WorldWideScience

Sample records for hybrid photovoltaic system

  1. Combined photovoltaic and thermal hybrid collector systems

    Energy Technology Data Exchange (ETDEWEB)

    Kern, E.C. Jr.; Russell, M.C.

    1978-01-01

    Solar energy collectors that produce both electric and thermal energy are an attractive alternative to individual thermal and photovoltaic collectors for certain applications and climates. Economic results from a system analysis indicate that hybrid collector systems are attractive in small buildings that have substantial heating loads. Passively cooled photovoltaic panels are best suited for structures located in regions where year-round air conditioning and small, low-grade, thermal energy demands predominate. Hybrid collectors are to be tested according to ASHRAE standards and a full-system experiment incorporating a photovoltaic array installed at the Solar Energy Research Facility of the University of Texas will be conducted by Lincoln Laboratory.

  2. Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance

    Science.gov (United States)

    Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.

    2016-06-01

    The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.

  3. Hybrid Photovoltaic-Hydrogen Power Conditioning System

    Science.gov (United States)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Ejea, J. B.; Ferreres, A.; Sanchis, E.

    2011-10-01

    This paper explores a power conditioning unit for photovoltaic/hydrogen based energy systems. Similar power conversion techniques, compared to traditional space power systems, are applied. An S4R regulator is devised with an unregulated battery bus as primary output and a secondary path to feed and electrolyser. A modular fuel cell converter completes the system and it operates when photovoltaic energy is not available or load demand exceeds solar power, i. e. like a traditional BDR. An ancillary battery keeps the unregulated bus voltage distributed in the system and it also aids the fuel cell during transients or start-up due to its limited speed. A 1kW breadboard has been designed and implemented to corroborate the proposed system.

  4. Photovoltaic/diesel hybrid systems: The design process

    Science.gov (United States)

    Jones, G. J.; Chapman, R. N.

    A photovoltaic/storage system by itself may be uneconomical for stand-alone applications with large energy demands. However, by combining the PV system with a back-up energy source, such as a diesel, gasoline, or propane/thermoelectric generator, system economics can be improved. Such PV/fossil hybrid systems are being used, but their design has required detailed modeling to determine the optimal mix of photovoltaics and back-up energy. Recent data on diesel field reliability and a new design technique for stand-alone systems have overcome this problem. The approach provides the means for sizing the photovoltaic system to obtain a near optimal hybrid system, with about a 90% savings in back-up fuel costs. System economics are determined by comparing PV capital cost to the present value of the displaced diesel operation and maintenance costs.

  5. A simulation approach to sizing hybrid photovoltaic and wind systems

    Science.gov (United States)

    Anderson, L. A.

    1983-12-01

    A simulation approach to sizing hybrid photovoltaic and wind systems provides a combination of components to realize zero downtime and minimum initial or life-cycle cost. Using Dayton, OH as a test site for weather data, cost advantages in the neighborhood of four are predicted for a hybrid system with battery storage when compared to a wind-energy-only system for the same electrical load.

  6. Performance of hybrid photovoltaic collector

    OpenAIRE

    Garbisu Eugui, Josu

    2010-01-01

    The aim of the present project is the study of the performance of a combined photovoltaic-thermal plant, called also hybrid system, located in south Italy, evaluating the efficiency of the photovoltaic and thermal systems and the advantage respect to the two single plants (photovoltaic and thermal ). This research project has two objectives fundamentals of efficiency improvement energy from solar photovoltaic panels. On one hand, increase photovoltaic efficiency, at the same time an...

  7. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  8. Analysis of merits of hybrid wind/photovoltaic concept for stand-alone systems

    Science.gov (United States)

    Castle, J. A.; Kallis, J. M.; Moite, S. M.; Marshall, N. A.

    Methods for evaluating the merits of hybrid wind/photovoltaic systems for use in stand-alone applications were developed. The optimum mix of wind and photovoltaic power with an electrochemical storage system, with or without fossil fuel generator backup, depends upon the individual subsystem economics. A computer code was developed to calculate the optimum subsystem sizes that minimize the levelized energy cost. The actual merits of a hybrid system over a pure photovoltaic or wind system depend upon many factors: load profile; wind regime; insolation; cost and availability of backup power; the relative costs of wind rotor area, array area, and storage; and subsystem efficiency factors. Examples of optimized hybrid systems for a range of photovoltaic costs and estimated wind and storage costs are shown for an Ely, NV, application, where backup power is allowed to supply 5% of the total annual load.

  9. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    OpenAIRE

    Mohammad Hosein Mohammadnezami; Mehdi Ali Ehyaei; Marc A. Rosen; Mohammad Hossein Ahmadi

    2015-01-01

    A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid sy...

  10. A Review on Suitable Standards for Hybrid Photovoltaic/Thermal Systems

    Science.gov (United States)

    Vivar, Marta; Clarke, Matthew; Ratcliff, Tom; Everett, Vernie

    2011-12-01

    This paper will present an evaluation of the available standards and their considerations when using active-cooled CPV systems, along with an initial assessment of the most appropriate tests, including additional test requirements, for hybrid Photovoltaic-Thermal (PV-T) systems in order to guarantee their long-time electrical and thermal performance.

  11. A Hybrid Spline Metamodel for Photovoltaic/Wind/Battery Energy Systems

    OpenAIRE

    ZAIBI, Malek; LAYADI, Toufik Madani; Champenois, Gérard; ROBOAM, xavier; Sareni, Bruno; Belhadj, Jamel

    2015-01-01

    This paper proposes a metamodel design for a Photovoltaic/Wind/Battery Energy System. The modeling of a hybrid PV/wind generator coupled with two kinds of storage i.e. electric (battery) and hydraulic (tanks) devices is investigated. A metamodel is carried out by hybrid spline interpolation to solve the relationships between several design variables i.e. the design parameters of different subsystems and their associate response variables i.e. system indicators performance. The developed model...

  12. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    OpenAIRE

    Maclay, JD; J. Brouwer; Samuelsen, GS

    2007-01-01

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utili...

  13. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  14. Review on Recent Development Micro Gas Turbine -Trigeneration System and Photovoltaic Based Hybrid Energy System

    Directory of Open Access Journals (Sweden)

    Chand MRR

    2016-01-01

    Full Text Available Research on distributed power generation as an alternative method to the conventional power generation system continue to be developed to improve its commercialization capabilities. The cogeneration system and trigeneration system are technological improved alternatives in distributed generation where they offer enhancement and reliability in term of efficiency, emission performances and economic benefits. However, it is more feasible to implement the trigeneration system for most commercial and domestic distributed generations as the cooling demand is deliberately high compared to heating demand especially in hot and humid climate locations. Moreover, micro gas turbine is observed to be a beneficial prime mover in cogeneration and trigeneration system based on several criteria such as ability on acquiring high heat to power ratio characteristic as well as lower greenhouse gas emission. On the other hand, the role photovoltaic in building integrated system provides opportunities for renewable energy system engagement in trigeneration based distributed generation systems. This paper emphasize on summarizing the research work perform on cogeneration system or trigeneration system in hybrid mode with photovoltaic. There are also preceding sections on overviewing the state of art of cogeneration system and the trigeneration system as well as photovoltaic technologies in power generation.

  15. Photovoltaic-wind hybrid autonomous generation systems in Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Dei, Tsutomu; Ushiyama, Izumi

    2005-01-01

    Two hybrid stand-alone (autonomous) power systems, each with wind and PV generation, were studied as installed at health clinics in semi-desert and mountainous region in Mongolia. Meteorological and system operation parameters, including power output and the consumption of the system, were generally monitored by sophisticated monitoring. However, where wind and solar site information was lacking, justifiable estimates were made. The results show that there is a seasonal complementary relationship between wind and solar irradiation in Tarot Sum. The users understood the necessity of Demand Side Management of isolated wind-PV generation system through technology transfer seminars and actually executed DSM at both sites. (author)

  16. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  17. New helio-photocatalytic-photovoltaic hybrid system for simultaneous water decontamination and solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sarria, Victor; Kenfack, Simeon; Pulgarin, Cesar [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire de Biotechnologie Environementale, CH-1015 Lausanne (Switzerland); Malato, Sixto; Blanco, Julian [Plataforma Solar de Almeria, Tabernas, 04200 Almeria (Spain)

    2005-10-01

    Test results for a designed and installed hybrid photocatalytic-photovoltaic system (HPPS) are presented in this paper. The HPPS consists of one device with dual functions: The photocatalytic system uses UV radiation to promote degradation of organic pollutants, and beside it absorbs the IR radiation. The photovoltaic (PV) system converts the visible radiation into electricity, which can either be used directly by the recirculation pump or stored in a battery for other purposes. The suggested design aims to achieve an autonomous, environmentally friendly method for the treatment of biorecalcitrant pollutants. Two prototypes were erected: HPPS{sub P}, using Plexiglas and HPPS{sub G} using commercial glass. Both were tested outdoors to determine their impact on photovoltaic power production. Test results showed that PV power diminished to 14% and 22% for HPPS{sub G} and HPPS{sub P} respectively, compared to a PV panel alone. (author)

  18. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient......Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... than CPV-only system. The results indicate that contribution of the TEG in power generation enhances at high sun concentrations. Depending to critical design parameters of the CPV and the TEG, there are optimal values for heat transfer coefficient in the heat sink that offer minimum energy cost....

  19. Study of applying a hybrid standalone wind-photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    Aissa Dahmani

    2015-01-01

    Full Text Available The purpose of this paper is the study of applying a hybrid system wind/photovoltaic to supply a community in southern Algeria. Diesel generators are always used to provide such remote regions with energy. Using renewable energy resources is a good alternative to overcome such pollutant generators. Hybrid Optimization Model for Electric Renewable (HOMER software is used to determine the economic feasibility of the proposed configuration. Assessment of renewable resources consisting in wind and solar potentials, load profile determination and sensitivity of different parameters analysis were performed. The cost of energy (COE of 0.226 $/kWh is very competitive with those found in literature.

  20. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    Science.gov (United States)

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

  1. An Operating Method Using Prediction of Photovoltaic Power for a Photovoltaic-Diesel Hybrid Power Generation System

    Science.gov (United States)

    Yamamoto, Shigehiro; Sumi, Kazuyoshi; Nishikawa, Eiichi; Hashimoto, Takeshi

    This paper describes a novel operating method using prediction of photovoltaic (PV) power for a photovoltaic-diesel hybrid power generation system. The system is composed of a PV array, a storage battery, a bi-directional inverter and a diesel engine generator (DG). The proposed method enables the system to save fuel consumption by using PV energy effectively, reducing charge and discharge energy of the storage battery, and avoiding low-load operation of the DG. The PV power is simply predicted from a theoretical equation of solar radiation and the observed PV energy for a constant time before the prediction. The amount of fuel consumption of the proposed method is compared with that of other methods by a simulation based on measurement data of the PV power at an actual PV generation system for one year. The simulation results indicate that the amount of fuel consumption of the proposed method is smaller than that of any other methods, and is close to that of the ideal operation of the DG.

  2. Analysis of the Primary Constraint Conditions of an Efficient Photovoltaic-Thermoelectric Hybrid System

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2016-12-01

    Full Text Available Electrical efficiency can be increased by combining photovoltaic (PV and the thermoelectric (TE systems. However, a simple and cursory combination is unsuitable because the negative impact of temperature on PV may be greater than its positive impact on TE. This study analyzed the primary constraint conditions based on the hybrid system model consisting of a PV and a TE generator (TEG, which includes TE material with temperature-dependent properties. The influences of the geometric size, solar irradiation and cold side temperature on the hybrid system performance is discussed based on the simulation. Furthermore, the effective range of parameters is demonstrated using the image area method, and the change trend of the area with different parameters illustrates the constraint conditions of an efficient PV-TE hybrid system. These results provide a benchmark for efficient PV-TEG design.

  3. Stand-alone hybrid wind-photovoltaic power generation systems optimal sizing

    Science.gov (United States)

    Crǎciunescu, Aurelian; Popescu, Claudia; Popescu, Mihai; Florea, Leonard Marin

    2013-10-01

    Wind and photovoltaic energy resources have attracted energy sectors to generate power on a large scale. A drawback, common to these options, is their unpredictable nature and dependence on day time and meteorological conditions. Fortunately, the problems caused by the variable nature of these resources can be partially overcome by integrating the two resources in proper combination, using the strengths of one source to overcome the weakness of the other. The hybrid systems that combine wind and solar generating units with battery backup can attenuate their individual fluctuations and can match with the power requirements of the beneficiaries. In order to efficiently and economically utilize the hybrid energy system, one optimum match design sizing method is necessary. In this way, literature offers a variety of methods for multi-objective optimal designing of hybrid wind/photovoltaic (WG/PV) generating systems, one of the last being genetic algorithms (GA) and particle swarm optimization (PSO). In this paper, mathematical models of hybrid WG/PV components and a short description of the last proposed multi-objective optimization algorithms are given.

  4. PHOTO: A computer simulation program for photovoltaic and hybrid energy systems. Document and user's guide

    Science.gov (United States)

    Manninen, L. M.; Lund, P. D.; Virkkula, A.

    1990-11-01

    The version 3.0 is described of the program package PHOTO for the simulation and sizing of hybrid power systems (photovoltaic and wind power plants) on IBM PC, XT, AT, PS/2 and compatibles. The minimum memory requirement is 260 kB. Graphical output is created with HALO'88 graphics subroutine library. In the simulation model, special attention is given to the battery storage unit. A backup generator can also be included in the system configuration. The dynamic method developed uses accurate system component models accounting for component interactions and losses in e.g. wiring and diodes. The photovoltaic array can operate in a maximum power mode or in a clamped voltage mode together with the other subsystems. Various control strategies can also be considered. Individual subsystem models were verified against real measurements. Illustrative simulation example is also discussed. The presented model can be used to simulate various system configurations accurately and evaluate system performance, such as energy flows and power losses in photovoltaic array, wind generator, backup generator, wiring, diodes, maximum power point tracking device, inverter and battery. Energy cost is also an important consideration.

  5. Modeling and Coordinated Control Strategy of Large Scale Grid-Connected Wind/Photovoltaic/Energy Storage Hybrid Energy Conversion System

    OpenAIRE

    Lingguo Kong; Guowei Cai; Sidney Xue; Shaohua Li

    2015-01-01

    An AC-linked large scale wind/photovoltaic (PV)/energy storage (ES) hybrid energy conversion system for grid-connected application was proposed in this paper. Wind energy conversion system (WECS) and PV generation system are the primary power sources of the hybrid system. The ES system, including battery and fuel cell (FC), is used as a backup and a power regulation unit to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic resources. Static sy...

  6. Photovoltaic/thermal solar hybrid system with bifacial PV module and transparent plane collector

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Ocampo, B. [Instituto Tecnologico de Celaya, Celaya 11111, Guanajuato (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Ruiz-Vasquez, E.; Canseco-Sanchez, H. [Instituto Tecnologico de Oaxaca, Oaxaca 68030, Oaxaca (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Cornejo-Meza, R.C. [Instituto Tecnologico de Tepic, av. Tecnologico 2595, Tepic 63175, Nayarit (Mexico); CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Trapaga-Martinez, G.; Vorobiev, Y.V. [CINVESTAV-Queretaro, Libramiento Norponiente 2000, Unidad Queretaro, Fracc. Real de Juriquilla, Queretaro, 76230, QRO (Mexico); Garcia-Rodriguez, F.J. [Instituto Tecnologico de Celaya, Celaya 11111, Guanajuato (Mexico); Gonzalez-Hernandez, J. [CIMAV, Miguel de Cervantes 120, Chihuahua 31109, Chihuahua (Mexico)

    2007-12-14

    Electric energy production with photovoltaic (PV)/thermal solar hybrid systems can be enhanced with the employment of a bifacial PV module. Experimental model of a PV/thermal hybrid system with such a module was constructed and studied. To make use of both active surfaces of the bifacial PV module, we designed and made an original water-heating planar collector and a set of reflecting planes. The heat collector was transparent in the visible and near-infrared spectral regions, which makes it compatible with the PV module made of crystalline Si. The estimated overall solar energy utilization efficiency for the system related to the direct radiation flux is of the order of 60%, with an electric efficiency of 16.4%. (author)

  7. Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications

    Science.gov (United States)

    Maclay, James D.; Brouwer, Jacob; Samuelsen, G. Scott

    A model of a photovoltaic (PV) powered residence in stand-alone configuration was developed and evaluated. The model assesses the sizing, capital costs, control strategies, and efficiencies of reversible fuel cells (RFC), batteries, and ultra-capacitors (UC) both individually, and in combination, as hybrid energy storage devices. The choice of control strategy for a hybrid energy storage system is found to have a significant impact on system efficiency, hydrogen production and component utilization. A hybrid energy storage system comprised of batteries and RFC has the advantage of reduced cost (compared to using a RFC as the sole energy storage device), high system efficiency and hydrogen energy production capacity. A control strategy that preferentially used the RFC before the battery in meeting load demand allows both grid independent operation and better RFC utilization compared to a system that preferentially used the battery before the RFC. Ultra-capacitors coupled with a RFC in a hybrid energy storage system contain insufficient energy density to meet dynamic power demands typical of residential applications.

  8. Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Saheb-Koussa, D.; Belhamel, M. [Centre of Development of Renewable energies, Route de l' observatoire, BP.62 Bouzareah, Algiers (Algeria); Haddadi, M. [Laboratoire de Dispositif de Communication et de Conversion Photovoltaique E. N. P, 10 Avenue Hassen Badi, El Harrach, Alger (Algeria)

    2009-07-15

    This paper deals with design of hybrid energy system consisting of wind and photovoltaic with battery storage. A diesel generator is added to ensure continuous power supply and to take care of intermittent nature of wind and photovoltaic. The paper reports results of the technical-economic optimization study of photovoltaic/wind/diesel hybrid with battery storage in Algeria. The primary objective of this study is to estimate the appropriate dimension of stand-alone hybrid photovoltaic/wind/diesel with battery storage that guarantee the energy autonomy of typical remote consumer with lowest cost of energy. A secondary aim is to study the impact of renewable energy potential quality on the system size. The optimum dimensions of the system are defined for six sites in Algeria. In this context, a complete sizing model is developed in Matlab/Simulink V.6.5, able to predict the optimum system configuration. The simulation results indicate that the hybrid system is the best option for all the sites considered in this study. Thus, it provides higher system performance than photovoltaic or wind alone. It s shown that the principal advantage of photovoltaic/wind/diesel hybrid with battery storage are used all together, the reliability of the system is enhanced. The economic analysis has resulted in the calculation of kWh cost of energy for different types of resources and optimized cost of hybrid energy system. It s revealed too that the energy cost depends largely on the renewable energy potential quality. So, our objective for the optimization parameters is not the production cost but the offered service. (author)

  9. Study of Micro Grid Hybrid System of Photovoltaic and Diesel Engine

    Directory of Open Access Journals (Sweden)

    Novitasari Dwi

    2016-01-01

    Full Text Available Indonesia has abundant potentials of new and renewable energy that can be used for electricity generation, especially in rural areas which have no access for grid electricity yet. The energy resources can be from solar, water, biomass or biofuel. Many villagers still use diesel generators to produce electricity in their villages. It is considered expensive because fuel price in rural areas increases 2-3 times than the normal price due to transportation cost. Hybrid system using renewable energy resources is one of the solutions to produce electricity in affordable cost for rural area. The idea is to combine diesel generators and photovoltaic toproduce electricity. Moreover, the diesel engine fuel can be replaced with biofuel. This study will analyze the hybrid system in a small scale which consists of 1kWp photovoltaic and 3 kW diesel engine. Electric load power will vary. The system is controlled by a single bidirectional inverter whichconverts power from DC to AC and vice versa

  10. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    Science.gov (United States)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  11. MODELING, SIMULATON AND SIZING OF PHOTOVOLTAIC/WIND/FUEL CELL HYBRID GENERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr.S.LATHA

    2012-05-01

    Full Text Available The depleting fossil fuel reserves and increasing concern towards global warming have created the need to surge for the alternative power generation options. Renewable energy sources like Wind, Solar-PV, Biomass and fuel cells are gaining prominence nowadays, as they are more energy efficient, reduce pollution and also they serveas a promising solution to the toughest energy crisis faced during the recent years. This paper focuses on the modeling and simulation of solar – photovoltaic, wind and fuel cell hybrid energy systems using MATLAB/Simulink software. The intermittent nature of solar and wind energy sources make them unreliable. Hence Maximum Power Point Tracking (MPPT is used to extract maximum power from the wind and sunwhen it is available. The standard perturb and observe method of MPPT is used for the PV system and for the wind generation system. The simulation results of the PV/Wind /Fuel cell hybrid system are presented in graph showing the effectiveness of the proposed system model. Also, hardware implementation of microcontroller based MPPT for solar-PV alone and unit sizing of the hybrid system for the PG simulation lab in EEE Dept. of Thiagarajar College of Engineering is depicted in the paper.

  12. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    Science.gov (United States)

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  13. Effects of Photovoltaic and Fuel Cell Hybrid System on Distribution Network Considering the Voltage Limits

    Directory of Open Access Journals (Sweden)

    ABYANEH, H. A.

    2010-11-01

    Full Text Available Development of distribution network and power consumption growth, increase voltage drop on the line impedance and therefore voltage drop in system buses. In some cases consumption is so high that voltage in some buses exceed from standard. In this paper, effect of the fuel cell and photovoltaic hybrid system on distribution network for solving expressed problem is studied. For determining the capacity of each distributed generation source, voltage limitation on the bus voltages under different conditions is considered. Simulation is done by using DIgSILENT software on the part of the 20 kV real life Sirjan distribution system. In this article, optimum location with regard to system and environmental conditions are studied in two different viewpoints.

  14. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  15. Research and practice of designing hydro/photovoltaic hybrid power system in microgrid

    Institute of Scientific and Technical Information of China (English)

    Wang Yibo; Xu Honghua

    2013-01-01

    Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons.A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap.In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC:direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed.In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China.From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance' s fluctuation.

  16. Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells

    Science.gov (United States)

    Zervas, P. L.; Sarimveis, H.; Palyvos, J. A.; Markatos, N. C. G.

    Hybrid renewable energy systems are expected to become competitive to conventional power generation systems in the near future and, thus, optimization of their operation is of particular interest. In this work, a hybrid power generation system is studied consisting of the following main components: photovoltaic array (PV), electrolyser, metal hydride tanks, and proton exchange membrane fuel cells (PEMFC). The key advantage of the hybrid system compared to stand-alone photovoltaic systems is that it can store efficiently solar energy by transforming it to hydrogen, which is the fuel supplied to the fuel cell. However, decision making regarding the operation of this system is a rather complicated task. A complete framework is proposed for managing such systems that is based on a rolling time horizon philosophy.

  17. Acceptance Testing of a Satellite SCADA Photovoltaic-Diesel Hybrid System

    Science.gov (United States)

    Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)

    2000-01-01

    Satellite Supervisory Control and Data Acquisition (SCADA) of a Photovoltaic (PV)/diesel hybrid system was tested using NASA's Advanced Communication Technology Satellite (ACTS) and Ultra Small Aperture Terminal (USAT) ground stations. The setup consisted of a custom-designed PV/diesel hybrid system, located at the Florida Solar Energy Center (FSEC), which was controlled and monitored at a "remote" hub via Ka-band satellite link connecting two 1/4 Watt USATs in a SCADA arrangement. The robustness of the communications link was tested for remote monitoring of the health and performance of a PV/diesel hybrid system, and for investigating load control and battery charging strategies to maximize battery capacity and lifetime, and minimize loss of critical load probability. Baseline hardware performance test results demonstrated that continuous two-second data transfers can be accomplished under clear sky conditions with an error rate of less than 1%. The delay introduced by the satellite (1/4 sec) was transparent to synchronization of satellite modem as well as to the PV/diesel-hybrid computer. End-to-end communications link recovery times were less than 36 seconds for loss of power and less than one second for loss of link. The system recovered by resuming operation without any manual intervention, which is important since the 4 dB margin is not sufficient to prevent loss of the satellite link during moderate to heavy rain. Hybrid operations during loss of communications link continued seamlessly but real-time monitoring was interrupted. For this sub-tropical region, the estimated amount of time that the signal fade will exceed the 4 dB margin is about 10%. These results suggest that data rates of 4800 bps and a link margin of 4 dB with a 1/4 Watt transmitter are sufficient for end-to-end operation in this SCADA application.

  18. Molecular photovoltaic system based on fullerenes and carotenoids co-assembled in lipid/alkanethiol hybrid bilayers.

    Science.gov (United States)

    Liu, Lixia; Zhan, Wei

    2012-03-13

    A hybrid molecular photovoltaic system, based on fullerene C(60) and lutein (a natural photosynthetic carotenoid pigment) that are assembled in a phospholipid/alkanethiol bilayer matrix, is described here. The assembly and photoconversion behaviors of such a system were studied by UV-vis spectroscopy, cyclic voltammetry, impedance spectroscopy, photoelectrochemical action spectroscopy, and photocurrent generation. While lutein itself is inefficient in generating photocurrent, it can strongly modulate photocurrents produced by fullerenes when coassembled in the lipid bilayer matrix presumably via photoinduced electron transfer. Our results thus provide a successful example of combining both synthetic and natural photoactive components in building molecular photovoltaic systems.

  19. Bright future of photovoltaic-hybrid systems as main option for electricity generation in remote communities

    Energy Technology Data Exchange (ETDEWEB)

    Zahedi, Ahmad [Solar Energy Applications Research Group (Australia)

    2000-07-01

    The most common power option for remotely located communities, facilities, schools, etc., is the engine generator powered by diesel fuel. Over the past 15 years, many remote communities with limited and costly site access for maintenance and fuel delivery have had their engine-based power systems modified to photovoltaic hybrid power systems. As a result, hybrid power systems with photovoltaic as the main generator are becoming the preferred power option. The reasons for this change are simple: the engine-based power systems require regular oil and filter changes (in average after 150 hrs of operation); the maintenance cost is relatively high; the cost of travel to and from the site to perform maintenance is restricted during certain time of the year and can be more expensive than the actual maintenance itself. Photovoltaic generators are gradually replacing the diesel generators and thus are becoming the primary source in remote communities. As electricity is required for 24 hours of operation and photovoltaic are not able to generate power for 24 h, batteries are added to the system as storage units, and the diesel generators are used as a back-up power supply. The objective of this paper is to present the results obtained from a study which has been carried out on a PV-hybrid power system from the desired performance point of view. [Spanish] La opcion mas comun de energia para las comunidades, instalaciones, escuelas, etc. localizadas en lugares remotos, es el generador que utiliza diesel como combustible. En los ultimos 15 anos, muchas comunidades remotas con acceso limitado y costoso para el mantenimiento y la entrega de combustible han modificado sus sistemas de energia basados en motores por sistemas de energia hibridos fotovoltaicos. Como resultado, los sistemas hibridos de energia con generadores fotovoltaicos como principal generador se estan convirtiendo en la opcion preferida de generacion de electricidad. Las razones para este cambio son simples: los

  20. Feasibility of pico-hydro and photovoltaic hybrid power systems for remote villages in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Nfah, E.M. [Laboratoire d' Automatique et d' Informatique Appliquee, I.U.T. Fotso Victor, P.O. Box 134, Bandjoun, University of Dschang (Cameroon); Ngundam, J.M. [Automation and Control Laboratory, School of Engineering, P.O. Box 8390, University of Yaounde I (Cameroon)

    2009-06-15

    Pico-hydro (pH) and photovoltaic (PV) hybrid systems incorporating a biogas generator have been simulated for remote villages in Cameroon using a load of 73 kWh/day and 8.3 kWp. Renewable energy systems were simulated using HOMER, the load profile of a hostel in Cameroon, the solar insolation of Garoua and the flow of river Mungo. For a 40% increase in the cost of imported power system components, the cost of energy was found to be either 0.352 EUR/kWh for a 5 kW pico-hydro generator with 72 kWh storage or 0.396 EUR/kWh for a 3 kWp photovoltaic generator with 36 kWh storage. These energy costs were obtained with a biomass resource cost of 25 EUR/tonne. The pH and PV hybrid systems both required the parallel operation of a 3.3 kW battery inverter with a 10 kW biogas generator. The pH/biogas/battery systems simulated for villages located in the south of Cameroon with a flow rate of at least 92 l/s produced lower energy costs than PV/biogas/battery systems simulated for villages in the north of Cameroon with an insolation level of at least 5.55 kWh/m{sup 2}/day. For a single-wire grid extension cost of 5000 EUR/km, operation and maintenance costs of 125 EUR/yr/km and a grid power price of 0.1 EUR/kWh, the breakeven grid extension distances were found to be 12.9 km for pH/biogas/battery systems and 15.2 km for PV/biogas/battery systems respectively. Investments in biogas based renewable energy systems could thus be considered in the National Energy Action Plan of Cameroon for the supply of energy to key sectors involved in poverty alleviation. (author)

  1. Modeling and Coordinated Control Strategy of Large Scale Grid-Connected Wind/Photovoltaic/Energy Storage Hybrid Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Lingguo Kong

    2015-01-01

    Full Text Available An AC-linked large scale wind/photovoltaic (PV/energy storage (ES hybrid energy conversion system for grid-connected application was proposed in this paper. Wind energy conversion system (WECS and PV generation system are the primary power sources of the hybrid system. The ES system, including battery and fuel cell (FC, is used as a backup and a power regulation unit to ensure continuous power supply and to take care of the intermittent nature of wind and photovoltaic resources. Static synchronous compensator (STATCOM is employed to support the AC-linked bus voltage and improve low voltage ride through (LVRT capability of the proposed system. An overall power coordinated control strategy is designed to manage real-power and reactive-power flows among the different energy sources, the storage unit, and the STATCOM system in the hybrid system. A simulation case study carried out on Western System Coordinating Council (WSCC 3-machine 9-bus test system for the large scale hybrid energy conversion system has been developed using the DIgSILENT/Power Factory software platform. The hybrid system performance under different scenarios has been verified by simulation studies using practical load demand profiles and real weather data.

  2. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  3. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  4. Optimization of Performance Characteristics of Hybrid Wind Photovoltaic System with Battery Storage

    Directory of Open Access Journals (Sweden)

    C. Kathirvel

    2014-03-01

    Full Text Available This study concentrates on the Design and Implementation of a multi source hybrid Wind-Photovoltaic stand alone system with proposed energy management strategy. The method of investigation concerned with the definition of the system topology, interconnection of the various sources with maximum energy transfer, optimum control and energy management in order to maintain the DC bus voltage into a fixed value. An Energy management strategy was proposed using the Fuzzy logic controller such that enhancement in the performance of the system and optimization can be done. The Fuzzy logic controller takes the input from Solar (irradiation, Wind (speed, Power demand and the battery voltage which controls the respective subsystem and formulates into different operational modes of energy management. The role of Fuzzy threshold controller is to adjust continuously the threshold value for optimal performance based on expected wind, solar conditions, battery voltage and power demand. It is shown that when the fuzzy logic controller is used, the proposed DC bus voltage regulation strategy with different modes of operation have fast response and efficient operation which leads to a reduced operating cost.

  5. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    Energy Technology Data Exchange (ETDEWEB)

    da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained

  6. Photovoltaic Energy Conversion System Constructed by High Step-Up Converter with Hybrid Maximum Power Point Tracking

    OpenAIRE

    Hwu, K. I.; Tu, W. C.; Wang, C.R.

    2013-01-01

    A photovoltaic energy conversion system, constructed by high step-up converter with hybrid maximum power point tracking (HMPPT), is presented. A voltage converter with a high voltage conversion ratio is proposed, which is simple in circuit and easy in control. After this, such a converter operating with a suitable initial duty cycle of the pulsewidth-modulated (PWM) control signal, together with the proposed HMPPT algorithm combining the fractional open-circuit voltage method and the incremen...

  7. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    Science.gov (United States)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power

  8. Photovoltaic-wind hybrid systems for remote power supply. Workshop. [Selected Papers

    Energy Technology Data Exchange (ETDEWEB)

    Huacuz, J. M.; Urrutia, M. [eds.] [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    This document include the papers of the RIER Workshop that was hold in Cancun, Mexico, on 21-25 April 1997. This Workshop was organized by the Non-Conventional Energy Unit of the Electrical Research Institute of Mexico (IIE), with the financial contributions from the Mexican National Council for Science and Technology (CONACYT) and the Iberoamerican Network for Rural Electrification with Renewable Energy (RIER) of the Program Science and Technology for Development (CYTED). The purpose of this Workshop was to present works developed on the technology of Photovoltaic-Wind Hybrid Systems, and to discuss both technical and non-technical factors that could foster or inhibit the widespread application this technology [Espanol] Este documento incluye los articulos tecnicos del taller de trabajo RIER, realizado en Cancun, Mexico, del 21 al 25 de abril de 1997. Este taller de trabajo fue organizado por el Instituto de Investigaciones Electricas (IIE), con la contribucion financiera del Consejo Nacional de Ciencia y Tecnologia (CONACYT) y de la Red de Trabajo Iberoamericana para la Electrificacion Rural con Energia Renovable (RIER) del programa Ciencia y Tecnologia para el Desarrollo (CYTED). El proposito de este taller fue presentar trabajos desarrollados sobre la tecnologia de sistemas hibridos fotovoltaicos y de viento, y discutir los factores tecnicos y no tecnicos que pudieran fomentar o detener la amplia aplicacion de esta tecnologia

  9. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  10. EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.

    Energy Technology Data Exchange (ETDEWEB)

    ANDREWS,J.W.

    1981-06-01

    The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

  11. A Technical, Economic, and Environmental Performance of Grid-Connected Hybrid (Photovoltaic-Wind Power System in Algeria

    Directory of Open Access Journals (Sweden)

    Djohra Saheb-Koussa

    2013-01-01

    Full Text Available This paper studies the technical, economic, and environmental analysis of wind and photovoltaic power systems connected to a conventional grid. The main interest in such systems is on-site consumption of the produced energy, system hybridization, pooling of resources, and contribution to the environment protection. To ensure a better management of system energy, models have been used for determining the power that the constituting subsystems can deliver under specific weather conditions. Simulation is performed using MATLAB-SIMULINK. While, the economic and environmental study is performed using HOMER software. From an economic point of view, this allows to compare the financial constraints on each part of the system for the case of Adrar site which is located to the northern part of the south of Algeria. It also permits to optimally size and select the system presenting the best features on the basis of two parameters, that is, cost and effectiveness. From an environmental point of view, this study allows highlighting the role of renewable energy in reducing gas emissions related to greenhouse effects. In addition, through a set of sensitivity analysis, it is found that the wind speed has more effects on the environmental and economic performances of grid-connected hybrid (photovoltaic-wind power systems.

  12. A technical, economic, and environmental performance of grid-connected hybrid (photovoltaic-wind) power system in Algeria.

    Science.gov (United States)

    Saheb-Koussa, Djohra; Koussa, Mustapha; Said, Nourredine

    2013-01-01

    This paper studies the technical, economic, and environmental analysis of wind and photovoltaic power systems connected to a conventional grid. The main interest in such systems is on-site consumption of the produced energy, system hybridization, pooling of resources, and contribution to the environment protection. To ensure a better management of system energy, models have been used for determining the power that the constituting subsystems can deliver under specific weather conditions. Simulation is performed using MATLAB-SIMULINK. While, the economic and environmental study is performed using HOMER software. From an economic point of view, this allows to compare the financial constraints on each part of the system for the case of Adrar site which is located to the northern part of the south of Algeria. It also permits to optimally size and select the system presenting the best features on the basis of two parameters, that is, cost and effectiveness. From an environmental point of view, this study allows highlighting the role of renewable energy in reducing gas emissions related to greenhouse effects. In addition, through a set of sensitivity analysis, it is found that the wind speed has more effects on the environmental and economic performances of grid-connected hybrid (photovoltaic-wind) power systems.

  13. A Technical, Economic, and Environmental Performance of Grid-Connected Hybrid (Photovoltaic-Wind) Power System in Algeria

    Science.gov (United States)

    Saheb-Koussa, Djohra; Koussa, Mustapha; Said, Nourredine

    2013-01-01

    This paper studies the technical, economic, and environmental analysis of wind and photovoltaic power systems connected to a conventional grid. The main interest in such systems is on-site consumption of the produced energy, system hybridization, pooling of resources, and contribution to the environment protection. To ensure a better management of system energy, models have been used for determining the power that the constituting subsystems can deliver under specific weather conditions. Simulation is performed using MATLAB-SIMULINK. While, the economic and environmental study is performed using HOMER software. From an economic point of view, this allows to compare the financial constraints on each part of the system for the case of Adrar site which is located to the northern part of the south of Algeria. It also permits to optimally size and select the system presenting the best features on the basis of two parameters, that is, cost and effectiveness. From an environmental point of view, this study allows highlighting the role of renewable energy in reducing gas emissions related to greenhouse effects. In addition, through a set of sensitivity analysis, it is found that the wind speed has more effects on the environmental and economic performances of grid-connected hybrid (photovoltaic-wind) power systems. PMID:24489488

  14. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system.

    Science.gov (United States)

    Mumtaz, Sidra; Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.

  15. Adaptive control paradigm for photovoltaic and solid oxide fuel cell in a grid-integrated hybrid renewable energy system

    Science.gov (United States)

    Khan, Laiq

    2017-01-01

    The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015

  16. FEASIBILITY STUDY AND OPTIMIZATION OF AN HYBRID SYSTEM (EOLIAN- PHOTOVOLTAIC - DIESEL WITH PROVISION OF ELECTRIC ENERGY COMPLETELY INDEPENDENT

    Directory of Open Access Journals (Sweden)

    D. Saheb-Koussa

    2015-08-01

    Full Text Available      In engineering, simulation is an effective and economical, commonly used to make preliminary or comparative studies, both during development (design and normal operation of systems. Currently, several simulation tools, using HOMER, are used in academia. Thus, in this work, we present the principle of feasibility study and optimization of a stand alone hybrid system (wind-photovoltaic-diesel. Furthermore, we determined the price per kWh of electricity supplied by the stand alone hybrid system, which amounts to $ 1417 / kWh. The site considered in this study represents the Adrar site located in the south west Algeria. Thus, we have inferred from this work as part of a configuration of the stand alone hybrid system obviously depends on available energy resources and constraints. On the other hand we have highlighted the role of the renewable energy uses in reducing emissions of greenhouse gas (CO2 rate = 16086 kg / year for a system using only the generator diesel and is 599 kg / year for the stand alone hybrid system studied.

  17. Fabrication and interfacial electronic structure studies on polypyrrole/TiO2 nano hybrid systems for photovoltaic aspects.

    Science.gov (United States)

    Kumar, Ganesan Mohan; Kawakita, Jin; Jayavel, Ramasamy

    2011-05-01

    The progress in studying the interfacial electronic structures of the developing new class of hybrid organic/inorganic material systems have envisaged a new dimension into the field of photovoltaics, which could be of great help in understanding the nature of charge transfer in them. In this regard, electropolymerization of pyrrole monomers have been carried out at room temperature on the surface of TiO2 working electrodes (assisted by UV radiations) and their interfacial electronic structure has been studied as a function of the applied photo anodic potentials. The formation of polypyrrole deposits has been ensured using FT-IR and Raman spectroscopy. Surface analysis of the hybrid matrix revealed the tendency of polymer molecules to cover up the spherical surface of TiO2 nanoparticles that could help in improving the light absorption rate. Signals (bands) corresponding to pyrrole molecules observed in the ultraviolet photoelectron spectroscopy measurements have been correlated with the polaronic states formed and identified to shift as a function of the applied photo anodic potentials, revealing the decrease in work function of the hybrid system to take place (confirmed using cyclic voltammetry measurements). The decreasing trend in the work function elucidates the adjustment in electronic structure of the system (hybrid materials possessing smaller work functions are generally preferred for photovoltaic studies). The aforementioned behavioural aspects have been reasoned with the increase in overpotential values for polarization, from the decrease in up-take rate of the anionic dopant, which increases the current density values, thereby modifying the conductivity of the systems.

  18. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    Full Text Available Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  19. Technical Study of a Standalone Photovoltaic-Wind Energy Based Hybrid Power Supply Systems for Island Electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Taha, Zahari

    2015-01-01

    Energy is one of the most important factors in the socioeconomic development of a country. In a developing country like Malaysia, the development of islands is mostly related to the availability of electric power. Power generated by renewable energy sources has recently become one of the most promising solutions for the electrification of islands and remote rural areas. But high dependency on weather conditions and the unpredictable nature of these renewable energy sources are the main drawbacks. To overcome this weakness, different green energy sources and power electronic converters need to be integrated with each other. This study presents a battery storage hybrid standalone photovoltaic-wind energy power supply system. In the proposed standalone hybrid system, a DC-DC buck-boost bidirectional converter controller is used to accumulates the surplus hybrid power in the battery bank and supplies this power to the load during the hybrid power shortage by maintaining the constant dc-link voltage. A three-phase voltage source inverter complex vector control scheme is used to control the load side voltage in terms of the voltage amplitude and frequency. Based on the simulation results obtained from MATLAB/Simulink, it has been found that the overall hybrid framework is capable of working under variable weather and load conditions.

  20. A novel coordinated control strategy considering power smoothing for a hybrid photovoltaic/battery energy storage system

    Institute of Scientific and Technical Information of China (English)

    DAUD Muhamad Zalani; MOHAMED Azah; HANNAN M A

    2016-01-01

    This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage (PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.

  1. Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications.

    Science.gov (United States)

    Buencuerpo, Jeronimo; Munioz-Camuniez, Luis E; Dotor, Maria L; Postigo, Pablo A

    2012-07-02

    A hybrid approach for light trapping using photonic crystal nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra thin film as a substrate is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP). A consistent enhancement is observed for all of the materials when using a thin hybrid system (300 nm) even compared to the non patterned thin film with an anti-reflective coating (ARC). A realistic solar cell structure composed of a hybrid system with a layer of indium tin oxide (ITO) an ARC and a back metal layer is performed, showing an 18% of improvement for the nanostructured device.

  2. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  3. Natural hybrid organic-inorganic photovoltaic devices

    Science.gov (United States)

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  4. Optimal sizing of battery storage for stand-alone hybrid (photo-voltaic + diesel) power systems

    Science.gov (United States)

    Shaahid, S. M.; Elhadidy, M. A.

