WorldWideScience

Sample records for hybrid finite difference

  1. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    Science.gov (United States)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  2. Broadband ground motion simulation using a paralleled hybrid approach of Frequency Wavenumber and Finite Difference method

    Science.gov (United States)

    Chen, M.; Wei, S.

    2016-12-01

    The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).

  3. A Hybrid Solver of Size Modified Poisson-Boltzmann Equation by Domain Decomposition, Finite Element, and Finite Difference

    CERN Document Server

    Ying, Jinyong

    2016-01-01

    The size-modified Poisson-Boltzmann equation (SMPBE) is one important variant of the popular dielectric model, the Poisson-Boltzmann equation (PBE), to reflect ionic size effects in the prediction of electrostatics for a biomolecule in an ionic solvent. In this paper, a new SMPBE hybrid solver is developed using a solution decomposition, the Schwartz's overlapped domain decomposition, finite element, and finite difference. It is then programmed as a software package in C, Fortran, and Python based on the state-of-the-art finite element library DOLFIN from the FEniCS project. This software package is well validated on a Born ball model with analytical solution and a dipole model with a known physical properties. Numerical results on six proteins with different net charges demonstrate its high performance. Finally, this new SMPBE hybrid solver is shown to be numerically stable and convergent in the calculation of electrostatic solvation free energy for 216 biomolecules and binding free energy for a DNA-drug com...

  4. Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.

    Science.gov (United States)

    Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J

    2016-01-01

    Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions.

  5. Torque Analysis of Permanent Magnet Hybrid Stepper Motor using Finite Element Method for Different Design Topologies

    Directory of Open Access Journals (Sweden)

    E.V.C Sekhara Rao

    2012-01-01

    Full Text Available This paper discusses about permanent magnet hybrid stepper motor magnetic circuit using finite element model for different geometric designs like uniform air-gap, non uniform air-gap, for different air-gap lengths, different tooth pitches and extra teeth on stator using PDE toolbox of Matlab at different current densities. Implementing these results in equivalent circuit model (permeance model, motor performance is analyzed for an existing motor for steady state conditions. These results suggest modifications for better performance of the PMH stepper motor like reduction of cogging torque and improvement in steady state torque with minimum THD.

  6. A TVD-WAF-based hybrid finite volume and finite difference scheme for nonlinearly dispersive wave equations

    Directory of Open Access Journals (Sweden)

    Jing Yin

    2015-07-01

    Full Text Available A total variation diminishing-weighted average flux (TVD-WAF-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth-order monotone upstream-centered scheme for conservation laws (MUSCL. The time marching scheme based on the third-order TVD Runge-Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.

  7. Hybrid Spectral Difference/Embedded Finite Volume Method for Conservation Laws

    CERN Document Server

    Choi, Jung J

    2014-01-01

    A novel hybrid spectral difference/embedded finite volume method is introduced in order to apply a discontinuous high-order method for large scale engineering applications involving discontinuities in flows with complex geometries. In the proposed hybrid approach, structured finite volume (FV) cells are embedded in hexahedral SD elements containing discontinuities, and FV based high-order shock-capturing scheme is employed to overcome Gibbs phenomenon. Thus, discontinuities are captured at the resolution of embedded FV cells within an SD element. In smooth flow regions, the SD method is chosen for its low numerical dissipation and computational efficiency preserving spectral-like solutions. The coupling between the SD elements and the elements with embedded FV cells are achieved by the mortar method. In this paper, the 5th-order WENO scheme with characteristic decomposition is employed as the shock-capturing scheme in the embedded FV cells, and the 5th-order SD method is used in the smooth flow field. The ord...

  8. A hybrid finite difference and integral equation method for modeling and inversion of marine CSEM data

    DEFF Research Database (Denmark)

    Yoon, Daeung; Zhdanov, Michael; Cai, Hongzhu

    2015-01-01

    should be powerful and fast enough to be suitable for repeated use in hundreds of iterations of the inversion and for multiple transmitter/receiver positions. To this end, we have developed a novel 3D modeling and inversion approach, which combines the advantages of the finite difference (FD...

  9. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.

    Science.gov (United States)

    Bhattacharya, Amitabh; Kesarkar, Tejas

    2016-10-01

    A combination of finite difference (FD) and boundary integral (BI) methods is used to formulate an efficient solver for simulating unsteady Stokes flow around particles. The two-dimensional (2D) unsteady Stokes equation is being solved on a Cartesian grid using a second order FD method, while the 2D steady Stokes equation is being solved near the particle using BI method. The two methods are coupled within the viscous boundary layer, a few FD grid cells away from the particle, where solutions from both FD and BI methods are valid. We demonstrate that this hybrid method can be used to accurately solve for the flow around particles with irregular shapes, even though radius of curvature of the particle surface is not resolved by the FD grid. For dilute particle concentrations, we construct a virtual envelope around each particle and solve the BI problem for the flow field located between the envelope and the particle. The BI solver provides velocity boundary condition to the FD solver at "boundary" nodes located on the FD grid, adjacent to the particles, while the FD solver provides the velocity boundary condition to the BI solver at points located on the envelope. The coupling between FD method and BI method is implicit at every time step. This method allows us to formulate an O(N) scheme for dilute suspensions, where N is the number of particles. For semidilute suspensions, where particles may cluster, an envelope formation method has been formulated and implemented, which enables solving the BI problem for each individual particle cluster, allowing efficient simulation of hydrodynamic interaction between particles even when they are in close proximity. The method has been validated against analytical results for flow around a periodic array of cylinders and for Jeffrey orbit of a moving ellipse in shear flow. Simulation of multiple force-free irregular shaped particles in the presence of shear in a 2D slit flow has been conducted to demonstrate the robustness of

  10. A sixth order hybrid finite difference scheme based on the minimized dispersion and controllable dissipation technique

    Science.gov (United States)

    Sun, Zhen-sheng; Luo, Lei; Ren, Yu-xin; Zhang, Shi-ying

    2014-08-01

    The dispersion and dissipation properties of a scheme are of great importance for the simulation of flow fields which involve a broad range of length scales. In order to improve the spectral properties of the finite difference scheme, the authors have previously proposed the idea of optimizing the dispersion and dissipation properties separately and a fourth order scheme based on the minimized dispersion and controllable dissipation (MDCD) technique is thus constructed [29]. In the present paper, we further investigate this technique and extend it to a sixth order finite difference scheme to solve the Euler and Navier-Stokes equations. The dispersion properties of the scheme is firstly optimized by minimizing an elaborately designed integrated error function. Then the dispersion-dissipation condition which is newly derived by Hu and Adams [30] is introduced to supply sufficient dissipation to damp the unresolved wavenumbers. Furthermore, the optimized scheme is blended with an optimized Weighted Essentially Non-Oscillation (WENO) scheme to make it possible for the discontinuity-capturing. In this process, the approximation-dispersion-relation (ADR) approach is employed to optimize the spectral properties of the nonlinear scheme to yield the true wave propagation behavior of the finite difference scheme. Several benchmark test problems, which include broadband fluctuations and strong shock waves, are solved to validate the high-resolution, the good discontinuity-capturing capability and the high-efficiency of the proposed scheme.

  11. An efficient hybrid pseudospectral/finite-difference scheme for solving the TTI pure P-wave equation

    KAUST Repository

    Zhan, Ge

    2013-02-19

    The pure P-wave equation for modelling and migration in tilted transversely isotropic (TTI) media has attracted more and more attention in imaging seismic data with anisotropy. The desirable feature is that it is absolutely free of shear-wave artefacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield updating at each time step, the computational cost is significant, and thereby hampers its prevalence. We propose to use a hybrid pseudospectral (PS) and finite-difference (FD) scheme to solve the pure P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the benefit in cost saving of the new scheme, 2D and 3D reverse-time migration (RTM) examples using the hybrid solution to the pure P-wave equation are carried out, and respective runtimes are listed and compared. Numerical results show that the hybrid strategy demands less computation time and is faster than using the PS method alone. Furthermore, this new TTI RTM algorithm with the hybrid method is computationally less expensive than that with the FD solution to conventional TTI coupled equations. © 2013 Sinopec Geophysical Research Institute.

  12. An efficient inversion for two-dimensional direct current resistivity surveys based on the hybrid finite difference-finite element method

    Science.gov (United States)

    Vachiratienchai, Chatchai; Siripunvaraporn, Weerachai

    2013-02-01

    For efficient inversion code, the forward modeling routine, the sensitivity calculation, and the inversion algorithm must be efficient. Here, the hybrid finite difference-finite element algorithm, which is fast and accurate even when the slope of the topography is greater than 45°, is used as the forward modeling routine to calculate the responses. The sensitivity calculation is adapted from the most efficient adjoint Green's function technique. Both of these algorithms are then driven with the data space Occam's inversion. This combination of modules makes it possible to obtain an efficient inversion code based on MATLAB for two-dimensional direct current (DC) resistivity data. To demonstrate its efficiency, numerical experiments with our code and with commercial software are performed on synthetic data and real field data collected in the western part of Thailand where limestone and cavities dominate the region. In general, our code takes substantially longer than the commercial code to run but converges to a solution with a lower misfit. The result shows that the efficiency of our code makes it practical for real field surveys.

  13. Turbulent mixing at high Schmidt number: new results from a hybrid spectral compact finite difference and dual grid resolution approach

    Science.gov (United States)

    Clay, M. P.; Yeung, P. K.; Gotoh, T.

    2016-11-01

    Turbulent mixing at high Schmidt number (Sc) (low molecular diffusivity) is characterized by fluctuations that arise at sub-Kolmogorov scales and are hence difficult to resolve or measure. Simulations in the recent past have provided some basic results but were still limited in either the Reynolds number or the Schmidt number. We have developed a massively parallel implementation of a hybrid pseudo-spectral and combined compact finite difference technique where the velocity and scalar fields are computed at different grid resolutions (the latter up to 81923). A specific target is the scalar field maintained by a uniform mean gradient at Taylor-scale Reynolds number 140 and Sc = 512 , which is comparable to the value (700) for salinity in the ocean. Preliminary results at moderately high Sc are in support of Batchelor (k-1) scaling for the spectrum in the viscous-convective range, followed by exponential fall-off in the viscous-diffusive range. Data over a wide range of Reynolds and Schmidt numbers are used to examine the approach to local isotropy and a saturation of intermittency suggested by previous work. Supported by NSF Grant ACI-1036170 and a subaward via UIUC.

  14. Hybrid approach combining dissipative particle dynamics and finite-difference diffusion model: simulation of reactive polymer coupling and interfacial polymerization.

    Science.gov (United States)

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2013-10-21

    A novel hybrid approach combining dissipative particle dynamics (DPD) and finite difference (FD) solution of partial differential equations is proposed to simulate complex reaction-diffusion phenomena in heterogeneous systems. DPD is used for the detailed molecular modeling of mass transfer, chemical reactions, and phase separation near the liquid∕liquid interface, while FD approach is applied to describe the large-scale diffusion of reactants outside the reaction zone. A smooth, self-consistent procedure of matching the solute concentration is performed in the buffer region between the DPD and FD domains. The new model is tested on a simple model system admitting an analytical solution for the diffusion controlled regime and then applied to simulate practically important heterogeneous processes of (i) reactive coupling between immiscible end-functionalized polymers and (ii) interfacial polymerization of two monomers dissolved in immiscible solvents. The results obtained due to extending the space and time scales accessible to modeling provide new insights into the kinetics and mechanism of those processes and demonstrate high robustness and accuracy of the novel technique.

  15. Finite elements and finite differences for transonic flow calculations

    Science.gov (United States)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  16. Mitigation of numerical Cerenkov radiation and instability using a hybrid finite difference-FFT Maxwell solver and a local charge conserving current deposit

    CERN Document Server

    Yu, Peicheng; Tableman, Adam; Decyk, Viktor K; Tsung, Frank S; Fiuza, Frederico; Davidson, Asher; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2015-01-01

    A hybrid Maxwell solver for fully relativistic and electromagnetic (EM) particle-in-cell (PIC) codes is described. In this solver, the EM fields are solved in $k$ space by performing an FFT in one direction, while using finite difference operators in the other direction(s). This solver eliminates the numerical Cerenkov radiation for particles moving in the preferred direction. Moreover, the numerical Cerenkov instability (NCI) induced by the relativistically drifting plasma and beam can be eliminated using this hybrid solver by applying strategies that are similar to those recently developed for pure FFT solvers. A current correction is applied for the charge conserving current deposit to correctly account for the EM calculation in hybrid Yee-FFT solver. A theoretical analysis of the dispersion properties in vacuum and in a drifting plasma for the hybrid solver is presented, and compared with PIC simulations with good agreement obtained. This hybrid solver is applied to both 2D and 3D Cartesian and quasi-3D (...

  17. On Hybrid and mixed finite element methods

    Science.gov (United States)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  18. The Relation of Finite Element and Finite Difference Methods

    Science.gov (United States)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  19. Advances in the study of hybrid finite elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.

  20. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  1. A hybrid finite-difference and integral-equation method for modeling and inversion of marine controlled-source electromagnetic data

    DEFF Research Database (Denmark)

    Yoon, Daeung; Zhdanov, Michael; Mattsson, Johan

    2016-01-01

    should be powerful and fast enough to be suitable for repeated use in hundreds of iterations of the inversion and for multiple transmitter/receiver positions. To this end, we have developed a novel 3D modeling and inversion approach, which combines the advantages of the finite-difference (FD...

  2. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  3. A hybrid wavelet-based adaptive immersed boundary finite-difference lattice Boltzmann method for two-dimensional fluid-structure interaction

    Science.gov (United States)

    Cui, Xiongwei; Yao, Xiongliang; Wang, Zhikai; Liu, Minghao

    2017-03-01

    A second generation wavelet-based adaptive finite-difference Lattice Boltzmann method (FD-LBM) is developed in this paper. In this approach, the adaptive wavelet collocation method (AWCM) is firstly, to the best of our knowledge, incorporated into the FD-LBM. According to the grid refinement criterion based on the wavelet amplitudes of density distribution functions, an adaptive sparse grid is generated by the omission and addition of collocation points. On the sparse grid, the finite differences are used to approximate the derivatives. To eliminate the special treatments in using the FD-based derivative approximation near boundaries, the immersed boundary method (IBM) is also introduced into FD-LBM. By using the adaptive technique, the adaptive code requires much less grid points as compared to the uniform-mesh code. As a consequence, the computational efficiency can be improved. To justify the proposed method, a series of test cases, including fixed boundary cases and moving boundary cases, are invested. A good agreement between the present results and the data in previous literatures is obtained, which demonstrates the accuracy and effectiveness of the present AWCM-IB-LBM.

  4. Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits

    Science.gov (United States)

    Gong, J.; Volakis, John L.

    1996-01-01

    One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.

  5. Evolved Finite State Controller For Hybrid System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2009-01-01

    This paper presents an evolutionary methodology to automatically generate nite state automata (FSA) controllers to control hybrid systems. FSA controllers for a case study of two-tank system have been successfully obtained using the proposed evolutionary approach. Experimental results show...

  6. A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Tian-xiao Zhou; Xiao-ping Xie

    2003-01-01

    In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.

  7. Study of coupled double diffusive convection-radiation in a tilted cavity via a hybrid multi-relaxation time-lattice Boltzmann-finite difference and discrete ordinate methods

    Science.gov (United States)

    Moufekkir, Fayçal; Moussaoui, Mohammed Amine; Mezrhab, Ahmed; Naji, Hassan

    2015-04-01

    The coupled double diffusive natural convection and radiation in a tilted and differentially heated square cavity containing a non-gray air-CO2 (or air-H2O) mixtures was numerically investigated. The horizontal walls are insulated and impermeable and the vertical walls are maintained at different temperatures and concentrations. The hybrid lattice Boltzmann method with the multiple-relaxation time model is used to compute the hydrodynamics and the finite difference method to determine temperatures and concentrations. The discrete ordinates method combined to the spectral line-based weighted sum of gray gases model is used to compute the radiative term and its spectral aspect. The effects of the inclination angle on the flow, thermal and concentration fields are analyzed for both aiding and opposing cases. It was found that radiation gas modifies the structure of the velocity and thermal fields by generating inclined stratifications and promoting the instabilities in opposing flows.

  8. Generalized rectangular finite difference beam propagation method.

    Science.gov (United States)

    Sujecki, Slawomir

    2008-08-10

    A method is proposed that allows for significant improvement of the numerical efficiency of the standard finite difference beam propagation algorithm. The advantages of the proposed method derive from the fact that it allows for an arbitrary selection of the preferred direction of propagation. It is demonstrated that such flexibility is particularly useful when studying the properties of obliquely propagating optical beams. The results obtained show that the proposed method achieves the same level of accuracy as the standard finite difference beam propagation method but with lower order Padé approximations and a coarser finite difference mesh.

  9. Generalization of Dielectric-Dependent Hybrid Functionals to Finite Systems

    Science.gov (United States)

    Brawand, Nicholas P.; Vörös, Márton; Govoni, Marco; Galli, Giulia

    2016-10-01

    The accurate prediction of electronic and optical properties of molecules and solids is a persistent challenge for methods based on density functional theory. We propose a generalization of dielectric-dependent hybrid functionals to finite systems where the definition of the mixing fraction of exact and semilocal exchange is physically motivated, nonempirical, and system dependent. The proposed functional yields ionization potentials, and fundamental and optical gaps of many, diverse molecular systems in excellent agreement with experiments, including organic and inorganic molecules and semiconducting nanocrystals. We further demonstrate that this hybrid functional gives the correct alignment between energy levels of the exemplary TTF-TCNQ donor-acceptor system.

  10. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    OpenAIRE

    Changyong Cao; Qing-Hua Qin

    2015-01-01

    An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM) and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field) are employed. The formulations for...

  11. An hybrid finite volume finite element method for variable density incompressible flows

    Science.gov (United States)

    Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry

    2008-04-01

    This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.

  12. Numerical computation of transonic flows by finite-element and finite-difference methods

    Science.gov (United States)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  13. Finite difference order doubling in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Killingbeck, John P [Mathematics Centre, University of Hull, Hull HU6 7RX (United Kingdom); Jolicard, Georges [Universite de Franche-Comte, Institut Utinam (UMR CNRS 6213), Observatoire de Besancon, 41 bis Avenue de l' Observatoire, BP1615, 25010 Besancon cedex (France)

    2008-03-28

    An order doubling process previously used to obtain eighth-order eigenvalues from the fourth-order Numerov method is applied to the perturbed oscillator in two dimensions. A simple method of obtaining high order finite difference operators is reported and an odd parity boundary condition is found to be effective in facilitating the smooth operation of the order doubling process.

  14. Nonstandard finite difference schemes for differential equations

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdizadeh Khalsaraei

    2014-12-01

    Full Text Available In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs. Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with standard methods.

  15. A new formulation of hybrid/mixed finite element

    Science.gov (United States)

    Pian, T. H. H.; Kang, D.; Chen, D.-P.

    1983-01-01

    A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.

  16. Recent advances in hybrid/mixed finite elements

    Science.gov (United States)

    Pian, T. H. H.

    1985-01-01

    In formulations of Hybrid/Mixed finite element methods respectively by the Hellinger-Reissner principle and the Hu-Washizu principle, the stress equilibrium equations are brought in as conditions of constraint through the introduction of additional internal displacement parameters. These two approaches are more flexible and have better computing efficiencies. A procedure for the choice of assumed stress terms for 3-D solids is suggested. Example solutions are given for plates and shells using the present formulations and the idea of semiloof elements.

  17. Strongly Interacting Matter at Finite Chemical Potential: Hybrid Model Approach

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2013-06-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark-gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.

  18. Numerical optimization of a three-channel radiofrequency coil for open, vertical-field, MR-guided, focused ultrasound surgery using the hybrid method of moment/finite difference time domain method.

    Science.gov (United States)

    Xin, Xuegang; Wang, Di; Han, Jijun; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2012-07-01

    The numerical optimization of a three-channel radiofrequency (RF) coil with a physical aperture for the open, vertical-field, MR-guided, focused ultrasound surgery (MRgFUS) system using the hybrid method of moment (MoM)/finite difference time domain (FDTD) method is reported. The numerical simulation of the current density distribution on an RF coil with a complicated irregular structure was performed using MoM. The electromagnetic field simulation containing the full coil-tissue interactions within the region of interest was accomplished using the FDTD method. Huygens' equivalent box with six surfaces smoothly connected the MoM and FDTD method. An electromagnetic model of the human pelvic region was reconstructed and loaded in the FDTD zone to optimize the three-channel RF coil and compensate for the lower sensitivity at the vertical field. In addition, the numerical MoM was used to model the resonance, decoupling and impedance matching of the RF coil in compliance with engineering practices. A prototype RF coil was constructed to verify the simulation results. The results demonstrate that the signal-to-noise ratio and the homogeneity of the B(1) field were both greatly improved compared with previously published results.

  19. On the wavelet optimized finite difference method

    Science.gov (United States)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  20. Implicit finite difference methods on composite grids

    Science.gov (United States)

    Mastin, C. Wayne

    1987-01-01

    Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.

  1. Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods

    CERN Document Server

    Yu, Guozhu; Carstensen, Carsten

    2011-01-01

    Assumed stress hybrid methods are known to improve the performance of standard displacement-based finite elements and are widely used in computational mechanics. The methods are based on the Hellinger-Reissner variational principle for the displacement and stress variables. This work analyzes two existing 4-node hybrid stress quadrilateral elements due to Pian and Sumihara [Int. J. Numer. Meth. Engng, 1984] and due to Xie and Zhou [Int. J. Numer. Meth. Engng, 2004], which behave robustly in numerical benchmark tests. For the finite elements, the isoparametric bilinear interpolation is used for the displacement approximation, while different piecewise-independent 5-parameter modes are employed for the stress approximation. We show that the two schemes are free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the relevant Lame constant $\\lambda$. We also establish the equivalence of the methods to two assumed enhanced strain schemes. Finally, we derive reliable ...

  2. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  3. Local tetrahedron modeling of microelectronics using the finite-volume hybrid-grid technique

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.J.; Turner, C.D.

    1995-12-01

    The finite-volume hybrid-grid (FVHG) technique uses both structured and unstructured grid regions in obtaining a solution to the time-domain Maxwell`s equations. The method is based on explicit time differencing and utilizes rectilinear finite-difference time-domain (FDTD) and nonorthogonal finite-volume time-domain (FVTD). The technique directly couples structured FDTD grids with unstructured FVTD grids without the need for spatial interpolation across grid interfaces. In this paper, the FVHG method is applied to simple planar microelectronic devices. Local tetrahedron grids are used to model portions of the device under study, with the remainder of the problem space being modeled with cubical hexahedral cells. The accuracy of propagating microstrip-guided waves from a low-density hexahedron region through a high-density tetrahedron grid is investigated.

  4. Integral and finite difference inequalities and applications

    CERN Document Server

    Pachpatte, B G

    2006-01-01

    The monograph is written with a view to provide basic tools for researchers working in Mathematical Analysis and Applications, concentrating on differential, integral and finite difference equations. It contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools and will be a valuable source for a long time to come. It is self-contained and thus should be useful for those who are interested in learning or applying the inequalities with explicit estimates in their studies.- Contains a variety of inequalities discovered which find numero

  5. The Complex-Step-Finite-Difference method

    Science.gov (United States)

    Abreu, Rafael; Stich, Daniel; Morales, Jose

    2015-07-01

    We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.

  6. Efficient discretization in finite difference method

    Science.gov (United States)

    Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.

  7. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    Science.gov (United States)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  8. Abstract Level Parallelization of Finite Difference Methods

    Directory of Open Access Journals (Sweden)

    Edwin Vollebregt

    1997-01-01

    Full Text Available A formalism is proposed for describing finite difference calculations in an abstract way. The formalism consists of index sets and stencils, for characterizing the structure of sets of data items and interactions between data items (“neighbouring relations”. The formalism provides a means for lifting programming to a more abstract level. This simplifies the tasks of performance analysis and verification of correctness, and opens the way for automaticcode generation. The notation is particularly useful in parallelization, for the systematic construction of parallel programs in a process/channel programming paradigm (e.g., message passing. This is important because message passing, unfortunately, still is the only approach that leads to acceptable performance for many more unstructured or irregular problems on parallel computers that have non-uniform memory access times. It will be shown that the use of index sets and stencils greatly simplifies the determination of which data must be exchanged between different computing processes.

  9. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  10. Progress on hybrid finite element methods for scattering by bodies of revolution

    Science.gov (United States)

    Collins, Jeffery D.; Volakis, John L.

    1992-01-01

    Progress on the development and implementation of hybrid finite element methods for scattering by bodies of revolution are described. It was found that earlier finite element-boundary integral formulations suffered from convergence difficulties when applied to large and thin bodies of revolution. An alternative implementation is described where the finite element method is terminated with an absorbing termination boundary. In addition, an alternative finite element-boundary integral implementation is discussed for improving the convergence of the original code.

  11. Adaptive finite difference for seismic wavefield modelling in acoustic media.

    Science.gov (United States)

    Yao, Gang; Wu, Di; Debens, Henry Alexander

    2016-08-05

    Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme.

  12. Determination of finite-difference weights using scaled binomial windows

    KAUST Repository

    Chu, Chunlei

    2012-05-01

    The finite-difference method evaluates a derivative through a weighted summation of function values from neighboring grid nodes. Conventional finite-difference weights can be calculated either from Taylor series expansions or by Lagrange interpolation polynomials. The finite-difference method can be interpreted as a truncated convolutional counterpart of the pseudospectral method in the space domain. For this reason, we also can derive finite-difference operators by truncating the convolution series of the pseudospectral method. Various truncation windows can be employed for this purpose and they result in finite-difference operators with different dispersion properties. We found that there exists two families of scaled binomial windows that can be used to derive conventional finite-difference operators analytically. With a minor change, these scaled binomial windows can also be used to derive optimized finite-difference operators with enhanced dispersion properties. © 2012 Society of Exploration Geophysicists.

  13. Hidden sl$_{2}$-algebra of finite-difference equations

    CERN Document Server

    Smirnov, Yu F; Smirnov, Yuri; Turbiner, Alexander

    1995-01-01

    The connection between polynomial solutions of finite-difference equations and finite-dimensional representations of the sl_2-algebra is established. (Talk presented at the Wigner Symposium, Guadalajara, Mexico, August 1995; to be published in Proceedings)

  14. Finite difference computation of Casimir forces

    Science.gov (United States)

    Pinto, Fabrizio

    2016-09-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing

  15. Cell-Centred Finite Difference Methodology for Solving Partial Differential Equations on an Unstructured Mesh

    Science.gov (United States)

    Situ, J. J.; Barron, R. M.; Higgins, M.

    2011-11-01

    Partial differential equations (PDEs) arise in connection with many physical phenomena involving two or more independent variables. Boundary conditions associated with the PDEs are either Dirichlet, Neumann or mixed conditions. Analytical solutions for most of these problems are not easy to obtain, and may not even be posssible. For such reasons, numerical methodologies for solving PDEs have been developed, such as finite element (FE), finite volume (FV) and finite difference (FD) methods. In the present paper, an innovative finite difference formulation, referred to as the cell-centred finite difference (CCFD) method, is proposed. Instead of applying finite difference approximations at the grid points as in the traditional finite difference method, the new methodology implements a finite difference scheme at each cell centroid in a predefined mesh topology. The prominent advantage of the proposed methodology is that it allows finite differencing to be applied on any arbitrary mesh topology, i.e. structured, unstructured or hybrid. The CCFD formulation is developed in this paper and implemented on a test problem to demonstrate its capabilities.

  16. Hybrid Multilevel Sparse Reconstruction for a Whole Domain Bioluminescence Tomography Using Adaptive Finite Element

    Directory of Open Access Journals (Sweden)

    Jingjing Yu

    2013-01-01

    Full Text Available Quantitative reconstruction of bioluminescent sources from boundary measurements is a challenging ill-posed inverse problem owing to the high degree of absorption and scattering of light through tissue. We present a hybrid multilevel reconstruction scheme by combining the ability of sparse regularization with the advantage of adaptive finite element method. In view of the characteristics of different discretization levels, two different inversion algorithms are employed on the initial coarse mesh and the succeeding ones to strike a balance between stability and efficiency. Numerical experiment results with a digital mouse model demonstrate that the proposed scheme can accurately localize and quantify source distribution while maintaining reconstruction stability and computational economy. The effectiveness of this hybrid reconstruction scheme is further confirmed with in vivo experiments.

