illustrate the complexity of improving the electro-optic activity of organic materials, including the necessity of considering the trade-off between improving poling-induced acentric order through chromophore modification and the reduction of chromophore number density associated with such modification. Computational simulations also emphasize the importance of developing chromophore modifications that serve multiple purposes including matrix hardening for enhanced thermal and photochemical stability, control of matrix dimensionality, influence on material viscoelasticity, improvement of chromophore molecular hyperpolarizability, control of material dielectric permittivity and index of refraction properties, and control of material conductance. Consideration of new device architectures is critical to the implementation of chipscale integration of electronics and photonics and achieving the high bandwidths for applications such as next generation (e.g., 5G) telecommunications.

  5. Plasmon-enhanced Solar Fuel Production with Gold-metal Oxide Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    , provide new catalytic routes and expands the scope of solar photocatalysis. We prepare metal oxide SNPs, gold PNPs and their hybrids through mild aqueous syntheses to develop efficient photocatalyst for solar fuel production. Focus is placed on the synergetic interplay between SNPs and PNPs, understanding...

  6. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.

    2017-01-01

    of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...

  7. Onset of Bonding Plasmon Hybridization Preceded by Gap Modes in Dielectric Splitting of Metal Disks

    DEFF Research Database (Denmark)

    Frederiksen, Maj; Bochenkov, Vladimir; Ogaki, Ryosuke

    2013-01-01

    Dielectric splitting of nanoscale disks was studied experimentally and via finite-difference time-domain (FDTD) simulations through systematic introduction of multiple ultrathin dielectric layers. Tunable, hybridized dark bonding modes were seen with first-order gap modes preceding the appearance...

  8. New hybrid systems: strategy and research programs

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2001-01-01

    This short article gives a status of research and experimental programs concerning new hybrid systems. A hybrid system is made up of a subcritical core, a spallation target and of a particle accelerator that delivers a proton beam. The main asset of hybrid systems is to provide a large reactivity margin that would be very valuable to transmute actinide nuclei efficiently. As a consequence hybrid systems could be considered as actinide burner reactors integrated to a large population of classical nuclear reactors dedicated to electricity production. (A.C.)

  9. Molecular quenching and relaxation in a plasmonic tunable system

    Science.gov (United States)

    Baffou, Guillaume; Girard, Christian; Dujardin, Erik; Colas Des Francs, Gérard; Martin, Olivier J. F.

    2008-03-01

    Molecular fluorescence decay is significantly modified when the emitting molecule is located near a plasmonic structure. When the lateral sizes of such structures are reduced to nanometer-scale cross sections, they can be used to accurately control and amplify the emission rate. In this Rapid Communication, we extend Green’s dyadic method to quantitatively investigate both radiative and nonradiative decay channels experienced by a single fluorescent molecule confined in an adjustable dielectric-metal nanogap. The technique produces data in excellent agreement with current experimental work.

  10. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  11. Functional Abstraction of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Blom, Henk A.P.; Hermanns, H.

    2006-01-01

    The verification problem for stochastic hybrid systems is quite difficult. One method to verify these systems is stochastic reachability analysis. Concepts of abstractions for stochastic hybrid systems are needed to ease the stochastic reachability analysis. In this paper, we set up different ways

  12. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  13. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    Science.gov (United States)

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  14. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    Science.gov (United States)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  15. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight

    Science.gov (United States)

    Yuan, Yufeng; Yu, Xiantong; Ouyang, Qingling; Shao, Yonghong; Song, Jun; Qu, Junle; Yong, Ken-Tye

    2018-04-01

    This study proposed a novel highly anisotropic surface plasmon resonance (SPR) biosensor employing emerging 2D black phosphorus (BP) and graphene atomic layers. Light absorption and energy loss were well balanced by optimizing gold film thickness and number of BP layers to generate the strongest SPR excitation. The proposed SPR biosensor was designed by the phase-modulation approach and is more sensitive to biomolecule bindings, providing 3 orders of magnitude higher sensitivity than the red-shift in SPR angle. Our results show the optimized configuration was 48 nm Au film coated with 4-layer BP crystal to produce the sharpest phase variation (up to 89.8975°), and lowest minimum reflectivity (1.9119  ×  10-7). Detection sensitivity up to 7.4914  ×  104 degree/refractive index unit is almost 4.5 times enhanced compared to monolayer graphene-based SPR sensors with 48 nm Au film. The anisotropic BP layers act as a polarizer, so the proposed SPR biosensor would exhibit optically tunable detection sensitivity, making it a promising candidate for exploring highly anisotropic platforms in biosensing.

  16. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  17. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    International Nuclear Information System (INIS)

    Manera, M G; Spadavecchia, J; Taurino, A; Rella, R

    2010-01-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV–vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA–Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA–DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T) 15 ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality

  18. A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.

    Science.gov (United States)

    Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao

    2016-10-17

    In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.

  19. Formal Engineering Hybrid Systems: Semantic Underpinnings

    NARCIS (Netherlands)

    Bujorianu, M.C.; Bujorianu, L.M.

    2008-01-01

    In this work we investigate some issues in applying formal methods to hybrid system development and develop a categorical framework. We study the themes of stochastic reasoning, heterogeneous formal specification and retrenchment. Hybrid systems raise a rich pallets of aspects that need to be

  20. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  1. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  2. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  3. Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-01

    This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.

  4. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  5. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  6. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  7. Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Self-Energy Approach

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Saavedra, J. R. M.; Thygesen, Kristian Sommer

    2017-01-01

    splitting due to this coupling, resulting in a characteristic avoided crossing scheme. We base our results on a computationally efficient approach consisting in including many-body interactions through the electron self-energy. We specify this formalism for a description of plasmons based upon a tight...... nanotriangles with varied size, where we predict remarkable peak splittings and other radical modifications in the spectra due to plasmon interactions with intrinsic optical phonons. Our method is equally applicable to other 2D materials and provides a simple approach for investigating coupling of plasmons...

  8. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  9. Localized surface plasmon modes in a system of two interacting metallic cylinders

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Vergeles, Sergey S.; Vorobev, Petr E.

    2012-01-01

    We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions. Surface plasmon excitation in the gap between the cylinders are specifically analyzed. In particular, resonance frequencies and field enhancement were investigated as functions of geomet......We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions. Surface plasmon excitation in the gap between the cylinders are specifically analyzed. In particular, resonance frequencies and field enhancement were investigated as functions...... of geometrical characteristics of the system and Ohmic losses in the metal. The results of numerical simulations were systematically compared with the analytical theory, obtained in the quasi-static limit. The analytical method was generalized in order to take into account the retardation effects. We also...

  10. Excitation of graphene plasmons as an analogy with the two-level system

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Lv, Bo, E-mail: lb19840313@126.com [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Li, Rujiang [College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Ma, Ruyu; Chen, Wan; Meng, Fanyi [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China)

    2016-02-15

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  11. Excitation of graphene plasmons as an analogy with the two-level system

    International Nuclear Information System (INIS)

    Fu, Jiahui; Lv, Bo; Li, Rujiang; Ma, Ruyu; Chen, Wan; Meng, Fanyi

    2016-01-01

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  12. On the Effect of Dipole-Dipole Interactions on the Quantum Statistics of Surface Plasmons in Multiparticle Spaser Systems

    Science.gov (United States)

    Shesterikov, A. V.; Gubin, M. Yu.; Karpov, S. N.; Prokhorov, A. V.

    2018-04-01

    The problem of controlling the quantum dynamics of localized plasmons has been considered in the model of a four-particle spaser composed of metallic nanoparticles and semiconductor quantum dots. Conditions for the observation of stable steady-state regimes of the formation of surface plasmons in this model have been determined in the mean-field approximation. It has been shown that the presence of strong dipole-dipole interactions between metallic nanoparticles of the spaser system leads to a considerable change in the quantum statistics of plasmons generated on the nanoparticles.

  13. Full-spectrum photon management of solar cell structures for photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Xu, Yuanpei; Xuan, Yimin; Yang, Lili

    2015-01-01

    Highlights: • A novel photon management method is proposed for hybrid photovoltaic–thermoelectric systems. • Composite structured surfaces enable creditable ultra-broadband anti-reflection property. • Incorporation of anti-reflection and light-trapping brings spectral absorption and transmission. • The efficient photon management of the structured surface is also omnidirectional. - Abstract: In this paper, a novel ultra-broadband photon management structure is proposed for crystalline silicon thin-film solar cells used in the photovoltaic–thermoelectric hybrid system. Nanostructures are employed on both front and back side. Optical behavior of the structure in ultra-broadband (300–2500 nm) are investigated through the Finite Difference Time Domain method. By combing moth-eye and inverted-parabolic surface, a new composite surface structure is proposed for anti-reflection in the ultra-broadband wavelengths. Front metallic nanoparticles, plasmonic back reflector and metallic gratings are studied for light-trapping and the effect of plasmonic back reflector is validated by the experimental data of the external quantum efficiency. The effects of incident angle are discussed for metallic gratings. Numerical computation shows that the incorporation of anti-reflection and light-trapping can obtain high absorption in the solar cell and ensure the rest incident light transmits to the thermoelectric generator efficiently. This work shows potential full-spectrum utilization of solar energy for various photovoltaic devices related with hybrid photovoltaic–thermoelectric systems

  14. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  15. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  16. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  17. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem

    2017-01-01

    of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes

  18. Detection of cardiovascular anomalies: Hybrid systems approach

    KAUST Repository

    Ledezma, Fernando; Laleg-Kirati, Taous-Meriem

    2012-01-01

    In this paper, we propose a hybrid interpretation of the cardiovascular system. Based on a model proposed by Simaan et al. (2009), we study the problem of detecting cardiovascular anomalies that can be caused by variations in some physiological

  19. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  20. Hybrid quantum systems of ions and atoms

    OpenAIRE

    Sias, Carlo; Köhl, Michael

    2014-01-01

    In this chapter we review the progress in experiments with hybrid systems of trapped ions and ultracold neutral atoms. We give a theoretical overview over the atom-ion interactions in the cold regime and give a summary of the most important experimental results. We conclude with an overview of remaining open challenges and possible applications in hybrid quantum systems of ions and neutral atoms.

  1. Unidirectional reflectionless phenomena in a non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide.

    Science.gov (United States)

    Wu, Nan; Zhang, Cong; Jin, Xing Ri; Zhang, Ying Qiao; Lee, YoungPak

    2018-02-19

    Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.

  2. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...

  3. Plasmon-organic fiber interactions in diamond-like carbon coated nanostructured gold films

    Science.gov (United States)

    Cielecki, Paweł Piotr; Sobolewska, Elżbieta Karolina; Kostiuočenko, Oksana; Leißner, Till; Tamulevičius, Tomas; Tamulevičius, Sigitas; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2017-11-01

    Gold is the most commonly used plasmonic material, however soft and prone to mechanical deformations. It has been shown that the durability of gold plasmonic substrates can be improved by applying a protective diamond-like carbon (DLC) coating. In this work, we investigate the influence of such protective layers on plasmonic interactions in organic-plasmonic hybrid systems. We consider systems, consisting of 1-Cyano-quaterphenylene nanofibers on top of gold nano-square plasmonic arrays, coated with protective layers of varying thickness. We numerically investigate the spectral position of surface plasmon polariton resonances and electric field intensity, as a function of protective layer thickness, using the finite-difference time-domain method. To confirm the numerically indicated field enhancement preservation on top of protective layers, we experimentally map the second harmonic response of organic nanofibers. Subsequently, we characterize the plasmonic coupling between organic nanofibers and underlying substrates, considered as one of the main loss channels for photoluminescence from nanofibers, by time-resolved photoluminescence spectroscopy. Our findings reveal that, for the investigated system, plasmonic interactions are preserved for DLC coatings up to 55 nm. This is relevant for the fabrication of new passive and active plasmonic components with increased durability and hence prolonged lifetime.

  4. Plasmon polaritons in cubic lattices of spherical metallic nanoparticles

    Science.gov (United States)

    Lamowski, Simon; Mann, Charlie-Ray; Hellbach, Felicitas; Mariani, Eros; Weick, Guillaume; Pauly, Fabian

    2018-03-01

    We theoretically investigate plasmon polaritons in cubic lattices of spherical metallic nanoparticles. The nanoparticles, each supporting triply-degenerate localized surface plasmons, couple through the Coulomb dipole-dipole interaction, giving rise to collective plasmons that extend over the whole metamaterial. The latter hybridize with photons forming plasmon polaritons, which are the hybrid light-matter eigenmodes of the system. We derive general analytical expressions to evaluate both plasmon and plasmon-polariton dispersions and the corresponding eigenstates. These are obtained within a Hamiltonian formalism, which takes into account retardation effects in the dipolar interaction between the nanoparticles and considers the dielectric properties of the nanoparticles as well as their surrounding. Within this model we predict polaritonic splittings in the near-infrared to the visible range of the electromagnetic spectrum that depend on polarization, lattice symmetry, and wave-vector direction. Finally, we show that the predictions of our model are in excellent quantitative agreement with conventional finite-difference frequency-domain simulations, but with the advantages of analytical insight and significantly reduced computational cost.

  5. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...

  6. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  7. Supermarket Refrigeration System - Benchmark for Hybrid System Control

    DEFF Research Database (Denmark)

    Sloth, Lars Finn; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    This paper presents a supermarket refrigeration system as a benchmark for development of new ideas and a comparison of methods for hybrid systems' modeling and control. The benchmark features switch dynamics and discrete valued input making it a hybrid system, furthermore the outputs are subjected...

  8. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  9. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  10. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  11. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  12. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  13. Lifetime prognostics of hybrid backup power system

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Swierczynski, Maciej Jozef; Munk-Nielsen, Stig

    2017-01-01

    Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises...... the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper...... components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view....

  14. Acousto-plasmofluidics: Acoustic modulation of surface plasmon resonance in microfluidic systems

    Directory of Open Access Journals (Sweden)

    Daniel Ahmed

    2015-09-01

    Full Text Available We acoustically modulated the localized surface plasmon resonances (LSPRs of metal nanostructures integrated within microfluidic systems. An acoustically driven micromixing device based on bubble microstreaming quickly and homogeneously mixes multiple laminar flows of different refractive indices. The altered refractive index of the mixed fluids enables rapid modulation of the LSPRs of gold nanodisk arrays embedded within the microfluidic channel. The device features fast response for dynamic operation, and the refractive index within the channel is tailorable. With these unique features, our “acousto-plasmofluidic” device can be useful in applications such as optical switches, modulators, filters, biosensors, and lab-on-a-chip systems.

  15. Hybrid surface platform for the simultaneous detection of proteins and DNA using a surface plasmon resonance (SPR) imaging sensor

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Piliarik, Marek; Ladd, J.; Taylor, A.; Shaoyi, J.

    2008-01-01

    Roč. 80, č. 11 (2008), s. 4231-4236 ISSN 0003-2700 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * DNA-directed immobilization * protein array Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 5.712, year: 2008

  16. Control system for a hybrid powertrain system

    Science.gov (United States)

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  17. Analysis and design of hybrid control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malmborg, J.

    1998-05-01

    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs

  18. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan

    2010-01-01

    The interplay of random phenomena and continuous real-time control deserves increased attention for instance in wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variations of systems with hybrid dynamics. In safety verification o...... on a number of case studies, tackled using a prototypical implementation....

  19. Stochastic hybrid systems with renewal transitions

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.

    2010-01-01

    We consider Stochastic Hybrid Systems (SHSs) for which the lengths of times that the system stays in each mode are independent random variables with given distributions. We propose an analysis framework based on a set of Volterra renewal-type equations, which allows us to compute any statistical

  20. Modelling dependable systems using hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter

    2008-01-01

    A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems

  1. Generalised Computability and Applications to Hybrid Systems

    DEFF Research Database (Denmark)

    Korovina, Margarita V.; Kudinov, Oleg V.

    2001-01-01

    We investigate the concept of generalised computability of operators and functionals defined on the set of continuous functions, firstly introduced in [9]. By working in the reals, with equality and without equality, we study properties of generalised computable operators and functionals. Also we...... propose an interesting application to formalisation of hybrid systems. We obtain some class of hybrid systems, which trajectories are computable in the sense of computable analysis. This research was supported in part by the RFBR (grants N 99-01-00485, N 00-01- 00810) and by the Siberian Branch of RAS (a...... grant for young researchers, 2000)...

  2. Localized surface plasmon resonance mercury detection system and methods

    Science.gov (United States)

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  3. Plasmonic biosensors.

    Science.gov (United States)

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  4. Systems Engineering of Electric and Hybrid Vehicles

    Science.gov (United States)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  5. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Guddala, Sriram; Narayana Rao, D.; Dwivedi, Vindesh K.; Vijaya Prakash, G.

    2013-01-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm −1 ) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  6. Weighted hybrid technique for recommender system

    Science.gov (United States)

    Suriati, S.; Dwiastuti, Meisyarah; Tulus, T.

    2017-12-01

    Recommender system becomes very popular and has important role in an information system or webpages nowadays. A recommender system tries to make a prediction of which item a user may like based on his activity on the system. There are some familiar techniques to build a recommender system, such as content-based filtering and collaborative filtering. Content-based filtering does not involve opinions from human to make the prediction, while collaborative filtering does, so collaborative filtering can predict more accurately. However, collaborative filtering cannot give prediction to items which have never been rated by any user. In order to cover the drawbacks of each approach with the advantages of other approach, both approaches can be combined with an approach known as hybrid technique. Hybrid technique used in this work is weighted technique in which the prediction score is combination linear of scores gained by techniques that are combined.The purpose of this work is to show how an approach of weighted hybrid technique combining content-based filtering and item-based collaborative filtering can work in a movie recommender system and to show the performance comparison when both approachare combined and when each approach works alone. There are three experiments done in this work, combining both techniques with different parameters. The result shows that the weighted hybrid technique that is done in this work does not really boost the performance up, but it helps to give prediction score for unrated movies that are impossible to be recommended by only using collaborative filtering.

  7. Multiuser hybrid switched-selection diversity systems

    KAUST Repository

    Shaqfeh, Mohammad

    2011-09-01

    A new multiuser scheduling scheme is proposed and analyzed in this paper. The proposed system combines features of conventional full-feedback selection-based diversity systems and reduced-feedback switch-based diversity systems. The new hybrid system provides flexibility in trading-off the channel information feedback overhead with the prospected multiuser diversity gains. The users are clustered into groups, and the users\\' groups are ordered into a sequence. Per-group feedback thresholds are used and optimized to maximize the system overall achievable rate. The proposed hybrid system applies switched diversity criterion to choose one of the groups, and a selection criterion to decide the user to be scheduled from the chosen group. Numerical results demonstrate that the system capacity increases as the number of users per group increases, but at the cost of more required feedback messages. © 2011 IEEE.