    2005-09-01

    An important element of hybrid photo- voltaic(PV) + diesel sytem is battery storage. Size of battery storage plays a role in optimum operation of the hybrid system. Emphasis needs to be placed on this issue. In this perspective, hourly solar radiation data, for the period 1986 93 recorded at Dhahran, Saudi Arabia, have been analyzed to investigate the optimum size of battery storage capacity for hybrid (PV + diesel) power systems. Various sizing configurations have been simulated. The monthly average daily values of solar global radiation range from 3.61 to 7.96kWh/m2. As a case study, hybrid systems considered in the present analysis consist of 225m2 PV array area (panels/modules) supplemented with battery storage unit and diesel backup generators (to meet the load requirements of a typical residential building with annual electrical energy demand of 35,200kWh). The monthly average energy generated from the aforementioned hybrid system for different scenarios has been presented. More importantly, the study explores the influence of variation of battery storage capacity on hybrid power generation. The results exhibit a trade-off between size of the storage capacity and diesel power to be generated to cope with annual load distribution. Concurrently, the energy to be generated from the diesel generator and the number of operational hours of the diesel system to meet the load demand have been also addressed.The study shows that for optimum operation of diesel system, storage capacity equivalent to 12 18h of maximum monthly average hourly demand need to be used. It has been found that in the absence of battery bank, ˜58% of the load needs to be provided by the diesel system. However, use of 12h of battery storage (autonomy) reduces diesel energy generation by ˜49% and the number of hours of operation of the diesel system get reduced by about ˜82%. The findings of this study can be employed as a tool for sizing of battery storage for PV/diesel systems for other

  5. Design, Operation, Control, and Economics of a Photovoltaic/Fuel Cell/Battery Hybrid Renewable Energy System for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Zachary S. Whiteman

    2015-06-01

    Full Text Available Meeting rapidly growing global energy demand—without producing greenhouse gases or further diminishing the availability of non-renewable resources—requires the development of affordable low-emission renewable energy systems. Here, we develop a hybrid renewable energy system (HRES for automotive applications—specifically, a roof-installed photovoltaic (PV array combined with a PEM fuel cell/NiCd battery bus currently operating shuttle routes on the University of Delaware campus. The system’s overall operating objectives—meeting the total power demand of the bus and maintaining the desired state of charge (SOC of the NiCd battery—are achieved with appropriately designed controllers: a logic-based “algebraic controller” and a standard PI controller. The design, implementation, and performance of the hybrid system are demonstrated via simulation of real shuttle runs under various operating conditions. The results show that both control strategies perform equally well in enabling the HRES to meet its objectives under typical operating conditions, and under sudden cloud cover conditions; however, at consistently high bus speeds, battery SOC maintenance is better, and the system consumes less hydrogen, with PI control. An economic analysis of the PV investment necessary to realize the HRES design objectives indicates a return on investment of approximately 30% (a slight, but nonetheless positive, ~$550 profit over the bus lifetime in Newark, DE, establishing the economic viability of the proposed addition of a PV array to the existing University of Delaware fuel cell/battery bus.

  6. Photovoltaic systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  7. Modeling and sizing optimization of hybrid photovoltaic/wind power generation system

    Science.gov (United States)

    Yazdanpanah, Mohammad-Ali

    2014-03-01

    The rapid industrialization and growth of world's human population have resulted in the unprecedented increase in the demand for energy and in particular electricity. Depletion of fossil fuels and impacts of global warming caused widespread attention using renewable energy sources, especially wind and solar energies. Energy security under varying weather conditions and the corresponding system cost are the two major issues in designing hybrid power generation systems. In this paper, the match evaluation method (MEM) is developed based on renewable energy supply/demand match evaluation criteria to size the proposed system in lowest cost. This work is undertaken with triple objective function: inequality coefficient, correlation coefficient, and annualized cost of system. It provides optimum capacity of as many numbers of supplies as required to match with a load demand in lowest investment, so it can handle large-scale design problems. Meteorological data were collected from the city of Zabol, located in south-east of Iran, as a case study. Six types of wind turbine and also six types of PV modules, with different output powers and costs, are considered for this optimization procedure. A battery storage system is used to even out irregularities in meteorological data. A multi-objective particle swarm optimization algorithm has been used for the prediction of an optimized set of design based on the MEM technique. The results of this study are valuable for evaluating the performance of future stand-alone hybrid power system. It is worth mentioning that the proposed methodology can be effectively employed for any composition of hybrid energy systems in any locations taking into account the meteorological data and the consumer's demand.

  8. Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management

    Directory of Open Access Journals (Sweden)

    Giovani Almeida Dávi

    2017-08-01

    Full Text Available On-site photovoltaic (PV and battery systems intend to improve buildings energy performance, however battery costs and monetary incentives are a major drawback for the introduction of these technologies into the electricity grids. This paper proposes an energy refurbishment of an office building based on multi-objective simulations. An innovative demand-side management approach is analyzed through the PV and battery control with the purpose of reducing grid power peaks and grid imported energy, as well as improving the project economy. Optimization results of load matching and grid interaction parameters, complemented with an economic analysis, are investigated in different scenarios. By means of battery use, the equivalent use of the grid connection is reduced by 12%, enhancing the grid interaction potential, and 10% of load matching rates can be increased. Project improvements indicate the grid connection capacity can be reduced by 13% and significant savings of up to 48% are achieved on yearly bills. The economy demonstrates the grid parity is only achieved for battery costs below 100 €/kWh and the payback period is large: 28 years. In the case with only PV system, the grid parity achieves better outcomes and the payback time is reduced by a half, making this a more attractive option.

  9. The fabrication and analysis of a PbS nanocrystal:C(60) bilayer hybrid photovoltaic system.

    Science.gov (United States)

    Dissanayake, D M N M; Hatton, R A; Lutz, T; Curry, R J; Silva, S R P

    2009-06-17

    A near-infrared sensitive hybrid photovoltaic system between PbS nanocrystals (PbS-NCs) and C(60) is demonstrated. Up to 0.44% power conversion efficiency is obtained under AM1.5G with a short circuit current density (J(sc)) of 5 mA cm(-2) when the PbS-NC layer is treated in anhydrous methanol. The observed J(sc) is found be approximately one-third of the maximum expected from this hybrid configuration, indicating the potential for further optimization. Crucial for device operation, a smooth film of nanocrystals is seen to form on the hole transporting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer deposited on the transparent electrode, facilitated through an ionic interaction between nanocrystal capping ligands and the PEDOT:PSS. The formation of the open circuit voltage in this system is seen to be influenced by an interfacial dipole formed at the hole-extracting electrode, providing insights for further optimization.

  10. The fabrication and analysis of a PbS nanocrystal:C{sub 60} bilayer hybrid photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, D M N M [Solid State Electronics Laboratory, University of Michigan, Ann Arbor, MI 48109-2122 (United States); Hatton, R A [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Lutz, T [Department of Chemistry, Imperial College, London SW7 2AY (United Kingdom); Curry, R J; Silva, S R P [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: ndissa@umich.edu

    2009-06-17

    A near-infrared sensitive hybrid photovoltaic system between PbS nanocrystals (PbS-NCs) and C{sub 60} is demonstrated. Up to 0.44% power conversion efficiency is obtained under AM1.5G with a short circuit current density (J{sub sc}) of 5 mA cm{sup -2} when the PbS-NC layer is treated in anhydrous methanol. The observed J{sub sc} is found be approximately one-third of the maximum expected from this hybrid configuration, indicating the potential for further optimization. Crucial for device operation, a smooth film of nanocrystals is seen to form on the hole transporting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer deposited on the transparent electrode, facilitated through an ionic interaction between nanocrystal capping ligands and the PEDOT:PSS. The formation of the open circuit voltage in this system is seen to be influenced by an interfacial dipole formed at the hole-extracting electrode, providing insights for further optimization.

  11. Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system.

    Science.gov (United States)

    Schäfer, A I; Broeckmann, A; Richards, B S

    2007-02-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalination systems, only very limited experience exists, both with regards to efficiency as well as water quality. In this paper, this lack of knowledge is addressed by evaluating a system operated with varying parameters (pressure and flow) with constant power as a step toward defining a safe operating window, and they provide a basis for interpreting future data obtained with a renewable energy source. Field trials were performed on a brackish (5300 mg/L TDS; 8290 microS/cm) bore in Central Australia with a photovoltaic-powered membrane filtration (PV-membrane) system. Four nanofiltration and reverse osmosis membranes (BW30, ESPA4, NF90, TFC-S) and a number of operation parameter combinations (transmembrane pressure, feed flow, TFC-S) and operating parameters transmembrane pressure and feed flow were investigated to find the best operating conditions for maximum drinking water production and minimum specific energy consumption (SEC). The ESPA4 membrane performed best for this brackish source, producing 250 L/h of excellent drinking water (257 mg/L TDS; 400 microS/ cm) at an SEC of 1.2 kWh/m3. The issue of brine disposal or reuse is also discussed and the article compares the salinity of the produced brine with livestock water. Since the feedwater is disinfected physically using ultrafiltration (UF), the brine is free from bacteria and most viruses and hence can be seen more as a reusable product stream than a waste stream with a disposal problem.

  12. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  13. Model Predictive Control techniques with application to photovoltaic, DC Microgrid, and a multi-sourced hybrid energy system

    Science.gov (United States)

    Shadmand, Mohammad Bagher

    Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in

  14. Ternary hybrid systems of P3HT-CdSe-WS₂ nanotubes for photovoltaic applications.

    Science.gov (United States)

    Bruno, A; Borriello, C; Haque, S A; Minarini, C; Di Luccio, T

    2014-09-07

    Hybrid heterojunctions of conjugated polymers and inorganic nanomaterials are a promising combination for obtaining high performance solar cells (SC). In this work we have explored new possible uses of the WS2 nanotubes (NTs) both as the only acceptor material blended with a polymer and in ternary systems mixed with a polymer and quantum dots (QDs). In particular we have spectroscopically investigated binary blends of poly(3-hexylthiophene) (P3HT) and WS2 NTs, P3HT and CdSe QDs, and ternary blends of P3HT, CdSe QDs and WS2 NTs. We report fluorescence quenching effects of the QD signal in the P3HT-CdSe-WS2 system with the increase of NT concentration. Static and time-resolved fluorescence studies reveal efficient resonant energy transfer from the QDs to the NTs upon photoexcitation. The evidence of energetic interaction between WS2 NTs and QDs opens new fields of application of WS2 NTs and holds very promising potential for improving charge transfer phenomena in the active layer of hybrid solar cells.

  15. Survey of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    In developing this survey of photovoltaic systems, the University of Alabama in Huntsville assembled a task team to perform an extensive telephone survey of all known photovoltaic manufacturers. Three US companies accounted for 77% of the total domestic sales in 1978. They are Solarex Corporation, Solar Power Croporation, and ARCO Solar, Inc. This survey of solar photovoltaic (P/V) manufacturers and suppliers consists of three parts: a catalog of suppliers arranged alphabetically, data sheets on specific products, and typical operating, installation, or maintenance instructions and procedures. This report does not recommend or endorse any company product or information presented within as the results of this survey.

  16. Design Experience of Island Wind - photovoltaic Hybrid Power Supply System%海岛风光瓦补发电系统设计体会

    Institute of Scientific and Technical Information of China (English)

    郑永高

    2012-01-01

    简要介绍海岛建设风光互补发电系统的环境特点.结合工程实践归纳总结海岛风光互补发电系统设计要点.并就系统建设需要注意的问题进行解析。%The environmental features for the construction of wind - photovoltaic hybrid power supply system on the island is introduced briefly; in combination with the engineering practice, the keys points of design for the island wind - photovoltaic hybrid power supply system are summarized, and the issues worthy of attention during the system construction are analyzed.

  17. Environmental Life-Cycle Analysis of Hybrid Solar Photovoltaic/Thermal Systems for Use in Hong Kong

    Directory of Open Access Journals (Sweden)

    Tin-Tai Chow

    2012-01-01

    Full Text Available While sheet-and-tube absorber is generally recommended for flat-plate photovoltaic/thermal (PV/T collector design because of the simplicity and promising performance, the use of rectangular-channel absorber is also tested to be a good alternative. Before a new energy technology, like PV/T, is fully implemented, its environmental superiority over the competing options should be assessed, for instance, by evaluating its consumption levels throughout its production and service life. Although there have been a plenty of environmental life-cycle assessments on the domestic solar hot water systems and PV systems, the related works on hybrid solar PV/T systems have been very few. So far there is no reported work on the assessment of PV/T collector with channel-type absorber design. This paper reports an evaluation of the energy payback time and the greenhouse gas payback time of free-standing and building-integrated PV/T systems in Hong Kong. This is based on two case studies of PV/T collectors with modular channel-type aluminium absorbers. The results confirm the long-term environmental benefits of PV/T applications.

  18. Superior Valley photovoltaic power processing and system controller evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, R.; Ginn, J.; Zirzow, J.; Sittler, G.

    1995-11-01

    Sandia National Laboratories, sponsored by the US Department of Energy`s Office of Energy Management, conducts the photovoltaic balance-of-system program. Under this program, Sandia supports the Department of Defense Strategic Environmental Research Development Plan, SERDP, which is advancing the use of photovoltaics in operational DoD facilities. This report details the acceptance testing of the first of these photovoltaic hybrid systems: the Superior Valley photovoltaic-diesel hybrid system. This is the first of several photovoltaic installations for the Department of Defense. The system hardware tested at Sandia included an inverter, maximum power trackers, and a system controller.

  19. 太阳能光伏/市电联合供电系统%Photovoltaic/Grid Hybrid Power System

    Institute of Scientific and Technical Information of China (English)

    王伟; 吴犇; 金科; 阮新波

    2012-01-01

    太阳能光伏发电作为太阳能的重要应用方式越来越受到人们的重视,但是太阳能受天气条件限制的缺点,需要配备补充能源。本文选择市电作为补充能源,提出了一种太阳能光伏/市电联合供电系统。系统由太阳电池、市电、DC-DC变换器、功率因数校正器组成。系统中存在两个供电电源,需要设计合理的能量管理控制策略来确保两个输入源协调工作。系统能量管理的核心是根据太阳电池和负载的工作状态,控制系统工作在合适的模式,以此来控制系统能量流。在实验室中搭建了一套2kW系统样机,通过实验验证了所提的系统结构和能量管理控制策略的有效性。%Photovoltaic generation,which is an important application way of solar,is attracting more and more attention.However,its output power is intermittent with different environment.A backup power source is necessary.Grid is chosen to be the backup power source in this paper,and a hybrid photovoltaic/Grid power system is proposed.It is composed of solar cells,grid,a DC-DC converter,and a power factor correction.In order to enable these two source work coordinate,it is necessary to manage the power.The key point of power management is to control the system to work in proper mode,according to different situation of solar cell and load.A 2kW hybrid system is built in the lab.The experimental results verified the proposed power structure and energy management.

  20. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  1. Autonomous photovoltaic lighting system

    OpenAIRE

    Ahmed A. A. Hafez; Montesinos Miracle, Daniel; Sudrià Andreu, Antoni

    2012-01-01

    This paper introduces a comparison between the conventional and Photovoltaic (PV) lighting systems. A simple sizing procedure for a PV stand-alone system was advised. The paper also proposes a novel PV lighting system. The proposed system is simple, compact and reliable. The system operation was investigated by thoroughly mathematical and simulation work.

  2. Photovoltaic systems in Patagonia

    Energy Technology Data Exchange (ETDEWEB)

    Lawand, T.A. [McGill Univ., Ste. Anne de Bellevue, PQ (Canada). Brace Research Inst., Macdonald Coll; Rapallini, A. [MR Consultores, Buenos Aires, (Argentina); Pedro, G. [Ente Provincial de Energia del Neuquen, Neuquen, (Argentina)

    1998-05-01

    The feasibility of using of solar photovoltaic (PV) systems in the remote cold areas of the Neuquen province in Argentina was discussed. A program was developed by the local public utility to provide schools with electricity using photovoltaic panels. The PV systems have replaced expensive diesel generators which had become unreliable. In the first phase of the program, 27 schools were electrified using photovoltaic panels, battery storage systems and simple control panels. A review of the performance of the system components under the harsh climatic conditions of the region was discussed. The program has been expanded to include about 50 family systems. Another 150 are projected for the near future. 3 refs., 2 figs., 3 tabs.

  3. Photovoltaic systems overview

    Science.gov (United States)

    Hesse, J. L.

    1981-01-01

    Selected photovoltaic systems currently under user-environment field test by the U.S. Department of Energy Photovoltaics Program are discussed, and operational results are summarized. There are many systems in the stand-alone sector that are cost effective now. As proven products become available, distributed residential, commercial, institutional and industrial on-site systems should be able to displace significant amounts of centrally-generated electricity throughout most of the United States. Finally, utilities should ultimately be able to augment their generating capacity with larger-scale systems. Field experience and industry interface has led to excellent overall product performance.

  4. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system.

    Science.gov (United States)

    Richards, B S; Capão, D P S; Schäfer, A I

    2008-06-15

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration--nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized using four different NF membranes (BW30, NF90, ESPA4, TFC-S), and examined in more detail for the BW30 membrane. On an Australian spring day, the system produced 1.1 m3 of permeate with an average conductivity of 0.28 mS x cm(-1), recovering 28% of the brackish (8.29 mS x cm(-1) conductivity) feedwater with an average specific energy consumption of 2.3 kWh x m(-3). The RE-membrane system tolerated large fluctuations in solar irradiance (500--1200 W x m(-2)), resulting in only small increases in the permeate conductivity. When equipped with the NF90 (cloudy day) and ESPA4 (rainy day) membranes, the system was still able to produce 1.36 m(-3) and 0.85 m(-3) of good quality permeate, respectively. The TFC-S membrane was not able to produce adequate water quality from the bore water tested. It is concluded that batteryless operation is a simple and robust way to operate such systems under conditions ranging from clear skies to medium cloud cover.

  5. Reliability of hybrid photovoltaic DC micro-grid systems for emergency shelters and other applications

    Science.gov (United States)

    Dhere, Neelkanth G.; Schleith, Susan

    2014-10-01

    Improvement of energy efficiency in the SunSmart Schools Emergency Shelters requires new methods for optimizing the energy consumption within the shelters. One major limitation in current systems is the requirement of converting direct current (DC) power generated from the PV array into alternating current (AC) power which is distributed throughout the shelters. Oftentimes, this AC power is then converted back to DC to run certain appliances throughout the shelters resulting in a significant waste of energy due to DC to AC and then again AC to DC conversion. This paper seeks to extract the maximum value out of PV systems by directly powering essential load components within the shelters that already run on DC power without the use of an inverter and above all to make the system reliable and durable. Furthermore, additional DC applications such as LED lighting, televisions, computers and fans operated with DC brushless motors will be installed as replacements to traditional devices in order to improve efficiency and reduce energy consumption. Cost of energy storage technologies continue to decline as new technologies scale up and new incentives are put in place. This will provide a cost effective way to stabilize the energy generation of a PV system as well as to provide continuous energy during night hours. It is planned to develop a pilot program of an integrated system that can provide uninterrupted DC power to essential base load appliances (heating, cooling, lighting, etc.) at the Florida Solar Energy Center (FSEC) command center for disaster management. PV arrays are proposed to be installed on energy efficient test houses at FSEC as well as at private homes having PV arrays where the owners volunteer to participate in the program. It is also planned to monitor the performance of the PV arrays and functioning of the appliances with the aim to improve their reliability and durability. After a successful demonstration of the hybrid DC microgrid based emergency

  6. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    Science.gov (United States)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as

  7. Benchmarking concentrating photovoltaic systems

    Science.gov (United States)

    Duerr, Fabian; Muthirayan, Buvaneshwari; Meuret, Youri; Thienpont, Hugo

    2010-08-01

    Integral to photovoltaics is the need to provide improved economic viability. To achieve this goal, photovoltaic technology has to be able to harness more light at less cost. A large variety of concentrating photovoltaic concepts has provided cause for pursuit. To obtain a detailed profitability analysis, a flexible evaluation is crucial for benchmarking the cost-performance of this variety of concentrating photovoltaic concepts. To save time and capital, a way to estimate the cost-performance of a complete solar energy system is to use computer aided modeling. In this work a benchmark tool is introduced based on a modular programming concept. The overall implementation is done in MATLAB whereas Advanced Systems Analysis Program (ASAP) is used for ray tracing calculations. This allows for a flexible and extendable structuring of all important modules, namely an advanced source modeling including time and local dependence, and an advanced optical system analysis of various optical designs to obtain an evaluation of the figure of merit. An important figure of merit: the energy yield for a given photovoltaic system at a geographical position over a specific period, can be calculated.

  8. Design and components of photovoltaic systems

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van

    2012-01-01

    This chapter provides an overview of the various aspects of photovoltaic (PV) system components and design. The basic performance of cells, modules, and inverters and how this is used in PV system design is described. Two case studies illustrating PV system design are presented: a hybrid system on t

  9. Effects of oriented surface dipole on photoconversion efficiency in an alkane/lipid-hybrid-bilayer-based photovoltaic model system.

    Science.gov (United States)

    Liu, Lixia; Xie, Hong; Bostic, Heidi E; Jin, Limei; Best, Michael D; Zhang, X Peter; Zhan, Wei

    2013-08-26

    When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60% increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix.

  10. Effects of Oriented Surface Dipole on Photoconversion Efficiency in an Alkane/Lipid-Hybrid-Bilayer-Based Photovoltaic Model System

    KAUST Repository

    Liu, Lixia

    2013-06-21

    When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60 % increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of energy decentralized generation viability through a Diesel-photovoltaic hybrid system; Analise de viabilidade de geracao descentralizada de energia atraves de um sistema hibrido diesel-fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Raphael Lopes; Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (DEM/UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica], e-mail: raphaellfreire@gmail.com, e-mail: silvioa@gmail.com

    2008-07-01

    This paper analyses the installation viability of Diesel-photovoltaic hybrid system connected to the network for supplying of part of electric power demand of a residence. The different configurations were analysed using the Hybrid Optimization Model for Electric Renewable (HOMER). The program allows the evaluation of performance and to compare the installation, operation and maintenance costs of isolated systems with the network extension of various configuration of decentralized hybrid generation system.

  12. Merging photovoltaic hardware development with hybrid applications in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    1993-11-01

    The use of multi-source power systems, ``hybrids,`` is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The US Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

  13. Merging photovoltaic hardware development with hybrid applications in the USA

    Science.gov (United States)

    Bower, W.

    The use of multi-source power systems, 'hybrids,' is one of the fastest growing, potentially significant markets for photovoltaic (PV) system technology today. Cost-effective applications today include remote facility power, remote area power supplies, remote home and village power, and power for dedicated electrical loads such as communications systems. This market sector is anticipated to be one of the most important growth opportunities for PV over the next five years. The U.S. Department of Energy (USDOE) and Sandia National Laboratories (SNL) are currently engaged in an effort to accelerate the adoption of market-driven PV hybrid power systems and to effectively integrate PV with other energy sources. This paper provides details of this development and the ongoing hybrid activities in the United States. Hybrid systems are the primary focus of this paper.

  14. Photovoltaic systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    Each of the Department of Energy's Photovoltaic Systems Program projects funded and/or in existence during fiscal year 1978 (October 1, 1977 through September 30, 1978) are described. The project sheets list the contractor, principal investigator, and contract number and funding and summarize the programs and status. The program is divided into various elements: program assessment and integration, research and advanced development, technology development, system definition and development, system application experiments, and standards and performance criteria. (WHK)

  15. A modular molecular photovoltaic system based on phospholipid/alkanethiol hybrid bilayers: photocurrent generation and modulation.

    Science.gov (United States)

    Xie, Hong; Jiang, Kai; Zhan, Wei

    2011-10-21

    Monolayer quantities of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), incorporated with either fullerenes or ruthenium tris(bipyridyl) (Ru(bpy)(3)(2+)) complexes, were formed on ferrocene-terminated C11-alkanethiol self-assembled monolayers (SAMs) through lipid fusion. Thus formed hybrid structures are characterized by quartz crystal microbalance, UV-vis spectroscopy, cyclic voltammetry and impedance analysis. In comparison to lipid monolayers deposited on C12-alkanethiol SAMs, photocurrent generation from these ferrocene-based structures is significantly modulated, displaying attenuated anodic photocurrents and enhanced cathodic photocurrents. While a similar trend was observed for the two photoagents studied, the degree of such modulations was always found to be greater in fullerene-incorporated bilayers. These findings are evaluated in the context of the film structure, energetics of the involved photo(electrochemical) species and cross-membrane electron-transfer processes.

  16. 光伏联合发电系统的规划及地理选址%Programme and geography location of photovoltaic hybrid power generation system

    Institute of Scientific and Technical Information of China (English)

    严干贵; 谭鑫; 李军徽; 王泽辉; 高洋

    2015-01-01

    当前资源短缺的形势日益严峻,寻找新能源替代传统能源迫在眉睫,太阳能因清洁、资源丰富等特点成为了目前各国研究的热点能源. 针对光伏发电系统与风电的互补性和电源规划的问题,文章介绍了由光伏发电与其他发电相结合形成的光伏联合发电系统,讨论了光伏联合发电系统的结构和特点,在混合动力系统仿真软件HOMER的基础上建立光伏联合发电系统模型;计算系统总净成本( TNPC )然后对其进行经济性规划分析,从而找出最优配置来对系统进行规划;在地理选择方面,文中则是根据资源条件和气象数据找出更适用于光伏联合发电系统的地理位置.%As the current situation of the shortage of resources is becoming increasingly rigorous, it is extremely urgent to look for a new energy resource to replace the traditional resources.And the solar power resource is becoming a hots-pot for its advantages of clean and abundant resources.In view of the complementarity between photovoltaic power generation system and wind power generation system and the problem of power source planning, the paper discusses the characteristics and structure of photovoltaic hybrid power generation system and sets up a photovoltaic hybrid power generation system model on the basis of the hybrid system simulation software HOMER;then it calculates the total net cost of the system and analyzes the economic planning to find the optimal configuration for system progrmme.In terms of geography location, this paper finds a more suitable geography location to build photovoltaic hybrid power generation system according to the resource condition and meteorological data.

  17. Lossless hybridization between photovoltaic and thermoelectric devices.

    Science.gov (United States)

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device).

  18. Hybrid Power Management System and Method

    Science.gov (United States)

    Eichenberg, Dennis J. (Inventor)

    2008-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  19. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity....... Heat from the collectors is transferred to a domestic hot water storage tank or to a cold storage tank, which is used as the source for the heat pump. When the heat pump charges the warm storage tank, heat is extracted from the cold storage tank, which then can be reheated by the PVT collectors...

  20. Renewable Energy Powered Membrane Technology. 1. Development and Characterization of a Photovoltaic Hybrid Membrane System

    OpenAIRE

    Schaefer, Andrea; Broeckmann, A.; Richards, B.S.

    2007-01-01

    In isolated communities where potable water sources as well as energy grids are limited or nonexistent, treating brackish groundwater aquifers with small-scale desalination systems can be a viable alternative to existing water infrastructures. Given the unavailability of power in many such situations, renewable energy is an obvious solution to power such systems. However, renewable energy is an intermittent power supply and with regards to the performance of intermittently operated desalinati...

  1. Modeling, Control, and Simulation of Battery Storage Photovoltaic-Wave Energy Hybrid Renewable Power Generation Systems for Island Electrification in Malaysia

    Directory of Open Access Journals (Sweden)

    Nahidul Hoque Samrat

    2014-01-01

    Full Text Available Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV- wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  2. Modeling, control, and simulation of battery storage photovoltaic-wave energy hybrid renewable power generation systems for island electrification in Malaysia.

    Science.gov (United States)

    Samrat, Nahidul Hoque; Bin Ahmad, Norhafizan; Choudhury, Imtiaz Ahmed; Bin Taha, Zahari

    2014-01-01

    Today, the whole world faces a great challenge to overcome the environmental problems related to global energy production. Most of the islands throughout the world depend on fossil fuel importation with respect to energy production. Recent development and research on green energy sources can assure sustainable power supply for the islands. But unpredictable nature and high dependency on weather conditions are the main limitations of renewable energy sources. To overcome this drawback, different renewable sources and converters need to be integrated with each other. This paper proposes a standalone hybrid photovoltaic- (PV-) wave energy conversion system with energy storage. In the proposed hybrid system, control of the bidirectional buck-boost DC-DC converter (BBDC) is used to maintain the constant dc-link voltage. It also accumulates the excess hybrid power in the battery bank and supplies this power to the system load during the shortage of hybrid power. A three-phase complex vector control scheme voltage source inverter (VSI) is used to control the load side voltage in terms of the frequency and voltage amplitude. Based on the simulation results obtained from Matlab/Simulink, it has been found that the overall hybrid framework is capable of working under the variable weather and load conditions.

  3. Photovoltaic system reliability

    Energy Technology Data Exchange (ETDEWEB)

    Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Greenberg, D. [Ascension Technology, Inc., Lincoln Center, MA (United States)] [and others

    1997-10-01

    This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

  4. Hybrid Multi-objective Forecasting of Solar Photovoltaic Output Using Kalman Filter based Interval Type-2 Fuzzy Logic System

    DEFF Research Database (Denmark)

    Hassan, Saima; Ahmadieh Khanesar, Mojtaba; Hajizadeh, Amin

    2017-01-01

    Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic....../D) in the second hybrid algorithm. Root mean square error and maximum absolute error as the two accuracy objective are utilized to find the Pareto-optimal solution with the MOPSO and MOEA/D respectively. The proposed hybrid multi-objective designs of the interval type-2 fuzzy logic system are utilized...

  5. Energy Management Strategy of Wind and Photovoltaic Hybrid Power System Based on Hybrid System Theory%基于混合系统理论的风光互补发电系统能量管理策略

    Institute of Scientific and Technical Information of China (English)

    李青龙; 赵志洋; 娄序蕾; 施坪

    2009-01-01

    In this paper, a kind of energy management strategy based on hybrid system theory for wind and photovoltaic hybrid power system is considered from view point of power balancing. The power distribution between multiple power sources and the working mode switching law were derived. It's indicated that this method can effectively improve the stability and the whole performance of the hybrid power system. Meanwhile, this also provides us an effective method for analysis of hybrid system which consists of multiple energy sources.%基于混合系统理论.从功率平衡的观点研究了风光混合发电系统的能量管理策略,分析得出了多能量源之间的功率分配及工作模式切换律.该方法能有效提高系统稳定性和混合发电系统整体性能;同时,该方法还为多能量源混合系统的分析提供了一种有效方法.

  6. Predicting High or Low Transfer Efficiency of Photovoltaic Systems Using a Novel Hybrid Methodology Combining Rough Set Theory, Data Envelopment Analysis and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lee-Ing Tong

    2012-02-01

    Full Text Available Solar energy has become an important energy source in recent years as it generates less pollution than other energies. A photovoltaic (PV system, which typically has many components, converts solar energy into electrical energy. With the development of advanced engineering technologies, the transfer efficiency of a PV system has been increased from low to high. The combination of components in a PV system influences its transfer efficiency. Therefore, when predicting the transfer efficiency of a PV system, one must consider the relationship among system components. This work accurately predicts whether transfer efficiency of a PV system is high or low using a novel hybrid model that combines rough set theory (RST, data envelopment analysis (DEA, and genetic programming (GP. Finally, real data-set are utilized to demonstrate the accuracy of the proposed method.

  7. The problem of the use the hybrid and photovoltaic systems in insular zones with climatic siversity in Madeira; A problematica da utilizacao de sistemas fotovoltaicos e hibridos em zonas insulares de diversidade climatica-ILHA da Madeira

    Energy Technology Data Exchange (ETDEWEB)

    Magro, J. C. E.

    2004-07-01

    Project PAUER contemplates the evaluation and utilization of renewable energy in insular zones with climatic diversity, situated on the Archipelago of Madeira. The project has three main areas of intervention: prospecting and evaluating energetic resources; creation of data bases of climatic data for application in energetic studies and other areas; the installation of twenty autonomous photovoltaic or hybrid systems in isolated localities. This communication presents some data from meteorological observations made up until the present date, following appropriate statistical analysis. Characteristics of some installed photovoltaic and hybrid systems as well as some of the principal problems encountered in the field are also given. (Author)

  8. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing......, detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control...

  9. Sliding Mode Controller for Three-Phase Hybrid Active Power Filter with Photovoltaic Application

    OpenAIRE

    Blorfan, Ayman; Merckle, Jean; Flieller, Damien; Wira, Patrice; Sturtzer, Guy

    2012-01-01

    International audience; This paper presents a new three-phase hybrid active power filter configuration that interconnects a passive high-pass filter in parallel with an active power filter and a photovoltaic system. The proposed configuration can improves the filtering performance of the conventional active power filter, as well as simultaneously supply the power from the photovoltaic arrays to the load and utility. This paper will describe the proposed hybrid active power filter control usin...

  10. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  11. Review on the Recent Developments of Photovoltaic Thermal (PV/T and Proton Exchange Membrane Fuel Cell (PEMFC Based Hybrid System

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available Photovoltaic Thermal (PV/T system emerged as one of the convenient type of renewable energy system acquire the ability to generate power and thermal energy in the absence of moving parts. However, the power output of PV/T is intermittent due to dependency on solar irradiation condition. Furthermore, its efficiency decreases because of cells instability at high temperature. On the other hand, fuel cell co-generation system (CGS is another technology that can generate power and heat simultaneously. Integration of PV/T and fuel cell CGS could enhance the reliability and sustainability of both systems as well as increasing the overall system performance. Hence, this paper intended to present the parameters that affect performance of PV/T and Proton Exchange Membrane Fuel Cell (PEMFC CGS. Moreover, recent developments on PV/T-fuel cell hybrid system are also presented. Based on literates, mass flow rate of moving fluid in PV/T was found to affect the system efficiency. For the PEMFC, when the heat is utilized, the system performance can be increased where the heat efficiency is similar to electrical efficiency which is about 50%. Recent developments of hybrid PV/T and fuel cell show that most of the studies only focus on the power generation of the system. There are less study on the both power and heat utilization which is indeed necessary in future development in term of operation strategy, optimization of size, and operation algorithm.

  12. Photovoltaic module mounting system

    Science.gov (United States)

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  13. Photovoltaic System in Progress

    DEFF Research Database (Denmark)

    Shoro, Ghulam Mustafa; Hussain, Dil Muhammad Akbar; Sera, Dezso

    2013-01-01

    This paper provides a comprehensive update on photovoltaic (PV) technologies and the materials. In recent years, targeted research advancement has been made in the photovoltaic cell technologies to reduce cost and increase efficiency. Presently, several types of PV solar panels are commercially...... utilized and playing an important role in the market. Three generations of photovoltaic technologies are investigated and discussed; Crystalline Silicon Technology categorized as first generation of PV technology, Thin Film Technologies are second generation of PV technologies and Multi-junction Cells...... structure. Silicon remains the prominent semiconductor within photovoltaic....

  14. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  15. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  16. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  17. Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    Loferski, J.J. (ed.)

    1983-12-01

    The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

  18. Solar photovoltaic/thermal (hybrid) energy project

    Science.gov (United States)

    Sheldon, D. B.

    1981-09-01

    Development of photovoltaic/thermal (PV/T) collectors and residential heat pump systems is reported. Candidate collector and residential heat pump systems were evaluated using the TRNSYS computer program. It is found that combined heat pump and PV array is a promising method for achieving economical solar cooling. Where the cooling load is dominant, exclusively PV collectors rather than PV/T collectors are preferred. Where the heating load is dominant, the thermal component of PV/T collectors makes a significant contribution to heating a residence. PV/T collectors were developed whose combined efficiency approaches the efficiency of a double glazed, exclusively thermal collector. The design and operational problems of air source heat pumps are reviewed. Possible effects of compressor startup transients on PV power system operation are discussed.

  19. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  20. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    Science.gov (United States)

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.

  1. Interface Modifications for Applications in Organic and Hybrid Photovoltaics

    Science.gov (United States)

    Mazzio, Katherine A.

    Considerable research has been conducted in the area of organic photovoltaics due to several intrinsic advantages, including their high throughput solution processability, light weight, and their applicability on flexible substrates. Product development has been limited, however, due to the low mobilities and short exciton diffusion lengths of organic materials relative to inorganic materials used for photovoltaics. In this dissertation, we look at interfacial phenomena in attempt to control the charge transport dynamics in different parts of photovoltaic systems. The first chapter provides an overview of the field of organic photovoltaics, including their benefits, operating procedures, and a brief history of materials and device development. Chapter 2 examines some donor-acceptor small molecules as the electron donors in all organic bulk heterojunction solar cells with soluble fullerene derivatives as the electron acceptors. The donor-acceptor small molecules are unique because their energy levels agree well with the theoretical optimal HOMO and LUMO energy levels required for high efficiency organic photovoltaics. Even with energy level matching, however, we found that we were only able to obtain modest device efficiencies due to the formation of large domains that are greater than the exciton diffusion length and result in large interfacial areas. In chapter 3 we examine some of the optical, physical, and charge transport properties of a series of fully conjugated brush copolymers that are comprised of a carbazole-diketopyrrolorpyrrole donor-acceptor backbone copolymerized with different lengths of poly(3-hexylthiophene) pendant chains. It was found that there was a sufficient break in conjugation between the two copolymers such that the absorbance characteristics of both could be realized independently. In addition, the physical and charge transport properties could be tuned to primarily show influence from either the ambipolar low band gap backbone or the p

  2. Harnessing the hybrid power supply systems of utility grid and photovoltaic panels at retrofit residential single family building in Medan

    Science.gov (United States)

    Pangaribuan, A. B.; Rahmat, R. F.; Lidya, M. S.; Zálešák, M.

    2017-01-01

    The paper describes improvisation mode of energy supply source by collaboration between national utility grid as represented by fossil fuels and PV as independent renewable power resource in order to aim the energy consumptions efficiently in retrofit single family house. In this case, one existing single family house model in Medan, Indonesia was observed for the possibility of future refurbishment. The eco-design version of the house model and prediction analyses regarding nearby potential renewable energy resource (solar system) had been made using Autodesk Revit MEP 2015, Climate Consultant 6.0 and Green Building Studio Analysis. Economical evaluation of using hybrid power supply is discussed as well.

  3. A Photovoltaic System Payback Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fleming, Jeffrey E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Gerald R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    The Roof Asset Management Program (RAMP) is a DOE NNSA initiative to manage roof repairs and replacement at NNSA facilities. In some cases, installation of a photovoltaic system on new roofs may be possible and desired for financial reasons and to meet federal renewable energy goals. One method to quantify the financial benefits of PV systems is the payback period, or the length of time required for a PV system to generate energy value equivalent to the system's cost. Sandia Laboratories created a simple spreadsheet-based solar energy valuation tool for use by RAMP personnel to quickly evaluate the estimated payback period of prospective or installed photovoltaic systems.

  4. Development of emergency backup power system using photovoltaic/wind hybrid power source in unmanned relay broadcasting station; Mujin chukei hosojo ni okeru taihoko/furyoku hybrid dengen wo mochiita hijo yobi dengen system no kaihatsu. 1

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S.; Takanaga, T. [Kandenko Co. Ltd., Tokyo (Japan); Sugimoto, T.; Fujiwara, S. [Japan Broadcasting Corp., Tokyo (Japan)

    1996-02-01

    An examination was made on the application of photovoltaic and wind power generation as an emergency backup power source. In this connection, the designing/manufacturing was carried out for a field demonstration test system, and also a simulation was carried out concerning the system performance. In the structure of the hybrid power source, a wind power generator is parallelly connected to a solar cell through a DC/DC converter for adjusting output voltage. It is further parallelly connected to an existing power system through a switch, supplying power to storage batteries or a broadcasting equipment. The result of the simulation revealed that, in the static characteristics, there was an output from the wind power generation if the wind velocity was 2.4m/s or above, but that a discharge from storage batteries was necessary even in the maximum performance of the wind power generation if the intensity of solar radiation was less than approximately 0.5kW/m{sup 2}. In the dynamic characteristics, an evaluation was made on the length of time of the on-load power supply after a power failure of the system in comparison with the conventional length, depending on the conditions of the wind. 2 refs., 7 figs., 1 tab.

  5. Dimensioning of a photovoltaic-wind hybrid system in UFRJ campus of the Ilha do Fundao; Dimensionamento de um sistema hibrido eolico-fotovoltaico na UFRJ Campus Ilha do Fundao

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (DEM/UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica], e-mail: silvioa@gmail.com; Santos, Rodrigo Zimmer de Abreu; Argolo, Felipe Henrique Bohm; Danziger, Fernando Artur Ragoni; Sollero, Luiz Paulo Vervloet; Castro, Marcial Pereira Saboya de [Universidade Federal do Rio de Janeiro (DEM/UFRJ), RJ (Brazil). Dept. de Engenharia Industrial], e-mail: rodzimmer@gmail.com, e-mail: felipeargolo@yahoo.com.br, e-mail: ragonziger@gmail.com, e-mail: lpsollero@gmail.com, e-mail: marcial.saboya@gmail.com

    2008-07-01

    A techno-economic analysis of a grid connected photovoltaic-wind hybrid energy system is done in the present paper. The set-up consists of photovoltaic solar-cell arrays, wind generators, a lead acid storage batteries and an inverter unit to convert DC power to AC power. The study has been performed with the simulation tool HOMER (Hybrid Optimization Model for Electric Renewable) developed by the National Renewable Energy Laboratory (NREL) for techno-economical feasibility studies of hybrid systems. The system is connected to the electrical grid in order to supply all the electrical energy demand of the Technological Centre of the Federal University of Rio de Janeiro. Many systems configurations have been considered and it was possible to simulate the hourly operation of each system and to calculate technical, economic and environmental performance parameters. The best configuration is a Fuhrlander 30 wind generator, associated to a photovoltaic system to reach the generation of 96% of the energy demand by means of renewable sources. (author)

  6. Voltage Regulators for Photovoltaic Systems

    Science.gov (United States)

    Delombard, R.