  17. Distant hybridization leads to different ploidy fishes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Distant hybridization makes it possible to transfer the genome of one species to another, which results in changes in phenotypes and genotypes of the progenies. This study shows that distant hybridization or the combination of this method with gynogenesis or androgenesis lead to different ploidy fishes with genetic variation, including fertile tetraploid hybrids, sterile triploid hybrids, fertile diploid hybrids, fertile diploid gynogenetic fish, and their derived progenies. The formations of the different ploidy fishes depend on the genetic relationship between the parents. In this study, several types of distant hybridization, including red crucian carp (Carassius auratus red var.) (2n=100, abbreviated as RCC) (♀)×common carp (Cyprinus carpio L.) (2n=100, abbreviated as CC) (♂), and RCC (2n=100) (♀)×blunt snout bream (Megalobrama amblycephala) (2n=48, abbreviated as BSB) (♂) are described. In the distant hybridization of RCC (♀)×CC (♂), bisexual fertile F3–F18 allotetraploid hybrids (4n=200, abbreviated as 4nAT) were formed. The diploid hybrid eggs and diploid sperm generated by the females and males of 4nAT developed into diploid gynogenetic hybrids and diploid androgenetic hybrids, respectively, by gynogenesis and androgenesis, without treatment for doubling the chromosome. Improved tetraploid hybrids and improved diploid fishes with genetic variation were derived from the gynogenetic hybrid line. The improved diploid fishes included the high-body RCC and high-body goldfish. The formation of the tetraploid hybrids was related to the occurrence of unreduced gametes generated from the diploid hybrids, which involved in premeiotic endoreduplication, endomitosis, or fusion of germ cells. The sterile triploid hybrids (3n=150) were produced on a large scale by crossing the males of tetraploid hybrids with females of diploid fish (2n=100). In another distant hybridization of RCC (♀)×BSB (♂), different ploidy fishes were obtained, including

  18. Distant hybridization leads to different ploidy fishes.

    Science.gov (United States)

    Liu, ShaoJun

    2010-04-01

    Distant hybridization makes it possible to transfer the genome of one species to another, which results in changes in phenotypes and genotypes of the progenies. This study shows that distant hybridization or the combination of this method with gynogenesis or androgenesis lead to different ploidy fishes with genetic variation, including fertile tetraploid hybrids, sterile triploid hybrids, fertile diploid hybrids, fertile diploid gynogenetic fish, and their derived progenies. The formations of the different ploidy fishes depend on the genetic relationship between the parents. In this study, several types of distant hybridization, including red crucian carp (Carassius auratus red var.) (2n=100, abbreviated as RCC) (female) x common carp (Cyprinus carpio L.) (2n=100, abbreviated as CC) (male), and RCC (2n=100) (female) x blunt snout bream (Megalobrama amblycephala) (2n=48, abbreviated as BSB) (male) are described. In the distant hybridization of RCC (female) x CC (male), bisexual fertile F(3)-F(18) allotetraploid hybrids (4n=200, abbreviated as 4nAT) were formed. The diploid hybrid eggs and diploid sperm generated by the females and males of 4nAT developed into diploid gynogenetic hybrids and diploid androgenetic hybrids, respectively, by gynogenesis and androgenesis, without treatment for doubling the chromosome. Improved tetraploid hybrids and improved diploid fishes with genetic variation were derived from the gynogenetic hybrid line. The improved diploid fishes included the high-body RCC and high-body goldfish. The formation of the tetraploid hybrids was related to the occurrence of unreduced gametes generated from the diploid hybrids, which involved in premeiotic endoreduplication, endomitosis, or fusion of germ cells. The sterile triploid hybrids (3n=150) were produced on a large scale by crossing the males of tetraploid hybrids with females of diploid fish (2n=100). In another distant hybridization of RCC (female) x BSB (male), different ploidy fishes were

  19. ON FINITE DIFFERENCES ON A STRING PROBLEM

    Directory of Open Access Journals (Sweden)

    J. M. Mango

    2014-01-01

    Full Text Available This study presents an analysis of a one-Dimensional (1D time dependent wave equation from a vibrating guitar string. We consider the transverse displacement of a plucked guitar string and the subsequent vibration motion. Guitars are known for production of great sound in form of music. An ordinary string stretched between two points and then plucked does not produce quality sound like a guitar string. A guitar string produces loud and unique sound which can be organized by the player to produce music. Where is the origin of guitar sound? Can the contribution of each part of the guitar to quality sound be accounted for, by mathematically obtaining the numerical solution to wave equation describing the vibration of the guitar string? In the present sturdy, we have solved the wave equation for a vibrating string using the finite different method and analyzed the wave forms for different values of the string variables. The results show that the amplitude (pitch or quality of the guitar wave (sound vary greatly with tension in the string, length of the string, linear density of the string and also on the material of the sound board. The approximate solution is representative; if the step width; ∂x and ∂t are small, that is <0.5.

  20. Effective condition number for finite difference method

    Science.gov (United States)

    Li, Zi-Cai; Chien, Cheng-Sheng; Huang, Hung-Tsai

    2007-01-01

    For solving the linear algebraic equations Ax=b with the symmetric and positive definite matrix A, from elliptic equations, the traditional condition number in the 2-norm is defined by Cond.=[lambda]1/[lambda]n, where [lambda]1 and [lambda]n are the maximal and minimal eigenvalues of the matrix A, respectively. The condition number is used to provide the bounds of the relative errors from the perturbation of both A and b. Such a Cond. can only be reached by the worst situation of all rounding errors and all b. For the given b, the true relative errors may be smaller, or even much smaller than the Cond., which is called the effective condition number in Chan and Foulser [Effectively well-conditioned linear systems, SIAM J. Sci. Statist. Comput. 9 (1988) 963-969] and Christiansen and Hansen [The effective condition number applied to error analysis of certain boundary collocation methods, J. Comput. Appl. Math. 54(1) (1994) 15-36]. In this paper, we propose the new computational formulas for effective condition number Cond_eff, and define the new simplified effective condition number Cond_E. For the latter, we only need the eigenvector corresponding to the minimal eigenvalue of A, which can be easily obtained by the inverse power method. In this paper, we also apply the effective condition number for the finite difference method for Poisson's equation. The difference grids are not supposed to be quasiuniform. Under a non-orthogonality assumption, the effective condition number is proven to be O(1) for the homogeneous boundary conditions. Such a result is extraordinary, compared with the traditional , where hmin is the minimal meshspacing of the difference grids used. For the non-homogeneous Neumann and Dirichlet boundary conditions, the effective condition number is proven to be O(h-1/2) and , respectively, where h is the maximal meshspacing of the difference grids. Numerical experiments are carried out to verify the analysis made.

  1. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  2. A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES

    Science.gov (United States)

    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromagnetic properties of the model are symmetric with respect ...

  3. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru [Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Tcheverda, Vladimir [Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk (Russian Federation); Kazakh–British Technical University, Alma-Ata (Kazakhstan); Botter, Charlotte [University of Stavanger (Norway)

    2016-04-15

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. In this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.

  4. APPLICATION OF PENALTY FUNCTION METHOD IN ISOPARAMETRIC HYBRID FINITE ELEMENT ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    CHEN Dao-zheng; JIAO Zhao-ping

    2005-01-01

    By the aid of the penalty function method, the equilibrium restriction conditions were introduced to the isoparametric hybrid finite element analysis, and the concrete application course of the penalty function method in three-dimensional isoparametric hybrid finite element was discussed. The separated penalty parameters method and the optimal hybrid element model with penalty balance were also presented.The penalty balance method can effectively refrain the parasitical stress on the premise of no additional degrees of freedom. The numeric experiment shows that the presented element not only is effective in improving greatly the numeric calculation precision of distorted grids but also has the universality.

  5. Three-dimensional finite element simulation of intermingled-fiber hybrid composite behavior

    Science.gov (United States)

    Mital, Subodh K.; Chamis, Christos C.

    1992-01-01

    Three-dimensional finite element methods and the intraply hybrid micromechanics equations are used to predict composite properties for a unidirectional graphite-epoxy primary composite with S-glass fibers used as hybridizing fibers. The micromechanics equations are embedded in a computer code ICAN (Integrated Composites Analyzer). The three-dimensional finite element model consists of three-by-three unit cell array, with a total fiber volume ratio of 0.54. There is a good agreement between the composite properties and microstresses obtained from both methods. The results indicate that the finite element methods and micromechanics equations can be used to obtain the properties of intermingled hybrid composites needed for analysis/design of hybrid composite structures.

  6. A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2012-01-01

    The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geo

  7. Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; FENG Hui

    2005-01-01

    The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continuous time.

  8. A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2012-01-01

    The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex

  9. Adaptive boundaryless finite-difference method.

    Science.gov (United States)

    Lopez-Mago, Dorilian; Gutiérrez-Vega, Julio C

    2013-02-01

    The boundaryless beam propagation method uses a mapping function to transform the infinite real space into a finite-size computational domain [Opt. Lett.21, 4 (1996)]. This leads to a bounded field that avoids the artificial reflections produced by the computational window. However, the method suffers from frequency aliasing problems, limiting the physical region to be sampled. We propose an adaptive boundaryless method that concentrates the higher density of sampling points in the region of interest. The method is implemented in Cartesian and cylindrical coordinate systems. It keeps the same advantages of the original method but increases accuracy and is not affected by frequency aliasing.

  10. Assessment of a hybrid finite element-transfer matrix model for flat structures with homogeneous acoustic treatments.

    Science.gov (United States)

    Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck

    2014-05-01

    Modeling complex vibroacoustic systems including poroelastic materials using finite element based methods can be unfeasible for practical applications. For this reason, analytical approaches such as the transfer matrix method are often preferred to obtain a quick estimation of the vibroacoustic parameters. However, the strong assumptions inherent within the transfer matrix method lead to a lack of accuracy in the description of the geometry of the system. As a result, the transfer matrix method is inherently limited to the high frequency range. Nowadays, hybrid substructuring procedures have become quite popular. Indeed, different modeling techniques are typically sought to describe complex vibroacoustic systems over the widest possible frequency range. As a result, the flexibility and accuracy of the finite element method and the efficiency of the transfer matrix method could be coupled in a hybrid technique to obtain a reduction of the computational burden. In this work, a hybrid methodology is proposed. The performances of the method in predicting the vibroacoutic indicators of flat structures with attached homogeneous acoustic treatments are assessed. The results prove that, under certain conditions, the hybrid model allows for a reduction of the computational effort while preserving enough accuracy with respect to the full finite element solution.

  11. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    Science.gov (United States)

    2016-06-01

    examine the rates of convergence for the Kiefer-Wolfowitz algorithm and the mirror descent algorithm , under various updating schemes using finite...dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...Kiefer-Wolfowitz algorithm , mirror descent algorithm , finite-difference approximation, Monte Carlo methods REPORT DOCUMENTATION PAGE 11. SPONSOR

  12. Finite difference solutions to shocked acoustic waves

    Science.gov (United States)

    Walkington, N. J.; Eversman, W.

    1983-01-01

    The MacCormack, Lambda and split flux finite differencing schemes are used to solve a one dimensional acoustics problem. Two duct configurations were considered, a uniform duct and a converging-diverging nozzle. Asymptotic solutions for these two ducts are compared with the numerical solutions. When the acoustic amplitude and frequency are sufficiently high the acoustic signal shocks. This condition leads to a deterioration of the numerical solutions since viscous terms may be required if the shock is to be resolved. A continuous uniform duct solution is considered to demonstrate how the viscous terms modify the solution. These results are then compared with a shocked solution with and without viscous terms. Generally it is found that the most accurate solutions are those obtained using the minimum possible viscosity coefficients. All of the schemes considered give results accurate enough for acoustic power calculations with no one scheme performing significantly better than the others.

  13. ANALYSIS OF AUGMENTED THREE-FIELD MACRO-HYBRID MIXED FINITE ELEMENT SCHEMES

    Institute of Scientific and Technical Information of China (English)

    Gonzalo Alduncin

    2009-01-01

    On the basis of composition duality principles, augmented three-field macro-hybrid mixed variational problems and finite element schemes are analyzed. The compati-bility condition adopted here, for compositional dualization, is the coupling operator surjec-tivity, property that expresses in a general operator sense the Ladysenskaja-Babuska-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug-mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.

  14. Eigenvalues of singular differential operators by finite difference methods. II.

    Science.gov (United States)

    Baxley, J. V.

    1972-01-01

    Note is made of an earlier paper which defined finite difference operators for the Hilbert space L2(m), and gave the eigenvalues for these operators. The present work examines eigenvalues for higher order singular differential operators by using finite difference methods. The two self-adjoint operators investigated are defined by a particular value in the same Hilbert space, L2(m), and are strictly positive with compact inverses. A class of finite difference operators is considered, with the idea of application to the theory of Toeplitz matrices. The approximating operators consist of a good approximation plus a perturbing operator.

  15. AN ITERATIVE HYBRIDIZED MIXED FINITE ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    Dao-qi Yang; Jennifer Zhao

    2003-01-01

    An iterative algorithm is proposed and analyzed based on a hybridized mixed finite element method for numerically solving two-phase generalized Stefan interface problems withstrongly discontinuous solutions, conormal derivatives, and coefficients. This algorithmiteratively solves small problems for each single phase with good accuracy and exchangeinformation at the interface to advance the iteration until convergence, following the ideaof Schwarz Alternating Methods. Error estimates are derived to show that this algorithmalways converges provided that relaxation parameters are suitably chosen. Numeric experiments with matching and non-matching grids at the interface from different phases areperformed to show the accuracy of the method for capturing discontinuities in the solutionsand coefficients. In contrast to standard numerical methods, the accuracy of our methoddoes not seem to deteriorate as the coefficient discontinuity increases.

  16. Development of Generic Field Classes for Finite Element and Finite Difference Problems

    Directory of Open Access Journals (Sweden)

    Diane A. Verner

    1993-01-01

    Full Text Available This article considers the development of a reusable object-oriented array library, as well as the use of this library in the construction of finite difference and finite element codes. The classes in this array library are also generic enough to be used to construct other classes specific to finite difference and finite element methods. We demonstrate the usefulness of this library by inserting it into two existing object-oriented scientific codes developed at Sandia National Laboratories. One of these codes is based on finite difference methods, whereas the other is based on finite element methods. Previously, these codes were separately maintained across a variety of sequential and parallel computing platforms. The use of object-oriented programming allows both codes to make use of common base classes. This offers a number of advantages related to optimization and portability. Optimization efforts, particularly important in large scientific codes, can be focused on a single library. Furthermore, by encapsulating machine dependencies within this library, the optimization of both codes on different architec-tures will only involve modification to a single library.

  17. Hybrid-finite-element analysis of some nonlinear and 3-dimensional problems of engineering fracture mechanics

    Science.gov (United States)

    Atluri, S. N.; Nakagaki, M.; Kathiresan, K.

    1980-01-01

    In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.

  18. Comparison of different precondtioners for nonsymmtric finite volume element methods

    Energy Technology Data Exchange (ETDEWEB)

    Mishev, I.D.

    1996-12-31

    We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.

  19. Implicit finite-difference simulations of seismic wave propagation

    KAUST Repository

    Chu, Chunlei

    2012-03-01

    We propose a new finite-difference modeling method, implicit both in space and in time, for the scalar wave equation. We use a three-level implicit splitting time integration method for the temporal derivative and implicit finite-difference operators of arbitrary order for the spatial derivatives. Both the implicit splitting time integration method and the implicit spatial finite-difference operators require solving systems of linear equations. We show that it is possible to merge these two sets of linear systems, one from implicit temporal discretizations and the other from implicit spatial discretizations, to reduce the amount of computations to develop a highly efficient and accurate seismic modeling algorithm. We give the complete derivations of the implicit splitting time integration method and the implicit spatial finite-difference operators, and present the resulting discretized formulas for the scalar wave equation. We conduct a thorough numerical analysis on grid dispersions of this new implicit modeling method. We show that implicit spatial finite-difference operators greatly improve the accuracy of the implicit splitting time integration simulation results with only a slight increase in computational time, compared with explicit spatial finite-difference operators. We further verify this conclusion by both 2D and 3D numerical examples. © 2012 Society of Exploration Geophysicists.

  20. Evolved finite state controller for hybrid system in reduced search space

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun

    2009-01-01

    This paper presents an evolutionary methodology to automatically generate finite state automata (FSA) controllers to control hybrid systems. The proposed approach reduces the search space using an invariant analysis of the system. FSA controllers for a case study of two-tank system have been...

  1. Comparing an evolved finite state controller for hybrid system to a lookahead design

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun

    2010-01-01

    This paper presents a comparison of an evolutionary methodology for evolving finite state controller to the lookahead controller for hybrid system. To illustrate the advantages and disadvantages of both controllers two case studies, namely a two-tanks system and a single-input double-output DC...

  2. Investigation of a Hybrid Winding Concept for Toroidal Inductors using 3D Finite Element Modeling

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Mønster, Jakob Døllner;

    2013-01-01

    This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built and tested...

  3. Numerical Homogenization of Protective Ceramic Composite Layers using the Hybrid Finite-Discrete Element Methods

    Directory of Open Access Journals (Sweden)

    Zainorizuan Mohd Jaini

    2013-12-01

    Full Text Available Innovative technologies have resulted in more effective ceramic composite as high rate loading-resistance and protective layer. The ceramic composite layer consists of ceramic frontal plate that bonded by softer-strong reinforced polymer network, consequently gains the heterogeneous condition. These materials serve specific purposes of defeating high rate loading and maintaining the structural integrity of the layer. Further due to the lack of a constituent material and tedious problem in heterogonous material modelling, a numerical homogenization is employed to analyse the isotropic material properties of ceramic composite layer in homogenous manner. The objective of this study is to derive a constitutive law of the ceramic composite using the multi-scale analysis. Two-dimensional symmetric macrostructure of the ceramic composite was numerically modelled using the hybrid finite-discrete element method to investigate the effective material properties and strength profile. The macrostructure was modelled as brittle material with nonlinear material properties. The finite element method is incorporated with a Rankine-Rotating Crack approach and discrete element to model the fracture onset. The prescribed uniaxial and biaxial loadings were imposed along the free boundaries to create different deformations. Due to crack initiation on the macrostructure, the averaged stresses were calculated to plot the stress-strain curves and the effective yield stress surface. From the multi-scale analysis, the rate-dependency of Mohr-Coulomb constitutive law was derived for the ceramic composite layer.

  4. Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method

    DEFF Research Database (Denmark)

    Goo, Seongyeol; Wang, Semyung; Kook, Junghwan

    2017-01-01

    This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...... is limited to low frequency applications due to considerable computational efforts. To this end, we propose a gradient-based topology optimization method that uses the hybrid FE-WBM whereby the entire domain of a problem is partitioned into design and non-design domains. In this respect, the FEM is used...... as a design domain of topology optimization, and the WBM is used as a non-design domain to increase computational efficiency. The adjoint variable method based on the hybrid FE-WBM is also proposed as a means of computing design sensitivities. Numerical examples are presented to demonstrate the effectiveness...

  5. Solving difference equations in finite terms

    NARCIS (Netherlands)

    Hendriks, Peter; Singer, MF

    We define the notion of a Liouvillian sequence and show that the solution space of a difference equation with rational function coefficients has a basis of Liouvillian sequences iff the Galois group of the equation is solvable. Using this we give a procedure to determine the Liouvillian solutions of

  6. Solving difference equations in finite terms

    NARCIS (Netherlands)

    Hendriks, Peter; Singer, MF

    1999-01-01

    We define the notion of a Liouvillian sequence and show that the solution space of a difference equation with rational function coefficients has a basis of Liouvillian sequences iff the Galois group of the equation is solvable. Using this we give a procedure to determine the Liouvillian solutions of

  7. A class of hybrid finite element methods for electromagnetics: A review

    Science.gov (United States)

    Volakis, J. L.; Chatterjee, A.; Gong, J.

    1993-01-01

    Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.

  8. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  9. An implicit finite-difference operator for the Helmholtz equation

    KAUST Repository

    Chu, Chunlei

    2012-07-01

    We have developed an implicit finite-difference operator for the Laplacian and applied it to solving the Helmholtz equation for computing the seismic responses in the frequency domain. This implicit operator can greatly improve the accuracy of the simulation results without adding significant extra computational cost, compared with the corresponding conventional explicit finite-difference scheme. We achieved this by taking advantage of the inherently implicit nature of the Helmholtz equation and merging together the two linear systems: one from the implicit finite-difference discretization of the Laplacian and the other from the discretization of the Helmholtz equation itself. The end result of this simple yet important merging manipulation is a single linear system, similar to the one resulting from the conventional explicit finite-difference discretizations, without involving any differentiation matrix inversions. We analyzed grid dispersions of the discrete Helmholtz equation to show the accuracy of this implicit finite-difference operator and used two numerical examples to demonstrate its efficiency. Our method can be extended to solve other frequency domain wave simulation problems straightforwardly. © 2012 Society of Exploration Geophysicists.

  10. FINITE DIFFERENCE SIMULATION OF LOW CARBON STEEL MANUAL ARC WELDING

    Directory of Open Access Journals (Sweden)

    Laith S Al-Khafagy

    2011-01-01

    Full Text Available This study discusses the evaluation and simulation of angular distortion in welding joints, and the ways of controlling and treating them, while welding plates of (low carbon steel type (A-283-Gr-C through using shielded metal arc welding. The value of this distortion is measured experimentally and the results are compared with the suggested finite difference method computer program. Time dependent temperature distributions are obtained using finite difference method. This distribution is used to obtain the shrinkage that causes the distortions accompanied with structural forces that act to modify these distortions. Results are compared with simple empirical models and experimental results. Different thickness of plates and welding parameters is manifested to illustrate its effect on angular distortions. Results revealed the more accurate results of finite difference method that match experimental results in comparison with empirical formulas. Welding parameters include number of passes, current, electrode type and geometry of the welding process.

  11. Hybridization of mouse lemurs: different patterns under different ecological conditions

    Directory of Open Access Journals (Sweden)

    Rosenkranz David

    2011-10-01

    Full Text Available Abstract Background Several mechanistic models aim to explain the diversification of the multitude of endemic species on Madagascar. The island's biogeographic history probably offered numerous opportunities for secondary contact and subsequent hybridization. Existing diversification models do not consider a possible role of these processes. One key question for a better understanding of their potential importance is how they are influenced by different environmental settings. Here, we characterized a contact zone between two species of mouse lemurs, Microcebus griseorufus and M. murinus, in dry spiny bush and mesic gallery forest that border each other sharply without intermediate habitats between them. We performed population genetic analyses based on mtDNA sequences and nine nuclear microsatellites and compared the results to a known hybrid zone of the same species in a nearby wide gradient from dry spiny bush over transitional forest to humid littoral forest. Results In the spiny-gallery system, Microcebus griseorufus is restricted to the spiny bush; Microcebus murinus occurs in gallery forest and locally invades the dryer habitat of its congener. We found evidence for bidirectional introgressive hybridization, which is closely linked to increased spatial overlap within the spiny bush. Within 159 individuals, we observed 18 hybrids with mitochondrial haplotypes of both species. Analyses of simulated microsatellite data indicate that we identified hybrids with great accuracy and that we probably underestimated their true number. We discuss short-term climatic fluctuations as potential trigger for the dynamic of invasion and subsequent hybridization. In the gradient hybrid zone in turn, long-term aridification could have favored unidirectional nuclear introgression from Microcebus griseorufus into M. murinus in transitional forest. Conclusions Madagascar's southeastern transitional zone harbors two very different hybrid zones of mouse lemurs

  12. A comparison of the finite difference and finite element methods for heat transfer calculations

    Science.gov (United States)

    Emery, A. F.; Mortazavi, H. R.

    1982-01-01

    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.

  13. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    Science.gov (United States)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  14. Compact finite difference method for American option pricing

    Science.gov (United States)

    Zhao, Jichao; Davison, Matt; Corless, Robert M.

    2007-09-01

    A compact finite difference method is designed to obtain quick and accurate solutions to partial differential equation problems. The problem of pricing an American option can be cast as a partial differential equation. Using the compact finite difference method this problem can be recast as an ordinary differential equation initial value problem. The complicating factor for American options is the existence of an optimal exercise boundary which is jointly determined with the value of the option. In this article we develop three ways of combining compact finite difference methods for American option price on a single asset with methods for dealing with this optimal exercise boundary. Compact finite difference method one uses the implicit condition that solutions of the transformed partial differential equation be nonnegative to detect the optimal exercise value. This method is very fast and accurate even when the spatial step size h is large (h[greater-or-equal, slanted]0.1). Compact difference method two must solve an algebraic nonlinear equation obtained by Pantazopoulos (1998) at every time step. This method can obtain second order accuracy for space x and requires a moderate amount of time comparable with that required by the Crank Nicolson projected successive over relaxation method. Compact finite difference method three refines the free boundary value by a method developed by Barone-Adesi and Lugano [The saga of the American put, 2003], and this method can obtain high accuracy for space x. The last two of these three methods are convergent, moreover all the three methods work for both short term and long term options. Through comparison with existing popular methods by numerical experiments, our work shows that compact finite difference methods provide an exciting new tool for American option pricing.

  15. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

    Directory of Open Access Journals (Sweden)

    Oluwaseun Egbelowo

    2017-05-01

    Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

  16. Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry

    DEFF Research Database (Denmark)

    Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik

    2004-01-01

    n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....

  17. Finite difference computing with PDEs a modern software approach

    CERN Document Server

    Langtangen, Hans Petter

    2017-01-01

    This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

  18. Finite-Difference Frequency-Domain Method in Nanophotonics

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra

    is often indispensable. This thesis presents the development of rigorous finite-difference method, a very general tool to solve Maxwell’s equations in arbitrary geometries in three dimensions, with an emphasis on the frequency-domain formulation. Enhanced performance of the perfectly matched layers...... is obtained through free space squeezing technique, and nonuniform orthogonal grids are built to greatly improve the accuracy of simulations of highly heterogeneous nanostructures. Examples of the use of the finite-difference frequency-domain method in this thesis range from simulating localized modes...

  19. Higher order finite difference schemes for the magnetic induction equations

    CERN Document Server

    Koley, Ujjwal; Risebro, Nils Henrik; Svärd, Magnus

    2011-01-01

    We describe high order accurate and stable finite difference schemes for the initial-boundary value problem associated with the magnetic induction equations. These equations model the evolution of a magnetic field due to a given velocity field. The finite difference schemes are based on Summation by Parts (SBP) operators for spatial derivatives and a Simultaneous Approximation Term (SAT) technique for imposing boundary conditions. We present various numerical experiments that demonstrate both the stability as well as high order of accuracy of the schemes.

  20. Finite-Difference Algorithms For Computing Sound Waves

    Science.gov (United States)

    Davis, Sanford

    1993-01-01

    Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.

  1. Convergence of a finite difference method for combustion model problems

    Institute of Scientific and Technical Information of China (English)

    YING; Long'an

    2004-01-01

    We study a finite difference scheme for a combustion model problem. A projection scheme near the combustion wave, and the standard upwind finite difference scheme away from the combustion wave are applied. Convergence to weak solutions with a combustion wave is proved under the normal Courant-Friedrichs-Lewy condition. Some conditions on the ignition temperature are given to guarantee the solution containing a strong detonation wave or a weak detonation wave. Convergence to strong detonation wave solutions for the random projection method is also proved.

  2. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    Science.gov (United States)

    Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine

    2005-01-01

    Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element

  3. Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic

    OpenAIRE

    Muhammad Yazid Muhammad Ammar Faris; Jamil Norlida; Muhmed Razali Nik Nurul Husna; Yusoff Ahmad Razlan

    2017-01-01

    Harvesting energy from ambient vibrations is a highly required method because of the wide range of available sources that produce vibration energy application from industrial machinery to human motion application. In this paper, the implementation of harvesting energy from two technologies to form a hybrid energy harvester system was analyzed. These two technologies involve the piezoelectric harvesting energy and the electromagnetic harvesting energy. A finite element model was developed usin...

  4. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas;

    2015-01-01

    coupled to the transfer matrix method (TMM). These methods are found to yield comparable results when predicting the Sabine absorption coefficients of finite porous materials. Discrepancies with measurement results can essentially be explained by the unbalance between grazing and non-grazing sound field...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  5. Chebyshev Finite Difference Method for Fractional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Boundary

    2015-09-01

    Full Text Available This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivatives are described in the Caputo sense. Numerical results show that this method is of high accuracy and is more convenient and efficient for solving boundary value problems involving fractional ordinary differential equations. AMS Subject Classification: 34A08 Keywords and Phrases: Chebyshev polynomials, Gauss-Lobatto points, fractional differential equation, finite difference 1. Introduction The idea of a derivative which interpolates between the familiar integer order derivatives was introduced many years ago and has gained increasing importance only in recent years due to the development of mathematical models of a certain situations in engineering, materials science, control theory, polymer modelling etc. For example see [20, 22, 25, 26]. Most fractional order differential equations describing real life situations, in general do not have exact analytical solutions. Several numerical and approximate analytical methods for ordinary differential equation Received: December 2014; Accepted: March 2015 57 Journal of Mathematical Extension Vol. 9, No. 3, (2015, 57-71 ISSN: 1735-8299 URL: http://www.ijmex.com Chebyshev Finite Difference Method for Fractional Boundary Value Problems H. Azizi Taft Branch, Islamic Azad University Abstract. This paper presents a numerical method for fractional differential equations using Chebyshev finite difference method. The fractional derivative

  6. Eigenvalues of singular differential operators by finite difference methods. I.

    Science.gov (United States)

    Baxley, J. V.