  8. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    International Nuclear Information System (INIS)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H.

    2016-01-01

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained

  9. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H., E-mail: Rahimpour@guilan.ac.ir [Computational Nanophysics Laboratory (CNL), Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2016-01-14

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained.

  10. Specification and Verification of Hybrid System

    International Nuclear Information System (INIS)

    Widjaja, Belawati H.

    1997-01-01

    Hybrid systems are reactive systems which intermix between two components, discrete components and continuous components. The continuous components are usually called plants, subject to disturbances which cause the state variables of the systems changing continuously by physical laws and/or by the control laws. The discrete components can be digital computers, sensor and actuators controlled by programs. These programs are designed to select, control and supervise the behavior of the continuous components. Specification and verification of hybrid systems has recently become an active area of research in both computer science and control engineering, many papers concerning hybrid system have been published. This paper gives a design methodology for hybrid systems as an example to the specification and verification of hybrid systems. The design methodology is based on the cooperation between two disciplines, control engineering and computer science. The methodology brings into the design of control loops and decision loops. The external behavior of control loops are specified in a notation which is understandable by the two disciplines. The design of control loops which employed theory of differential equation is done by control engineers, and its correctness is also guaranteed analytically or experimentally by control engineers. The decision loops are designed in computing science based on the specifications of control loops. The verification of systems requirements can be done by computing scientists using a formal reasoning mechanism. For illustrating the proposed design, a problem of balancing an inverted pendulum which is a popular experiment device in control theory is considered, and the Mean Value Calculus is chosen as a formal notation for specifying the control loops and designing the decision loops

  11. Coherent confinement of plasmonic field in quantum dot-metallic nanoparticle molecules.

    Science.gov (United States)

    Sadeghi, S M; Hatef, A; Fortin-Deschenes, Simon; Meunier, Michel

    2013-05-24

    Interaction of a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle (MNP) with a laser beam can replace the intrinsic plasmonic field of the MNP with a coherently normalized field (coherent-plasmonic or CP field). In this paper we show how quantum coherence effects in such a hybrid system can form a coherent barrier (quantum cage) that spatially confines the CP field. This allows us to coherently control the modal volume of this field, making it significantly smaller or larger than that of the intrinsic plasmonic field of the MNP. We investigate the spatial profiles of the CP field and discuss how the field barrier depends on the collective states of the hybrid system.

  12. A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System.

    Science.gov (United States)

    Liu, Qiang; Liu, Yun; Chen, Shimeng; Wang, Fang; Peng, Wei

    2017-12-04

    A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific binding and physical absorption. We packaged the LED and surface plasmon resonance (SPR) sensors together, which are flexible enough to be applied to mobile devices as a compact and portable system. Experimental results show that the normalized intensity shift and refractive index (RI) of the sample have a good linear relationship in the RI range from 1.328 to 1.348. We used this sensor to monitor the reversible, specific interaction between lectin concanavalin A (Con A) and glycoprotein ribonuclease B (RNase B), which demonstrate its capabilities of specific identification and biochemical samples concentration detection. This sensor system has potential applications in various fields, such as medical diagnosis, public health, food safety, and environment monitoring.

  13. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  14. Detection of cardiovascular anomalies: Hybrid systems approach

    KAUST Repository

    Ledezma, Fernando

    2012-06-06

    In this paper, we propose a hybrid interpretation of the cardiovascular system. Based on a model proposed by Simaan et al. (2009), we study the problem of detecting cardiovascular anomalies that can be caused by variations in some physiological parameters, using an observerbased approach. We present the first numerical results obtained. © 2012 IFAC.

  15. Parametric systems analysis for tandem mirror hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U 3 O 8 cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions

  16. Dissipative dynamics of superconducting hybrid qubit systems

    International Nuclear Information System (INIS)

    Montes, Enrique; Calero, Jesus M; Reina, John H

    2009-01-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a σ x x σ z interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  17. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  18. Morphing a plasmonic nanodisk into a nanotriangle.

    Science.gov (United States)

    Schmidt, Franz P; Ditlbacher, Harald; Hofer, Ferdinand; Krenn, Joachim R; Hohenester, Ulrich

    2014-08-13

    We morph a silver nanodisk into a nanotriangle by producing a series of nanoparticles with electron beam lithography. Using electron energy loss spectroscopy (EELS), we map out the plasmonic eigenmodes and trace the evolution of edge and film modes during morphing. Our results suggest that disk modes, characterized by angular order, can serve as a suitable basis for other nanoparticle geometries and are subject to resonance energy shifts and splittings, as well as to hybridization upon morphing. Similar to the linear combination of atomic orbitals (LCAO) in quantum chemistry, we introduce a linear combination of plasmonic eigenmodes to describe plasmon modes in different geometries, hereby extending the successful hybridization model of plasmonics.

  19. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  20. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  1. Process algebras for hybrid systems : comparison and development

    NARCIS (Netherlands)

    Khadim, U.

    2008-01-01

    Our research is about formal speci¯cation and analysis of hybrid systems. The formalism used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous behaviour. An example of a hybrid system is a digital controller controlling a physical device such as present in

  2. Hybrid compensation arrangement in dispersed generation systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    This paper presents a hybrid compensation system consisting of an active filter and distributed passive filters. In the system, each individual passive filter is connected to a distortion source and designed to eliminate main harmonics and supply reactive power for the distortion source, while...... filter system consisting of distributed passive filters and an active filter....... the active filter is responsible for the correction of the system unbalance and the cancellation of the remaining harmonics. The paper also analyzes the effects of the circuit configuration on the system impedance characteristics and consequently the effectiveness of the filter system. Simulation studies...

  3. Compact Hybrid Automotive Propulsion System

    Science.gov (United States)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  4. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  5. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  6. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  7. Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system

    International Nuclear Information System (INIS)

    Han, Xu; Wang, Tao; Liu, Bo; He, Yu; Tang, Jian; Li, Xiaoming

    2015-01-01

    Ultrafast and low-power dynamically tunable single channel and multichannel slow light based on plasmon induced transparencies (PITs) in disk resonators coupled to a metal-dielectric-metal (MDM) waveguide system with a nonlinear optical Kerr medium is investigated both numerically and analytically. A coupled-mode theory (CMT) is introduced to analyze this dynamically tunable single channel slow light structure. Multichannel slow light is realized in this plasmonic waveguide structure based on a bright–dark mode coupling mechanism. In order to reduce the pump intensity and obtain ultrafast response time, the traditional nonlinear Kerr material is replaced by monolayer graphene. It is found that the magnitude of the single PIT window can be controlled between 0.08 and 0.48, while the corresponding group index is controlled between 14.5 and 2.0 by dynamically decreasing pump intensity from 11.7 to 4.4 MW cm −2 . Moreover, the phase shift multiplication effect is found in this structure. This work paves a new way towards the realization of highly integrated optical circuits and networks, especially for wavelength-selective, all-optical storage and nonlinear devices. (paper)

  8. Phase modification and surface plasmon resonance of Au/WO{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, R. Jolly; Kavitha, V.S. [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India); Sudarsanakumar, C. [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686560, Kerala (India); Pillai, V.P. Mahadevan, E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India)

    2016-08-30

    Highlights: • We have investigated the role of gold as catalyst and nucleation centers, for the crystallization and phase modification of tungsten oxide, in Au/WO{sub 3} matrix. • The phase change from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} is found to enhance with gold incorporation. • The surface plasmon resonance is observed in gold/tungsten oxide system with the appearance of an absorption band near the wavelength 604 nm. - Abstract: We report the action of gold as catalyst for the modification of phase from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} and nucleation centre for the formation of W{sub 18}O{sub 49} phase, in gold incorporated tungsten oxide films prepared by RF magnetron sputtering technique. A new band is observed near 925 cm{sup −1} in the Raman spectra of gold incorporated tungsten oxide films which is not observed in the pure tungsten oxide film. The intensity of this band enhances with gold content. A localized surface plasmon resonance (LSPR) band is observed near the wavelength 604 nm in gold incorporated tungsten oxide films. The integrated intensities of LSPR band and Raman band (∼925 cm{sup −1}) can be used for sensing the quantity of gold in the Au/WO{sub 3} matrix.

  9. Universal blind quantum computation for hybrid system

    Science.gov (United States)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  10. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.

    Science.gov (United States)

    Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing

    2018-03-14

    Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.

  11. Safety Verification for Probabilistic Hybrid Systems

    Czech Academy of Sciences Publication Activity Database

    Zhang, J.; She, Z.; Ratschan, Stefan; Hermanns, H.; Hahn, E.M.

    2012-01-01

    Roč. 18, č. 6 (2012), s. 572-587 ISSN 0947-3580 R&D Projects: GA MŠk OC10048; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : model checking * hybrid system s * formal verification Subject RIV: IN - Informatics, Computer Science Impact factor: 1.250, year: 2012

  12. A Hybrid System for Subjectivity Analysis

    Directory of Open Access Journals (Sweden)

    Samir Rustamov

    2018-01-01

    Full Text Available We suggested different structured hybrid systems for the sentence-level subjectivity analysis based on three supervised machine learning algorithms, namely, Hidden Markov Model, Fuzzy Control System, and Adaptive Neuro-Fuzzy Inference System. The suggested feature extraction algorithm in our experiment computes a feature vector using statistical textual terms frequencies in a training dataset not having the use of any lexical knowledge except tokenization. Taking into consideration this fact, the above-mentioned methods may be employed in other languages as these methods do not utilize the morphological, syntactical, and lexical analysis in the classification problems.

  13. Quantum and Classical Optics of Plasmonic Systems: 3D/2D Materials and Photonic Topological Insulators

    Science.gov (United States)

    Hassani Gangaraj, Seyyed Ali

    At the interface of two different media such as metal and vacuum, light can couple to the electrons of the metal to form a wave that is bound to the interface. This wave is called a surface plasmon-plariton (SPP), generally characterized by intense fields that decay quickly away from the interface. Due to their unique properties, SPPs have found a broad range of applications in various areas of science, including light harvesting, medical science, energy transfer and imaging. In addition to the widely studied classical plasmonics, quantum plasmonics is also attracting considerable interest in the electromagnetics and quantum optics communities. In this thesis several new areas of investigation into quantum plasmonics is presented, focusing on entanglement mediated by SPPs in several different environments: 3D waveguides, 2D surfaces and on photonic topological insulators. Entanglement is an experimentally verified property of nature where pairs of quantum systems are connected in some manner such that the quantum state of each system cannot be described independently. Generating, preserving, and controlling entanglement is necessary for many quantum computer implementations. It is highly desirable to control entanglement between two multi-level emitters such as quantum dots via a macroscopic, easily-adjusted external parameter. SPPs guided by the medium, as a coupling agent between quantum dots, are highly tunable and offer a promising way to achieve having control over a SPP mediated entanglement. We first consider two quantum dots placed above 3D finite length waveguides. We have restricted our consideration to two waveguides types, i.e. a metal nanowire and a groove waveguide. Our main results in this work are to show that realistic finite-length nanowire and groove waveguides, with their associated discontinuities, play a crucial role in the engineering of highly entangled states. It is demonstrated that proper positioning of the emitters with respect to the

  14. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.

    Science.gov (United States)

    Zhou, Chao; Duan, Xiaoyang; Liu, Na

    2017-12-19

    The development of DNA nanotechnology, especially the advent of DNA origami, has made DNA ideally suited to construct nanostructures with unprecedented complexity and arbitrariness. As a fully addressable platform, DNA origami can be used to organize discrete entities in space through DNA hybridization with nanometer accuracy. Among a variety of functionalized particles, metal nanoparticles such as gold nanoparticles (AuNPs) feature an important pathway to endow DNA-origami-assembled nanostructures with tailored optical functionalities. When metal particles are placed in close proximity, their particle plasmons, i.e., collective oscillations of conduction electrons, can be coupled together, giving rise to a wealth of interesting optical phenomena. Nevertheless, characterization methods that can read out the optical responses from plasmonic nanostructures composed of small metal particles, and especially can optically distinguish in situ their minute conformation changes, are very few. Circular dichroism (CD) spectroscopy has proven to be a successful means to overcome these challenges because of its high sensitivity in discrimination of three-dimensional conformation changes. In this Account, we discuss a variety of static and dynamic chiral plasmonic nanostructures enabled by DNA nanotechnology. In the category of static plasmonic systems, we first show chiral plasmonic nanostructures based on spherical AuNPs, including plasmonic helices, toroids, and tetramers. To enhance the CD responses, anisotropic gold nanorods with larger extinction coefficients are utilized to create chiral plasmonic crosses and helical superstructures. Next, we highlight the inevitable evolution from static to dynamic plasmonic systems along with the fast development of this interdisciplinary field. Several dynamic plasmonic systems are reviewed according to their working mechanisms. We first elucidate a reconfigurable plasmonic cross structure that can execute DNA-regulated conformational

  15. Predictions and Observations of Two-Plasmon Decay on the NIKE Laser System

    Science.gov (United States)

    Phillips, Lee; Weaver, James; Oh, J.; Schmitt, A. J.; Obenschain, S.; Velikovich, A.

    2011-10-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The short wavelength and large bandwidth of the NIKE laser is predicted to raise the threshold of parametric instabilities such as two-plasmon decay (TPD). We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have allowed us to explore the validity of simple threshold formulas and demonstrate the advantages of the KrF wavelength in suppressing LPI. We consider proposed high-gain shock ignition designs and show, through analytic estimates and simulations, that we can explore the relevant scalelength-temperature regime, providing an experimental method to study the LPI threat to these targets at a small fraction of their designed input energies. This research is funded by the US DOE, NRL, and ONR.

  16. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  17. Hybrid cognitive engine for radio systems adaptation

    KAUST Repository

    Alqerm, Ismail

    2017-07-20

    Network efficiency and proper utilization of its resources are essential requirements to operate wireless networks in an optimal fashion. Cognitive radio aims to fulfill these requirements by exploiting artificial intelligence techniques to create an entity called cognitive engine. Cognitive engine exploits awareness about the surrounding radio environment to optimize the use of radio resources and adapt relevant transmission parameters. In this paper, we propose a hybrid cognitive engine that employs Case Based Reasoning (CBR) and Decision Trees (DTs) to perform radio adaptation in multi-carriers wireless networks. The engine complexity is reduced by employing DTs to improve the indexing methodology used in CBR cases retrieval. The performance of our hybrid engine is validated using software defined radios implementation and simulation in multi-carrier environment. The system throughput, signal to noise and interference ratio, and packet error rate are obtained and compared with other schemes in different scenarios.

  18. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  19. Hybrid electric vehicle power management system

    Science.gov (United States)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  20. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  1. Light-emitting waveguide-plasmon polaritions

    NARCIS (Netherlands)

    Rodriguez, S.R.K.; Murai, S.; Verschuuren, M.A.; Gómez Rivas, J.

    2012-01-01

    We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and vice versa as the eigenfrequency

  2. Non-blinking quantum dot with a plasmonic nanoshell resonator

    Science.gov (United States)

    Ji, Botao; Giovanelli, Emerson; Habert, Benjamin; Spinicelli, Piernicola; Nasilowski, Michel; Xu, Xiangzhen; Lequeux, Nicolas; Hugonin, Jean-Paul; Marquier, Francois; Greffet, Jean-Jacques; Dubertret, Benoit

    2015-02-01

    Colloidal semiconductor quantum dots are fluorescent nanocrystals exhibiting exceptional optical properties, but their emission intensity strongly depends on their charging state and local environment. This leads to blinking at the single-particle level or even complete fluorescence quenching, and limits the applications of quantum dots as fluorescent particles. Here, we show that a single quantum dot encapsulated in a silica shell coated with a continuous gold nanoshell provides a system with a stable and Poissonian emission at room temperature that is preserved regardless of drastic changes in the local environment. This novel hybrid quantum dot/silica/gold structure behaves as a plasmonic resonator with a strong Purcell factor, in very good agreement with simulations. The gold nanoshell also acts as a shield that protects the quantum dot fluorescence and enhances its resistance to high-power photoexcitation or high-energy electron beams. This plasmonic fluorescent resonator opens the way to a new family of plasmonic nanoemitters with robust optical properties.

  3. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  4. Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    Laksono, F. D.; Supardianningsih; Arifin, M.; Abraha, K.

    2018-04-01

    In this paper, we developed homemade and computerized sensor system based on Surface Plasmon Resonance (SPR). The developed systems consist of mechanical system instrument, laser power sensor, and user interface. The mechanical system development that uses anti-backlash gear design was successfully able to enhance the angular resolution angle of incidence laser up to 0.01°. In this system, the laser detector acquisition system and stepper motor controller utilizing Arduino Uno which is easy to program, flexible, and low cost, was used. Furthermore, we employed LabView’s user interface as the virtual instrument for facilitating the sample measurement and for transforming the data recording directly into the digital form. The test results using gold-deposited half-cylinder prism showed the Total Internal Reflection (TIR) angle of 41,34°± 0,01° and SPR angle of 44,20°± 0,01°, respectively. The result demonstrated that the developed system managed to reduce the measurement duration and data recording errors caused by human error. Also, the test results also concluded that the system’s measurement is repeatable and accurate.

  5. Comments On Clock Models In Hybrid Automata And Hybrid Control Systems

    Directory of Open Access Journals (Sweden)

    Virginia Ecaterina OLTEAN

    2001-12-01

    Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.

  6. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A; Bindner, H; Lundsager, P [Risoe National Lab., Roskilde (Denmark); Jannerup, O [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  7. From hybrid-media system to hybrid-media politicians

    DEFF Research Database (Denmark)

    Blach-Ørsten, Mark; Eberholst, Mads Kæmsgaard; Burkal, Rasmus

    2017-01-01

    ’ media use is changing rapidly; 15%–16% of Danish candidates used Twitter in 2011 but 68% in 2015. In this large-sample content analysis, party leaders have high traditional-news-media and low Twitter presence, and younger candidates visa-versa, but some politicians have high presence in both. Hybrid...