    1986-01-01

    Two simple circuits developed to provide voltage regulation for highvoltage (i.e., is greater than 75 volts) and low-voltage (i.e., is less than 36 volts) photovoltaic/battery power systems. Use of these circuits results in voltage regulator small, low-cost, and reliable, with very low power dissipation. Simple oscillator circuit controls photovoltaic-array current to regulate system voltage and control battery charging. Circuit senses battery (and system) voltage and adjusts array current to keep battery voltage from exceeding maximum voltage.

  7. Design of photovoltaic systems

    OpenAIRE

    Laso Martínez, Miguel

    2014-01-01

    Photovoltaic (PV) harvesting of solar energy is based on capturing sunlight and transforming it into electricity. This type of electricity generation does not pollute the environment as much as other types of energy production, that is why nowadays some engineers would like to improve it. To carry out this change we use solar cells made of semiconductor materials (Silicon) in which it is artificially created a permanent electric field. These cells are connected in series or par...

  8. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  9. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  10. Monitoring and remote control of a hybrid photovoltaic microgrid

    Directory of Open Access Journals (Sweden)

    Henrique Tiggemann

    2016-07-01

    Full Text Available The search of new alternatives for energy supply in island communities has always been a challenge in scientific and social context. In order to attend these communities, in January 2013 a photovoltaic hybrid microgrid project had its beginning at Universidade do Vale do Rio dos Sinos (UNISINOS. This paper presents the characterization and the development of such microgrid, monitored remotely via internet, which allows visualizing the electrical measurements, energy production and performing remote control actions. This work also aims increasing the interaction between students of universities to perform laboratory practices. The system consists of two photovoltaic modules technologies, mono and multicrystalline, totaling 570 Wp, connected to an energy storage bank of 200 Ah in 24 V and a pure sinusoidal inverter of 1 kW to supply AC voltage loads of 220 V. All acquisition components of data, conversion and management system are located in a control cabinet. Currently, the microgrid uses the utility grid as an auxiliary generator, simulating an alternative source of energy, which can be further replaced by fuel cell, biodiesel generator, etc.

  11. 太阳能光伏光热一体化系统运行实验研究%Experimental Study of Hybrid Photovoltaic - thermal Solar System

    Institute of Scientific and Technical Information of China (English)

    穆志君; 关欣; 刘鹏

    2009-01-01

    太阳能光伏光热一体化系(hybrid photovoltaic-thermal solar system-PVT系统)作为一种利用太阳能同时获得电收益和热收益的新型能源利用方式,近年来受到学者的广泛关注.本文搭建了PVT系统电、热性能综合实验台,通过全天实验,分别研究和分析了系统的温度特性与相对电效率的关系.结果表明,在日照条件较好,系统循环水温较低的情况下,PVT系统的电效率与普通光伏电池相比可以提高约7%.同时,文章还分析了PVT系统内水的温度一天内的变化情况,提出了在午后太阳辐射强度逐渐减弱,环境温度逐渐升高时如何保持PVT系统较高电效率的方法.

  12. 光储联合发电系统控制策略%Control strategies for a photovoltaic-Energy storage hybrid system

    Institute of Scientific and Technical Information of China (English)

    高志强; 孟良; 梁宾; 唐宝锋; 范辉; 孙中记

    2013-01-01

    Due to weather conditions, the output power of Photovoltaic (PV) systems often experience significant fluctuation. The PV power is therefore neither a constant voltage source nor a constant current source. This can lead to a series of issues when connected to a power grid including power surge, requirement of more spinning reserve capacity and difficulties in participating power grid dispatching. The use of energy storage could improve the quality of PV output via controlling the power output. In this article, a Photovoltaic-Energy Storage Hybrid System is proposed and topology diagram and a control strategy are presented. A power converter system (PCS) is designed and analyzed for the energy storage system. These are validated through simulation using operation data of a real PV power station.%  受光照、温度等自然条件影响,光伏电源输出有功功率具有较大的波动性。因此,本身既非恒压源又非恒流源的光伏电源并网运行时会产生一系列问题,如对电网冲击性大、需增加旋转备用容量、难以参与电网调度等。利用电池储能系统来控制有功功率输出,可以使平滑光伏电源功率波动成为可能。研究了光储联合发电系统的运行模式,提出了适用于光储联合发电系统的拓扑结构和控制策略,并对储能用功率转换系统(PCS)进行了分析和设计,最后基于某光伏电站的实际历史运行数据,对所提出的方案进行仿真研究,仿真结果验证了光储联合发电系统控制策略的有效性和可行性,为光储联合运行示范工程提供了一定的理论依据和有力借鉴。

  13. 适用于光伏发电系统的混合级联式逆变器%Hybrid cascaded inverter for photovoltaic generation systems

    Institute of Scientific and Technical Information of China (English)

    陆晓楠; 孙凯; 马毅为; 黄立培

    2011-01-01

    An improved single-phase hybrid cascaded inverter was developed using MOSFET/IGBT to give a high converting efficiency for photovoltaic (PV) generation systems. The inverter has three H-bridges, with series-connected AC sides and isolated DC sides.The DC voltages are in the ratio of 1: 2: 4. The high voltage and middle voltage H-bridges are based on an IGBT, while the low voltage H-bridge is based on a MOSFET. The low switching frequency provides more output voltage levels at the AC side in the hybrid cascaded inverter, which improves the efficiency. The hybrid power switches effectively utilized the advantages of each kind of device to enable a flexible operation of the inverter system. The voltage graduational method and the pulse width modulation (PWM)carrier method are used in the implemented prototype. The results are evaluated based on the AC output waveforms and the main power circuit efficiency. The effectivenesses of the inverter system and the two modulation methods are validated by simulations and tests.%为了适应光伏发电系统中对于高效率逆变器的需要,提出了一种基于MOSFET和IGBT的改进型单相混合级联式逆变器,其由3个H桥逆变器输出串联组成,直流侧相互独立,电压取值满足1:2:4的关系.其中,高压H桥和中压H桥由IGBT构成,而低压H桥由MOSFET构成.上述混合级联式逆变器结构可以在较低的开关频率下实现交流侧多电平输出,以提高光伏系统的效率,同时可以有效地发挥不同开关器件的优势,实现逆变器的灵活运行.该文分别采用电压阶梯调制和载波脉宽调制实现了混合级联式逆变器的可靠运行,并对二者进行了比较.通过仿真和实验方法,给出了交流侧输出电压和电流的波形,并对主回路效率进行了评估,验证了上述逆交器结构和调制策略的有效性.

  14. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  15. Demand response impacts on off-grid hybrid photovoltaic-diesel generator microgrids

    OpenAIRE

    Aaron St. Leger

    2015-01-01

    Hybrid microgrids consisting of diesel generator set(s) and converter based power sources, such as solar photovoltaic or wind sources, offer an alternative to generator based off-grid power systems. The hybrid approach has been shown to be economical in many off-grid applications and can result in reduced generator operation, fuel requirements, and maintenance. However, the intermittent nature of demand and renewable energy sources typically require energy storage, such as batteries, to prope...

  16. 平抑光伏出力波动的混合储能系统控制策略设计%Design of hybrid energy storage system control strategy to suppress output fluctuations of photovoltaic generation system

    Institute of Scientific and Technical Information of China (English)

    王林川; 高云鹏

    2015-01-01

    In view of the hybrid energy storage system composed of batteries and super capacitors, an energy storage control strategy to smooth photovoltaic output power fluctuations is designed.The low-pass filtering algorithm with threshold judgment is used to design the total charging power of energy storage system, and avoid the unnecessary con-trol to smooth photovoltaic output power fluctuations.Considering the charging state of energy storage medium, the principle of moving average is used to design the power allocation strategy of storage medium, thus making full use of different storage medium and optimizing the operation of hybrid energy storage system.The validity of the control strat-egy designed is verified through simulation analysis, and the energy storage control system can smooth photovoltaic output power fluctuations at the lowest cost.The super-capacitor smoothes the fast varying component of power fluctua-tions, and reduces the charging number of the storage battery.Research results provide theoretical reference for the application of hybrid energy storage systems in smoothing photovoltaic output power fluctuations.%针对由电池和超级电容器构成的混合储能系统,设计了一种平抑光伏出力波动的储能控制策略。基于含阀值判断的低通滤波算法制定储能系统总充放电功率,在平抑光伏出力波动的同时避免对储能系统的过渡调控。综合考虑储能介质充放电状态,基于滑动平均原理制定储能介质的功率分配策略,以充分发挥不同储能介质的优势,优化储能系统的整体运行性能。仿真分析验证了所设计控制策略的有效性,储能系统可以较小的调控代价完成对光伏出力波动的平抑,且超级电容器平抑功率波动的快变分量,有效降低了储能电池的充放电次数。研究结果对混合储能系统在平抑光伏出力波动中的应用提供了理论参考。

  17. Microprocessor control of photovoltaic systems

    Science.gov (United States)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    The present low power CMOS microprocessor controller for photovoltaic power systems possesses three programs, which are respectively intended for (1) conventional battery-charging systems with state-of-charge estimation and sequential shedding of subarrays and loads, (2) maximum power-controlled battery-charging systems, and (3) variable speed dc motor drives. Attention is presently given to the development of this terrestrial equipment for spacecraft use.

  18. Sizing wind/photovoltaic hybrids for households in inner Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Barley, C.D.; Lew, D.J.; Flowers, L.T. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    Approximately 140,000 wind turbines currently provide electricity to about one-third of the non-grid-connected households in Inner Mongolia. However, these households often suffer from a lack of power during the low-wind summer months. This report describes an analysis of hybrid wind/photovoltaic (PV) systems for such households. The sizing of the major components is based on a subjective trade-off between the cost of the system and the percent unmet load, as determined by the Hybrid2 software in conjunction with a simplified time-series model. Actual resource data (wind speed and solar radiation) from the region are processed so as to best represent the scenarios of interest. Small wind turbines of both Chinese and U.S. manufacture are considered in the designs. The results indicate that combinations of wind and PV are more cost-effective than either one alone, and that the relative amount of PV in the design increases as the acceptable unmet load decreases and as the average wind speed decreases.

  19. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    Science.gov (United States)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  20. Economic evaluation and optimization of a photovoltaic-fuel cell-batteries hybrid system for use in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sergio B. [Federal Institute of Tocantins, Palmas, Tocantins 77021-090 (Brazil); De Oliveira, Marco A.G.; Severino, Mauro M. [GSEP - Group of Electric Power Systems, Department of Electrical Engineering, University of Brasilia, DF 70919-970 (Brazil)

    2010-11-15

    The lack of electric power in isolated communities in the Brazilian Amazon region has become one of the barriers to economic and social development. Currently, the main technologies that provide electric power to these communities are diesel generators. This non-renewable energy source, besides causing serious problems to the environment and human health, have high maintenance and operational costs. This paper presents a study on the use of photovoltaic and fuel cells for continuous supply of electric power. The paper outlines the technical and costs characteristics of a pilot project set up in an environmental protection area, located in the state of Tocantins, Brazil. The pilot project uses solar energy as the primary electric power production source. Surplus energy stored in the hydrogen produced by the electrolysis of water is later transformed into electric power by the fuel cells during periods when there is little or no sunlight. A comparative study between the technologies and potential configurations meeting the needs of isolated communities in the Amazon through simulations based on HOMER software are presented. As result, this paper outlines some policies to promote the use of renewable energy sources in isolated areas in Brazil derived from the pilot project. (author)

  1. A general purpose characterization system for rooftop hybrid microconcentrators

    Science.gov (United States)

    Middleton, Robert; Jones, Christopher; Thomsen, Elizabeth; Diez, Vicente Munoz; Harvey, J.; Everett, Vernie; Blakers, Andrew

    2014-09-01

    A versatile characterization system for hybrid thermal and photovoltaic solar receivers is presented and demonstrated. The characterization of the thermal loss and effective area of a novel hybrid receiver is presented.

  2. Decentalized solar photovoltaic energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  3. 离网型风光互补发电系统多模态能量控制与管理%Multi-Mode Energy Control and Management for Stand-Alone Wind-Photovoltaic Hybrid Power System

    Institute of Scientific and Technical Information of China (English)

    皇甫宜耿; 安晓彤; 马瑞卿; 骆光照

    2013-01-01

      离网型风光互补发电系统是一种合理配置新能源的独立电源系统,由于自然界中风能、太阳能出现的不可预测性,以及负载、储能状态的随机性,提出一种基于风光互补发电系统多模态能量流的分析法,研究了各模态及模态间转化特性,给出了四种典型状态下风光互补发电系统的能量控制及管理。采用闭环电压控制使风力发电通道和光伏发电通道输出电压恒定,为用电设备和储能元件提供安全可靠的电能。通过 MATLAB /Simulink 软件对离网型风光互补发电系统多模态能量控制进行了仿真,结果表明离网型风光互补发电系统工作可靠,验证了多模态分析法的有效性。%A Stand-alone wind-photovoltaic hybrid power system allocates new energy resources reasonably and in -dependently.But the appearance of wind energy and solar energy is unpredictable , and their loading and storage states are random.Therefore, we analyze the flow of the multi-mode energy of the stand -alone wind-photovoltaic hy-brid power system.We study its mode and modal transformation and then control and manage the energy in its four typical modes.We use the closed-loop voltage control to make sure that the output voltage of a wind turbine and the photovoltaic-generated power are stable and that the power supply for electrical equipment and electricity -storage components is safe and reliable.We use the MATLAB /Simulink to simulate the control of the multi -mode energy of the stand-alone wind-photovoltaic hybrid power system .The simulation results, give in Figs.4, 5 and 6, and their analysis show preliminarily that the stand -alone wind-photovoltaic hybrid power system can work reliably , verifying that our multi-mode analysis method is effective .

  4. System tests and applications photovoltaic program

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    A summary of all the photovoltaic system tests and application experiments that have been initiated since the start of the US DOE Photovoltaics Program in 1975 is presented. They are organized in the following manner for ease of reference: (1) application experiments: these are independently designed and constructed projects which are funded by DOE; (2) system field tests: projects designed and monitored by the national laboratories involved in the photovoltaic program; (3) exhibits: designed to acquaint the general public to photovoltaics; (4) component field tests: real time endurance testing conducted to monitor module reliability under actual environmental conditions; and (5) test facilities: descriptions of the four national laboratories involved in the photovoltaic program.

  5. Hybrid window layer for photovoltaic cells

    Science.gov (United States)

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  6. Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications.

    Science.gov (United States)

    Kim, Chul-Hyun; Cha, Sang-Ho; Kim, Sung Chul; Song, Myungkwan; Lee, Jaebeom; Shin, Won Suk; Moon, Sang-Jin; Bahng, Joong Hwan; Kotov, Nicholas A; Jin, Sung-Ho

    2011-04-26

    A systematic approach has been followed in the development of a high-efficiency hybrid photovoltaic device that has a combination of poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61-butyric acid methyl ester (PCBM), and silver nanowires (Ag NWs) in the active layer using the bulk heterojunction concept. The active layer is modified by utilizing a binary solvent system for blending. In addition, the solvent evaporation process after spin-coating is changed and an Ag NWs is incorporated to improve the performance of the hybrid photovoltaic device. Hybrid photovoltaic devices were fabricated by using a 1:0.7 weight ratio of P3HT to PCBM in a 1:1 weight ratio of o-dichlorobenzene and chloroform solvent mixture, in the presence and absence of 20 wt % of Ag NWs. We also compared the photovoltaic performance of Ag NWs embedded in P3HT:PCBM to that of silver nanoparticles (Ag NPs). Atomic force microscopy, scanning electron microscopy, transmittance electron microscopy, UV-visible absorption, incident photon-to-current conversion efficiency, and time-of-flight measurements are performed in order to characterize the hybrid photovoltaic devices. The optimal hybrid photovoltaic device composed of Ag NWs generated in this effort exhibits a power conversion efficiency of 3.91%, measured by using an AM 1.5G solar simulator at 100 mW/cm(2) light illumination intensity.

  7. 光伏和储能并网物理数字混合仿真实验系统方案%A Physical Digital Hybrid Simulation Experimental Scheme for Photovoltaic and Energy Storage Grid-connected System

    Institute of Scientific and Technical Information of China (English)

    孟超; 吴涛; 刘平; 沈宇; 刘辉; 王丰

    2013-01-01

    分析了物理数字混合仿真的原理,介绍了一种由光伏阵列、储能电池和RTDS实时数字仿真系统等设备共同组成的仿真实验平台.将实际的光伏电站特征信息接入数字仿真系统,研究光伏电站接入电网后系统稳定特性的变化.对混合仿真系统中物理数字接口进行了详细说明,提出了混合仿真实验的流程,通过实例验证了方案的正确性.%This paper analyzes the principle of hybrid simulation, and introduces an experiment simulation environment which is composed of the photovoltaic array, storage batteries and the real-time digital simulation (RTDS) system. The aim of this environment is to study the changes in grid stability characteristics after the access of photovoltaic (PV) power station to the grid by transmitting the real attribute information of PV power station to RTDS. The interface between real equipment and RTDS in the hybrid simulation system is explained in detail. The process of hybrid simulation experiment is proposed. The solution is verified by experimental results.

  8. Dynamically reconfigurable photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Nielson, Gregory N.

    2016-12-27

    A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.

  9. Photovoltaic Energy Conversion Systems

    DEFF Research Database (Denmark)

    Kouro, Samir; Wu, Bin; Abu-Rub, Haitham

    2014-01-01

    This chapter presents a comprehensive overview of grid-connected PV systems, including power curves, grid-connected configurations, different converter topologies (both single- and three-phase), control schemes, MPPT, and anti-islanding detection methods. The focus of the chapter has been on the ...

  10. Photovoltaic Energy Conversion Systems

    DEFF Research Database (Denmark)

    Kouro, Samir; Wu, Bin; Abu-Rub, Haitham

    2014-01-01

    on the mainstream solutions available in the PV industry, in order to establish the current state-of-the-art in PV converter technology. Some examples of commercial PV converters have been included for this purpose. In addition, some recently introduced concepts on multilevel converter-based PV systems for large...

  11. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.;

    2015-01-01

    Hybrid photovoltaic (PV) -battery-hydropower microgrids can be considered to enhance electricity accessibility and availability in remote areas. However, the coexistence of different renewable energy sources with different inertias and control strategies may affect system stability. In this paper......, a hierarchical controller for hybrid PV-battery-hydropower microgrid is proposed in order to achieve the parallel operation of hydropower and PV-battery system with different rates, and to guarantee power sharing performance among PV voltage controlled inverters, while the required power to hydropower...... is derived to analyze the system stability of the hybrid microgrid. The simulation results show system frequency and voltage stability for a hybrid microgrid demonstration which includes 2 MWp PV installations, a 15.2 MWh battery system, and a 12.8 MVA hydropower plant. Experimental results on a small...

  12. Electrical aspects of photovoltaic-system simulation

    Science.gov (United States)

    Hart, G. W.; Raghuraman, P.

    1982-06-01

    A TRNSYS simulation was developed to simulate the performance of utility interactive residential photovoltaic energy systems. The PV system is divided into major functional components, which are individually described with computer models. The results of simulation and actual measured data are compared. The electrical influences on the design of such photovoltaic energy systems are given particular attention.

  13. Photovoltaics system design and practice

    CERN Document Server

    Häberlin, Heinrich

    2012-01-01

    With the explosive growth in PV (photovoltaic) installations globally, the sector continues to benefit from important improvements in manufacturing technology and the increasing efficiency of solar cells. this timely handbook brings together all the latest design, layout and construction methods for entire PV plants in a single volume. Coverage includes procedures for the design of both stand-alone and grid-connected systems as well as practical guidance on typical operational scenarios and problems encountered for optimum PV plant performance. Key features:

    • 双模式风光互补发电系统结构研究%Research on Structure of Photovoltaic and Wind Hybrid Generation System with Dual-Mode

      Institute of Scientific and Technical Information of China (English)

      吴威; 张吉; 崔琛; 范秋杰; 张帆

      2012-01-01

      介绍了小型风光互补发电系统的运行原理,分析了并网型和离网型系统的常用结构,并针对系统离网运行可能存在的极端情况,提出一种双模式智能切换运行的风光互补系统结构,实现智能离/并网运行功能,引入双向电能表,记录电能在系统与电网间的双向流动,实现新能源发电在电力市场的流通,对风光互补发电系统的研究提供了一定的借鉴作用。%Introduction was made to the operational principle of photovoltaic and wind hybrid generation system. Analysis was made to the common structures of grid-on and grid-off systems. This paper raised a kind of photovoltaic and wind hybrid generation system with dual-mode, which could change the grid-on and grid-off mode intelligently under extreme conditions. What is more, a dual-direction electric meter was used to record the mutual power flow between hybrid system and grid, which aimed to imply the new power generation in the flow of the electricity market, providing a reference for the research ofphotovoltaic and wind hybrid generation system.

    • Recent progress in space photovoltaic systems

      Science.gov (United States)

      Brandhorst, Henry W., Jr.; Flood, Dennis J.; Weinberg, Irving

      1987-01-01

      Key issues and opportunities in space photovoltaic research and technology relative to future NASA mission requirements and drivers are addressed. Examples are given of space missions and/or operational capabilities on NASA's planning horizon presenting major technology challenges to the use of photovoltaic power generation in space. The status of cell R and D and the performance goals to be met by space photovoltaic power systems to remain competitive are described.

    • Application of Hybrid Energy Storage System in Power Balance of Stand-Alone Photovoltaic Power System%混合储能系统在独立光伏发电系统功率平衡中的应用

      Institute of Scientific and Technical Information of China (English)

      侯世英; 房勇; 孙韬; 彭文雄

      2011-01-01

      提出了将能量密度大、环境友好的磷酸铁锂电池和功率密度高、循环使用寿命长的超级电容组合,构成混合储能系统应用于独立光伏发电系统.以优化系统可靠性及运行状态为目标,设计了控制结构和控制方式.对系统进行仿真分析,结果表明,在光伏电池输出功率存在波动且负载发生脉动的情况下,储能系统能迅速平衡系统瞬时功率,维持系统可靠运行.%In this paper it is proposed to apply a hybrid energy storage system consisting of lithium iron phosphate (LiFePO4) battery that is environment-friendly and possesses high energy density and super capacitance combination that possesses high power density and long service lifecycle in standalone photovoltaic (PV) power system. Taking the optimization of system reliability and operation states as the object, the control structure of the proposed hybrid energy storage system and its control modes are designed to optimize both system reliability and operation status of the energy storage devices. Simulation analysis of the proposed system is performed and analysis results show that under the fluctuation of PV cell output and pulsating load the instantaneous power can be rapidly balanced by the proposed hybrid energy storage system, thus reliable operation of the proposed system can be sustained.

    • Cost and Performance Model for Photovoltaic Systems

      Science.gov (United States)

      Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.

      1986-01-01

      Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.

    • Combined solar-thermal/photovoltaic system

      Energy Technology Data Exchange (ETDEWEB)

      Krauter, Stefan; Schroer, Sandra [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. Fotovoltaico]. E-mail: krauter@coe.ufrj.br; Salhi, Mohammed J. [Solon AG fuer Solartechnik, Berlin (Germany)]. E-mail: solonag@solonag.com; Hanitsch, Rolf [Berlin Inst. of Tech. (Germany). Inst. for Electrical Energy Systems]. E-mail: rolf.hanitsch@iee.TU-Berlin.de

      2000-07-01

      Combination of photovoltaic (PV) and solar thermal elements allows to generate electricity and heat at reduced costs. The substitution of conventional facade elements (includes the thermal insulation of building) increases the benefit. Conventional photovoltaic are built as curtain facades in front of thermally insulated buildings with air ducts in between. This causes additional costs for support structures and installation, while heat dissipation from the solar cells is often not optimal. Measurements carried out are facing both concerns: integration of a thermal insulation layer (which meets the latest german heat preserving regulation WSW 95) into the P V facade allows a reduction of cell operating temperature of 18 K, resulting in a 8 % increase in electrical output at an air velocity of about 2 m/s. Cell temperatures increase by 20.7 K at thermal insulating P V facade elements (TIPVE) without cooling, which causes a 9.3 % loss of electrical yield, but installation costs can be reduced by 20 % (all related to a conventional P V curtain plus a heat insulating facade at a building). HYTIPVE, a hybrid thermal insulating P V facade element combined with a water cooling system, which could also serve for hot water heating, lowers operating cells temperature by 20 K and increases electrical yield by 9 % (referred to conventional curtain P V facades). Further economic investigations of each HYTIPVE including its operational costs and substitution effect related to the electrical and thermal yield are on the way. (author)

    • Participation in sizing methods and management improvement for the isolated hybrid systems coupling photovoltaic generator and power generating unit. Application in developing countries; Participation a l'amelioration des methodes de dimensionnement et de gestion pour les systemes isoles hybrides de production d'electricite, couplant generateur photovoltaique et groupe electrogene. Application dans les pays en voie de developpement

      Energy Technology Data Exchange (ETDEWEB)

      Camez, C.

      2004-09-15

      One of the applications justifying more the use of renewable energies is the electrification of isolated sites. Sites for which connection to the local distribution network is being out of price or impossible. These sites are most of the time electrified with a diesel generator. This technology is tested and mature however two major disadvantages can be raised here: necessary routine maintenance and the fuel provisioning management. Photovoltaic system can answer here the request and little solar home systems (100 Watts) are installed. In the particular situation of a village electrification, the consumers quickly see in these systems a strong limitation with the development. Reliability, evolution, comfort, service are the masters words here, the development of a micro industry also seems necessary to a village development. It is then necessary to propose a micro network type solution. Such a generator cannot be think completely photovoltaic, presenting an important over-cost compared to a conventional solution. The idea of conventional and renewable energy coupling is born. Such a multi-source system: hybrid, implies an increased sizing and management complexity. An analysis software tool was developed: HYPSIM, this one makes it possible to optimize the operation of such a system. HYPSIM made possible to - Justify the relevance of a photovoltaic/diesel generator/batteries system. - Conclude on the sizing criteria to be observed. (author)

    • A challenging future for improved photovoltaic systems

      Science.gov (United States)

      Allen, Douglas M.

      The expansion of space requirements creates opportunities and priorities for power production, thus driving the development of innovative technologies. Key requirements for improving photovoltaics are outlined including cell efficiency, specific power, packaging, reliability, and affordability issues. The competition faced by photovoltaic cells is discussed with specific reference to solar dynamics and nuclear radioisotope thermal generator systems.

  1. 光伏-储能联合发电系统运行机理及控制策略%Operating modes of photovoltaic/energy-storage hybrid system and its control strategy

    Institute of Scientific and Technical Information of China (English)

    梁亮; 李建林; 惠东

    2011-01-01

    对光伏-储能联合发电系统的运行模式进行了研究,包括整体运行模式、储能旁路模式、储能独立运行模式.提出光伏-储能联合发电系统的拓扑结构和潮流定向控制策略.基于某100 kWp光伏发电站的实际历史运行数据,进行了仿真验证,通过配备储能系统,增加了系统的可控性和可观性,实现对电网的友好接入;同时改善了系统输出特性,实现部分程度的“削峰填谷”,大幅降低光伏微网系统对电网输电容量的需求.%The operating modes of photovoltaic/energy-storage hybrid system are analyzed,including whole system mode,energy storage bypass mode and energy storage support mode. Its topology is proposed with the flow direction control, which is verified by the simulation with the operational data of a 100 kWp photovoltaic system. The integration of photovoltaic system and energy storage system increases the system controllability and grid-connection flexibility, improves the system output characteristics of load response,and reduces greatly the system requirements for grid power transmission capacity.

  2. Grid-connected Photovoltaic Micro-inverter with New Hybrid Control LLC Resonant Converter

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Qingbo, Ke;

    2016-01-01

    A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse...... power of 250W and output voltage of 220VAC/50Hz. The experiment shows that the peak efficiency of the PVMI is 95.5%, where efficiency of LLC converter is up to 97.7%, and the MPPT accuracy is more than 99%. Thus the validity of the proposed system structure, design and control method is verified....

  3. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  4. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  5. Fabrication of Hybrid Organic Photovoltaic Devices Using Electrostatic Spray Method

    Directory of Open Access Journals (Sweden)

    Zhe-Wei Chiu

    2014-01-01

    Full Text Available Hybrid organic photovoltaic devices (OPVDs are fabricated using the electrostatic spray (e-spray method and their optical and electrical properties are investigated. E-spray is used to deposit a hybrid film (P3HT: PCBM/nanodiamond with morphology and optical characteristics onto OPVDs. The root-mean-square roughness and optical absorption increase with increasing nanodiamond content. The performance of e-spray is comparable to that of the spin-coating method under uniform conditions. The device takes advantage of the high current density, power conversion efficiency, and low cost. Nanodiamond improves the short-circuit current density and power conversion efficiency. The best performance was obtained with 1.5 wt% nanodiamond content, with a current density of 7.28 mA/cm2 and a power conversion efficiency of 2.25%.

  6. 可逆流光伏与市电联合供电能量管理研究%Research on photovoltaic and grid hybrid power system with reversible currents

    Institute of Scientific and Technical Information of China (English)

    付敏玲; 胡天友; 胡蓉; 杨攀; 王臻

    2013-01-01

    According to the energy volatility of dc photovoltaic power supply system,grid as the sources of energy compensation for load is proposed.It is composed of solar cells,grid,the phase shifting full bridge converter and PWM rectifier.When photovoltaic energy more than the load needed,the excess energy feed to grid,and when photovoltaic energy shortage,the grid added energy for load.The key point of power management is to achieve energy management among photovoltaic,grid and the load.This paper analyses the whole power system,then discusses different running condition of the system,and put forward the compensation control strategy.Simulation and experimental results show that the proposed system architecture and control strategy can achieve photovoltaic and grid hybrid power supply.%针对光伏直流供电系统的能量变动性,提出了使用市电作为直流负载的能量补偿来源.系统由光伏电池、市电、移相全桥变换器、PWM整流器组成.在光伏发电能量大于负载所需时,将多余的能量馈送电网;在光伏发电能量不足时,由市网补充.系统的核心是实现光伏、市电、负载三者之间的能量管理.文章首先对整个供电系统进行了分析,然后讨论了系统的不同工作模式,最后提出了市电的能量补偿控制策略.仿真和实验表明所提的系统结构和控制策略能够实现市电与光伏供电系统的稳定联合供电.

  7. Photovoltaics: solar electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  8. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, F34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. Black-Right-Pointing-Pointer We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. Black-Right-Pointing-Pointer We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV-visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V{sub oc} and short-circuit current density J{sub sc} are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  9. 利用热力学模型研究光伏-热电复合系统效率提升机制%Thermodynamic Analysis of the Efficiency Improvement of a Photovoltaic-thermoelectric Hybrid System

    Institute of Scientific and Technical Information of China (English)

    张宇锋; 林伟清; 潘华清; 孙振宁; 刘向鑫; 施天谟; 郑金成

    2013-01-01

    太阳能电池和热电模块组成的复合系统有望获得较高的太阳能到电能的转换效率.本文利用热力学方法分析了由商业化太阳能电池构成的复合系统,并根据一维模型下能流输运特性计算了系统内各模块温度及其对转换效率的影响,发现低温度系数和低效率的太阳能电池可以通过构建复合系统获得更大的性能提升.同时,由于太阳辐照的有限性导致流经热电模块的热流受到限制,因此热电模块效率无法达到理想条件下的最优值.这表明复合系统的优化并非各个模块优化后结果的简单线性叠加,而需要考虑构成复合系统的各个模块间的约束条件进行整体计算和优化,即复合系统效率不仅与材料本征特性(如电导率、热导率等)有关,也和其工作状态(如入射太阳辐照强度、热电模块构成及几何尺寸、模块之间热学特性等)有关.上述模型与结果对于类似复合系统的设计有着指导作用.%A hybrid system formed by a photovoltaic module and a thermoelectric module has a great potential to enhance the solar-toelectricity efficiency.A mathematical model based on the first law of thermodynamics and the heat transfer analyses of the hybrid system is built,where the overall efficiency of the system is enhanced by optimizing the system as a whole.The model is used to study hybrid systems formed by commercially available photovoltaic modules and thermoelectric modules.It is found that,due to a limited incoming heat flux for the thermoelectric module,the overall performance of the hybrid system depends not only on the intrinsic properties of the materials forming such a hybrid system,but also on their working conditions,such as incoming solar radiation,geometry of each module,and interfacial properties.The results indicate that only photovoltaic modules with low temperature coefficient and low efficiency can truly benefit from forming such hybrid system,and the

  10. 混合储能系统在弱光充电系统中的仿真研究%Simulation of Photovoltaic Charge System Under Weak Light Using Hybrid Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    张智峰; 丁攀峰

    2012-01-01

    The output characteristics of photovoltaic array is influenced by the incident radiant intensity. Especially in the weak sunlight the maximum power point trace strategy can't match the battery's charging requirement. In order to maximize the output power of PV, the method using supper capacitors is proposed to reduce the influence of charging conditions caused by sunlight variation. Based on the character of stand-alone PV system, an active hybrid storage scheme is designed. The scehem can assure the maximum power point tracing of photovoltaic panels and meet the batteries charging requirements at the same time. The simulation model in Simulink/MATLAB is created and the simulation results verifies the feasibility of the system.%光伏阵列的输出特性受光照强度影响很大,在弱光下光伏电池的最大功率点跟踪控制算法无法达到蓄电池的充电要求。为了最大限度利用光伏阵歹tl的输出功率,采用超级电容减小光照变化对蓄电池充电的影响。针对独立光伏发电系统的特点,设计了一种有源式混合储能方案,在保证光伏电池获得最大功率跟踪的同时,也能满足蓄电池的充电要求,建立的Simulink/MATLAB仿真模型验证了该设计方案的有效性。

  11. Residential photovoltaic system simulation: Thermal aspects

    Science.gov (United States)

    Hart, G. W.; Raghuraman, P.

    1982-04-01

    A TRNSYS simulation was developed to simulate the performance of utility interactive residential photovoltaic energy systems. The PV system is divided into its major functional components, which are individually described with computer models. These models are described in detail. The results of simulation and actual measured data obtained a MIT Lincoln Laboratory's Northeast Residential Station are compared. The thermal influences on the design of such photovoltaic energy systems are given particular attention.

  12. Future contingencies and photovoltaic system worth

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. J.; Thomas, M. G.; Bonk, G. J.

    1982-01-01

    The value of dispersed photovoltaic systems connected to the utility grid has been calculated using the General Electric Optimized Generation Planning program. The 1986 to 2001 time period was used for this study. Photovoltaic systems were dynamically integrated, up to 5% total capacity, into 9 NERC based regions under a range of future fuel and economic contingencies. Value was determined by the change in revenue requirements due to the photovoltaic additions. Displacement of high cost fuel was paramount to value, while capacity displacement was highly variable and dependent upon regional fuel mix.

  13. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    Science.gov (United States)

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  14. Sizing and Simulation of PV-Wind Hybrid Power System

    OpenAIRE

    Mustafa Engin

    2013-01-01

    A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during t...

  15. Autonomous photovoltaic systems: a sizing criterion

    Energy Technology Data Exchange (ETDEWEB)

    Ayr, U.; Cirillo, E.; Lazzarin, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica e Impianti Termotecnici)

    The proposed method for the sizing of photovoltaic plants is based on the evaluation of the LLP parameter (Load Loss Probability), defined as the average monthly load fraction not supplied by the plant itself. In this study, the LLP parameter is determined by simulating the operation of a photovoltaic system under the typical climatic conditions of Italy. This allows the determination, for each system, of the values of the collecting surfaces and of the storage capacity.

  16. Energy losses in photovoltaic systems

    Science.gov (United States)

    Anis, Wagdy R.; Nour, M. Abdulsadek

    1994-10-01

    The maximum power generated by photovoltaic (PV) arrays is not fully used. During summer, the main cause for the energy loss is the system design that necessitates an oversizing of the PV array to supply the load during the winter season when the solar energy is limited. Other reasons that cause energy loss are: the mismatch between the array and the load or battery, the loss in the batteries, and the loss due to the PV array disconnect. The array disconnect loss takes place during summer season when the battery is fully charged. To avoid the disconnect loss, a novel battery voltage regulator (BVR) is used. This supplies the load directly from the array when the battery is fully charged. Energy losses have been analyzed and divided into fundamental (unavoidable) and non-fundamental losses. Both conventional (using a conventional BVR) and new (using a novel BVR) PV systems are studied. A load that consumes constant power for 24 h a day through the year is considered. The climatic condition of Cairo city is taken as the test case.

  17. FSM Model of a Simple Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Martina Latkova

    2015-01-01

    Full Text Available The paper describes a simulation model of a simple photovoltaic system intended as a tool for testing the use of finite state machines for simulations representing a long-term operation of renewable energy sources. The mathematical model of the photovoltaic system is described first. Then it is used to build a finite state machine model that calculates a power output of the photovoltaic system for changing values of a solar irradiance and a temperature. Data measured on a real photovoltaic installation are used to verify model’s accuracy through its comparison with a previously created and verified Matlab model. The finite state machine model presented in this paper was created using Ptolemy II software.

  18. Competitividad de los sistemas híbridos eólicos-fotovoltaicos para la electrificación rural//Competitiveness of the wind-photovoltaic hybrid systems for the rural electrification

    Directory of Open Access Journals (Sweden)

    Ciaddy Rodríguez Borges

    2015-01-01

    Full Text Available La posibilidad de electrificación rural mediante extensión de la red eléctrica o mediante el uso exclusivo de generadores diésel suelen ser soluciones costosas, que además presentan alto impacto ecológico. Este trabajo abordó el planteamiento de opciones de electrificación empleando sistemas híbridos eólicos–fotovoltaicos con bajo respaldo diésel. Los sistemas propuestos están dimensionados para un número de viviendas y nivel de recursos renovables disímiles en función de cada localización. Se abordan distintos rangos de demandas mediante los 4 sistemas híbridos propuestos y se propone un procedimiento simple de ayuda para la selección. Fue realizado un análisis económico que permitió obtener como principal conclusión la comprobación de la mayor competitividad de estos sistemas híbridos eólicos–fotovoltaicos respecto a la generación diésel en función al costo equivalente de la energía y el impacto ambiental para la condición de disponibilidad de recursos renovables de una gran mayoría de regiones de América Latina y el Caribe.Palabras claves: competitividad energética, electrificación rural, sistema híbrido.______________________________________________________________________________AbstractThe possibility of rural electrification by means of extension of the electric net or by the exclusive use of generating diesel are usually expensive solutions, besides presenting this last option high ecological impact. This work approached the electrification options using wind-photovoltaic hybrid systems with low diésel support. These systems are sized for a number of housings and level ofresources renewable dissimilar in function to each localization. Different ranges of demands were approached by means of 4 proposed hybrid systems. It was proposed a simple procedure of help for the selection it was carried out an economic analysis that allowed to obtain the main conclusion when checking the biggest competitiveness

  19. Hybrid photovoltaics based on semiconductor nanocrystals and amorphous silicon.

    Science.gov (United States)

    Sun, Baoquan; Findikoglu, Alp T; Sykora, Milan; Werder, Donald J; Klimov, Victor I

    2009-03-01

    Semiconductor nanocrystals (NCs) are promising materials for applications in photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and, perhaps, increased conversion efficiency in the ultraviolet region through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC energy states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which is exclusively due to the NCs. On the other hand, in devices comprising narrow-gap PbS NCs, both the NCs and silicon contribute to photocurrent, which results in PV response extending from the visible to the near-infrared region. The hybrid silicon/PbS NC solar cells show external quantum efficiencies of approximately 7% at infrared energies and 50% in the visible and a power conversion efficiency of up to 0.9%. This work demonstrates the feasibility of hybrid PV devices that combine advantages of mature silicon fabrication technologies with the unique electronic properties of semiconductor NCs.

  20. Models used to assess the performance of photovoltaic systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  1. Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics.

    Science.gov (United States)

    Williams, Spencer T; Rajagopal, Adharsh; Chueh, Chu-Chen; Jen, Alex K-Y

    2016-03-01

    Organic-inorganic hybrid perovskite photovoltaics (PSCs) are poised to push toward technology translation, but significant challenges complicating commercialization remain. Though J-V hysteresis and ecotoxicity are uniquely imposing issues at scale, CH3NH3PbI3 degradation is by far the sharpest limitation to the technology's potential market contribution. Herein, we offer a perspective on the practical market potential of PSCs, the nature of fundamental PSC challenges at scale, and an outline of prospective solutions for achieving module scale PSC production tailored to intrinsic advantages of CH3NH3PbI3. Although integrating PSCs into the energy grid is complicated by CH3NH3PbI3 degradation, the ability of PSCs to contribute to consumer electronics and other niche markets like those organic photovoltaics have sought footing in rests primarily upon the technology's price point. Thus, slot die, roll-to-roll processing has the greatest potential to enable PSC scale-up, and herein, we present a perspective on the research necessary to realize fully printable PSCs at scale.

  2. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Ruchuan Liu

    2014-04-01

    Full Text Available Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells.

  3. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells.

    Science.gov (United States)

    Liu, Ruchuan

    2014-04-02

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells.

  4. Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Sera, Dezso; Rosendahl, Lasse Aistrup

    2016-01-01

    generation by the TEG is insignificant compared to electrical output by the PV panel, and the TEG plays only a small role on power generation in the hybrid PV/TEG panel. However, contribution of the TEG in the power generation can be improved via higher ZT thermoelectric materials and geometry optimization......In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance...... of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different...