    1972-01-01

    Approximation of the eigenvalues of certain self-adjoint operators defined by a formal differential operator in a Hilbert space. In general, two problems are studied. The first is the problem of defining a suitable Hilbert space operator that has eigenvalues. The second problem concerns the finite difference operators to be used.

  7. Efficient interface conditions for the finite difference beam propagation method

    NARCIS (Netherlands)

    Hoekstra, Hugo; Krijnen, Gijsbertus J.M.; Lambeck, Paul

    1992-01-01

    It is shown that by adapting the refractive indexes in the vicinity of interfaces, the 2-D beam propagation method based on the finite-difference (FDBPM) scheme can be made much more effective. This holds especially for TM modes propagating in structures with high-index contrasts, such as surface

  8. EXTERNAL BODY FORCE IN FINITE DIFFERENCE LATTICE BOLTZMANN METHOD

    Institute of Scientific and Technical Information of China (English)

    CHEN Sheng; LIU Zhao-hui; SHI Bao-chang; ZHENG Chu-guang

    2005-01-01

    A new finite difference lattice Boltzmann scheme is developed. Because of analyzing the influence of external body force roundly, the correct Navier-Stokes equations with the external body force are recovered, without any additional unphysical terms. And some numerical results are presented. The result which close agreement with analytical data shows the good performance of the model.

  9. High-order finite-difference methods for Poisson's equation

    NARCIS (Netherlands)

    van Linde, Hendrik Jan

    1971-01-01

    In this thesis finite-difference approximations to the three boundary value problems for Poisson’s equation are given, with discretization errors of O(H^3) for the mixed boundary value problem, O(H^3 |ln(h)| for the Neumann problem and O(H^4)for the Dirichlet problem respectively . First an operator

  10. Finite Difference Solution for Biopotentials of Axially Symmetric Cells

    Science.gov (United States)

    Klee, Maurice; Plonsey, Robert

    1972-01-01

    The finite difference equations necessary for calculating the three-dimensional, time-varying biopotentials within and surrounding axially symmetric cells are presented. The method of sucessive overrelaxation is employed to solve these equations and is shown to be rapidly convergent and accurate for the exemplary problem of a spheroidal cell under uniform field stimulation. PMID:4655665

  11. Time-dependent optimal heater control using finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhen Zhe; Heo, Kwang Su; Choi, Jun Hoo; Seol, Seoung Yun [Chonnam National Univ., Gwangju (Korea, Republic of)

    2008-07-01

    Thermoforming is one of the most versatile and economical process to produce polymer products. The drawback of thermoforming is difficult to control thickness of final products. Temperature distribution affects the thickness distribution of final products, but temperature difference between surface and center of sheet is difficult to decrease because of low thermal conductivity of ABS material. In order to decrease temperature difference between surface and center, heating profile must be expressed as exponential function form. In this study, Finite Difference Method was used to find out the coefficients of optimal heating profiles. Through investigation, the optimal results using Finite Difference Method show that temperature difference between surface and center of sheet can be remarkably minimized with satisfying temperature of forming window.

  12. Mixed-Hybrid and Vertex-Discontinuous-Galerkin Finite Element Modeling of Multiphase Compositional Flow on 3D Unstructured Grids

    CERN Document Server

    Moortgat, Joachim

    2016-01-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ...

  13. Monolithic formulation of electromechanical systems within the context of hybrid finite elements

    Science.gov (United States)

    Agrawal, Manish; Jog, C. S.

    2017-03-01

    In electromechanical devices, a strong coupling exists between the electromagnetic and displacement field. Due to this strong interaction, a need arises to develop a robust, fully coupled scheme for modeling electromechanical phenomena. With this goal in view, we present a monolithic numerical scheme for modeling fully coupled electromechanical systems. It is shown in the literature that for structural problems, hybrid elements that are based on a two-field variational formulation are less susceptible to locking and provide a robust numerical strategy especially for shell-type structures. Hence, we extend our monolithic formulation to the hybrid finite element framework. Our monolithic formulation is based on a total Lagrangian framework, where the eddy current and structural equations are solved on the reference configuration. Consistent linearization is performed to ensure a quadratic rate of convergence. The efficacy of the presented algorithm, and especially that of the hybrid formulation is demonstrated with the help of numerical examples.

  14. Hybrid, explicit-implicit, finite-volume schemes on unstructured grids for unsteady compressible flows

    Science.gov (United States)

    Timofeev, Evgeny; Norouzi, Farhang

    2016-06-01

    The motivation for using hybrid, explicit-implicit, schemes rather than fully implicit or explicit methods for some unsteady high-speed compressible flows with shocks is firstly discussed. A number of such schemes proposed in the past are briefly overviewed. A recently proposed hybridization approach is then introduced and used for the development of a hybrid, explicit-implicit, TVD (Total Variation Diminishing) scheme of the second order in space and time on smooth solutions in both, explicit and implicit, modes for the linear advection equation. Further generalizations of this finite-volume method for the Burgers, Euler and Navier-Stokes equations discretized on unstructured grids are mentioned in the concluding remarks.

  15. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates.

    Science.gov (United States)

    Guo, Zhaoli; Zhao, T S

    2003-06-01

    In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in order to improve the computational efficiency and numerical stability of a recent method [R. Mei and W. Shyy, J. Comput. Phys. 143, 426 (1998)] in which the collision term of the Boltzmann Bhatnagar-Gross-Krook equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical scheme is removed by introducing a distribution function different from that being used currently. As a result, an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady flow around a circular cylinder. The numerical results are in good agreement with the results of previous studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.

  16. Time dependent wave envelope finite difference analysis of sound propagation

    Science.gov (United States)

    Baumeister, K. J.

    1984-01-01

    A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.

  17. The Laguerre finite difference one-way equation solver

    Science.gov (United States)

    Terekhov, Andrew V.

    2017-05-01

    This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.

  18. The mimetic finite difference method for elliptic problems

    CERN Document Server

    Veiga, Lourenço Beirão; Manzini, Gianmarco

    2014-01-01

    This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.

  19. High Order Finite Difference Methods for Multiscale Complex Compressible Flows

    Science.gov (United States)

    Sjoegreen, Bjoern; Yee, H. C.

    2002-01-01

    The classical way of analyzing finite difference schemes for hyperbolic problems is to investigate as many as possible of the following points: (1) Linear stability for constant coefficients; (2) Linear stability for variable coefficients; (3) Non-linear stability; and (4) Stability at discontinuities. We will build a new numerical method, which satisfies all types of stability, by dealing with each of the points above step by step.

  20. Finite difference methods for the solution of unsteady potential flows

    Science.gov (United States)

    Caradonna, F. X.

    1985-01-01

    A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.

  1. A finite difference method for free boundary problems

    KAUST Repository

    Fornberg, Bengt

    2010-04-01

    Fornberg and Meyer-Spasche proposed some time ago a simple strategy to correct finite difference schemes in the presence of a free boundary that cuts across a Cartesian grid. We show here how this procedure can be combined with a minimax-based optimization procedure to rapidly solve a wide range of elliptic-type free boundary value problems. © 2009 Elsevier B.V. All rights reserved.

  2. Finite-Element Analysis of Jute- and Coir-Fiber-Reinforced Hybrid Composite Multipanel Plates

    Science.gov (United States)

    Nirbhay, M.; Misra, R. K.; Dixit, A.

    2015-09-01

    Natural-fiber-reinforced polymer composite materials are rapidly gaining interest worldwide both in terms of research and industrial applications. The present work includes the characterization and modeling of jute- and coir-fiber-reinforced hybrid composite materials. The mechanical behavior of a two-panel plate and a sixpanel box structure is analyzed under various loading regimes by using the finite-element software ABAQUS®. Exhaustive parametric studies are also performed to obtain a clear insight into the relationships between various parameters and deflections of the panels and stress distributions in them. Deflections of both the structures are compared and found to be in good agreement with published results. To determine the mechanical behavior of natural-fiber-reinforced composite panels, a finite-element analysis is performed.

  3. Two Scales, Hybrid Model for Soils, Involving Artificial Neural Network and Finite Element Procedure

    Directory of Open Access Journals (Sweden)

    Krasiński Marcin

    2015-02-01

    Full Text Available A hybrid ANN-FE solution is presented as a result of two level analysis of soils: a level of a laboratory sample and a level of engineering geotechnical problem. Engineering properties of soils (sands are represented directly in the form of ANN (this is in contrast with our former paper where ANN approximated constitutive relationships. Initially the ANN is trained with Duncan formula (Duncan and Chang [2], then it is re-trained (calibrated with some available experimental data, specific for the soil considered. The obtained approximation of the constitutive parameters is used directly in finite element method at the level of a single element at the scale of the laboratory sample to check the correct representation of the laboratory test. Then, the finite element that was successfully tested at the level of laboratory sample is used at the macro level to solve engineering problems involving the soil for which it was calibrated.

  4. Hybrid Finite Element Analysis of Free Edge Effect in Symmetric Composite Laminates

    Science.gov (United States)

    1983-06-01

    ANALYSIS OF FREE EDGE EFFECT IN L AUTHOR(S 61102F S.W. Lee237B J.J. Rhiu S.C. Won,, I ~ 7. PENOAMnG ORGANIZATION NAME(S) AND ADORES4 S) L. PERFORMING...ANALYSIS OF FREE EDGE EFFECT IN SYMMETRIC COMPOSITE LAMINATES S. W. Lee I 3. Phi S. C. Wong Department of Aerospace Engineering University of Maryland...collocation method. In this report, we present an efficient hybrid finite element method for analysis of interlaminar stress or free edge effect in

  5. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  6. THE FINITE VOLUME PROJECTION METHOD WITH HYBRID UNSTRUCTURED TRIANGULAR COLLOCATED GRIDS FOR INCOMPRESSIBLE FLOWS

    Institute of Scientific and Technical Information of China (English)

    GAO Wei; DUAN Ya-li; LIU Ru-xun

    2009-01-01

    In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.

  7. Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves

    NARCIS (Netherlands)

    Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger

    2008-01-01

    Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve

  8. Comparison of finite difference and finite element methods for simulating two-dimensional scattering of elastic waves

    NARCIS (Netherlands)

    Frehner, Marcel; Schmalholz, Stefan M.; Saenger, Erik H.; Steeb, Holger Karl

    2008-01-01

    Two-dimensional scattering of elastic waves in a medium containing a circular heterogeneity is investigated with an analytical solution and numerical wave propagation simulations. Different combinations of finite difference methods (FDM) and finite element methods (FEM) are used to numerically solve

  9. Explicit finite difference methods for the delay pseudoparabolic equations.

    Science.gov (United States)

    Amirali, I; Amiraliyev, G M; Cakir, M; Cimen, E

    2014-01-01

    Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown.

  10. Thermal buckling comparative analysis using Different FE (Finite Element) tools

    Energy Technology Data Exchange (ETDEWEB)

    Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)

    2009-12-19

    High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)

  11. PERTURBATIONAL FINITE DIFFERENCE SCHEME OF CONVECTION-DIFFUSION EQUATION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Perturbational Finite Difference (PFD) method is a kind of high-order-accurate compact difference method, But its idea is different from the normal compact method and the multi-nodes method. This method can get a Perturbational Exact Numerical Solution (PENS) scheme for locally linearlized Convection-Diffusion (CD) equation. The PENS scheme is similar to the Finite Analytical (FA) scheme and Exact Difference Solution (EDS) scheme, which are all exponential schemes, but PENS scheme is simpler and uses only 3, 5 and 7 nodes for 1-, 2- and 3-dimensional problems, respectively. The various approximate schemes of PENS scheme are also called Perturbational-High-order-accurate Difference (PHD) scheme. The PHD schemes can be got by expanding the exponential terms in the PENS scheme into power series of grid Renold number, and they are all upwind schemes and remain the concise structure form of first-order upwind scheme. For 1-dimensional (1-D) CD equation and 2-D incompressible Navier-Stokes equation, their PENS and PHD schemes were constituted in this paper, they all gave highly accurate results for the numerical examples of three 1-D CD equations and an incompressible 2-D flow in a square cavity.

  12. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    Science.gov (United States)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  13. Seismic imaging using finite-differences and parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ober, C.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computers can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.

  14. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    Science.gov (United States)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  15. Acoustic radiation force analysis using finite difference time domain method.

    Science.gov (United States)

    Grinenko, A; Wilcox, P D; Courtney, C R P; Drinkwater, B W

    2012-05-01

    Acoustic radiation force exerted by standing waves on particles is analyzed using a finite difference time domain Lagrangian method. This method allows the acoustic radiation force to be obtained directly from the solution of nonlinear fluid equations, without any assumptions on size or geometry of the particles, boundary conditions, or acoustic field amplitude. The model converges to analytical results in the limit of small particle radii and low field amplitudes, where assumptions within the analytical models apply. Good agreement with analytical and numerical models based on solutions of linear scattering problems is observed for compressible particles, whereas some disagreement is detected when the compressibility of the particles decreases.

  16. A review of current finite difference rotor flow methods

    Science.gov (United States)

    Caradonna, F. X.; Tung, C.

    1986-01-01

    Rotary-wing computational fluid dynamics is reaching a point where many three-dimensional, unsteady, finite-difference codes are becoming available. This paper gives a brief review of five such codes, which treat the small disturbance, conservative and nonconservative full-potential, and Euler flow models. A discussion of the methods of applying these codes to the rotor environment (including wake and trim considerations) is followed by a comparison with various available data. These data include tests of advancing lifting and nonlifting, and hovering model rotors with significant supercritical flow regions. The codes are also compared for computational efficiency.

  17. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  18. Performance and scalability of finite-difference and finite-element wave-propagation modeling on Intel's Xeon Phi

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2013-01-01

    With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements

  19. Performance and scalability of finite-difference and finite-element wave-propagation modeling on Intel's Xeon Phi

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2013-01-01

    With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements a

  20. Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

    Science.gov (United States)

    Brandenburg, Axel; Dobler, Wolfgang

    2010-10-01

    The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

  1. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals.

    Science.gov (United States)

    Kronik, Leeor; Stein, Tamar; Refaely-Abramson, Sivan; Baer, Roi

    2012-05-08

    Excitation gaps are of considerable significance in electronic structure theory. Two different gaps are of particular interest. The fundamental gap is defined by charged excitations, as the difference between the first ionization potential and the first electron affinity. The optical gap is defined by a neutral excitation, as the difference between the energies of the lowest dipole-allowed excited state and the ground state. Within many-body perturbation theory, the fundamental gap is the difference between the corresponding lowest quasi-hole and quasi-electron excitation energies, and the optical gap is addressed by including the interaction between a quasi-electron and a quasi-hole. A long-standing challenge has been the attainment of a similar description within density functional theory (DFT), with much debate on whether this is an achievable goal even in principle. Recently, we have constructed and applied a new approach to this problem. Anchored in the rigorous theoretical framework of the generalized Kohn-Sham equation, our method is based on a range-split hybrid functional that uses exact long-range exchange. Its main novel feature is that the range-splitting parameter is not a universal constant but rather is determined from first principles, per system, based on satisfaction of the ionization potential theorem. For finite-sized objects, this DFT approach mimics successfully, to the best of our knowledge for the first time, the quasi-particle picture of many-body theory. Specifically, it allows for the extraction of both the fundamental and the optical gap from one underlying functional, based on the HOMO-LUMO gap of a ground-state DFT calculation and the lowest excitation energy of a linear-response time-dependent DFT calculation, respectively. In particular, it produces the correct optical gap for the difficult case of charge-transfer and charge-transfer-like scenarios, where conventional functionals are known to fail. In this perspective, we overview

  2. A hybrid finite mixture model for exploring heterogeneous ordering patterns of driver injury severity.

    Science.gov (United States)

    Ma, Lu; Wang, Guan; Yan, Xuedong; Weng, Jinxian

    2016-04-01

    Debates on the ordering patterns of crash injury severity are ongoing in the literature. Models without proper econometrical structures for accommodating the complex ordering patterns of injury severity could result in biased estimations and misinterpretations of factors. This study proposes a hybrid finite mixture (HFM) model aiming to capture heterogeneous ordering patterns of driver injury severity while enhancing modeling flexibility. It attempts to probabilistically partition samples into two groups in which one group represents an unordered/nominal data-generating process while the other represents an ordered data-generating process. Conceptually, the newly developed model offers flexible coefficient settings for mining additional information from crash data, and more importantly it allows the coexistence of multiple ordering patterns for the dependent variable. A thorough modeling performance comparison is conducted between the HFM model, and the multinomial logit (MNL), ordered logit (OL), finite mixture multinomial logit (FMMNL) and finite mixture ordered logit (FMOL) models. According to the empirical results, the HFM model presents a strong ability to extract information from the data, and more importantly to uncover heterogeneous ordering relationships between factors and driver injury severity. In addition, the estimated weight parameter associated with the MNL component in the HFM model is greater than the one associated with the OL component, which indicates a larger likelihood of the unordered pattern than the ordered pattern for driver injury severity.

  3. FINITE DIFFERENCE APPROXIMATION FOR PRICING THE AMERICAN LOOKBACK OPTION

    Institute of Scientific and Technical Information of China (English)

    Tie Zhang; Shuhua Zhang; Danmei Zhu

    2009-01-01

    In this paper we are concerned with the pricing of lookback options with American type constrains. Based on the differential linear complementary formula associated with the pricing problem, an implicit difference scheme is constructed and analyzed. We show that there exists a unique difference solution which is unconditionally stable. Using the notion of viscosity solutions, we also prove that the finite difference solution converges uniformly to the viscosity solution of the continuous problem. Furthermore, by means of the variational inequality analysis method, the (O)(△t+△x2)-order error estimate is derived in the discrete L2-norm provided that the continuous problem is sufficiently regular. In addition, a numerical example is provided to illustrate the theoretical results.Mathematics subject classification: 65M12, 65M06, 91B28.

  4. Finite-difference calculation of traveltimes based on rectangular grid

    Institute of Scientific and Technical Information of China (English)

    李振春; 刘玉莲; 张建磊; 马在田; 王华忠

    2004-01-01

    To the most of velocity fields, the traveltimes of the first break that seismic waves propagate along rays can be computed on a 2-D or 3-D numerical grid by finite-difference extrapolation. Under ensuring accuracy, to improve calculating efficiency and adaptability, the calculation method of first-arrival traveltime of finite-difference is derived based on any rectangular grid and a local plane wavefront approximation. In addition, head waves and scattering waves are properly treated and shadow and caustic zones cannot be encountered, which appear in traditional ray-tracing. The testes of two simple models and the complex Marmousi model show that the method has higher accuracy and adaptability to complex structure with strong vertical and lateral velocity variation, and Kirchhoff prestack depth migration based on this method can basically achieve the position imaging effects of wave equation prestack depth migration in major structures and targets. Because of not taking account of the later arrivals energy, the effect of its amplitude preservation is worse than that by wave equation method, but its computing efficiency is higher than that by total Green's function method and wave equation method.

  5. Three-dimensional hybrid-stress finite element analysis of composite laminates with cracks and cutouts

    Science.gov (United States)

    Wang, S. S.

    1985-01-01

    A three-dimensional hybrid-stress finite element analysis of composite laminates containing cutouts and cracks is presented. Fully three-dimensional, hexahedral isoparametric elements of the hybrid-stress model are formulated on the basis of the Hellinger-Reissner variational principle. Traction-free edges, cutouts, and crack surfaces are modeled by imposition of exact traction boundary conditions along element surfaces. Special boundary and surface elements are constructed by introducing proper constraints on assumed stress functions. The Lagrangian multiplier technique is used to enforce ply-interface continuity conditions in hybrid bimaterial composite elements for modeling the interface region in a composite laminate. Two examples are given to illustrate the capability of the present method of approach: (1) the well-known delamination problem in an angle-ply laminate, and (2) the important problem of a composite laminate containing a circular hole. Results are presented in detail for each case. Implications of interlaminar and intralaminar crack initiation, growth and fracture in composites containing cracks and cutouts are discussed.

  6. A parallel adaptive finite difference algorithm for petroleum reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Hai Minh

    2005-07-01

    Adaptive finite differential for problems arising in simulation of flow in porous medium applications are considered. Such methods have been proven useful for overcoming limitations of computational resources and improving the resolution of the numerical solutions to a wide range of problems. By local refinement of the computational mesh where it is needed to improve the accuracy of solutions, yields better solution resolution representing more efficient use of computational resources than is possible with traditional fixed-grid approaches. In this thesis, we propose a parallel adaptive cell-centered finite difference (PAFD) method for black-oil reservoir simulation models. This is an extension of the adaptive mesh refinement (AMR) methodology first developed by Berger and Oliger (1984) for the hyperbolic problem. Our algorithm is fully adaptive in time and space through the use of subcycling, in which finer grids are advanced at smaller time steps than the coarser ones. When coarse and fine grids reach the same advanced time level, they are synchronized to ensure that the global solution is conservative and satisfy the divergence constraint across all levels of refinement. The material in this thesis is subdivided in to three overall parts. First we explain the methodology and intricacies of AFD scheme. Then we extend a finite differential cell-centered approximation discretization to a multilevel hierarchy of refined grids, and finally we are employing the algorithm on parallel computer. The results in this work show that the approach presented is robust, and stable, thus demonstrating the increased solution accuracy due to local refinement and reduced computing resource consumption. (Author)

  7. Viscoelastic Finite Difference Modeling Using Graphics Processing Units

    Science.gov (United States)

    Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.

    2014-12-01

    Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size

  8. Research related to improved computer aided design software package. [comparative efficiency of finite, boundary, and hybrid element methods in elastostatics

    Science.gov (United States)

    Walston, W. H., Jr.

    1986-01-01

    The comparative computational efficiencies of the finite element (FEM), boundary element (BEM), and hybrid boundary element-finite element (HVFEM) analysis techniques are evaluated for representative bounded domain interior and unbounded domain exterior problems in elastostatics. Computational efficiency is carefully defined in this study as the computer time required to attain a specified level of solution accuracy. The study found the FEM superior to the BEM for the interior problem, while the reverse was true for the exterior problem. The hybrid analysis technique was found to be comparable or superior to both the FEM and BEM for both the interior and exterior problems.

  9. On the difference between permutation poynomials over finite fields

    DEFF Research Database (Denmark)

    Anbar Meidl, Nurdagül; Odzak, Almasa; Patel, Vandita

    2017-01-01

    The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that if p > (d 2 − 3d + 4)2 , then there is no complete mapping polynomial f in Fp[x] of degree d ≥ 2. For arbitrary finite fields Fq, a similar non-existence result is obtained recently by I¸sık, Topuzo˘glu and Wint......The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that if p > (d 2 − 3d + 4)2 , then there is no complete mapping polynomial f in Fp[x] of degree d ≥ 2. For arbitrary finite fields Fq, a similar non-existence result is obtained recently by I¸sık, Topuzo......˘glu and Winterhof in terms of the Carlitz rank of f. Cohen, Mullen and Shiue generalized the Chowla-Zassenhaus-Cohen Theorem significantly in 1995, by considering differences of permutation polynomials. More precisely, they showed that if f and f + g are both permutation polynomials of degree d ≥ 2 over Fp, with p...

  10. Incompressible turbulent flow calculation in body-fitted coordinates using block-implicit finite difference method

    Science.gov (United States)

    Hu, Zeming; Chen, Xuechun; Wu, Yulin

    The block-implicit finite-difference method is used to calculate 3D incompressible turbulent flows in the body-fitted coordinate system. In the numerical discretization the hybrid difference scheme is used to treat Reynolds-averaged Navier-Stokes equations. The iterative solution of velocities and pressure on the flow field is obtained by solving simultaneously the Reynolds-averaged N-S equations and continuity equation for each cell. In the iterative process the Gauss-Seidel method is used to solve nonlinear algebraic equations. The turbulent flow is simulated by the k-epsilon turbulence modeling in conjunction with Reynolds equations. The turbulent flow of a curved duct with square cross sections is treated in detail.

  11. Visualization of elastic wavefields computed with a finite difference code

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S. [Lawrence Livermore National Lab., CA (United States); Harris, D.

    1994-11-15

    The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.

  12. Finite-difference modeling of commercial aircraft using TSAR

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  13. Computational electrodynamics the finite-difference time-domain method

    CERN Document Server

    Taflove, Allen

    2005-01-01

    This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates, making this new edition the ideal textbook on the subject as well.

  14. Accurate finite difference methods for time-harmonic wave propagation

    Science.gov (United States)

    Harari, Isaac; Turkel, Eli

    1994-01-01

    Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.

  15. A finite-difference method for transonic airfoil design.

    Science.gov (United States)

    Steger, J. L.; Klineberg, J. M.

    1972-01-01

    This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.

  16. A parallel finite-difference method for computational aerodynamics

    Science.gov (United States)

    Swisshelm, Julie M.

    1989-01-01

    A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed.

  17. Parallel finite-difference time-domain method

    CERN Document Server

    Yu, Wenhua

    2006-01-01

    The finite-difference time-domain (FTDT) method has revolutionized antenna design and electromagnetics engineering. This book raises the FDTD method to the next level by empowering it with the vast capabilities of parallel computing. It shows engineers how to exploit the natural parallel properties of FDTD to improve the existing FDTD method and to efficiently solve more complex and large problem sets. Professionals learn how to apply open source software to develop parallel software and hardware to run FDTD in parallel for their projects. The book features hands-on examples that illustrate the power of parallel FDTD and presents practical strategies for carrying out parallel FDTD. This detailed resource provides instructions on downloading, installing, and setting up the required open source software on either Windows or Linux systems, and includes a handy tutorial on parallel programming.

  18. Application of a new finite difference algorithm for computational aeroacoustics

    Science.gov (United States)

    Goodrich, John W.

    1995-01-01

    Acoustic problems have become extremely important in recent years because of research efforts such as the High Speed Civil Transport program. Computational aeroacoustics (CAA) requires a faithful representation of wave propagation over long distances, and needs algorithms that are accurate and boundary conditions that are unobtrusive. This paper applies a new finite difference method and boundary algorithm to the Linearized Euler Equations (LEE). The results demonstrate the ability of a new fourth order propagation algorithm to accurately simulate the genuinely multidimensional wave dynamics of acoustic propagation in two space dimensions with the LEE. The results also show the ability of a new outflow boundary condition and fourth order algorithm to pass the evolving solution from the computational domain with no perceptible degradation of the solution remaining within the domain.

  19. Finite difference methods for coupled flow interaction transport models

    Directory of Open Access Journals (Sweden)

    Shelly McGee

    2009-04-01

    Full Text Available Understanding chemical transport in blood flow involves coupling the chemical transport process with flow equations describing the blood and plasma in the membrane wall. In this work, we consider a coupled two-dimensional model with transient Navier-Stokes equation to model the blood flow in the vessel and Darcy's flow to model the plasma flow through the vessel wall. The advection-diffusion equation is coupled with the velocities from the flows in the vessel and wall, respectively to model the transport of the chemical. The coupled chemical transport equations are discretized by the finite difference method and the resulting system is solved using the additive Schwarz method. Development of the model and related analytical and numerical results are presented in this work.

  20. Explicit and implicit finite difference schemes for fractional Cattaneo equation

    Science.gov (United States)

    Ghazizadeh, H. R.; Maerefat, M.; Azimi, A.

    2010-09-01

    In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation for describing anomalous diffusion has been investigated. Two finite difference schemes namely an explicit predictor-corrector and totally implicit schemes have been developed. In developing each scheme, a separate formulation approach for the governing equations has been considered. The explicit predictor-corrector scheme is the fractional generalization of well-known MacCormack scheme and has been called Generalized MacCormack scheme. This scheme solves two coupled low-order equations and simultaneously computes the flux term with the main variable. Fully implicit scheme however solves a single high-order undecomposed equation. For Generalized MacCormack scheme, stability analysis has been studied through Fourier method. Through a numerical test, the experimental order of convergency of both schemes has been found. Then, the domain of applicability and some numerical properties of each scheme have been discussed.

  1. Digital Waveguides versus Finite Difference Structures: Equivalence and Mixed Modeling

    Directory of Open Access Journals (Sweden)

    Karjalainen Matti

    2004-01-01

    Full Text Available Digital waveguides and finite difference time domain schemes have been used in physical modeling of spatially distributed systems. Both of them are known to provide exact modeling of ideal one-dimensional (1D band-limited wave propagation, and both of them can be composed to approximate two-dimensional (2D and three-dimensional (3D mesh structures. Their equal capabilities in physical modeling have been shown for special cases and have been assumed to cover generalized cases as well. The ability to form mixed models by joining substructures of both classes through converter elements has been proposed recently. In this paper, we formulate a general digital signal processing (DSP-oriented framework where the functional equivalence of these two approaches is systematically elaborated and the conditions of building mixed models are studied. An example of mixed modeling of a 2D waveguide is presented.