  8. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  9. Developing an aqueous approach for synthesizing Au and M@Au (M = Pd, CuPt) hybrid nanostars with plasmonic properties

    Science.gov (United States)

    Du, Jingshan; Yu, Junjie; Xiong, Yalin; Lin, Zhuoqing; Zhang, Hui; Yang, Deren

    Anisotropic Au nanoparticles show unique localized surface plasmon resonance (LSPR) properties, which make it attractive in optical, sensing, and biomedical applications. In this contribution, we report a general and facile strategy towards aqueous synthesis of Au and M@Au (M = Pd, CuPt) hybrid nanostars by reducing HAuCl4 with ethanolamine in the presence of cetyltrimethylammonium bromide (CTAB). According to electron microscopic observation and spectral monitoring, we found that the layered epitaxial growth mode (i.e., Frank-van der Merwe mechanism) contributes to the enlargement of the core, while, the random attachment of Au nanoclusters onto the cores accounts for the formation of the branches. Both of them are indispensable for the formation of the nanostars. The LSPR properties of the Au nanoparticles have been well investigated with morphology control via precursor amount and growth temperature. The Au nanostars showed improved surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G due to their sharp edges and tips, which were therefore confirmed as good SERS substrate to detect trace amount of molecules.

  10. Hybrid quantum systems: Outsourcing superconducting qubits

    Science.gov (United States)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  11. Optical tristability in a hybrid optomechanical system

    Science.gov (United States)

    Asghari Nejad, A.; Askari, H. R.; Baghshahi, H. R.

    2018-05-01

    In this paper, we investigate a hybrid optomechanical system consisting of two cavities, which one of them is an optomechanical cavity that includes an optical parametric amplifier (OPA) and the other is a traditional cavity which contains an atomic medium. Hamiltonian of the system is written in a rotating frame with a rotation frequency of the frequency of input field to the system. Using Heisenberg-Langevin equations of motion, the dynamics of the system is described. Applying the steady-state conditions leads to a system of equations of the mean values of the operators of the system. The stability condition of the system is satisfied numerically and behavior of optomechanical cavity is investigated in different situations to find the effect of changing of the parameters of the system on the type of its stability. We show proposed system has the capability of tristable behavior, where, the gain coefficient of OPA acts as a switch in changing the bistability of the system to a tristable manner. The building block of the tristability in this system can be figured out as the enhanced nonlinearity of the system due to the presence of OPA.

  12. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    OpenAIRE

    Anup M. Gakare; Subhash Kamdi

    2014-01-01

    This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of...

  13. Optimization of Hybrid Renewable Energy Systems

    Science.gov (United States)

    Contreras Cordero, Francisco Jose

    Use of diesel generators in remote communities is economically and environmentally unsustainable. Consequently, researchers have focussed on designing hybrid renewable energy systems (HRES) for distributed electricity generation in remote communities. However, the cost-effectiveness of interconnecting multiple remote communities (microgrids) has not been explored. The main objective of this thesis is to develop a methodology for optimal design of HRES and microgrids for remote communities. A set of case studies was developed to test this methodology and it was determined that a combination of stand-alone decentralized HRES and microgrids is the most cost-effective power generation scheme when studying a group of remote communities.

  14. Modification to the lower hybrid system

    International Nuclear Information System (INIS)

    Gormezano, C.

    1989-01-01

    The main modifications which have to be done to the Lower Hybrid system are related in the change of the plasma shape in front of the grill mouth. In effect, the theoretical coupling efficiency of the LHCD grill depends only upon the density at the grill mouth and upon the launched wave index. In order to minimize the number of modifications to the launcher it is proposed to modify the length of the vacuum waveguides connecting the multijunctions to the vacuum windows. To obtain the new poloidal contour, it is proposed to recover the L1 multijunctions and to remachine their mouth. (U.K.)

  15. Event tree analysis for the system of hybrid reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; Qiu Lijian

    1993-01-01

    The application of probabilistic risk assessment for fusion-fission hybrid reactor is introduced. A hybrid reactor system has been analysed using event trees. According to the character of the conceptual design of Hefei Fusion-fission Experimental Hybrid Breeding Reactor, the probabilities of the event tree series induced by 4 typical initiating events were calculated. The results showed that the conceptual design is safe and reasonable. through this paper, the safety character of hybrid reactor system has been understood more deeply. Some suggestions valuable to safety design for hybrid reactor have been proposed

  16. A common-path phase-shift interferometry surface plasmon imaging system

    Science.gov (United States)

    Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.

    2005-03-01

    A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.

  17. Develop of a quantum electromechanical hybrid system

    Science.gov (United States)

    Hao, Yu; Rouxinol, Francisco; Brito, Frederico; Caldeira, Amir; Irish, Elinor; Lahaye, Matthew

    In this poster, we will show our results from measurements of a hybrid quantum system composed of a superconducting transmon qubit-coupled and ultra-high frequency nano-mechanical resonator, embedded in a superconducting cavity. The transmon is capacitively coupled to a 3.4GHz nanoresonator and a T-filter-biased high-Q transmission line cavity. Single-tone and two-tone transmission spectroscopy measurements are used to probe the interactions between the cavity, qubit and mechanical resonator. These measurements are in good agreement with numerical simulations based upon a master equation for the tripartite system including dissipation. The results indicate that this system may be developed to serve as a platform for more advanced measurements with nanoresonators, including quantum state measurement, the exploration of nanoresonator quantum noise, and reservoir engineering.

  18. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  19. Plasmonic Perovskite Light-Emitting Diodes Based on the Ag-CsPbBr3 System.

    Science.gov (United States)

    Zhang, Xiaoli; Xu, Bing; Wang, Weigao; Liu, Sheng; Zheng, Yuanjin; Chen, Shuming; Wang, Kai; Sun, Xiao Wei

    2017-02-08

    The enhanced luminescence through semiconductor-metal interactions suggests the great potential of device performance improvement via properly tailored plasmonic nanostructures. Surface plasmon enhanced electroluminescence in an all-inorganic CsPbBr 3 perovskite light-emitting diode (LED) is fabricated by decorating the hole transport layer with the synthesized Ag nanorods. An increase of 42% and 43.3% in the luminance and efficiency is demonstrated for devices incorporated with Ag nanorods. The device with Ag introduction indicates identical optoelectronic properties to the controlled device without Ag nanostructures. The increased spontaneous emission rate caused by the Ag-induced plasmonic near-field effect is responsible for the performance enhancement. Therefore, the plasmonic Ag-CsPbBr 3 nanostructure studied here provides a novel strategy on the road to the future development of perovskite LEDs.

  20. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system

    International Nuclear Information System (INIS)

    Zhan, Shiping; Li, Hongjian; He, Zhihui; Li, Boxun; Yang, Hui; Cao, Guangtao

    2014-01-01

    We report a theoretical and numerical investigation of the plasmon-induced transparency (PIT) effect in a dual-ring resonator-coupled metal–dielectric–metal waveguide system. A transfer matrix method (TMM) is introduced to analyse the transmission and dispersion properties in the transparency window. A tunable PIT is realized in a constant separation design. The phase dispersion and slow-light effect are discussed in both the resonance and non-resonance conditions. Finally, a propagation constant based on the TMM is derived for the periodic system. It is found that the group index in the transparency window of the proposed structure can be easily tuned by the period p, which provides a new understanding, and a group index ∼51 is achieved. The quality factor of resonators can also be effective in adjusting the dispersion relation. These observations could be helpful to fundamental research and applications for integrated plasmonic devices. (paper)

  1. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    Science.gov (United States)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  2. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species

    Science.gov (United States)

    Leem, Jung Woo; Kim, Seong-Ryul; Choi, Kwang-Ho; Kim, Young L.

    2018-03-01

    The recent advances in photocatalysis have opened a variety of new possibilities for energy and biomedical applications. In particular, plasmonic photocatalysis using hybridization of semiconductor materials and metal nanoparticles has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible or solar light. One critical underlying aspect of photocatalysis is that it generates and releases reactive oxygen species (ROS) as intermediate or final products upon light excitation or activation. Although plasmonic photocatalysis overcomes the limitation of UV irradiation, synthesized metal/semiconductor nanomaterial photocatalysts often bring up biohazardous and environmental issues. In this respect, this review article is centered in identifying natural photosensitizing organic materials that can generate similar types of ROS as those of plasmonic photocatalysis. In particular, we propose the idea of plasmonic photocatalyst-like fluorescent proteins for ROS generation under visible light irradiation. We recapitulate fluorescent proteins that have Type I and Type II photosensitization properties in a comparable manner to plasmonic photocatalysis. Plasmonic photocatalysis and protein photosensitization have not yet been compared systemically in terms of ROS photogeneration under visible light, although the phototoxicity and cytotoxicity of some fluorescent proteins are well recognized. A comprehensive understanding of plasmonic photocatalyst-like fluorescent proteins and their potential advantages will lead us to explore new environmental, biomedical, and defense applications.

  3. Advanced Plasmonic Materials for Dynamic Color Display.

    Science.gov (United States)

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2018-04-01

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Infectious disease modeling a hybrid system approach

    CERN Document Server

    Liu, Xinzhi

    2017-01-01

    This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.

  5. Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.

    Science.gov (United States)

    Chen, Guojian; Wang, Dongzhu; Hong, Wei; Sun, Lu; Zhu, Yongxiang; Chen, Xudong

    2017-03-01

    Discontinuous plasmonic-3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near-field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal-coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence-imaging, and optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Feasibility Study and Optimization of An Hybrid System (Eolian ...

    African Journals Online (AJOL)

    Feasibility Study and Optimization of An Hybrid System (Eolian- Photovoltaic - Diesel) With Provision of Electric Energy Completely Independent. ... reducing emissions of greenhouse gas (CO2 rate = 16086 kg / year for a system using only the generator diesel and is 599 kg / year for the stand alone hybrid system studied).

  7. Development of Traction Drive Motors for the Toyota Hybrid System

    Science.gov (United States)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  8. Model predictive control of hybrid systems : stability and robustness

    NARCIS (Netherlands)

    Lazar, M.

    2006-01-01

    This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior

  9. Multielement surface plasmon resonance immunosensor for monitoring of blood circulation system

    Science.gov (United States)

    Kostyukevych, Sergey A.; Kostyukevych, Kateryna V.; Khristosenko, Roman V.; Lysiuk, Viktor O.; Koptyukh, Anastasiya A.; Moscalenko, Nadiya L.

    2017-12-01

    The problems related to the development of a multielement immunosensor device with the prism type of excitation of a surface plasmon resonance in the Kretschmann configuration and with the scanning of the incidence angle of monochromatic light aimed at the reliable determination of the levels of three molecular markers of the system of hemostasis (fibrinogen, soluble fibrin, and D-dimer) are considered. We have analyzed the influence of a technology for the production of a gold coating, modification of its surface, and noise effects on the enhancement of sensitivity and stability of the operation of devices. A means of oriented immobilization of monoclonal antibodies on the surface of gold using a multilayer film of copper aminopentacyanoferrate is developed. For the model proteins of studied markers, the calibrating curves (maximum sensitivity of 0.5 μg/ml) are obtained, and the level of fibrinogen in blood plasma of donors is determined. A four-channel modification of the device with an application of a reference channel for comparing the elimination of the noise of temperature fluctuations has been constructed. This device allows one to execute the express-diagnostics of prethrombotic states and the monitoring of the therapy of diseases of the blood circulation system.

  10. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  11. Components and systems for hybrid- and electromobiles; Komponenten und Systeme fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Immle, Michael; Burgmayr, Thomas [Panasonic Electric Works Europe AG, Holzkirchen (Germany)

    2010-07-01

    On the Hybrid and Electric Vehicle sector Panasonic Electric Works is working among others on electro-mechanical products, such as contactors for battery disconnection or battery charging, on semi-conductor relays for battery monitoring and on complex systems as battery disconnect units. This paper will show experience on the hybrid vehicle sector. Further on different switching components and their usage will be introduced. As a main topic battery disconnected units will be discussed. Based on an actual example basic development items and system features will be touched and important development stages will be shown. As a general topic a future view on vehicles and batteries, as well as on charging systems and infrastructural necessities will be introduced. (orig.)

  12. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    Science.gov (United States)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  13. Considerations on Circuit Design and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System

    Directory of Open Access Journals (Sweden)

    Keke Chang

    2015-08-01

    Full Text Available The aim of this study was to develop a circuit for an inexpensive portable biosensing system based on surface plasmon resonance spectroscopy. This portable biosensing system designed for field use is characterized by a special structure which consists of a microfluidic cell incorporating a right angle prism functionalized with a biomolecular identification membrane, a laser line generator and a data acquisition circuit board. The data structure, data memory capacity and a line charge-coupled device (CCD array with a driving circuit for collecting the photoelectric signals are intensively focused on and the high performance analog-to-digital (A/D converter is comprehensively evaluated. The interface circuit and the photoelectric signal amplifier circuit are first studied to obtain the weak signals from the line CCD array in this experiment. Quantitative measurements for validating the sensitivity of the biosensing system were implemented using ethanol solutions of various concentrations indicated by volume fractions of 5%, 8%, 15%, 20%, 25%, and 30%, respectively, without a biomembrane immobilized on the surface of the SPR sensor. The experiments demonstrated that it is possible to detect a change in the refractive index of an ethanol solution with a sensitivity of 4.99838 × 105 ΔRU/RI in terms of the changes in delta response unit with refractive index using this SPR biosensing system, whereby the theoretical limit of detection of 3.3537 × 10−5 refractive index unit (RIU and a high linearity at the correlation coefficient of 0.98065. The results obtained from a series of tests confirmed the practicality of this cost-effective portable SPR biosensing system.

  14. Analytical energy spectrum for hybrid mechanical systems

    International Nuclear Information System (INIS)

    Zhong, Honghua; Xie, Qiongtao; Lee, Chaohong; Guan, Xiwen; Gao, Kelin; Batchelor, Murray T

    2014-01-01

    We investigate the energy spectrum for hybrid mechanical systems described by non-parity-symmetric quantum Rabi models. A set of analytical solutions in terms of the confluent Heun functions and their analytical energy spectrum is obtained. The analytical energy spectrum includes regular and exceptional parts, which are both confirmed by direct numerical simulation. The regular part is determined by the zeros of the Wronskian for a pair of analytical solutions. The exceptional part is relevant to the isolated exact solutions and its energy eigenvalues are obtained by analyzing the truncation conditions for the confluent Heun functions. By analyzing the energy eigenvalues for exceptional points, we obtain the analytical conditions for the energy-level crossings, which correspond to two-fold energy degeneracy. (paper)

  15. Tunable optical response at the plasmon-polariton frequency in dielectric-graphene-metamaterial systems

    Science.gov (United States)

    Calvo-Velasco, D. M.; Porras-Montenegro, N.

    2018-04-01

    By using the scattering matrix formalism, it is studied the optical properties of one dimensional photonic crystals made of multiple layers of dielectric and uniaxial anisotropic single negative electric metamaterial with Drude type responses, with inclusions of graphene in between the dielectric-dielectric interfaces (DGMPC). The transmission spectra for transverse electric (TE) and magnetic (TM) polarization are presented as a function of the incidence angle, the graphene chemical potential, and the metamaterial plasma frequencies. It is found for the TM polarization the tunability of the DGMPC optical response with the graphene chemical potential, which can be observed by means of transmission or reflexion bands around the metamaterial plasmon-polariton frequency, with bandwidths depending on both the incidence angle and the metamaterial plasma frequency. Also, the transmission band is observed when losses in the metamaterial slabs are considered for finite systems. The conditions for the appearance of these bands are shown analytically. We consider this work contributes to open new possibilities to the design of photonic devices with DGMPCs.

  16. Quantum theory of plasmon

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha

    2014-01-01

    Since very early works on plasma oscillations in solids, it was known that in collective excitations (fluctuations of the charge density) of the electron gas there exists the resonance appearing as a quasiparticle of a special type called the plasmon. The elaboration of the quantum theory of plasmon in the framework of the canonical formalism is the purpose of the present work. We start from the establishment of the Lagrangian of the system of itinerant electrons in metal and the definition of the generalized coordinates and velocities of this system. Then we determine the expression of the Hamiltonian and perform the quantization procedure in the canonical formalism. By means of this rigorous method we can derive the expressions of the Hamiltonians of the interactions of plasmon with photon and all quasiparticles in solid from the first principles. (papers)

  17. Site characterization for hybrid system construction

    Energy Technology Data Exchange (ETDEWEB)

    Saldana, R.; Miranda, U.; Medrano, M. C. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The basic reason to use alternative systems for electricity generation, in most cases, is the lack of electricity services, such as isolated rural communities which are located far away from the electric distribution line, and the cost of its extension is too expensive, while decentralized power systems can be an economic and appropriate solution to providing these services. Up to now there are several technological options for rural electrification using PV modules, wind plants, water-power plants, anaerobic digesters, or a combination of some of them, according to the availability of energetic resources. The applications include centralized or decentralized systems, autonomous or hybrid systems, isolated or interconnected to the electric line, etc. A particular hybrid system design can be done considering two general aspects, first it is necessary to know the electric consumption that will be supplied, taking into account present and future necessities and how local energetic resources are present in a selected site. Finally, also it is necessary to carry out an economic analysis to determine the cost of kilowatt-hour generated using local energetic resources and compare it with the cost of electricity produced by conventional power systems. [Espanol] La razon principal para el uso de sistemas alternativos de generacion de electricidad, en la mayoria de los casos, es la falta de servicios de electricidad, tal como en las comunidades rurales aisladas localizadas lejos de linea de distribucion electrica, donde el costo de su extension es demasiado caro, mientras que los sistemas descentralizados de energia pueden ser una solucion economica y adecuada para proporcionar estos servicios. Hasta ahora existen varias opciones tecnologicas para la electrificacion rural usando modulos fotovoltaicos, aerogeneradores, plantas hidroelectricas, digestores anaerobicos o una combinacion de algunos de ellos, de acuerdo con la disponibilidad de los recursos energeticos. Las

  18. Site characterization for hybrid system construction

    Energy Technology Data Exchange (ETDEWEB)

    Saldana, R; Miranda, U; Medrano, M C [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    The basic reason to use alternative systems for electricity generation, in most cases, is the lack of electricity services, such as isolated rural communities which are located far away from the electric distribution line, and the cost of its extension is too expensive, while decentralized power systems can be an economic and appropriate solution to providing these services. Up to now there are several technological options for rural electrification using PV modules, wind plants, water-power plants, anaerobic digesters, or a combination of some of them, according to the availability of energetic resources. The applications include centralized or decentralized systems, autonomous or hybrid systems, isolated or interconnected to the electric line, etc. A particular hybrid system design can be done considering two general aspects, first it is necessary to know the electric consumption that will be supplied, taking into account present and future necessities and how local energetic resources are present in a selected site. Finally, also it is necessary to carry out an economic analysis to determine the cost of kilowatt-hour generated using local energetic resources and compare it with the cost of electricity produced by conventional power systems. [Espanol] La razon principal para el uso de sistemas alternativos de generacion de electricidad, en la mayoria de los casos, es la falta de servicios de electricidad, tal como en las comunidades rurales aisladas localizadas lejos de linea de distribucion electrica, donde el costo de su extension es demasiado caro, mientras que los sistemas descentralizados de energia pueden ser una solucion economica y adecuada para proporcionar estos servicios. Hasta ahora existen varias opciones tecnologicas para la electrificacion rural usando modulos fotovoltaicos, aerogeneradores, plantas hidroelectricas, digestores anaerobicos o una combinacion de algunos de ellos, de acuerdo con la disponibilidad de los recursos energeticos. Las

  19. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  20. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  1. Plasmon Geometric Phase and Plasmon Hall Shift

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  2. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  3. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jianan

    2009-01-01

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  4. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  5. Plasmon holographic experiments: theoretical framework

    International Nuclear Information System (INIS)

    Verbeeck, J.; Dyck, D. van; Lichte, H.; Potapov, P.; Schattschneider, P.