  5. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  6. Efficient design and simulation of an expandable hybrid (wind-photovoltaic) power system with MPPT and inverter input voltage regulation features in compliance with electric grid requirements

    Energy Technology Data Exchange (ETDEWEB)

    Skretas, Sotirios B.; Papadopoulos, Demetrios P. [Electrical Machines Laboratory, Department of Electrical and Computer Engineering, Democritos University of Thrace (DUTH), 12 V. Sofias, 67100 Xanthi (Greece)

    2009-09-15

    In this paper an efficient design along with modeling and simulation of a transformer-less small-scale centralized DC - bus Grid Connected Hybrid (Wind-PV) power system for supplying electric power to a single phase of a three phase low voltage (LV) strong distribution grid are proposed and presented. The main components of the hybrid system are: a PV generator (PVG); and an array of horizontal-axis, fixed-pitch, small-size, variable-speed wind turbines (WTs) with direct-driven permanent magnet synchronous generator (PMSG) having an embedded uncontrolled bridge rectifier. An overview of the basic theory of such systems along with their modeling and simulation via Simulink/MATLAB software package are presented. An intelligent control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component (PVG and WTs); to guarantee DC voltage regulation/stabilization at the input of the inverter; to transfer the total produced electric power to the electric grid, while fulfilling all necessary interconnection requirements. Finally, a practical case study is conducted for the purpose of fully evaluating a possible installation in a city site of Xanthi/Greece, and the practical results of the simulations are presented. (author)

  7. Photovoltaic systems: an economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, E.; Lazzarin, R.; Fato, I. (Bari Univ. (Italy). Ist. di Fisica Tecnica e Impianti Termotecnici)

    Costs and benefits of a photovoltaic plant intended for residential utilization and connected to the supply mains are evaluated. Three types of panels (mono, polycrystalline and amorphous silicon) are considered in determining the optimum economical size. Criteria for estimating the economically convenient peak watt cost compared with the mains supply cost are suggested.

  8. Photovoltaic systems for export application. Informal report

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, J.; Campbell, H.; Sajo, A.; Sanz, E. [Univ. of Lowell, MA (United States)

    1988-01-31

    One approach to improving the competitiveness of photovoltaic systems is the development of designs specifically for export applications. In other words, where is it appropriate in a system design to incorporate components manufactured and/or assembled in the receiving country in order to improve the photovoltaic exports from the US? What appears to be needed is a systematic method of evaluating the potential for export from the US of PV systems for various application in different countries. Development of such a method was the goal of this project.

  9. Performance of photovoltaic electrolysis system

    Science.gov (United States)

    Esteve, D.; Ganibal, C.; Steinmetz, D.; Vialaron, A.

    A photovoltaic generator with concentrated light is combined with a water electrolysis cell in an effort to further the development of solar energy utilization. SOPHOCLE, a photovoltaic generator with limited concentration of energy, is a heliostat of the altazimuth type, consisting of an optical device to focus the sunlight on the photocells, a tracking device to follow the position of the sun, and a cooling device to allow dissipation of thermal energy. The combined cost and performance of SOPHOCLE gives an overall efficiency of 9 percent (for direct solar radiation). A power conditioning device matches the generator photocell characteristics with the electrolysis cell to give maximum hydrogen production. Hydrogen can be produced by this method with an overall efficiency of 7 percent.

  10. Design considerations for Mars photovoltaic power systems

    Science.gov (United States)

    Landis, Geoffrey A.; Appelbaum, Joseph

    1990-01-01

    Considerations for operation of a photovoltaic power system on Mars are discussed with reference to Viking Lander data. The average solar insolation at Mars is 590 W/sq m, which is reduced yet further by atmospheric dust. Of major concern are dust storms, which have been observed to occur on local as well as on global scales, and their effect on solar array output. While atmospheric opacity may rise to values ranging from 3 to 9, depending on storm severity, there is still an appreciable large diffuse illumination, even at high opacities, so that photovoltaic operation is still possible. If the power system is to continue to generate power even on high-optical-opacity (i.e., dusty atmosphere) days, it is important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. Energy storage will be required for operation during the night. Temperature and wind provide additional considerations for array design.

  11. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  12. Demand response impacts on off-grid hybrid photovoltaic-diesel generator microgrids

    Directory of Open Access Journals (Sweden)

    Aaron St. Leger

    2015-08-01

    Full Text Available Hybrid microgrids consisting of diesel generator set(s and converter based power sources, such as solar photovoltaic or wind sources, offer an alternative to generator based off-grid power systems. The hybrid approach has been shown to be economical in many off-grid applications and can result in reduced generator operation, fuel requirements, and maintenance. However, the intermittent nature of demand and renewable energy sources typically require energy storage, such as batteries, to properly operate the hybrid microgrid. These batteries increase the system cost, require proper operation and maintenance, and have been shown to be unreliable in case studies on hybrid microgrids. This work examines the impacts of leveraging demand response in a hybrid microgrid in lieu of energy storage. The study is performed by simulating two different hybrid diesel generator—PV microgrid topologies, one with a single diesel generator and one with multiple paralleled diesel generators, for a small residential neighborhood with varying levels of demand response. Various system designs are considered and the optimal design, based on cost of energy, is presented for each level of demand response. The solar resources, performance of solar PV source, performance of diesel generators, costs of system components, maintenance, and operation are modeled and simulated at a time interval of ten minutes over a twenty-five year period for both microgrid topologies. Results are quantified through cost of energy, diesel fuel requirements, and utilization of the energy sources under varying levels of demand response. The results indicate that a moderate level of demand response can have significant positive impacts to the operation of hybrid microgrids through reduced energy cost, fuel consumption, and increased utilization of PV sources.

  13. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  14. The Research on Capacity Optimization of "Wind-Photovoltaic" Hybrid Power System Based on GBMMAS Algorithm%基于GBMMAS算法的"风-光"互补系统容量优化研究

    Institute of Scientific and Technical Information of China (English)

    谢磊; 王飞; 余世杰; 陈晓高

    2011-01-01

    在保证"风-光"互补系统供电可靠性的前提下,对系统各组件的容量大小进行优化.提出一种基于有向图思想的"最大-最小"蚂蚁系统算法,在满足一定负载失电率(LPSP)的前提下,对系统能量均摊成本(ICE)进行优化,从而得出对应于最小LCE的系统各组件的容量大小.仿真及运算结果表明,该优化算法运算效率很高,得出的优化结果是合理可行的.%The research focus on the optimization of components capacity of "Wind-Photovoltaic" hybrid system under the premise of reliable power supply. A Graph-based "Max-Min" Ant System algorithm (GBMMAS) has been proposed to optimize levelized cost of energy (LCE) of system under the premise of certain loss power supply probability ( LPSP), and finally figured out system components capacity corresponding to minimized LCE. The simulation and operation results show that the optimization algorithm proposed is effective, the optimization results is reasonable and feasible.

  15. Space Environment Testing of Photovoltaic Array Systems

    Science.gov (United States)

    Phillips, Brandon; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry.

  16. The World's Largest Photovoltaic Concentrator System.

    Science.gov (United States)

    Smith, Harry V.

    1982-01-01

    The Mississippi County Community College large-scale energy experiment, featuring the emerging high technology of solar electricity, is described. The project includes a building designed for solar electricity and a power plant consisting of a total energy photovoltaic system, and features two experimental developments. (MLW)

  17. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  18. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  19. DISPATCHING OF HYBRID WINDPHOTOVOLTAIC- MICROTURBINESSTORAGE SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. BRINI SAOUSSEN

    2012-06-01

    Full Text Available This paper presents model for Economic Environmental Dispatching (EED of Hybrid power system including wind and photovoltaic energies. The model combines the stochastic data of the climate such as the wind speed for wind energy, solar radiation and the temperature for photovoltaic energy. The penetration of wind andphotovoltaic powers into traditional network will cause some implications such as security concerns due to its unpredictable nature. The production systems of renewable energy are generally coupled with the network with energy storage devices and micro sources. In this paper, a bi-objective economic environmental dispatchproblem considering wind and photovoltaic penetration is formulated, which treats economic and environmental impacts as conflicting objectives. It applied multiobjective optimization by approach SPEA to solve (EED problem.

  20. Design of A Pv/Diesel Stand Alone Hybrid System For A Remote Community in Palestine

    OpenAIRE

    Ismail, M.S.; Moghavvemi, M.; T.M.I. Mahlia

    2012-01-01

    Hybrid system based on photovoltaic is considered an effective option to electrify remote and isolated areas far from grid. This is true for areas that receive high averages of solar radiation annually. Using diesel generator as a standby source will make utilization of hybrid systems more attractive. An economic feasibility study and a complete design of a hybrid system consisting of photovoltaic (PV) panels, a diesel generator as a backup power source and a battery system supplying a small ...

  1. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  2. Analysis of influencing factors for a hybrid photovoltaic/thermal and heat pump system%光伏光热一体化装置与热泵结合系统的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    荆树春; 朱群志; 张静秋; 唐李清

    2013-01-01

    光伏光热一体化装置与热泵结合系统,既能产生电能,又可以回收热能.利用修正Hottel-Whillier模型,结合理想制冷循环,建立了光伏光热一体化装置与热泵结合系统的数学模型.通过对制冷剂流量、辐射强度及水箱水温等影响因素的分析,确定合适的蒸发温度、冷凝温度、制冷量等参数,为选择合适的节流装置和压缩机提供理论依据.%A hybrid photovoltaic/thermal and heat pump system (PV/T-HP) can generate electricity as well as recover thermal energy.The mathematical model of PV/T-HP system is established by extension of the Hottel-Whillier model and ideal refrigeration cycle.After analyzing influence factors such as refrigerant flow,solar radiation intensity and water temperature etc.,the appropriate evaporating temperature,condensing temperature,cooling capacity and other parameters have been determined,which provide a theoretical basis for the selection of the appropriate throttling device and compressor.

  3. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  4. Design of Hybrid Two Axes Control System of Photovoltaic Tracking Based on Freescale%基于Freescale的混合式两轴光伏跟踪控制系统设计

    Institute of Scientific and Technical Information of China (English)

    罗来武; 顾菊平; 茅靖峰; 袁媛; 曹寅翔

    2011-01-01

    介绍了一种以Freescale控制器为控制核心的混合式光伏发电两轴跟踪控制系统.该系统结合了日历跟踪法与光强控制法的优点,通过对X-Y二维平台的精确定位,实现对太阳位置的精确跟踪;系统添加了液晶显示和独立键盘的人机交瓦界面,便于对装置的实时监控与操作;采用了Zigbee无线通讯网络,能够实现对光伏阵列的集中控制.通过对样机的测试,得出该系统跟踪速度快,整体效率高,解决了现有方法稳定性差、跟踪精度低等诸多缺点,而且具有结构简单、功耗低、操作功能强、人机界面友好等特点.%This paper introduced a kind of hybrid two axes control system of photovoltaic tracking based on Freescale MCU. After combining the advantages of the comprehensive strategy of calendar and light intensity controlling, the system can track of the sun accurately by precise location of the two-dimension platform of X-axis and Y-axis. Furthermore, the system adds a man-machine interface consisting of LCD display and independent keyboards, which is convenient for real-time monitoring and operating. In order to realize centralized control of the photovoltaic array, Zigbee wireless communication equipment was used to constitute the wireless network in this system. From the testing results of the prototype, it was concluded that instead of the unstabitily and inaccuracy of the existing methods, this system has a fast tracking speed and high efficiency. At the same time, this system has simple construction, low power consumption, powerful operating functions and friendly man-machine interface as well.

  5. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    Science.gov (United States)

    2014-03-06

    conductive polyarylene ethynylene polymers for photovoltaic applications. The structure at the molecular scale was characterized using X-ray scattering...Processing of Thin Film Flexible Solar Cells” who exchanged knowledge about device-level questions and capabilities of simulations. The Ohio Department of...Indianapolis, IN, May, 2011. (2) “Hybrid Photovoltaic Materials: Characterization of Polymer -Nanoparticle composites” Lama, B.; Espe, M. P.; Central Regional

  6. Control strategy of the stand-alone photovoltaic system considering SOC of the hybrid energy storage system%考虑混合储能荷电状态的独立光伏系统控制策略

    Institute of Scientific and Technical Information of China (English)

    王海波; 许路广; 杨秀; 朱胜辉; 桂谊; 夏晗; 倪振强

    2016-01-01

    独立光伏系统中配备由蓄电池与超级电容组成的混合储能系统可以实现功率平滑、能量平衡以及提高电能质量。在同时考虑蓄电池与超级电容各自的荷电状态以及不同重要等级负荷的情况下,提出了对混合储能的能量管理及对应Buck/Boost双向功率变换器的控制策略。该能量管理方案可以在保证微网的正常运行下维持储能元件在合理的荷电状态;该控制策略可以保证蓄电池的阶段式恒流充电和过充过放保护以及对直流母线电压的稳定快速控制。建立了独立光伏系统的模型,给出了变换器的控制策略,仿真结果验证了所提能量管理方案及控制策略的有效性。%Stand-alone photovoltaic ( PV) system with hybrid energy storage system ( HESS) including battery and su-per-capacitor can filter the fluctuating power, balance the energy and improve the power quality.A novel energy man-agement scheme of the HESS and a control strategy for the Buck/Boost bidirectional converter are proposed when con-sidering SOCs of the battery and super-capacitor.The energy management scheme can keep SOCs reasonable state of charge when the micro-grid works normally.The control strategy can guarantee the battery charge and discharge with stepped current, and it contains the function of over charge and discharge protection and can achieve fast and stable control of the DC bus voltage.Each part of the stand-alone PV system model is established, and results of the simula-tion show the effectiveness of the proposed energy management scheme and control strategy.

  7. Photovoltaics as an operating energy system

    Science.gov (United States)

    Jones, G. J.; Post, H. N.; Thomas, M. G.

    In the short time since the discovery of the modern solar cell in 1954, terrestrial photovoltaic power system technology has matured in all areas, from collector reliability to system and subsystem design and operations. Today's PV systems are finding widespread use in powering loads where conventional sources are either unavailable, unreliable, or too costly. A broad range of applications is possible because of the modularity of the technology---it can be used to power loads ranging from less than a watt to several megawatts. This inherent modularity makes PV an excellent choice to play a major role in rural electrification in the developing world. The future for grid-connected photovoltaic systems is also very promising. Indications are that several of today's technologies, at higher production rates and in megawatt-sized installations, will generate electricity in the vicinity of $0.12/kWh in the near future.

  8. Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV.

    Science.gov (United States)

    Mutlugun, Evren; Soganci, Ibrahim Murat; Demir, Hilmi Volkan

    2008-03-17

    We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit voltage, short circuit current, fill factor, and solar conversion efficiency in the ultraviolet. Hybridizing (CdSe)ZnS core-shell quantum dots of 2.4 nm in diameter on multi-crystalline Si solar cells for the first time, we show that the solar conversion efficiency is enhanced 2 folds under white light illumination similar to the solar spectrum. Such nanocrystal scintillators provide the ability to extend the photovoltaic activity towards UV.

  9. 太阳电池光伏光热一体化系统的性能研究%Performance study of a solar hybrid photovoltaic and thermal system

    Institute of Scientific and Technical Information of China (English)

    常泽辉; 田瑞; 侯静

    2012-01-01

    In order to improve the solar energy efficiency and to acquire electricity and hot energy, a copper exchanger was placed on PV rear surface to build a solar hybrid photovoltaic and thermal system (PV/T). The comparable experiments were performed to demonstrate its performance at Hohhot The results show that under the same solar radiation and environmental temperature, the output power of the single solar cell with heat exchanger increases almost 15% than the single solar cell.%为了提高太阳能的综合利用效率,同时获取电能和热能,将铜管换热器加装在太阳电池板背,构成太阳电池光伏光热(PV/T)一体化系统.采取对比实验法在呼和浩特地区对太阳电池板进行光伏光热性能测试.实验结果表明,在相同的太阳辐照度和环境温度条件下,装有铜管换热器的单块太阳电池的输出功率比普通单块太阳电池实际输出功率提高近17%.

  10. Defining Requirements for Improved Photovoltaic System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Maish, A.B.

    1998-12-21

    Reliable systems are an essential ingredient of any technology progressing toward commercial maturity and large-scale deployment. This paper defines reliability as meeting system fictional requirements, and then develops a framework to understand and quantify photovoltaic system reliability based on initial and ongoing costs and system value. The core elements necessary to achieve reliable PV systems are reviewed. These include appropriate system design, satisfactory component reliability, and proper installation and servicing. Reliability status, key issues, and present needs in system reliability are summarized for four application sectors.

  11. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  12. Study on Maximum Power Point Tracking and Inverter Control of Hybrid Photovoltaic-Wind Power Generation System%风光互补发电系统MPPT及其逆变电源控制的研究

    Institute of Scientific and Technical Information of China (English)

    葛超铭; 李少纲

    2013-01-01

      为了实现风光互补发电系统的最大功率点跟踪(MPPT),根据风能与太阳能的特性,采用双输入DC/DC变换器作为前级电路,在扰动法的基础上提出自调整MPPT控制策略,有效改善了系统的跟踪速度,避免误操作,减小工作点的震荡,并提高了系统效率。针对逆变电源控制,把自动调节反馈系数的PID控制系统与重复控制系统相结合,不仅提出复合控制算法,使系统具有较好的动静态特性,且改善了逆变器输出波形的质量。%In order to realize maximum power point tracking (MPPT) of hybrid photovoltaic-wind power generation system, dual input DC/DC converter was adopted as the forward circuit according to features of wind energy and solar energy. On the basis of disturbance method, the self-adjusting MPPT control strategy was raised to have effectively improved tracking speed of the system, avoiding misopera-tion, reducing vibration of working point and raising the system efficiency. As for inverter control, the PID control system for auto-adjusting feeding coefficient was combined with the repetitive control system. This paper not only raised the repetitive control algorithm, making the system have better static and dynamic characteristics, but also improved quality of inverter output waveforms.

  13. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage

    Science.gov (United States)

    Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín

    2017-01-01

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don’t address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests. PMID:28800102

  14. Future hybrid systems: solar and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Broussard, K. [National Renewable Energy Lab., Golden, CO (United States)]|[NREL MURA Intern from Southern Univ., Baton Rouge, LA (United States)

    2003-07-01

    Future solar and hydrogen hybrid systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences, as well as solar parks, are presented. Landarea issues are evaluated, and the economics and potential of these approaches are examined in terms of roadmap predictions on PV and hydrogen pathways. (orig.)

  15. Spectral Selectivity Applied To Hybrid Concentration Systems

    Science.gov (United States)

    Hamdy, M. A.; Luttmann, F.; Osborn, D. E.; Jacobson, M. R.; MacLeod, H. A.

    1985-12-01

    The efficiency of conversion of concentrated solar energy can be improved by separating the solar spectrum into portions matched to specific photoquantum processes and the balance used for photothermal conversion. The basic approaches of spectrally selective beam splitters are presented. A detailed simulation analysis using TRNSYS is developed for a spectrally selective hybrid photovoltaic/photothermal concentrating system. The analysis shows definite benefits to a spectrally selective approach.

  16. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  17. Energy Prediction in Urban Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramos-Paja

    2013-11-01

    Full Text Available  This paper proposes a new method to accurately estimate the power and energy production in urban photovoltaic (PV systems, which are commonly covered by shades affecting its performance. The solution is based on an efficient algorithm designed to compute, in short time, an accurate model accounting for the shades impact. In such a way, the proposed approach improves classical solutions by significantly reducing the processing time to simulate long periods, e.g. months and years, but without introducing sensible errors. Therefore, this approach is suitable to estimate the production of PV systems for economical analyses such as the return-of-invested time calculation, but also to accurately design PV installations by selecting the right number of photovoltaic modules to supply the required load power. 

  18. ZnO-based nanocrystalline powders with applications in hybrid photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L.C. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Donderis, V. [Dto. De Ingenieria Electrica, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Ferrari, S.; Meyer, M. [Dto. De Fisica, UNLP, IFLP-CCT-CONICET, C.C.67 (1900) La Plata (Argentina); Orozco, J. [Dto. de Ingenieria Mecanica y Materiales, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain); Hernandez-Fenollosa, M.A. [Dto. De Fisica Aplicada, Universidad Politecnica de Valencia, Cami de Vera s/n (46071) Valencia (Spain)

    2010-06-15

    In recent years there has been a growing interest in the development of hybrid photovoltaic cells consisting of new materials, such as devices based on the combination of a wide gap semiconductor and an organic dye (dye-sensitized solar cells, DSSC). In this paper we obtain nano-zinc oxide particles whose optical and electrical properties have been modified by the presence of small amounts of Al or In acting as dopants. The aim of this study is to improve the compatibility of each of the compounds present in the photovoltaic solar cell. The knowledge gained will provide input to guide the processes in the manufacture of hybrid solar cells. (author)

  19. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  20. Automatic outdoor monitoring system for photovoltaic panels

    Science.gov (United States)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  1. Automatic outdoor monitoring system for photovoltaic panels.

    Science.gov (United States)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  2. Automatic outdoor monitoring system for photovoltaic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stefancich, Marco [Consiglio Nazionale delle Ricerce, Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR-IMEM), Parco Area delle Scienze 37/A, 43124 Parma, Italy; Simpson, Lin [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA; Chiesa, Matteo [Masdar Institute of Science and Technology, P.O. Box 54224, Masdar City, Abu Dhabi, United Arab Emirates

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  3. Photovoltaics for high capacity space power systems

    Science.gov (United States)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  4. Development of a hybrid photovoltaic-liquid fueled thermoelectric generator for Arctic locations

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, H. (Global Thermoelectric Power Systems Ltd., Bassano, AB (Canada))

    1988-08-01

    The solar irradiation levels in arctic and antarctic regions vary dramatically from summer to winter. It was the objective of this project to develop a photovoltaic-liquid fueled thermoelectric hybrid power system that will take advantage of the available solar irradiation during the period during which the levels are high and switch to a liquid fueled thermoelectric generator during periods when the solar irradiation levels are low. In addition, the system is to provide heating to keep electronics and batteries above a preset minimum temperature. A remote start feature was designed and built into an existing liquid fueled thermoelectric generator. A prototype system was then assembled with a panel factor of about 4.88. Arctic summer conditions of solar irradiation were simulated by adjustment of the panel tilt angle. The performance of the liquid fueled generator was disappointing, numerous failures of the generator were a major impediment to the complete success of the project. It was found that the panel factor should be increased by about 15 to 20% and that the constant voltage battery recharge method is not efficient for this type of system. A cost comparison of the hybrid versus two other alternative remote power systems indicates that it is a cost-effective system. 2 refs., 9 figs., 1 tab.

  5. Reliability of photovoltaic systems: A field report

    Science.gov (United States)

    Thomas, M. G.; Fuentes, M. K.; Lashway, C.; Black, B. D.

    Performance studies and field measurements of photovoltaic systems indicate a 1 to 2% per year degradation in array energy production. The cause for much of the degradation has been identified as soiling, failed modules, and failures in interconnections. System performance evaluation continues to be complicated by the poor reliability of some power conditioning hardware that has greatly diminished the system availability and by inconsistent field ratings. Nevertheless, the current system reliability is consistent with degradation of less than 10% in 5 years and with estimates of less than 10% per year of the energy value for O and M.

  6. Reliability of photovoltaic systems - A field report

    Science.gov (United States)

    Thomas, M. G.; Fuentes, M. K.; Lashway, C.; Black, B. D.

    Performance studies and field measurements of photovoltaic systems indicate a 1-2-percent/yr degradation in array energy production. The cause for much of the degradation has been identified as soiling, failed modules, and failures in interconnections. System performance evaluation continues to be complicated by the poor reliability of some power conditioning hardware (which greatly diminished system availability) and by inconsistent field ratings. Nevertheless, the current system reliability is consistent with degradation of less than 10 percent in 5 years and with estimates of less than 10 percent/yr of the energy value for O&M.

  7. Summary of photovoltaic system performance models

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. H.; Reiter, L. J.

    1984-01-15

    The purpose of this study is to provide a detailed overview of photovoltaics (PV) performance modeling capabilities that have been developed during recent years for analyzing PV system and component design and policy issues. A set of 10 performance models have been selected which span a representative range of capabilities from generalized first-order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Next, each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. Then each of the issues is discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. Finally, the models are grouped into categories to illustrate their purposes and perspectives.

  8. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  9. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  10. Photovoltaic System Test Platform with Integrated Battery Energy Storage Emulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Stroe, Daniel-Ioan

    2017-01-01

    In this work, we present a hybrid simulation and a real-time test platform for developing control systems for photovoltaic (PV) inverters with integrated battery energy storage (BES). The platform consists of a dual-stage single-phase PV inverter system, DC coupled with a full-bridge grid connected...... inverter, which emulates the charge regulator and battery bank. The real-time control of the two power electronic converters is implemented in a Simulink/dSpace platform, together with the real-time simulation model of the battery pack, whereas the PV array input can be connected to a PV emulator...... or directly to a physical PV array. The platform enables real-time testing of PV+BES control systems, including battery (BMS) and energy management systems (EMS), for a variety of battery technologies, which can be modelled in detail and emulated by the full-bridge grid connected inverter. Such flexibility...

  11. Optimal design of a hybrid photovoltaic and fuel cell power generation system, to supply isolated communities in the Brazilian Amazon; Dimensionamento otimo de sistemas hibridos, com geracao fotovoltaica e celula a combustivel, para atendimento a comunidades isoladas na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sergio Batista da

    2010-11-15

    The lack of electricity in isolated communities in the Brazilian Amazon has become one of the greatest barrier for the development of the region. Currently, the main technologies that provide electricity to these communities are diesel generators, batteries and dry cells. These non-renewable energy sources may pose serious problems to the environment and human health and have high maintenance and operational costs. Therefore, the search for renewable energy sources, such as water and sunlight, which are highly abundant in the region, has become a great challenge. This thesis presents the studies on application of solar photovoltaic (PV) and fuel cell (FC) technologies to supply electric power in an uninterrupted manner. Outlined are the technical and cost issues of a pilot project set up in an environmentally protected area, next to Bananal island, located in the Southwestern region of the state of Tocantins. The pilot project relies on PV solar power as the primary source of energy for the production of electricity. The surplus energy is stored in the form of hydrogen produced by electrolysis of the water supplied locally, which is reconverted into electric power by fuel cells during periods when there is little or no sunlight. In this context, the aim of the study was to propose a sizing of a hybrid distributed generation system (HDGS), comprised of a PV system, FC and batteries, that optimizes implementation and operational costs, as a potential source of energy for isolated communities in the Amazon. The work was carried out with the help of simulation software HOMER (Hybrid Optimization Model for Electric Renewable) developed by National Renewable Energy Laboratory (NREL). Simulations and a comparative study were carried out of the technologies and potential configurations that meet the needs of these isolated communities. The results showed an optimal solution of HGDS PV-FC batteries with a reduction in the initial cost of the project in about 60% compared to

  12. Photovoltaic village power systems: the minigrid concept

    Energy Technology Data Exchange (ETDEWEB)

    Conger, J.

    1980-01-01

    The photovoltaic power system of Schuchuli, a Papgo Indian village in Arizona, USA, is described and illustrated. 24 solar panels, each 1.22 x 2.44 m supply up to 3.5 kW at a supply voltage of 120 Vdc. Energy storage is provided by fifty-two 2380-Ah batteries connected in series. A load management system is utilized to disconnect, progressively, different loads as the battery capacity falls, and to reconnect the loads in the reverse sequence as the batteries become recharged. Such a system is considered eminently suitable for villages in the Third World. 5 references.

  13. Solar simulator for concentrator photovoltaic systems.

    Science.gov (United States)

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.

  14. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  15. Hybrid Test Bed of Wind Electric Generator with Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    G.D.Anbarasi Jebaselvi

    2014-03-01

    Full Text Available Driven by the increasing costs of power production and decreasing fossil fuel reserves with the addition of global environmental concerns, renewable energy is now becoming significant fraction of total electricity production in the world. Advancements in the field of wind electric generator technology and power electronics help to achieve rapid progress in hybrid power system which mainly involves wind, solar and diesel energy with a good battery back-up. Here the discussion brings about the installation of real time test bed with a small electric generator and dynamic solar panels with battery backups.

  16. for hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2001-01-01

    Full Text Available In this paper we develop a unified dynamical systems framework for a general class of systems possessing left-continuous flows; that is, left-continuous dynamical systems. These systems are shown to generalize virtually all existing notions of dynamical systems and include hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to left-continuous dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time dynamics, and dissipated energy over the resetting events. Finally, the generalized dissipativity notions are used to develop general stability criteria for feedback interconnections of left-continuous dynamical systems. These results generalize the positivity and small gain theorems to the case of left-continuous, hybrid, and impulsive dynamical systems.

  17. Fuzzy Variable Structure Control of Photovoltaic MPPT System

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2006-01-01

    In order to reduce chattering phenomenon of variable structure control, a fuzzy variable structure control method is adopted and applied in the photovoitaic maximum power point tracking (MPPT) control system. Firstly, the electric features of PV cells and a dynamic model of photovoltaic system with a DC-DC buck converter are analysed. Then a hybrid fuzzy variable structure controller is designed. The controller is composed of a fuzzy variable structure control term and a supervisory control term. The former is the main part of the controller and the latter is used to ensure the stability of the system. Finally, the conventional variable structure control method and the fuzzy variable structure control method are applied respectively. The comparing of simulation results shows the superiority of the latter.

  18. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2015-04-14

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  19. Design considerations for lunar base photovoltaic power systems

    Science.gov (United States)

    Hickman, J. Mark; Curtis, Henry B.; Landis, Geoffrey A.

    1990-01-01

    A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power systems and a power system utilizing both nuclear and solar power sources.

  20. Status of photovoltaic concentrator modules and systems

    Energy Technology Data Exchange (ETDEWEB)

    Maish, A.B.

    1994-04-01

    Several leading line- and point-focus photovoltaic concentrator system development programs are reviewed, including those by ENTECH, SEA Corporation, AMONIX, and Alpha Solarco. Concentrating collectors and trackers are gaining maturity and reaching product status as designs are made more manufacturable and reliable. Utilities are starting to take notice of this emerging technology, and several privately-funded utility installations are underway. Several advantages are offered by concentrators, including low system and capital cost and rapid production ramp-up. These are discussed along with issues generally raised concerning concentrator technology.

  1. Implementing agreement on photovoltaic power systems - Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2000. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance and design of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, the grid interconnection of building-integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, very large scale photovoltaic power generation systems and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  2. Implementing agreement on photovoltaic power systems - Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2003. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. The programme's tenth anniversary is noted. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system, the deployment of photovoltaic technologies in developing countries and urban-scale PV applications. The status and prospects in the 20 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  3. Implementing agreement on photovoltaic power systems - Annual report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2001. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  4. Photovoltaics: Highly Efficient Hybrid Photovoltaics Based on Hyperbranched Three-Dimensional TiO 2 Electron Transporting Materials (Adv. Mater. 18/2015)

    KAUST Repository

    Mahmood, Khalid

    2015-05-01

    Solution-processed hybrid photovoltaics are a potentially disruptive third-generation solar cell technology. On page 2859, A. Amassian and co-workers demonstrate that an electrospun hyperbranched electron-transporting material is capable of achieving highly efficient hybrid solar cells across different platforms, including lead-halide perovskites (15.5%) and dye-sensitized solar cells (11.2%).

  5. Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis

    Science.gov (United States)

    Joos, Stella; Weißhar, Björn; Bessler, Wolfgang G.

    2017-04-01

    Standard photovoltaic battery systems based on AC or DC architectures require power electronics and controllers, including inverters, MPP tracker, and battery charger. Here we investigate an alternative system design based on the parallel connection of a photovoltaic module with battery cells without any intermediate voltage conversion. This approach, for which we use the term passive hybridization, is based on matching the solar cell's and battery cell's respective current/voltage behavior. A battery with flat discharge characteristics can allow to pin the solar cell to its maximum power point (MPP) independently of the external power consumption. At the same time, upon battery full charge, voltage increase will drive the solar cell towards zero current and therefore self-prevent battery overcharge. We present a modeling and simulation analysis of passively hybridizing a 5 kWp PV system with a 5 kWh LFP/graphite lithium-ion battery. Dynamic simulations with 1-min time resolution are carried out for three exemplary summer and winter days using historic weather data and a synthetic single-family household consumer profile. The results demonstrate the feasibility of the system. The passive hybrid allows for high self-sufficiencies of 84.6% in summer and 25.3% in winter, which are only slightly lower than those of a standard system.

  6. ZnO hybrid photovoltaics with variable side-chain lengths of thienothiophene polymer

    Energy Technology Data Exchange (ETDEWEB)

    Han, SeungJin [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Fei, Zhuping [Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington SW7 2AZ (United Kingdom); Jayawardena, K.D.G.I.; Beliatis, Michail J. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Hahn, Yoon-Bong [School of Chemical Engineering, Chonbuk National University, Jeon-ju, Jeonbuk 561-756 (Korea, Republic of); Adikaari, A.A.D.T. [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom); Heeney, Martin J. [Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington SW7 2AZ (United Kingdom); Silva, S. Ravi P., E-mail: s.silva@surrey.ac.uk [Advanced Technology Institute, Department of Electronic Engineering, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2015-02-02

    The effect of the side-chain length of poly(3,6-dialkylthieno[3,2-b]thiophene-co-bithiophene) (pATBT) on the performance of hybrid polymer-metal oxide photovoltaics (PVs) utilizing zinc oxide (ZnO) acceptor is investigated. The pATBT attached with a dodecyl side chain (pATBT-C{sub 12}) in hybrid photovoltaics with ZnO was compared to pATBT with a hexadecyl side chain (pATBT-C{sub 16}). Atomic force microscopic analysis reveals a smoother surface for the pATBT-C{sub 16} photoactive layer compared to the pATBT-C{sub 12}. For hybrid PVs using pATBT-C{sub 16}, the relative intensity of the external quantum efficiency (EQE) increased particularly in wavelength region associated with the ZnO. Furthermore, the EQE spectrum shows a red shift for pATBT-C{sub 16} indicating better structural ordering compared to hybrid PVs with pATBT-C{sub 12}. As a result, the hybrid PV utilizing pATBT-C{sub 16}:ZnO blend layer is observed to display a better performance with a power conversion efficiency of 1.02% compared to 0.672% of pATBT-C{sub 12}:ZnO PV. - Highlights: • The effect of polymer side-chain length on hybrid photovoltaics is investigated. • Longer side chains positively influence structural and optical properties of hybrid films. • Longer side-chain length leads to better photovoltaic performance.

  7. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  8. Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells.

    Science.gov (United States)

    Lai, Jian-Jhong; Li, Yu-Hsun; Feng, Bo-Rui; Tang, Shiow-Jing; Jian, Wen-Bin; Fu, Chuan-Min; Chen, Jiun-Tai; Wang, Xu; Lee, Pooi-See

    2017-09-05

    Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) attract much attention recently. Here natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions and it also facilitates the investigation of photoelectrons and photovoltaic effects at the nanoscale. As for applications, the heterojunction device shows simultaneously high on/off ratio of n- and p-type field-effect transistors, gatable p-n junction diodes, tri-state buffer device, gatable photodetectors, and gatable solar cells. On the other hand, P3HT nanofibers are taken as a photoactive layer and the role of p-n heterojunction playing on the photoelectric and photovoltaic effects is investigated. It is found that the hybrid P3HT/ZTO p-n heterojunction assists to increase photocurrents and to enhance photovoltaic effects. Through the controllable gating of the heterojunction, we can discuss the background mechanisms of photocurrent generation and photovoltaic energy harvest.

  9. Tracking-integrated systems for concentrating photovoltaics

    Science.gov (United States)

    Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo

    2016-04-01

    Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.

  10. Transformerless microinverter for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, Tarak; Masmoudi, Ahmed [Research Unit on Renewable Energies and Electric Vehicles, National Engineering School of Sfax, P.O.Box: W, 3038 Sfax (Tunisia); Bouzguenda, Mounir; Gastli, Adel [Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, P.C. 123, Al-Khoudh (Oman)

    2012-07-01

    When a galvanic connection between the grid and the PV array is made, a common-mode voltage exists that generates common-mode currents. These common-mode currents may produce electromagnetic interferences, grid current distortion and additional losses in the system. Therefore, to avoid the leakage currents that would penalize the transformerless power chains, it is worth focusing on topologies that do not generate common-mode currents. Some topologies available in the market touch more or less such a crucial requirement. However, some drawbacks generated by the non-utilization of the transformer still exist. These drawbacks maybe reduced or totally eliminated using suitable topologies as well as control strategies. In this paper, a new topology has been developed. Its control strategy has been simulated and experimentally validated. Accordingly, high conversion efficiency and low leakage current level have been demonstrated.

  11. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time-derivatives in modell......In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...... to the differential action, thus, allowing stepwise development of hybrid systems Udgivelsesdato: JAN 1...

  12. Exergetic evaluation on photovoltaic/thermal hybrid panel; Taiyoko netsu hybrid panel no exergy hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Iwaki, H.; Morita, Y.; Fujisawa, T.; Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1996-10-27

    The photovoltaic/thermal hybrid panel (PV/T) is an energy converter that was designed for the composite use of electricity and heat. In this paper, the validity of PV/T designed for trial was evaluated based on an exergetic theory. As the result of an experiment, the electric exergetic value of PV/T and PV is each 65.8 kWh/m{sup 2} and 58.6 kWh/m{sup 2}. The former is higher than the latter by 11.2%. The total exergetic value of PV/T is also 1.2 and 8.2 times as high as those of a PV and solar collector (SC), respectively. The calculation result of the optimum temperature operation showed that the exergetic value of PV/T is 3.1 times as high as the electric exergetic value. Therefore, the operation must be performed with the electric and thermal exergetic values set in a ratio of 3.1 to 1. In this paper, the operating mode is handled in which importance was more attached to the electric exergy than the thermal exergy. The flow rate of a heating medium on PV/T is not thus the flow control that maximizes the PV/T exergy. In the future, studies including these points will be promoted. 7 refs., 7 figs., 3 tabs.

  13. Charge extraction from nanostructured hybrid organic-inorganic photovoltaic cells

    Science.gov (United States)

    Goh, Chiatzun

    Conjugated polymers are attractive for use in photovoltaic (PV) cells because they are highly absorptive, their absorption spectrum can be tuned to match various regions of the solar spectrum and their solubility in common solvents enables the use of low-cost printing technique to mass produce PV panels. Photoexcitation of conjugated polymers forms excitons, which are bound electron-hole pairs. In order to convert these excitons into free carriers, the polymers have to be blended with an electron acceptor in close promixity of ˜10 nm. The charge transfer process at the donor-acceptor interface provides the necessary driving force to split excitons, while the close proximity guarantees excitons reaching an interface before decaying. Once the carriers are split, they have to be transported to their respective electrodes before recombining. Ordered nanostructured titania (TiO2) matrix infiltrated with conjugated polymers is a promising acceptor-donor system, which can potentially meet these requirements. In this work, several optimizations are shown to be essential for increasing the performance of TiO2/polymer cells. First, we measure the hole mobility of poly(3-hexylthiophene) (P3HT) in a thin film diode in the space-charge limited regime. We show that the mobility increases with the polymer molecular weight and can be correlated to the film morphology. The anisotropy in P3HT chain packing suggests that its diode mobility of 10-4 cm 2/Vs can be further enhanced upon chain alignment in straight nanopores. Second, we investigate the use of molecular surface modification to control the interfacial energetics and charge transfer dynamics. By introducing dipoles at the TiO2/P3HT interface, the interfacial energy offset can be changed resulting in a concomitant change in the open circuit voltage. In addition, certain modifiers improve exciton harvesting by mediating charge transfer from the polymer to TiO2. We further show that the use of an amphiphilic molecule

  14. Understanding the physical properties of hybrid perovskites for photovoltaic applications

    Science.gov (United States)

    Huang, Jinsong; Yuan, Yongbo; Shao, Yuchuan; Yan, Yanfa

    2017-07-01

    New photovoltaic materials have been searched for in the past decades for clean and renewable solar energy conversion with an objective of reducing the levelized cost of electricity (that is, the unit price of electricity over the course of the device lifetime). An emerging family of semiconductor materials — organic-inorganic halide perovskites (OIHPs) — are the focus of the photovoltaic research community owing to their use of low cost, nature-abundant raw materials, low-temperature and scalable solution fabrication processes, and, in particular, the very high power conversion efficiencies that have been achieved within the short time of their development. In this Review, we summarize and critically assess the most recent advances in understanding the physical properties of both 3D and low-dimensional OIHPs that favour a small open-circuit voltage deficit and high power conversion efficiency. Several prominent topics in this field on the unique properties of OIHPs are surveyed, including defect physics, ferroelectricity, exciton dissociation processes, carrier recombination lifetime and photon recycling. The impact of ion migration on solar cell efficiency and stability are also critically analysed. Finally, we discuss the remaining challenges in the commercialization of OIHP photovoltaics.

  15. Experimental study of thermal performances of the sloar photovoltaic-thermal hybrid system%太阳能光电-热一体化系统的热力性能实验研究

    Institute of Scientific and Technical Information of China (English)

    吴兴应; 龚光彩; 王晨光; 喻骐骥; 龚建文

    2015-01-01

    Heat pipe can be applied on the solar photovoltaic-thermal (PV-T)hybrid system to decrease the working temperature of solar cell of which,the photoelectric efficiency of which is increased,and the some of the heat energy is recycled at the same time so that the total energy utilization efficiency of the system is improved greatly.A thermal theoretical model of the PV-T system was established,and the solar-thermal hybrid experimental device with heat pipe is developed.Some related experiments are conducted including the tests of PV efficiency and heat transfer efficiency and exergy efficiency.The results show that the photoelectric efficiency is about 4.7%,the comprehensive efficiency of the system is about 49%,and the maximum exergy efficiency is about 8%.The overall efficiency of this system is higher than that of a pure PV system.Through comparative performance evaluation of several kinds of PV-T system, the heat pipe type PV-T system shows a significant energy-saving potential.Some energy-saving suggestions were also put forward.%将热管应用于太阳能光电-热一体化(PV-T)系统,在进行光电转换的同时,降低了太阳能电池的工作温度而使其光电效率提高,还回收了部分热能,可以大大提高系统的能量利用效率。研制了热管式太阳能光电-热一体化实验装置,建立了系统的热力性能计算的数学模型,对该实验装置系统进行了光电效率、热效率的测试,并对系统热力性能包括能量效率、效率进行了计算和分析。实验结果显示:系统的光电效率为4.7%左右,系统的综合效率为49%左右,效率最大为8%左右,比单独利用太阳能光伏发电系统的效率有显著提高。综合比较了几种太阳能光电一体化系统,该热管式PV-T系统有较好的节能效果,并对系统提出了优化和节能建议。

  16. Analysis of photovoltaic/thermal electric power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gluck, D.F.; Kelley, W.A.