  2. A comparison of finite-difference and finite-element methods for calculating free edge stresses in composites

    Science.gov (United States)

    Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.

    1985-01-01

    It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.

  3. Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach

    Directory of Open Access Journals (Sweden)

    Amichai Mitelman

    2014-12-01

    Full Text Available This paper presents the application of a hybrid finite-discrete element method to study blast-induced damage in circular tunnels. An extensive database of field tests of underground explosions above tunnels is used for calibrating and validating the proposed numerical method; the numerical results are shown to be in good agreement with published data for large-scale physical experiments. The method is then used to investigate the influence of rock strength properties on tunnel durability to withstand blast loads. The presented analysis considers blast damage in tunnels excavated through relatively weak (sandstone and strong (granite rock materials. It was found that higher rock strength will increase the tunnel resistance to the load on one hand, but decrease attenuation on the other hand. Thus, under certain conditions, results for weak and strong rock masses are similar.

  4. Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation

    Science.gov (United States)

    Abushaikha, Ahmad S.; Voskov, Denis V.; Tchelepi, Hamdi A.

    2017-10-01

    We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modeled using a cubic equation-of-state. We introduce a new conservative flux approach for the mass balance equations for this fully-implicit approach. We discuss the nonlinear solution procedure for the proposed approach, and we present extensive numerical tests to demonstrate the convergence and accuracy of the MHFE method using tetrahedral elements. We also compare the method to other advanced discretization schemes for unstructured meshes and tensor permeability. Finally, we illustrate the applicability and robustness of the method for highly heterogeneous reservoirs with unstructured grids.

  5. Implementation of Hybrid V-Cycle Multilevel Methods for Mixed Finite Element Systems with Penalty

    Science.gov (United States)

    Lai, Chen-Yao G.

    1996-01-01

    The goal of this paper is the implementation of hybrid V-cycle hierarchical multilevel methods for the indefinite discrete systems which arise when a mixed finite element approximation is used to solve elliptic boundary value problems. By introducing a penalty parameter, the perturbed indefinite system can be reduced to a symmetric positive definite system containing the small penalty parameter for the velocity unknown alone. We stabilize the hierarchical spatial decomposition approach proposed by Cai, Goldstein, and Pasciak for the reduced system. We demonstrate that the relative condition number of the preconditioner is bounded uniformly with respect to the penalty parameter, the number of levels and possible jumps of the coefficients as long as they occur only across the edges of the coarsest elements.

  6. Hybrid Finite Element-Fast Spectral Domain Multilayer Boundary Integral Modeling of Doubly Periodic Structures

    Energy Technology Data Exchange (ETDEWEB)

    T.F. Eibert; J.L. Volakis; Y.E. Erdemli

    2002-03-03

    Hybrid finite element (FE)--boundary integral (BI) analysis of infinite periodic arrays is extended to include planar multilayered Green's functions. In this manner, a portion of the volumetric dielectric region can be modeled via the finite element method whereas uniform multilayered regions can be modeled using a multilayered Green's function. As such, thick uniform substrates can be modeled without loss of efficiency and accuracy. The multilayered Green's function is analytically computed in the spectral domain and the resulting BI matrix-vector products are evaluated via the fast spectral domain algorithm (FSDA). As a result, the computational cost of the matrix-vector products is kept at O(N). Furthermore, the number of Floquet modes in the expansion are kept very few by placing the BI surfaces within the computational unit cell. Examples of frequency selective surface (FSS) arrays are analyzed with this method to demonstrate the accuracy and capability of the approach. One example involves complicated multilayered substrates above and below an inhomogeneous filter element and the other is an optical ring-slot array on a substrate several hundred wavelengths in thickness. Comparisons with measurements are included.

  7. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.

    Science.gov (United States)

    Liu, Haihu; Valocchi, Albert J; Zhang, Yonghao; Kang, Qinjun

    2013-01-01

    A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions.

  8. Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic

    Directory of Open Access Journals (Sweden)

    Muhammad Yazid Muhammad Ammar Faris

    2017-01-01

    Full Text Available Harvesting energy from ambient vibrations is a highly required method because of the wide range of available sources that produce vibration energy application from industrial machinery to human motion application. In this paper, the implementation of harvesting energy from two technologies to form a hybrid energy harvester system was analyzed. These two technologies involve the piezoelectric harvesting energy and the electromagnetic harvesting energy. A finite element model was developed using the Ansys software with the harmonic analysis solver to analyze and examine hybrid harvesting energy system. Both power output generated from the magnet and the piezoelectric is then combined to form one unit of energy. Further, it was found that the result shows the system generate the maximum power output of 14.85 μW from 100 Hz, 4.905 m/s2, and 0.6 cm3 for resonance frequency, acceleration, and the volume respectively from the optimal energy harvester design. Normalized Power Density (NPD result of 10.29 kgs/m3 comparable with other literature also can be used in energy harvesting system for vibration application.

  9. Torsional Behaviour and Finite Element Analysis of the Hybrid Laminated Composite Shafts: Comparison of VARTM with Vacuum Bagging Manufacturing Method

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Taşdelen

    2016-01-01

    Full Text Available Braided sleeve composite shafts are produced and their torsional behavior is investigated. The braided sleeves are slid over an Al tube to create very strong and rigid tubular form shafts and they are in the form of 2/2 twill biaxial fiber fabric that has been woven into a continuous sleeve. Carbon and glass fibers braided sleeves are used for the fabrication of the composite shafts. VARTM (vacuum assisted resin transfer molding and Vacuum Bagging are the two different types of manufacturing methods used in the study. Torsional behaviors of the shafts are investigated experimentally in terms of fabrication methods and various composite materials parameters such as fiber types, layer thickness, and ply angles. Comparing the two methods in terms of the torque forces and strain angles, the shafts producing entirely carbon fiber show the highest torque capacities; however, considering the cost and performance criteria, the hybrid shaft made up of carbon and glass fibers is the optimum solution for average demanded properties. Additionally, FE (finite element model of the shafts was created and analyzed by using ANSYS workbench environment. Results of finite element analysis are compared with the values of twisting angle and torque obtained by experimental tests.

  10. COARSE-MESH-ACCURACY IMPROVEMENT OF BILINEAR Q4-PLANE ELEMENT BY THE COMBINED HYBRID FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    谢小平; 周天孝

    2003-01-01

    The combined hybrid finite element method is of an intrinsic mechanism of enhancing coarse-mesh-accuracy of lower order displacement schemes. It was confirmed that the combined hybrid scheme without energy error leads to enhancement of accuracy at coarse meshes, and that the combination parameter plays an important role in the enhancement. As an improvement of conforming bilinear Q4-plane element, the combined hybrid method adopted the most convenient quadrilateral displacements-stress mode, i. e.,the mode of compatible isoparametric bilinear displacements and pure constant stresses. By adjusting the combined parameter, the optimized version of the combined hybrid element was obtained and numerical tests indicated that this parameter-adjusted version behaves much better than Q4-element and is of high accuracy at coarse meshes. Due to elimination of stress parameters at the elemental level, this combined hybrid version is of the same computational cost as that of Q4 -element.

  11. DIFFERENCE SCHEME AND NUMERICAL SIMULATION BASED ON MIXED FINITE ELEMENT METHOD FOR NATURAL CONVECTION PROBLEM

    Institute of Scientific and Technical Information of China (English)

    罗振东; 朱江; 谢正辉; 张桂芳

    2003-01-01

    The non-stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non-stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.

  12. Hybrid Multiscale Finite Volume Method for Advection-Diffusion Equations Subject to Heterogeneous Reactive Boundary Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Barajas-Solano, David A.; Tartakovsky, A. M.

    2016-10-13

    We present a hybrid scheme for the coupling of macro and microscale continuum models for reactive contaminant transport in fractured and porous media. The transport model considered is the advection-dispersion equation, subject to linear heterogeneous reactive boundary conditions. The Multiscale Finite Volume method (MsFV) is employed to define an approximation to the microscale concentration field defined in terms of macroscopic or \\emph{global} degrees of freedom, together with local interpolator and corrector functions capturing microscopic spatial variability. The macroscopic mass balance relations for the MsFV global degrees of freedom are coupled with the macroscopic model, resulting in a global problem for the simultaneous time-stepping of all macroscopic degrees of freedom throughout the domain. In order to perform the hybrid coupling, the micro and macroscale models are applied over overlapping subdomains of the simulation domain, with the overlap denoted as the handshake subdomain $\\Omega^{hs}$, over which continuity of concentration and transport fluxes between models is enforced. Continuity of concentration is enforced by posing a restriction relation between models over $\\Omega^{hs}$. Continuity of fluxes is enforced by prolongating the macroscopic model fluxes across the boundary of $\\Omega^{hs}$ to microscopic resolution. The microscopic interpolator and corrector functions are solutions to local microscopic advection-diffusion problems decoupled from the global degrees of freedom and from each other by virtue of the MsFV decoupling ansatz. The error introduced by the decoupling ansatz is reduced iteratively by the preconditioned GMRES algorithm, with the hybrid MsFV operator serving as the preconditioner.

  13. Full-vectorial analysis of optical waveguides by the finite difference method based on polynomial interpolation

    Institute of Scientific and Technical Information of China (English)

    Xiao Jin-Biao; Zhang Ming-De; Sun Xiao-Han

    2006-01-01

    Based on the polynomial interpolation, a new finite difference (FD) method in solving the full-vectorial guidedmodes for step-index optical waveguides is proposed. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are considered in the absence of the limitations of scalar and semivectorial approximation, and the present FD scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for buried rectangular waveguides and optical rib waveguides are presented. The hybrid nature of the vectorial modes is demonstrated and the singular behaviours of the minor field components in the corners are observed. Moreover, solutions are in good agreement with those published early, which tests the validity of the present approach.

  14. A finite difference model for free surface gravity drainage

    Energy Technology Data Exchange (ETDEWEB)

    Couri, F.R.; Ramey, H.J. Jr.

    1993-09-01

    The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells in the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.

  15. SIMULATION OF POLLUTANTS IN RIVER SYSTEMS USING FINITE DIFFERENCE METHOD

    Institute of Scientific and Technical Information of China (English)

    ZAHEER Iqbal; CUI Guang Bai

    2002-01-01

    This paper using finite difference scheme for the numerical solution of advection-dispersion equation develops a one-dimensional water quality model. The model algorithm has some modification over other steady state models including QUAL2E, which have been used steady state implementation of implicit backward-difference numerical scheme. The computer program in the developed model contains a special unsteady state implementation of four point implicit upwind numerical schemes using double sweep method. The superiority of this method in the modeling procedure results the simulation efficacy under simplified conditions of effluent discharge from point and non-point sources. The model is helpful for eye view assessment of degree of interaction between model variables for strategic planning purposes. The model has been applied for the water quality simulation of the Hanjiang River basin using flow computation model. Model simulation results have shown the pollutants prediction, dispersion and impact on the existing water quality.Model test shows the model validity comparing with other sophisticated models. Sensitivity analysis was performed to overview the most sensitive parameters followed by calibration and verification process.

  16. QED multi-dimensional vacuum polarization finite-difference solver

    Science.gov (United States)

    Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo

    2015-11-01

    The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph

  17. Contraction preconditioner in finite-difference electromagnetic modeling

    Science.gov (United States)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-06-01

    This paper introduces a novel approach to constructing an effective preconditioner for finite-difference (FD) electromagnetic modeling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analog of the energy equality for the anomalous electromagnetic field. A new preconditioner uses a discrete Green's function of a 1D layered background conductivity. We also developed the formulas for an estimation of the condition number of the system of FD equations preconditioned with the introduced FD contraction operator. Based on this estimation, we have established that for high contrasts, the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new preconditioner is advantageous over using the 1D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2 to 2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1D Green's function as a preconditioner.

  18. Contraction pre-conditioner in finite-difference electromagnetic modelling

    Science.gov (United States)

    Yavich, Nikolay; Zhdanov, Michael S.

    2016-09-01

    This paper introduces a novel approach to constructing an effective pre-conditioner for finite-difference (FD) electromagnetic modelling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analogue of the energy equality for the anomalous electromagnetic field. A new pre-conditioner uses a discrete Green's function of a 1-D layered background conductivity. We also developed the formulae for an estimation of the condition number of the system of FD equations pre-conditioned with the introduced FD contraction operator. Based on this estimation, we have established that the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new pre-conditioner is advantageous over using the 1-D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2-2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1-D Green's function as a pre-conditioner.

  19. Overlapping Domain Decomp osition Finite Difference Algorithm for Compact Difference Scheme of the Heat Conduction Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-mei

    2015-01-01

    In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel.

  20. Existence and stability, and discrete BB and rank conditions, for general mixed-hybrid finite elements in elasticity

    Science.gov (United States)

    Xue, W.-M.; Atluri, S. N.

    1985-01-01

    In this paper, all possible forms of mixed-hybrid finite element methods that are based on multi-field variational principles are examined as to the conditions for existence, stability, and uniqueness of their solutions. The reasons as to why certain 'simplified hybrid-mixed methods' in general, and the so-called 'simplified hybrid-displacement method' in particular (based on the so-called simplified variational principles), become unstable, are discussed. A comprehensive discussion of the 'discrete' BB-conditions, and the rank conditions, of the matrices arising in mixed-hybrid methods, is given. Some recent studies aimed at the assurance of such rank conditions, and the related problem of the avoidance of spurious kinematic modes, are presented.

  1. A mixed pseudospectral/finite difference method for the axisymmetric flow in a heated, rotating spherical shell. [for experimental atmospheric simulation

    Science.gov (United States)

    Macaraeg, M. G.

    1986-01-01

    For a Spacelab flight, a model experiment of the earth's atmospheric circulation has been proposed. This experiment is known as the Atmospheric General Circulation Experiment (AGCE). In the experiment concentric spheres will rotate as a solid body, while a dielectric fluid is confined in a portion of the gap between the spheres. A zero gravity environment will be required in the context of the simulation of the gravitational body force on the atmosphere. The present study is concerned with the development of pseudospectral/finite difference (PS/FD) model and its subsequent application to physical cases relevant to the AGCE. The model is based on a hybrid scheme involving a pseudospectral latitudinal formulation, and finite difference radial and time discretization. The advantages of the use of the hybrid PS/FD method compared to a pure second-order accurate finite difference (FD) method are discussed, taking into account the higher accuracy and efficiency of the PS/FD method.

  2. The Numerical Solution of Underwater Acoustic Propagation Problems Using Finite Difference and Finite Element Methods

    Science.gov (United States)

    1984-07-09

    State and /IP Code i Arlington, VA 22217 10. SOURCE OF FUNDING NOS. PROGRAM E LEMENT NO. 61153N 11 TITLE ilnclude SeGur \\ly Classificationi... CYBER 205. We observe in this connection that the finite-element algorithm, we described previously is, for the most part, vectorizable. The main...words. We understand that it is scheduled to be available before the end of 1985. We also understand that CDC is planning a successor to the CYBER 205

  3. Welding characteristics in different laser-TIG hybrid manners

    Institute of Scientific and Technical Information of China (English)

    陈彦宾; 雷正龙; 李俐群; 吴林

    2004-01-01

    An experiment for determining the laser-TIG hybrid welding characteristics was carried out in three kinds of hybrid methods: CO2 laser-TIG coaxial hybrid, CO2 laser-TIG paraxial hybrid and Nd: YAG laser-TIG paraxial hybrid. The experimental results indicate that hybrid welding has two welding mechanisms in CO2 laser-TIG hybrid welding: deep penetration welding and heat conduction welding. As the effect of the laser-induced keyhole, the arc root is condensed, the current density and penetration depth increase significantly, the welding characteristic is apt to deep penetration welding. When current increases to some degree, the keyhole induced by laser disappears, which produces a shallow penetration and wide bead. The weld exhibits heat conduction welding characteristics. Furthermore, the arc images and weld bead cross-sections of three kinds of hybrid manners were also compared and analyzed at different welding currents, which established the foundation for understanding the welding characteristics of laser-TIG hybrid welding comprehensively.

  4. 3D Finite Difference Modelling of Basaltic Region

    Science.gov (United States)

    Engell-Sørensen, L.

    2003-04-01

    The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.

  5. PCS: an Euler--Lagrange method for treating convection in pulsating stars using finite difference techniques in two spatial dimensions. [Finite difference method, time dependence

    Energy Technology Data Exchange (ETDEWEB)

    Deupree, R.G.

    1977-01-01

    Finite difference techniques were used to examine the coupling of radial pulsation and convection in stellar models having comparable time scales. Numerical procedures are emphasized, including diagnostics to help determine the range of free parameters.

  6. Hybrid finite-element/boundary-element method to calculate Oersted fields

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Riccardo, E-mail: hertel@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg (France); Kákay, Attila [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, D-52428 Jülich (Germany)

    2014-11-15

    The article presents a general-purpose hybrid finite-element/boundary-element method (FEM/BEM) to calculate magnetostatic fields generated by stationary electric currents. The efficiency of this code lies in its ability to simulate Oersted fields in complex geometries with non-uniform current density distributions. As a precursor to the calculation of the Oersted field, an FEM algorithm is employed to calculate the electric current density distribution. The accuracy of the code is confirmed by comparison with analytic results. Two examples show how this method provides important numerical data that can be directly plugged into micromagnetic simulations: The current density distribution in a thin magnetic strip with a notch, and the Oersted field in a three-dimensional contact geometry; similar to the type commonly used in spin-torque driven nano-oscillators. It is argued that a precise calculation of both, the Oersted field and the current density distribution, is essential for a reliable simulation of current-driven micromagnetic processes. - Highlights: • We present a numerical method to calculate Oersted fields for arbitrary geometries. • Description of a FEM algorithm to calculate current density distributions. • It is argued that these methods are valuable for micromagnetic STT-simulations. • Several examples are shown, highlighting the methods’ importance and accuracy.

  7. Assessment of a Hybrid Continuous/Discontinuous Galerkin Finite Element Code for Geothermal Reservoir Simulations

    Science.gov (United States)

    Xia, Yidong; Podgorney, Robert; Huang, Hai

    2017-03-01

    FALCON (Fracturing And Liquid CONvection) is a hybrid continuous/discontinuous Galerkin finite element geothermal reservoir simulation code based on the MOOSE (Multiphysics Object-Oriented Simulation Environment) framework being developed and used for multiphysics applications. In the present work, a suite of verification and validation (V&V) test problems for FALCON was defined to meet the design requirements, and solved to the interests of enhanced geothermal system modeling and simulation. The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of FALCON solution methods. The test problems vary in complexity from a single mechanical or thermal process, to coupled thermo-hydro-mechanical processes in geological porous medium. Numerical results obtained by FALCON agreed well with either the available analytical solutions or experimental data, indicating the verified and validated implementation of these capabilities in FALCON. Whenever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the FALCON code.

  8. Simulation of flow in the microcirculation using a hybrid Lattice-Boltzman and Finite Element algorithm

    Science.gov (United States)

    Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego

    2014-11-01

    Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.

  9. Accurate finite difference beam propagation method for complex integrated optical structures

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Povlsen, Jørn Hedegaard; Bjarklev, Anders Overgaard

    1993-01-01

    A simple and effective finite-difference beam propagation method in a z-varying nonuniform mesh is developed. The accuracy and computation time for this method are compared with a standard finite-difference method for both the 3-D and 2-D versions......A simple and effective finite-difference beam propagation method in a z-varying nonuniform mesh is developed. The accuracy and computation time for this method are compared with a standard finite-difference method for both the 3-D and 2-D versions...

  10. IMPROVED LOCALLY CONFORMAL FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR EDGE INCLINED SLOTS IN A FINITE WALL THICKNESS WAVEGUIDE

    Institute of Scientific and Technical Information of China (English)

    Li Long; Zhang Yu; Liang Changhong

    2004-01-01

    An Improved Locally Conformal Finite-Difference Time-Domain (ILC-FDTD) method is presented in this paper, which is used to analyze the edge inclined slots penetrating adjacent broadwalls of a finite wall thickness waveguide. ILC-FDTD not only removes the instability of the original locally conformal FDTD algorithm, but also improves the computational accuracy by locally modifying magnetic field update equations and the virtual iterative electric fields according to the complexity of the slot fringe fields. The mutual coupling between two edge inclined slots can also be analyzed by ILC-FDTD effectively.

  11. Analysis of regular and chaotic dynamics of the Euler-Bernoulli beams using finite difference and finite element methods

    Institute of Scientific and Technical Information of China (English)

    J. Awrejcewicz; A.V. Krysko; J. Mrozowski; O.A. Saltykova; M.V. Zhigalov

    2011-01-01

    Chaotic vibrations of flexible non-linear EulerBernoulli beams subjected to harmonic load and with various boundary conditions (symmetric and non-symmetric) are studied in this work. Reliability of the obtained results is verified by the finite difference method (FDM) and the finite element method (FEM) with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes (regular and non-regular). The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly, dynamic behavior vs. control parameters {ωp, q0} is reported, and scenarios of the system transition into chaos are illustrated.

  12. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    Science.gov (United States)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  13. Modelling of Hybrid Materials and Interface Defects through Homogenization Approach for the Prediction of Effective Thermal Conductivity of FRP Composites Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    C. Mahesh

    2013-01-01

    Full Text Available Finite element method is effectively used to homogenize the thermal conductivity of FRP composites consisting of hybrid materials and fibre-matrix debonds at some of the fibres. The homogenized result at microlevel is used to determine the property of the layer using macromechanics principles; thereby, it is possible to minimize the computational efforts required to solve the problem as in state through only micromechanics approach. The working of the proposed procedure is verified for three different problems: (i hybrid composite having two different fibres in alternate layers, (ii fibre-matrix interface debond in alternate layers, and (iii fibre-matrix interface debond at one fibre in a group of four fibres in one unit cell. It is observed that the results are in good agreement with those obtained through pure micro-mechanics approach.

  14. A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples

    KAUST Repository

    Osman, Hossam Omar

    2012-06-17

    It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.

  15. On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner's variational principle

    Science.gov (United States)

    Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.

    1985-01-01

    The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.

  16. A hybrid vertex-centered finite volume/element method for viscous incompressible flows on non-staggered unstructured meshes

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Ru-Xun Liu; Hong Li

    2012-01-01

    This paper proposes a hybrid vertex-centered finite volume/finite element method for sol ution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.

  17. A Finite Difference-Augmented Peridynamics Method for Wave Dispersion

    Science.gov (United States)

    2014-10-21

    model using a blending function in 1D, though again, the focus is on preset, unchang- ing local/ nonlocal regions. In contrast, this work will focus on...Fracture. 2014; 190:39-52. 14. ABSTRACT A method is presented for the modeling of brittle elastic fracture which combines peridynamics and a finite...propagation modeling , while peridynamics is automatically inserted in high strain areas to model crack initiation and growth. The dispersion

  18. Hybrid finite volume scheme for a two-phase flow in heterogeneous porous media*

    Directory of Open Access Journals (Sweden)

    Brenner Konstantin

    2012-04-01

    Full Text Available We propose a finite volume method on general meshes for the numerical simulation of an incompressible and immiscible two-phase flow in porous media. We consider the case that can be written as a coupled system involving a degenerate parabolic convection-diffusion equation for the saturation together with a uniformly elliptic equation for the global pressure. The numerical scheme, which is implicit in time, allows computations in the case of a heterogeneous and anisotropic permeability tensor. The convective fluxes, which are non monotone with respect to the unknown saturation and discontinuous with respect to the space variables, are discretized by means of a special Godunov scheme. We prove the existence of a discrete solution which converges, along a subsequence, to a solution of the continuous problem. We present a number of numerical results in space dimension two, which confirm the efficiency of the numerical method. Nous proposons un schéma de volumes finis hybrides pour la discrétisation d’un problème d’écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d’une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d’un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l’on s’appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l’existence d’une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.

  19. Finite-difference modeling of Bragg fibers with ultrathin cladding layers via adaptive coordinate transformation

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry; Lægsgaard, Jesper; Bang, Ole

    As an alternative to the finite-element analysis or subgridding, coordinate transformation is used to “stretch” the fine-structured cladding of a Bragg fiber, and then the fullvector, equidistant-grid finite-difference computations of the modal structure are performed.......As an alternative to the finite-element analysis or subgridding, coordinate transformation is used to “stretch” the fine-structured cladding of a Bragg fiber, and then the fullvector, equidistant-grid finite-difference computations of the modal structure are performed....

  20. Finite-difference modeling of Bragg fibers with ultrathin cladding layers via adaptive coordinate transformation

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry; Lægsgaard, Jesper; Bang, Ole;

    As an alternative to the finite-element analysis or subgridding, coordinate transformation is used to “stretch” the fine-structured cladding of a Bragg fiber, and then the fullvector, equidistant-grid finite-difference computations of the modal structure are performed.......As an alternative to the finite-element analysis or subgridding, coordinate transformation is used to “stretch” the fine-structured cladding of a Bragg fiber, and then the fullvector, equidistant-grid finite-difference computations of the modal structure are performed....

  1. Contour Detection-Based Realistic Finite-Difference-Time- Domain Models for Microwave Breast Cancer Detection

    Institute of Scientific and Technical Information of China (English)

    王梁; 肖夏; 宋航; 路红; 刘佩芳

    2016-01-01

    In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radio-graphic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the indi-vidual difference between patients’ breasts.

  2. On the accuracy and efficiency of finite difference solutions for nonlinear waves

    DEFF Research Database (Denmark)

    Bingham, Harry B.

    2006-01-01

    We consider the relative accuracy and efficiency of low- and high-order finite difference discretizations of the exact potential flow problem for nonlinear water waves. The continuous differential operators are replaced by arbitrary order finite difference schemes on a structured but non...

  3. Implementation of Generalized Modes in a 3D Finite Difference Based Seakeeping Model

    DEFF Research Database (Denmark)

    Andersen, Matilde H.; Amini Afshar, Mostafa; Bingham, Harry B.

    This work is an extension of the finite difference potential flow solver OceanWave3D-Seakeepingdeveloped by Afshar (2014) to include generalized modes. The continuity equation is solvedusing a fourth-order centered finite difference scheme which requires that the entire fluid domainis discretized...

  4. The Dirac Equation in the algebraic approximation. VII. A comparison of molecular finite difference and finite basis set calculations using distributed Gaussian basis sets

    NARCIS (Netherlands)

    Quiney, H. M.; Glushkov, V. N.; Wilson, S.; Sabin,; Brandas, E

    2001-01-01

    A comparison is made of the accuracy achieved in finite difference and finite basis set approximations to the Dirac equation for the ground state of the hydrogen molecular ion. The finite basis set calculations are carried out using a distributed basis set of Gaussian functions the exponents and pos

  5. The Dirac Equation in the algebraic approximation. VII. A comparison of molecular finite difference and finite basis set calculations using distributed Gaussian basis sets

    NARCIS (Netherlands)

    Quiney, H. M.; Glushkov, V. N.; Wilson, S.; Sabin,; Brandas, E

    2001-01-01

    A comparison is made of the accuracy achieved in finite difference and finite basis set approximations to the Dirac equation for the ground state of the hydrogen molecular ion. The finite basis set calculations are carried out using a distributed basis set of Gaussian functions the exponents and

  6. An investigation of the accuracy of finite difference methods in the solution of linear elasticity problems

    Science.gov (United States)

    Bauld, N. R., Jr.; Goree, J. G.

    1983-01-01

    The accuracy of the finite difference method in the solution of linear elasticity problems that involve either a stress discontinuity or a stress singularity is considered. Solutions to three elasticity problems are discussed in detail: a semi-infinite plane subjected to a uniform load over a portion of its boundary; a bimetallic plate under uniform tensile stress; and a long, midplane symmetric, fiber reinforced laminate subjected to uniform axial strain. Finite difference solutions to the three problems are compared with finite element solutions to corresponding problems. For the first problem a comparison with the exact solution is also made. The finite difference formulations for the three problems are based on second order finite difference formulas that provide for variable spacings in two perpendicular directions. Forward and backward difference formulas are used near boundaries where their use eliminates the need for fictitious grid points.

  7. Finite difference modeling of sinking stage curved beam based on revised Vlasov equations

    Institute of Scientific and Technical Information of China (English)

    张磊; 朱真才; 沈刚; 曹国华

    2015-01-01

    For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with closed sections were deduced considering the shear strain on the mid-surface of the cross-section. Then, the finite difference formulation of revised Vlasov equations was implemented with the parabolic interpolation based on Taylor series. At last, the finite difference model was built by substituting geometry and boundary conditions of the sinking stage curved beam into the finite difference formulation. The validity of present work is confirmed by the published literature and ANSYS simulation results. It can be concluded that revised Vlasov equations are more accurate than the original one in the analysis of thin-walled beams with closed sections, and that present finite difference model is applicable in the evaluation of the sinking stage curved beam.