    2005-01-01

    A theoretical framework is described to understand the results of plasmon holography experiments leading to insight in the meaning of the experimental results and pointing out directions for future experiments. The framework is based on the formalism of mutual intensity to describe how coherence is transferred through an optical system. For the inelastic interaction with the object, an expression for the volume plasmon excitations in a free electron gas is used as a model for the behaviour of aluminium. The formalism leads to a clear graphical intuitive tool for understanding the experiments. It becomes evident that the measured coherence is solely related to the angular distribution of the plasmon scattering in the case of bulk plasmons. After describing the framework, the special case of coherence outside a spherical particle is treated and the seemingly controversial idea of a plasmon with a limited coherence length obtained from experiments is clarified

  6. Solar hydrogen hybrid system with carbon storage

    International Nuclear Information System (INIS)

    Zini, G.; Marazzi, R.; Pedrazzi, S.; Tartarini, P.

    2009-01-01

    A complete solar hydrogen hybrid system has been developed to convert, store and use energy from renewable energy sources. The theoretical model has been implemented in a dynamic model-based software environment and applied to real data to simulate its functioning over a one-year period. Results are used to study system design and performance. A photovoltaic sub-system directly drives a residential load and, if a surplus of energy is available, an electrolyzer to produce hydrogen which is stored in a cluster of nitrogen-cooled tanks filled with AX-21 activated carbons. When the power converted from the sun is not sufficient to cover load needs, hydrogen is desorbed from activated carbon tanks and sent to the fuel-cell sub-system so to obtain electrical energy. A set of sub-systems (bus-bar, buck- and boost-converters, inverter, control circuits), handle the electrical power according to a Programmable Logic Control unit so that the load can be driven with adequate Quality of Service. Hydrogen storage is achieved through physisorption (weak van der Waals interactions) between carbon atoms and hydrogen molecules occurring at low temperature (77 K) in carbon porous solids at relatively low pressures. Storage modeling has been developed using a Langmuir-Freundlich 1st type isotherm and experimental data available in literature. Physisorption storage provides safer operations along with good gravimetric (10.8% at 6 MPa) and volumetric (32.5 g/l at 6 MPa) storage capacities at costs that can be comparable to, or smaller than, ordinary storage techniques (compression or liquefaction). Several test runs have been performed on residential user data-sets: the system is capable of providing grid independence and can be designed to yield a surplus production of hydrogen which can be used to recharge electric car batteries or fill tanks for non-stationary uses. (author)

  7. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  8. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  9. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  10. Portable 25W hybrid fuel cell system

    International Nuclear Information System (INIS)

    Green, K.; Slee, R.; Tilley, J.

    2003-01-01

    Increased operating periods for portable electrical equipment are driving the development of battery and fuel cell technologies. Fuel cell systems promise greater endurance than battery based systems, and this paper describes the research into, and design of, a hybrid lithium-ion battery / fuel cell power source. The device is primarily aimed at military applications such as powering army radio sets and the UK MoD's Integrated Soldier Technology (IST) programme, but would be equally suitable as a power source for civilian applications such as camcorders, battery chargers etc. The air-breathing fuel cell comprises low cost, robust components, and a single cell is capable of developing >0.5W cm -2 . This power rating, however, is reduced in a stack where heat rejection becomes a critical issue. The stack design lends itself to facile manufacture, and the stack can be assembled in minutes by simply stacking the components into place. The remainder of the system includes two lithium-ion battery packs which provide start-up and shutdown power, and enable a silent-operating mode, during which the fuel cell is powered down, to be selected. The intelligent, electronic control, based upon an embedded RISC microprocessor, ensures safe operation and the recharge of the batteries. The overall system is capable of delivering 25W continuous power at an operating voltage of 12V dc. Preliminary testing results are reported. Advantages of this system include a relatively high gravimetric power density, load-following operation and the confidence of a high performance battery as an emergency backup. (author)

  11. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  12. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    Keywords. Hybrid synchronization; complex network; information source; chaotic system. ... encryption and decryption through synchronization. However, the ... Certainly, if the two systems are different, the security would be improved. How.

  13. FEASIBILITY STUDY AND OPTIMIZATION OF AN HYBRID SYSTEM ...

    African Journals Online (AJOL)

    30 juin 2010 ... preliminary or comparative studies, both during development (design) and normal ... year for a system using only the generator diesel and is 599 kg / year for the ... Keywords: Hybrid system- Wind- Photovoltaic-Diesel- storage ...

  14. Advantages of Hybrid Global Navigation Satellite Systems

    Directory of Open Access Journals (Sweden)

    Asim Bilajbegović

    2007-05-01

    Full Text Available In a decision-making situation, what kind of GPS equipment to purchase, one always has a dilemma, tobuy hybrid (GPS+GLONASS or only GPS receivers? In the case of completeness of the GLONASS satellite system, this dilemma probably would not have existed. The answer to this dilemma is given in the present paper, but for the constellation of the GLONASS satellites in summer 2006 (14 satellites operational. Due to the short operational period of these satellites (for example GLONASS-M, 5 years, and not launching new ones, at this moment (February 25, 2007, only 10 satellites are operational. For the sake of research and giving answers to these questions, about 252 RTK measurements have been done using (GPS and GNSS receivers, on points with different obstructions of horizon. Besides that, initialisation time has been investigated for both systems from about 480 measurements, using rover's antenna with metal cover, during a time interval of 0.5, 2 and 5 seconds. Moreover, accuracy, firmware declared accuracy and redundancy of GPS and GNSS RTK measurements have been investigating.  

  15. Review of hybrid laminar flow control systems

    Science.gov (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.

    2017-08-01

    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  16. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  17. Enhancing the Performance of Distributed Feedback Dye Lasers and Plasmonic V-grooves for Lab-on-a-chip Systems

    DEFF Research Database (Denmark)

    Smith, Cameron

    The ability to perform laboratory operations in compact systems is not only advantageous for the development of diagnostics tools and their production, but also provides unique opportunities to explore the natural world on the micro- and nanoscale. To this end, we focus on two optical schemes: 1...... to the advantages they bring to lab-on-a-chip systems.......) polymer-based distributed feedback (DFB) dye lasers, and 2) plasmonic V-grooves. Regarding the first, DFB dye lasers are well suited to serve as compact, minimal analyte volume and highly sensitive refractive index sensors, where changes occurring in an analyte result in readily measurable shifts...

  18. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  19. San Juanico Hybrid System Technical and Institutional Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Newcomb, C.; Yewdall, Z.

    2004-07-01

    San Juanico is a fishing village of approximately 120 homes in the Municipality of Comondu, Baja California. In April, 1999, a hybrid power system was installed in San Juanico to provide 24-hour power, which was not previously available. Before the installation of the hybrid power system, a field study was conducted to characterize the electrical usage and institutional and social framework of San Juanico. One year after the installation of the hybrid power system a''post-electrification'' study was performed to document the changes that had occurred after the installation. In December of 2003, NREL visited the site to conduct a technical assessment of the system.

  20. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  1. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  2. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  3. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  4. Modelling and Verifying Communication Failure of Hybrid Systems in HCSP

    DEFF Research Database (Denmark)

    Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, in the presence of communication failure, the expected control from the controller will get lost and as a consequence the physical process cannot behave as expected. In this paper, we mainly consider the communication failure caused by the non-engagement of one party in communication action, i.......e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems...

  5. The estimation of energy efficiency for hybrid refrigeration system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Kozioł, Joachim

    2013-01-01

    Highlights: ► We present the experimental setup and the model of the hybrid cooling system. ► We examine impact of the operating parameters of the hybrid cooling system on the energy efficiency indicators. ► A comparison of the final and the primary energy use for a combination of the cooling systems is carried out. ► We explain the relationship between the COP and PER values for the analysed cooling systems. -- Abstract: The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5 °C, −10 °C and −15 °C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

  6. Plasmonic-photonic crystal coupled nanolaser

    International Nuclear Information System (INIS)

    Zhang, Taiping; Callard, Ségolène; Jamois, Cécile; Chevalier, Céline; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. For this purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using a fully top-down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices. (paper)

  7. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun

    2012-08-28

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  8. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition

    KAUST Repository

    Chen, Huanjun; Wang, Feng; Li, Kun; Woo, Katchoi; Wang, Jianfang; Li, Quan; Sun, Ling Dong; Zhang, Xixiang; Lin, Haiqing; YAN, Chunhua

    2012-01-01

    Percolation generally refers to the phenomenon of abrupt variations in electrical, magnetic, or optical properties caused by gradual volume fraction changes of one component across a threshold in bicomponent systems. Percolation behaviors have usually been observed in macroscopic systems, with most studies devoted to electrical percolation. We report on our observation of plasmonic percolation in Au nanorod core-Pd shell nanostructures. When the Pd volume fraction in the shell consisting of palladium and water approaches the plasmonic percolation threshold, ∼70%, the plasmon of the nanostructure transits from red to blue shifts with respect to that of the unshelled Au nanorod. This plasmonic percolation behavior is also confirmed by the scattering measurements on the individual core-shell nanostructures. Quasistatic theory and numerical simulations show that the plasmonic percolation originates from a positive-to-negative transition in the real part of the dielectric function of the shell as the Pd volume fraction is increased. The observed plasmonic percolation is found to be independent of the metal type in the shell. Moreover, compared to the unshelled Au nanorods with similar plasmon wavelengths, the Au nanorod core-Pd shell nanostructures exhibit larger refractive index sensitivities, which is ascribed to the expulsion of the electric field intensity from the Au nanorod core by the adsorbed Pd nanoparticles. © 2012 American Chemical Society.

  9. A hybrid system for solar irradiance specification

    Science.gov (United States)

    Tobiska, W.; Bouwer, S.

    2006-12-01

    Space environment research and space weather operations require solar irradiances in a variety of time scales and spectral formats. We describe the development of solar irradiance characterization using four models and systems that are also used for space weather operations. The four models/systems include SOLAR2000 (S2K), SOLARFLARE (SFLR), APEX, and IDAR, which are used by Space Environment Technologies (SET) to provide solar irradiances from the soft X-rays through the visible spectrum. SFLR uses the GOES 0.1 0.8 nm X-rays in combination with a Mewe model subroutine to provide 0.1 30.0 nm irradiances at 0.1 nm spectral resolution, at 1 minute time resolution, and in a 6-hour XUV EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence. These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances into the S2K model. The APEX system is a real-time data retrieval system developed in conjunction with the University of Southern California Space Sciences Center (SSC) to provide SOHO SEM data processing and distribution. SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community. We describe how the SOHO SEM data, and especially the new S10.7 index, is being integrated directly into the S2K model for space weather operations. The IDAR system has been developed by SET to extract coronal hole boundaries, streamers, coronal loops, active regions, plage, network, and background (internetwork) features from solar images for comparison with solar magnetic features. S2K, SFLR, APEX, and IDAR outputs are integrated through the S2K solar irradiance platform that has become a hybrid system, i.e., a system that is able to produce irradiances using different processes, including empirical and physics-based models combined with real-time data integration.

  10. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  11. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  12. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  13. Coupled plasmon modes and their localization in graded plasmonic chains

    International Nuclear Information System (INIS)

    Xiao, J.J.; Yakubo, K.; Yu, K.W.

    2007-01-01

    Plasmonic waves occur in the subwavelength scale with transverse confinement below the diffraction limit. In this work, we report results of longitudinal localization-delocalization transitions of coupled plasmon modes in graded chains of metallic nanodots. Two graded models are studied: graded index of refraction in the host medium and incremental spacing between the nanoparticles. The coupled plasmon modes in these graded systems exhibit strong localization, showing a tunable passband in finite size systems. These localized modes survive in presence of weak loss in the nanodots. To understand the localization mechanism, we construct equivalent systems of one-dimensional coupled harmonic oscillators, whose coupling strength or masses are gradually varied from one end to the other, with additional on-site potentials. Confining and transmitting electromagnetic energy in these structures may pave new way for many fruitful applications in plasmonics

  14. Modular component kit for hybrid drive systems; Modularer Komponentenbaukasten fuer Hybride Antriebssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, Peter; Schalk, Johannes; Schmalzing, Claus-Oliver [MTU Friedrichshafen GmbH, Friedrichshafen (Germany). Bereich Forschung Technologieentwicklung

    2013-10-15

    By hybrid drives, fuel consumption in off-road applications can be significantly reduced. However, the additional power train components and degrees of freedom required in the design of hybridised systems involve an increase in system variants. To keep the number of variants as low as possible whilst simultaneously ensuring that hybrid drives can serve as wide a spectrum of applications as possible, MTU has developed a modular system of components. This makes it possible to use customer requirements as a basis for creating innovative drive systems for the widest range of applications. (orig.)

  15. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  16. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  17. Renewable energy systems in Mexico: Installation of a hybrid system

    Science.gov (United States)

    Pate, Ronald C.

    1993-05-01

    Sandia has been providing technical leadership on behalf of DOE and CORECT on a working level cooperative program with Mexico on renewable energy (PROCER). As part of this effort, the Sandia Design Assistance Center (DAC) and the solar energy program staff at Instituto de Investigaciones Electricas (IIE) in Cuernavaca, Mexico, recently reached agreement on a framework for mutually beneficial technical collaboration on the monitoring and field evaluation of renewable energy systems in Mexico, particularly village-scale hybrid systems. This trip was made for the purpose of planning the details for the joint installation of a data acquisition system (DAS) on a recently completed PV/Wind/Diesel hybrid system in the village of Xcalac on the Southeast coast of the state of Quintana Roo, Mexico. The DAS installation will be made during the week of March 15, 1993. While in Mexico, discussions were also held with personnel from.the National Autonomous University of Mexico (UNAM) Solar Energy Laboratory and several private sector companies with regard to renewable energy project activities and technical and educational support needs in Mexico.

  18. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  19. Plasmonic Modulator Using CMOS Compatible Material Platform

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Kinsey, Nathaniel; Naik, Gururaj V.

    2014-01-01

    In this work, a design of ultra-compact plasmonic modulator is proposed and numerically analyzed. The device l ayout utilizes alternative plas monic materials such as tr ansparent conducting oxides and titanium nitride which potentially can be applied for CMOS compatible process. The modulation i...... for integration with existing insulator-metal-insu lator plasmonic waveguides as well as novel photonic/electronic hybrid circuits...

  20. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  1. Optimal design of energy storage systems for hybrid vehicle drivetrains

    NARCIS (Netherlands)

    Hofman, T.; Hoekstra, D.; Druten, van R.M.; Steinbuch, M.

    2005-01-01

    Current hybrid powertrain simulation packages arebased on discrete (existing) system components and predefinedsystem structures. Optimization of the performance of the hybridpowertrain is then based on finding the most efficient controlstrategy of the primary and secondary power source and

  2. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    Science.gov (United States)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  3. Hybrid Cooling System for Industrial Application | Ezekwe | Nigerian ...

    African Journals Online (AJOL)

    Hybrid Cooling System for Industrial Application. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... more than five times over that achieved by using the gas (air) phase alone. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  4. Chip Integrated, Hybrid EHD/Capillary Driven Thermal Management System

    Data.gov (United States)

    National Aeronautics and Space Administration — Chip-Integrated, Hybrid EHD/Capillary-Driven Thermal Management System is a two year that will leverage independently attained yet related prototype hardware...

  5. Energy Harvesting in Heterogeneous Networks with Hybrid Powered Communication Systems

    KAUST Repository

    Alsharoa, Ahmad; Celik, Abdulkadir; Kamal, Ahmed E.

    2018-01-01

    In this paper, we investigate an energy efficient and energy harvesting (EH) system model in heterogeneous networks (HetNets) where all base stations (BSS) are equipped to harvest energy from renewable energy sources. We consider a hybrid power

  6. The Vulcan Advanced Hybrid Manufacturing System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Made In Space is developing the The Vulcan Advanced Hybrid Manufacturing System (VULCAN) to address NASA's requirement to produce high-strength, high-precision...

  7. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  8. Methodology for the hybrid solution of systems of differential equations

    International Nuclear Information System (INIS)

    Larrinaga, E.F.; Lopez, M.A.

    1993-01-01

    This work shows a general methodology of solution to systems of differential equations in hybrid computers. Taking into account this methodology, a mathematical model was elaborated. It offers wide possibilities of recording and handling the results on the basis of using the hybrid system IBM-VIDAC 1224 which the ISCTN has. It also presents the results gained when simulating a simple model of a nuclear reactor, which was used in the validation of the results of the computational model

  9. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  10. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  11. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast

    2017-08-01

    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  12. Manipulation of plasmonic wavefront and light–matter interaction in metallic nanostructures: A brief review

    International Nuclear Information System (INIS)

    Li Jia-Fang; Li Zhi-Yuan

    2014-01-01

    The control and application of surface plasmons (SPs), is introduced with particular emphasis on the manipulation of the plasmonic wavefront and light–matter interaction in metallic nanostructures. We introduce a direct design methodology called the surface wave holography method and show that it can be readily employed for wave-front shaping of near-infrared light through a subwavelength hole, it can also be used for designing holographic plasmonic lenses for SPs with complex wavefronts in the visible band. We also discuss several issues of light–matter interaction in plasmonic nanostructures. We show theoretically that amplification of SPs can be achieved in metal nanoparticles incorporated with gain media, leading to a giant reduction of surface plasmon resonance linewidth and enhancement of local electric field intensity. We present an all-analytical semiclassical theory to evaluate spaser performance in a plasmonic nanocavity incorporated with gain media described by the four-level atomic model. We experimentally demonstrate amplified spontaneous emission of SP polaritons and their amplification at the interface between a silver film and a polymer film doped with dye molecules. We discuss various aspects of microscopic and macroscopic manipulation of fluorescent radiation from gold nanorod hybrid structures in a system of either a single nanoparticle or an aligned group of nanoparticles. The findings reported and reviewed here could help others explore various approaches and schemes to manipulate plasmonic wavefront and light–matter interaction in metallic nanostructures for potential applications, such as optical displays, information integration, and energy harvesting technologies. (topical review - plasmonics and metamaterials)

  13. Thermal simulation of a cooling system of hybrid commercial vehicles; Thermalsimulation eine Hybrid-LKW-Kuehlsystems

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, Christoph; Schnoerch, Stefan; Rathberger, Christian [Magna Powertrain Engineering Center Steyr GmbH und Co. KG, St. Valentin (Austria)

    2012-11-01

    In the past few years hybrid vehicles have been in the center of automotive engineering efforts, in particular in the field of passenger cars. But hybrid powertrains will also be important for commercial trucks. This focus on hybrid vehicles leads to high demands on thermal management since the additional components in a hybrid vehicle need appropriate cooling or even heating. In the given paper the simulation of a complete cooling system of a hybrid commercial vehicle will be explained. For this virtual examination the commercial 1D thermal management software KULI will be used, a co-simulation with several programs will not be done deliberately. Yet all aspects which are relevant for a global assessment of the thermal management are considered. The main focus is put on the investigation of appropriate concepts for the fluid circuits, including low and high temperature circuits, electric water pumps, etc. Moreover, also a refrigerant circuit with a chiller for active battery cooling will be used, the appropriate control strategy is implemented as well. For simulating transient profiles a simple driving simulation model is included, using road profile, ambient conditions, and various vehicle parameters as input. In addition an engine model is included which enables the investigation of fuel consumption potentials. This simulation model shows how the thermal management of a hybrid vehicle can be investigated with a single program and with reasonable effort. (orig.)