    1979-03-01

    A conceptual definition and performance evaluation of a 100 megawatt (MW) hybrid photovoltaic/thermal electric power plant has been carried out. The concept utilizes the ability of gallium arsenide photovoltaic cells to achieve high conversion efficiency at high incident fluxes and elevated temperatures. Solar energy is focused by a field of steerable mirrors (heliostats) onto a tower mounted receiver whose outer surface is covered with gallium arsenide (AlGaAs/GaAs) solar cells and whose inner surface is a water boiler. The solar cells convert a fraction of the incident radiation into electrical energy, and the remaining energy is extracted at approximately 200/sup 0/C and used to power a Rankine cycle turbine generator (bottoming cycle). Water is used as the solar cell array coolant, as the thermodynamic working fluid, and as the thermal energy storage medium. Parametric studies were conducted to select conceptual design parameters and operational characteristics which imply the lowest levelized busbar electric energy costs. Parameters varied were collector area, condenser surface area, fan power, ambient temperature, and electric and thermal energy storage capacities. The report describes the concept, outlines the design analysis method, summarizes the parametric study results, and defines the selected plant configuration. The lowest levelized busbar electric energy generation cost, 70 mills/kilowatt-hr., was achieved with a relatively small collector area, 0.8 x 10/sup 6/ square meters, and no stored energy. A rough comparison of this combined power plant with a similar photovoltaic plant, operated at lower solar cell temperature and with no bottoming cycle, showed the busbar cost of electricity (BBEC) from the combined system to be approximately 9% lower.

  17. Development of a controller based on Fuzzy theory to better use the energy of a hybrid system power generation solar-photovoltaic and wind; Desenvolvimento de um controlador baseado na teoria Fuzzy para melhor aproveitamento da energia de um sistema hibrido de geracao de energia solar-fotovoltaico e eolico

    Energy Technology Data Exchange (ETDEWEB)

    Caneppele, Fernando de Lima [Universidade Estadual Paulista (UNESP), Itapeva, SP (Brazil). Campus Experimental], E-mail: fernando@itapeva.unesp.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural; Gabriel Filho, Luis Roberto de Almeida [Universidade Estadual Paulista (UNESP), Tupa, SP (Brazil). Campus Experimental

    2010-07-01

    The work developed a methodology fuzzy and simulated its use in control of a hybrid system of electric power generation, using solar-photovoltaic and wind energy. Using this control system, we get the point of maximum energy generation and transfer all the energy generated from alternative sources, solar-photovoltaic and wind energy to charge and / or batteries. The model uses three input variables, which are: wind (wind speed), sun (solar radiation) and batteries (charge the battery bank). With these variables, the fuzzy system will play, according to the rules to be described, what is the source of power supply system, which will have priority and how the batteries are loaded. For the simulations regarding the use of fuzzy theory to control, we used the scientific computing environment MATLAB. In this environment have been analyzed and simulated all mathematical modeling, rules and other variables described in the fuzzy system. This model can be applied to implement a control system of hybrid power generation, providing the best use of renewable energy, solar and wind, so that we can extract the maximum possible energy of these alternative sources without compromising the environment. (author)

  18. Photovoltaic Energy Harvester with Power Management System

    Directory of Open Access Journals (Sweden)

    M. Ferri

    2010-01-01

    Full Text Available We present a photovoltaic energy harvester, realized in 0.35-μm CMOS technology. The proposed system collects light energy from the environment, by means of 2-mm2 on-chip integrated microsolar cells, and accumulates it in an external capacitor. While the capacitor is charging, the load is disconnected. When the energy in the external capacitor is enough to operate the load for a predefined time slot, the load is connected to the capacitor by a power management circuit. The choice of the value of the capacitance determines the operating time slot for the load. The proposed solution is suitable for discrete-time-regime applications, such as sensor network nodes, or, in general, systems that require power supply periodically for short time slots. The power management circuit includes a charge pump, a comparator, a level shifter, and a linear voltage regulator. The whole system has been extensively simulated, integrated, and experimentally characterized.

  19. Technical analysis of photovoltaic/wind systems with hydrogen storage

    Directory of Open Access Journals (Sweden)

    Bakić Vukman V.

    2012-01-01

    Full Text Available The technical analysis of a hybrid wind-photovoltaic energy system with hydrogen gas storage was studied. The market for the distributed power generation based on renewable energy is increasing, particularly for the standalone mini-grid applications. The main design components of PV/Wind hybrid system are the PV panels, the wind turbine and an alkaline electrolyzer with tank. The technical analysis is based on the transient system simulation program TRNSYS 16. The study is realized using the meteorological data for a Typical Metrological Year (TMY for region of Novi Sad, Belgrade cities and Kopaonik national park in Serbia. The purpose of the study is to design a realistic energy system that maximizes the use of renewable energy and minimizes the use of fossil fuels. The reduction in the CO2 emissions is also analyzed in the paper. [Acknowledgment. This paper is the result of the investigations carried out within the scientific project TR33036 supported by the Ministry of Science of the Republic of Serbia.

  20. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-01-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043

  1. Design and Development of a Photovoltaic Power System for Tropical Greenhouse Cooling

    Directory of Open Access Journals (Sweden)

    Faisal M.S. Al-Shamiry

    2007-01-01

    Full Text Available Renewable energy sources like photovoltaic (PV panels are used today in many applications. Natural ventilation in tropical greenhouse is common method for ventilation, which gives higher inside temperatures compared to the outside temperatures. In addition, this type of ventilation is not enough to reduce high temperature inside the structure in low land areas. Thus the requirement of cooling is increased. Use of the fossil fuel to run the cooling fans are not economically viable due to increasing of fuel cost and greenhouses are not always located near the electrical grid. This research presents a study on the installation and test of a complete photovoltaic hybrid system for cooling a tropical greenhouse. A hybrid photovoltaic system consisting of two photovoltaic sub-systems were connected to each other. This system includes 48 photovoltaic solar Panels with 18.75 watt each, one inverter, 1 charge controller and a battery bank (including 12 batteries. The PV system is located at University Putra Malaysia (UPM Research Park. The national electricity grid was used as a backup unit. The load consisted of two misting fans for cooling greenhouse (during test period time with 400 Watt electric power and five hours (11:00 am to 16:00 pm daily operation. The results obtained showed that the maximum current drawn from the array was found to be 14.9 ampere at 13:00 pm (with load. The voltage of array was found to be 26.9 volt while the voltage and current of battery bank were found to be 26.2 volt and 23.0 ampere respectively. In conclusion, this study highlights the primary study of PV hybrid energy systems for tropical greenhouse cooling as an application of renewable energy in Selangor, Malaysia. The results showed that PV system would be suitable to supply electricity to cover the loads requirement demands without using energy from the grid.

  2. A Hybrid Wind/Photovoltaic Power Supply System Based on Discrete Probabilistic Methodology%基于离散概率模型的风光互补供电系统优化配置

    Institute of Scientific and Technical Information of China (English)

    叶承晋; 黄民翔; 王焱; 孙飞飞; 钟宇峰

    2013-01-01

    A probabilistic methodology based quantitative capacity optimal configuration method of hybrid wind/photovoltaic power supply system is proposed. A discrete probability distribution model is established to represent the random variables in the system, including the uncertainty of power injections and the random failure of components. A multi-objective optimization model is proposed involving three contradictory objectives: minimization of major investment, power inadequacy and voltage deviation. An innovative probabilistic load flow algorithm is introduced for the purpose of fast probability computing while maintaining a relatively high degree of accuracy, which uses moments to calculate and convert cumulants and Gram-Charlier series to obtain probabilistic distribution functions of target variable. The parallel elitist non-dominated sorting genetic algorithm (PNSGA-Ⅱ) is introduced to search the Pareto-optimal solutions. Finally, a numerical example is provided to validate the applications of the proposed method.%提出了一种基于概率模型的风光互补供电系统定量优化配置方法.该方法用离散概率分布表示系统中的随机变化因素,包括风、光、负荷、补偿装置功率的随机分布和系统元件的随机故障,并且以电能充裕度最大、供电系统总投资和电压越限概率最小作为优化目标建立多目标优化模型.为了更高效、快速地计算各目标函数,文中对随机潮流算法进行部分改进,将离散随机变量的期望值和增量分开研究,并通过矩计算和转化半不变量,运用级数逼近得到节点电压和系统电能裕量的概率分布.采用并行加速的带有精英策略的非支配排序遗传算法(PNSGA-Ⅱ)求解Pareto最优解集,并结合算例分析说明了文中方法的可行性与优势.

  3. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    Science.gov (United States)

    Guo, L. Jay

    2015-10-01

    adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented. 1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, "Decorative power generating panels creating angle insensitive transmissive colors," Sci. Rep. 4, 4192, 2014. 2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, "Colored ultra-thin hybrid photovoltaics with high quantum efficiency," Light: Science and Applications, 3, e215, 2014. 3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, "Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters," Appl. Phys. Lett. 104, 231112, (2014); and "Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters," Adv. Mater, 26, 6324-6328, 2014. 4. K. T. Lee, M. Fukuda, L. J. Guo, "Colored, see-through perovskite solar cells employing an optical cavity," Submitted, 2015

  4. Operational success - Flat-plate photovoltaic systems

    Science.gov (United States)

    Risser, V. V.; Zwibel, H. S.

    The performance-to-date of 20 and 100 kW peak DOE photovoltaic array demonstration projects in New Mexico and Texas are reported. An El Paso 20 kW unit feeds power to an uninterruptible power supply for a computer controlling a 197 MW generator. System availability has been 97 percent after over 800 days of operation, and has reached monthly efficiencies of 5.3-6.2 percent. The Lovington, NM 100 kW unit has operated at an average 6.7 percent efficiency, furnishing over 15.8 MWh/mo for a 2 yr period. System availability has been 99 percent, although at increased costs due to regular maintenance.

  5. Photovoltaic energy systems: Design and installation

    Science.gov (United States)

    Buresch, M.

    The characteristics of solar radiation, the design of solar cells, and the installation of Si solar cell arrays for various applications are described. The discussion is limited to medium-scale photovoltaic systems, from 0.1-100 kW peak output, mounted in fixed flat plate modules, the simplest, most maintenance-free concept. Solar cell functioning principles are outlined, including the parasitic mechanisms which reduce cell efficiency. The magnitude, variations, and distribution of the global solar energy input are quantified. Consideration is given to series and parallel connected solar arrays, and to performance under a variable load. Array protection and failure detection are explored, as are integrated array power conditioning equipment comprising energy storage, voltage regulation, and ac to dc converters. Attention is also devoted to array mounting and matching solar cell systems to load.

  6. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  7. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases.

    Science.gov (United States)

    Munir, Rahim; Sheikh, Arif D; Abdelsamie, Maged; Hu, Hanlin; Yu, Liyang; Zhao, Kui; Kim, Taesoo; Tall, Omar El; Li, Ruipeng; Smilgies, Detlef-M; Amassian, Aram

    2017-01-01

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  8. Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases

    KAUST Repository

    Munir, Rahim

    2016-11-07

    Solution-processed hybrid perovskite semiconductors attract a great deal of attention, but little is known about their formation process. The one-step spin-coating process of perovskites is investigated in situ, revealing that thin-film formation is mediated by solid-state precursor solvates and their nature. The stability of these intermediate phases directly impacts the quality and reproducibility of thermally converted perovskite films and their photovoltaic performance.

  9. Sizing stand-alone photovoltaic systems

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available A method of sizing stand-alone photovoltaic systems regarding the reliability to satisfy the load demand, economy of components, and discharge depth exploited by the batteries is presented in this work. Solar radiation data simulated by an appropriate stochastic time series model, and not actual measurements, are used in the sizing procedure. This offers two distinct advantages: (a sizing can be performed even for locations where no actual data exist, (b the influence of the variation of the statistical parameters of solar radiation in sizing can be examined. The method has been applied and tested for several representative locations all over Greece for which monthly daily average values of solar radiation are given by ELOT (Hellenic Organization of Standardization.

  10. Market valuation perspectives for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Sandia National Laboratories, working with Energy Sense Finance developed the proof-ofconcept PV Valueª tool in 2011 to provide real estate appraisers a tool that can be used to develop the market value and fair market value of a solar photovoltaic system. PV Valueª moved from a proof-of-concept spreadsheet to a commercial web-based tool developed and operated exclusively by Energy Sense Finance in June 2014. This paper presents the results of a survey aimed at different user categories in order to measure how the tool is being used in the marketplace as well as elicit information that can be used to improve the tools effectiveness.

  11. Systems chemistry approach in organic photovoltaics.

    Science.gov (United States)

    Würthner, Frank; Meerholz, Klaus

    2010-08-16

    The common approach in organic materials science is dominated by the perception that the properties of the bulk materials are virtually determined by the properties of the molecular building blocks. In this Concept Article, we advocate for taking into account supramolecular organization principles for all kinds of organic solid-state materials, irrespective of them being crystalline, liquid crystalline, or amorphous, and discuss a showcase example, that is, the utilization of merocyanine dyes as p-type organic semiconductors in bulk heterojunction (BHJ) solar cells. Despite their extraordinarily large dipole moments, which are considered to be detrimental for efficient charge carrier transport, BHJ organic photovoltaic materials of these dyes with fullerenes have reached remarkable power conversion efficiencies of meanwhile nearly 5%. These at the first glance contradictory properties are, however, well-understandable on the systems chemistry level.

  12. Statistical fault detection in photovoltaic systems

    KAUST Repository

    Garoudja, Elyes

    2017-05-08

    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array\\'s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.

  13. Research on Active Power Control Strategy for Wind/Photovoltaic/Energy Storage Hybrid Power System and Its Engineering Application%风光储联合发电系统有功控制策略研究及工程应用

    Institute of Scientific and Technical Information of China (English)

    任洛卿; 白泽洋; 于昌海; 王银明; 郑立; 任巍曦

    2014-01-01

    综合分析风光储联合发电系统的结构特点和控制特性,设计了可灵活组态的联合控制模式和场站控制模式,实现风、光、储独立控制和互补控制的无缝切换。针对联合发电出力平滑、跟踪目标控制和频率调节的不同应用需求,提出了考虑储能荷电状态反馈的改进平滑控制策略和“风光捆绑、储能解耦”的协调跟踪策略。提出的控制模式及策略已在国家风光储示范工程得到应用,被验证是可行和有效的。%The structure and control characteristics of wind/photovoltaic/energy storage hybrid power system are comprehensively analyzed,and flexible combination control modes and single plant control modes are proposed to realize seamless switching between independent control and complementary control of the wind,photovoltaic and energy storage system.Aimed at meeting various application demands including smooth generation output,control of target tracking and frequency adjustment,an improved smooth control strategy and a coordinated strategy of binding wind power with photovoltaic power and decoupling energy storage system are proposed,with the feedback of state of charge taken into account.The proposed control mode and strategy have been applied in the national wind,photovoltaic,energy storage and transmission demonstration proj ect,the viability and effectiveness are verified.

  14. Solution processable organic/inorganic hybrid ultraviolet photovoltaic detector

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2016-05-01

    Full Text Available Ultraviolet (UV photodetector is a kind of important optoelectronic device which can be widely used in scientific and engineering fields including astronomical research, environmental monitoring, forest-fire prevention, medical analysis, and missile approach warning etc. The development of UV detector is hindered by the acquirement of stable p-type materials, which makes it difficult to realize large array, low-power consumption UV focal plane array (FPA detector. Here, we provide a novel structure (Al/Poly(9,9-di-n-octylfuorenyl-2,7-diyl(PFO/ZnO/ITO to demonstrate the UV photovoltaic (PV response. A rather smooth surface (RMS roughness: 0.28 nm may be reached by solution process, which sheds light on the development of large-array, light-weight and low-cost UV FPA detectors.

  15. Photovoltaic Power Systems and the National Electrical Code: Suggested Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-02-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently.

  16. Photovoltaic power systems and the National Electrical Code: Suggested practices

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  17. Analysis of Photovoltaic Self-Consumption Systems

    Directory of Open Access Journals (Sweden)

    Carlos J. Sarasa-Maestro

    2016-08-01

    Full Text Available Components and installation prices could make the self-consumption of solar photovoltaic (PV systems competitive. In this paper, we explore different self-consumption options, off-grid PV systems (with back-up generator and/or batteries, and grid-connected PV systems under net-metering policies. The calculation of the net present cost (NPC reveals that the grid-connected PV-only case (for the net-metering scheme is the most attractive from the technical and financial points of view, with a levelised cost of energy less than 0.1 €/kWh. Off-grid PV + Diesel + Batteries has a higher cost, around two or three times the grid-connected PV-only under net metering. Additionally, the off-grid PV + Diesel is less attractive from a financial point of view, which has a cost of around 10 times the PV-only under net metering. In addition, the values of life cycle CO2 emissions in each of the cases studied have been compared, and we have concluded that although the off-grid PV + Diesel + Batteries system presents lower CO2 emissions than the PV-only system, the existence of batteries does not allow one to affirm that the PV + Diesel + Batteries system is the best from an environmental point of view.

  18. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available electricity being allocated to the more important urban sector. The relatively low energy demand in rural areas does not compensate the cost of long-range transmission lines from the national grid. This justifies the use of more decentralised forms of power...

  19. 新型PV/T太阳能利用复合系统的实验研究%Experimental Study on A Novel Hybrid Photovoltaic/Thermal Solar System

    Institute of Scientific and Technical Information of China (English)

    李光明; 刘祖明; 李景天; 廖华; 朱勋梦; 张卫东

    2013-01-01

    A novel hybrid photovoltaic /thermal solar system,which combining flat stainless steel box as solar heat collectors with aluminum alloy backplane monocrystalline silicon PV components,and using the thermally conductive silica-gel for adhesion,was designed to improve the energy efficiency and to supply hot water and electricity.The system performed good adhesion,insulation and heat conduction between the collector and PV module.The electrical and thermal efficiency of the system are tested through experiments conducted in Kunming area with different water mass and under different conditions.The results show that the total efficiency and general energy efficiency of novel PV/T system is higher in 75kg water mass sunny weather.Its electrical efficiency,thermal efficiency,total efficiency and general energy efficiency are 14%,37%,51%,and 70.72%,respectively.Compared with in 50kg water mass sunny or 75kg water mass cloudy weather,the general efficiency has been enhanced by 11.86% or 2.09%.Compared with pure PV system or the nature circulation of the solar water collector,The novel PV/T systems has several advantages,including smaller occupied area,higher utilization of solar energy and lower expenditure.%为提高PV/T系统太阳能利用率,同时获得可利用的热水和电力,将铝合金背板型单晶硅光伏组件和自行设计制作的不锈钢扁盒式集热板相结合,用导热硅胶加以粘接制成新型光伏光热一体化(PV/T)复合系统,该系统实现了光伏组件与集热板之间良好的粘接性、绝缘性和热传导,并在昆明地区对系统进行测试,分析了系统在不同水箱水容量及不同天气工况下运行的光电光热性能.结果表明,系统在75kg水箱水容量(m)晴天工况下运行效率更高,系统的平均电效率、热效率、综合效率及综合性能效率分别在14%、37%、51%、70.72%左右,与系统在50kg水箱水容量晴天或75kg水箱水容量多云工况下运行相比,

  20. A sensitivity analysis of central flat-plate photovoltaic systems and implications for national photovoltaics program planning

    Science.gov (United States)

    Crosetti, M. R.

    1985-01-01

    The sensitivity of the National Photovoltaic Research Program goals to changes in individual photovoltaic system parameters is explored. Using the relationship between lifetime cost and system performance parameters, tests were made to see how overall photovoltaic system energy costs are affected by changes in the goals set for module cost and efficiency, system component costs and efficiencies, operation and maintenance costs, and indirect costs. The results are presented in tables and figures for easy reference.

  1. Poly(3-hexylthiophene)/multiwalled carbon hybrid coaxial nanotubes: nanoscale rectification and photovoltaic characteristics.

    Science.gov (United States)

    Kim, Kihyun; Shin, Ji Won; Lee, Yong Baek; Cho, Mi Yeon; Lee, Suk Ho; Park, Dong Hyuk; Jang, Dong Kyu; Lee, Cheol Jin; Joo, Jinsoo

    2010-07-27

    We fabricate hybrid coaxial nanotubes (NTs) of multiwalled carbon nanotubes (MWCNTs) coated with light-emitting poly(3-hexylthiophene) (P3HT). The p-type P3HT material with a thickness of approximately 20 nm is electrochemically deposited onto the surface of the MWCNT. The formation of hybrid coaxial NTs of the P3HT/MWCNT is confirmed by a transmission electron microscope, FT-IR, and Raman spectra. The optical and structural properties of the hybrid NTs are characterized using ultraviolet and visible absorption, Raman, and photoluminescence (PL) spectra where, it is shown that the PL intensity of the P3HT materials decreases after the hybridization with the MWCNTs. The current-voltage (I-V) characteristics of the outer P3HT single NT show the semiconducting behavior, while ohmic behavior is observed for the inner single MWCNT. The I-V characteristics of the hybrid junction between the outer P3HT NT and the inner MWCNT, for the hybrid single NT, exhibit the characteristics of a diode (i.e., rectification), whose efficiency is clearly enhanced with light irradiation. The rectification effect of the hybrid single NT has been analyzed in terms of charge tunneling models. The quasi-photovoltaic effect is also observed at low bias for the P3HT/MWCNT hybrid single NT.

  2. Photovoltaics for professionals solar electric systems marketing, design and installation

    CERN Document Server

    Falk, Antony; Remmers, Karl-Heinz

    2007-01-01

    For the building industry, the installation of photovoltaic systems has become a new field of activity. Interest in solar energy is growing and future business prospects are excellent. Photovoltaics for Professionals describes the practicalities of marketing, designing and installing photovoltaic systems, both grid-tied and stand-alone. It has been written for electricians, technicians, builders, architects and building engineers who want to get involved in this expanding industry. It answers all the beginner's questions as well as serving as a textbook and work of reference

  3. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  4. A photovoltaics system at Mandhoo island. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W.G.J.H.M.; Lysen, E.H.

    2005-03-15

    The Maldivian Ministry of Communication, Science and Technology (MCST), the French Agency for Energy and the Environment (ADEME) and the Utrecht Centre for Energy research (UCE) of the Netherlands are jointly undertaking the SMILES project ('Strengthening Maldivian Initiatives for a Long-term Energy Strategy'), funded by the European Commission via ASIA-Pro Eco programme. As part of SMILES a photovoltaics-diesel hybrid pilot project will be realised on the island of Mandhoo. A location has been selected taking into the account the best possible performance and the best possibility of visibility to the community, especially children from the school and visitors to the health center. A detailed simulation study has resulted in the definition of a PV system with battery storage that replaces the smaller of the two generators on the island. The hybrid system consists of the existing 31 kW generator, a 12 kWp PV system with 12 kW converter and a battery system with a capacity of 18 kAh. This system saves 8400 liters fuel per year and avoids the exhaust of 22 ton CO2 per year. The electricity cost at Mandhoo will for the hybrid system be lower than the existing costs, as the PV system is fully subsidized. Integrating even an unsubsidized PV system in the existing Mandhoo infrastructure leads to a cost only a little larger than the present consumer price of 4.5 Rf/kWh, i.e. 6.5 Rf/kWh. This relatively small price difference will in future become smaller and even negative as fuel prices will rise and PV system costs will become smaller: PV systems will be cheaper than fossil fuel based ones. The pilot system will be monitored closely to verify the performance as simulated. If the system functions well, it is expected that the Mandhoo pilot PV system will be the start of widespread use of PV systems throughout the whole of the Maldives.

  5. Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index

    Directory of Open Access Journals (Sweden)

    Idris Khan

    2017-01-01

    Full Text Available High concentration of greenhouse gases in the atmosphere has increased dependency on photovoltaic (PV power, but its random nature poses a challenge for system operators to precisely predict and forecast PV power. The conventional forecasting methods were accurate for clean weather. But when the PV plants worked under heavy haze, the radiation is negatively impacted and thus reducing PV power; therefore, to deal with haze weather, Air Quality Index (AQI is introduced as a parameter to predict PV power. AQI, which is an indication of how polluted the air is, has been known to have a strong correlation with power generated by the PV panels. In this paper, a hybrid method based on the model of conventional back propagation (BP neural network for clear weather and BP AQI model for haze weather is used to forecast PV power with conventional parameters like temperature, wind speed, humidity, solar radiation, and an extra parameter of AQI as input. The results show that the proposed method has less error under haze condition as compared to conventional model of neural network.

  6. Ab initio calculation of pentacene-PbSe hybrid interface for photovoltaic applications.

    Science.gov (United States)

    Roy, P; Nguyen, Thao P

    2016-07-21

    We perform density functional theory (DFT) quantum chemical calculations for the pentacene-PbSe hybrid interface at both molecular and crystal levels. At the interface, the parallel orientation of pentacene on the PbSe surface is found to be the most favorable, analogous to a pentacene-gold interface. The molecule-surface distance and the value of charge transfer from one pentacene molecule to the PbSe surface are estimated at around 4.15 Å and 0.12 e(-) respectively. We found that, standard-LDA/GGA-PBE/hybrid/meta-GGA xc-functionals incorrectly determine the band gaps of both pentacene and PbSe and leads to a failed prediction of the energy alignment in this system. So, we use a relativistic G0W0 functional and accurately model the electronic properties of pentacene and PbSe in both bulk material and near the interface. An energy shift of 0.23 eV, due to the difference in work function at the interface was supplemented after a detailed analysis of the electrostatic potential. The highest occupied molecular orbital level of pentacene is 0.01 eV above PbSe while the lowest unoccupied molecular orbital of pentacene lies 1.70 eV above PbSe, allowing both electrons and holes to transfer along the donor-acceptor junction. Our results provide additional insights into the electronic structure properties of the pentacene-PbSe heterojunction and establish it as a promising and efficient candidate for photovoltaic applications.

  7. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    Science.gov (United States)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  8. The role of Photovoltaics towards 100% Renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; David, Andrei; Petersen, Silas

    for the future energy mix. The purpose of this report is to describe what will be role of photovoltaics in a future 100% renewable energy system in Denmark towards the year 2050, but also to propose how the future public regulation schemes should adapt to intake the correct type and capacity for PV. The report...... builds on a literature review of the global and Danish trends in capacity, costs and types of support schemes, but also develops a GIS and energy system analysis supported by a set of economic calculations to inquire on the recommended pathway for the future investments in photovoltaics in Denmark....... The review and analysis are focused on the integration of photovoltaics from a system perspective, analysed in the light of socio-economics. By building on this approach, a set of recommendations is proposed, which are structured on the system benefits and feasibility of photovoltaics, the land use...

  9. Micro-concentrators for a microsystems-enabled photovoltaic system.

    Science.gov (United States)

    Jared, Bradley H; Saavedra, Michael P; Anderson, Ben J; Goeke, Ron S; Sweatt, William C; Nielson, Gregory N; Okandan, Murat; Elisberg, Brenton; Snively, Dave; Duncan, John; Gu, Tian; Agrawal, Gautam; Haney, Michael W

    2014-03-10

    A 100X magnification, ± 2.5° field of view micro-concentrating optical system has been developed for a microsystems-enabled photovoltaic (MEPV) prototype module using 250 µm diameter multi-junction "stacked" PV cells.

  10. Photovoltaic Power Systems: A Tour Through the Alternatives

    Science.gov (United States)

    Kelly, Henry

    1978-01-01

    Photovoltaic systems are examined as potentially major energy sources, along with the economic factors that will affect their future use. Cell design, power efficiency, and manufacturing problems are also considered. (MA)

  11. The Gwaii Haanas PV hybrid system : analysis of system operation

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [GPCo Inc., Varennes, PQ (Canada); Turcotte, D.; Sheriff, F. [Natural Resources Canada, Varennes, PQ (Canada). CANMET Energy Technology Centre

    2003-05-01

    The operation of the photovoltaic/battery/genset hybrid power system at the Gwaii Haanas National Park Reserve warden station in British Columbia has been monitored since July 2001 as part of the Canada Centre for Mineral and Energy Technology (CANMET) Energy Technology Centre-Varennes Photovoltaic Hybrid Power Systems Program. The data collected has been used to validate hybrid system simulation tools being developed under the sponsorship of the Program. The analyzed data, along with the simulation tools, provided insight into the operation of the Gwaii Haanas power system. It also assisted in identifying the strengths and weaknesses of the system. Data indicates that the system functions well and is appropriately dimensioned and configured. The modules are arranged in two sub-arrays, with modules connected in parallel, showing remarkable tolerance to shading of part of the array. Almost complete discharge of the batteries occurs during the winter, when the Park residence is unoccupied. During the summer, users should keep track of the battery state-of-charge. Some recommendations were made to prolong the battery life. 1 ref., 1 tab., 16 figs.

  12. Mathematical model and characteristic analysis of hybrid photovoltaic/piezoelectric actuation mechanism

    Science.gov (United States)

    Jiang, Jing; Li, Xiaonan; Ding, Jincheng; Yue, Honghao; Deng, Zongquan

    2016-12-01

    Photovoltaic materials can turn light energy into electric energy directly, and thus have the advantages of high electrical output voltages and the ability to realize remote or non-contact control. When high-energy ultraviolet light illuminates polarized PbLaZrTi (PLZT) materials, high photovoltages will be generated along the spontaneous polarization direction due to the photovoltaic effect. In this paper, a novel hybrid photovoltaic/piezoelectric actuation mechanism is proposed. PLZT ceramics are used as a photovoltaic generator to drive a piezoelectric actuator. A mathematical model is established to define the time history of the actuation voltage between two electrodes of the piezoelectric actuator, which is experimentally validated by the test results of a piezoelectric actuator with different geometrical parameters under irradiation at different light intensities. Some important characteristics of this novel actuation mechanism are analyzed and it can be concluded that (1) it is experimentally validated that there is no hysteresis between voltage and deformation which exists in a PLZT actuator; (2) the saturated voltage and response speed can be improved by using a multi-patch PLZT generator to drive the piezoelectric actuator; and (3) the initial voltage of the piezoelectric actuator can be acquired by controlling the logical switch between the PLZT and the piezoelectric actuator while the initial voltages increase with the rise of light intensity.

  13. Grid-connected Photovoltaic Micro-inverter with New Hybrid Control LLC Resonant Converter

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Qingbo, Ke;

    2016-01-01

    A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse-frequency modulat......A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse......-frequency modulation (PFM) and phase-shift pulse-width modulation (PS-PWM) is employed on a full-bridge LLC dc-dc converter, in order to achieve high efficiency when PV output voltage varies in a wide range. Moreover, a maximum power point tracking (MPPT) method based on power perturbation is implemented in the dc......-ac inverter. Therefore, the complexity of regulating LLC converter can be reduced effectively, and efficiency optimal design can be carried out through the proposed designing procedure for the resonant tank of LLC converter. Finally, a prototype of the proposed PV micro-inverter (PVMI) is developed with rated...

  14. 一种利用混合储能系统平抑风光功率波动的控制策略%A Control Strategy to Smooth thePower of Wind and Photovoltaic Generation with Hybrid Energy Storage Systems

    Institute of Scientific and Technical Information of China (English)

    李介夫; 王光; 李卫国; 辛业春; 任向珍

    2014-01-01

    储能系统作为一种能量缓存装置,在风光储一体化发电系统中发挥着至关重要的作用。将储能的功能定位于平抑风光输出功率波动。为满足系统对功率和能量两方面的需求,利用超级电容和蓄电池两种互补元件组成混合储能系统对可再生能源出力波动进行两级平抑,提出了基于移动平均算法的控制策略,在此过程中,依据功率波动量大小及储能单元的荷电状态对移动步长进行实时优化。通过对蓄电池和超级电容的灵活、准确、快速控制,实现了风光输出功率波动的平抑,有效改善了风光出力波动引起的电能质量问题,并延长了蓄电池的循环寿命。在PSCAD/EMTDC环境下搭建系统模型,仿真验证了控制策略的有效性。%Energy storage system which works as an energy buffer plays a vital important part in hybrid wind/Photovoltaic/energy storage system. In this paper the function of energy storage system is to smooth the output curve of wind and Photovoltaic power. High power density ultra-capacitor and high energy density battery are made use of to smooth output of renewable energy with two-stage control. A control strategy based on moving average algorithm is proposed. In the process of smoothing output power,SOC level of energy storage unit and fluctuation of wind and Photovoltaic power are considered to optimize the time constant in real time. Through the swift and flexible control of energy storage system,it can realize the improvement of power quality and life extension of battery. The hybrid wind/Photovoltaic/energy storage system is simulated in the PSCAD/EMTDC software. Simulation results demonstrate the efficacy of proposed control strategy. This work is supported by Jilin Province Science & Technology Development plan item(20130206038GX).

  15. Hybrid Photovoltaic Thermal (PV/T Air and Water Based Solar Collectors Suitable for Building Integrated Applications

    Directory of Open Access Journals (Sweden)

    Adnan Ibrahim

    2009-01-01

    Full Text Available Problem statement: Experiments have been conducted to investigate the effect of mass flow rates on the electrical, thermal and combined of photovoltaic thermal efficiencies of the hybrid collectors. Approach: Two photovoltaic thermal solar collectors were designed and fabricated. The first collector, known as spiral flow absorber collector, designed to generate hot water and electricity. The second collector, known as single pass rectangular tunnel absorber collector designed to generate hot air and electricity. Both absorber collectors were fixed underneath the flat plate single glazing sheet of polycrystalline silicon PV module. Water was used as a heat transfer medium in spiral flow absorber collector and air for the Single pass rectangular tunnel absorber collector respectively. Results: The experiment results showed that the single flow absorber collector generates combined PV/T efficiency of 64%, electrical efficiency of 11% and power maximum achieved at 25.35 W. Moreover, Single pass rectangular tunnel absorber collector generated combined PV/T efficiency of 55%, electrical efficiency of 10% and maximum power of 22.45 W. Conclusion/Recommendations: The best mass flow rate achieved for spiral flow absorber collector is 0.011 kg sec-1 at surface temperature of 55% and 0.0754 kg sec-1 at surface temperature of 39°C for single pass rectangular collector absorber. It was recommended for PV/T system to further improve its efficiency by optimizing the contact surfaces between the solar panel (photovoltaic module and the tubes underneath and also recommended to use other type of photovoltaic cell such as amorphous silicon cell that posses the black mat surfaces property that will improve it thermal absorption.

  16. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    Directory of Open Access Journals (Sweden)

    Anup M. Gakare

    2014-06-01

    Full Text Available This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of the energy sources maximum power from the sun when it is available. An adaptive MPPT algorithm with a standard perturbs and observed method will be used for the Photo Voltaic system. The main advantage of the hybrid system is to give continuous power supply to the load. The gating pulses to the inverter switches are implemented with conventional and fuzzy controller. This hybrid wind-photo voltaic system is modeled in MATLAB/ SIMULINK environment. Simulation circuit is analyzed and results are presented for this hybrid wind and solar energy system.

  17. Performance Simulation Of Photovoltaic System Battery

    Directory of Open Access Journals (Sweden)

    O. A. Babatunde

    2014-09-01

    Full Text Available Solar energy, despite being inexhaustible, has a major shortcoming; it is intermittent. As a result, there's a need for it to be stored for later use. The widely used energy storage in photovoltaic system applications is the lead-acid battery and the knowledge of its state-of-charge (SOC is important in effecting efficient control and energy management. However, SOC cannot be measured while the battery is connected to the system. This study adjusts and validates two estimation models: battery state-of-charge model using ampere-hour counting method and battery charge voltage model. For the battery state-of-charge model, the SOC is estimated by integrating the charge/discharge current over time while the battery charge voltage characteristic response is modelled by using the equation-fit method which expresses the battery charge voltage variations by a 5th order polynomial in terms of the state-of-charge and current. These models are realized using the MATLAB program. The battery charge voltage model is corrected for errors which may result from reduced charge voltage due to variation of solar radiation using the battery state-of-charge model. Moreover, the starting SOC needed in the state-of-charge model is estimated using the charge voltage model. The accuracies of the models are verified using various laboratory experiments.

  18. Definition study for photovoltaic residential prototype system

    Science.gov (United States)

    Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.

    1976-01-01

    A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.

  19. Theoretical insights into multibandgap hybrid perovskites for photovoltaic applications

    OpenAIRE

    Even, Jacky; Sapori, Daniel; Pedesseau, Laurent; Rolland, Alain; Kepenekian, Mikael; Robles, Roberto; Wang, Shijian; Huang, Yong; Beck, Alexandre; Durand, Olivier; Katan, Claudine

    2015-01-01

    International audience; This paper reviews some of the recent theoretical investigations on the Rashba Dresselhaus spin effects and dielectric properties of CH 3 NH 3 PbI 3 hybrid perovskites and CsPbI 3 all-inorganic perovskites using Density functional theory. The spin vectors rotate in the non-centrosymmetric P4mm tetragonal phase, respectively clockwise and counterclockwise, in a manner that is characteristic of a pure Rashba effect. The high frequency dielectric constants ε ∞ of MAPbI 3 ...

  20. The influence of poly(phenyleneethynylene) side chain structure on single-walled carbon nanotubes hybrid photovoltaic cells.

    Science.gov (United States)

    Mao, Jie; Liu, Qian; Wang, Shujing; Lv, Xin; Huang, Yi; Ma, Yanfeng; Chen, Yongsheng; Yin, Shougen

    2008-07-01

    A novel poly(phenyleneethynylene)/single walled carbon nanotubes (SWNTs) donor-acceptor nanohybrid system was constructed based on the bulk heterojunction concept, and their photovoltaic (PV) properties were studied. Comparing with that of the pristine polymer poly(phenyleneethynylene) (PPE) device, the PV performance of the SWNTs/PPE hybrid is dramatically improved. The origin of open-circuit voltage (V(oc)) of the pristine polymer PPE device and SWNTs/PPE device was explained by metal-insulator-metal (MIM) diode model and pinning mechanism, respectively. Furthermore, incorporation of sensitizing groups to the side chain of PPE has great effect on the photovoltaic cell performance based on these hybrid materials and both the short-circuit current density (I(sc)) and power conversion efficiency are significantly enhanced. It is proposed that the main reason for the increase of short circuit current is due to efficient transfer of holes by sensitizer to PPE backbone and the transfer of electrons to the SWNTs. The power conversion efficiency is enhanced by approximately 1 order magnitude to 0.031% for the device based on the PPE3 with anthracene sensitizer group on the side chain compared with that (4.2 x 10(-3)% for SWNTs/PPE1 and 6.2 x 10(-3)% for SWNTs/PPE2) of the device without anthracene sensitizer on the side chain.

  1. Eco green flexible hybrid photovoltaic-thermoelectric solar cells with nanoimprint technology and roll-to-roll manufacturing

    Science.gov (United States)

    Varadan, Vijay K.; Choi, Sang H.

    2010-04-01

    This paper explores the technical and commercial feasibility of nanotechnology based, high-efficiency, photovoltaic-thermoelectric hybrid solar cells as an environmentally-friendly, renewable energy source for residential and commercial buildings. To convert as much as possible of the usable photovoltaic (58% of the Energy Density) and thermoelectric (42% of the Energy Density) solar spectrum into electricity, a hybrid multilayer system is presented which comprises of 1) carbon nanotube (CNT) embedded in conducting polymers such as P3HT (poly(3-hexylthiophene) or P3OT (poly3-octylthiophene), 2) 3D gold nanostructures exhibiting plasmonic resonances for energy conversion, 3) nanoantenna architecture to capture IR energy, 4) a composite of Bi2Te3, SiGe nanocrystals and Au nanoshells as thermoelectric energy conversion layer, 5) configuration of the above items engineered in the form of meta-material designs that by virtue of their 3D structures ensure that incident light is neither reflected nor transmitted, but is rather all absorbed, 6) a multilayer arrangement of the above layers in a fractal architecture to capture all the wavelengths from 200 to 3000 nm8 and the matching electronic interface for each layer. The roll-to-roll manufacturing method presented will enable economical large-scale production of solar panels. This potentially transformational technology has the ability to replace the Si solar cell technology by reducing costs from 0.18/KWh to 0.003/KWh while introducing a more environmentally-friendly manufacturing process.

  2. Printed hybrid systems

    Science.gov (United States)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  3. Interim performance criteria for photovoltaic energy systems. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  4. Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode.

    Science.gov (United States)

    Spechler, Joshua A; Nagamatsu, Ken A; Sturm, James C; Arnold, Craig B

    2015-05-20

    In this Research Article, we demonstrate pulsed laser processing of a silver nanowire network transparent conductor on top of an otherwise complete solar cell. The macroscopic pulsed laser irradiation serves to sinter nanowire-nanowire junctions on the nanoscale, leading to a much more conductive electrode. We fabricate hybrid silicon/organic heterojunction photovoltaic devices, which have ITO-free, solution processed, and laser processed transparent electrodes. Furthermore, devices which have high resistive losses show up to a 35% increase in power conversion efficiency after laser processing. We perform this study over a range of laser fluences, and a range of nanowire area coverage to investigate the sintering mechanism of nanowires inside of a device stack. The increase in device performance is modeled using a simple photovoltaic diode approach and compares favorably to the experimental data.

  5. Design and Fabrication of a Novel Hybrid-Structure Heat Pipe for a Concentrator Photovoltaic

    Directory of Open Access Journals (Sweden)

    Heiu-Jou Shaw

    2012-10-01

    Full Text Available This study presents a design method to fabricate a novel hybrid-structure flat plate heat pipe (NHSP heat pipe for a concentrator photovoltaic. The NHSP heat pipe is composed of a flattened copper pipe and a sintered wick structure, and a coronary-stent-like rhombic copper mesh supports the structure. The coronary-stent-like supporting structure enhances the mechanical strength and shortens the reflux path of the working fluid. Experiments demonstrate that the sintered capillary heat pipe reduces the thermal resistance by approximately 72%, compared to a traditional copper mesh-screen heat pipe. Furthermore, it can reduce thermal resistance by 65% after a supporting structure is added to the heat pipe. The results show that the NHSP heat pipe provided the best performance for the concentrator photovoltaic, which can increase photoelectric conversion efficiency by approximately 3.1%, compared to an aluminum substrate.