  8. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  9. FERMENTATION PROCESS CHARACTERISTICS OF DIFFERENT MAIZE SILAGE HYBRIDS

    Directory of Open Access Journals (Sweden)

    Daniel Bíro

    2009-03-01

    Full Text Available The aim of this study was to detect the fermentation process differences in different hybrid maize silage. We conserved in laboratory conditions hybrids of whole maize plants with different length of the vegetative period (FAO number. Maize hybrids for silage were harvested in the vegetation stage of the milk-wax maturity of corn and the content of dry matter was from 377.7 to 422.8 g.kg-1. The highest content of dry matter was typical for silages made from the hybrids with FAO number 310 (400.0 g.kg-1 and FAO 300a (400.4 g.kg-1. The content of desirable lactic acid ranged from 23.7 g.kg-1 of dry matter (FAO 350 to 58.9 g.kg-1 of dry matter (FAO 420. We detected the occurrence of undesirable butyric acid in silages from hybrids FAO 250, 300b, 310 and 380. The highest content of total alcohols we found in silages made from hybrid with FAO number 240 (25.2 g.kg-1 of dry matter. Ammonia contents were in tested silages from 0.153 (FAO 270 to 0.223 g.kg-1 of dry matter (FAO 240. The lowest value of silage titration acidity we analyzed in silage made from hybrid FAO 420 (3.66. We observed in maize silages with different length of plant maturity tested in the experiment differences in content of lactic acid, total alcohols, titration acidity, pH and content of fermentation products.

  10. Pollen tube behavior in different Mandarin hybrids

    OpenAIRE

    Distefano, Gaetano; Las Casas, Giuseppina; La Malfa, Stefano; Gentile, Alessandra; Tribulato, Eugenio; Herrero Romero, María

    2009-01-01

    Seedlessness is an important trait in the evaluation of commercial mandarin for fresh consumption. However, in the last decade, the presence of seeds in fruit of cultivars considered as seedless has become a problem in different citrus-growing areas because the commercial value is depreciated. Seeds have appeared concomitantly with the introduction of new cultivars that appear to be cross-compatible. To overcome this problem, different strategies have been explored, but a definitive answer is...

  11. A hybrid finite element-transfer matrix model for vibroacoustic systems with flat and homogeneous acoustic treatments.

    Science.gov (United States)

    Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck

    2015-02-01

    Practical vibroacoustic systems involve passive acoustic treatments consisting of highly dissipative media such as poroelastic materials. The numerical modeling of such systems at low to mid frequencies typically relies on substructuring methodologies based on finite element models. Namely, the master subsystems (i.e., structural and acoustic domains) are described by a finite set of uncoupled modes, whereas condensation procedures are typically preferred for the acoustic treatments. However, although accurate, such methodology is computationally expensive when real life applications are considered. A potential reduction of the computational burden could be obtained by approximating the effect of the acoustic treatment on the master subsystems without introducing physical degrees of freedom. To do that, the treatment has to be assumed homogeneous, flat, and of infinite lateral extent. Under these hypotheses, simple analytical tools like the transfer matrix method can be employed. In this paper, a hybrid finite element-transfer matrix methodology is proposed. The impact of the limiting assumptions inherent within the analytical framework are assessed for the case of plate-cavity systems involving flat and homogeneous acoustic treatments. The results prove that the hybrid model can capture the qualitative behavior of the vibroacoustic system while reducing the computational effort.

  12. LONG-TIME BEHAVIOR OF FINITE DIFFERENCE SOLUTIONS OF A NONLINEAR SCHRODINGER EQUATION WITH WEAKLY DAMPED

    Institute of Scientific and Technical Information of China (English)

    Fa-yong Zhang; Shu-juan Lu

    2001-01-01

    A weakly demped Schrodinger equation possessing a global attractor are considered.The dynamical properties of a class of finite difference scheme are analysed. The exsitence of global attractor is proved for the discrete system. The stability of the difference scheme and the error estimate of the difference solution are obtained in the autonomous system case. Finally, long-time stability and convergence of the class of finite difference scheme also are analysed in the nonautonomous system case.

  13. Numerical modeling of wave equation by a truncated high-order finite-difference method

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Mrinal K. Sen

    2009-01-01

    Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with increased order of accuracy. Upon examination of the finite-difference formulas for the first-order and second-order derivatives, and the staggered finite-difference formulas for the first-order derivative, we examine the variation of finite-difference coefficients with accuracy order and note that there exist some very small coefficients. With the order increasing, the number of these small coefficients increases, however, the values decrease sharply. An error analysis demonstrates that omitting these small coefficients not only maintain approximately the same level of accuracy of finite difference but also reduce computational cost significantly. Moreover, it is easier to truncate for the high-order finite-difference formulas than for the pseudospectral formulas. Thus this study proposes a truncated high-order finite-difference method, and then demonstrates the efficiency and applicability of the method with some numerical examples.

  14. On a finite-difference method for solving transient viscous flow problems

    Science.gov (United States)

    Li, C. P.

    1983-01-01

    A method has been developed to solve the unsteady, compressible Navier-Stokes equation with the property of consistency and the ability of minimizing the equation stiffness. It relies on innovative extensions of the state-of-the-art finite-difference techniques and is composed of: (1) the upwind scheme for split-flux and the central scheme for conventional flux terms in the inviscid and viscous regions, respectively; (2) the characteristic treatment of both inviscid and viscous boundaries; (3) an ADI procedure compatible with interior and boundary points; and (4) a scalar matrix coefficient including viscous terms. The performance of this method is assessed with four sample problems; namely, a standing shock in the Laval duct, a shock reflected from the wall, the shock-induced boundary-layer separation, and a transient internal nozzle flow. The results from the present method, an existing hybrid block method, and a well-known two-step explicit method are compared and discussed. It is concluded that this method has an optimal trade-off between the solution accuracy and computational economy, and other desirable properties for analyzing transient viscous flow problems.

  15. Electromagnetic wave propagation in Body Area Networks using the Finite-Difference-Time-Domain method.

    Science.gov (United States)

    Bringuier, Jonathan N; Mittra, Raj

    2012-01-01

    A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD) method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs), which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green's function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs) can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data.

  16. Electromagnetic Wave Propagation in Body Area Networks Using the Finite-Difference-Time-Domain Method

    Directory of Open Access Journals (Sweden)

    Raj Mittra

    2012-07-01

    Full Text Available A rigorous full-wave solution, via the Finite-Difference-Time-Domain (FDTD method, is performed in an attempt to obtain realistic communication channel models for on-body wireless transmission in Body-Area-Networks (BANs, which are local data networks using the human body as a propagation medium. The problem of modeling the coupling between body mounted antennas is often not amenable to attack by hybrid techniques owing to the complex nature of the human body. For instance, the time-domain Green’s function approach becomes more involved when the antennas are not conformal. Furthermore, the human body is irregular in shape and has dispersion properties that are unique. One consequence of this is that we must resort to modeling the antenna network mounted on the body in its entirety, and the number of degrees of freedom (DoFs can be on the order of billions. Even so, this type of problem can still be modeled by employing a parallel version of the FDTD algorithm running on a cluster. Lastly, we note that the results of rigorous simulation of BANs can serve as benchmarks for comparison with the abundance of measurement data.

  17. a Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    Science.gov (United States)

    Sparrow, Victor Ward

    1990-01-01

    This study has concerned the propagation of finite amplitude, i.e. weakly non-linear, acoustical blast waves from explosions over hard and porous media models of outdoor ground surfaces. The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency domain exhibits a finite impedance, the linear phenomenological porous model of Morse and Ingard was used. The phenomenological equations are solved in the time domain for coupling with the time domain propagation solution in the air. The numerical solution is found through the method of finite differences. The second-order in time and fourth -order in space MacCormack method was used in the air, and the second-order in time and space MacCormack method was used in the porous medium modeling the ground. Two kinds of numerical absorbing boundary conditions were developed for the air propagation equations to truncate the physical domain for solution on a computer. Radiation conditions first were used on those sides of the domain where there were outgoing waves. Characteristic boundary conditions secondly are employed near the acoustic source. The numerical model agreed well with the Pestorius algorithm for the propagation of electric spark pulses in the free field, and with a result of Pfriem for normal plane reflection off a hard surface. In addition, curves of pressure amplification versus incident angle for waves obliquely incident on the hard and porous surfaces were produced which are similar to those in the literature. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance over hard surfaces as r to the power -1.2. This result is consistent with the work of Reed. For propagation over the porous ground surface, the model predicted that this surface decreased the decay rate with distance for the larger blasts compared to the rate expected in the linear acoustics limit.

  18. Solution of finite element problems using hybrid parallelization with MPI and OpenMP Solution of finite element problems using hybrid parallelization with MPI and OpenMP

    Directory of Open Access Journals (Sweden)

    José Miguel Vargas-Félix

    2012-11-01

    Full Text Available The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.

  19. Vibration analysis of rotating turbomachinery blades by an improved finite difference method

    Science.gov (United States)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1985-01-01

    The problem of calculating the natural frequencies and mode shapes of rotating blades is solved by an improved finite difference procedure based on second-order central differences. Lead-lag, flapping and coupled bending-torsional vibration cases of untwisted blades are considered. Results obtained by using the present improved theory have been observed to be close lower bound solutions. The convergence has been found to be rapid in comparison with the classical first-order finite difference method. While the computational space and time required by the present approach is observed to be almost the same as that required by the first-order theory for a given mesh size, accuracies of practical interest can be obtained by using the improved finite difference procedure with a relatively smaller matrix size, in contrast to the classical finite difference procedure which requires either a larger matrix or an extrapolation procedure for improvement in accuracy.

  20. Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method

    Science.gov (United States)

    Wu, Shun-Der; Glytsis, Elias N.

    2002-10-01

    The effects of finite number of periods (FNP) and finite incident beams on the diffraction efficiencies of holographic gratings are investigated by the finite-difference frequency-domain (FDFD) method. Gratings comprising 20, 15, 10, 5, and 3 periods illuminated by TE and TM incident light with various beam sizes are analyzed with the FDFD method and compared with the rigorous coupled-wave analysis (RCWA). Both unslanted and slanted gratings are treated in transmission as well as in reflection configurations. In general, the effect of the FNP is a decrease in the diffraction efficiency with a decrease in the number of periods of the grating. Similarly, a decrease in incident-beam width causes a decrease in the diffraction efficiency. Exceptions appear in off-Bragg incidence in which a smaller beam width could result in higher diffraction efficiency. For beam widths greater than 10 grating periods and for gratings with more than 20 periods in width, the diffraction efficiencies slowly converge to the values predicted by the RCWA (infinite incident beam and infinite-number-of-periods grating) for both TE and TM polarizations. Furthermore, the effects of FNP holographic gratings on their diffraction performance are found to be comparable to their counterparts of FNP surface-relief gratings. 2002 Optical Society of America

  1. Application of a novel finite difference method to dynamic crack problems

    Science.gov (United States)

    Chen, Y. M.; Wilkins, M. L.

    1976-01-01

    A versatile finite difference method (HEMP and HEMP 3D computer programs) was developed originally for solving dynamic problems in continuum mechanics. It was extended to analyze the stress field around cracks in a solid with finite geometry subjected to dynamic loads and to simulate numerically the dynamic fracture phenomena with success. This method is an explicit finite difference method applied to the Lagrangian formulation of the equations of continuum mechanics in two and three space dimensions and time. The calculational grid moves with the material and in this way it gives a more detailed description of the physics of the problem than the Eulerian formulation.

  2. An investigation on hybrid interface using on-line monitoring experiment and finite element analyses

    NARCIS (Netherlands)

    Truong, H.T.X.; Martinez, M.J.; Ochoa, O.O.; Lagoudas, D.C.

    2015-01-01

    In this work, the hybrid interface between metal and thermosetting polymer matrix composite was studied via experimental and numerical investigations. Hybrid laminates, whose constituents are aluminum foil, carbon fabric and epoxy matrix, were manufactured using the vacuum assisted resin transfer mo

  3. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    Science.gov (United States)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  4. Finite-difference scheme for the numerical solution of the Schroedinger equation

    Science.gov (United States)

    Mickens, Ronald E.; Ramadhani, Issa

    1992-01-01

    A finite-difference scheme for numerical integration of the Schroedinger equation is constructed. Asymptotically (r goes to infinity), the method gives the exact solution correct to terms of order r exp -2.

  5. AN ACCURATE SOLUTION OF THE POISSON EQUATION BY THE FINITE DIFFERENCE-CHEBYSHEV-TAU METHOD

    Institute of Scientific and Technical Information of China (English)

    Hani I. Siyyam

    2001-01-01

    A new finite difference-Chebyshev-Tau method for the solution of the twodimensional Poisson equation is presented. Some of the numerical results are also presented which indicate that the method is satisfactory and compatible to other methods.

  6. A non-linear constrained optimization technique for the mimetic finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Svyatskiy, Daniil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bertolazzi, Enrico [Univ. of Trento (Italy); Frego, Marco [Univ. of Trento (Italy)

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  7. A FINITE DIFFERENCE SCHEME FOR THE GENERALIZED NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    Wei-zhong Dai; Raja Nassar

    2000-01-01

    A finite difference scheme for the generalized nonlinear Schrodinger equation with variable coefficients is developed. The scheme is shown to satisfy two conser vation laws. Numerical results show that the scheme is accurate and efficient.

  8. Finite difference methods for option pricing under Lévy processes: Wiener-Hopf factorization approach

    National Research Council Canada - National Science Library

    Kudryavtsev, Oleg

    2013-01-01

    In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation...

  9. Microgel/SiO2 Hybrid Colloids with Different Architectures

    OpenAIRE

    Agrawal, Garima

    2015-01-01

    This dissertation deals with the development and characterization of microgel/silica hybrid colloids of different complexity based on different derivatives of hyperbranched polyalkoxysiloxanes (PAOS) as functional silica precursor polymers.Microgels are porous polymeric crosslinked particles which are swollen in a solvent like water. Additionally, these soft colloids provide an opportunity to combine different functionalities in a confined space. Taking advantage of this, a water based method...

  10. SH-wave propagation in the whole mantle using high-order finite differences

    OpenAIRE

    H. Igel; Michael Weber;  

    1995-01-01

    Finite-difference approximations to the wave equation in spherical coordinates are used to calculate synthetic seismograms for global Earth models. High-order finite-difference (FD) schemes were employed to obtain accurate waveforms and arrival times. Application to SH-wave propagation in the mantle shows that multiple reflections from the core-mantle boundary (CMB), with travel times of about one hour, can be modeled successfully. FD techniques, which are applicable in generally heterogeneou...

  11. Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

    CERN Document Server

    Chalupecký, Vladimír

    2011-01-01

    We propose a semi-discrete finite difference multiscale scheme for a concrete corrosion model consisting of a system of two-scale reaction-diffusion equations coupled with an ode. We prove energy and regularity estimates and use them to get the necessary compactness of the approximation estimates. Finally, we illustrate numerically the behavior of the two-scale finite difference approximation of the weak solution.

  12. Co-pyrolysis of different type coals with hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Hanzade Haykiri-Acma; Serdar Yaman [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

    2007-07-01

    The aim of this study is to investigate the co-pyrolysis characteristics of different rank coals such as peat, lignite, and anthracite in the presence of hybrid poplar. For this purpose, non-isothermal thermogravimetry technique was applied up to 900{sup o}C with a heating rate of 40{sup o}C/min under dynamic nitrogen flow of 40 mL/min. Hybrid poplar was added into each coal as much as 10 wt % of the coal sample and the experiments were repeated. Pyrolytic properties such as the char yields, gasification rates, and reactivity of the original samples and the blends were compared from the thermal analysis data, and interpreted. Addition of hybrid poplar to coal had some influences on the pyrolytic properties of coals that might be explained by the synergistic interaction approach. 15 refs., 3 figs., 4 tabs.

  13. Minimum divergence viscous flow simulation through finite difference and regularization techniques

    Science.gov (United States)

    Victor, Rodolfo A.; Mirabolghasemi, Maryam; Bryant, Steven L.; Prodanović, Maša

    2016-09-01

    We develop a new algorithm to simulate single- and two-phase viscous flow through a three-dimensional Cartesian representation of the porous space, such as those available through X-ray microtomography. We use the finite difference method to discretize the governing equations and also propose a new method to enforce the incompressible flow constraint under zero Neumann boundary conditions for the velocity components. Finite difference formulation leads to fast parallel implementation through linear solvers for sparse matrices, allowing relatively fast simulations, while regularization techniques used on solving inverse problems lead to the desired incompressible fluid flow. Tests performed using benchmark samples show good agreement with experimental/theoretical values. Additional tests are run on Bentheimer and Buff Berea sandstone samples with available laboratory measurements. We compare the results from our new method, based on finite differences, with an open source finite volume implementation as well as experimental results, specifically to evaluate the benefits and drawbacks of each method. Finally, we calculate relative permeability by using this modified finite difference technique together with a level set based algorithm for multi-phase fluid distribution in the pore space. To our knowledge this is the first time regularization techniques are used in combination with finite difference fluid flow simulations.

  14. Comparison of perfectly matched layer and multi-transmitting formula artificial boundary condition based on hybrid finite element formulation

    Institute of Scientific and Technical Information of China (English)

    LI Ning; XIE Li-li; ZHAI Chang-hai

    2007-01-01

    The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed.Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in corner and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.

  15. On the monotonicity of multidimensional finite difference schemes

    Science.gov (United States)

    Kovyrkina, O.; Ostapenko, V.

    2016-10-01

    The classical concept of monotonicity, introduced by Godunov for linear one-dimensional difference schemes, is extended to multidimensional case. Necessary and sufficient conditions of monotonicity are obtained for linear multidimensional difference schemes of first order. The constraints on the numerical viscosity are given that ensure the monotonicity of a difference scheme in the multidimensional case. It is proposed a modification of the second order multidimensional CABARET scheme that preserves the monotonicity of one-dimensional discrete solutions and, as a result, ensures higher smoothness in the computation of multidimensional discontinuous solutions. The results of two-dimensional test computations illustrating the advantages of the modified CABARET scheme are presented.

  16. Finite-time stochastic outer synchronization between two complex dynamical networks with different topologies.

    Science.gov (United States)

    Sun, Yongzheng; Li, Wang; Zhao, Donghua

    2012-06-01

    In this paper, the finite-time stochastic outer synchronization between two different complex dynamical networks with noise perturbation is investigated. By using suitable controllers, sufficient conditions for finite-time stochastic outer synchronization are derived based on the finite-time stability theory of stochastic differential equations. It is noticed that the coupling configuration matrix is not necessary to be symmetric or irreducible, and the inner coupling matrix need not be symmetric. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of control parameters on the settling time is also numerically demonstrated.

  17. Finite element analysis of thermal stress distribution in different ...

    African Journals Online (AJOL)

    This cavity was restored with three different materials (Group I: Resin composite, Group II: ... Introduction. In restorative dentistry, the preferred method of treatment for cervical ... cold liquids. The cavity environment can be exposed to thermal.

  18. ORIGINAL ARTICLE Fitted-Stable Finite Difference Method for ...

    African Journals Online (AJOL)

    Gemechis

    A fitted-stable central difference method is presented for solving singularly perturbed two point ... with exact solutions. The error bound and convergence of the proposed method has also ... explicit method involving the reduction of order for ...

  19. Chromosomal basis of viability differences in Tigriopus californicus interpopulation hybrids.

    Science.gov (United States)

    Harrison, J S; Edmands, S

    2006-11-01

    Crosses between populations of Tigriopus californicus result in backcross and F2 hybrid breakdown for a variety of fitness related measures. The magnitude of this hybrid breakdown is correlated with evolutionary divergence. We assessed the chromosomal basis of viability differences in nonrecombinant backcross hybrids using markers mapped to individual chromosomes. To assess effects of evolutionary divergence we crossed one population to three different populations: two distantly related (approximately 18% mitochondrial COI sequence divergence) and one closely related (approximately 1% mitochondrial COI sequence divergence). We found that all three interpopulation crosses resulted in significant deviations from expected Mendelian ratios at a majority of the loci studied. In all but one case, deviations were due to a deficit of parental homozygotes. This pattern implies that populations of T. californicus carry a significant genetic load, and that a combination of beneficial dominance and deleterious homozygote-heterozygote interactions significantly affects hybrid viability. Pairwise tests of linkage disequilibrium detected relatively few significant interactions. For the two divergent crosses, effects of individual chromosomes were highly concordant. These two crosses also showed higher heterozygote excess in females than males across the vast majority of chromosomes.

  20. The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement.

    Science.gov (United States)

    Bougherara, H; Zdero, R; Mahboob, Z; Dubov, A; Shah, S; Schemitsch, E H

    2010-10-01

    This study proposes a novel hybrid total knee replacement (TKR) design to improve stress transfer to bone in the distal femur and, thereby, reduce stress shielding and consequent bone loss. Three-dimensional finite element (FE) models were developed for a standard and a hybrid TKR and validated experimentally. The Duracon knee system (Stryker Canada) was the standard TKR used for the FE models and for the experimental tests. The FE hybrid device was identical to the standard TKR, except that it had an interposing layer of carbon fibre-reinforced polyamide 12 lining the back of the metallic femoral component. A series of experimental surface strain measurements were then taken to validate the FE model of the standard TKR at 3000 N of axial compression and at 0 degreeof knee flexion. Comparison of surface strain values from FE analysis with experiments demonstrated good agreement, yielding a high Pearson correlation coefficient of R(2)= 0.94. Under a 3000N axial load and knee flexion angles simulating full stance (0O degree, heel strike (200 degrees, and toe off (600 degrees during normal walking gait, the FE model showed considerable changes in maximum Von Mises stress in the region most susceptible to stress shielding (i.e. the anterior region, just behind the flange of the femoral implant). Specifically, going from a standard to a hybrid TKR caused an increase in maximum stress of 87.4 per cent (O0 degree from 0.15 to 0.28 MPa), 68.3 per cent (200 degrees from 1.02 to 1.71 MPa), and 12.6 per cent (600 degrees from 2.96 to 3.33 MPa). This can potentially decrease stress shielding and subsequent bone loss and knee implant loosening. This is the first report to propose and biomechanically to assess a novel hybrid TKR design that uses a layer of carbon fibrereinforced polyamide 12 to reduce stress shielding.

  1. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve

    Science.gov (United States)

    2012-01-01

    Background Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. Results As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. Conclusions This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution, underscoring the importance of

  2. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve

    Directory of Open Access Journals (Sweden)

    Piotrowski Jeff S

    2012-04-01

    Full Text Available Abstract Background Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. Results As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. Conclusions This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution

  3. Exploring the Effectiveness of Different Approaches to Teaching Finite Mathematics

    Science.gov (United States)

    Smeal, Mary; Walker, Sandra; Carter, Jamye; Simmons-Johnson, Carolyn; Balam, Esenc

    2013-01-01

    Traditionally, mathematics has been taught using a very direct approach which the teacher explains the procedure to solve a problem and the students use pencil and paper to solve the problem. However, a variety of alternative approaches to mathematics have surfaced from a number of different directions. The purpose of this study was to examine the…

  4. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.

    Science.gov (United States)

    Trew, Mark L; Smaill, Bruce H; Bullivant, David P; Hunter, Peter J; Pullan, Andrew J

    2005-12-01

    A generalized finite difference (GFD) method is presented that can be used to solve the bi-domain equations modeling cardiac electrical activity. Classical finite difference methods have been applied by many researchers to the bi-domain equations. However, these methods suffer from the limitation of requiring computational meshes that are structured and orthogonal. Finite element or finite volume methods enable the bi-domain equations to be solved on unstructured meshes, although implementations of such methods do not always cater for meshes with varying element topology. The GFD method solves the bi-domain equations on arbitrary and irregular computational meshes without any need to specify element basis functions. The method is useful as it can be easily applied to activation problems using existing meshes that have originally been created for use by finite element or finite difference methods. In addition, the GFD method employs an innovative approach to enforcing nodal and non-nodal boundary conditions. The GFD method performs effectively for a range of two and three-dimensional test problems and when computing bi-domain electrical activation moving through a fully anisotropic three-dimensional model of canine ventricles.

  5. Investigation of interphase effects in silica-polystyrene nanocomposites based on a hybrid molecular-dynamics-finite-element simulation framework

    Science.gov (United States)

    Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul; Rahimi, Mohammad; Müller-Plathe, Florian; Böhm, Michael C.

    2016-05-01

    A recently developed hybrid method is employed to study the mechanical behavior of silica-polystyrene nanocomposites (NCs) under uniaxial elongation. The hybrid method couples a particle domain to a continuum domain. The region of physical interest, i.e., the interphase around a nanoparticle (NP), is treated at molecular resolution, while the surrounding elastic continuum is handled with a finite-element approach. In the present paper we analyze the polymer behavior in the neighborhood of one or two nanoparticle(s) at molecular resolution. The coarse-grained hybrid method allows us to simulate a large polymer matrix region surrounding the nanoparticles. We consider NCs with dilute concentration of NPs embedded in an atactic polystyrene matrix formed by 300 chains with 200 monomer beads. The overall orientation of polymer segments relative to the deformation direction is determined in the neighborhood of the nanoparticle to investigate the polymer response to this perturbation. Calculations of strainlike quantities give insight into the deformation behavior of a system with two NPs and show that the applied strain and the nanoparticle distance have significant influence on the deformation behavior. Finally, we investigate to what extent a continuum-based description may account for the specific effects occurring in the interphase between the polymer matrix and the NPs.

  6. A toxin-mediated size-structured population model: Finite difference approximation and well-posedness.

    Science.gov (United States)

    Huang, Qihua; Wang, Hao

    2016-08-01

    The question of the effects of environmental toxins on ecological communities is of great interest from both environmental and conservational points of view. Mathematical models have been applied increasingly to predict the effects of toxins on a variety of ecological processes. Motivated by the fact that individuals with different sizes may have different sensitivities to toxins, we develop a toxin-mediated size-structured model which is given by a system of first order fully nonlinear partial differential equations (PDEs). It is very possible that this work represents the first derivation of a PDE model in the area of ecotoxicology. To solve the model, an explicit finite difference approximation to this PDE system is developed. Existence-uniqueness of the weak solution to the model is established and convergence of the finite difference approximation to this unique solution is proved. Numerical examples are provided by numerically solving the PDE model using the finite difference scheme.

  7. Optimization of finite difference forward modeling for elastic waves based on optimum combined window functions

    Science.gov (United States)

    Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang

    2017-03-01

    Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.

  8. THE UPWIND OPERATOR SPLITTING FINITE DIFFERENCE METHOD FOR COMPRESSIBLE TWO-PHASE DISPLACEMENT PROBLEM AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    袁益让

    2002-01-01

    For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estinates in L2 norm are derived to determine the error in the approximate solution.

  9. Lie group invariant finite difference schemes for the neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Jaegers, P.J.

    1994-06-01

    Finite difference techniques are used to solve a variety of differential equations. For the neutron diffusion equation, the typical local truncation error for standard finite difference approximation is on the order of the mesh spacing squared. To improve the accuracy of the finite difference approximation of the diffusion equation, the invariance properties of the original differential equation have been incorporated into the finite difference equations. Using the concept of an invariant difference operator, the invariant difference approximations of the multi-group neutron diffusion equation were determined in one-dimensional slab and two-dimensional Cartesian coordinates, for multiple region problems. These invariant difference equations were defined to lie upon a cell edged mesh as opposed to the standard difference equations, which lie upon a cell centered mesh. Results for a variety of source approximations showed that the invariant difference equations were able to determine the eigenvalue with greater accuracy, for a given mesh spacing, than the standard difference approximation. The local truncation errors for these invariant difference schemes were found to be highly dependent upon the source approximation used, and the type of source distribution played a greater role in determining the accuracy of the invariant difference scheme than the local truncation error.

  10. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    Science.gov (United States)

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.

  11. Performance prediction of finite-difference solvers for different computer architectures

    Science.gov (United States)

    Louboutin, Mathias; Lange, Michael; Herrmann, Felix J.; Kukreja, Navjot; Gorman, Gerard

    2017-08-01

    The life-cycle of a partial differential equation (PDE) solver is often characterized by three development phases: the development of a stable numerical discretization; development of a correct (verified) implementation; and the optimization of the implementation for different computer architectures. Often it is only after significant time and effort has been invested that the performance bottlenecks of a PDE solver are fully understood, and the precise details varies between different computer architectures. One way to mitigate this issue is to establish a reliable performance model that allows a numerical analyst to make reliable predictions of how well a numerical method would perform on a given computer architecture, before embarking upon potentially long and expensive implementation and optimization phases. The availability of a reliable performance model also saves developer effort as it both informs the developer on what kind of optimisations are beneficial, and when the maximum expected performance has been reached and optimisation work should stop. We show how discretization of a wave-equation can be theoretically studied to understand the performance limitations of the method on modern computer architectures. We focus on the roofline model, now broadly used in the high-performance computing community, which considers the achievable performance in terms of the peak memory bandwidth and peak floating point performance of a computer with respect to algorithmic choices. A first principles analysis of operational intensity for key time-stepping finite-difference algorithms is presented. With this information available at the time of algorithm design, the expected performance on target computer systems can be used as a driver for algorithm design.