  14. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  15. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  16. Concept design for hybrid vehicle power systems

    NARCIS (Netherlands)

    Hofman, T.; Druten, van R.M.

    2005-01-01

    Hybridization implies adding a Secondary power source (e.g. electric motor and battery) (S) to a Primary power source (P) in order to improve the driving functions (e.g. fuel economy, driveability (performance)) of the vehicle. The fuel economy isstrongly determined by the energy management

  17. Reactor systems modeling for ICF hybrids

    International Nuclear Information System (INIS)

    Berwald, D.H.; Meier, W.R.

    1980-10-01

    The computational models of ICF reactor subsystems developed by LLNL and TRW are described and a computer program was incorporated for use in the EPRI-sponsored Feasibility Assessment of Fusion-Fission Hybrids. Representative parametric variations have been examined. Many of the ICF subsystem models are very preliminary and more quantitative models need to be developed and included in the code

  18. Analysis of Linear Hybrid Systems in CLP

    DEFF Research Database (Denmark)

    Banda, Gourinath; Gallagher, John Patrick

    2009-01-01

    In this paper we present a procedure for representing the semantics of linear hybrid automata (LHAs) as constraint logic programs (CLP); flexible and accurate analysis and verification of LHAs can then be performed using generic CLP analysis and transformation tools. LHAs provide an expressive...

  19. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  20. DIAGNOSIS WINDOWS PROBLEMS BASED ON HYBRID INTELLIGENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    SAFWAN O. HASOON

    2013-10-01

    Full Text Available This paper describes the artificial intelligence technologies by integrating Radial Basis Function networks with expert systems to construct a robust hybrid system. The purpose of building the hybrid system is to give recommendations to repair the operating system (Windows problems and troubleshoot the problems that can be repaired. The neural network has unique characteristics which it can complete the uncompleted data, the expert system can't deal with data that is incomplete, but using the neural network individually has some disadvantages which it can't give explanations and recommendations to the problems. The expert system has the ability to explain and give recommendations by using the rules and the human expert in some conditions. Therefore, we have combined the two technologies. The paper will explain the integration methods between the two technologies and which method is suitable to be used in the proposed hybrid system.

  1. Hybrid Ventilation with Innovative Heat Recovery—A System Analysis

    Directory of Open Access Journals (Sweden)

    Bengt Hellström

    2013-02-01

    Full Text Available One of the most important factors when low energy houses are built is to have good heat recovery on the ventilation system. However, standard ventilation units use a considerable amount of electricity. This article discusses the consequences on a system level of using hybrid ventilation with heat recovery. The simulation program TRNSYS was used in order to investigate a ventilation system with heat recovery. The system also includes a ground source storage and waste water heat recovery system. The result of the analysis shows that the annual energy gain from ground source storage is limited. However, this is partly a consequence of the fact that the well functioning hybrid ventilation system leaves little room for improvements. The analysis shows that the hybrid ventilation system has potential to be an attractive solution for low energy buildings with a very low need for electrical energy.

  2. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  3. Split-gene system for hybrid wheat seed production.

    Science.gov (United States)

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-06-24

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

  4. The rural areas electrification with a hybrid photovoltaic systems

    International Nuclear Information System (INIS)

    Kocev, Kiril I.; Dimitrov, Dimitar; Tudzharov, Gjorgji

    2001-01-01

    Depending on a daily load demand, distance from the utility grid and the available solar energy, the rural villages electrification with a hybrid photovoltaic (PV) system can be a cheaper solution than the classic electrification, by connecting them to the utility grid. Besides PV generator, the considered hybrid system is consisted of a battery and a diesel gen set. For the concrete case - rural village with estimated daily load demand of 15.5 kWh/day, with the computer program PVFORM, which is modified for such hybrid system, were simulated a few hundreds PV systems, with different sizes of the PV generator and of the battery capacity. Analyzing the obtained results, it can be foreseen the influence of the component size on the system functionality. From the mass of possible system combinations, it is chosen one that has 42 % lower initial investment, than the initial investment for connection of the village to the utility grid. (Original)

  5. Hybrid Intrusion Detection System for DDoS Attacks

    Directory of Open Access Journals (Sweden)

    Özge Cepheli

    2016-01-01

    Full Text Available Distributed denial-of-service (DDoS attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS, for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.

  6. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor II of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  7. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While, the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor 2 of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  8. Vibration control of bridges and buildings hybrid system. Kyoryoter dot tatemono no shindo seigyo hybrid hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Tanida, K. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-11-15

    Multistory buildings, suspension bridges, and cable stayed bridges tend to become huge, and technology of controlling their vibration caused by strong winds and earthquakes is becoming an important subject for study. A description is made on a hybrid system which is a combination of the conventional passive system and active system, having merits of both of the systems. Verification test made using a model and an example of application to an actual bridge are introduced. This hybrid control system has been applied to the main tower of the cable stayed bridge on Route 12 of the Tokyo expressway. It is installed and in operation on the top of the tower to improve the workability, and can decrease the vibration of the tower caused by vortical excitation produced during the construction of the main tower. With the hybrid system, the actuator capacity can be reduced to about 1/5 for the similar damping performance to that of the active system with the same mass ratio. In addition, the weight of the equipment can be nearly halved in comparison with the passive system. Moreover, it has such a high safety characteristic as being used as a passive system when power supply is cut off because the controlling force of the system is smaller as compared with the active system. 2 refs., 11 figs.

  9. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  10. Performance estimation of photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin; Yang, Lili

    2014-01-01

    A theoretical model for evaluating the efficiency of concentrating PV–TE (photovoltaic–thermoelectric) hybrid system is developed in this paper. Hybrid systems with different photovoltaic cells are studied, including crystalline silicon photovoltaic cell, silicon thin-film photovoltaic cell, polymer photovoltaic cell and copper indium gallium selenide photovoltaic cell. The influence of temperature on the efficiency of photovoltaic cell has been taken into account based on the semiconductor equations, which reveals different efficiency temperature characteristic of polymer photovoltaic cells. It is demonstrated that the polycrystalline silicon thin-film photovoltaic cell is suitable for concentrating PV–TE hybrid system through optimization of the convection heat transfer coefficient and concentrating ratio. The polymer photovoltaic cell is proved to be suitable for non-concentrating PV–TE hybrid system. - Highlights: • Performances of four types of photovoltaic–thermoelectric hybrid systems are studied. • Temperature is one of dominant factors of affecting the conversion efficiency of PV–TE systems. • One can select a proper PV–TE assembly system according to given operating conditions

  11. Development of hybrid system for mass productive passenger car; Joyoshayo ryosangata hybrid system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Abe, S; Sasaki, S; Matsui, H; Kubo, K [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The Toyota Hybrid System has two power sources which engage depending on driving conditions. An improved efficiency gasoline engine provides the main power to drive the wheels, as in conventional automobiles. Drive power can also be supplied by an electric motor, which derives its electricity from a battery and a Generator. Fuel efficiency is further boosted by other measures, such as automatically cutting the engine when the vehicle is at a stop and regenerating the energy accumulate during deceleration. Compared with conventional vehicles with a 1.5-liter engine running in 10 {center_dot} 15 mode, the CO2 emissions are reduced by half. Moreover, with the use of a motor to reduce engine load during acceleration, HC, CO, and NOx emissions are cut significantly low levels. 13 figs.

  12. Controlled coupling of NV defect centers to plasmonic and photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Michael, E-mail: michael.barth@physik.hu-berlin.d [Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); Schietinger, Stefan; Schroeder, Tim; Aichele, Thomas; Benson, Oliver [Institute of Physics, Humboldt-Universitaet zu Berlin, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)

    2010-09-15

    Nitrogen-vacancy (NV) defect centers in diamond have recently emerged as promising candidates for a number of applications in the fields of quantum optics and quantum information, such as single photon generation and spin qubit operations. The performance of these defect centers can strongly be enhanced through coupling to plasmonic and photonic nanostructures, such as metal particles and optical microcavities. Here, we demonstrate the controlled assembly of such hybrid structures via manipulation with scanning near-field probes. In particular, we investigate the plasmonic enhancement of the single photon emission through coupling to gold nanospheres as well as the coupling of diamond nanocrystals to the optical modes of microsphere resonators and photonic crystal cavities. These systems represent prototypes of fundamental nanophotonic/plasmonic elements and provide control on the generation and coherent transfer of photons on the level of a single quantum emitter.

  13. Hybrid Recommendation System Memanfaatkan Penggalian Frequent Itemset dan Perbandingan Keyword

    OpenAIRE

    Suka Parwita, Wayan Gede; Winarko, Edi

    2015-01-01

    Abstrak Recommendation system sering dibangun dengan memanfaatkan data peringkat item dan data identitas pengguna. Data peringkat item merupakan data yang langka pada sistem yang baru dibangun. Sedangkan, pemberian data identitas pada recommendation system dapat menimbulkan kekhawatiran penyalahgunaan data identitas. Hybrid recommendation system memanfaatkan algoritma penggalian frequent itemset dan perbandingan keyword dapat memberikan daftar rekomendasi tanpa menggunakan data identi...

  14. Hybrid systems: a real-time interface to control engineering

    DEFF Research Database (Denmark)

    Eriksen, Thomas Juul; Heilmann, Søren; Holdgaard, Michael

    1996-01-01

    are usually investigated by control engineers that base their work on the theory of dynamic systems. The mathematical tool for this work is thus mathematical analysis, in particular the theory of differential equations. The paper gives an introduction to a general hybrid systems model for definition of system...

  15. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  16. Analysis of hybrid energy systems for application in southern Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The option of using hybrid energy for electricity in remote areas of Ghana is examined. • The cost of electricity produced by the hybrid system is found to be $0.281/kW h. • The levelized cost of electricity increase by 9% when the PV price is increased from $3000/kW to $7500/kW. - Abstract: Due to advances in renewable energy technologies and increase in oil price, hybrid renewable energy systems are becoming increasingly attractive for power generation applications in remote areas. This paper presents an economic analysis of the feasibility of utilizing a hybrid energy system consisting of solar, wind and diesel generators for application in remote areas of southern Ghana using levelized cost of electricity (LCOE) and net present cost of the system. The annual daily average solar global radiation at the selected site is 5.4 kW h/m 2 /day and the annual mean wind speed is 5.11 m/s. The National Renewable Energy Laboratory’s Hybrid Optimization Model for Electric Renewable (HOMER) software was employed to carry out the present study. Both wind data and the actual load data have been used in the simulation model. It was found that a PV array of 80 kW, a 100 kW wind turbine, two generators with combined capacity of 100 kW, a 60 kW converter/inverter and a 60 Surrette 4KS25P battery produced a mix of 791.1 MW h of electricity annually. The cost of electricity for this hybrid system is found to be $0.281/kW h. Sensitivity analysis on the effect of changes in wind speed, solar global radiation and diesel price on the optimal energy was investigated and the impact of solar PV price on the LCOE for a selected hybrid energy system was also presented

  17. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  18. Regenerative Braking System for Series Hybrid Electric City Bus

    OpenAIRE

    Zhang, Junzhi; Lu, Xin; Xue, Junliang; Li, Bos

    2008-01-01

    Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid electric buses achieve better fuel economy while lowering exhaust emissions. This paper describes the design and testing of three regenerative braking systems, one of which is a series regenerative braking system and two of which are parallel regenerative braking systems. The existing friction based Adjustable Braking System (ABS) on the bus is integrated with each of the new braking systems in order to ensure bus...

  19. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication technolog......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...... technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic...

  20. Hydrogen atom as a quantum-classical hybrid system

    International Nuclear Information System (INIS)

    Zhan, Fei; Wu, Biao

    2013-01-01

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  1. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  2. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  3. Entanglement detection in hybrid optomechanical systems

    International Nuclear Information System (INIS)

    De Chiara, Gabriele; Paternostro, Mauro; Palma, G. Massimo

    2011-01-01

    We study a device formed by a Bose-Einstein condensate (BEC) coupled to the field of a cavity with a moving end mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.

  4. 15th International conference on Hybrid Intelligent Systems

    CERN Document Server

    Han, Sang; Al-Sharhan, Salah; Liu, Hongbo

    2016-01-01

    This book is devoted to the hybridization of intelligent systems which is a promising research field of modern computational intelligence concerned with the development of the next generation of intelligent systems. This Volume contains the papers presented in the Fifteenth International conference on Hybrid Intelligent Systems (HIS 2015) held in Seoul, South Korea during November 16-18, 2015. The 26 papers presented in this Volume were carefully reviewed and selected from 90 paper submissions. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  5. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  6. Plasmonic Encoding

    Science.gov (United States)

    2014-10-06

    Mangelson, B. F.; Schatz, G. C.; and Mirkin, C. A. “ Silver -based Nanodisk Codes,” ACS Nano, 2010, 9, 5446-5452. 6. Zhang, J.; Langille, M. R...Wei, W. D.; Zhang, H.; Schatz, G.; Boey, F.; Mirkin, C. A. “Free Standing Bimetallic Nanorings and Nanoring Arrays Made by On-Wire Lithography (OWL...Mirkin, C. A.; Marks, L. D.; Van Duyne, R. P. “Correlating the Structure and Localized Surface Plasmon Resonance of Single Silver Right Bipyramids

  7. Roadmap on plasmonics

    Science.gov (United States)

    Stockman, Mark I.; Kneipp, Katrin; Bozhevolnyi, Sergey I.; Saha, Soham; Dutta, Aveek; Ndukaife, Justus; Kinsey, Nathaniel; Reddy, Harsha; Guler, Urcan; Shalaev, Vladimir M.; Boltasseva, Alexandra; Gholipour, Behrad; Krishnamoorthy, Harish N. S.; MacDonald, Kevin F.; Soci, Cesare; Zheludev, Nikolay I.; Savinov, Vassili; Singh, Ranjan; Groß, Petra; Lienau, Christoph; Vadai, Michal; Solomon, Michelle L.; Barton, David R., III; Lawrence, Mark; Dionne, Jennifer A.; Boriskina, Svetlana V.; Esteban, Ruben; Aizpurua, Javier; Zhang, Xiang; Yang, Sui; Wang, Danqing; Wang, Weijia; Odom, Teri W.; Accanto, Nicolò; de Roque, Pablo M.; Hancu, Ion M.; Piatkowski, Lukasz; van Hulst, Niek F.; Kling, Matthias F.

    2018-04-01

    Plasmonics is a rapidly developing field at the boundary of physical optics and condensed matter physics. It studies phenomena induced by and associated with surface plasmons—elementary polar excitations bound to surfaces and interfaces of good nanostructured metals. This Roadmap is written collectively by prominent researchers in the field of plasmonics. It encompasses selected aspects of nanoplasmonics. Among them are fundamental aspects, such as quantum plasmonics based on the quantum-mechanical properties of both the underlying materials and the plasmons themselves (such as their quantum generator, spaser), plasmonics in novel materials, ultrafast (attosecond) nanoplasmonics, etc. Selected applications of nanoplasmonics are also reflected in this Roadmap, in particular, plasmonic waveguiding, practical applications of plasmonics enabled by novel materials, thermo-plasmonics, plasmonic-induced photochemistry and photo-catalysis. This Roadmap is a concise but authoritative overview of modern plasmonics. It will be of interest to a wide audience of both fundamental physicists and chemists, as well as applied scientists and engineers.

  8. Graphene Plasmons in Triangular Wedges and Grooves

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Dias, E. J. C.; Xiao, Sanshui

    2016-01-01

    and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential...... and electric-field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmon counterparts, but now scaled by a (purely) geometric factor in which all the information about the system’s geometry is contained. We...

  9. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  10. Voith hybrid systems - parallel hybrid for rail vehicles; Voith Hybridsysteme - Parallelhybrid fuer Schienenfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Thomas; Berger, Juergen; Discher, Andreas; Bartosch, Stephan [Voith Turbo GmbH und Co. KG (Germany)

    2010-03-15

    The article presents a variety of ways help to save fuel, reduce noise and minimize harmful emissions for rail vehicles. These ECO components can be used separately or in combination with drive systems for various types of hybrid concepts. For example, via a hydrostatic or electric hybrid system can recuperate and store braking energy and utilize it for powering the vehicle or driving auxiliary systems. Another system converts lost heat from the drive motor into mechanical or electrical energy. With EcoConsult, Voith Turbo also offers a ''toolbox'' comprising software, hardware and consultancy which allows identifying the exact operating conditions and a reliable calculation of the life cycle cost (LCC) for a variety of vehicle categories and operating profiles. (orig.)

  11. Hybrid attacks on model-based social recommender systems

    Science.gov (United States)

    Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao

    2017-10-01

    With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.