  6. Nanostructured solid-state hybrid photovoltaic cells fabricated by electrostatic layer-by-layer deposition

    Science.gov (United States)

    Kniprath, Rolf; McLeskey, James T.; Rabe, Jürgen P.; Kirstein, Stefan

    2009-06-01

    We report on the fabrication of hybrid organic/inorganic photovoltaic cells utilizing layer-by-layer deposition of water-soluble polyions and nanocrystals. A bulk heterojunction structure was created consisting of alternating layers of the p-conductive polythiophene derivative poly[2-(3-thienyl)-ethoxy-4-butylsulfonate] and n-conductive TiO2 nanoparticles. We fabricated working devices with the heterostructure sandwiched between suitable charge carrier blocking layers and conducting oxide and metal electrodes, respectively. We analyzed the influence of the thickness and nanostructure of the active layer on the cell performance and characterized the devices in terms of static and transient current response with respect to illumination and voltage conditions. We observed reproducible and stable photovoltaic behavior with photovoltages of up to 0.9 V.

  7. ENERGY MANAGEMENT OF WIND/PV AND BATTERY HYBRID SYSTEM

    OpenAIRE

    M. F. Almi; M. Arrouf; H.Belmili; S. Boulouma; Bendib, B

    2014-01-01

    This paper deals with power control of a wind and solar hybrid generation system for interconnection operation with electric distribution system. Power control strategy is to extract the maximum energy available from varying condition of wind speed and solar irradiance while maintaining power quality at a satisfactory level. In order to capture the maximum power, variable speed control is employed for wind turbine and maximum power point tracking is applied for photovoltaic system. The grid i...

  8. Installation of a Roof Mounted Photovoltaic System

    Science.gov (United States)

    Lam, M.

    2015-12-01

    In order to create a safe and comfortable environment for students to learn, a lot of electricity, which is generated from coal fired power plants, is used. Therefore, ISF Academy, a school in Hong Kong with approximately 1,500 students, will be installing a rooftop photovoltaic (PV) system with 302 solar panels. Not only will these panels be used to power a classroom, they will also serve as an educational opportunity for students to learn about the importance of renewable energy technology and its uses. There were four different options for the installation of the solar panels, and the final choice was made based on the loading capacity of the roof, considering the fact that overstressing the roof could prove to be a safety hazard. Moreover, due to consideration of the risk of typhoons in Hong Kong, the solar panel PV system will include concrete plinths as counterweights - but not so much that the roof would be severely overstressed. During and after the installation of the PV system, students involved would be able to do multiple calculations, such as determining the reduction of the school's carbon footprint. This can allow students to learn about the impact renewable energy can have on the environment. Another project students can participate in includes measuring the efficiency of the solar panels and how much power can be produced per year, which in turn can help with calculate the amount of money saved per year and when we will achieve economic parity. In short, the installation of the roof mounted PV system will not only be able to help save money for the school but also provide learning opportunities for students studying at the ISF Academy.

  9. Theoretical insights into hybrid perovskites for photovoltaic applications

    Science.gov (United States)

    Even, Jacky; Boyer-Richard, Soline; Carignano, Marcelo; Pedesseau, Laurent; Jancu, Jean-Marc; Katan, Claudine

    2016-03-01

    In this paper, we examine recent theoretical investigations on 3D hybrid perovskites (HOP) that combine concepts developed for classical bulk solid-state physics and empirical simulations of their optoelectronic properties. In fact, the complexity of HOP calls for a coherent global view that combines usually disconnected concepts. For the pseudocubic high temperature reference perovskite structure that plays a central role for 3D HOP, we introduce a new tight-binding Hamiltonian, which specifically includes spin-orbit coupling. The resultant electronic band structure is compared to that obtained using state of the art density functional theory (DFT). Next, recent experimental investigations of excitonic properties in HOP will be revisited within the scope of theoretical concepts already well implemented in the field of conventional semiconductors. Last, possible plastic crystal and orientational glass behaviors of HOP will be discussed, building on Car-Parrinello molecular dynamics simulations.

  10. Performance and stability analysis of a photovoltaic power system

    Science.gov (United States)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1978-01-01

    The performance and stability characteristics of a 10 kVA photovoltaic power system are studied using linear Bode analysis and a nonlinear analog simulation. Power conversion efficiencies, system stability, and system transient performance results are given for system operation at various levels of solar insolation. Additionally, system operation and the modeling of system components for the purpose of computer simulation are described.

  11. Photovoltaic system criteria documents. Volume 3: Environmental issues and evaluation criteria for photovoltaic applications

    Science.gov (United States)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    The environmental issues and evaluation criteria relating to the suitability of sites proposed for photovoltaic (PV) system deployment are identified. The important issues are defined, briefly discussed and then developed into evaluation criteria. System designers are provided with information on the environmental sensitivity of PV systems in realistic applications, background material which indicates the applicability of the siting issues identified, and evaluation criteria are defined to facilitate the selection of sites that maximize PV system operation.

  12. The provision of electricity through a photovoltaic-wind hybrid system in an isolated community in the Jalapao, municipality of Mateiros, state of Tocantins, Brazil; A disponibilizacao de energia eletrica atraves de um sistema hibrido eolico-fotovoltaico em uma comunidade isolada na regiao do Jalapao, municipio de Mateiros, estado do Tocantins

    Energy Technology Data Exchange (ETDEWEB)

    Zukowski Junior, J.C.; Santos, W.F.; Nobrega, S.L. de; Marcon, R.O. [Universidade Luterana do Brasil (CEULP/ULBRA), Palmas, TO (Brazil). Centro Universitario Luterano de Palmas. Curso de Engenharia Agricola], Emails: zukowski@uft.edu.br, olavo@ulbra-to.br, silvestre@ulbra-to.br

    2009-07-01

    Nowadays Brazil has many isolated communities. This isolation occurs mainly due to territorial conditions. Besides this aspect, the lack of structure produces another isolation, much more harmful, the social one. To promote social inclusion and sustainable development, some requirements are essential. Amongst all of them, the provision of electricity is the most prominent. This study aimed to provide electricity to an isolated community in the Jalapao region, Mateiros city, in the state of Tocantins. It was installed a hybrid aeolian-photovoltaic system, with capacity to produce 9676.80 kWh per year. This electricity system aims to improve the production process, so it was installed at the local community workshop. The results indicate that the system can be sustainable if the community makes use of the electricity generation, using it in the production process. (author)

  13. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  14. Market and economic analysis of residential photovoltaic systems

    Science.gov (United States)

    Tabors, R. D.

    1982-06-01

    The overall structure of a project to evaluate the U.S. residential photovoltaic market or markets is reviewed and experience obtained before cuts in federal funding for the project were reduced is summarized. Topics covered include residential worth analysis, (including retrofit applications); evaluation of presently available regional, econometric models which could be used to project housing stocks; and the analysis of retrofit potential for residential photovoltaic power systems given available roof area.

  15. Photovoltaic Power System with MPPT Functionality for a Small-Size Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jianming Xu

    2014-01-01

    Full Text Available Electric vehicles are recognized as the best replacement of petrol vehicles in the future. However, there are several problems hampering their development, such as the short life span of batteries, poor performance of start-up, and a short driving range. In order to resolve these problems, a hybrid power system based on photovoltaic (PV cells, supercapacitors, and batteries is proposed. This paper focuses on PV cells using a maximum power point track (MPPT system based on a BUCK chopper circuit. Moreover, a novel MPPT algorithm named sectional variable step climbing (SVSC algorithm was proposed. To validate the proposed system, two main experiments have been done. The first experiment showed that the MPP of PV cells was tracked perfectly by use of this photovoltaic power system. The second one showed that the efficiency of SVSC was higher than two existing MPPT methods, the climbing algorithm and the open-circuit voltage (OCV algorithm.

  16. Simulation and simplified design studies of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Evans, D.L.; Facinelli, W.A.; Koehler, L.P.

    1980-09-01

    Results of TRNSYS simulations of photovoltaic systems with electrical storage are described. Studies of the sensitivity of system performance, in terms of the fraction of the electrical load supplied by the solar energy system, to variables such as array size, battery size, location, time of year, and load shape are reported. An accurate simplified method for predicting array output of max-power photovoltaic systems is presented. A second simplified method, which estimates the overall performance of max-power systems, is developed. Finally, a preliminary technique for predicting clamped-voltage system performance is discussed.

  17. Price-Efficiency Relationship for Photovoltaic Systems on a Global Basis

    Directory of Open Access Journals (Sweden)

    Mehmet Sait Cengiz

    2015-01-01

    Full Text Available Solar energy is the most abundant, useful, efficient, and environmentally friendly source of renewable energy. In addition, in recent years, the capacity of photovoltaic electricity generation systems has increased exponentially throughout the world given an increase in the economic viability and reliability of photovoltaic systems. Moreover, many studies state that photovoltaic power systems will play a key role in electricity generation in the future. When first produced, photovoltaic systems had short lifetimes. Currently, through development, the technology lifecycle of photovoltaic systems has increased to 20–25 years. Studies showed that photovoltaic systems would be broadly used in the future, a conclusion reached by considering the rapidly decreasing cost of photovoltaic systems. Because price analysis is very important for energy marketing, in this study, a review of the cost potential factors on photovoltaic panels is realized and the expected cost potential of photovoltaic systems is examined considering numerous studies.

  18. Development of an advanced photovoltaic concentrator system for space applications

    Science.gov (United States)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    1987-01-01

    Recent studies indicate that significant increases in system performance (increased efficiency and reduced system mass) are possible for high power space based systems by incorporating technological developments with photovoltaic power systems. The Advanced Photovoltaic Concentrator Program is an effort to take advantage of recent advancements in refractive optical elements. By using a domed Fresnel lens concentrator and a prismatic cell cover, to eliminate metallization losses, dramatic reductions in the required area and mass over current space photovoltaic systems are possible. The advanced concentrator concept also has significant advantages when compared to solar dynamic Organic Rankine Cycle power systems in Low Earth Orbit applications where energy storage is required. The program is currently involved in the selection of a material for the optical element that will survive the space environment and a demonstration of the system performance of the panel design.

  19. Exploring the Effects of the Pb(2+) Substitution in MAPbI3 on the Photovoltaic Performance of the Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Frolova, Lyubov A; Anokhin, Denis V; Gerasimov, Kirill L; Dremova, Nadezhda N; Troshin, Pavel A

    2016-11-03

    Here we report a systematic study of the Pb(2+) substitution in the hybrid iodoplumbate MAPbI3 with a series of elements affecting optoelectronic, structural, and morphological properties of the system. It has been shown that even partial replacement of lead with Cd(2+), Zn(2+), Fe(2+), Ni(2+), Co(2+), In(3+), Bi(3+), Sn(4+), and Ti(4+) results in a significant deterioration of the photovoltaic characteristics. On the contrary, Hg-containing hybrid MAPb1-xHgxI3 salts demonstrated a considerably improved solar cell performance at optimal mercury loading. This result opens up additional dimension in the compositional engineering of the complex lead halides for designing novel photoactive materials with advanced optoelectronic and photovoltaic properties.

  20. Research on hybrid energy storage for a stand-alone photovoltaic system%采用混合储能装置的独立光伏系统研究

    Institute of Scientific and Technical Information of China (English)

    易芳; 易灵芝; 杜小娟

    2013-01-01

    The instability of the external environment affect the output power of photovoltaic system. In order to improve the stable power supply capacity of photovoltaic system, an independent photovoltaic system with battery and supercapacitors serving as its energy storage unit was established. Through the control of the Bi Buck-Boost converter, the energy flow between the DC bus with supercapacitor and battery was realized, which could effectively stabilize the output voltage of the power supply system. In addition, according to the structural characteristics of the battery, a nonlinear model was established. Through the PID control to change the duty cycle of converter and control charging current, battery charging current was adjusted to track maximum charging current, reduce battery charging time and extend battery life, and keep the battery charge and discharge in the optimal state.%外部环境的不稳定性,对光伏发电系统的输出电能造成影响,为了提高光伏发电系统的稳定供电能力,建立了一个以超级电容器和蓄电池为混合储能单元的独立光伏发电供电系统,通过对双管双向变流器的控制,实现光伏发电系统直流母线与超级电容器和蓄电池之间的能量流动,有效地稳定了供电系统的输出电压;另外根据蓄电池的结构特性,建立了非线性数学模型,通过PID控制改变双向功率变换器的占空比来控制蓄电池组的充电电流,实现分段恒流充电,使蓄电池始终处于优化的充放电状态.

  1. The Role of Nanocrystal Size in Solution Processable CdSe:P3HT Hybrid Photovoltaic Devices.

    Science.gov (United States)

    Bera, Susnata; Ray, Samit K

    2016-05-01

    Hybrid photovoltaic devices were fabricated using different sizes of CdSe quantum dots with different loading concentrations in P3HT matrix. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. The efficiency of hybrid poly-(3-hexylthiophene-2,5-diyl) P3HT:CdSe photovoltaic device was found to depend on the size as well as the loading of the nanocrystals. A maximum power conversion efficiency of -0.8% was achieved under AM1.5G solar illumination for the device with -5.3 nm CdSe nanocrystals. A hybrid photovoltaic device was demonstrated on polyethylene terephthalate (PET) substrates paving the way to achieve flexible,transparent and printable devices.

  2. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  3. Understanding the electronic structure of CdSe quantum dot-fullerene (C60) hybrid nanostructure for photovoltaic applications

    Science.gov (United States)

    Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab

    2014-09-01

    By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C60) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C60 systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD. With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C60-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C60 hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.

  4. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used......This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...

  5. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...... complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used...

  6. 采用热管冷却技术的太阳能光伏电–热一体化系统性能分析%Analysis on Performance of Solar Photovoltaic-thermal Hybrid System With Heat Pipe Cooling

    Institute of Scientific and Technical Information of China (English)

    吴双应; 张巧玲; 肖兰; 郭凤华

    2011-01-01

    Solar photovoltaic-thermal(PV-T) hybrid system combines photovoltaic cell component with thermal utilization system,which has potential high overall conversion efficiency.A PV-T hybrid system with heat pipe cooling was put forward concerning that heat pipe has high heat transfer performance and uniform working temperature.The thermal to electrical conversion performance of the PV-T hybrid system,such as solar cell plate temperature,outlet temperature of cooling fluid,the electrical and thermal efficiencies,were theoretically analyzed based on the heat transfer characteristics of solar cell plate and the heat transfer effectiveness-number of heat transfer unit(?-NTU) method of heat exchanger.The results show that,for the heat pipe PV-T hybrid system,the variation of solar cell temperature is within 2.5 ℃,and the electrical and thermal efficiencies of system can reach up to 6.99%~7.46% and 51.0%~63.2%,respectively.This theoretical method provides a new approach to study the performance of PV-T hybrid system and can be applied to analyze and discuss the influence of relevant parameters on the thermal to electrical conversion performance of PV-T hybrid system with heat pipe cooling.%太阳能光伏电–热(photovoltaic-thermal,PV-T)一体化系统将光伏组件与太阳能热利用系统组合在一起,具有较高的太阳能综合利用效率。针对热管具有高效传热和均温性能的特点,提出一种采用热管冷却技术的太阳能光伏电-热一体化系统;基于光伏电池板传热过程特点及换热器的传热有效度——传热单元数(ε-NTU)法,对热管式PV-T系统的电池板温度、冷却流体出口温度以及系统电效率和热效率等热电转换性能进行了理论分析和计算。结果表明,热管式PV-T系统的电池温度变化幅度在2.5℃以内,系统电效率和热效率分别达到6.99%~7.46%和51.0%~63.2%。该文提出的理论方法为研究热管式PV-T系统热电转换性能提

  7. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  8. Sliding mode controller for a photovoltaic pumping system

    Science.gov (United States)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  9. High-resolution global irradiance monitoring from photovoltaic systems

    Science.gov (United States)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  10. Detailed Performance Model for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P.

    2012-07-01

    This paper presents a modified current-voltage relationship for the single diode model. The single-diode model has been derived from the well-known equivalent circuit for a single photovoltaic cell. The modification presented in this paper accounts for both parallel and series connections in an array.

  11. Self-deploying photovoltaic power system

    Science.gov (United States)

    Colozza, Anthony J. (Inventor)

    1993-01-01

    A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration.

  12. Hybridity in Embedded Computing Systems

    Institute of Scientific and Technical Information of China (English)

    虞慧群; 孙永强

    1996-01-01

    An embedded system is a system that computer is used as a component in a larger device.In this paper,we study hybridity in embedded systems and present an interval based temporal logic to express and reason about hybrid properties of such kind of systems.

  13. Low-voltage grid-connection of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A.; Thornycroft, J.

    1999-07-01

    This report summarises the results of a project aimed at developing technical guidelines concerning grid connected photovoltaic (PV) inverter generators which are to be published in draft form as the {sup U}K Technical Guidelines for Inverter Connected Single Phase Photovoltaic (PV) Generators up to 5kVA{sup .} The background to the use of PV in the UK is traced, and the technical criteria for electrical integration of PV systems, and UK guidelines for grid connected PV systems are examined. The findings of the working group of the International Energy Agency (IEA) Implementing Agreement on Photovoltaic Power Systems are also presented in this report. Appendices discuss the UK technical guidelines, the IEA Task V activities,, utility aspects of grid-connected PV systems, and demonstration tests on grid-connected PV systems, and lists Task V reports.

  14. Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method.

    Science.gov (United States)

    Wang, Wei-Li; Zou, Xian-Shao; Zhang, Bin; Dong, Jun; Niu, Qiao-Li; Yin, Yi-An; Zhang, Yong

    2014-06-01

    A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

  15. Assessment of Hybrid Organic-Inorganic Antimony Sulfides for Earth-Abundant Photovoltaic Applications.

    Science.gov (United States)

    Yang, Ruo Xi; Butler, Keith T; Walsh, Aron

    2015-12-17

    Hybrid organic-inorganic solar absorbers are currently the subject of intense interest; however, the highest-performing materials contain Pb. Here we assess the potential of three Sb-based semiconductors: (i) Sb2S3, (ii) Cs2Sb8S13, and (iii) (CH3NH3)2Sb8S13. While the crystal structure of Sb2S3 is composed of 1D chains, 2D layers are formed in the ternary cesium and hybrid methylammonium antimony sulfide compounds. In each case, a stereochemically active Sb 5s(2) lone pair is found, resulting in a distorted coordination environment for the Sb cations. The bandgap of the binary sulfide is found to increase, while the ionization potential also changes, upon transition to the more complex compounds. Based on the predicted electronic structure, device configurations are suggested to be suitable for photovoltaic applications.

  16. Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites.

    Science.gov (United States)

    Turkevych, Ivan; Kazaoui, Said; Ito, Eisuke; Urano, Toshiyuki; Yamada, Koji; Tomiyasu, Hiroshi; Yamagishi, Hideo; Kondo, Michio; Aramaki, Shinji

    2017-06-28

    Hybrid CPbX3 (C: Cs, CH3 NH3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C2 ABX6 double perovskites based on alternating corner-shared AX6 and BX6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX6 and BX6 octahedra with the general formula Aa Bb Xx (x=a+3 b) such as Ag3 BiI6 , Ag2 BiI5 , AgBiI4 , AgBi2 I7 . As perovskites were named after their prototype oxide CaTiO3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO2 /Ag3 BiI6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study on the optimization of stand-alone type photovoltaic systems. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Geun; Song, Jin Soo; Kim, Boo ho; Park, I June; Jung, Meung Woong; Yoo, Kyun Joung; Kim, Hong Woo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The objectives of this study are to make a maximization of the operating efficiency of photovoltaic power systems, to improve stand- align PV systems design, technical operation and system analysis, and to promote technical cooperation of mutual interest in the area of IEA/PVPS program. This study aims to investigating the problems of applied photovoltaic power systems currently in operation to improve a system design, seeking remedies of individual PVPS applications to improve the system efficiency and reliability and to raise the system economics, and reporting the international movements of PV system dissemination and technical cooperation for developing countries. For the purpose of this works 1) Investigations of applications of existing photovoltaic power systems: - Photovoltaic electric sources used for expressway lamps - Optimum design of solar light with low pressure sodium lamps under 8 hours lighting a day at night by program-able electronic timer. 2) Comparative analyses of Marado PV system and propose a new reliable PV-diesel hybrid system and high efficiency operations. 3) Overall review of Hahwado 60 KWp PV system extending from 25 KWp and the remote monitoring systems for measurement of its operating results. 4) Introduction of IEA/PVPS international cooperating program, especially in task III for stand- alone PV systems and isolated islands and Exco meeting. As results, investigative findings of PVPS currently in operation and the work for improvement - Propose a prescription of Marado PV systems being blocked up by explosion of electrical demands from residence, parallel operational dual inverter with a big capacity. - There are shortage of solar generated power due to shortage of solar cell capacity that results in an increased operating time of diesel generator. Hence the insolation capacity of solar cell per household is continuously increased from the 0.5 KWp to 2 KWp in Hanwado island electrification.

  18. Advanced photovoltaic power system technology for lunar base applications

    Science.gov (United States)

    Brinker, David J.; Flood, Dennis J.

    1992-01-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  19. Design of an Energy System Based on Photovoltaic Thermal Collectors in the South of Algeria

    Directory of Open Access Journals (Sweden)

    K. Touafek

    2014-01-01

    Full Text Available The objective of this work is the design of a new energy system where the energy source will be provided by solar photovoltaic thermal (PV/T hybrid collectors. This system will be applied to a habitation in the region of Ghardaïa in the south of Algeria. The cold water reaches the thermal storage tank and then will be heated by the hybrid collector. The hot water will be used directly as sanitary water. The electric power produced by the hybrid collector will be used to charge the battery and will be delivered to the load (electrical appliances, lamps, etc.. Two types of loads are considered: a DC load and the other alternating current. The fans located adjacent to the radiators supplied with hot water will provide warm air to the house in winter.

  20. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics...

  1. On the design of product integrated photovoltaic systems

    NARCIS (Netherlands)

    Reich, N.H.

    2010-01-01

    With photovoltaic (PV) systems it is possible to create electricity generation systems for a wide range of purposes, of literally any size (microwatts to gigawatts). Solar cells deployed in large scale, grid-connected PV systems may energize millions of electric appliances connected by a utility gri

  2. On the design of product integrated photovoltaic systems

    NARCIS (Netherlands)

    Reich, N.H.

    2010-01-01

    With photovoltaic (PV) systems it is possible to create electricity generation systems for a wide range of purposes, of literally any size (microwatts to gigawatts). Solar cells deployed in large scale, grid-connected PV systems may energize millions of electric appliances connected by a utility

  3. A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators

    Science.gov (United States)

    Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary

    2015-09-01

    Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.

  4. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  5. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system solar cell at >660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  6. Flexible silver nanowire meshes for high-efficiency microtextured organic-silicon hybrid photovoltaics.

    Science.gov (United States)

    Chen, Ting-Gang; Huang, Bo-Yu; Liu, Hsiao-Wei; Huang, Yang-Yue; Pan, Huai-Te; Meng, Hsin-Fei; Yu, Peichen

    2012-12-01

    Hybrid organic-silicon heterojunction solar cells promise a significant reduction on fabrication costs by avoiding energy-intensive processes. However, their scalability remains challenging without a low-cost transparent electrode. In this work, we present solution-processed silver-nanowire meshes that uniformly cover the microtextured surface of hybrid heterojunction solar cells to enable efficient carrier collection for large device area. We systematically compare the characteristics and device performance with long and short nanowires with an average length/diameter of 30 μm/115 nm and 15 μm/45 nm, respectively, to those with silver metal grids. A remarkable power conversion efficiency of 10.1% is achieved with a device area of 1 × 1 cm(2) under 100 mW/cm(2) of AM1.5G illumination for the hybrid solar cells employing long wires, which represents an enhancement factor of up to 36.5% compared to the metal grid counterpart. The high-quality nanowire network displays an excellent spatial uniformity of photocurrent generation via distributed nanowire meshes and low dependence on efficient charge transport under a high light-injection condition with increased device area. The capability of silver nanowires as flexible transparent electrodes presents a great opportunity to accelerate the mass deployment of high-efficiency hybrid silicon photovoltaics via simple and rapid soluble processes.

  7. Grid converters for photovoltaic and wind power systems

    CERN Document Server

    Teodorescu, Remus; Rodríguez, Pedro

    2011-01-01

    "Grid Converters for Photovoltaic and Wind Power Systems provides a comprehensive description of the control of grid converters for photovoltaic and wind power systems. The authors present a range of control methods for meeting the latest application, power quality and power conversion requirements and standards, as well as looking towards potential future control functions. Practical examples, exercises, and an accompanying website with simulation models using Matlab and Simulink environments, and PSIM software make this text a pragmatic resource for electrical engineers as well as students taking related courses"--

  8. Stimulating the diffusion of photovoltaic systems : A behavioural perspective

    NARCIS (Netherlands)

    Jager, W.

    2006-01-01

    This paper first discusses consumer motives for adopting photovoltaic systems (PV systems) from a behavioural-theoretical perspective. Different motives are discussed within a framework of underlying needs and the time sensitivity of various outcomes. Next, empirical data are presented concerning th

  9. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  10. Platinum nanoparticle interlayer promoted improvement in photovoltaic performance of silicon/PEDOT:PSS hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xiao-Qing; Liu, L.F., E-mail: lifeng.liu@inl.int

    2015-01-15

    Inorganic–organic hybrid solar cells have attracted considerable interest in recent years for their low production cost, good mechanical flexibility and ease of processing of polymer films over a large area. Particularly, silicon/conducting polymer hybrid solar cells are extensively investigated and widely believed to be a low-cost alternative to the crystalline silicon solar cells. However, the power conversion efficiency of silicon/conducting polymer solar cells remains low in case hydrogen-terminated silicon is used. In this paper, we report that by introducing a platinum nanoparticle interlayer between the hydrogen-terminated silicon and the conducting polymer poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonate), namely PEDOT:PSS, the power conversion efficiency of the resulting Si/PEDOT:PSS hybrid solar cells can be improved by a factor of 2–3. The possible mechanism responsible for the improvement has been investigated using different techniques including impedance spectroscopy, Mott–Schottky analysis and intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). The results show that with a platinum nanoparticle interlayer, both the series resistance and charge transport/transfer resistance of the Si/PEDOT:PSS hybrid solar cells are reduced leading to an increased short circuit current density, and the built-in voltage at the space charge region is raised facilitating electron-hole separation. Moreover, the lifetime of charge carriers in the Si/PEDOT:PSS solar cells is extended, namely, the recombination is effectively suppressed which also contributes to the improvement of photovoltaic performance. - Graphical abstract: A platinum nanoparticle interlayer electrolessly deposited between the n-Si:H and PEDOT:PSS can markedly improve the photovoltaic performance of the resulting Si/PEDOT:PSS hybrid solar cells. - Highlights: • A Pt nanoparticle layer is introduced between the Si and PEDOT:PSS in hybrid cells. • The Pt interlayer

  11. Chaotic Dynamics in Hybrid Systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter)

    2008-01-01

    htmlabstractIn this paper we give an overview of some aspects of chaotic dynamics in hybrid systems, which comprise different types of behaviour. Hybrid systems may exhibit discontinuous dependence on initial conditions leading to new dynamical phenomena. We indicate how methods from topological

  12. Chaotic dynamics in hybrid systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter)

    2008-01-01

    htmlabstractIn this paper we give an overview of some aspects of chaotic dynamics in hybrid systems, which comprise different types of behaviour. Hybrid systems may exhibit discontinuous dependence on initial conditions leading to new dynamical phenomena. We indicate how methods from topological

  13. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  14. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  15. Optimalisasi Desain Sistem Pembangkit Listrik Tenaga Hybrid Diesel Generator  Photovoltaic Array Menggunakan Homer (Studi Kasus : Desa Sirilogui, Kabupaten Kepulauan Mentawai

    Directory of Open Access Journals (Sweden)

    Dewi Purnama Sari

    2015-03-01

    Full Text Available Hybrid Power Plant is one of the solutions to overcome the shortage of electricity in underdeveloped and isolated areas not covered by PLN electricity network, due to underdeveloped regions generally have the geography and topography that does not allow for expansion of PLN electricity network. Integration of the two power plants is a conventional power plant (diesel generator that comes from fuel oil (BBM with power plants sourced from renewable energy (photovoltaic arrays is an advantageous solution to meet the needs of daily electricity load in remote areas such as the Village Sirilogui located in the District of North Siberut Mentawai Islands, because the integration of photovoltaic arrays diesel generator can provide 24 hour lighting solution for 310 households (families in the village Sirilogui which at first only enjoy the lighting for 4 hours, and even then only at night days, from 06.00 to 10.00 pm o'clock sourced from 3 units of diesel generator. With the integration of these two power plants, diesel generator operation can be minimized so it saves fuel consumption and reduce CO2 emissions caused by the operation of the diesel generator. This study focuses the discussion on Design Optimization of Hybrid Power Plant System Diesel Generator-Photovoltaic Array by using HOMER as a tool for simulation. HOMER software is used to help simplify the task of the modeler in evaluating the design of hybrid power plant system that allows to sort based on the total net present cost (TNPC, the lowest for the most optimal system. In this study, the results of the design for the system with the daily electricity load of 479,280 kWh most optimal based on the simulation results using HOMER ie photovoltaic capacity of 65 kW, 3 units of diesel generators with a capacity of each 15 kW, 156 units of battery and bidirectional converter with a capacity of 78 kW TNPC amounted to $ 1.362.474 and the cost of energy (COE of $ 1,485/kWh. Hybrid Power Plant System

  16. Adaptive and Reliable Control Algorithm for Hybrid System Architecture

    Directory of Open Access Journals (Sweden)

    Osama Abdel Hakeem Abdel Sattar

    2012-01-01

    Full Text Available A stand-alone system is defined as an autonomous system that supplies electricity without being connected to the electric grid. Hybrid systems combined renewable energy source, that are never depleted (such solar (photovoltaic (PV, wind, hydroelectric, etc. , With other sources of energy, like Diesel. If these hybrid systems are optimally designed, they can be more cost effective and reliable than single systems. However, the design of hybrid systems is complex because of the uncertain renewable energy supplies, load demands and the non-linear characteristics of some components, so the design problem cannot be solved easily by classical optimisation methods. The use of heuristic techniques, such as the genetic algorithms, can give better results than classical methods. This paper presents to a hybrid system control algorithm and also dispatches strategy design in which wind is the primary energy resource with photovoltaic cells. The dimension of the design (max. load is 2000 kW and the sources is implemented as flow 1500 kw from wind, 500 kw from solar and diesel 2000 kw. The main task of the preposed algorithm is to take full advantage of the wind energy and solar energy when it is available and to minimize diesel fuel consumption.

  17. Utilization of hybrid systems in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Mercedes Menendez; Figueredo, Conrado Moreno [Renewable Energy Technologies Study Center (CETER), Marianao (Cuba)

    1996-12-31

    This work deals with the possibility of the wind-photovoltaic hybrid system uses for the electricity generation in Cuba. A design of energy installation is made to satisfy the tourism facilities demands located in Cayo Sabinal, in the north of the province Camaguey. The design is based on the data base of the available wind and solar resources. A group of existing wind-generators in the market is analyzed and the best is selected taking into account a set of energy parameters, the monthly energy supply is function of the turbines numbers and the quantity of necessary solar energy to guarantee the system requirements. An economical evaluation is carried out in order to select the best wind-solar combination and a comparison with other forms of electricity generation (Diesel Plant and a stand alone wind system). In the work is showed the best combination in the critical month is when a 62% of energy is supplied by wind energy and 38% of solar energy. Otherwise in the work is showed hybrid system is more economical than a stand alone wind system and a Diesel Plant. (Author)

  18. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    Energy Technology Data Exchange (ETDEWEB)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian; Cheng, Feng; Greenwood, Wesley; Hawkins, Jonathan; Willard, Steve

    2017-06-27

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unit and the photovoltaic energy source.

  19. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Science.gov (United States)

    2010-10-05

    ... Photovoltaic Panel Systems AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION..., Trade Agreements Act of 1979; Country of Origin of solar photovoltaic panel system; substantial... determination concerns the country of origin of certain photovoltaic panel systems that Solyndra may sell to...

  20. 75 FR 53277 - Notice of Workshop on Polymers for Photovoltaic Systems

    Science.gov (United States)

    2010-08-31

    ... National Institute of Standards and Technology Notice of Workshop on Polymers for Photovoltaic Systems... Photovoltaic Systems. DATES: The workshop will be held over two days, Thursday, September 23, 8:30 a.m. to 5 p... polymeric materials used in photovoltaic systems; testing, performance, and reliability of polymers...

  1. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    The article is an attempt to use methods of category theory and topology for analysis of hybrid systems. We use the notion of a directed topological space; it is a topological space together with a set of privileged paths. Dynamical systems are examples of directed topological spaces. A hybrid...... system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...... directed homotopy colimit (geometric realization) is a single directed topological space. The behavior of hybrid systems can be then understood in terms of the behavior of dynamical systems through the directed homotopy colimit....

  2. Microsystem enabled photovoltaic modules and systems

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N.; Sweatt, William C.; Okandan, Murat

    2017-09-12

    A photovoltaic (PV) module includes an absorber layer coupled to an optic layer. The absorber layer includes an array of PV elements. The optic layer includes a close-packed array of Keplerian telescope elements, each corresponding to one of an array of pupil elements. The Keplerian telescope substantially couple radiation that is incident on their objective surfaces into the corresponding pupil elements. Each pupil element relays radiation that is coupled into it from the corresponding Keplerian telescope element into the corresponding PV element.

  3. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  4. Does Your Domestic Photovoltaic Energy System Survive Grid Outages?

    Directory of Open Access Journals (Sweden)

    Marijn R. Jongerden

    2016-09-01

    Full Text Available Domestic renewable energy systems, including photovoltaic energy generation, as well as local storage, are becoming increasingly popular and economically feasible, but do come with a wide range of options. Hence, it can be difficult to match their specification to specific customer’s needs. Next to the usage-specific demand profiles and location-specific production profiles, local energy storage through the use of batteries is becoming increasingly important, since it allows one to balance variations in production and demand, either locally or via the grid. Moreover, local storage can also help to ensure a continuous energy supply in the presence of grid outages, at least for a while. Hybrid Petri net (HPN models allow one to analyze the effect of different battery management strategies on the continuity of such energy systems in the case of grid outages. The current paper focuses on one of these strategies, the so-called smart strategy, that reserves a certain percentage of the battery capacity to be only used in case of grid outages. Additionally, we introduce a new strategy that makes better use of the reserved backup capacity, by reducing the demand in the presence of a grid outage through a prioritization mechanism. This new strategy, called power-save, only allows the essential (high-priority demand to draw from the battery during power outages. We show that this new strategy outperforms previously-proposed strategies through a careful analysis of a number of scenarios and for a selection of survivability measures, such as minimum survivability per day, number of survivable hours per day, minimum survivability per year and various survivability quantiles.

  5. Modeling and control of a small solar fuel cell hybrid energy system

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Xin-jian; CAO Guang-yi

    2007-01-01

    This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

  6. Laser photovoltaic power system synergy for SEI applications

    Science.gov (United States)

    Landis, Geoffrey A.; Hickman, J. M.

    1991-01-01

    Solar arrays can provide reliable space power, but do not operate when there is no solar energy. Photovoltaic arrays can also convert laser energy with high efficiency. One proposal to reduce the required mass of energy storage required is to illuminate the photovoltaic arrays by a ground laser system. It is proposed to locate large lasers on cloud-free sites at one or more ground locations, and use large lenses or mirrors with adaptive optical correction to reduce the beam spread due to diffraction or atmospheric turbulence. During the eclipse periods or lunar night, the lasers illuminate the solar arrays to a level sufficient to provide operating power.

  7. Utility interface issues for grid-connected photovoltaic systems

    Science.gov (United States)

    Chu, D.; Key, T.; Fitzer, J.

    Photovoltaic (PV) balance-of-system research and development has focused on interconnection with the utility grid as the most promising future application for photovoltaic energy production. These sysems must be compatible with the existing utility grid to be accepted. Compatibility encompasses many technical, economic and institutional issues, from lineman safety to revenue metering and power quality. This paper reviews DOE/PV sponsored research for two of the technical interconnection issues: harmonic injection, and power factor control. Explanations and rationale behind these two issues will be reviewed, and the status of current research and plans for required future work will be presented.

  8. Thermal Energy Optimization of Building Integrated Semi-Transparent Photovoltaic Thermal Systems

    OpenAIRE

    Ekoe A Akata Aloys Martial; Donatien Njomo; Basant Agrawal

    2015-01-01

    Building integrated photovoltaic (BIPV) : The concept where the photovoltaic element assumes the function of power generation and the role of the covering component element has the potential to become one of the principal sources of renewable energy for domestic purpose. In this paper, a Building integrated semitransparent photovoltaic thermal system (BISPVT) system having fins at the back sheet of the photovoltaic module has been simulated. It has been observed that this system produces high...

  9. Performance of small-scale photovoltaic systems and their potential for rural electrification in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Stutenbaeumer, Ulrich; Negash, Tesfaye; Abdi, Amensisa [Addis Ababa Univ., Dept. of Physics, Addis Ababa (Ethiopia)

    1999-09-01

    The performance of small-scale stand-alone photovoltaic systems is tested under the climatic conditions of Addis Ababa, Ethiopia. With climatic data obtained at a station in the Rift Valley, the photovoltaic systems performance is estimated for those climatic conditions. The economics of small-scale stand-alone photovoltaic system applications under Ethiopian conditions are analysed. The potential of photovoltaics for the rural electrification of Ethiopia is discussed. (Author)

  10. Aplicaciones de los métodos de optimización en el diseño de Sistemas Híbridos Eólico – Fotovoltáicos para las condiciones tropicales cubanas. // Optimization methods application of hybrid eolic- photovoltaic systems in tropical conditions.

    Directory of Open Access Journals (Sweden)

    M. Menéndez González

    2002-09-01

    Full Text Available En este trabajo se plantea la aplicación y optimización de métodos en el diseño de sistemas híbridos eólico-fotovoltáicos loscuales se fundamentan en una programación lineal, para esto es analizada una instalación energética y la demandaenergética constante en una localidad cubana, a partir de datos de viento y radiación solar.Palabras claves: Energía renovable, sistemas híbridos, sistemas autónomos, recursos renovables, costos deenergía, contaminación ambiental._____________________________________________________________________Abstract.The objective of this paper is the application of optimization methods in the design of hybrid eolic- photovoltaic systemswhose base is the lineal programming, for it is analyzed it an energy installation that has a constant demand and that it islocated in a place of Cuba, in which the data of wind and solar radiation are known.Key words: Renewable energy, hybrid systems, autonomous systems, renewable resources, energy costs,environmental contamination.

  11. Field performance of photovoltaic solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Fanney, A.H.; Dougherty, B.P.; Kramp, K.P. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building Environment Div.

    1997-11-01

    Energy consumed for water heating accounts for approximately 17.9 EJ of the energy consumed by residential and commercial buildings. Although there are over 90 million water heaters currently in use within the United States, durability and installation issues as well as initial cost have limited the sales of solar water heaters to less than 1 million units. Durability issues have included freeze and fluid leakage problems, failure of pumps and their associated controllers, the loss of heat transfer fluids under stagnation conditions, and heat exchanger fouling. The installation of solar water heating systems has often proved difficult, requiring roof penetrations for the piping that transports fluid to and from the solar collectors. Fanney and Dougherty have recently proposed and patented a solar water heating system that eliminates the durability and installation problems associated with current solar water heating systems. The system employs photovoltaic modules to generate electrical energy which is dissipated in multiple electric heating elements. A microprocessor controller is used to match the electrical resistance of the load to the operating characteristics of the photovoltaic modules. Although currently more expensive than existing solar hot water systems, photovoltaic solar water heaters offer the promise of being less expensive than solar thermal systems within the next decade. To date, photovoltaic solar water heating systems have been installed at the National Institute of Standards and Technology in Gaithersburg, MD and the Florida Solar Energy Center in Cocoa, FL. This paper will review the technology employed, describe the two photovoltaic solar water heating systems, and present measured performance data.

  12. Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index

    OpenAIRE

    Idris Khan; Honglu Zhu; Jianxi Yao; Danish Khan; Tahir Iqbal

    2017-01-01

    High concentration of greenhouse gases in the atmosphere has increased dependency on photovoltaic (PV) power, but its random nature poses a challenge for system operators to precisely predict and forecast PV power. The conventional forecasting methods were accurate for clean weather. But when the PV plants worked under heavy haze, the radiation is negatively impacted and thus reducing PV power; therefore, to deal with haze weather, Air Quality Index (AQI) is introduced as a parameter to predi...

  13. Formal Description of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhou, Chaochen; Ji, Wang; Ravn, Anders P.

    1996-01-01

    A language to describe hybrid systems, i.e. networks of communicating discrete and continuous processes, is proposed. A semantics of the language is given in Extended Duration Calculus, a real-time interval logic with a proof system that allows reasoning in mathematical analysis about continuous ...... processes to be embedded into the logic. The semantics thus provides a secure link to hybrid system models based on a general theory of dynamical systems....

  14. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  15. Performance Assessment of a Hybrid Solar-Geothermal Air Conditioning System for Residential Application: Energy, Exergy, and Sustainability Analysis

    Directory of Open Access Journals (Sweden)

    Yasser Abbasi

    2016-01-01

    Full Text Available This paper investigates the performance of a ground source heat pump that is coupled with a photovoltaic system to provide cooling and heating demands of a zero-energy residential building. Exergy and sustainability analyses have been conducted to evaluate the exergy destruction rate and SI of different compartments of the hybrid system. The effects of monthly thermal load variations on the performance of the hybrid system are investigated. The hybrid system consists of a vertical ground source heat exchanger, rooftop photovoltaic panels, and a heat pump cycle. Exergetic efficiency of the solar-geothermal heat pump system does not exceed 10 percent, and most exergy destruction takes place in photovoltaic panel, condenser, and evaporator. Although SI of PV system remains constant during a year, SI of GSHP varies depending on cooling and heating mode. The results also show that utilization of this hybrid system can reduce CO2 emissions by almost 70 tons per year.

  16. IMPLEMENTATION PHOTOVOLTAIC PANELS IN LIGHTING SYSTEM OF A SHIP

    Directory of Open Access Journals (Sweden)

    FLORENTIU DELIU

    2016-06-01

    Full Text Available The possibility of using other sources of electricity than conventional one, on board vessels, i s a highly actual subject. In this respect, this paper presents a simulation on the development of a proper photovoltaic panels configuration used for the lighting system of the ship, with 42kW installed average power.