  12. FINITE DIFFERENCE FRACTIONAL STEP METHODS FOR THE TRANSIENT BEHAVIOR OF A SEMICONDUCTOR DEVICE

    Institute of Scientific and Technical Information of China (English)

    Yuan Yirang

    2005-01-01

    Characteristic finite difference fractional step schemes are put forward. The electric Potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.

  13. Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation

    Science.gov (United States)

    Tam, Christopher K. W.; Webb, Jay C.

    1994-01-01

    In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The

  14. Explicit finite-difference time domain for nonlinear analysis of waveguide modes

    Science.gov (United States)

    Barakat, N. M.; Shabat, M. M.; El-Azab, S.; Jaeger, Dieter

    2003-07-01

    The Finite Difference Time Domain Technique is at present the most widely used tool employed in the study of light propagation in various photonic waveguide structure. In this paper we derived an explicit finite-difference time-domain (FDTD) method for solving the wave equation in a four optical waveguiding rectangular structure. We derive the stability condition to achieve the stability in nonlinear media region, we also check that the wave equation used is consistence and convergent with the approximate finite difference equation. Our method is tested against some previous problems and we find a high degree of accuracy, moreover it is easy for programming. Numerical results are illustrated for a rectangular waveguide with four layers, where one of these layers is a nonlinear medium.

  15. Finite difference method for the reverse parabolic problem with Neumann condition

    Science.gov (United States)

    Ashyralyyev, Charyyar; Dural, Ayfer; Sozen, Yasar

    2012-08-01

    A finite difference method for the approximate solution of the reverse multidimensional parabolic differential equation with a multipoint boundary condition and Neumann condition is applied. Stability, almost coercive stability, and coercive stability estimates for the solution of the first and second orders of accuracy difference schemes are obtained. The theoretical statements are supported by the numerical example.

  16. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    Science.gov (United States)

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  17. A Novel Hybrid-Flux Magnetic Gear and Its Performance Analysis Using the 3-D Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yiduan Chen

    2015-04-01

    Full Text Available This paper presents a novel hybrid-flux magnetic gear, which integrates a transverse-flux magnetic gear and an axial-flux magnetic gear into a single unit. Compared to its conventional counterparts, the proposed magnetic gear transmits a relatively high torque density. When compared to the transverse-flux magnetic gear, this new structure employs an extra iron segment between the low-speed rotor and high-speed rotor to modulate the magnetic field and contribute to the transmission of additional torque. A three-dimensional (3-D finite element method (FEM is used for the analysis of the magnetic field. In the paper a variables-decoupling method based on the sensitivity analysis of the design parameters is also presented to accelerate the optimization process of the proposed machine.

  18. Comparative anatomy of the petioles of different genomic Cydonia × Malus hybrids

    Directory of Open Access Journals (Sweden)

    Elisaveta Onica

    2013-04-01

    Full Text Available In the paper morphological and anatomical structure of the petioles of 15 different genomic hybrids between quince and apple are compared with other hybrids and the initial forms. Specific and common anatomic peculiarities of the petiole for the studied hybrids in comparison to other hybrids and parental forms are given.

  19. Numerical solution of a diffusion problem by exponentially fitted finite difference methods.

    Science.gov (United States)

    D'Ambrosio, Raffaele; Paternoster, Beatrice

    2014-01-01

    This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by employing a general purpose solver.

  20. The Substitution Secant/Finite Difference Method for Large Scale Sparse Unconstrained Optimization

    Institute of Scientific and Technical Information of China (English)

    Hong-wei Zhang; Jun-xiang Li

    2005-01-01

    This paper studies a substitution secant/finite difference (SSFD) method for solving large scale sparse unconstrained optimization problems. This method is a combination of a secant method and a finite difference method, which depends on a consistent partition of the columns of the lower triangular part of the Hessian matrix. A q-superlinear convergence result and an r-convergence rate estimate show that this method has good local convergence properties. The numerical results show that this method may be competitive with some currently used algorithms.

  1. Test of two methods for faulting on finite-difference calculations

    Science.gov (United States)

    Andrews, D.J.

    1999-01-01

    Tests of two fault boundary conditions show that each converges with second order accuracy as the finite-difference grid is refined. The first method uses split nodes so that there are disjoint grids that interact via surface traction. The 3D version described here is a generalization of a method I have used extensively in 2D; it is as accurate as the 2D version. The second method represents fault slip as inelastic strain in a fault zone. Offset of stress from its elastic value is seismic moment density. Implementation of this method is quite simple in a finite-difference scheme using velocity and stress as dependent variables.

  2. Developments in the simulation of separated flows using finite difference methods

    Science.gov (United States)

    Steger, J. L.; Van Dalsem, W. R.

    1985-01-01

    Compressible viscous flow simulation using finite difference Navier-Stokes and viscous-inviscid interaction methods is described. Recent developments are reviewed that significantly improve the computational efficiency of approximately factored implicit Navier-Stokes algorithms. Compared to Navier-Stokes codes, modern viscous-inviscid interaction codes are more computationally efficient, but have restricted application and are more complicated to program. Therefore, less efficient but more general viscous-inviscid interaction methods are investigated that use forcing functions instead of boundary condition matching, and a simple, direct/inverse, three-dimensional, finite-difference, boundary layer code is presented.

  3. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

    CERN Document Server

    Gedney, Stephen

    2011-01-01

    Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to p

  4. Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation

    Directory of Open Access Journals (Sweden)

    Tingting Wu

    2016-01-01

    Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.

  5. An implicit logarithmic finite-difference technique for two dimensional coupled viscous Burgers’ equation

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vineet K., E-mail: vineetsriiitm@gmail.com [ISRO Telemetry, Tracking and Command Network (ISTRAC), Bangalore-560058 (India); Awasthi, Mukesh K. [Department of Mathematics, University of Petroleum and Energy Studies, Dehradun-248007 (India); Singh, Sarita [Department of Mathematics, WIT- Uttarakhand Technical University, Dehradun-248007 (India)

    2013-12-15

    This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM), for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.

  6. An implicit logarithmic finite-difference technique for two dimensional coupled viscous Burgers’ equation

    Directory of Open Access Journals (Sweden)

    Vineet K. Srivastava

    2013-12-01

    Full Text Available This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM, for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.

  7. A Coupled Finite Difference and Moving Least Squares Simulation of Violent Breaking Wave Impact

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    Two model for simulation of free surface flow is presented. The first model is a finite difference based potential flow model with non-linear kinematic and dynamic free surface boundary conditions. The second model is a weighted least squares based incompressible and inviscid flow model. A special...... feature of this model is a generalized finite point set method which is applied to the solution of the Poisson equation on an unstructured point distribution. The presented finite point set method is generalized to arbitrary order of approximation. The two models are applied to simulation of steep...... and overturning wave impacts on a vertical breakwater. Wave groups with five different wave heights are propagated from offshore to the vicinity of the breakwater, where the waves are steep, but still smooth and non-overturning. These waves are used as initial condition for the weighted least squares based...

  8. Solving parabolic and hyperbolic equations by the generalized finite difference method

    Science.gov (United States)

    Benito, J. J.; Urena, F.; Gavete, L.

    2007-12-01

    Classical finite difference schemes are in wide use today for approximately solving partial differential equations of mathematical physics. An evolution of the method of finite differences has been the development of generalized finite difference (GFD) method, that can be applied to irregular grids of points. In this paper the extension of the GFD to the explicit solution of parabolic and hyperbolic equations has been developed for partial differential equations with constant coefficients in the cases of considering one, two or three space dimensions. The convergence of the method has been studied and the truncation errors over irregular grids are given. Different examples have been solved using the explicit finite difference formulae and the criterion of stability. This has been expressed in function of the coefficients of the star equation for irregular clouds of nodes in one, two or three space dimensions. The numerical results show the accuracy obtained over irregular grids. This paper also includes the study of the maximum local error and the global error for different examples of parabolic and hyperbolic time-dependent equations.

  9. A guide to differences between stochastic point-source and stochastic finite-fault simulations

    Science.gov (United States)

    Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.

    2009-01-01

    Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control

  10. A Hybrid Finite Element-Fourier Spectral Method for Vibration Analysis of Structures with Elastic Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-01-01

    Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.

  11. Hybrid Modeling and Optimization of Manufacturing Combining Artificial Intelligence and Finite Element Method

    CERN Document Server

    Quiza, Ramón; Davim, J Paulo

    2012-01-01

    Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. The book is expected to be useful for postgraduate students and researchers, working in the area of modeling and optimization of manufacturing processes.

  12. Finite difference methods for transient signal propagation in stratified dispersive media

    Science.gov (United States)

    Lam, D. H.

    1975-01-01

    Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.

  13. Influence of exit impedance on finite difference solutions of transient acoustic mode propagation in ducts

    Science.gov (United States)

    Baumeister, K. J.

    1981-01-01

    The cutoff mode instability problem associated with a transient finite difference solution to the wave equation is explained. The steady-state impedance boundary condition is found to produce acoustic reflections during the initial transient, which cause finite instabilities in the cutoff modes. The stability problem is resolved by extending the duct length to prevent transient reflections. Numerical calculations are presented at forcing frequencies above, below, and nearly at the cutoff frequency, and exit impedance models are presented for use in the practical design of turbofan inlets.

  14. On the representation of functions and finite difference operators on adaptive sparse grids

    NARCIS (Netherlands)

    Hemker, P.W.; Sprengel, F.

    1999-01-01

    In this paper we describe methods to approximate functions and differential operators on adaptive sparse grids. We distinguish between several representations of a function on the sparse grid, and we describe how finite difference (FD) operators can be applied to these representations. For general v

  15. Eighth-Order Compact Finite Difference Scheme for 1D Heat Conduction Equation

    Directory of Open Access Journals (Sweden)

    Asma Yosaf

    2016-01-01

    Full Text Available The purpose of this paper is to develop a high-order compact finite difference method for solving one-dimensional (1D heat conduction equation with Dirichlet and Neumann boundary conditions, respectively. A parameter is used for the direct implementation of Dirichlet and Neumann boundary conditions. The introduced parameter adjusts the position of the neighboring nodes very next to the boundary. In the case of Dirichlet boundary condition, we developed eighth-order compact finite difference method for the entire domain and fourth-order accurate proposal is presented for the Neumann boundary conditions. In the case of Dirichlet boundary conditions, the introduced parameter behaves like a free parameter and could take any value from its defined domain but for the Neumann boundary condition we obtained a particular value of the parameter. In both proposed compact finite difference methods, the order of accuracy is the same for all nodes. The time discretization is performed by using Crank-Nicholson finite difference method. The unconditional convergence of the proposed methods is presented. Finally, a set of 1D heat conduction equations is solved to show the validity and accuracy of our proposed methods.

  16. The role of finite-difference methods in design and analysis for supersonic cruise

    Science.gov (United States)

    Townsend, J. C.

    1976-01-01

    Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.

  17. A smart nonstandard finite difference scheme for second order nonlinear boundary value problems

    NARCIS (Netherlands)

    Erdogan, Utku; Ozis, Turgut

    2011-01-01

    A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed. Numer

  18. The finite difference time domain method on a massively parallel computer

    NARCIS (Netherlands)

    Ewijk, L.J. van

    1996-01-01

    At the Physics and Electronics Laboratory TNO much research is done in the field of computational electromagnetics (CEM). One of the tools in this field is the Finite Difference Time Domain method (FDTD), a method that has been implemented in a program in order to be able to compute electromagnetic

  19. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    Science.gov (United States)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  20. Characteristic finite difference fractional step methods for three-dimensional semiconductor device of heat conduction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mathematical model of the semiconductor device of heat conduction has been described by a system of four equations. The optimal order estimates in L2 norm are derived for the error in the approximates solution, putting forward a kind of characteristic finite difference fractional step methods.

  1. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    This chapter reviews the fundamental methods and some of the applications of the three-dimensional (3D) finite-difference time-domain (FDTD) technique for the modeling of light scattering by arbitrarily shaped dielectric particles and surfaces. The emphasis is on the details of the FDTD algorithms...

  2. Finite-difference, spectral and Galerkin methods for time-dependent problems

    Science.gov (United States)

    Tadmor, E.

    1983-01-01

    Finite difference, spectral and Galerkin methods for the approximate solution of time dependent problems are surveyed. A unified discussion on their accuracy, stability and convergence is given. In particular, the dilemma of high accuracy versus stability is studied in some detail.

  3. Development of a multigrid finite difference solver for benchmark permeability analysis

    NARCIS (Netherlands)

    Loendersloot, Richard; Grouve, Wouter J.B.; Akkerman, Remko; Boer, de André; Michaud, V.

    2010-01-01

    A finite difference solver, dedicated to flow around fibre architectures is currently being developed. The complexity of the internal geometry of textile reinforcements results in extreme computation times, or inaccurate solutions. A compromise between the two is found by implementing a multigrid al

  4. Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry

    2011-01-01

    Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...

  5. On the spectrum of relativistic Schrödinger equation in finite differences

    CERN Document Server

    Berezin, V A; Neronov, Andrii Yu

    1999-01-01

    We develop a method for constructing asymptotic solutions of finite-difference equations and implement it to a relativistic Schroedinger equation which describes motion of a selfgravitating spherically symmetric dust shell. Exact mass spectrum of black hole formed due to the collapse of the shell is determined from the analysis of asymptotic solutions of the equation.

  6. High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves

    DEFF Research Database (Denmark)

    Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    is discretized using arbitrary-order finite difference schemes on a staggered grid with one optional stretching in each coordinate direction. The momentum equations and kinematic free surface condition are integrated in time using the classic fourth-order Runge-Kutta scheme. Mass conservation is satisfied...

  7. Finite difference time domain modeling of light matter interaction in light-propelled microtools

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Aabo, Thomas

    2013-01-01

    may trigger highly localized non linear processes in the surface of a cell. Since these functionalities are strongly dependent on design, it is important to use models that can handle complexities and take in little simplifying assumptions about the system. Hence, we use the finite difference time...

  8. Analysis of oscillational instabilities in acoustic levitation using the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2011-01-01

    The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...

  9. Finite difference schemes for a nonlinear black-scholes model with transaction cost and volatility risk

    DEFF Research Database (Denmark)

    Mashayekhi, Sima; Hugger, Jens

    2015-01-01

    market. In this paper, we compare several finite difference methods for the solution of this model with respect to precision and order of convergence within a computationally feasible domain allowing at most 200 space steps and 10000 time steps. We conclude that standard explicit Euler comes out...

  10. Finite-difference time domain solution of light scattering by arbitrarily shaped particles and surfaces

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Sun, Wenbo

    2012-01-01

    This chapter reviews the fundamental methods and some of the applications of the three-dimensional (3D) finite-difference time-domain (FDTD) technique for the modeling of light scattering by arbitrarily shaped dielectric particles and surfaces. The emphasis is on the details of the FDTD algorithms...

  11. A smart nonstandard finite difference scheme for second order nonlinear boundary value problems

    NARCIS (Netherlands)

    Erdogan, Utku; Ozis, Turgut

    2011-01-01

    A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed.

  12. On the accuracy of the finite difference method for applications in beam propagating techniques

    NARCIS (Netherlands)

    Hoekstra, Hugo; Krijnen, Gijsbertus J.M.; Lambeck, Paul

    1992-01-01

    In this paper it is shown that the inaccuracy in the beam propagation method based on the finite difference scheme, introduced by the use of the slowly varying envelope approximation, can be overcome in an effective way. By the introduction of a perturbation expansion the accuracy can be improved as

  13. Staircase-free finite-difference time-domain formulation for general materials in complex geometries

    DEFF Research Database (Denmark)

    Dridi, Kim; Hesthaven, J.S.; Ditkowski, A.

    2001-01-01

    A stable Cartesian grid staircase-free finite-difference time-domain formulation for arbitrary material distributions in general geometries is introduced. It is shown that the method exhibits higher accuracy than the classical Yee scheme for complex geometries since the computational representation...

  14. Some remarks on multilevel algorithms for finite difference discretizationson sparse grids

    NARCIS (Netherlands)

    F. Sprengel

    1999-01-01

    textabstractIn this paper, we propose some algorithms to solve the system of linear equations arising from the finite difference discretization on sparse grids. For this, we will use the multilevel structure of the sparse grid space or its full grid subspaces, respectively.

  15. Linear and nonlinear Stability analysis for finite difference discretizations of higher order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly nonlinear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann...

  16. Efficiency Benchmarking of an Energy Stable High-Order Finite Difference Discretization

    NARCIS (Netherlands)

    van der Weide, Edwin Theodorus Antonius; Giangaspero, G.; Svärd, M

    2015-01-01

    In this paper, results are presented for a number of benchmark cases, proposed at the 2nd International Workshop on High-Order CFD Methods in Cologne, Germany, in 2013. A robust high-order-accurate finite difference method was used that was developed during the last 10–15 years. The robustness stems

  17. Finite Difference Methods for Option Pricing under Lévy Processes: Wiener-Hopf Factorization Approach

    National Research Council Canada - National Science Library

    Kudryavtsev, Oleg

    2013-01-01

      In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation...

  18. Optimal convergence rate of the explicit finite difference scheme for American option valuation

    Science.gov (United States)

    Hu, Bei; Liang, Jin; Jiang, Lishang

    2009-08-01

    An optimal convergence rate O([Delta]x) for an explicit finite difference scheme for a variational inequality problem is obtained under the stability condition using completely PDE methods. As a corollary, a binomial tree scheme of an American put option (where ) is convergent unconditionally with the rate O(([Delta]t)1/2).

  19. Mean square convergent three points finite difference scheme for random partial differential equations

    Directory of Open Access Journals (Sweden)

    Magdy A. El-Tawil

    2012-10-01

    Full Text Available In this paper, the random finite difference method with three points is used in solving random partial differential equations problems mainly: random parabolic, elliptic and hyperbolic partial differential equations. The conditions of the mean square convergence of the numerical solutions are studied. The numerical solutions are computed through some numerical case studies.

  20. Finite entropy of Schwarzschild anti-de Sitter black hole in different coordinates

    Institute of Scientific and Technical Information of China (English)

    Ding Chi-Kun; Jing Ji-Liang

    2007-01-01

    This paper studies the finite statistical-mechanical entropy of the Schwarzschild anti-de Sitter (AdS) spacetime At first glance, it seems that the results would be different from that in the Schwarzschild-like coordinate since both the entropies in these coordinates are exactly equivalent to that in the Schwarzschild-like coordinate.

  1. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  2. Stability of finite difference schemes for generalized von Foerster equations with renewal

    Directory of Open Access Journals (Sweden)

    Henryk Leszczyński

    2014-01-01

    Full Text Available We consider a von Foerster-type equation describing the dynamics of a population with the production of offsprings given by the renewal condition. We construct a finite difference scheme for this problem and give sufficient conditions for its stability with respect to \\(l^1\\ and \\(l^\\infty\\ norms.

  3. The finite-difference time-domain method for electromagnetics with Matlab simulations

    CERN Document Server

    Elsherbeni, Atef Z

    2016-01-01

    This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.

  4. A coupled boundary element-finite difference solution of the elliptic modified mild slope equation

    DEFF Research Database (Denmark)

    Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.

    2011-01-01

    The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...

  5. A Coupled Finite Difference and Moving Least Squares Simulation of Violent Breaking Wave Impact

    DEFF Research Database (Denmark)

    Lindberg, Ole; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    incompressible and inviscid model and the wave impacts on the vertical breakwater are simulated in this model. The resulting maximum pressures and forces on the breakwater are relatively high when compared with other studies and this is due to the incompressible nature of the present model.......Two model for simulation of free surface flow is presented. The first model is a finite difference based potential flow model with non-linear kinematic and dynamic free surface boundary conditions. The second model is a weighted least squares based incompressible and inviscid flow model. A special...... feature of this model is a generalized finite point set method which is applied to the solution of the Poisson equation on an unstructured point distribution. The presented finite point set method is generalized to arbitrary order of approximation. The two models are applied to simulation of steep...

  6. Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code

    Energy Technology Data Exchange (ETDEWEB)

    MINKOFF,SUSAN E.

    1999-12-09

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  7. Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code

    Energy Technology Data Exchange (ETDEWEB)

    Minkoff, S.E.

    1999-12-01

    Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.

  8. The characteristic finite difference fractional steps methods for compressible two-phase displacement problem

    Institute of Scientific and Technical Information of China (English)

    袁益让

    1999-01-01

    For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L~2 norm are derived to determine the error in the approximate solution.

  9. Estimation of Young's modulus and Poisson's ratio of soft tissue from indentation using two different-sized indentors: finite element analysis of the finite deformation effect.

    Science.gov (United States)

    Choi, A P C; Zheng, Y P

    2005-03-01

    Young's modulus and Poisson's ratio of a tissue can be simultaneously obtained using two indentation tests with two different sized indentors in two indentations. Owing to the assumption of infinitesimal deformation of the indentation, the finite deformation effect of indentation on the calculated material parameters was not fully understood in the double indentation approach. However, indentation tests with infinitesimal deformation are not practical for the measurement of real tissues. Accordingly, finite element models were developed to simulate the indentation with different indentor diameters and different deformation ratios to investigate the finite deformation effect of indentation. The results indicated that Young's modulus E increased with the increase in the indentation deformation w, if the finite deformation effect of indentation was not considered. This phenomenon became obvious when Poisson's ratio v approached 0.5 and/or the ratio of indentor radius and tissue thickness a/h increased. The calculated Young's modulus could be different by 23% at 10% deformation in comparison with its real value. The results also demonstrated that the finite deformation effect to indentation on the calculation of Poisson's ratio v was much smaller. After the finite deformation effect of indentation was considered, the error of the calculated Young's modulus could be controlled within 5% (a/h = 1) and 2% (a/h = 2) for deformation up to 10%.

  10. Finite Gyroradius Effects in the Plasma Environment Near Titan: 3D Hybrid Modeling of the T5 Encounter

    Science.gov (United States)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Sarantos, M.

    2012-12-01

    In this report we discuss the results of a 3D hybrid modeling of the interaction between Saturn's magnetosphere and Titan's atmosphere/ionosphere for the T5 encounter. The T5 flyby is the only encounter when the two main ionizing sources of Titan's atmosphere, solar radiation and corotating plasma, align quasi-anti-parallel. The model is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) and the Cassini Ion and Neutral Mass Spectrometer (INMS) measurements during the T5 flyby through Titan's ram-side and polar ionosphere [1,2]. Magnetic field data was used from the MAG instrument [3]. In our model the background ions (O+, H+), all pickup ions, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid (see e.g. [4]). Inhomogeneous photoionization (in the dayside ionosphere), electron-impact ionization, and charge exchange are included in our model. The temperature of the background electrons and pickup electrons was also incorporated into the generalized Ohm's law. We also take into account collisions between ions and neutrals. In our hybrid simulations we use Chamberlain profiles for the exosphere's components. The moon is considered as a weakly conducting body. The first results of our hybrid modeling show a strong asymmetry in the background (H+, O+) and pickup (H2+, N2+, CH4+) ion density profiles. Such strong asymmetry cannot be explained by a single-fluid multi-species 3D MHD model [5], which includes complex chemistry but does not produce finite gyroradius and kinetic effects. References [1] Sittler, et al., Energy Deposition Processes in Titan's Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton, J.P., Waite, J.H., Eds., Springer, (Dordrecht, Heidelberg, London, New York), pp. 393-455, 2010. [2] Agren, K., et al., On magnetosphere electron impact ionization and dynamics in Titan's ram-side and polar ionosphere -- a Cassini case study, Ann. Geophys., 25, 2359

  11. High‐order rotated staggered finite difference modeling of 3D elastic wave propagation in general anisotropic media

    KAUST Repository

    Chu, Chunlei

    2009-01-01

    We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.

  12. Hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis method for mid-frequency analysis of built-up systems with epistemic uncertainties

    Science.gov (United States)

    Yin, Shengwen; Yu, Dejie; Yin, Hui; Lü, Hui; Xia, Baizhan

    2017-09-01

    Considering the epistemic uncertainties within the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) model when it is used for the response analysis of built-up systems in the mid-frequency range, the hybrid Evidence Theory-based Finite Element/Statistical Energy Analysis (ETFE/SEA) model is established by introducing the evidence theory. Based on the hybrid ETFE/SEA model and the sub-interval perturbation technique, the hybrid Sub-interval Perturbation and Evidence Theory-based Finite Element/Statistical Energy Analysis (SIP-ETFE/SEA) approach is proposed. In the hybrid ETFE/SEA model, the uncertainty in the SEA subsystem is modeled by a non-parametric ensemble, while the uncertainty in the FE subsystem is described by the focal element and basic probability assignment (BPA), and dealt with evidence theory. Within the hybrid SIP-ETFE/SEA approach, the mid-frequency response of interest, such as the ensemble average of the energy response and the cross-spectrum response, is calculated analytically by using the conventional hybrid FE/SEA method. Inspired by the probability theory, the intervals of the mean value, variance and cumulative distribution are used to describe the distribution characteristics of mid-frequency responses of built-up systems with epistemic uncertainties. In order to alleviate the computational burdens for the extreme value analysis, the sub-interval perturbation technique based on the first-order Taylor series expansion is used in ETFE/SEA model to acquire the lower and upper bounds of the mid-frequency responses over each focal element. Three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method.

  13. Different factorizations of the relativistic finite-difference Schrödinger equation and q-oscillators

    CERN Document Server

    Mir-Kasimov, R M

    1994-01-01

    The concept of the one -- dimensional quantum mechanics in the relativistic configurational space (RQM) is reviewed briefly. The Relativistic Schroedinger equation (RSE) arising here is the finite -- difference equation with the step equal to the Compton wave length of the particle. The different generalizations of the Dirac -- Infeld-- Hall factorizarion method for this case are constructed. This method enables us to find out all possible finite-difference generalizations of the most important nonrelativistic integrable case -- the harmonic oscillator. As it was shown in \\cite{kmn},\\cite{mir6} the case of RQM the harmonic oscillator = q -- oscillator. It is also shown that the relativistic and nonrelativistic QM's are different representations of the same theory. The transformation connecting these two representations is found in explicit form. It could be considered as the generalization of the Kontorovich -- Lebedev transformation.

  14. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed

    2013-06-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  15. Analysis for pressure transient of coalbed methane reservoir based on Laplace transform finite difference method

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-09-01

    Full Text Available Based on fractal geometry, fractal medium of coalbed methane mathematical model is established by Langmuir isotherm adsorption formula, Fick's diffusion law, Laplace transform formula, considering the well bore storage effect and skin effect. The Laplace transform finite difference method is used to solve the mathematical model. With Stehfest numerical inversion, the distribution of dimensionless well bore flowing pressure and its derivative was obtained in real space. According to compare with the results from the analytical method, the result from Laplace transform finite difference method turns out to be accurate. The influence factors are analyzed, including fractal dimension, fractal index, skin factor, well bore storage coefficient, energy storage ratio, interporosity flow coefficient and the adsorption factor. The calculating error of Laplace transform difference method is small. Laplace transform difference method has advantages in well-test application since any moment simulation does not rely on other moment results and space grid.

  16. Finite difference numerical methods for boundary control problems governed by hyperbolic partial differential equations

    Science.gov (United States)

    Chen, G.; Zheng, Q.; Coleman, M.; Weerakoon, S.

    1983-01-01

    This paper briefly reviews convergent finite difference schemes for hyperbolic initial boundary value problems and their applications to boundary control systems of hyperbolic type which arise in the modelling of vibrations. These difference schemes are combined with the primal and the dual approaches to compute the optimal control in the unconstrained case, as well as the case when the control is subject to inequality constraints. Some of the preliminary numerical results are also presented.

  17. Finite Difference Method for Reaction-Diffusion Equation with Nonlocal Boundary Conditions

    Institute of Scientific and Technical Information of China (English)

    Jianming Liu; Zhizhong Sun

    2007-01-01

    In this paper, we present a numerical approach to a class of nonlinear reactiondiffusion equations with nonlocal Robin type boundary conditions by finite difference methods. A second-order accurate difference scheme is derived by the method of reduction of order. Moreover, we prove that the scheme is uniquely solvable and convergent with the convergence rate of order two in a discrete L2-norm. A simple numerical example is given to illustrate the efficiency of the proposed method.

  18. Simulation of acoustic streaming by means of the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2012-01-01

    the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...... of different width, which illustrate the applicability of the method. The obtained numerical simulations agree quite will with analytical solutions available in the literature....

  19. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.

    2011-08-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua\\'s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles\\' locations inside the physical s-plane. The GrnwaldLetnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability. © 2011 Elsevier Ltd. All rights reserved.

  20. Fast finite difference solvers for singular solutions of the elliptic Monge-Amp\\'ere equation

    CERN Document Server

    Froese, Brittany D

    2010-01-01

    The elliptic Monge-Amp\\`ere equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail. In this article we build a finite difference solver for the Monge-Amp\\'ere equation, which converges even for singular solutions. Regularity results are used to select a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton's method. Computational results in two and three dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the nece...