  12. Performance assessment of a novel hybrid district energy system

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2012-01-01

    In this paper, a new hybrid system for improving the efficiency of geothermal district heating systems (GDHSs) is proposed. This hybrid system consists of biogas based electricity production and a water-to-water geothermal heat pump unit (GHPU), which uses the waste heat for both heating and domestic hot water purposes. Electricity generated by the biogas plant (BP) is utilized to drive the GDHS's pumps, BP systems and the heat pump units. Both the biogas reactor heating unit and the heat pump unit utilize the waste heat from the GDHS and use the system as a heat source. The feasibility of utilizing a hybrid system in order to increase the overall system (GDHS + BP + GHPU) efficiency is then investigated for possible efficiency improvements. The Edremit GDHS in Turkey, which is selected for investigation in this case study, reinjects 16.8 MW of thermal power into the river at a low temperature; namely at 40 °C. Such a temperature is ideal for mesophilic bacterial growth in the digestion process during biogas production. 1.45 MW of biogas based electricity production potential is obtainable from the waste heat output of the Edremit GDHS. The average overall system efficiencies through the utilization of this kind of hybridized system approach are increased by 7.5% energetically and 13% for exergetically. - Highlights: ► A new hybrid system is proposed for improving the efficiency of geothermal district heating systems (GDHSs). ► The average overall system efficiencies are increased by 7.5% for energy and 13% for exergy, respectively. ► Various energetic and exergetic parameters are studied.

  13. Hybrid algorithm for rotor angle security assessment in power systems

    Directory of Open Access Journals (Sweden)

    D. Prasad Wadduwage

    2015-08-01

    Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

  14. Electrically Excited Plasmonic Nanoruler for Biomolecule Detection.

    Science.gov (United States)

    Dathe, André; Ziegler, Mario; Hübner, Uwe; Fritzsche, Wolfgang; Stranik, Ondrej

    2016-09-14

    Plasmon-based sensors are excellent tools for a label-free detection of small biomolecules. An interesting group of such sensors are plasmonic nanorulers that rely on the plasmon hybridization upon modification of their morphology to sense nanoscale distances. Sensor geometries based on the interaction of plasmons in a flat metallic layer together with metal nanoparticles inherit unique advantages but need a special optical excitation configuration that is not easy to miniaturize. Herein, we introduce the concept of nanoruler excitation by direct, electrically induced generation of surface plasmons based on the quantum shot noise of tunneling currents. An electron tunneling junction consisting of a metal-dielectric-semiconductor heterostructure is directly incorporated into the nanoruler basic geometry. With the application of voltage on this modified nanoruler, the plasmon modes are directly excited without any additional optical component as a light source. We demonstrate via several experiments that this electrically driven nanoruler possesses similar properties as an optically exited one and confirm its sensing capabilities by the detection of the binding of small biomolecules such as antibodies. This new sensing principle could open the way to a new platform of highly miniaturized, integrated plasmonic sensors compatible with monolithic integrated circuits.

  15. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    Science.gov (United States)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  16. Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System

    Science.gov (United States)

    Doelle, K.; Bajrami, B.

    2018-01-01

    This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.

  17. Using hybrid expert system approaches for engineering applications

    Science.gov (United States)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  18. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  19. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  20. Study of a SOFC-PEM hybrid system

    International Nuclear Information System (INIS)

    Fillman, B.; Bjornbom, P.; Sylwan, C.

    2004-01-01

    'Full text:' In the present project a system study of a SOFC-PEM hybrid system is in progress. Positive synergy effects are expected when combining a SOFC system with a PEM system. By combining the advantages of each fuel cell type it is promising that the hybrid system has higher overall efficiency than a SOFC-only system or a reformer-PEM system. A SOFC stack produces electricity and a reformate gas that can be further processed to hydrogen by the shift reaction. The produced hydrogen can be used by PEM stack in order to produce further electricity. In the PEM system case the complex fuel reformer processing could be eliminated. The simulations were performed with the flowsheeting simulation software Aspen Plus. (author)

  1. Chaos synchronization in autonomous chaotic system via hybrid feedback control

    International Nuclear Information System (INIS)

    Yang Lixin; Chu Yandong; Zhang Jiangang; Li Xianfeng; Chang Yingxiang

    2009-01-01

    This paper presents the synchronization of chaos by designing united controller. First, this method is implemented in synchronization of a simple system, then we realize the synchronization of Lue hyperchaotic system, we also take tracking control to realize the synchronization of Lue hyperchaotic system. Comparing with results, we can find that hybrid feedback control approach is more effective than tracking control for hyperchaotic system. Numerical simulations show the united synchronization method works well.

  2. A hybrid electrical power system for aircraft application.

    Science.gov (United States)

    Lee, C. H.; Chin, C. Y.

    1971-01-01

    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  3. A manifesto for conscientious design of hybrid online social systems

    OpenAIRE

    Noriega, Pablo; Verhagen, Harko; d’Inverno, Mark; Padget, Julian A.

    2016-01-01

    Online Social Systems such as community forums, social media, e-commerce and gaming are having an increasingly significant impact on our lives. They affect the way we accomplish all sorts of collective activities, the way we relate to others, and the way we construct are own self-image. These systems often have both human and artificial agency creating what we call online hybrid social systems. However, when systems are designed and constructed, the psychological and sociological impact of su...

  4. Comparison between hybrid renewable energy systems in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Hisham El Khashab

    2015-05-01

    This paper investigates RE sources applications at Yanbu, Saudi Arabia, besides a simulation using HOMER software to three proposed systems newly erected in Yanbu Industrial College Renewable Energy (RE lab. The lab represents a hybrid system, composed of PV, wind turbine, and Fuel cell systems. The cost of energy is compared in the three systems to have an actual estimation for RE in developing countries. The climatic variations at Yanbu that is located on the west coast of Saudi Arabia are considered.

  5. Hollow metal nanostructures for enhanced plasmonics (Conference Presentation)

    Science.gov (United States)

    Genç, Aziz; Patarroyo, Javier; Sancho-Parramon, Jordi; Duchamp, Martial; Gonzalez, Edgar; Bastus, Neus G.; Houben, Lothar; Dunin-Borkowski, Rafal; Puntes, Victor F.; Arbiol, Jordi

    2016-03-01

    Complex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.

  6. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  7. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  8. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  9. Quantum emitters coupled to surface plasmons of an nanowire

    DEFF Research Database (Denmark)

    Dzsotjan, David; Sørensen, Anders Søndberg; Fleischhauer, Michael

    2010-01-01

    We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nanowire using a Green's function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well......-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling. Udgivelsesdato: 27 August...

  10. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    Science.gov (United States)

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  11. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    International Nuclear Information System (INIS)

    Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf; Maes, Guido

    2009-01-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  12. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jian; Van Dorpe, Pol; Lagae, Liesbet; Borghs, Gustaaf [Interuniversity Microelectronics Center (IMEC), Kapeldreef 75, B-3001 Leuven (Belgium); Maes, Guido, E-mail: Jian.Ye@imec.b [Chemistry Department, Katholieke Universiteit Leuven, Celestijnenlaan 200 F, B-3001 Leuven (Belgium)

    2009-11-18

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  13. Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures

    Science.gov (United States)

    Ye, Jian; Van Dorpe, Pol; Lagae, Liesbet; Maes, Guido; Borghs, Gustaaf

    2009-11-01

    We report on a clear experimental observation of the plasmonic dipolar anti-bonding resonance in silver nanorings. The data can be explained effectively by the plasmon hybridization model, which is confirmed by the numerical calculations of the electromagnetic field and surface charge distribution profiles. The experimental demonstration of the plasmon hybridization model indicates its usefulness as a valuable tool to understand, design and predict optical properties of metallic nanostructures.

  14. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik; Højlund-Nielsen, Emil; Christiansen, Alexander Bruun

    2014-01-01

    We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large-area struc......We present reflective plasmonic colors based on the concept of localized surface plasmon resonances (LSPR) for plastic consumer products. In particular, we bridge the widely existing technological gap between clean-room fabricated plasmonic metasurfaces and the practical call for large......-area structurally colored plastic surfaces robust to daily life handling. We utilize the hybridization between LSPR modes in aluminum nanodisks and nanoholes to design and fabricate bright angle-insensitive colors that may be tuned across the entire visible spectrum....

  15. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    Science.gov (United States)

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  16. Performance Analysis of a Hybrid Power Cutting System for Roadheader

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-01-01

    Full Text Available An electrohydraulic hybrid power cutting transmission system for roadheader under specific working condition was proposed in this paper. The overall model for the new system composed of an electric motor model, a hydraulic pump-motor model, a torsional planetary set model, and a hybrid power train model was established. The working mode characteristics were simulated under the conditions of taking the effect of cutting picks into account. The advantages of new hybrid power cutting system about the dynamic response under shock load were investigated compared with the traditional cutting system. The results illustrated that the hybrid power system had an obvious cushioning in terms of the dynamic load of cutting electric motor and planetary gear set. Besides, the hydraulic motor could provide an auxiliary power to improve the performance of the electric motor. With further analysis, a dynamic load was found to have a high relation to the stiffness and damping of coupling in the transmission train. The results could be a useful guide for the design of cutting transmission of roadheader.

  17. A hybrid press system: Motion design and inverse kinematics issues

    Directory of Open Access Journals (Sweden)

    M. Erkan Kütük

    2016-06-01

    Full Text Available A hybrid machine (HM is a system integrating two types of motor; servo and constant velocity with a mechanism. The purpose is to make use of the energy in the system efficiently with a flexible system having more than one degree of freedom (DOF. A review is included on hybrid press systems. This study is included as a part of an industrial project used for metal forming. The system given here includes a 7 link mechanism, one of link is driven by a constant velocity motor (CV and the other is driven by a servo motor (SM. Kinematics analysis of the hybrid driven mechanism is presented here as inverse kinematics analysis. Motion design is very crucial step when using a hybrid machine. So motion design procedure is given with motion curve examples needed. Curve Fitting Toolbox (CFT in Matlab® is offered as an auxiliary method which can be successfully applied. Motion characteristics are chosen by looking at requirements taken from metal forming industry. Results are then presented herein.

  18. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  19. Strong Coupling between Plasmons and Organic Semiconductors

    Directory of Open Access Journals (Sweden)

    Joel Bellessa

    2014-05-01

    Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.

  20. Hybrid control of the distributed refrigeration system

    DEFF Research Database (Denmark)

    Chen, L.; Wisniewski, R.

    2010-01-01

    consumption. The paper focuses on synchronization dynamics of the refrigeration system modeled as a piecewise-affine switched system. System behaviors are analyzed using chaos theory. The synchronization phenomenon is interpreted as a stable low-period orbit; if the system has a high-order periodic orbit...

  1. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  2. A Hybrid Recommender System Based on User-Recommender Interaction

    OpenAIRE

    Zhang, Heng-Ru; Min, Fan; He, Xu; Xu, Yuan-Yuan

    2015-01-01

    Recommender systems are used to make recommendations about products, information, or services for users. Most existing recommender systems implicitly assume one particular type of user behavior. However, they seldom consider user-recommender interactive scenarios in real-world environments. In this paper, we propose a hybrid recommender system based on user-recommender interaction and evaluate its performance with recall and diversity metrics. First, we define the user-recommender interaction...

  3. Lower hybrid heating system for an ignition tokamak

    International Nuclear Information System (INIS)

    Brooks, J.; Harkness, S.; Jung, J.; Misra, B.; Moretti, A.; Norem, J.; Stevens, H.

    1978-01-01

    We have attempted to design a complete Lower Hybrid Resonance Heating System (LHRH) that could be used for TFTR, TNS, EPR, or a reactor. In addition to plasma physics constraints, we have considered those imposed by neutron radiation, surface heating of waveguides, sputtering, multipactoring, vacuum systems, materials, window design, engineering, maintenance and assembly. The system uses a Lallia--Brambilla grill which is fed by a number of waveguides entering the reactor by means of a labyrinth

  4. Quantum state engineering in hybrid open quantum systems

    OpenAIRE

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2015-01-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state disp...

  5. Hierarchical models and iterative optimization of hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)

    2016-06-08

    A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.

  6. The under-critical reactors physics for the hybrid systems; La physique des reacteurs sous-critiques des systemes hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Schapira, J P [Institut de Physique Nucleaire, IN2P3/CNRS 91 - Orsay (France); Vergnes, J [Electricite de France, EDF, Direction des Etudes et Recherches, 75 - Paris (France); Zaetta, A [CEA/Saclay, Direction des Reacteurs Nucleaires, DRN, 91 - Gif-sur-Yvette (France); and others

    1998-03-12

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  7. Study of a class of hybrid-time systems

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, I. [Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Ingenieria Mecanica y Electrica-Culhuacan-IPN, Av. San Ana 1000 Col. San Fco. Culhuacan, Mexico D.F. 04430 (Mexico) and Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico)]. E-mail: ilse@calmecac.esimecu.ipn.mx; Femat, R. [Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico); Leyva-Ramos, J. [Insituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Departamento de Matematicas Aplicadas y Sistemas Computacionales, Camino a la Presa San Jose 2055, Col. Lomas 4a, seccion C.P. 78216, San Luis Potosi, San Luis Potosi (Mexico)

    2007-05-15

    The aim of this paper is to study the dynamic behavior of a class of hybrid-time systems. In particular, we concern about switched systems constituted by two linear second order systems with a time varying (sinusoidal type) translation term. By means of numerical simulations, system behavior and its relation to system parameters are studied. It is shown that system eigenvalues play a crucial role in the time evolution of the system leading either to regular behavior, oscillatory patterns or intermittent erratic-periodic behavior. Furthermore, it is shown that under certain conditions, presumable fractal structures can be obtained.

  8. Study of a class of hybrid-time systems

    International Nuclear Information System (INIS)

    Cervantes, I.; Femat, R.; Leyva-Ramos, J.

    2007-01-01

    The aim of this paper is to study the dynamic behavior of a class of hybrid-time systems. In particular, we concern about switched systems constituted by two linear second order systems with a time varying (sinusoidal type) translation term. By means of numerical simulations, system behavior and its relation to system parameters are studied. It is shown that system eigenvalues play a crucial role in the time evolution of the system leading either to regular behavior, oscillatory patterns or intermittent erratic-periodic behavior. Furthermore, it is shown that under certain conditions, presumable fractal structures can be obtained

  9. Reviews in plasmonics 2010

    CERN Document Server

    Geddes, Chris D

    2011-01-01

    Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonic

  10. Design and implementation of a hybrid electric motorcycle management system

    International Nuclear Information System (INIS)

    Hsu, Yuan-Yong; Lu, Shao-Yuan

    2010-01-01

    This paper presents a successful design and implement of a shunt-winding hybrid electric motorcycle management system which utilizes an electronic control unit (ECU) to integrate two major subsystems together, one being the traditional system of 125 c.c. internal combustion engine and the other an electric power motor. The hybrid electric motorcycle is assembled together robustly by these two major subsystems and eventually leads to successful road tests. The hybrid power system thus implemented can recharge its own batteries with electricity provided by the electrical recharge system and thus increasing the cruising mileages largely. The testing results obtained by using the proposed experimental platform indicate that lead-acid cells can boost their state of charge (SOC) by approximately 4% when it is operated under the hybrid mode for four driving cycles (about 1600 s) with the recharger on in a standard ECE-40 testing procedure. The results of road tests also clearly show that the pollutant emissions of the engine can be reduced at a lower speed or idling condition, and the problem of insufficient cruising range for electric motorcycles can also be greatly enhanced.

  11. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  12. Full state hybrid projective synchronization in hyperchaotic systems

    International Nuclear Information System (INIS)

    Chu Yandong; Chang Yingxiang; Zhang Jiangang; Li Xianfeng; An Xinlei

    2009-01-01

    In this letter, we investigate the full state hybrid projective synchronization (FSHPS) which includes complete synchronization, anti-synchronization and projective synchronization as its special items. Based on Lyapunov stability theory a controller can be designed for achieving the FSHPS of hyperchaotic systems. Numerical simulations are provided to verify the effectiveness of the proposed scheme.

  13. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    The real network nodes are always interfered by other messages. So, how to realize the hybrid synchronization of two independent chaotic systems based on the complex network is very important. To solve this problem, two other problems should be considered. One is how the same network node of the complex network ...

  14. 1978 source book for fusion--fission hybrid systems

    International Nuclear Information System (INIS)

    Crowley, J.H.; Pavlenco, G.F.; Kaminski, R.S.

    1978-12-01

    This study summarizes the promise and timing of the hybrid concept and culminates in a generic R and D timetable. This document emphasizes the meaningfulness of the concept to tomorrow's energy needs and energy production systems rather than strict analysis of technical feasibility

  15. Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems

    Science.gov (United States)

    2011-03-18

    world, the paragon of animals -William Shakespeare I would not have made it this far without the love and support of my parents. Their work-ethic...xiii  I.  Introduction ...Condition 1 SIZING ANALYSIS FOR AIRCRAFT UTILIZING HYBRID- ELECTRIC PROPULSION SYSTEMS I. Introduction 1. Background Physically

  16. Nuclear-Renewable Hybrid Energy System Market Analysis Plans

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark

    2016-06-09

    This presentation describes nuclear-renewable hybrid energy systems (N-R HESs), states their potential benefits, provides figures for the four tightly coupled N-R HESs that NREL is currently analyzing, and outlines the analysis process that is underway.

  17. Joint Optimal Design and Operation of Hybrid Energy Storage Systems

    NARCIS (Netherlands)

    Y. Ghiassi-Farrokhfal (Yashar); C. Rosenberg; S. Keshav (Srinivasam); M.-B. Adjaho (Marie-Benedicte)

    2016-01-01

    markdownabstractThe wide range of performance characteristics of storage technologies motivates the use of a hybrid energy storage systems (HESS) that combines the best features of multiple technologies. However, HESS design is complex, in that it involves the choice of storage technologies, the

  18. Borazine-boron nitride hybrid hydrogen storage system

    Science.gov (United States)

    Narula, Chaitanya K [Knoxville, TN; Simonson, J Michael [Knoxville, TN; Maya, Leon [Knoxville, TN; Paine, Robert T [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  19. Storing in carbon nano structures for hybrid systems solar hydrogen

    International Nuclear Information System (INIS)

    Marazzi, R.; Zini, G.; Tartarini, P.

    2009-01-01

    We have developed a hybrid energy system for converting energy from renewable sources and its storage in the form of hydrogen. The storage uses activated carbon and the methodology was modelled mathematically and simulated in numerical software. The results show that storage compression is cheaper storage for liquefaction. [it

  20. Spontaneous emission control in a tunable hybrid photonic system

    NARCIS (Netherlands)

    Frimmer, M.; Koenderink, A.F.

    2013-01-01

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS).

  1. Development of a hybrid system of artificial neural networks and ...

    African Journals Online (AJOL)

    Development of a hybrid system of artificial neural networks and artificial bee colony algorithm for prediction and modeling of customer choice in the market. ... attempted to present a new method for the modeling and prediction of customer choice in the market using the combination of artificial intelligence and data mining.