  17. Does your domestic photovoltaic energy system survive grid outages?

    NARCIS (Netherlands)

    Jongerden, Marijn R.; Hüls, Jannik; Remke, Anne; Haverkort, Boudewijn R.

    2016-01-01

    Domestic renewable energy systems, including photovoltaic energy generation, as well as local storage, are becoming increasingly popular and economically feasible, but do come with a wide range of options. Hence, it can be difficult to match their specification to specific customer’s needs. Next to

  18. Control Issues in Single-Stage Photovoltaic Systems

    DEFF Research Database (Denmark)

    A. Mastromauro, Rosa; Liserre, Marco; Dell’Aquila, Antonio

    2012-01-01

    Photovoltaic Systems (PVS) can be easily integrated in residential buildings hence they will be the main responsible of making low-voltage grid power flow bidirectional. Control issues on both the PV side and on the grid side have received much attention from manufacturers, competing for efficiency...

  19. EMISSIONS REDUCTION DATA FOR GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS

    Science.gov (United States)

    This study measured the pollutant emission reduction potential of 29 photovoltaic (PV) systems installed on residential and commercial building rooftops across the U.S. from 1993 through 1997. The U.S. Environmental Protection Agency (EPA) and 21 electric power companies sponsor...

  20. Photovoltaic power system considerations for future lunar bases

    Science.gov (United States)

    Flood, Dennis J.; Appelbaum, Joseph

    1989-01-01

    The cost of transportation to the lunar surface places a premium on developing ultralightweight power system technology to support the eventual establishment of a lunar base. The photovoltaic technology issues to be addressed by the Surface Power program element of NASA's Project Pathfinder are described.

  1. Control Issues in Single-Stage Photovoltaic Systems

    DEFF Research Database (Denmark)

    A. Mastromauro, Rosa; Liserre, Marco; Dell’Aquila, Antonio

    2012-01-01

    Photovoltaic Systems (PVS) can be easily integrated in residential buildings hence they will be the main responsible of making low-voltage grid power flow bidirectional. Control issues on both the PV side and on the grid side have received much attention from manufacturers, competing for efficiency...

  2. Spatial power fluctuation correlations in urban rooftop photovoltaic systems

    NARCIS (Netherlands)

    Elsinga, Boudewijn; van Sark, Wilfried

    2014-01-01

    In this paper, we investigate the spatial dependence of variations in power output of small residential solar photovoltaic (PV) systems in a densely populated urban area (≈100km2) in and around Utrecht, the Netherlands. Research into the geo-statistical behavior of this kind of randomly spaced colle

  3. Performance of amorphous silicon photovoltaic systems, 1985--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    This report discusses the performance of commercial amorphous silicon modules used in photovoltaic power systems from 1985 through 1989. Topics discussed include initial degradation, reliability, durability, and effects of temperature and solar irradiance on peak power and energy production. 6 refs., 18 figs.

  4. Low-frequency switching voltage regulators for terrestrial photovoltaic systems

    Science.gov (United States)

    Delombard, R.

    1984-01-01

    The photovoltaic technology project and the stand alone applications project are discussed. Two types of low frequency switching type regulators were investigated. The design, operating characteristics and field application of these regulators is described. The regulators are small in size, low in cost, very low in power dissipation, reliable and allow considerable flexibility in system design.

  5. Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect.

    Science.gov (United States)

    Tang, Longhua; Zhu, Yihua; Yang, Xiaoling; Sun, Jinjie; Li, Chunzhong

    2008-10-15

    A novel multi-components hybrid material, self-assembled quantum dots (CdS) and glutamate dehydrogenase (GDH) onto multiwall carbon nanotubes (CNTs), was designed for amperometric biosensing system. The zeta-potential and transmission electron microscopy (TEM) analyses confirmed the uniform growth of the CdS/GDH onto carboxyl-functionalized CNTs. Compared with the single CdS, the resulting hybrid material showed more efficient generation of photocurrent upon illumination. The incident light excites CdS and generates charge carriers, and then CNTs facilitates the charge transfer. For dehydrogenase-based biosensor, normally, the cofactor of beta-nicotinamide adenine dinucleotide (NAD(+)) or beta-nicotinamide adenine dinucleotide phosphate (NADP(+)) is necessary. Furthermore, we found the photovoltaic effect of CNTs/CdS/GDH can trigger the dehydrogenase enzymatic reaction in the absence of the NAD(+) or NADP(+) cofactors. The electrochemical experiment results also demonstrate that the cofactor-independent dehydrogenase biosensing system had series attractive characteristics, such as a good sensitivity (11.9 nA/microM), lower detection limit (up to 50 nM), an acceptable reproducibility and stability. These studies aid in understanding the combination of the semiconductor nanohybrids (CNTs/QDs, etc.) and biomolecules (enzymes, etc.), which has potential for the applications in biosensor, biofuel cell, biomedical and other bioelectronics field.

  6. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  7. Outdoor Performance Comparison of Concentrator Photovoltaic and Flat Plate Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Hidaka Yoshihide

    2016-01-01

    Full Text Available Output characteristics of tracking type concentrator photovoltaic (CPV system, multi-crystalline silicon (mc-Si PV system, CIGS PV system, and amorphous silicon (a-Si PV system were analyzed in the data period of a year from August 2013 to July 2014. In this study, we analyzed the influence of environmental factors using average photon energy (APE and temperature of solar cell (Tcell. The characteristics of 14 kW CPV system, 50 kW mc-Si PV system, 60 kW CIGS PV system, 1.35 kW a-Si PV system were evaluated and compared. As a result, the output performance of CPV was highest between the four systems at the most frequent conditions in the outdoor environment.

  8. Neutron and X-Ray Scattering Studies of Hybrid Perovskites for Photovoltaic Applications

    Science.gov (United States)

    Crawford, Michael; Whitfield, Pamela; Jalarvo, Niina; Ehlers, Georg; Tyagi, Madhusudan; Herron, Norman; Johnson, Lynda; Guise, William; Milas, Ivan; Cheng, Yongqiang; Daemen, Luke; Ramirez-Cuesta, Anibal; Page, Katharine; Wang, Xiaoping; Ye, Feng

    Hybrid perovskites (ABX3) have attracted a great deal of attention recently as light absorbers for photovoltaics. In these materials the A site is occupied by organic cations, for example methyl ammonium (MA) or formamidinium (FA) cations, the B site is occupied by metals, for example Pb or Sn, and the X anions are halogens (I, Br, or Cl). Typical of perovskites, these materials exhibit a series of structural phase transitions involving rotations or tilts of the BX6 octahedra, but with the added complexity that the inorganic framework is coupled to order-disorder transitions of the organic cations. We have used neutron scattering techniques to characterize the structures and dynamics of several of these compounds as a function of temperature. In addition, high resolution synchrotron x-ray diffraction measurements have been performed to investigate the structural phase transitions. These studies yield a detailed picture of the structures, dynamics, and structural phase transitions of these compounds, and provide a firm basis for understanding their excellent photovoltaic properties.

  9. Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%

    KAUST Repository

    Beiley, Zach M.

    2012-01-01

    It is estimated that for photovoltaics to reach grid parity around the planet, they must be made with costs under $0.50 per W p and must also achieve power conversion efficiencies above 20% in order to keep installation costs down. In this work we explore a novel solar cell architecture, a hybrid tandem photovoltaic (HTPV), and show that it is capable of meeting these targets. HTPV is composed of an inexpensive and low temperature processed solar cell, such as an organic or dye-sensitized solar cell, that can be printed on top of one of a variety of more traditional inorganic solar cells. Our modeling shows that an organic solar cell may be added on top of a commercial CIGS cell to improve its efficiency from 15.1% to 21.4%, thereby reducing the cost of the modules by ∼15% to 20% and the cost of installation by up to 30%. This suggests that HTPV is a promising option for producing solar power that matches the cost of existing grid energy. © 2012 The Royal Society of Chemistry.

  10. A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation

    Science.gov (United States)

    Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang

    2017-07-01

    Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.

  11. Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications.

    Science.gov (United States)

    Guldi, Dirk M

    2007-03-28

    This article surveys and highlights the integration of nanometer scale carbon structures--in combination with chromophores that exhibit (i) significant absorption cross section throughout the visible part of the solar spectrum and (ii) good electron donating power--into novel electron donor-acceptor conjugates (i.e., covalent) and hybrids (i.e., non-covalent). The focus of this article is predominantly on performance features--charge-transfer and photovoltaic--of the most promising solar energy conversion systems. Besides documenting fundamental advantages as they emerge around nanometer scale carbon structures, critical evaluations of the most recent developments in the fields are provided.

  12. 基于混合储能系统跟踪光伏发电输出功率的控制策略%Control Strategy for Tracking the Output Power of Photovoltaic Power Generation Based on Hybrid Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    田春光; 田利; 李德鑫; 吕项羽; 常学飞

    2016-01-01

    混合储能系统兼备能量型储能和功率型储能的技术特性,可以有效缩减光伏功率的预测误差,提高将光伏预测出力作为电力调度参考的可靠性。为此,提出了混合储能系统提升光伏电站跟踪目标出力能力的优化控制策略。该策略采用内部能量协调控制和多目标优化控制的复合控制方式,合理地分配了电池与超级电容器的充放电功率,控制混合系统的出力弥补光伏电站预测功率和实际功率的偏差。通过国内某40MW光伏电站250天输出功率数据进行仿真分析,表明该策略不仅可以有效跟踪光伏的预测出力,而且能够充分发挥不同储能介质的特性,降低电池的充放电深度,使混合储能得到更好的应用。%Hybrid energy storage system has the technical characteristics of both energy storage and power storage. It can effectively reduce the photovoltaic power prediction error, hence improve the reliability where PV forecast output is used as the reference of the power dispatch. Therefore, this paper proposes an optimal control strategy for hybrid energy storage system to improve the capacity of photovoltaic output tracking the target output power. This strategy uses the compound control method to control the internal energy coordination control and the multi-objective optimization control. It can reasonably distribute the charge and discharge power of battery and super capacitor, and control the output of the hybrid system to make up for the deviations between the predicted power and the actual power. By analyzing the data of 250 days output power from a domestic 40MW photovoltaic power station, it is shown that this strategy can not only effectively trace the predicted output power of PV, but also make full use of the characteristics of different storage mediums. It reduces the charge and discharge depths of the battery, and consequently the hybrid storage can be better applied.

  13. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  14. Density Functional Theory Simulations of Semiconductors for Photovoltaic Applications: Hybrid Organic-Inorganic Perovskites and III/V Heterostructures

    Directory of Open Access Journals (Sweden)

    Jacky Even

    2014-01-01

    Full Text Available Potentialities of density functional theory (DFT based methodologies are explored for photovoltaic materials through the modeling of the structural and optoelectronic properties of semiconductor hybrid organic-inorganic perovskites and GaAs/GaP heterostructures. They show how the properties of these bulk materials, as well as atomistic relaxations, interfaces, and electronic band-lineups in small heterostructures, can be thoroughly investigated. Some limitations of available standard DFT codes are discussed. Recent improvements able to treat many-body effects or based on density-functional perturbation theory are also reviewed in the context of issues relevant to photovoltaic technologies.

  15. Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran

    Directory of Open Access Journals (Sweden)

    M Mohammadi Sarduei

    2017-05-01

    Full Text Available Introduction Electrical performance of solar cells decreases with increasing cell temperature, basically because of growth of the internal charge carrier recombination rates, caused by increased carrier concentrations. Hybrid Photovoltaic/thermal (PVT systems produce electrical and thermal energy simultaneously. PVT solar collectors convert the heat generated in the solar cells to low temperature useful heat energy and so they provide a lower working temperature for solar cells which subsequently leads to a higher electrical efficiency. Recently, in Iran, the reforming government policy in subsidy and increasing fossil fuels price led to growing an interest in use of renewable energies for residual and industrial applications. In spite of this, the PV power generator investment is not economically feasible, so far. Hybrid PVT devices are well known as an alternative method to improve energy performance and therefore economic feasibility of the conventional PV systems. The aim of this study is to investigate the performance of a PVT solar water heater in four different cities of Iran using TRNSYS program. Materials and Methods The designed PVT solar water system consists of two separate water flow circuits namely closed cycle and open circuit. The closed cycle circuit was comprised of a solar PVT collector (with nominal power of 880 W and area of 5.6 m2, a heat exchanger in the tank (with volume of 300 L, a pump and connecting pipes. The water stream in the collector absorbs the heat accumulated in the solar cells and delivers it to the water in the tank though the heat exchanger. An on/off controller system was used to activate the pump when the collector outlet temperature was higher than that of the tank in the closed cycle circuit. The water in the open circuit, comes from city water at low temperature, enters in the lower part of the storage tank where the heat transfer occurs between the two separate circuits. An auxiliary heater, connected

  16. Sandia photovoltaic systems definition and application experiment projects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    1983-04-01

    A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.

  17. Hybrid Control Strategy for Photovoltaic system Connected to Micro-grid%微网中光伏系统的并网复合控制策略研究

    Institute of Scientific and Technical Information of China (English)

    张丽; 岳建房; 徐玉琴

    2011-01-01

    In order to meet the needs of micro-gid operation, this paper proposes a control strategy which combines minimum beat control with repetitive control. This strategy can he applied to the control of Photovoltaic grid inverter in micro-gid system, whereby the repetitive control can restrain the periodic disturbance of the load and power grid, and evidently reduce the total harmonic distortion of the grid-connected current, while the minimum beat control can improve the dynamic response speed of the system. Finally, modeling on Matlab/Simulink, the simulation results showed that the proposed control strategy is correct and effective, as well as applicable to other types of inverter power supply in micro-grid.%为了更好的满足微网运行的需要,提出一种重复控制跟最少拍控制相结合的复合控制策略。将这种策略应用于微网中光伏逆变器的联网运行控制,重复控制保证了系统具有高稳态精度和低谐波畸变率,最少拍控制保证了系统的动态响应速度。通过MATLAB软件建立模型进行仿真,证明了该控制法案的正确性和有效性,同时这种复合控制的思想也适用于微网中的其它逆变型电源。

  18. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  19. Performance analysis of a grid-connected photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Sidrach-de-Cardona, M. [Universidad de Malaga (Spain). Dpto. Fisica Aplicado II; Lopez, L.M. [Universidad de Malaga (Spain). Dpto. Lenguajes y C. Computacion

    1999-02-01

    Grid-connected photovoltaic systems are required to introduce photovoltaic solar energy into urban areas. To analyze these systems, a 2.0 kW{sub p} power system has been installed at the University of Malaga, Spain. The array power output was estimated by using measured I-V curves for the installed modules with minimization of mismatch losses. The supplied grid energy and main performances are described. The effects on system yield of threshold-inverter and coupling losses of the inverter to the grid have been studied. During 1997, the system supplied 2678 kWh to the grid, i.e. the mean daily output, was 7.4 kWh. The annual performance ratio was 64.5% and the optimal value 67.9%. (author)

  20. Reduced order modeling of grid-connected photovoltaic inverter systems

    Science.gov (United States)

    Wasynczuk, O.; Krause, P. C.; Anwah, N. A.

    1988-04-01

    This report summarizes the development of reduced order models of three-phase, line- and self-commutated inverter systems. This work was performed as part of the National Photovoltaics Program within the United States Department of Energy and was supervised by Sandia National Laboratories. The overall objective of the national program is to promote the development of low cost, reliable terrestrial photovoltaic systems for widespread use in residential, commercial and utility applications. The purpose of the effort reported herein is to provide reduced order models of three-phase, line- and self-commutated PV systems suitable for implementation into transient stability programs, which are commonly used to predict the stability characteristics of large-scale power systems. The accuracy of the reduced models is verified by comparing the response characteristics predicted therefrom with the response established using highly detailed PV system models in which the inverter switching is represented in detail.

  1. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    Science.gov (United States)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  2. Simulation of an active cooling system for photovoltaic modules

    Science.gov (United States)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  3. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  4. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  5. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  6. Sizing and Simulation of PV-Wind Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2013-01-01

    Full Text Available A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.

  7. Z Source Inverter for Photovoltaic System with Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Vijayabalan R

    2012-10-01

    Full Text Available In this paper, the photovoltaic system is used to extract the maximum power from sun to get the dc voltage. The output dc voltage is boost up into maximum voltage level by using the SEPIC converter. This converter voltage is fed to Z source inverter to get the AC voltage. The Z source inverter system can boost the given input voltage by controlling the boost factor, to obtain the maximum voltage. PWM technique which is used as to given the gating pulse to the inverter switches. Modified system is very promising for residential solar energy system. In stand-alone systems the solar energy yield is matched to the energy demand. Wherever it was not possible to install an electricity supply from the mains utility grid, or desirable, stand-alone photovoltaic systems could be installed. This proposed system is cost-effective for photovoltaic stand-alone applications. This paper describes the design of a rule based Fuzzy Logic Controller (FLC for Z Source inverter. The obtained AC Voltage contains harmonics of both odd and even harmonics of lower and higher order. Higher order harmonics are eliminated with the help of Filters. Here the impedance network act as a filter to reduce the lower order harmonics obtained in the system. So with the help of FFT analysis this value is obtained to be 15.82%.

  8. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  9. Hybrid solar lighting systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  10. Optimized low-cost-array field designs for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Post, H.N.; Carmichael, D.C.; Castle, J.A.

    1982-01-01

    As manager of the US Department of Energy Photovoltaic Systems Definition Project, Sandia National Laboratories is engaged in a comprehensive program to define and develop array field subsystems which can achieve the lowest possible lifecycle costs. The major activity of this program is described, namely, the design and development of optimized, modular array fields for photovoltaic (PV) systems. As part of this activity, design criteria and performance requirements for specific array subsystems including support structures, foundations, intermodule connections, field wiring, lightning protection, system grounding, site preparation, and monitoring and control have been defined and evaluated. Similarly, fully integrated flat-panel array field designs, optimized for lowest lifecycle costs, have been developed for system sizes ranging from 20 to 500 kW/sub p/. Key features, subsystem requirements, and projected costs for these array field designs are presented and discussed.

  11. Dimensioning of Photovoltaic Generation Systems Located in Medellin City

    Directory of Open Access Journals (Sweden)

    Laura Herrera

    2013-11-01

    Full Text Available Photovoltaic systems are one of the most efficient solutions to the energy crisis of the last decades. The implementation of these systems will be economically feasible in most cases, due to extensive number of advantages that they exhibit. However, for the sake of better economic performance, it is important to generate different strategies for their management. This paper presents an optimization strategy based on the redistribution of power generated, which seeks to stop spending as it is produced to take advantage of those times when energy rates are higher, making use of a storage system. The steps for the photovoltaic system design with these criteria and economic analysis will be presented.

  12. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  13. Optimum Design Of Grid Connected Photovoltaic System Using Concentrators

    Directory of Open Access Journals (Sweden)

    Eng. Mohammed Fawzy

    2015-08-01

    Full Text Available Abstract Due to the increasing demand of electrical energy in Egypt and also in many neighboring countries around the world the main problem facing electrical energy production using classical methods such steam power stations is the depletion of fossil fuels. The gap between the electrical energy demand and the continuous increase on the fossil fuel cost make the problem of electricity generation more sophisticated. With the continuous decrease of the photovoltaic PV technologies cost it doesnt make sense neglecting the importance of electricity production using solar photovoltaic PV especially that the annual average daily energy received is about 6 kamp12310whmamp123112day in Cairo Egypt 30N.In this work a detailed simulation model including photovoltaic PV module characteristics and climatic conditions of Cairo Egypt is developed. The model compares fixed PV systems electrical energy output with photovoltaic PV system using concentrators and double axis tracker systems. The comparison includes the energy generated area required as well as the cost per kwh generated. The optimality criterion is the cost per kwh generated. The system that gives the minimum cost per kwh is the optimum system. To verify the developed model the simulation results of fixed PV modules and CPV using tracking system obtained by the model are compared with practical measurements of 40KW peak station erected in Cairo Egypt 30N.Very good agreement between measured values and results obtained from detailed simulation model. For fixed PV system the detailed economic analysis showed that it gives minimum cost perkwh generated Comparisons among these systems are presented. For Cairo results showed that a cost of about 6 to 9 US centskwh is attainable.

  14. Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Antonino Laudani

    2015-01-01

    Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.

  15. In situ formation of organic-inorganic hybrid nanostructures for photovoltaic applications.

    Science.gov (United States)

    Wood, Sebastian; Garnett, Oliver; Tokmoldin, Nurlan; Tsoi, Wing C; Haque, Saif A; Kim, Ji-Seon

    2014-01-01

    The performance of hybrid (organic-inorganic) photovoltaic devices is critically dependent on the thin film morphology. This work studies the film formation process using the in situ thermal decomposition of a soluble precursor to form a well-distributed network of CdS nanoparticles within a poly(3-hexylthiophene) (P3HT) polymer matrix. Resonant Raman spectroscopy is used to probe the formation of the inorganic nanoparticles and the corresponding changes in the molecular order of the polymer. We find that the CdS precursor decomposes rapidly upon heating to 160 °C, but that this has a disruptive effect on the P3HT. The extent of this disruption can be controlled by adjusting the annealing temperature, and nanowire aggregates of P3HT are found to have increased susceptibility. Atomic force microscopy reveals that at high temperatures (>200 °C), cracks form in the film, resulting in a 'plateau'-like microstructure. In order to retain the preferable 'granular' microstructure and to control the molecular disruption, low decomposition temperatures are needed. This work identifies a particular problem for optimising the hybrid thin film morphology and shows how it can be partially overcome.

  16. Lead-free Organic-Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives.

    Science.gov (United States)

    Shi, Zejiao; Guo, Jia; Chen, Yonghua; Li, Qi; Pan, Yufeng; Zhang, Haijuan; Xia, Yingdong; Huang, Wei

    2017-02-03

    Organic-inorganic hybrid halide perovskites (e.g., MAPbI3 ) have recently emerged as novel active materials for photovoltaic applications with power conversion efficiency over 22%. Conventional perovskite solar cells (PSCs); however, suffer the issue that lead is toxic to the environment and organisms for a long time and is hard to excrete from the body. Therefore, it is imperative to find environmentally-friendly metal ions to replace lead for the further development of PSCs. Previous work has demonstrated that Sn, Ge, Cu, Bi, and Sb ions could be used as alternative ions in perovskite configurations to form a new environmentally-friendly lead-free perovskite structure. Here, we review recent progress on lead-free PSCs in terms of the theoretical insight and experimental explorations of the crystal structure of lead-free perovskite, thin film deposition, and device performance. We also discuss the importance of obtaining further understanding of the fundamental properties of lead-free hybrid perovskites, especially those related to photophysics.

  17. The Configuration Research of the Battery and Fuel Cell in Hybrid Power Generation System of Photovoltaic and Fuel Cell%太阳能光伏-燃料电池联合发电系统蓄电池和燃料电池的配置研究

    Institute of Scientific and Technical Information of China (English)

    王侃宏; 侯佳松; 肖静静; 戚高启; 胡翠华; 白华夏; 刘少亮

    2011-01-01

    建立了联合系统的太阳能光伏阵列、燃料电池、电解槽、蓄电池等模块的数学模型,并对每个模块进行matlab/simulink仿真模拟,重点模拟了在1 kW光伏条件下,蓄电池、燃料电池以不同功率(0 W/1000 W,200 W/800W,500 W/500 W,800 W/200 W,1000 W/0 W)分配时,输出功率特性以及各个情况下的费用问题,并通过实验进行验证,可知蓄电池、燃料电池按照200 W/800 W功率分配时,其效率、费用总体优于其他方案.%This paper established the mathematical model of a hybrid system, which includes solar photovoltaic array, fuel cells, electrolytic cell, batteries. Each module was simulated through matlab/simulink, and the output power characteristics, as well as the expense problem were simulated under the conditions that the photovoltaic power was lkw, and battery, fuel cell with different power allocation, namely, 0 W/1000 W, 200 W/800 W, 500 W/500 W, 800 W/200 W, 1000 W/0 W. Finally, through experimental research , a conclusion can be drawn that when battery was 200 W, and fuel cells was 800 W, the whole efficiency and the cost were superior to other schemes.

  18. Photovoltaic power system operation in the Mars environment

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.

    1989-01-01

    Detailed information on the environmental conditions on Mars are very desirable for the design of photovoltaic systems for establishing outposts on the Martian surface. The variation of solar insolation (global, direct, and diffuse) at the Viking lander's locations is addressed. It can be used, to a first approximation, for other latitudes. The radiation data is based on measured optical depth of the Martian atmosphere derived from images taken of the sun with a special diode on the Viking cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation. The data are used to make estimates of photovoltaic system power, area and mass for a surface power system using regenerative fuel cells for storage and nighttime operation.

  19. Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T system against conventional photovoltaic (PV system

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2015-11-01

    Full Text Available Photovoltaic (PV semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel, and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment.

  20. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    systems are derived in this thesis. The results are used for output feedback control of switched nonlinear systems. Model reduction of piecewise affine systems is also studied in this thesis. The proposed method is based on the reduction of linear subsystems inside the polytopes. The methods which......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...... of hybrid systems, designing controllers and implementations is very high so that the use of these models is limited in applications where the size of the state space is large. To cope with complexity, model reduction is a powerful technique. This thesis presents methods for model reduction and stability...

  1. A hybrid base isolation system

    Energy Technology Data Exchange (ETDEWEB)

    Hart, G.C. [Univ. of California, Los Angeles, CA (United States); Lobo, R.F.; Srinivasan, M. [Hart Consultant Group, Santa Monica, CA (United States); Asher, J.W. [kpff Engineers, Santa Monica, CA (United States)

    1995-12-01

    This paper proposes a new analysis procedure for hybrid base isolation buildings when considering the displacement response of a base isolated building to wind loads. The system is considered hybrid because of the presence of viscous dampers in the building above the isolator level. The proposed analysis approach incorporates a detailed site specific wind study combined with a dynamic nonlinear analysis of the building response.

  2. Ion-atom hybrid systems

    CERN Document Server

    Willitsch, Stefan

    2014-01-01

    The study of interactions between simultaneously trapped cold ions and atoms has emerged as a new research direction in recent years. The development of ion-atom hybrid experiments has paved the way for investigating elastic, inelastic and reactive collisions between these species at very low temperatures, for exploring new cooling mechanisms of ions by atoms and for implementing new hybrid quantum systems. The present lecture reviews experimental methods, recent results and upcoming developments in this emerging field.

  3. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  4. Photovoltaic stand-alone modular systems, phase 2

    Science.gov (United States)

    Naff, G. J.; Marshall, N. A.

    1983-01-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  5. A simple model for sizing stand alone photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Sidrach-de-Cardona, M. [Departamento Fisica Aplicada II, ETSI Informatica, Universidad de Malaga, 29071 Malaga (Spain); Mora Lopez, Ll. [Departamento Lenguajes y C. Computacion, ETSI Informatica, Universidad de Malaga, 29071 Malaga (Spain)

    1998-08-24

    We consider a general model for sizing a stand-alone photovoltaic system, using as energy input data the information available in any radiation atlas. The parameters of the model are estimated by multivariate linear regression. The results obtained from a numerical sizing method were used as initial input data to fit the model. The expression proposed allows us to determine the photovoltaic array size, with a coefficient of determination ranging from 0.94 to 0.98. System parameters and mean monthly values for daily global radiation on the solar modules surface are taken as independent variables in the model. It is also shown that the proposed model can be used with the same accuracy for other locations not considered in the estimation of the model

  6. A quantitative method for photovoltaic encapsulation system optimization

    Science.gov (United States)

    Garcia, A., III; Minning, C. P.; Cuddihy, E. F.

    1981-01-01

    It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.

  7. Photovoltaic system criteria documents. Volume 1: Guidelines for evaluating the management and operations planning of photovoltaic applications

    Science.gov (United States)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Guidelines are provided to the Field Centers for organization, scheduling, project and cost control, and performance in the areas of project management and operations planning for Photovoltaics Test and Applications. These guidelines may be used in organizing a T and A Project Team for system design/test, site construction and operation, and as the basis for evaluating T and A proposals. The attributes are described for project management and operations planning to be used by the Field Centers. Specifically, all project management and operational issues affecting costs, schedules and performance of photovoltaic systems are addressed. Photovoltaic tests and applications include residential, intermediate load center, central station, and stand-alone systems. The sub-categories of system maturity considered are: Initial System Evaluation Experiments (ISEE); System Readiness Experiments (SRE); and Commercial Readiness Demonstration Projects (CRDP).

  8. Does your domestic photovoltaic energy system survive grid outages?

    OpenAIRE

    Jongerden, Marijn R.; Jannik Hüls; Anne Remke; Haverkort, Boudewijn R.

    2016-01-01

    Domestic renewable energy systems, including photovoltaic energy generation, as well as local storage, are becoming increasingly popular and economically feasible, but do come with a wide range of options. Hence, it can be difficult to match their specification to specific customer’s needs. Next to the usage-specific demand profiles and location-specific production profiles, local energy storage through the use of batteries is becoming increasingly important, since it allows one to balance va...

  9. Description of an Immersed Photovoltaic Concentrating Solar Power System

    OpenAIRE

    Falbel, Gerald

    1998-01-01

    Recent advancements in photovoltaic solar cells made from Gallium Arsenide (GaAs) have shown that with concentration ratios greater than one solar constant, overall efficiencies up to 23% can be achieved. A second issue applicable to solar power systems for spacecraft is the cost driver, which requires that the efficiency/weight ratio be improved so that solar panels with high output, weighing less, will reduce payload weights, which, in turn, reduces launch costs. This has resulted in a "Fig...

  10. Simulation and simplified design of photovoltaic power systems

    Science.gov (United States)

    Evans, D. L.; Facinelli, W. A.; Koehler, L. P.

    Results of TRNSYS simulations of photovoltaic systems with and without battery storage are described. The systems have south facing, flat arrays that are max-power tracked and have one day or less of storage. Studies of the sensitivity of system performance, in terms of the fraction of the electrical load supplied by the solar energy system, to variables such as array size, battery size, location, time of year, and load shape are reported. A simplified method for calculating system performance is described and examples of its accuracy are presented.

  11. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  12. Power quality analysis of hybrid renewable energy system

    Directory of Open Access Journals (Sweden)

    Rinchin W. Mosobi

    2015-12-01

    Full Text Available An hybrid renewable energy sources consisting of solar photovoltaic, wind energy system, and a microhydro system is proposed in this paper. This system is suitable for supplying electricity to isolated locations or remote villages far from the grid supply. The solar photovoltaic system is modeled with two power converters, the first one being a DC-DC converter along with an maximum power point tracking to achieve a regulated DC output voltage and the second one being a DC-AC converter to obtain AC output. The wind energy system is modeled with a wind-turbine prime mover with varying wind speed and fixed pitch angle to drive an self excited induction generator (SEIG. Owing to inherent drooping characteristics of the SEIG, a closed loop turbine input system is incorporated. The microhydro system is modeled with a constant input power to drive an SEIG. The three different sources are integrated through an AC bus and the proposed hybrid system is supplied to R, R-L, and induction motor loads. A static compensator is proposed to improve the load voltage and current profiles; it also mitigates the harmonic contents of the voltage and current. The static synchronous compensator is realized by means of a three-phase IGBT-based current-controlled voltage source inverter with a self-supporting DC bus. The complete system is modeled and simulated using Matlab/Simulink. The simulation results obtained illustrate the feasibility of the proposed system and are found to be satisfactory.

  13. Technico-economic assessment of hybrid diesel-photovoltaic power plant in the south of Algeria

    Science.gov (United States)

    Kadri, A. Y.; Hamidat, A.

    2016-07-01

    In Algeria, Electrical energy demand has knew a significant growth in recent years. The important increase in demand is due to the development of industrial and commercial sectors, and the comfort of residents customers by using multiple equipment of household such as the TV, ventilator, especially air-conditioners in the south of Algeria. To address the problem of imbalance between supply and demand, it is compulsory to add other units of productions of electricity. These units can be use conventional sources or renewable energy sources. This study focuses on the feasibility of hybridizing diesel power plants supplying the isolated villages in southern Algeria by the introduction of PV systems. The town of Djanet was taken as a case study. The comparison between the different technical and economic parameters allows determining the contribution of the hybridization of conventional resources of production. However, the cost-effectiveness based on the net present cost (NPC) is estimated at 176, 054.208 for the hybrid system and 194, 965.280 for all Diesel system. In terms of the cost per kWh produced by the two systems, the kWh produced by the hybrid system is less expensive than the kWh produced by any conventional diesel system is 0.551 / kWh against 0.610 / kWh. The results also show that the hybrid system provides coverage of the expected load in the future.

  14. Diffusion of photovoltaic systems for rural electrification in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sriwannawit, Pranpreya; Laestadius, Staffan [Department of Industrial Economics and Management, Royal Institute of Technology (KTH), Lindstedtsvagen 30, Stockholm 10044 (Sweden)

    2013-07-01

    This paper studies a pilot project in which photovoltaic systems were installed in thirty-six places in the remote areas of Thailand with no access to electricity. One sub-project out of thirty-six was chosen for in-depth investigation. We discuss the appropriateness of solar energy for Thailand context. The diffusion process of PV systems is analyzed on four elements: innovation, communication channel, time and social system. This project is an extreme case as the PV systems and services were provided for free of charge. Even so, there are still some challenges to get acceptance for this sustainable form of energy.

  15. Thermal control system for Space Station Freedom photovoltaic power module

    Science.gov (United States)

    Hacha, Thomas H.; Howard, Laura

    1994-01-01

    The electric power for Space Station Freedom (SSF) is generated by the solar arrays of the photovoltaic power modules (PVM's) and conditioned, controlled, and distributed by a power management and distribution system. The PVM's are located outboard of the alpha gimbals of SSF. A single-phase thermal control system is being developed to provide thermal control of PVM electrical equipment and energy storage batteries. This system uses ammonia as the coolant and a direct-flow deployable radiator. The description and development status of the PVM thermal control system is presented.

  16. Photovoltaic System with Smart Tracking of the Optimal Working Point

    Directory of Open Access Journals (Sweden)

    PATARAU, T.

    2010-08-01

    Full Text Available A photovoltaic (PV system, based on a Maximum Power Point Tracking (MPPT controller that extracts the maximum possible output power from the solar panel is described. Output efficiency of a PV energy system can be achieved only if the system working point is brought near the maximum power point (MPP. The proposed system, making use of several MPPT control algorithms (Perturb and Observe, Incremental conductance, Fuzzy Logic, demonstrates in simulations as well as in real experiments good tracking of the optimal working point.

  17. Diffusion of photovoltaic systems for rural electrification in Thailand

    Directory of Open Access Journals (Sweden)

    Pranpreya Sriwannawit, Staffan Laestadius

    2013-01-01

    Full Text Available This paper studies a pilot project in which photovoltaic systems were installed in thirty-six places in the remote areas of Thailand with no access to electricity. One sub-project out of thirty-six was chosen for in-depth investigation. We discuss the appropriateness of solar energy for Thailand context. The diffusion process of PV systems is analyzed on four elements: innovation, communication channel, time and social system. This project is an extreme case as the PV systems and services were provided for free of charge. Even so, there are still some challenges to get acceptance for this sustainable form of energy.

  18. 32 tesla hybrid magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Leupold, M.J.; Iwasa, Y.; Weggel, R.J. (MIT Cambridge (U.S.A.))

    1984-01-01

    The paper describes the design and construction of a hybrid magnet system to generate 32T with 9MW of electrical power. The system consist of an 11T niobium-titanium superconducting magnet, a 1.8K/4.2K cryostat, and a high-performance, water-cooled Bitter magnet, all of which are discussed in the paper.

  19. Feasibility and Optimal Design of a Stand-Alone Photovoltaic Energy System for the Orphanage

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2014-01-01

    Full Text Available Access to electricity can have a positive psychological impact through a lessening of the sense of exclusion, and vulnerability often felt by the orphanages. This paper presented the simulation and optimization study of a stand-alone photovoltaic power system that produced the desired power needs of an orphanage. Solar resources for the design of the system were obtained from the National Aeronautics and Space Administration (NASA Surface Meteorology and Solar Energy website at a location of 6°51′N latitude and 7°35′E longitude, with annual average solar radiation of 4.92 kWh/m2/d. This study is based on modeling, simulation, and optimization of energy system in the orphanage. The patterns of load consumption within the orphanage were studied and suitably modeled for optimization. Hybrid Optimization Model for Electric Renewables (HOMER software was used to analyze and design the proposed stand-alone photovoltaic power system model. The model was designed to provide an optimal system configuration based on an hour-by-hour data for energy availability and demands. A detailed design, description, and expected performance of the system were presented in this paper.

  20. Feasibility study of a hybrid plants (photovoltaic–LPG generator system for rural electrification

    Directory of Open Access Journals (Sweden)

    Adouane Mabrouk

    2016-01-01

    Full Text Available The present study investigates the possibility of using a stand-alone photovoltaic/LPG (liquid petroleum gas generator hybrid power system for low-cost electricity production which can satisfy the energy load requirements of a typical remote and isolated rural area. In this context, the optimal dimensions to improve the technical and economical performances of the hybrid system are determined according to the load energy requirements. The proposed system's installation and operating costs are simulated using the Hybrid Optimization Model for Electric Renewable (HOMER, the solar radiation and the system components costs as inputs; and then compared with those of other supply options such as diesel generation.

  1. Optimization of hybrid system (wind-solar energy) for pumping water

    African Journals Online (AJOL)

    DR OKE

    ηp is the panel output determined from the efficiency of photovoltaic cell that constitutes .... The reservoir: a pond of water storage featuring a cylindrical shape of 6m ..... Prospect of wind-PV-battery hybrid power system as an alternative to grid.

  2. Planning and installing photovoltaic systems a guide for installers, architects and engineers

    CERN Document Server

    Deutsche Gesellschaft für Sonnenenergie (DGS)

    2013-01-01

    New third edition of the bestselling manual from the German Solar Energy Society (DGS), showing you the essential steps to plan and install a solar photovoltaic system. With a global focus, it has been updated to include sections on new technology and concepts, new legislation and the current PV market.Updates cover:new developments in inverter and module technologymarket situation worldwide and outlookintegration to the grid (voltage stabilization, frequency, remote control)new legal requirements for installation and planningoperational costs for dismantling and recyclingfeed-in managementnew requirements for fire protectionnew requirements in Europe for electric waste (Waste Electrical and Electronic Equipment, WEEE) and the restriction of the use of certain hazardous substances (RoHS).Also providing information on current developments in system design, economic analysis, operation and maintenance of PV systems, as well as new software tools, hybrid and tracking systems.An essential manual for installers, e...

  3. Effect of Distributed Photovoltaic Generation on the Voltage Magnitude in a Self-Contained Power Supply System

    Science.gov (United States)

    Lukutin, B. V.; Shandarova, E. B.; Makarova, A. F.; Shvartsman, I. B.

    2016-04-01

    A promising way to increase the technical and economic characteristics of standalone power supply systems is to incorporate renewable energy installations in their structure. This saves fuel and extends the operational life of diesel power stations. The most common option is a hybrid system with photovoltaic power stations incorporated into the local network of the diesel power station. This paper deals with the dependence of the deflection voltage and power losses in the electric power transmission line on the graphs of electrical loads, the parameters of elements of the power supply system, connection points and the capacity of distributed photovoltaic power stations. Research has been carried out on the common low-voltage power supply systems of the radial type (0.4 kV) with an installed capacity of up to 100 kW. The studies have been conducted by simulating the operating modes of hybrid power systems of various configurations. As a result of these studies recommendations to reduce losses and voltage variations in the network by selecting the power and photovoltaic power connection points have been put forward.

  4. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  5. Hybrid Systems: Computation and Control.

    Science.gov (United States)

    2007-11-02

    elbow) and a pinned first joint (shoul- der) (see Figure 2); it is termed an underactuated system since it is a mechanical system with fewer...Montreal, PQ, Canada, 1998. [10] M. W. Spong. Partial feedback linearization of underactuated mechanical systems . In Proceedings, IROS󈨢, pages 314-321...control mechanism and search for optimal combinations of control variables. Besides the nonlinear and hybrid nature of powertrain systems , hardware

  6. Automatic data acquisition system for a photovoltaic solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.; Barrio, C.L.; Guerra, A.G.

    1986-01-01

    An autonomous monitoring system for photovoltaic solar plants is described. The system is able to collect data about the plant's physical and electrical characteristics and also about the environmental conditions. It may present the results on a display, if requested, but its main function is measuring periodically a set of parameters, including several points in the panel I-V characteristics, in an unattended mode. The data are stored on a magnetic tape for later processing on a computer. The system hardware and software are described, as well as their main functions.

  7. A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode

    DEFF Research Database (Denmark)

    Liu, Yao; Hou, Xiaochao; Wang, Xiaofeng;

    2016-01-01

    The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES) units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based...... on photovoltaic (PV) generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can...... for alternating current (AC)-side ES. Thus, the ES lifetime is prolonged. Moreover, interlinking converters (ICs) provide a bridge between AC/DC buses in a hybrid microgrid. The power control of IC is enabled when the AC- or DC-side suffer from active power demand shortage. In particular, if the AC microgrid does...

  8. Hybrid p-type ZnO film and n-type ZnO nanorod p-n homo-junction for efficient photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyun; Lee, Jun Seok; Lee, Sang Hyo; Nam, Hye Won [Novel Functional Materials and Device Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.k [Novel Functional Materials and Device Lab, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Cha, Seoung Nam; Park, Young Jun; Kim, Jong Min [Samsung Advanced Institute of Technology, P.O. Box 11, 1 Suwon 440-600 (Korea, Republic of)

    2010-09-01

    Simple hybrid p-n homo-junctions using p-type ZnO thin films and n-type nanorods grown on fluorine tin oxide (FTO) substrates for photovoltaic applications are described. The ZnO nanorods (1.5 {mu}m) were synthesized via an aqueous solution method with zinc nitrate hexahydrate and hexamethylenetetramine on ZnO seed layers. The 10-nm-thick ZnO seed layers showed n-type conductivity on FTO substrates and were deposited with a sputtering-based method. After synthesizing ZnO nanorods, aluminum-nitride co-doped p-type ZnO films (200 nm) were efficiently grown using pre-activated nitrogen (N) plasma sources with an inductively-coupled dual-target co-sputtering system. The structural and electrical properties of hybrid p-n homo-junctions were investigated by scanning electron microscopy, transmittance spectrophotometry, and I-V measurements.