  1. The modified equation approach to the stability and accuracy analysis of finite-difference methods

    Science.gov (United States)

    Warming, R. F.; Hyett, B. J.

    1974-01-01

    The stability and accuracy of finite-difference approximations to simple linear partial differential equations are analyzed by studying the modified partial differential equation. Aside from round-off error, the modified equation represents the actual partial differential equation solved when a numerical solution is computed using a finite-difference equation. The modified equation is derived by first expanding each term of a difference scheme in a Taylor series and then eliminating time derivatives higher than first order by certain algebraic manipulations. The connection between 'heuristic' stability theory based on the modified equation approach and the von Neumann (Fourier) method is established. In addition to the determination of necessary and sufficient conditions for computational stability, a truncated version of the modified equation can be used to gain insight into the nature of both dissipative and dispersive errors.

  2. A finite difference method for predicting supersonic turbulent boundary layer flows with tangential slot injection

    Science.gov (United States)

    Miner, E. W.; Lewis, C. H.

    1972-01-01

    An implicit finite difference method has been applied to tangential slot injection into supersonic turbulent boundary layer flows. In addition, the effects induced by the interaction between the boundary layer displacement thickness and the external pressure field are considered. In the present method, three different eddy viscosity models have been used to specify the turbulent momentum exchange. One model depends on the species concentration profile and the species conservation equation has been included in the system of governing partial differential equations. Results are compared with experimental data at stream Mach numbers of 2.4 and 6.0 and with results of another finite difference method. Good agreement was generally obtained for the reduction of wall skin friction with slot injection and with experimental Mach number and pitot pressure profiles. Calculations with the effects of pressure interaction included showed these effects to be smaller than effects of changing eddy viscosity models.

  3. An Improved Finite Difference Type Numerical Method for Structural Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    Sung-Hoon Kim

    1994-01-01

    Full Text Available An improved finite difference type numerical method to solve partial differential equations for one-dimensional (1-D structure is proposed. This numerical scheme is a kind of a single-step, second-order accurate and implicit method. The stability, consistency, and convergence are examined analytically with a second-order hyperbolic partial differential equation. Since the proposed numerical scheme automatically satisfies the natural boundary conditions and at the same time, all the partial differential terms at boundary points are directly interpretable to their physical meanings, the proposed numerical scheme has merits in computing 1-D structural dynamic motion over the existing finite difference numeric methods. Using a numerical example, the suggested method was proven to be more accurate and effective than the well-known central difference method. The only limitation of this method is that it is applicable to only 1-D structure.

  4. Numerical solution of nonlinear partial differential equations of mixed type. [finite difference approximation

    Science.gov (United States)

    Jameson, A.

    1976-01-01

    A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.

  5. Modeling and Simulation of Hamburger Cooking Process Using Finite Difference and CFD Methods

    Directory of Open Access Journals (Sweden)

    J. Sargolzaei

    2011-01-01

    Full Text Available Unsteady-state heat transfer in hamburger cooking process was modeled using one dimensional finite difference (FD and three dimensional computational fluid dynamic (CFD models. A double-sided cooking system was designed to study the effect of pressure and oven temperature on the cooking process. Three different oven temperatures (114, 152, 204°C and three different pressures (20, 332, 570 pa were selected and 9 experiments were performed. Applying pressure to hamburger increases the contact area of hamburger with heating plate and hence the heat transfer rate to the hamburger was increased and caused the weight loss due to water evaporation and decreasing cooking time, while increasing oven temperature led to increasing weight loss and decreasing cooking time. CFD predicted results were in good agreement with the experimental results than the finite difference (FD ones. But considering the long time needed for CFD model to simulate the cooking process (about 1 hour, using the finite difference model would be more economic.

  6. Reduced Fracture Finite Element Model Analysis of an Efficient Two-Scale Hybrid Embedded Fracture Model

    KAUST Repository

    Amir, Sahar Z.

    2017-06-09

    A Hybrid Embedded Fracture (HEF) model was developed to reduce various computational costs while maintaining physical accuracy (Amir and Sun, 2016). HEF splits the computations into fine scale and coarse scale. Fine scale solves analytically for the matrix-fracture flux exchange parameter. Coarse scale solves for the properties of the entire system. In literature, fractures were assumed to be either vertical or horizontal for simplification (Warren and Root, 1963). Matrix-fracture flux exchange parameter was given few equations built on that assumption (Kazemi, 1968; Lemonnier and Bourbiaux, 2010). However, such simplified cases do not apply directly for actual random fracture shapes, directions, orientations …etc. This paper shows that the HEF fine scale analytic solution (Amir and Sun, 2016) generates the flux exchange parameter found in literature for vertical and horizontal fracture cases. For other fracture cases, the flux exchange parameter changes according to the angle, slop, direction, … etc. This conclusion rises from the analysis of both: the Discrete Fracture Network (DFN) and the HEF schemes. The behavior of both schemes is analyzed with exactly similar fracture conditions and the results are shown and discussed. Then, a generalization is illustrated for any slightly compressible single-phase fluid within fractured porous media and its results are discussed.

  7. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    Science.gov (United States)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  8. The application of fluorescence in situ hybridization in different ploidy levels cross-breeding of lily.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available 21 crossing were conducted between Asiatic Lily with different ploidy levels, the results showed that the interploidy hybridization between diploid and tetraploid lilies was not as successful as intraploidy hybridization. Regardless of male sterility, triploid lilies could be used as female parents in the hybridization which the progenies were aneuploidy. 3x×4x crosses could be cultured more successfully than 3x×2x crosses. 45S rDNA was mapped on the chromosomes of seven Lilium species and their progenies using fluorescence in situ hybridization (FISH. FISH revealed six to sixteen 45S rDNA gene loci, and normally the sites were not in pairs. The asymmetry indexes of LA (Longiflorum hybrids × Asiatic hybrids hybrids was higher than Asiatic hybrids, the evolution degree was LA hybrids > Asiatic hybrids. 45S rDNA distributed variably on chromosome 1-10 and 12 among Asiatic hybrids. Chromosome 1 had invariable sites of 45S rDNA in all Asiatic hybrids, which could be considered as the characteristic of Asiatic hybrids. LA hybrid 'Freya' had two sites of 45S rDNA on one homologous chromosome 5, and also it could be found in the progenies. The karyotype and fluorescence in situ hybridization with 45S rDNA as probe were applied to identify the different genotypes of 9 hybrids. Typical chromosomes with parental signal sites could be observed in all the genotypes of hybrids, it was confirmed that all the hybrids were true.

  9. Performance Comparison of different hybrid amplifiers for different numbers of channels

    Directory of Open Access Journals (Sweden)

    Sameksha Bhaskar

    2011-08-01

    Full Text Available We have investigated the performance comparison of different hybrid optical amplifiers (RAMAN-EDFA,RAMAN-SOA,SOA-EDFA,EDFA-RAMAN-EDFA.The proposed configuration consists of 16, 32 and 64 Gbps channels at speed of 10 Gbps. We have realized the different hybrid amplifiers and their parameters like quality factor, ber, eye opening and jitter at different number of channels. The different combinations can provide a better result and better feasibility for long distance transmission. It is observed that SOA-EDFA showed good performance as it can travel max distance of 220,240,260 km at 16, 32 and 64 channels respectively. Also, RAMAN-EDFA showed a good performance as it has a high QUALITY FACTOR (24.27 and BER (1 X 10-40 at 16 channels.

  10. Technoeconomy of different solid oxide fuel cell based hybrid cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Gas turbine, steam turbine and heat engine (Stirling engine) is used as bottoming cycle for a solid oxide fuel cell plant to compare different plants efficiencies, CO2 emissionsand plants cost in terms of $/kW. Each plant is then integrated with biomass gasification and finally six plants...... configurations are compared with each other. Technoeconomy is used when calculating the cost if the plants. It is found that when a solid oxide fuel cell plant is combined with a gas turbine cycle then the plant efficiency will be the highest one while if a biomass gasification plant is integrated...... with these hybrid cycles then integrated biomass gasification with solid oxide fuel cell and steam cycle will have the highest plant efficiency. The cost of solid oxide fuel cell with steam plant is found to be the lowest one with a value of about 1030$/kW....

  11. Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory

    CERN Document Server

    Ghosh, Swarnava

    2014-01-01

    We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework suitable for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we develop a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In doing so, we make the calculation of the electronic ground-state and forces on the nuclei amenable to computations that altogether scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization, using which we demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration c...

  12. The Incorporation of Truncated Fourier Series into Finite Difference Approximations of Structural Stability Equations

    Science.gov (United States)

    Hannah, S. R.; Palazotto, A. N.

    1978-01-01

    A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.

  13. Numerical study of water diffusion in biological tissues using an improved finite difference method.

    Science.gov (United States)

    Xu, Junzhong; Does, Mark D; Gore, John C

    2007-04-07

    An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed.

  14. A quasi-vector finite difference mode solver for optical waveguides with step-index profiles

    Institute of Scientific and Technical Information of China (English)

    Jinbiao Xiao; Mingde Zhang; Xiaohan Sun

    2006-01-01

    @@ A finite difference scheme based on the polynomial interpolation is constructed to solve the quasi-vector equations for optical waveguides with step-index profiles. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are taken into account. The numerical results include the polarization effects, but the memory requirement is the same as in solving the scalar wave equation. Moreover, the proposed finite difference scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for a buried rectangular waveguide and a rib waveguide are presented. Solutions are compared favorably with those obtained by the numerical approaches published earlier.

  15. Geometric and material modeling environment for the finite-difference time-domain method

    Science.gov (United States)

    Lee, Yong-Gu; Muhammad, Waleed

    2012-02-01

    The simulation of electromagnetic problems using the Finite-Difference Time-Domain method starts with the geometric design of the devices and their surroundings with appropriate materials and boundary conditions. This design stage is one of the most time consuming part in the Finite-Difference Time-Domain (FDTD) simulation of photonics devices. Many FDTD solvers have their own way of providing the design environment which can be burdensome for a new user to learn. In this work, geometric and material modeling features are developed on the freely available Google SketchUp, allowing users who are fond of its environment to easily model photonics simulations. The design and implementation of the modeling environment are discussed.

  16. High Order Finite Difference Schemes for the Elastic Wave Equation in Discontinuous Media

    CERN Document Server

    Virta, Kristoffer

    2013-01-01

    Finite difference schemes for the simulation of elastic waves in materi- als with jump discontinuities are presented. The key feature is the highly accurate treatment of interfaces where media discontinuities arise. The schemes are constructed using finite difference operators satisfying a sum- mation - by - parts property together with a penalty technique to impose interface conditions at the material discontinuity. Two types of opera- tors are used, termed fully compatible or compatible. Stability is proved for the first case by bounding the numerical solution by initial data in a suitably constructed semi - norm. Numerical experiments indicate that the schemes using compatible operators are also stable. However, the nu- merical studies suggests that fully compatible operators give identical or better convergence and accuracy properties. The numerical experiments are also constructed to illustrate the usefulness of the proposed method to simulations involving typical interface phenomena in elastic materials...

  17. Solving moving interface problems using a higher order accurate finite difference scheme

    Science.gov (United States)

    Mittal, H. V. R.; Ray, Rajendra K.

    2017-07-01

    A new finite difference scheme is applied to solve partial differential equations in domains with discontinuities due to the presence of time dependent moving or deforming interfaces. This scheme is an extension of the finite difference idea developed for solving incompressible, steady stokes equations in discontinuous domains with fixed interfaces [1]. This new idea is applied at the irregular points at each time step in conjunction with the Crank-Nicolson (CN) implicit scheme and a recently developed Higher Order Compact (HOC) scheme at regular points. For validation, Stefan's problem is considered with a moving interface in one dimension. In two dimensions, heat equation is considered on a square domain with a circular interface whose radius is continuously changing with time. HOC scheme is found to produce better results and the order of accuracy is slightly better than that of the CN scheme. However, both the schemes show around second order accuracy and good agreement with the analytical solution.

  18. Exact Finite-Difference Time-Domain Modelling of Broadband Huygens' Metasurfaces with Lorentz Dispersions

    CERN Document Server

    Smy, Tom J

    2016-01-01

    An explicit time-domain finite-difference technique for modelling zero-thickness Huygens' metasurfaces based on Generalized Sheet Transition Conditions (GSTCs), is proposed and demonstrated using full-wave simulations. The Huygens' metasurface is modelled using electric and magnetic surface susceptibilities, which are found to follow a double-Lorentz dispersion profile. To solve zero-thickness Huygens' metasurface problems for general broadband excitations, the double-Lorentz dispersion profile is combined with GSTCs, leading to a set of first-order differential fields equations in time-domain. Identifying the exact equivalence between Huygens' metasurfaces and coupled RLC oscillator circuits, the field equations are then subsequently solved using standard circuit modelling techniques based on a finite-difference formulation. Several examples including generalized refraction are shown to illustrate the temporal evolution of scattered fields from the Huygens' metasurface under plane-wave normal incidence, in b...

  19. Convergence of finite differences schemes for viscous and inviscid conservation laws with rough coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, Kenneth Hvistendal; Risebro, Nils Henrik

    2000-09-01

    We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a ''rough'' coefficient function k(x). we show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general L{sup p} compactness criterion. (author)

  20. Linear finite-difference bond graph model of an ionic polymer actuator

    Science.gov (United States)

    Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.

    2017-09-01

    With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.

  1. A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZuTao; ZHANG JiaShu

    2009-01-01

    Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.

  2. Stability of pseudospectral and finite-difference methods for variable coefficient problems

    Science.gov (United States)

    Gottlieb, D.; Orszag, S. A.; Turkel, E.

    1981-01-01

    It is shown that pseudospectral approximation to a special class of variable coefficient one-dimensional wave equations is stable and convergent even though the wave speed changes sign within the domain. Computer experiments indicate similar results are valid for more general problems. Similarly, computer results indicate that the leapfrog finite-difference scheme is stable even though the wave speed changes sign within the domain. However, both schemes can be asymptotically unstable in time when a fixed spatial mesh is used.

  3. Option Pricing under Risk-Minimization Criterion in an Incomplete Market with the Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Xinfeng Ruan

    2013-01-01

    Full Text Available We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying asset is governed by a jump diffusion equation with stochastic volatility. We obtain the Radon-Nikodym derivative for the minimal martingale measure and a partial integro-differential equation (PIDE of European option. The finite difference method is employed to compute the European option valuation of PIDE.

  4. Properties of finite difference models of non-linear conservative oscillators

    Science.gov (United States)

    Mickens, R. E.

    1988-01-01

    Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.

  5. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    Science.gov (United States)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  6. A Novel Absorbing Boundary Condition for the Frequency-DependentFinite-Difference Time-Domain Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new absorbing boundary condition (ABC) for frequency-dependent finite-difference time-domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD)2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two-dimensions and three-dimensions are calculated and the validity of the ABC is verified.

  7. A Finite Difference Approximation for a Coupled System of Nonlinear Size-Structured Populations

    Science.gov (United States)

    2000-01-01

    We study a quasilinear nonlocal hyperbolic initial-boundary value problem that models the evolution of N size-structured subpopulations competing for common resources. We develop an implicit finite difference scheme to approximate the solution of this model. The convergence of this approximation to a unique bounded variation weak solution is obtained. The numerical results for a special case of this model suggest that when subpopulations are closed under reproduction, one subpopulation survives and the others go to extinction. Moreover

  8. Seismic Waveform Inversion Using the Finite-Difference Contrast Source Inversion Method

    OpenAIRE

    Bo Han; Qinglong He; Yong Chen; Yixin Dou

    2014-01-01

    This paper extends the finite-difference contrast source inversion method to reconstruct the mass density for two-dimensional elastic wave inversion in the framework of the full-waveform inversion. The contrast source inversion method is a nonlinear iterative method that alternatively reconstructs contrast sources and contrast function. One of the most outstanding advantages of this inversion method is the highly computational efficiency, since it does not need to simulate a fu...

  9. AN EXPLICIT MULTI-CONSERVATION FINITE-DIFFERENCE SCHEME FOR SHALLOW-WATER-WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    Bin Wang

    2008-01-01

    An explicit multi-conservation finite-difference scheme for solving the spherical shallowwater-wave equation set of barotropic atmosphere has been proposed. The numerical scheme is based on a special semi-discrete form of the equations that conserves four basic physical integrals including the total energy, total mass, total potential vorticity and total enstrophy. Numerical tests show that the new scheme performs closely like but is much more time-saving than the implicit multi-conservation scheme.

  10. Finite Difference Model of a Four-Electrode Conductivity Measurement System

    Science.gov (United States)

    2016-05-27

    demonstrate a finite difference numerical solution based on a three dimensional matrix of conductivity tensors to support any combination of included...consisting of a 3 dimensional array of diagonalized conductivity tensors . The implementation assumes the grid spacing to be the same in all...regions and could be imported from a diffusion tensor image to calculate the coupling coefficients if the diffusion tensor is assumed to be

  11. Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing.

    Science.gov (United States)

    Oskooi, Ardavan F; Kottke, Chris; Johnson, Steven G

    2009-09-15

    Finite-difference time-domain methods suffer from reduced accuracy when discretizing discontinuous materials. We previously showed that accuracy can be significantly improved by using subpixel smoothing of the isotropic dielectric function, but only if the smoothing scheme is properly designed. Using recent developments in perturbation theory that were applied to spectral methods, we extend this idea to anisotropic media and demonstrate that the generalized smoothing consistently reduces the errors and even attains second-order convergence with resolution.

  12. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    Science.gov (United States)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  13. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    Science.gov (United States)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  14. Direct Calculation of Permeability by High-Accurate Finite Difference and Numerical Integration Methods

    KAUST Repository

    Wang, Yi

    2016-07-21

    Velocity of fluid flow in underground porous media is 6~12 orders of magnitudes lower than that in pipelines. If numerical errors are not carefully controlled in this kind of simulations, high distortion of the final results may occur [1-4]. To fit the high accuracy demands of fluid flow simulations in porous media, traditional finite difference methods and numerical integration methods are discussed and corresponding high-accurate methods are developed. When applied to the direct calculation of full-tensor permeability for underground flow, the high-accurate finite difference method is confirmed to have numerical error as low as 10-5% while the high-accurate numerical integration method has numerical error around 0%. Thus, the approach combining the high-accurate finite difference and numerical integration methods is a reliable way to efficiently determine the characteristics of general full-tensor permeability such as maximum and minimum permeability components, principal direction and anisotropic ratio. Copyright © Global-Science Press 2016.

  15. The Modified Upwind Finite Difference Fractional Steps Method for Compressible Two-phase Displacement Problem

    Institute of Scientific and Technical Information of China (English)

    Yi-rang Yuan

    2004-01-01

    For compressible two-phase displacement problem,the modified upwind finite difference fractional steps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplication of difference operators,decomposition of high order difference operators,the theory of prior estimates and techniques are used.Optimal order estimates in L 2 norm are derived for the error in the approximate solution.This method has already been applied to the numerical simulation of seawater intrusion and migration-accumulation of oil resources.

  16. Modelling migration in multilayer systems by a finite difference method: the spherical symmetry case

    Science.gov (United States)

    Hojbotǎ, C. I.; Toşa, V.; Mercea, P. V.

    2013-08-01

    We present a numerical model based on finite differences to solve the problem of chemical impurity migration within a multilayer spherical system. Migration here means diffusion of chemical species in conditions of concentration partitioning at layer interfaces due to different solubilities of the migrant in different layers. We detail here the numerical model and discuss the results of its implementation. To validate the method we compare it with cases where an analytic solution exists. We also present an application of our model to a practical problem in which we compute the migration of caprolactam from the packaging multilayer foil into the food.

  17. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Berirao, L [DIPARTMENTO DI MATERMATICA

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  18. Mimetic finite difference method for the stokes problem on polygonal meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  19. Polarization effects on spectra of spherical core/shell nanostructures: Perturbation theory against finite difference approach

    Energy Technology Data Exchange (ETDEWEB)

    Ibral, Asmaa [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Zouitine, Asmaa [Département de Physique, Ecole Nationale Supérieure d' Enseignement Technique, Université Mohammed V Souissi, B. P. 6207 Rabat-Instituts, Rabat, Royaume du Maroc (Morocco); Assaid, El Mahdi, E-mail: eassaid@yahoo.fr [Equipe d' Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); Laboratoire d' Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida principale, El Jadida, Royaume du Maroc (Morocco); and others

    2015-02-01

    Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image–charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.

  20. Experiments with explicit filtering for LES using a finite-difference method

    Science.gov (United States)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture

  1. 3D finite-difference modeling algorithm and anomaly features of ZTEM

    Science.gov (United States)

    Wang, Tao; Tan, Han-Dong; Li, Zhi-Qiang; Wang, Kun-Peng; Hu, Zhi-Ming; Zhang, Xing-Dong

    2016-09-01

    The Z-Axis tipper electromagnetic (ZTEM) technique is based on a frequency-domain airborne electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.

  2. Non-Reflecting Regions for Finite Difference Methods in Modeling of Elastic Wave Propagation in Plates

    Science.gov (United States)

    Kishoni, Doron; Taasan, Shlomo

    1994-01-01

    Solution of the wave equation using techniques such as finite difference or finite element methods can model elastic wave propagation in solids. This requires mapping the physical geometry into a computational domain whose size is governed by the size of the physical domain of interest and by the required resolution. This computational domain, in turn, dictates the computer memory requirements as well as the calculation time. Quite often, the physical region of interest is only a part of the whole physical body, and does not necessarily include all the physical boundaries. Reduction of the calculation domain requires positioning an artificial boundary or region where a physical boundary does not exist. It is important however that such a boundary, or region, will not affect the internal domain, i.e., it should not cause reflections that propagate back into the material. This paper concentrates on the issue of constructing such a boundary region.

  3. A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Pongrus Phuangphoo

    2013-01-01

    Full Text Available We introduce a modified Mann’s iterative procedure by using the hybrid projection method for solving the common solution of the system of equilibrium problems for a finite family of bifunctions satisfying certain condition, the common solution of fixed point problems for two finite families of quasi-ϕ-nonexpansive mappings, and the common solution of variational inequality problems for a finite family of continuous monotone mappings in a uniformly smooth and strictly convex real Banach space. Then, we prove a strong convergence theorem of the iterative procedure generated by some mild conditions. Our result presented in this paper improves and generalizes some well-known results in the literature.

  4. A study of the efficiency of various Navier-Stokes solvers. [finite difference methods

    Science.gov (United States)

    Atias, M.; Wolfshtein, M.; Israeli, M.

    1975-01-01

    A comparative study of the efficiency of some finite difference methods for the solution of the Navier-Stokes equations was conducted. The study was restricted to the two-dimensional steady, uniform property vorticity-stream function equations. The comparisons were drawn by recording the CPU time required to obtain a solution as well as the accuracy of this solution using five numerical methods: central differences, first order upwind differences, second order upwind differences, exponential differences, and an ADI solution of the central difference equations. Solutions were obtained for two test cases: a recirculating eddy inside a square cavity with a moving top, and an impinging jet flow. The results show that whenever the central difference method is stable it generates results with a given accuracy for less CPU time than any other method.

  5. Interval finite difference method for steady-state temperature field prediction with interval parameters

    Science.gov (United States)

    Wang, Chong; Qiu, Zhi-Ping

    2014-04-01

    A new numerical technique named interval finite difference method is proposed for the steady-state temperature field prediction with uncertainties in both physical parameters and boundary conditions. Interval variables are used to quantitatively describe the uncertain parameters with limited information. Based on different Taylor and Neumann series, two kinds of parameter perturbation methods are presented to approximately yield the ranges of the uncertain temperature field. By comparing the results with traditional Monte Carlo simulation, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method for solving steady-state heat conduction problem with uncertain-but-bounded parameters. [Figure not available: see fulltext.

  6. Dispersion and stability analysis for a finite difference beam propagation method.

    Science.gov (United States)

    de-Oliva-Rubio, J; Molina-Fernández, I; Godoy-Rubio, R

    2008-06-09

    Applying continuous and discrete transformation techniques, new analytical expressions to calculate dispersion and stability of a Runge- Kutta Finite Difference Beam Propagation Method (RK-FDBPM) are obtained. These expressions give immediate insight about the discretization errors introduced by the numerical method in the plane-wave spectrum domain. From these expressions a novel strategy to adequately set the mesh steps sizes of the RK-FDBPM is presented. Assessment of the method is performed by studying the propagation in several linear and nonlinear photonic devices for different spatial discretizations.

  7. Flux vector splitting of the inviscid equations with application to finite difference methods

    Science.gov (United States)

    Steger, J. L.; Warming, R. F.

    1979-01-01

    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.

  8. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods

    Science.gov (United States)

    Steger, J. L.; Warming, R. F.

    1981-01-01

    The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.

  9. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    Science.gov (United States)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  10. High-order finite difference methods for earthquake rupture dynamics in complex geometries

    Science.gov (United States)

    O'Reilly, O.; Kozdon, J. E.; Dunham, E. M.; Nordström, J.

    2010-12-01

    In this work we continue our development of high-order summation-by-parts (SBP) finite difference methods for earthquake rupture dynamics. SBP methods use centered spatial differences in the interior and one-sided differences near the boundary. The transition to one-sided differences is done in a particular manner that permits one to provably maintain stability and accuracy. In many methods the boundary conditions are strongly enforced by modifying the difference operator at the boundary so that the solution there exactly satisfies the boundary condition. Though conceptually straightforward, this approach can introduce instabilities. In contrast, when boundary conditions are enforced weakly by adding a penalty term to the spatial discretization, it is possible to prove that the method is strictly stable, dissipating energy slightly faster than the continuous problem (with the additional dissipation vanishing under grid refinement). Another benefit of SBP operators is their built-in inner product which, if correctly constructed, can be interpreted as a quadrature operator. Thus, important integrated quantities such as the total mechanical energy in the system, the energy dissipation rate along faults, and the radiated energy flux through exterior boundaries can be rigorously calculated. These numerically integrated quantities converge to their true values with the same order of accuracy as the difference approximation. Though standard SBP methods are based on uniform Cartesian grids, it is possible to use the methods for problems with nonplanar faults, free surface topography, and branching faults through the use of coordinate transforms. Recently, it has also been shown how second-order SBP methods can be extended to unstructured grids. Due to the SBP character of both the finite difference and node-centered finite volume method they can be used together in a stable and accurate way. Inclusion of these techniques will be important for problems that have regions

  11. Hybrid Finite-Discrete Element Simulation of the EDZ Formation and Mechanical Sealing Process Around a Microtunnel in Opalinus Clay

    Science.gov (United States)

    Lisjak, Andrea; Tatone, Bryan S. A.; Mahabadi, Omid K.; Grasselli, Giovanni; Marschall, Paul; Lanyon, George W.; Vaissière, Rémi de la; Shao, Hua; Leung, Helen; Nussbaum, Christophe

    2016-05-01

    The analysis and prediction of the rock mass disturbance around underground excavations are critical components of the performance and safety assessment of deep geological repositories for nuclear waste. In the short term, an excavation damaged zone (EDZ) tends to develop due to the redistribution of stresses around the underground openings. The EDZ is associated with an increase in hydraulic conductivity of several orders of magnitude. In argillaceous rocks, sealing mechanisms ultimately lead to a partial reduction in the effective hydraulic conductivity of the EDZ with time. The goal of this study is to strengthen the understanding of the phenomena involved in the EDZ formation and sealing in Opalinus Clay, an indurated claystone currently being assessed as a host rock for a geological repository in Switzerland. To achieve this goal, hybrid finite-discrete element method (FDEM) simulations are performed. With its explicit consideration of fracturing processes, FDEM modeling is applied to the HG-A experiment, an in situ test carried out at the Mont Terri underground rock laboratory to investigate the hydro-mechanical response of a backfilled and sealed microtunnel. A quantitative simulation of the EDZ formation process around the microtunnel is first carried out, and the numerical results are compared with field observations. Then, the re-compression of the EDZ under the effect of a purely mechanical loading, capturing the increase of swelling pressure from the backfill onto the rock, is considered. The simulation results highlight distinctive rock failure kinematics due to the bedded structure of the rock mass. Also, fracture termination is simulated at the intersection with a pre-existing discontinuity, representing a fault plane oblique to the bedding orientation. Simulation of the EDZ re-compression indicates an overall reduction of the total fracture area as a function of the applied pressure, with locations of ineffective sealing associated with self

  12. High-performance finite-difference time-domain simulations of C-Mod and ITER RF antennas

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Thomas G., E-mail: tgjenkins@txcorp.com; Smithe, David N., E-mail: smithe@txcorp.com [Tech-X Corporation, 5621 Arapahoe Avenue Suite A, Boulder, CO 80303 (United States)

    2015-12-10

    Finite-difference time-domain methods have, in recent years, developed powerful capabilities for modeling realistic ICRF behavior in fusion plasmas [1, 2, 3, 4]. When coupled with the power of modern high-performance computing platforms, such techniques allow the behavior of antenna near and far fields, and the flow of RF power, to be studied in realistic experimental scenarios at previously inaccessible levels of resolution. In this talk, we present results and 3D animations from high-performance FDTD simulations on the Titan Cray XK7 supercomputer, modeling both Alcator C-Mod’s field-aligned ICRF antenna and the ITER antenna module. Much of this work focuses on scans over edge density, and tailored edge density profiles, to study dispersion and the physics of slow wave excitation in the immediate vicinity of the antenna hardware and SOL. An understanding of the role of the lower-hybrid resonance in low-density scenarios is emerging, and possible implications of this for the NSTX launcher and power balance are also discussed. In addition, we discuss ongoing work centered on using these simulations to estimate sputtering and impurity production, as driven by the self-consistent sheath potentials at antenna surfaces.