  2. Hybrid computer optimization of systems with random parameters

    Science.gov (United States)

    White, R. C., Jr.

    1972-01-01

    A hybrid computer Monte Carlo technique for the simulation and optimization of systems with random parameters is presented. The method is applied to the simultaneous optimization of the means and variances of two parameters in the radar-homing missile problem treated by McGhee and Levine.

  3. Efficient Proof Engines for Bounded Model Checking of Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2005-01-01

    In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...

  4. Variables and equations in hybrid systems with structural changes

    NARCIS (Netherlands)

    Beek, van D.A.

    2001-01-01

    In many models of physical systems, structural changes are common. Such structural changes may cause a variable to change from a differential variable to an algebraic variable, or to a variable that is not defined by an equation at all. Most hybrid modelling languages either restrict the kind of

  5. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  6. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  7. Adaptive hybrid optimal quantum control for imprecisely characterized systems.

    Science.gov (United States)

    Egger, D J; Wilhelm, F K

    2014-06-20

    Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.

  8. Village power hybrid systems development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.; Green, J. [National Renewable Energy Lab., Golden, CO (United States); Bergey, M. [Bergey Windpower Co., Norman, OK (United States); Lilley, A. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Mott, L. [Northern Power Systems, Moretown, VT (United States)

    1994-11-01

    The energy demand in developing countries is growing at a rate seven times that of the OECD countries, even though there are still 2 billion people living in developing countries without electricity. Many developing countries have social and economic development programs aimed at stemming the massive migration from the rural communities to the overcrowded, environmentally problematic, unemployment-bound urban centers. To address the issue of providing social, educational, health, and economic benefits to the rural communities of the developing world, a number of government and nongovernment agencies are sponsoring pilot programs to install and evaluate renewable energy systems as alternatives to line extension, diesels, kerosene, and batteries. The use of renewables in remote villages has yielded mixed results over the last 20 years. However, recently, photovoltaics, small wind turbines, and microhydro system shave gained increasing recognition as reliable, cost-effective alternatives to grid extension and diesel gensets for village-electricity applications. At the same time, hybrid systems based on combinations of PV/wind/batteries/diesel gensets have proven reliable and economic for remote international telecommunications markets. With the growing emphasis on environmentally and economically sustainable development of international rural communities, the US hybrid industry is responding with the development and demonstration of hybrid systems and architectures that will directly compete with conventional alternatives for village electrification. Assisting the US industry in this development, the National Renewable Energy Laboratory (NREL) has embarked on a program of collaborative technology development and technical assistance in the area of hybrid systems for village power. Following a brief review of village-power hybrid systems application and design issues, this paper presents the present industry development activities of three US suppliers and the NREL.

  9. Localized plasmons in bilayer graphene nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Xiao, Sanshui; Mortensen, N. Asger

    2016-01-01

    We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization. The electrodynamic response of the BLG electron gas is described in terms of a spatially...

  10. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  11. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  12. Characterization of Alternative Hybrid Solar Thermal Electric Systems

    International Nuclear Information System (INIS)

    Williams, T.A.

    1999-01-01

    Hybrid power towers offer a number of advantages over solar-only power tower systems for early commercial deployment of the technology. These advantages include enhanced modularity, reduced financial and technical risks, and lower energy costs. With the changes in the domestic and world markets for bulk power, hybrid power towers are likely to have the best opportunities for power projects. This paper discusses issues that are likely to be important to the deployment of hybrid power towers in the near future. A large number of alternative designs are possible, and it is likely that there is no single approach that can be considered best or optimal for all project opportunities. The preferred design will depend on the application, as well as the unique objectives and perspectives of the person evaluating the design

  13. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...... phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid...

  14. A hybrid power system for unmanned aerial vehicle electromagnetic launcher

    Science.gov (United States)

    Wang, Zhiren; Wu, Jun; Huang, Shengjun

    2018-06-01

    According to the UAV electromagnetic catapult with fixed timing, a hybrid energy storage system consist with battery and super capacitor is designed, in order to reduce the volume and weight of the energy storage system. The battery is regarded as the energy storage device and the super capacitor as power release device. Firstly, the battery charges the super capacitor, and then the super capacitor supplies power to electromagnetic catapult separately. The strategy is using the Buck circuit to charge the super capacitor with constant current and using the Boost circuit to make super capacitor provide a stable voltage circuit for electromagnetic catapult. The Simulink simulation results show that the designed hybrid energy storage system can meet the requirements of electromagnetic catapult. Compared with the system powered by the battery alone, the proposed scheme can reduce the number of batteries, and greatly reduce the volume and weight of the energy storage system.

  15. Hybrid Intrusion Forecasting Framework for Early Warning System

    Science.gov (United States)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  16. Hybrid electronic/optical synchronized chaos communication system.

    Science.gov (United States)

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  17. Laser synthesis of hybrid nanoparticles for biomedicine

    Science.gov (United States)

    Avetissian, H. K.; Lalayan, A. A.

    2018-04-01

    The extraordinary properties of size-tunable nanoparticles (NPs) have given rise to their widespread applications in Nanophotonics, Biomedicine, Plasmonics etc. Semiconductor and metal NPs have found a number of significant applications in the modern biomedicine due to ultrasmall sizes (1-10 nm) and the size-dependent flexibility of their optical properties. In the present work passive Q-switched Nd:YAG pulsed laser was used to synthesize NPs by method of laser ablation in different liquids. For cases of hybrid metal NPs we have demonstrated that plasmon resonance can be modified and tuned from the plasmon resonances of pure metal NPs. The shifted plasmon resonance frequency at 437 nm for Au-Ag hybrid NPs, and 545 nm for Au-Cu hybrid NPs have been observed. Effectiveness of biotissue ablation in the case of the tissue sample that colored with metal NPs was approximately on 4-5 times larger than for the sample with non-colored area. Laser welding for deep-located biotissue layers colored by metal NPs has been realized. The luminescence properties of the colloidal hybrid Si-Ni nanoparticles' system fabricated by pulsed laser ablation are also considered. The red-shifted photoluminescence of this system has been registered in the blue range of the spectrum because of the Stark effect in the Coulomb field of the charged Ni nanoparticles. Summarizing, the knowledge of peculiarities of optical properties of hybrid NPs is very important for biomedical applications. More complex nanoassemblies can be easily constructed by the presented technique of laser synthesis of colloidal QDs including complexes of NPs of different materials.

  18. Breaking Dense Structures: Proving Stability of Densely Structured Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Eike Möhlmann

    2015-06-01

    Full Text Available Abstraction and refinement is widely used in software development. Such techniques are valuable since they allow to handle even more complex systems. One key point is the ability to decompose a large system into subsystems, analyze those subsystems and deduce properties of the larger system. As cyber-physical systems tend to become more and more complex, such techniques become more appealing. In 2009, Oehlerking and Theel presented a (de-composition technique for hybrid systems. This technique is graph-based and constructs a Lyapunov function for hybrid systems having a complex discrete state space. The technique consists of (1 decomposing the underlying graph of the hybrid system into subgraphs, (2 computing multiple local Lyapunov functions for the subgraphs, and finally (3 composing the local Lyapunov functions into a piecewise Lyapunov function. A Lyapunov function can serve multiple purposes, e.g., it certifies stability or termination of a system or allows to construct invariant sets, which in turn may be used to certify safety and security. In this paper, we propose an improvement to the decomposing technique, which relaxes the graph structure before applying the decomposition technique. Our relaxation significantly reduces the connectivity of the graph by exploiting super-dense switching. The relaxation makes the decomposition technique more efficient on one hand and on the other allows to decompose a wider range of graph structures.

  19. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  20. Electrical Modulation of Fano Resonance in Plasmonic Nanostructures Using Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Kildishev, Alexander V.

    2014-01-01

    Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant eleme......-element simulations. Our approach can be used for development of next generation of tunable plasmonic and hybrid nanophotonic devices.......Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant...... elements enhances the interaction of incident radiation with the graphene sheet and enables efficient electrical modulation of the plasmonic resonance. We observe electrically controlled damping in the Fano resonances occurring at approximately 2 μm, and the results are verified by full-wave 3D finite...

  1. A Hybrid Approach to the Optimization of Multiechelon Systems

    Directory of Open Access Journals (Sweden)

    Paweł Sitek

    2015-01-01

    Full Text Available In freight transportation there are two main distribution strategies: direct shipping and multiechelon distribution. In the direct shipping, vehicles, starting from a depot, bring their freight directly to the destination, while in the multiechelon systems, freight is delivered from the depot to the customers through an intermediate points. Multiechelon systems are particularly useful for logistic issues in a competitive environment. The paper presents a concept and application of a hybrid approach to modeling and optimization of the Multi-Echelon Capacitated Vehicle Routing Problem. Two ways of mathematical programming (MP and constraint logic programming (CLP are integrated in one environment. The strengths of MP and CLP in which constraints are treated in a different way and different methods are implemented and combined to use the strengths of both. The proposed approach is particularly important for the discrete decision models with an objective function and many discrete decision variables added up in multiple constraints. An implementation of hybrid approach in the ECLiPSe system using Eplex library is presented. The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP and its variants are shown as an illustrative example of the hybrid approach. The presented hybrid approach will be compared with classical mathematical programming on the same benchmark data sets.

  2. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  3. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  4. A hybrid job-shop scheduling system

    Science.gov (United States)

    Hellingrath, Bernd; Robbach, Peter; Bayat-Sarmadi, Fahid; Marx, Andreas

    1992-01-01

    The intention of the scheduling system developed at the Fraunhofer-Institute for Material Flow and Logistics is the support of a scheduler working in a job-shop. Due to the existing requirements for a job-shop scheduling system the usage of flexible knowledge representation and processing techniques is necessary. Within this system the attempt was made to combine the advantages of symbolic AI-techniques with those of neural networks.

  5. Hybrid Active-Passive Radiation Shielding System

    Data.gov (United States)

    National Aeronautics and Space Administration — A radiation shielding system is proposed that integrates active magnetic fields with passive shielding materials. The objective is to increase the shielding...

  6. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  7. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  8. A Review of Hybrid Solar PV and Wind Energy System

    Directory of Open Access Journals (Sweden)

    Rashid Al Badwawi

    2015-07-01

    Full Text Available Due to the fact that solar and wind power is intermittent and unpredictable in nature, higher penetration of their types in existing power system could cause and create high technical challenges especially to weak grids or stand-alone systems without proper and enough storage capacity. By integrating the two renewable resources into an optimum combination, the impact of the variable nature of solar and wind resources can be partially resolved and the overall system becomes more reliable and economical to run. This paper provides a review of challenges and opportunities / solutions of hybrid solar PV and wind energy integration systems. Voltage and frequency fluctuation, and harmonics are major power quality issues for both grid-connected and stand-alone systems with bigger impact in case of weak grid. This can be resolved to a large extent by having proper design, advanced fast response control facilities, and good optimization of the hybrid systems. The paper gives a review of the main research work reported in the literature with regard to optimal sizing design, power electronics topologies and control. The paper presents a review of the state of the art of both grid-connected and stand-alone hybrid solar and wind systems.

  9. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  10. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  11. Optimal energy management of HEVs with hybrid storage system

    International Nuclear Information System (INIS)

    Vinot, E.; Trigui, R.

    2013-01-01

    Highlights: • A battery and ultra-capacitor system for parallel hybrid vehicle is considered. • Optimal management using Pontryagin’s minimum principle is developed. • Battery stress limitation is taken into account by means of RMS current. • Rule based management approaching the optimal control is proposed. • Comparison between rule based and optimal management are proposed using Pareto front. - Abstract: Energy storage systems are a key point in the design and development of electric and hybrid vehicles. In order to reduce the battery size and its current stress, a hybrid storage system, where a battery is coupled with an electrical double-layer capacitor (EDLC) is considered in this paper. The energy management of such a configuration is not obvious and the optimal operation concerning the energy consumption and battery RMS current has to be identified. Most of the past work on the optimal energy management of HEVs only considered one additional power source. In this paper, the control of a hybrid vehicle with a hybrid storage system (HSS), where two additional power sources are used, is presented. Applying the Pontryagin’s minimum principle, an optimal energy management strategy is found and compared to a rule-based parameterized control strategy. Simulation results are shown and discussed. Applied on a small compact car, optimal and ruled-based methods show that gains of fuel consumption and/or a battery RMS current higher than 15% may be obtained. The paper also proves that a well tuned rule-based algorithm presents rather good performances when compared to the optimal strategy and remains relevant for different driving cycles. This rule-based algorithm may easily be implemented in a vehicle prototype or in an HIL test bench

  12. Theory of strong hybridization-induced relaxation in uranium systems

    International Nuclear Information System (INIS)

    Hu, G.; Cooper, B.R.

    1988-01-01

    Commonly, for metallic uranium systems, sharp magnetic excitations are not observed in neutron inelastic scattering experiments, but rather there is a continuous spectrum of magnetic response. By extending our earlier theory for partially delocalized cerium systems, we can understand this behavior. The band-f hybridization is transformed to resonant scattering in our theory, where the exchange part of the scattering gives both a two-ion interaction (physically corresponding to cooperative hybridization, giving anisotropic magnetic ordering with unusual excitation dispersion for cerium systems) and a hybridization coupling of each ion to the band sea (giving relaxation and strong energy renormalization of the excitations for cerium systems). For uranium the f delocalization (and hence the hybridization) is much stronger than for cerium. The two-ion interaction (giving quasi-ionic energy level splitting) grows by an order of magnitude or more, as evidenced by greatly increased magnetic ordering temperatures. On the other hand, the single-site hybridization strength parameter J-script characterizing the f-to-band-bath coupling grows more moderately as the f levels move toward the Fermi energy, because of the renormalizing effect of the direct scattering which broadens the f levels. The increased energy scale of the quasi-ionic level splitting for uranium as compared to cerium or plutonium is the major contributor to the greatly increased width of magnetic scattering distributions, while the moderate increase in coupling of each uranium quasi-ion to the band sea gives a lesser contribution. We apply this theory to UP and UAs and compare our results with experiment

  13. Designing Networked Adaptive Interactive Hybrid Systems

    NARCIS (Netherlands)

    Kester, L.J.H.M.

    2008-01-01

    Advances in network technologies enable distributed systems, operating in complex physical environments, to coordinate their activities over larger areas within shorter time intervals. In these systems humans and intelligent machines will, in close interaction, be able to reach their goals under

  14. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  15. Method and apparatus for controlling hybrid powertrain system in response to engine temperature

    Science.gov (United States)

    Martini, Ryan D; Spohn, Brian L; Lehmen, Allen J; Cerbolles, Teresa L

    2014-10-07

    A method for controlling a hybrid powertrain system including an internal combustion engine includes controlling operation of the hybrid powertrain system in response to a preferred minimum coolant temperature trajectory for the internal combustion engine.

  16. Optimal scheduling for distributed hybrid system with pumped hydro storage

    International Nuclear Information System (INIS)

    Kusakana, Kanzumba

    2016-01-01

    Highlights: • Pumped hydro storage is proposed for isolated hybrid PV–Wind–Diesel systems. • Optimal control is developed to dispatch power flow economically. • A case study is conducted using the model for an isolated load. • Effects of seasons on the system’s optimal scheduling are examined through simulation. - Abstract: Photovoltaic and wind power generations are currently seen as sustainable options of in rural electrification, particularly in standalone applications. However the variable character of solar and wind resources as well as the variable load demand prevent these generation systems from being totally reliable without suitable energy storage system. Several research works have been conducted on the use of photovoltaic and wind systems in rural electrification; however most of these works have not considered other ways of storing energy except for conventional battery storage systems. In this paper, an energy dispatch model that satisfies the load demand, taking into account the intermittent nature of the solar and wind energy sources and variations in demand, is presented for a hybrid system consisting of a photovoltaic unit, a wind unit, a pumped hydro storage system and a diesel generator. The main purpose of the developed model is to minimize the hybrid system’s operation cost while optimizing the system’s power flow considering the different component’s operational constraints. The simulations have been performed using “fmincon” implemented in Matlab. The model have been applied to two test examples; the simulation results are analyzed and compared to the case where the diesel generator is used alone to supply the given load demand. The results show that using the developed control model for the proposed hybrid system, fuel saving can be achieved compared to the case where the diesel is used alone to supply the same load patters.

  17. Synthesis of immunotargeted magneto-plasmonic nanoclusters.

    Science.gov (United States)

    Wu, Chun-Hsien; Sokolov, Konstantin

    2014-08-22

    Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.

  18. Multiuser hybrid switched-selection diversity systems

    KAUST Repository

    Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2011-01-01

    system provides flexibility in trading-off the channel information feedback overhead with the prospected multiuser diversity gains. The users are clustered into groups, and the users' groups are ordered into a sequence. Per-group feedback thresholds

  19. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    drive and response systems using the sum and difference of relevant variables of the chaotic ... In the application of secure communications,. 781 ... identical equations denoted by the subscript 2. .... financial support through the DSA scheme.

  20. Fabrication and performance analysis of concentrated hybrid photovoltaic system

    Directory of Open Access Journals (Sweden)

    Murthy Krishna

    2018-01-01

    Full Text Available Sun is the most important source of renewable source of energy. During the past few decades there has been an ever-increasing interest in Photovoltaic (PV cells as it directly converts solar radiation into electricity. This paper involves the performance study of photovoltaic system under concentrated solar radiation. The main problem with the concentration solar energy is the drastic increase in temperature of the photovoltaic module resulting in a decrease in performance efficiency of the system. This problem of overheating of the system can be overcome by providing cooling which would ensure operation of the module in the optimal temperature range. Hence, the setup would function as a hybrid model serving the dual purpose of power generation while also utilizing the waste heat for water heating applications. The experimental set up consist of a novel arrangement of concentrator and reflector and the cooling system. The Hybrid Photovoltaic System was repeatedly tested under real time conditions on several days. A comparison was drawn between the results obtained from direct exposure of a standard photovoltaic module to that obtained from the hybrid system in order to better understand the improvement in performance parameters. The study shown a significant improvement of output of standard photovoltaic module under the concentrated solar radiation.

  1. Quantum state engineering in hybrid open quantum systems

    Science.gov (United States)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  2. Evaluation of hybrid power system alternatives: a case study

    International Nuclear Information System (INIS)

    Rosenthal, Andrew L.