  9. Hybrid nanocomposites based on conducting polymer and silicon nanowires for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Chehata, Nadia, E-mail: nadiachehata2@gmail.com [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Ltaief, Adnen [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Ilahi, Bouraoui [Laboratoire de Micro-optoélectronique et Nanostructures, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Salem, Bassem [Laboratoire des Technologies de la Microélectronique (LTM), UMR 5129 CNRS - UJF, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouazizi, Abdelaziz [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Maaref, Hassen [Laboratoire de Micro-optoélectronique et Nanostructures, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Baron, Thierry [Laboratoire des Technologies de la Microélectronique (LTM), UMR 5129 CNRS - UJF, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); and others

    2014-12-15

    Hybrid nanocomposites based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the performance of solar cells through a higher aspect ratio of the interface and the good processability of polymers. Nanocomposites are based on a heterojunction network between poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) as an organic electron donor and silicon nanowires (SiNWs) as an inorganic electron acceptor. Nanowires (NWs) seem to be a promising material for this purpose, as they provide a large surface area for contact with the polymer and a designated conducting pathway whilst their volume is low. In this paper, silicon nanowires are introduced by mixing them into the polymer matrix. Hybrid nanocomposites films were deposited onto ITO substrate by spin coating method. Optical properties and photocurrent response were investigated. Charge transfer between the polymer and SiNWs has been demonstrated through photoluminescence measurements. The photocurrent density of ITO/MEH-PPV:SiNWs/Al structures have been obtained by J–V characteristics. The J{sub sc} value is about 0.39 µA/cm{sup 2}. - Highlights: • SiNWs synthesis by Vapor–Liquid–Solid (VLS) mechanism. • SiNWs contribution to absorption spectra enhancement of MEH-PPV:SiNWs nanocomposites. • Decrease of PL intensity of MEH-PPV by addition of SiNWs. • Charge transfer process was taken place. • ITO/MEH-PPV:SiNWs/Al structure shows a photovoltaic effect, with a FF of 0.32.

  10. Advanced Hybrid Computer Systems. Software Technology.

    Science.gov (United States)

    This software technology final report evaluates advances made in Advanced Hybrid Computer System software technology . The report describes what...automatic patching software is available as well as which analog/hybrid programming languages would be most feasible for the Advanced Hybrid Computer...compiler software . The problem of how software would interface with the hybrid system is also presented.

  11. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.

    Science.gov (United States)

    Johnston, Michael B; Herz, Laura M

    2016-01-19

    Photovoltaic (PV) devices that harvest the energy provided by the sun have great potential as renewable energy sources, yet uptake has been hampered by the increased cost of solar electricity compared with fossil fuels. Hybrid metal halide perovskites have recently emerged as low-cost active materials in PV cells with power conversion efficiencies now exceeding 20%. Rapid progress has been achieved over only a few years through improvements in materials processing and device design. In addition, hybrid perovskites appear to be good light emitters under certain conditions, raising the prospect of applications in low-cost light-emitting diodes and lasers. Further optimization of such hybrid perovskite devices now needs to be supported by a better understanding of how light is converted into electrical currents and vice versa. This Account provides an overview of charge-carrier recombination and mobility mechanisms encountered in such materials. Optical-pump-terahertz-probe (OPTP) photoconductivity spectroscopy is an ideal tool here, because it allows the dynamics of mobile charge carriers inside the perovskite to be monitored following excitation with a short laser pulse whose photon energy falls into the range of the solar spectrum. We first review our insights gained from transient OPTP and photoluminescence spectroscopy on the mechanisms dominating charge-carrier recombination in these materials. We discuss that mono-molecular charge-recombination predominantly originates from trapping of charges, with trap depths being relatively shallow (tens of millielectronvolts) for hybrid lead iodide perovskites. Bimolecular recombination arises from direct band-to-band electron-hole recombination and is found to be in significant violation of the simple Langevin model. Auger recombination exhibits links with electronic band structure, in accordance with its requirement for energy and momentum conservation for all charges involved. We further discuss charge-carrier mobility

  12. Design description of the Tangaye Village photovoltaic power system

    Science.gov (United States)

    Martz, J. E.; Ratajczak, A. F.

    1982-01-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  13. Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency

    Science.gov (United States)

    Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.

    2011-05-01

    This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.

  14. Design description of the Tangaye Village photovoltaic power system

    Science.gov (United States)

    Martz, J. E.; Ratajczak, A. F.

    1982-06-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  15. Determination of Efficiency of Hybrid Photovoltaic Thermal Air Collectors Using Artificial Neural Network Approach for Different PV Technology

    Directory of Open Access Journals (Sweden)

    G. N. Tiwari

    2012-01-01

    Full Text Available In this paper an attempt has been made to determine efficiency of semi transparent hybrid photovoltaic thermal double pass air collector for different PV technology and compare it with single pass air collector using artificial neural network (ANN technique for New Delhi weather station of India. The MATLAB 7.1 neural networks toolbox has been used for defining and training of ANN for determination of thermal, electrical, overall thermal and overall exergy efficiency of the system. The ANN model uses ambient air temperature, number of sunshine hours, number of clear days, temperature coefficient, cell efficiency, global and diffuse radiation as input parameters. The transfer function, neural network configuration and learning parameters have been selected based on highest convergence during training and testing of network. About 2000 sets of data from four weather stations (Bangalore, Mumbai, Srinagar and Jodhpur have been given as input for training and data of the fifth weather station (New Delhi has been used for testing purpose. It has been observed that the best transfer function for a given configuration is logsig. The feed forward back-propagation algorithm has been used in this analysis. Further the results of ANN model have been compared with analytical values on the basis of root mean square error.

  16. Design description report for a photovoltaic power system for a remote satellite earth terminal

    Science.gov (United States)

    Marshall, N. A.; Naff, G. J.

    1987-01-01

    A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.

  17. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  18. Design and field performance of the KENETECH photovoltaic inverter system

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, M.R. [KENETECH Windpower, Inc., Livermore, CA (United States)

    1995-11-01

    KENETECH Windpower has recently adapted the power conversion technology developed for the company`s variable speed wind turbine to grid-connected photovoltaic applications. KENETECH PV inverter systems are now in successful operation at the Sacramento Municipal Utility District`s (SMUD) Hedge Substation and the PVUSA-Davis site, with additional systems scheduled to be placed into service by the end of 1995 at SMUD, the New York Power Authority, Xerox Corporation`s Clean Air Now project, and the Georgia Tech Aquatic Center. The features of the inverter are described.

  19. Dynamical systems revisited : Hybrid systems with Zeno executions

    OpenAIRE

    ZHANG, JUN; Johansson, Karl Henrik; Lygeros, John; Sastry, Shankar

    2000-01-01

    Results from classical dynamical systems are generalized to hybrid dynamical systems. The concept of omega limit set is introduced for hybrid systems and is used to prove new results on invariant sets and stability, where Zeno and non-Zeno hybrid systems can be treated within the same framework. As an example, LaSalle's Invariance Principle is extended to hybrid systems. Zeno hybrid systems are discussed in detail. The omega limit set of a Zeno execution is characterized for classes of hybrid...

  20. A solar photovoltaic power system for use in Antarctica

    Science.gov (United States)

    Kohout, Lisa L.; Colozza, A. J.; Merolla, A.

    1994-01-01

    A solar photovoltaic power system was designed and built at the NASA Lewis Research Center as part of the NASA/NSF Antarctic Space Analog Program. The system was installed at a remote field camp at Lake Hoare in the Dry Valleys and provided a six-person field team with the power to run personal computers and printers, lab equipment, lightning, and a small microwave oven. The system consists of three silicon photovoltaic sub-arrays delivering 1.5 kW peak power, three lead-acid gel battery modules supplying 2.4 kWh, and electrical distribution system which delivers 120 Vac and 12 Vdc to the user. The system was modularized for each of deployment and operation. Previously the camp has been powered by diesel generators, which have proven to be both noisy and polluting. The NSF, in an effort to reduce their dependence on diesel fuel from both and environmental and cost standpoint is interested in the use of alternate forms of energy, such as solar power. Such a power system will also provide NASA with important data on system level deployment and operation in a remote location by a minimally trained crew, as well as validate initial integration concepts.

  1. Residential Photovoltaic/Thermal Energy System

    Science.gov (United States)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  2. Residential Photovoltaic/Thermal Energy System

    Science.gov (United States)

    Selcuk, M. K.

    1987-01-01

    Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.

  3. Directing Hybrid Structures by Combining Self-Assembly of Functional Block Copolymers and Atomic Layer Deposition: A Demonstration on Hybrid Photovoltaics.

    Science.gov (United States)

    Moshonov, Moshe; Frey, Gitti L

    2015-11-24

    The simplicity and versatility of block copolymer self-assembly offers their use as templates for nano- and meso-structured materials. However, in most cases, the material processing requires multiple steps, and the block copolymer is a sacrificial building block. Here, we combine a self-assembled block copolymer template and atomic layer deposition (ALD) of a metal oxide to generate functional hybrid films in a simple process with no etching or burning steps. This approach is demonstrated by using the crystallization-induced self-assembly of a rod-coil block copolymer, P3HT-b-PEO, and the ALD of ZnO. The block copolymer self-assembles into fibrils, ∼ 20 nm in diameter and microns long, with crystalline P3HT cores and amorphous PEO corona. The affinity of the ALD precursors to the PEO corona directs the exclusive deposition of crystalline ZnO within the PEO domains. The obtained hybrid structure possesses the properties desired for photovoltaic films: donor-acceptor continuous nanoscale interpenetrated networks. Therefore, we integrated the films into single-layer hybrid photovoltaics devices, thus demonstrating that combining self-assembly of functional block copolymers and ALD is a simple approach to direct desired complex hybrid morphologies.

  4. Combinatorial Hybrid Systems

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Wisniewski, Rafal; Grunnet, Jacob Deleuran

    2008-01-01

    As initially suggested by E. Sontag, it is possible to approximate an arbitrary nonlinear system by a set of piecewise linear systems. In this work we concentrate on how to control a system given by a set of piecewise linear systems defined on simplices. By using the results of L. Habets and J. van...... Schuppen, it is possible to find a controller for the system on each of the simplices thus guaranteeing that the system flow on the simplex only will leave the simplex through a subset of its faces. Motivated by R. Forman, on the triangulated state space we define a combinatorial vector field, which...... indicates for a given face the future simplex. In the suggested definition we allow nondeterminacy in form of splitting and merging of solution trajectories. The combinatorial vector field gives rise to combinatorial counterparts of most concepts from dynamical systems, such as duals to vector fields, flow...

  5. The electrical storage systems in energy networks with fuel cells and photovoltaic systems for residential use

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Y.; Aki, H. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2007-07-01

    Fuel cell systems and photovoltaic systems are expected to penetrate Japan's residential sector as a distributed energy resource. However, in order to connect photovoltaic systems to the electricity grid in Japan, the power conditioner of the photovoltaic system should have a function to restrict output. The purpose of this study was to establish a cooperative operations method for fuel cells, photovoltaic cells and electrical storage devices. In the proposed networks of this study, electricity, hydrogen and hot water were interchanged and the equipment was shared for cooperative operation. The power generated by the photovoltaic system fluctuated widely. The power flow at the connecting point of the energy networks to the electric power distribution system was bidirectional and depended on the balance of the power produced by the photovoltaic system as well as the power consumption. The use of an electrical storage system for the proposed networks ensured the stability of the power system and enabled more flexible operation of fuel cell stacks. The cooperative operational method for fuel cell systems, photovoltaic systems and electrical storage systems involved the combination of an electrical double layer capacitor (EDLC) and a lithium-ion battery for residential dwellings. Simulation results showed that the use of an EDLC reduced the required capacity of electrical storage systems and the fluctuation of output power of fuel cell systems. The construction of an experimental facilities is being planned to evaluate the charge-discharge characteristics of the electric storage devices and auxiliary equipment, such as inverters. 1 ref., 1 tab., 5 figs.

  6. Optimization of Hybrid PV/Wind Energy System Using Genetic Algorithm (GA

    Directory of Open Access Journals (Sweden)

    Satish Kumar Ramoji

    2014-01-01

    Full Text Available In this paper, a new approach of optimum design for a Hybrid PV/Wind energy system is presented in order to assist the designers to take into consideration both the economic and ecological aspects. When the stand alone energy system having photovoltaic panels only or wind turbine only are compared with the hybrid PV/wind energy systems, the hybrid systems are more economical and reliable according to climate changes. This paper presents an optimization technique to design the hybrid PV/wind system. The hybrid system consists of photovoltaic panels, wind turbines and storage batteries. Genetic Algorithm (GA optimization technique is utilized to minimize the formulated objective function, i.e. total cost which includes initial costs, yearly replacement cost, yearly operating costs and maintenance costs and salvage value of the proposed hybrid system. A computer program is designed, using MATLAB code to formulate the optimization problem by computing the coefficients of the objective function. The method mentioned in this article is proved to be effective using an example of hybrid energy system. Finally, the optimal solution is achieved by Genetic Algorithm (GA optimization method.

  7. Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics.

    Science.gov (United States)

    Kim, Younghoon; Yang, Zhenyu; Jain, Ankit; Voznyy, Oleksandr; Kim, Gi-Hwan; Liu, Min; Quan, Li Na; García de Arquer, F Pelayo; Comin, Riccardo; Fan, James Z; Sargent, Edward H

    2016-08-08

    Bismuth-based hybrid perovskites are candidates for lead-free and air-stable photovoltaics, but poor surface morphologies and a high band-gap energy have previously limited these hybrid perovskites. A new materials processing strategy to produce enhanced bismuth-based thin-film photovoltaic absorbers by incorporation of monovalent silver cations into iodobismuthates is presented. Solution-processed AgBi2 I7 thin films are prepared by spin-coating silver and bismuth precursors dissolved in n-butylamine and annealing under an N2 atmosphere. X-ray diffraction analysis reveals the pure cubic structure (Fd3m) with lattice parameters of a=b=c=12.223 Å. The resultant AgBi2 I7 thin films exhibit dense and pinhole-free surface morphologies with grains ranging in size from 200-800 nm and a low band gap of 1.87 eV suitable for photovoltaic applications. Initial studies produce solar power conversion efficiencies of 1.22 % and excellent stability over at least 10 days under ambient conditions.

  8. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Curtis E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.

  9. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  10. The Brazilian programme for labelling photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Galdino, Marco Antonio; Lima, Jorge Henrique [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], E-mail: marcoag@cepel.br; Novgorodcev, Alexandre [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (PBE/INMETRO), Brasilia, DF (Brazil). Programa Brasileiro de Etiquetagem; Zilles, Roberto [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia; Zanesco, Izete; Moehlecke, Adriano [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil); Krenzinger, Arno [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Orlando, Alcir de Faro [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil)

    2003-07-01

    A great increase in the installation of stand-alone PV systems for rural electrification is expected in Brazil for the next years due to a government program named Luz para Todos. However, there is a major concern for the quality of the equipment and systems to be acquired and installed, which led to an initiative, coordinated by INMETRO - Brazilian Institute for Metrology, Standardisation and Industrial Quality (Instituto Brasileiro de Metrologia, Normalizacao e Qualidade Industrial), joining several institutions to establish a programme for labelling these equipment. The adopted requirements are discussed in the present article. (author)

  11. Photovoltaics and Wind Power Systems. Course Syllabus.

    Science.gov (United States)

    Bergen County Vocational-Technical High School, Hackensack, NJ.

    This course is one of four in a solar systems and energy management program developed by the Bergen County Vocational-Technical Schools to help tradespeople (heating, ventilation, and air conditioning mechanics; plumbers; and electricians) to develop an awareness of alternate energy sources and to gain skills in the areas of solar installations…

  12. River Debris Management System using Off-Grid Photovoltaic Module

    Directory of Open Access Journals (Sweden)

    Saadon Intan Mastura

    2017-01-01

    Full Text Available In Malaysia, Malacca River has long been the tourism attraction in Malacca. However, due to negligence, the river has been polluted by the litters thrown by tourists and even local residents, thus reflects a negative perception on Malacca. Therefore, this paper discusses about a fully automated river debris management system development using a stand-alone photovoltaic system. The concept design is to be stand alone in the river and automatically pull debris towards it for disposal. An off-grid stand-alone photovoltaic solar panel is used as renewable energy source connected to water pump and Arduino Uno microcontroller. The water pump rotates a water wheel and at the same time moves a conveyor belt; which is connected to the water wheel by a gear for debris collection. The solar system sizing suitable for the whole system is shown in this paper. The dumpster barge is equipped with an infrared sensor to monitor maximum height for debris, and instruct Arduino Uno to turn off the water pump. This system is able to power up using solar energy on sunny days and using battery otherwise.

  13. Photovoltaic generating systems in rural schools in Neuquen Province, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Lawand, T.A.; Campbell, J. [Brace Research Institute, Quebec (Canada)

    1997-12-01

    During the period 1994-95, solar photovoltaic systems were installed at a number of schools in Neuquen Province, Argentina, by the Provincial electric utility, Ente Provincial de Energia del Neuquen. This was undertaken with funds provided by the Inter-American Development Bank. In all, there are 12 schools that have had photovoltaic generating systems installed. These generating systems are designed to provide electricity for the basic needs at the schools: primarily for lighting, and to operate small electrical appliances such as communication radios, televisions, VCR`s, AM/FM and short-wave radios. They do not provide enough energy to operate large consumption appliances such as washing machines, microwaves, refrigerators, power tools, etc. The program of provision of PV systems was supplemented with training on simple systems for cooking food or drying fruit, etc. These techniques are primarily intended for demonstration at the schools thus serving an educational role with the hope that they will be transmitted in time to the families of the students where the need is manifested the most.

  14. Frequency Stability of Hierarchically Controlled Hybrid Photovoltaic-Battery-Hydropower Microgrids

    DEFF Research Database (Denmark)

    Guan, Yajuan; Vasquez, Juan Carlos; Guerrero, Josep M.;

    2014-01-01

    analysis is presented based on small signal models of the hybrid PV-HP microgrid, including 2 MWp PV station, 15.2 MWh battery storage system, and 12.8 MVA hydropower plant. Simulation results of the microgrid and experimental results on a scaled-down laboratory prototype verify the effectiveness......Hybrid photovolvaic battery-hydropower microgrids can increase electricity accessibility and availability in remote areas. In those microgrids with grid-connected and islanded modes capabilities, seamless transition between both modes is needed as well. However, the different resources...

  15. EFFICIENT DESIGN OF A PHOTOVOLTAIC WATER PUMPING AND TREATMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Abderrahmen Ben Chaabene

    2013-01-01

    Full Text Available Through the world, the exploitation of solar energies knew a strong growth these last years. It is interesting to exploit them on the place of consumption, by directly transforming into heat, or in electricity according to needs and especially in remote areas where power from utility is not available or is too costly to install. The use of photovoltaic sources in water pumping and treatment domain is one of the most important renewable energy applications. Having an arid to a semi-arid climate, Tunisia receives low quantities of rain. Consequently, the available water resources in the country are rather modest in terms of both quantity and quality. 97% of water resources in Tunisia are of brackish water, particularly in the south parts of the country. Originate from ground water resources and surface, these waters are unsuitable for drinking or irrigation, because of the high salinity and biological contagion in sensitive (perceptible germs. The goal of this study is to direct the applied researches to the applications of coupling the photovoltaic energy, which is available in the south of the country and water domain (pumping, desalting and disinfecting. We present in this study some of pilot units coupled to photovoltaic sources and we propose a global system which gathers the water pumping, desalting and disinfecting operations. Some experimental and numerical results have been carried out to show the efficiency of the use of this system. The conception, the realization and the exploitation of this autonomous system will be the suitable solution for providing fresh water to a number of rural regions where important quantities of water are needed to either, the drinking and irrigation, in Tunisia and in the Mediterranean basin in general.

  16. A techno-economic assessment of grid connected photovoltaic system for hospital building in Malaysia

    Science.gov (United States)

    Mat Isa, Normazlina; Tan, Chee Wei; Yatim, AHM

    2017-07-01

    Conventionally, electricity in hospital building are supplied by the utility grid which uses mix fuel including coal and gas. Due to enhancement in renewable technology, many building shall moving forward to install their own PV panel along with the grid to employ the advantages of the renewable energy. This paper present an analysis of grid connected photovoltaic (GCPV) system for hospital building in Malaysia. A discussion is emphasized on the economic analysis based on Levelized Cost of Energy (LCOE) and total Net Present Post (TNPC) in regards with the annual interest rate. The analysis is performed using Hybrid Optimization Model for Electric Renewables (HOMER) software which give optimization and sensitivity analysis result. An optimization result followed by the sensitivity analysis also being discuss in this article thus the impact of the grid connected PV system has be evaluated. In addition, the benefit from Net Metering (NeM) mechanism also discussed.

  17. Summary of third international executive conference on photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W.

    2001-07-01

    towards sustainable buildings fully into account. A further aim was to share the lessons learned from recent market experience on the full range of additional values that arise from the use of photovoltaic power systems and how those values impact on customer choice. Further, the promotion of international co-operation between the private and public sectors on policies for the removal of key constraints and for the promotion, financing and implementation of solar photovoltaic electricity projects was discussed. The conference was expected to achieve the following outcomes: Stronger relationships and networks between the participants and, through them, also between the sectors represented; A better definition of the added values of PV which influence customer choice; Recommendations which can be implemented by each of the business sectors represented at the conference for the orderly future development of the most important future PV markets; Recommendations to the IEA for ways in which it could enhance collaboration with both governments and industry, using its unique position to assist the future development of PV markets.

  18. A Sliding Mode Multimodel Control for a Sensorless Photovoltaic System

    OpenAIRE

    Rhif, Ahmed; Kardous, Zohra; Braiek, Naceur BenHadj

    2013-01-01

    In this work we will talk about a new control test using the sliding mode control with a nonlinear sliding mode observer, which are very solicited in tracking problems, for a sensorless photovoltaic panel. In this case, the panel system will has as a set point the sun position at every second during the day for a period of five years; then the tracker, using sliding mode multimodel controller and a sliding mode observer, will track these positions to make the sunrays orthogonal to the photovo...

  19. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  20. Symbolic Algorithmic Analysis of Rectangular Hybrid Systems

    Institute of Scientific and Technical Information of China (English)

    Hai-Bin Zhang; Zhen-Hua Duan

    2009-01-01

    This paper investigates symbolic algorithmic analysis of rectangular hybrid systems. To deal with the symbolic reachability problem, a restricted constraint system called hybrid zone is formalized for the representation and manipulation of rectangular automata state-spaces. Hybrid zones are proved to be closed over symbolic reachability operations of rectangular hybrid systems. They are also applied to model-checking procedures for verifying some important classes of timed computation tree logic formulas. To represent hybrid zones, a data structure called difference constraint matrix is defined.These enable us to deal with the symbolic algorithmic analysis of rectangular hybrid systems in an efficient way.

  1. MARKOV CHAIN MODELING OF PERFORMANCE DEGRADATION OF PHOTOVOLTAIC SYSTEM

    Directory of Open Access Journals (Sweden)

    E. Suresh Kumar

    2012-01-01

    Full Text Available Modern probability theory studies chance processes for which theknowledge of previous outcomes influence predictions for future experiments. In principle, when a sequence of chance experiments, all of the past outcomes could influence the predictions for the next experiment. In Markov chain type of chance, the outcome of a given experiment can affect the outcome of the next experiment. The system state changes with time and the state X and time t are two random variables. Each of these variables can be either continuous or discrete. Various degradation on photovoltaic (PV systems can be viewed as different Markov states and further degradation can be treated as the outcome of the present state. The PV system is treated as a discrete state continuous time system with four possible outcomes, namely, s1 : Good condition, s2 : System with partial degradation failures and fully operational, s3 : System with major faults and partially working and hence partial output power, s4 : System completely fails. The calculation of the reliability of the photovoltaic system is complicated since the system have elements or subsystems exhibiting dependent failures and involving repair and standby operations. Markov model is a better technique that has much appeal and works well when failure hazards and repair hazards are constant. The usual practice of reliability analysis techniques include FMEA((failure mode and effect analysis, Parts count analysis, RBD ( reliability block diagram , FTA( fault tree analysis etc. These are logical, boolean and block diagram approaches and never accounts the environmental degradation on the performance of the system. This is too relevant in the case of PV systems which are operated under harsh environmental conditions. This paper is an insight into the degradation of performance of PV systems and presenting a Markov model of the system by means of the different states and transitions between these states.

  2. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  3. Generic solar photovoltaic system dynamic simulation model specification

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Abraham [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Behnke, Michael Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  4. Studi Kasus Kelayakan Penerapan Sistem Hybrid Building Applied Photovoltaics (BAPV-PLN pada Atap Gedung Politeknik Aceh

    Directory of Open Access Journals (Sweden)

    Rachmad Ikhsan

    2017-04-01

    Full Text Available With the undeveloped BAPV(Building Applied Photovoltaics at Office Building and Public Facilities, Caused the high price of solar modules and the lack the economic study on the use of solar modules that housed in the Banda Aceh region. Furthermore, the price of solar modules is expensive, so people think it will cost so much funds to building a BAPV’s system. These problems could be overcomed if the existing technical studies and economic studies of the application of the BAPV’s system. This study aims to assess the application of the BAPV’s system on institutions  building in terms of technical and economic value, in this case the building that is used as the study object is the Polytechnic Aceh’s Building. The method that used in the technical studies are theoretical calculations and simulations using helioscope software, while the methods used for economic studies is using the methods of cost-benefit analysis (cost benefit analysis. The method used to find the NPV (Net Present Value, PP (Payback Period, IRR (Internal Rate of Return, and BCR (Benefit Cost Ratio. If the average value of solar radiation reaching 4.79 kWh / m2 / day and the average daily energy requirement is 592 kWh, the energy generated from BAPV-PLN hybrid system on the roof of the object building will reach the amount of 237 MWh/year with the capacity charge controller used is 7490 A and the capacity of the battery used is 64.487 Ah. Panel tilt angle used is 25o and the type of panel used is Monocrystalline manifold. From the economic value will obtained NPV value of Rp. 20.022.106.937, PP during 5,2 years, IRR of 36% and 3,49 of BCR. Based on the evaluation results of the feasibility study, the project of hybrid BAPV-PLN’s system on the roof of the Polytechnic  Aceh’s  building can be realized, because its already meet the criteria of the feasibility study to make the systems get established in real term.

  5. The value of residential photovoltaic systems: A comprehensive assessment

    Science.gov (United States)

    Borden, C. S.

    1983-01-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  6. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially

  7. Photovoltaic system design in grid-connected applications

    Science.gov (United States)

    Jones, G. J.

    The design of photovoltaic (PV) systems was traditionally done from the owner's viewpoint. This does not present a problem in central station applications but may result in misleading guidance for distributed system configurations. The results of the traditional design approach are contrasted with those obtained when the utility and application are viewed as a whole. The typical design assumes that on-site energy use must be maximized leading to a synergism between on-site loads and design optimization. This is shown to be a false requirement, resulting from considering only the system owner. When the system and utility are viewed together, the value of PV energy is found to be independent of the point of consumption. Load management, conservation, and passive solar design may affect energy use but have no impact on PV energy value. Furthermore, the value of PV energy is essentially the same for all systems, whether distributed or centralized.

  8. Design description of the Schuchuli Village photovoltaic power system

    Science.gov (United States)

    Ratajczak, A. F.; Vasicek, R. W.; Delombard, R.

    1981-01-01

    A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV array, 2380 ampere-hours of battery storage, an electrical equipment building, a 120 V (d.c.) electrical distribution network, and equipment and automatic controls to provide control power for pumping water into an existing water system; operating 15 refrigerators, a clothes washing machine, a sewing machine, and lights for each of the homes and communal buildings. A solar hot water heater supplies hot water for the washing machine and communal laundry. Automatic control systems provide voltage control by limiting the number of PV strings supplying power during system operation and battery charging, and load management for operating high priority at the expense of low priority loads as the main battery becomes depleted.

  9. Comparison of Photovoltaic Models in the System Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N. J.; Dobos, A. P.; Gilman, P.

    2013-08-01

    The System Advisor Model (SAM) is free software developed by the National Renewable Energy Laboratory (NREL) for predicting the performance of renewable energy systems and analyzing the financial feasibility of residential, commercial, and utility-scale grid-connected projects. SAM offers several options for predicting the performance of photovoltaic (PV) systems. The model requires that the analyst choose from three PV system models, and depending on that choice, possibly choose from three module and two inverter component models. To obtain meaningful results from SAM, the analyst must be aware of the differences between the model options and their applicability to different modeling scenarios. This paper presents an overview the different PV model options and presents a comparison of results for a 200-kW system using different model options.

  10. Novel TPPO Based Maximum Power Point Method for Photovoltaic System

    Directory of Open Access Journals (Sweden)

    ABBASI, M. A.

    2017-08-01

    Full Text Available Photovoltaic (PV system has a great potential and it is installed more when compared with other renewable energy sources nowadays. However, the PV system cannot perform optimally due to its solid reliance on climate conditions. Due to this dependency, PV system does not operate at its maximum power point (MPP. Many MPP tracking methods have been proposed for this purpose. One of these is the Perturb and Observe Method (P&O which is the most famous due to its simplicity, less cost and fast track. But it deviates from MPP in continuously changing weather conditions, especially in rapidly changing irradiance conditions. A new Maximum Power Point Tracking (MPPT method, Tetra Point Perturb and Observe (TPPO, has been proposed to improve PV system performance in changing irradiance conditions and the effects on characteristic curves of PV array module due to varying irradiance are delineated. The Proposed MPPT method has shown better results in increasing the efficiency of a PV system.

  11. Boost converter with combined control loop for a stand-alone photovoltaic battery charge system

    OpenAIRE

    Mira Albert, Maria del Carmen; Knott, Arnold; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    The converter control scheme plays an important role in the performance of maximum power point tracking (MPPT) algorithms. In this paper, an input voltage control with double loop for a stand-alone photovoltaic system is designed and tested. The inner current control loop with high crossover frequency avoids perturbations in the load being propagated to the photovoltaic panel and thus deviating the operating point. Linearization of the photovoltaic panel and converter state-space modeling is ...

  12. Atomistic simulations of thiol-terminated modifiers for hybrid photovoltaic interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Malloci, G. [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Petrozza, A. [Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, I-20133 Milano (Italy); Mattoni, A., E-mail: mattoni@iom.cnr.it [Istituto Officina dei Materiali (CNR-IOM), Unità di Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy)

    2014-06-02

    Small aromatic molecules such as benzene or pyridine derivatives are often used as interface modifiers (IMs) at polymer/metal oxide hybrid interfaces. We performed a theoretical investigation on prototypical thiol-terminated IMs aimed at improving the photovoltaic performances of poly(3-hexylthiophene)/TiO{sub 2} devices. By means of first-principles calculations in the framework of the density functional theory we investigate 3-furanthiol (3FT), 4-mercaptobenzoicacid (4MB), and 6-isoquinolinethiol (6QT) molecules. We discuss the role of these molecules as modifiers alternative to 4-mercaptopyridine (4MP) which has recently shown to induce a large improvement in the overall power conversion efficiency of mesoporous films of TiO{sub 2} infiltrated by poly(3-hexylthiophene). The IMs investigated are expected to keep the beneficial features of 4MP giving at the same time the possibility to further tune the interlayer properties (e.g., its thickness, stability, and density). Dense interlayers of 6QT turn out to be slightly unstable since the titania substrate induces a compressive strain in the molecular film. On the contrary, we predict very stable films for both 3FT and 4MB molecules, which makes them interesting candidates for future experimental investigations. - Highlights: • We performed a theoretical investigation on thiol-terminated interface modifiers. • We investigate 3-furanthiol (3FT), 4-mercaptobenzoicacid (4MB), and 6-isoquinolinethiol molecules. • We discuss the role of these molecules as modifiers alternative to 4-mercaptopyridine. • Dense interlayers of 6-isoquinolinethiol turn out to be slightly unstable. • We predict very stable self-assembled thin-films for both 3FT and 4MB molecules.

  13. ENERGY MANAGEMENT OF PHOTOVOLTAIC SYSTEMS USING FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Cristian MIRON

    2016-11-01

    Full Text Available Renewable energy generators show an accelerated growth both in terms of production wise, as well as in research fields. Focusing only on photovoltaic panels, the generated energy has the disadvantage of being strongly oscillatory in evolution. The classical solution is to create a network between photovoltaic farms spanning on large distances, in order to share the total energy before sending it to the clients. A solution that was recently proposed is going to use hydrogen in order to store the energy surplus. Fuel Cells (FCs represent energy generators whose energy vector is usually hydrogen. These have already started the transition from the laboratory context towards commercialization. Due to their high energy density, as well as their theoretical infinite storage capacity through hydrogen, configurations based on electrolyzers and FCs are seen as high potential storage systems, both for vehicle and for stationary applications. Therefore, a study on such distributed control systems is of high importance. This paper analyses the existing solutions, with emphasis on a particular case where a supervisory system is developed and tested in a specialised simulation software.

  14. Smart integrated energy monitoring and management system for standalone photovoltaic systems

    Science.gov (United States)

    Abou-Elnour, Ali; Murad, Fahd S.; Al-Tayasna, Ibrahim S.; Abo-Elnor, Ossama

    2013-04-01

    In the present work, a computer based smart integrated energy monitoring and management system for standalone photovoltaic systems is designed and implemented. Monitoring, controlling, and recording features are fully obtained in the present system using an efficient programming environment. All required data are monitored as real-time data therefore the system status is continuously evaluated and decisions are made to take immediate actions. The energy consumption of different appliances are automatically controlled and optimized using a hierarchical self adaptive algorithm based on input data and real-time information provided by the system sensors. The proposed system is successfully implemented for photovoltaic modules under realistic operating conditions.

  15. A Game Theory Based Planning Model and Analysis for Hybrid Power System with Wind Generators-Photovoltaic Panels-Storage Batteries%风—光—储混合电力系统的博弈论规划模型与分析

    Institute of Scientific and Technical Information of China (English)

    梅生伟; 王莹莹; 刘锋

    2011-01-01

    A planning model for the grid-connected hybrid power system based on the game theory is proposed through analysis of the characteristics of the wind power,photovoltaic generation and storage batteries in power industries.The players in the game model,i.e.wind power,photovoltaic generation and storage battery,maximize their own profits by choosing their capacities individually,taking into account the life cycle cost,the system reliability and the environment profits,etc.This paper discusses five different game scenarios,one non-cooperative game and four cooperative games,and illustrates the existence of their equilibriums.The analysis of the corresponding equilibriums indicates that the coalition values are all positive,and the payoffs of all the four cooperative games are larger than that of the non-cooperative game.It is also shown that the cooperation of wind power and photovoltaic generation is the best way to realize the reliable and cost effective generation.%综合分析由风力发电、光伏发电和储能电池组成的混合电力系统的技术经济特性,提出一类基于博弈论的混合电力系统规划模型。该模型以风力发电、光伏发电和储能电池的投资者作为博弈参与者,选取发电/储能容量作为参与者的策略,其收益计及发电/储能电池的全寿命周期费用、售电收入、系统供电可靠性等因素。根据博弈模型中可能的联盟关系,提出了5种非合作/合作博弈规划模式,进一步论证了Nash均衡的存在性,并求得各博弈规划模式下的Nash均衡策略,即风—光—储混合电力系统容量优化配置方案。分析表明4种合作联盟博弈下的总收益均高于完全竞争的非合作博弈,且合作博弈下的联盟价值均大于0,其中风—光合作博弈是资源综合利用的最佳模式。

  16. Carbon nanotube charge collectors for nanoimprinted hybrid perovskite photovoltaics (Conference Presentation)

    Science.gov (United States)

    Zakhidov, Anvar A.; Haroldson, Ross; Saranin, Danila; Martinez, Patricia; Ishteev, Artur

    2017-06-01

    The hybrid (organo-inorganic) lead-halide perovskites revolutionized the field of solar cell research due to the impressive power conversion efficiencies of up to 21% recently reported in perovskite based solar cells. This talk will present first the general concepts of excitonic photovoltaics, as compared to conventional Si-type solar cells, asking a question: is hybrid perovskite PV an excitonic solar cell or not? Do we need excitons dissociation at D-A interfaces or CNT charge collectors? Then I will show our recent experimental results on the fast spectroscopy of excitons, magnetic field effect on generation of correlated (e-h) pairs. Also will discuss our Hall effect results, that allows to evaluate intrinsic charge carrier transport and direct measurements of mobility in these materials performed for the first time in steady-state dc transport regime. From these measurements, we have obtained the electron-hole recombination coefficient, the carrier diffusion length and lifetime. Our main results include the intrinsic Hall carrier mobility reaching up to 60 cm2V-1s-1 in perovskite single crystals, carrier lifetimes of up to 3 ms (surprisingly too long!), and carrier diffusion lengths as long as 650 μm (huge if compared to organic and even best inorganic materials). Our results also demonstrate that photocarrier recombination in these disordered solution-processed perovskites is as weak as in the best (high-purity single crystals) of conventional direct-band inorganic semiconductors. Moreover, as we show in our experiment, carrier trapping in perovskites is also strongly suppressed, which accounts for such long carrier lifetimes and diffusion lengths, significantly longer than similar parameters in the best inorganic semiconductors, such e.g. as GaAs. All these remarkable transport properties of hybrid perovskites need to be understood from fundamental physics point of view. Looks like we need some new concepts to explain the mysterious properties of

  17. DSP-Based Hands-On Laboratory Experiments for Photovoltaic Power Systems

    Science.gov (United States)

    Muoka, Polycarp I.; Haque, Md. Enamul; Gargoom, Ameen; Negnetvitsky, Michael

    2015-01-01

    This paper presents a new photovoltaic (PV) power systems laboratory module that was developed to experimentally reinforce students' understanding of design principles, operation, and control of photovoltaic power conversion systems. The laboratory module is project-based and is designed to support a renewable energy course. By using MATLAB…

  18. Distributed generation system using wind/photovoltaic/fuel cell

    Science.gov (United States)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  19. Photovoltaic performance of dye-sensitized solar cells fabricated with polyvinylidene fluoride–polyacrylonitrile–silicondioxide hybrid composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sethupathy, Malaisamy; Pandey, Priyanka; Manisankar, Paramasivam, E-mail: pms11@rediffmail.com

    2014-02-14

    Electrospun fibrous membranes of hybrid composites of polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN) and silicon dioxide (SiO{sub 2}) (PVdF–PAN–SiO{sub 2}) are prepared with different proportions of SiO{sub 2} (3, 5 and 7% w/w). The field emission scanning electron microscopy (FE-SEM) reveals that these membranes have three-dimensional, fully interconnected network structures, which are combined with micropores of fine SiO{sub 2} distribution. The surface roughness of the membranes increases with increasing the SiO{sub 2} content. It is found that 7 wt% SiO{sub 2}/PVdF–PAN electrolyte membrane has the highest ionic conductivity (6.96 × 10{sup −2} S cm{sup −1}) due to the large liquid electrolyte uptake (about 570%). As the concentration of SiO{sub 2} nanoparticles increase, the contact angle value also increases, ranging from 135.70° to 140.60° which indicates that the membrane has higher hydrophobicity. The dye sensitized solar cells (DSSCs) are fabricated using the hybrid composite membrane with PVdF–PAN with 7 wt % SiO{sub 2}. Its photovoltaic performance exhibits an open circuit voltage (V{sub oc}) of 0.79 V and a short circuit current 11.6 mA cm{sup −2} at an incident light intensity of 100 mW cm{sup −2}, producing an efficiency of 5.61%. DSSC, using the hybrid composite electrospun membrane which shows more stable photovoltaic performance than other assembled DSSCs. - Highlights: • Electrospun poly (vinylidine–acrylonitrile) silicon dioxide membrane was prepared. • This membrane has good conductivity, porosity and electrolyte uptake. • It has higher hydrophobicity and interconnected network with plenty of cavities. • DSSCs fabricated with polymer electrolyte exhibited good photovoltaic efficiency.

  20. Enhancing the efficiency of solution-processed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment.

    Science.gov (United States)

    Zhou, Renjia; Stalder, Romain; Xie, Dongping; Cao, Weiran; Zheng, Ying; Yang, Yixing; Plaisant, Marc; Holloway, Paul H; Schanze, Kirk S; Reynolds, John R; Xue, Jiangeng

    2013-06-25

    Advances in colloidal inorganic nanocrystal synthesis and processing have led to the demonstration of organic-inorganic hybrid photovoltaic (PV) cells using low-cost solution processes from blends of conjugated polymer and colloidal nanocrystals. However, the performance of such hybrid PV cells has been limited due to the lack of control at the complex interfaces between the organic and inorganic hybrid active materials. Here we show that the efficiency of hybrid PV devices can be significantly enhanced by engineering the polymer-nanocrystal interface with proper chemical treatment. Using two different conjugated polymers, poly(3-hexylthiophene) (P3HT) and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), we show that treating the polymer:nanocrystal hybrid film in an ethanedithiol-containing acetonitrile solution can increase the efficiency of the hybrid PV devices by 30-90%, and a maximum power conversion efficiency of 5.2 ± 0.3% was obtained in the PCPDTBT:CdSe devices at 0.2 sun (AM 1.5G), which was slightly reduced to 4.7 ± 0.3% at 1 sun. The ethanedithiol treatment did not result in significant changes in the morphology and UV-vis optical absorption of the hybrid thin films; however, infrared absorption, NMR, and X-ray photoelectron spectroscopies revealed the effective removal of organic ligands, especially the charged phosphonic acid ligands, from the CdSe nanorod surface after the treatment, accompanied by the possible monolayer passivation of nanorod surfaces with Cd-thiolates. We attribute the hybrid PV cell efficiency increase upon the ethanedithiol treatment to the reduction in charge and exciton recombination sites on the nanocrystal surface and the simultaneous increase in electron transport through the hybrid film.