    1999-01-01

    Pursuant to executive and statutory policies, the National Park Service (NPS) has been evaluating the use of photovoltaic (PV) hybrid power systems, for many of its remote, off-grid areas. This paper reports the results of a detailed technical and economic evaluation for one such area: the Needles District of Canyonlands National Park. The study evaluates the presented power systems and five alternative power generation configurations, four of which utilise PV. Projections are provided for the generator run-time and fuel use associated with each configuration as well as all initial and future costs. Included in the study are specific recommendations for energy efficiency improvements at the site. Results show that the generation systems presently in use, two full-time diesel generators, has the lowest conventional 20-year life cycle costs (LCC) of the six systems evaluated. However, when emissions costs are included (per NPS guidelines), several of the PV hybrid alternatives attain a lower LCC than the diesel-only systems. General discussion of the effects of initial versus future costs of PV hybrids as they compare with engine generator system is presented. (Author)

  3. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  4. Three Sides Billboard Wind-Solar Hybrid System Design

    Directory of Open Access Journals (Sweden)

    Bai Xuefeng

    2015-01-01

    Full Text Available With the high development of world economy, the demand of energy is increasing all the time, As energy shortage and environment problem are increasing outstanding, Renewable energy has been attracting more and more attention. A kind of three sides billboard supply by wind-Solar hybrid system has been designed in this paper, the overall structure of the system, components, working principle and control strategy has been analyzed from the system perspective. The software and hardware of the system are debugged together and the result is acquired. System function is better and has achieved the expected results.

  5. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  6. Nuclear Hybrid Energy Systems Regional Studies: West Texas & Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chen, Jun [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley R [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vilim, Richard B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The primary objective of this study is to conduct a preliminary dynamic analysis of two realistic hybrid energy systems (HES) including a nuclear reactor as the main baseload heat generator (denoted as nuclear HES or nuclear hybrid energy systems [[NHES]) and to assess the local (e.g., HES owners) and system (e.g., the electric grid) benefits attainable by the application of NHES in scenarios with multiple commodity production and high penetration of renewable energy. It is performed for regional cases not generic examples based on available resources, existing infrastructure, and markets within the selected regions. This study also briefly addresses the computational capabilities developed to conduct such analyses, reviews technical gaps, and suggests some research paths forward.

  7. Performance analysis of hybrid district heating system

    DEFF Research Database (Denmark)

    Mikulandric, Robert; Krajačić, Goran; Khavin, Gennadii

    2013-01-01

    District heating system could contribute to more efficient heat generation through cogeneration power plants or waste heat utilization facilities and to increase of renewable energy sources share in total energy consumption. In the most developed EU countries, renewable energy sources have been...... as problems related to transportation, storage and environmental impacts of biomass and waste utilisation. Implementation of heat storages in district heating systems could contribute to integration of intermittent energy sources. Hybridisation of heat production facility combines two or more different energy...... more extensively used in district heating systems either separately or as a supplement to traditional fossil fuels in order to achieve national energy policy objectives. However, they are still facing problems such as high intermittences, high energy production costs and low load factors as well...

  8. Combined braking system for hybrid vehicle

    Science.gov (United States)

    Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.

    2017-10-01

    The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.

  9. Experiences from the Roadrunner petascale hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kerbyson, Darren J [Los Alamos National Laboratory; Pakin, Scott [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory; Sancho Pitarch, Jose C [Los Alamos National Laboratory; Davis, Kei [Los Alamos National Laboratory; Barker, Kevin J [Los Alamos National Laboratory; Peraza, Josh [Los Alamos National Laboratory

    2010-01-01

    The combination of flexible microprocessors (AMD Opterons) with high-performing accelerators (IBM PowerXCell 8i) resulted in the extremely powerful Roadrunner system. Many challenges in both hardware and software were overcome to achieve its goals. In this talk we detail some of the experiences in achieving performance on the Roadrunner system. In particular we examine several implementations of the kernel application, Sweep3D, using a work-queue approach, a more portable Thread-building-blocks approach, and an MPI on the accelerator approach.

  10. Robotic digital subtraction angiography systems within the hybrid operating room.

    Science.gov (United States)

    Murayama, Yuichi; Irie, Koreaki; Saguchi, Takayuki; Ishibashi, Toshihiro; Ebara, Masaki; Nagashima, Hiroyasu; Isoshima, Akira; Arakawa, Hideki; Takao, Hiroyuki; Ohashi, Hiroki; Joki, Tatsuhiro; Kato, Masataka; Tani, Satoshi; Ikeuchi, Satoshi; Abe, Toshiaki

    2011-05-01

    Fully equipped high-end digital subtraction angiography (DSA) within the operating room (OR) environment has emerged as a new trend in the fields of neurosurgery and vascular surgery. To describe initial clinical experience with a robotic DSA system in the hybrid OR. A newly designed robotic DSA system (Artis zeego; Siemens AG, Forchheim, Germany) was installed in the hybrid OR. The system consists of a multiaxis robotic C arm and surgical OR table. In addition to conventional neuroendovascular procedures, the system was used as an intraoperative imaging tool for various neurosurgical procedures such as aneurysm clipping and spine instrumentation. Five hundred one neurosurgical procedures were successfully conducted in the hybrid OR with the robotic DSA. During surgical procedures such as aneurysm clipping and arteriovenous fistula treatment, intraoperative 2-/3-dimensional angiography and C-arm-based computed tomographic images (DynaCT) were easily performed without moving the OR table. Newly developed virtual navigation software (syngo iGuide; Siemens AG) can be used in frameless navigation and in access to deep-seated intracranial lesions or needle placement. This newly developed robotic DSA system provides safe and precise treatment in the fields of endovascular treatment and neurosurgery.

  11. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  12. Molecular plasmonics: The role of rovibrational molecular states in exciton-plasmon materials under strong-coupling conditions

    Science.gov (United States)

    Sukharev, Maxim; Charron, Eric

    2017-03-01

    We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.

  13. User Controllability in a Hybrid Recommender System

    Science.gov (United States)

    Parra Santander, Denis Alejandro

    2013-01-01

    Since the introduction of Tapestry in 1990, research on recommender systems has traditionally focused on the development of algorithms whose goal is to increase the accuracy of predicting users' taste based on historical data. In the last decade, this research has diversified, with "human factors" being one area that has received…

  14. Hybrid Techniques for Optimizing Complex Systems

    Science.gov (United States)

    2009-12-01

    relay placement problem, we modeled the network as a mechanical system with springs and a viscous damper ⎯a widely used approach for solving optimization...fundamental mathematical tools in many branches of physics such as fluid and solid mechanics, and general relativity [108]. More recently, several

  15. Control of hybrid fuel cell/energy storage distributed generation system against voltage sag

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh, Amin; Golkar, Masoud Aliakbar [Electrical Engineering Department, K.N. Toosi University of Technology, Seyedkhandan, Dr. Shariati Ave, P.O. Box 16315-1355, Tehran (Iran)

    2010-06-15

    Fuel cell (FC) and energy storage (ES) based hybrid distributed power generation systems appear to be very promising for satisfying high energy and high power requirements of power quality problems in distributed generation (DG) systems. In this study, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage disturbance occurs in distribution system and hybrid system stays connected to the main grid. Hence, modeling, controller design, and simulation study of a hybrid distributed generation system are investigated. The physical model of the fuel cell stack, energy storage and the models of power conditioning units are described. Then the control design methodology for each component of the hybrid system is proposed. Simulation results are given to show the overall system performance including active power control and voltage sag ride-through capability of the hybrid distributed generation system. (author)

  16. Sub-wavelength plasmon laser

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  17. Electric and hybrid vehicle system R/D

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.

  18. PV-hybrid village power systems in Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L.; Taylor, R.W. [National Renewable Energy Lab., Golden, CO (United States); Ribeiro, C.M. [Centro de Pesquisas de Energie Eletrica (CEPEL), Rio de Janeiro (Brazil)] [and others

    1996-05-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: U.S. Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities.

  19. Modelling of a Hybrid Energy System for Autonomous Application

    Directory of Open Access Journals (Sweden)

    Yang He

    2013-10-01

    Full Text Available A hybrid energy system (HES is a trending power supply solution for autonomous devices. With the help of an accurate system model, the HES development will be efficient and oriented. In spite of various precise unit models, a HES system is hardly developed. This paper proposes a system modelling approach, which applies the power flux conservation as the governing equation and adapts and modifies unit models of solar cells, piezoelectric generators, a Li-ion battery and a super-capacitor. A generalized power harvest, storage and management strategy is also suggested to adapt to various application scenarios.

  20. Photovoltaic-wind hybrid autonomous generation systems in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Dei, Tsutomu; Ushiyama, Izumi

    2005-01-01

    Two hybrid stand-alone (autonomous) power systems, each with wind and PV generation, were studied as installed at health clinics in semi-desert and mountainous region in Mongolia. Meteorological and system operation parameters, including power output and the consumption of the system, were generally monitored by sophisticated monitoring. However, where wind and solar site information was lacking, justifiable estimates were made. The results show that there is a seasonal complementary relationship between wind and solar irradiation in Tarot Sum. The users understood the necessity of Demand Side Management of isolated wind-PV generation system through technology transfer seminars and actually executed DSM at both sites. (author)

  1. Laser fusion hybrid reactor systems study

    International Nuclear Information System (INIS)

    1976-07-01

    The work was performed in three phases. The first phase included a review of the many possible laser-reactor-blanket combinations and resulted in the selection of a ''demonstration size'' 500 MWe plant for further study. A number of fast fission blankets using uranium metal, uranium-molybdenum alloy, and uranium carbide as fuel were investigated. The second phase included design of the reactor vessel and internals, heat transfer system, tritium processing system, and the balance of plant, excluding the laser building and equipment. A fuel management scheme was developed, safety considerations were reviewed, and capital and operating costs were estimated. Costs developed during the second phase were unexpectedly high, and a thorough review indicated considerable unit cost savings could be obtained by scaling the plant to a larger size. Accordingly, a third phase was added to the original scope, encompassing the redesign and scaling of the plant from 500 MWe to 1200 MWe

  2. Mobile Hybrid Power System Theory of Operation

    OpenAIRE

    Pierce, Timothy M. Jr.

    2016-01-01

    Efficiency is a driving constraint for electrical power systems as global energy demands are ever increasing. Followed by the introduction of diesel generators, electricity has become available in more locations than ever. However, operating a diesel generator on its own is not the most energy efficient. This is because the high crest factor loads, of many applications, decrease the fuel efficiency of a hydrocarbon generator. To understand this, we need to understand how an electrical load af...

  3. Efficient Hybrid Propulsion System Development and Integration

    Science.gov (United States)

    2011-08-10

    Transmission Control Unit (TCU), Brake Control Module (BCM), eMotor Inverter Drive Unit (IDU) and Battery Management System (BMS). Figure 11 AVL...phasing in the regenerative braking needs to accommodate the change in total braking power. The goal should be to achieve as close to a linear braking ...power engagement, relative to the brake pedal travel, as possible. If a straight linear ratio is used, where by the regenerative power is

  4. Superconducting and hybrid systems for magnetic field shielding

    International Nuclear Information System (INIS)

    Gozzelino, L; Gerbaldo, R; Ghigo, G; Laviano, F; Truccato, M; Agostino, A

    2016-01-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB 2 ) and in a hybrid configuration (MgB 2 /Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one. (paper)

  5. Optimal Control of Hybrid Systems in Air Traffic Applications

    Science.gov (United States)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  6. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  7. Measurement and Analysis of Power in Hybrid System

    Directory of Open Access Journals (Sweden)

    Vartika Keshri

    2016-12-01

    Full Text Available Application with renewable energy  sources  such   as solar cell array, wind turbines, or fuel cells have increased significantly during the past decade. To obtain the clean energy, we are using the hybrid solar-wind power generation. Consumers prefer quality power from suppliers. The quality of power can be measured by using parameters such as voltage sag, harmonic and power factor.   To   obtain   quality   power   we   have different topologies. In our paper we present a new possible topology which improves power quality. This paper presents modeling analysis and design of a pulse width modulation voltage source inverter (PWM-VSI to be connected between sources, which supplies energy from a hybrid solar wind energy system to the ac grid. The objective of this paper is to show that, with an adequate control, the converter not only can transfer the dc from hybrid solar wind energy system, but also can improve the power factor and quality power of electrical system. Whenever a disturbance occurs on load side, this disturbance can be minimized using open loop and closed loop control systems.

  8. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  9. Improved pattern recognition systems by hybrid methods

    International Nuclear Information System (INIS)

    Duerr, B.; Haettich, W.; Tropf, H.; Winkler, G.; Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V., Karlsruhe

    1978-12-01

    This report describes a combination of statistical and syntactical pattern recongition methods. The hierarchically structured recognition system consists of a conventional statistical classifier, a structural classifier analysing the topological composition of the patterns, a stage reducing the number of hypotheses made by the first two stages, and a mixed stage based on a search for maximum similarity between syntactically generated prototypes and patterns. The stages work on different principles to avoid mistakes made in one stage in the other stages. This concept is applied to the recognition of numerals written without constraints. If no samples are rejected, a recognition rate of 99,5% is obtained. (orig.) [de

  10. Hybrid illumination systems for a brigth future

    DEFF Research Database (Denmark)

    Bjarklev, Araceli

    Problem to be adressed: Even with the implementation of the Eco-design directive (2005/32/EC) it is projected that the 20% energy reduction goal will not be reached in 2020. as a matter of fact, the electricity consumption in the illumination sector will not be changed from the levels of cosnsump...... of an interdisciplinary group, we aim to make a prototype of a test system. for this we will merge Solid State and Fiber optic technologies. The overall project will be assessed under  the viewpoints of environmental, socio-economic and esthetical parameters...

  11. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  12. Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling

    Directory of Open Access Journals (Sweden)

    Samar Hayat Khan Tareen

    2015-07-01

    Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model

  13. Power quality analysis of hybrid renewable energy system

    Directory of Open Access Journals (Sweden)

    Rinchin W. Mosobi

    2015-12-01

    Full Text Available An hybrid renewable energy sources consisting of solar photovoltaic, wind energy system, and a microhydro system is proposed in this paper. This system is suitable for supplying electricity to isolated locations or remote villages far from the grid supply. The solar photovoltaic system is modeled with two power converters, the first one being a DC-DC converter along with an maximum power point tracking to achieve a regulated DC output voltage and the second one being a DC-AC converter to obtain AC output. The wind energy system is modeled with a wind-turbine prime mover with varying wind speed and fixed pitch angle to drive an self excited induction generator (SEIG. Owing to inherent drooping characteristics of the SEIG, a closed loop turbine input system is incorporated. The microhydro system is modeled with a constant input power to drive an SEIG. The three different sources are integrated through an AC bus and the proposed hybrid system is supplied to R, R-L, and induction motor loads. A static compensator is proposed to improve the load voltage and current profiles; it also mitigates the harmonic contents of the voltage and current. The static synchronous compensator is realized by means of a three-phase IGBT-based current-controlled voltage source inverter with a self-supporting DC bus. The complete system is modeled and simulated using Matlab/Simulink. The simulation results obtained illustrate the feasibility of the proposed system and are found to be satisfactory.

  14. Short-Term Planning of Hybrid Power System

    Science.gov (United States)

    Knežević, Goran; Baus, Zoran; Nikolovski, Srete

    2016-07-01

    In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.

  15. Extending a Hybrid Tag-Based Recommender System with Personalization

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2010-01-01

    extension for a hybrid tag-based recommender system, which suggests similar Web pages based on the similarity of their tags. The semantic extension aims at discovering tag relations which are not considered in basic syntax similarity. With the goal of generating more semantically grounded recommendations......, the proposal extends a hybrid tag-based recommender system with a semantic factor, which looks for tag relations in different semantic sources. In order to evaluate the benefits acquired with the semantic extension, we have compared the new findings with results from a previous experiment involving 38 people......Tagging activity has been recently identified as a potential source of knowledge about personal interests, preferences, goals, and other attributes known from user models. Tags themselves can be therefore used for finding personalized recommendations of items. This paper proposes a semantic...

  16. Nonimaging optics maximizing exergy for hybrid solar system

    Science.gov (United States)

    Winston, Roland; Jiang, Lun; Abdelhamid, Mahmoud; Widyolar, Bennett K.; Ferry, Jonathan; Cygan, David; Abbasi, Hamid; Kozlov, Alexandr; Kirk, Alexander; Elarde, Victor; Osowski, Mark

    2016-09-01

    The project team of University of California at Merced (UC-Merced), Gas Technology Institute (GTI) and MicroLink Devices Inc. (MicroLink) are developing a hybrid solar system using a nonimaging compound parabolic concentrator (CPC) that maximizes the exergy by delivering direct electricity and on-demand heat. The hybrid solar system technology uses secondary optics in a solar receiver to achieve high efficiency at high temperature, collects heat in particles and uses reflective liftoff cooled double junction (2J) InGaP/GaAs solar cells with backside infrared (IR) reflectors on the secondary optical element to raise exergy efficiency. The nonimaging optics provides additional concentration towards the high temperature thermal stream and enables it to operate efficiently at 650 °C while the solar cell is maintained at 40 °C to operate as efficiently as possible.

  17. Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Ping-Feng [Department of Information Management, National Chi Nan University, 1 University Road, Puli, Nantou 545, Taiwan (China)

    2006-09-15

    Because of the privatization of electricity in many countries, load forecasting has become one of the most crucial issues in the planning and operations of electric utilities. In addition, accurate regional load forecasting can provide the transmission and distribution operators with more information. The hybrid ellipsoidal fuzzy system was originally designed to solve control and pattern recognition problems. The main objective of this investigation is to develop a hybrid ellipsoidal fuzzy system for time series forecasting (HEFST) and apply the proposed model to forecast regional electricity loads in Taiwan. Additionally, a scaled conjugate gradient learning method is employed in the supervised learning phase of the HEFST model. Subsequently, numerical data taken from the existing literature is used to demonstrate the forecasting performance of the HEFST model. Simulation results reveal that the proposed model has better forecasting performance than the artificial neural network model and the regression model. Thus, the HEFST model is a valid and promising alternative for forecasting regional electricity loads. (author)

  18. A hybrid agent-based approach for modeling microbiological systems.

    Science.gov (United States)

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  19. Hybrid photovoltaic system control for enhancing sustainable energy. Economic aspects

    International Nuclear Information System (INIS)

    Leva, Sonia; Roscia, Mariacristina; Zaninelli, Dario

    2005-01-01

    The paper introduces hybrid photovoltaic/diesel generation systems for supplying remote power plant taking into account the enhancement of sustainable energy on the economic point of view. In particular, a new monitoring and control device is presented in order to carry out the optimum energy flows and a cost evaluation is performed on a real plant showing the effect and weight of the economical sustainability and economical saving. (authors)

  20. Catalog of components for electric and hybrid vehicle propulsion systems

    Science.gov (United States)

    Eissler, H. C.

    1981-01-01

    This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.