  13. Rear impact responses of different sized adult Hybrid III dummies.

    Science.gov (United States)

    DeRosia, John; Yoganandan, Narayan; Pintar, Frank A

    2004-03-01

    Rear impact sled tests were conducted using 5th, 50th, and 95th percentile Hybrid III dummies to evaluate proposed injury criteria. Different head restraint height (750, 800 mm) and backset (0, 50, 100 mm) positions were used to determine axial and shear forces, bending moments, and injury criteria (NIC, N(ij), and N(km)). The time sequence to attain each parameter was also determined. Three events were identified in the response. Event I was coincident with the maximum rearward motion of the torso, Event II occurred at the time of the peak upper neck flexion moment, and Event III occurred at the time of maximum rearward motion of the head. Parameters such as backset, head restraint height, seat-head restraint interaction, and anthropometry affected impact responses. Head rotations increased with increasing backset and increasing head restraint height. However, N(ij) and N(km) did not exhibit such clear trends. The 50th percentile dummy responded with consistent injury criteria values (e.g., the magnitude of the injury criteria increased with backset increase or head restraint height decrease). However, the 5th and 95th percentile dummies did not demonstrate such trends. These findings underscore the need to include subject anthropometry in addition to seat and head restraint characteristics for better assessment of rear impact responses.

  14. Numerical solution of the one-dimensional Burgers’ equation: Implicit and fully implicit exponential finite difference methods

    Indian Academy of Sciences (India)

    Bilge Inan; Ahmet Refik Bahadir

    2013-10-01

    This paper describes two new techniques which give improved exponential finite difference solutions of Burgers’ equation. These techniques are called implicit exponential finite difference method and fully implicit exponential finite difference method for solving Burgers’ equation. As the Burgers’ equation is nonlinear, the scheme leads to a system of nonlinear equations. At each time-step, Newton’s method is used to solve this nonlinear system. The results are compared with exact values and it is clearly shown that results obtained using both the methods are precise and reliable.

  15. Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking.

    Science.gov (United States)

    Pérez-Través, Laura; Lopes, Christian A; Barrio, Eladio; Querol, Amparo

    2012-05-15

    Several methods based on recombinant DNA techniques have been proposed for yeast strain improvement; however, the most relevant oenological traits depend on a multitude of loci, making these techniques difficult to apply. In this way, hybridization techniques involving two complete genomes became interesting. Natural hybrid strains between different Saccharomyces species have been detected in diverse fermented beverages including wine, cider and beer. These hybrids seem to be better adapted to fluctuating situations typically observed in fermentations due to the acquisition of particular physiological properties of both parental strains. In this work we evaluated the usefulness of three different hybridization methods: spore to spore mating, rare-mating and protoplast fusion for the generation of intra- and inter-specific stable hybrids, being the first report about the comparison of different methods to obtain artificial hybrids to be used in fermentations. Spore to spore mating is an easy but time-consuming method; hybrids generated with this technique could lack some of the industrially relevant traits present in the parental strains because of the segregation occurred during meiosis and spore generation prior to hybridization. Hybrids obtained by protoplast fusion get the complete information of both parents but they are currently considered as genetically modified organisms (GMOs). Finally, hybrids obtained by rare-mating are easily obtained by the optimized methodology described in this work, they originally contain a complete set of chromosomes of both parents and they are not considered as GMOs. Hybrids obtained by means of the three methodological approaches showed a high genetic variability; however, a loss of genetic material was detected in most of them. Based on these results, it became evident that a last crucial aspect to be considered in every hybridization program is the genetic stabilization of recently generated hybrids that guarantee its

  16. The formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance.

    Science.gov (United States)

    Liu, Shaojun; Qin, Qinbo; Xiao, Jun; Lu, Wenting; Shen, Jiamin; Li, Wei; Liu, Jifang; Duan, Wei; Zhang, Chun; Tao, Min; Zhao, Rurong; Yan, Jinpeng; Liu, Yun

    2007-06-01

    This study provides genetic evidences at the chromosome, DNA content, DNA fragment and sequence, and morphological levels to support the successful establishment of the polyploid hybrids of red crucian carp x blunt snout bream, which belonged to a different subfamily of fish (Cyprininae subfamily and Cultrinae subfamily) in the catalog. We successfully obtained the sterile triploid hybrids and bisexual fertile tetraploid hybrids of red crucian carp (RCC) (female symbol) x blunt snout bream (BSB) (male symbol) as well as their pentaploid hybrids. The triploid hybrids possessed 124 chromosomes with two sets from RCC and one set from BSB; the tetraploid hybrids had 148 chromosomes with two sets from RCC and two sets from BSB. The females of tetraploid hybrids produced unreduced tetraploid eggs that were fertilized with the haploid sperm of BSB to generate pentaploid hybrids with 172 chromosomes with three sets from BSB and two sets from RCC. The ploidy levels of triploid, tetraploid, and pentaploid hybrids were confirmed by counting chromosomal number, forming chromosomal karyotype, and measuring DNA content and erythrocyte nuclear volume. The similar and different DNA fragments were PCR amplified and sequenced in triploid, tetraploid hybrids, and their parents, indicating their molecular genetic relationship and genetic markers. In addition, this study also presents results about the phenotypes and feeding habits of polyploid hybrids and discusses the formation mechanism of the polyploid hybrids. It is the first report on the formation of the triploid, tetraploid, and pentaploid hybrids by crossing parents with a different chromosome number in vertebrates. The formation of the polyploid hybrids is potentially interesting in both evolution and fish genetic breeding.

  17. A spectral Finite Difference Analysis of Natural Convection in a Rectangular Equilateral Triangle Cavity

    Institute of Scientific and Technical Information of China (English)

    Yoshihiromochimaru

    2000-01-01

    A steady-state two-dimensional natural convection in a rectangular equlateral triangle cavity is analyzed numercally,using a spectral finite difference scheme,where a conformal mapping coordinate system is adopted with a unit circle for the boundary.Vorticity-stream function formulation is used in conjunction with an energy equation.Time marching algorithm in a diagonal dominant form under a Fourier series decomposition is used to give a steady-state field for a mixed(Neumann and Dirichlet) thermal boundary condition even at a Grashof number of 106.

  18. Accuracy of spectral and finite difference schemes in 2D advection problems

    DEFF Research Database (Denmark)

    Naulin, V.; Nielsen, A.H.

    2003-01-01

    In this paper we investigate the accuracy of two numerical procedures commonly used to solve 2D advection problems: spectral and finite difference (FD) schemes. These schemes are widely used, simulating, e.g., neutral and plasma flows. FD schemes have long been considered fast, relatively easy...... that the accuracy of FD schemes can be significantly improved if one is careful in choosing an appropriate FD scheme that reflects conservation properties of the nonlinear terms and in setting up the grid in accordance with the problem....

  19. High-order Finite Difference Solution of Euler Equations for Nonlinear Water Waves

    DEFF Research Database (Denmark)

    Christiansen, Torben Robert Bilgrav; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2012-01-01

    The incompressible Euler equations are solved with a free surface, the position of which is captured by applying an Eulerian kinematic boundary condition. The solution strategy follows that of [1, 2], applying a coordinate-transformation to obtain a time-constant spatial computational domain which...... with a two-dimensional implementation of the model are compared with highly accurate stream function solutions to the nonlinear wave problem, which show the approximately expected convergence rates and a clear advantage of using high-order finite difference schemes in combination with the Euler equations....

  20. Stability analysis of finite difference schemes for quantum mechanical equations of motion

    Science.gov (United States)

    Chattaraj, P. K.; Deb, B. M.; Koneru, S. Rao

    1987-10-01

    For a pdf involving both space and time variables, stability criteria are presently shown to change drastically when the equation contains i, as in the quantum-mechanical equations of motion. It is further noted that the stability of finite difference schemes for quantum-mechanical equations of motion depends on both spatial and temporal zoning. It is possible to compare a free particle Green's function to the solution of a simple diffusion equation, and the quantum-mechanical motion of a free particle to Fresnel diffraction in optics.

  1. Slat Noise Predictions Using Higher-Order Finite-Difference Methods on Overset Grids

    Science.gov (United States)

    Housman, Jeffrey A.; Kiris, Cetin

    2016-01-01

    Computational aeroacoustic simulations using the structured overset grid approach and higher-order finite difference methods within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework are presented for slat noise predictions. The simulations are part of a collaborative study comparing noise generation mechanisms between a conventional slat and a Krueger leading edge flap. Simulation results are compared with experimental data acquired during an aeroacoustic test in the NASA Langley Quiet Flow Facility. Details of the structured overset grid, numerical discretization, and turbulence model are provided.

  2. Effective optical response of silicon to sunlight in the finite-difference time-domain method.

    Science.gov (United States)

    Deinega, Alexei; John, Sajeev

    2012-01-01

    The frequency dependent dielectric permittivity of dispersive materials is commonly modeled as a rational polynomial based on multiple Debye, Drude, or Lorentz terms in the finite-difference time-domain (FDTD) method. We identify a simple effective model in which dielectric polarization depends both on the electric field and its first time derivative. This enables nearly exact FDTD simulation of light propagation and absorption in silicon in the spectral range of 300-1000 nm. Numerical precision of our model is demonstrated for Mie scattering from a silicon sphere and solar absorption in a silicon nanowire photonic crystal.

  3. Memory cost of absorbing conditions for the finite-difference time-domain method.

    Science.gov (United States)

    Chobeau, Pierre; Savioja, Lauri

    2016-07-01

    Three absorbing layers are investigated using standard rectilinear finite-difference schemes. The perfectly matched layer (PML) is compared with basic lossy layers terminated by two types of absorbing boundary conditions, all simulated using equivalent memory consumption. Lossy layers present the advantage of being scalar schemes, whereas the PML relies on a staggered scheme where both velocity and pressure are split. Although the PML gives the lowest reflection magnitudes over all frequencies and incidence angles, the most efficient lossy layer gives reflection magnitudes of the same order as the PML from mid- to high-frequency and for restricted incidence angles.

  4. A finite difference method for estimating second order parameter sensitivities of discrete stochastic chemical reaction networks.

    Science.gov (United States)

    Wolf, Elizabeth Skubak; Anderson, David F

    2012-12-14

    We present an efficient finite difference method for the approximation of second derivatives, with respect to system parameters, of expectations for a class of discrete stochastic chemical reaction networks. The method uses a coupling of the perturbed processes that yields a much lower variance than existing methods, thereby drastically lowering the computational complexity required to solve a given problem. Further, the method is simple to implement and will also prove useful in any setting in which continuous time Markov chains are used to model dynamics, such as population processes. We expect the new method to be useful in the context of optimization algorithms that require knowledge of the Hessian.

  5. Analysis of oscillational instabilities in acoustic levitation using the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2011-01-01

    The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....

  6. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    Science.gov (United States)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  7. Finite-difference time-domain analysis of time-resolved terahertz spectroscopy experiments

    DEFF Research Database (Denmark)

    Larsen, Casper; Cooke, David G.; Jepsen, Peter Uhd

    2011-01-01

    In this paper we report on the numerical analysis of a time-resolved terahertz (THz) spectroscopy experiment using a modified finite-difference time-domain method. Using this method, we show that ultrafast carrier dynamics can be extracted with a time resolution smaller than the duration of the THz...... probe pulse and can be determined solely by the pump pulse duration. Our method is found to reproduce complicated two-dimensional transient conductivity maps exceedingly well, demonstrating the power of the time-domain numerical method for extracting ultrafast and dynamic transport parameters from time...

  8. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...

  9. Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation

    Science.gov (United States)

    Kouatchou, Jules

    1999-01-01

    In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.

  10. On the convergence of certain finite-difference schemes by an inverse-matrix method

    Science.gov (United States)

    Steger, J. L.; Warming, R. F.

    1975-01-01

    The inverse-matrix method of analyzing the convergence of the solution of a given system of finite-difference equations to the solution of the corresponding system of partial-differential equations is discussed and generalized. The convergence properties of a time- and space-centered differencing of the diffusion equation are analyzed as well as a staggered grid differencing of the Cauchy-Riemann equations. These two schemes are significant since they serve as simplified model algorithms for two recently developed methods used to calculate nonlinear aerodynamic flows.

  11. High order finite difference and multigrid methods for spatially evolving instability in a planar channel

    Science.gov (United States)

    Liu, C.; Liu, Z.

    1993-01-01

    The fourth-order finite-difference scheme with fully implicit time-marching presently used to computationally study the spatial instability of planar Poiseuille flow incorporates a novel treatment for outflow boundary conditions that renders the buffer area as short as one wavelength. A semicoarsening multigrid method accelerates convergence for the implicit scheme at each time step; a line-distributive relaxation is developed as a robust fast solver that is efficient for anisotropic grids. Computational cost is no greater than that of explicit schemes, and excellent agreement with linear theory is obtained.

  12. Numerical Effectiveness of Different Formulations of the Rigid Finite Element Method

    Directory of Open Access Journals (Sweden)

    Adamiec-Wójcik I.

    2014-08-01

    Full Text Available The paper presents an application of different formulations of the rigid finite element method (RFEM to dynamic analysis of flexible beams. We discuss numerical effectiveness of the classical RFEM and an alternative approach in which continuity of displacements is preserved by means of constraint equations. The analysis is carried out for a benchmark problem of the spin-up motion in planar and spatial cases. Torsion is omitted for numerical simulations and two cases of the new approach are considered. The results obtained by means of these methods are compared with the results obtained using a nonlinear two-node superelement

  13. ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT

    Institute of Scientific and Technical Information of China (English)

    Zhengfu Xu; Chi-Wang Shu

    2006-01-01

    In this paper we further explore and apply our recent anti-diffusive flux corrected high order finite difference WENO schemes for conservation laws [18]to compute the Saint-Venant system of shallow water equations with pollutant propagation, which is described by a transport equation. The motivation is that the high order anti-diffusive WENOscheme for conservation laws produces sharp resolution of contact discontinuities while keeping high order accuracy for the approximation in the smooth region of the solution.The application of the anti-diffusive high order WENO scheme to the Saint-Venant system of shallow water equations with transport of pollutant achieves high resolution

  14. WONDY V: a one-dimensional finite-difference wave-propagation code

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, M.E.; Lawrence, R.J.

    1982-06-01

    WONDY V solves the finite difference analogs to the Lagrangian equations of motion in one spatial dimension (planar, cylindrical, or spherical). Simulations of explosive detonation, energy deposition, plate impact, and dynamic fracture are possible, using a variety of existing material models. In addition, WONDY has proven to be a powerful tool in the evaluation of new constitutive models. A preprocessor is available to allocate storage arrays commensurate with problem size, and automatic rezoning may be employed to improve resolution. This document provides a description of the equations solved, available material models, operating instructions, and sample problems.

  15. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    Energy Technology Data Exchange (ETDEWEB)

    Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  16. Finite-difference time-domain analysis of light propagation in cholesteric liquid crystalline droplet array

    Science.gov (United States)

    Yamamoto, Kaho; Iwai, Yosuke; Uchida, Yoshiaki; Nishiyama, Norikazu

    2016-08-01

    We numerically analyzed the light propagation in cholesteric liquid crystalline (CLC) droplet array by the finite-difference time-domain (FDTD) method. The FDTD method successfully reproduced the experimental light path observed in the complicated photonic structure of the CLC droplet array more accurately than the analysis of CLC droplets by geometric optics with Bragg condition, and this method help us understand the polarization of the propagating light waves. The FDTD method holds great promise for the design of various photonic devices composed of curved photonic materials like CLC droplets and microcapsules.

  17. Morse taper implants at different bone levels: a finite element analysis of stress distribution

    OpenAIRE

    Toniollo, Marcelo Bighetti; Macedo, Ana Paula; Palhares, Daniel; Calefi, Paulo Linares; Sorgini, Danilo Balero; Mattos, Maria da Gloria Chiarello de

    2012-01-01

    AIM: To explore the biomechanical effects of the different implantation bone levels of Morse taper implants, employing a finite element analysis (FEA). METHODS: Dental implants (TitamaxCM) with 4x13 mm and 4x11 mm, and their respective abutments with 3.5 mm height, simulating a screwed premolar metal-ceramic crown, had their design performed using the software AnsysWorkbench 10.0. They were positioned in bone blocks, covered by 2.5 mm thickness of mucosa. The cortical bone was designed with 1...

  18. Calculating modes of quantum wire systems using a finite difference technique

    Directory of Open Access Journals (Sweden)

    T Mardani

    2013-03-01

    Full Text Available  In this paper, the Schrodinger equation for a quantum wire is solved using a finite difference approach. A new aspect in this work is plotting wave function on cross section of rectangular cross-sectional wire in two dimensions, periodically. It is found that the correct eigen energies occur when wave functions have a complete symmetry. If the value of eigen energy has a small increase or decrease in neighborhood of the correct energy the symmetry will be destroyed and aperturbation value at the first of wave function will be observed. In addition, the demand on computer memory varies linearly with the size of the system under investigation.

  19. Performance evaluation of explicit finite difference algorithms with varying amounts of computational and memory intensity

    CERN Document Server

    Jammy, Satya P; Sandham, Neil D

    2016-01-01

    Future architectures designed to deliver exascale performance motivate the need for novel algorithmic changes in order to fully exploit their capabilities. In this paper, the performance of several numerical algorithms, characterised by varying degrees of memory and computational intensity, are evaluated in the context of finite difference methods for fluid dynamics problems. It is shown that, by storing some of the evaluated derivatives as single thread- or process-local variables in memory, or recomputing the derivatives on-the-fly, a speed-up of ~2 can be obtained compared to traditional algorithms that store all derivatives in global arrays.

  20. Scattering analysis of periodic structures using finite-difference time-domain

    CERN Document Server

    ElMahgoub, Khaled; Elsherbeni, Atef Z

    2012-01-01

    Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor

  1. Finite difference schemes for a nonlinear black-scholes model with transaction cost and volatility risk

    DEFF Research Database (Denmark)

    Mashayekhi, Sima; Hugger, Jens

    2015-01-01

    Several nonlinear Black-Scholes models have been proposed to take transaction cost, large investor performance and illiquid markets into account. One of the most comprehensive models introduced by Barles and Soner in [4] considers transaction cost in the hedging strategy and risk from an illiquid...... market. In this paper, we compare several finite difference methods for the solution of this model with respect to precision and order of convergence within a computationally feasible domain allowing at most 200 space steps and 10000 time steps. We conclude that standard explicit Euler comes out...

  2. Characteristic finite difference method and application for moving boundary value problem of coupled system

    Institute of Scientific and Technical Information of China (English)

    YUAN Yi-rang; LI Chang-feng; YANG Cheng-shun; HAN Yu-ji

    2008-01-01

    The coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. A kind of characteristic finite difference schemes is put forward, from which optimal order estimates in l2 norm are derived for the error in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, the model numerical method and software development.

  3. A novel incompressible finite-difference lattice Boltzmann equation for particle-laden flow

    Institute of Scientific and Technical Information of China (English)

    Sheng Chen; Zhaohui Liu; Baochang Shi; Zhu He; Chuguang Zheng

    2005-01-01

    In this paper, we propose a novel incompressible finite-difference lattice Boltzmann Equation (FDLBE). Because source terms that reflect the interaction between phases can be accurately described, the new model is suitable for simulating two-way coupling incompressible multiphase flow.The 2-D particle-laden flow over a backward-facing step is chosen as a test case to validate the present method. Favorable results are obtained and the present scheme is shown to have good prospects in practical applications.

  4. Finite element simulation for mechanical response of surface mounted solder joints under different temperature cycling

    Institute of Scientific and Technical Information of China (English)

    马鑫; 钱乙余

    2001-01-01

    Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.

  5. Total Field and Scattered Field Technique for Fourth-Order Symplectic Finite Difference Time Domain Method

    Institute of Scientific and Technical Information of China (English)

    SHA Wei; HUANG Zhi-Xiang; WU Xian-Liang; CHEN Ming-Sheng

    2006-01-01

    Using symplectic integrator propagator, a three-dimensional fourth-order symplectic finite difference time domain (SFDTD) method is studied, which is of the fourth order in both the time and space domains. The method is nondissipative and can save more memory compared with the traditional FDTD method. The total field and scattered field (TF-SF) technique is derived for the SFDTD method to provide the incident wave source conditions. The bistatic radar cross section (RCS) of a dielectric sphere is computed by using the SFDTD method for the first time. Numerical results suggest that the SFDTD algorithm acquires better stability and accuracy compared with the traditional FDTD method.

  6. An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems.

    Science.gov (United States)

    Morshed, Monjur; Ingalls, Brian; Ilie, Silvana

    2017-01-01

    Sensitivity analysis characterizes the dependence of a model's behaviour on system parameters. It is a critical tool in the formulation, characterization, and verification of models of biochemical reaction networks, for which confident estimates of parameter values are often lacking. In this paper, we propose a novel method for sensitivity analysis of discrete stochastic models of biochemical reaction systems whose dynamics occur over a range of timescales. This method combines finite-difference approximations and adaptive tau-leaping strategies to efficiently estimate parametric sensitivities for stiff stochastic biochemical kinetics models, with negligible loss in accuracy compared with previously published approaches. We analyze several models of interest to illustrate the advantages of our method.

  7. Characteristic Finite Difference Methods for Moving Boundary Value Problem of Numerical Simulation of Oil Deposit

    Institute of Scientific and Technical Information of China (English)

    袁益让

    1994-01-01

    The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary value problem. This paper puts forward a kind of characteristic finite difference schemes, and derives from them optimal order estimates in l~2 norm for the error in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, for model numerical method and for software development.

  8. A Finite Difference Method for Determining Interdiffusivity of Aluminide Coating Formed on Superalloy

    Institute of Scientific and Technical Information of China (English)

    Hua WEI; Xiaofeng SUN; Qi ZHENG; Guichen HOU; Hengrong GUAN; Zhuangqi HU

    2004-01-01

    A numerical method has been developed to extract the composition-dependent interdiffusivity from the concentration profiles in the aluminide coating prepared by pack cementation. The procedure is based on the classic finite difference method (FDM). In order to simplify the model, effect of some alloying elements on interdiffusivity can be negligible.Calculated results indicate the interdiffusivity in aluminide coating strongly depends on the composition and give the formulas used to calculate interdiffusivity at 850, 950 and 1050℃. The effect on interdiffusivity is briefly discussed.

  9. A comparison of finite difference methods for solving Laplace's equation on curvilinear coordinate systems. M.S. Thesis

    Science.gov (United States)

    Mccoy, M. J.

    1980-01-01

    Various finite difference techniques used to solve Laplace's equation are compared. Curvilinear coordinate systems are used on two dimensional regions with irregular boundaries, specifically, regions around circles and airfoils. Truncation errors are analyzed for three different finite difference methods. The false boundary method and two point and three point extrapolation schemes, used when having the Neumann boundary condition are considered and the effects of spacing and nonorthogonality in the coordinate systems are studied.

  10. Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations

    Science.gov (United States)

    Flyer, Natasha; Barnett, Gregory A.; Wicker, Louis J.

    2016-07-01

    Polynomials are used together with polyharmonic spline (PHS) radial basis functions (RBFs) to create local RBF-finite-difference (RBF-FD) weights on different node layouts for spatial discretizations that can be viewed as enhancements of the classical finite differences (FD). The presented method replicates the convergence properties of FD but for arbitrary node layouts. It is tested on the 2D compressible Navier-Stokes equations at low Mach number, relevant to atmospheric flows. Test cases are taken from the numerical weather prediction community and solved on bounded domains. Thus, attention is given on how to handle boundaries with the RBF-FD method, as well as a novel implementation for hyperviscosity. Comparisons are done on Cartesian, hexagonal, and quasi-uniform node layouts. Consideration and guidelines are given on PHS order, polynomial degree and stencil size. The main advantages of the present method are: 1) capturing the basic physics of the problem surprisingly well, even at very coarse resolutions, 2) high-order accuracy without the need of tuning a shape parameter, and 3) the inclusion of polynomials eliminates stagnation (saturation) errors. A MATLAB code is given to calculate the differentiation weights for this novel approach.

  11. Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite-element analysis.

    Science.gov (United States)

    Abdollahi, Amir; Jiang, Zhongwei; Arabshahi, Sayyed Alireza

    2007-12-01

    The mass sensitivity of the piezoelectric surface acoustic wave (SAW) sensors is an important factor in the selection of the best gravimetric sensors for different applications. To determine this value without facing the practical problems and the long theoretical calculation time, we have shown that the mass sensitivity of SAW sensors can be calculated by a simple three-dimensional (3-D) finite-element analysis (FEA) using a commercial finite-element platform. The FEA data are used to calculate the wave propagation speed, surface particle displacements, and wave energy distribution on different cuts of various piezoelectric materials. The results are used to provide a simple method for evaluation of their mass sensitivities. Meanwhile, to calculate more accurate results from FEA data, surface and bulk wave reflection problems are considered in the analyses. In this research, different cuts of lithium niobate, quartz, lithium tantalate, and langasite piezoelectric materials are applied to investigate their acoustic wave properties. Our analyses results for these materials have a good agreement with other researchers' results. Also, the mass sensitivity value for the novel cut of langasite was calculated through these analyses. It was found that its mass sensitivity is higher than that of the conventional Rayleigh mode quartz sensor.

  12. Study on stacking sequence on the flexural properties of basalt/carbon/epoxy hybrid composites using test and finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Lee, J. I.; Rhee, K. Y. [Kyung Hee University, Yongin (Korea, Republic of); Choi, C. R. [ELSOLTEC Inc., Yongin (Korea, Republic of)

    2015-05-15

    Basalt fiber is widely used in various industries and several studies have been carried out to understand the mechanical behavior of basalt fiber reinforced composites. However, few studies have been made to specifically investigate the mechanical properties of basalt/carbon hybrid composites. In this study, the effect of stacking sequence on the flexural properties of carbon/basalt/epoxy hybrid composites was investigated in order to verify the reliability of this composite model. Two types of carbon/basalt/epoxy hybrid composites with a sandwich form were fabricated: basalt skin-carbon core (BSCC) composites and carbon skin-basalt core (CSBC) composites. After fabrication flexural tests and finite element method (FEM) were conducted. FEM results of flexural analysis are compared with experimental results. A FEA analysis model has been successfully developed in order to predict flexural behavior of basalt/carbon/epoxy hybrid composites. The simulation using the FEA model produces a similar flexural strength to that obtained from the experiment. Therefore, the developed FEA model in general will be highly useful for the prediction of stacking sequence of basalt/carbon/ epoxy hybrid composites for several industrial applications.

  13. Biomechanical Evaluation of Different Fixation Methods for Mandibular Anterior Segmental Osteotomy Using Finite Element Analysis, Part One: Superior Repositioning Surgery.

    Science.gov (United States)

    Kilinç, Yeliz; Erkmen, Erkan; Kurt, Ahmet

    2016-01-01

    The aim of the current study was to comparatively evaluate the mechanical behavior of 3 different fixation methods following various amounts of superior repositioning of mandibular anterior segment. In this study, 3 different rigid fixation configurations comprising double right L, double left L, or double I miniplates with monocortical screws were compared under vertical, horizontal, and oblique load conditions by means of finite element analysis. A three-dimensional finite element model of a fully dentate mandible was generated. A 3 and 5 mm superior repositioning of mandibular anterior segmental osteotomy were simulated. Three different finite element models corresponding to different fixation configurations were created for each superior repositioning. The von Mises stress values on fixation appliances and principal maximum stresses (Pmax) on bony structures were predicted by finite element analysis. The results have demonstrated that double right L configuration provides better stability with less stress fields in comparison with other fixation configurations used in this study.

  14. Finite element analysis of stress distribution in four different endodontic post systems in a model canine.

    Science.gov (United States)

    Chen, Aijie; Feng, Xiaoli; Zhang, Yanli; Liu, Ruoyu; Shao, Longquan

    2015-01-01

    To investigate the stress distribution in a maxillary canine restored with each of four different post systems at different levels of alveolar bone loss. Two-dimensional finite element analysis (FEA) was performed by modeling a severely damaged canine with four different post systems: CAD/CAM zirconia, CAD/CAM glass fiber, cast titanium, and cast gold. A force of 100 N was applied to the crown, and the von Mises stresses were obtained. FEA revealed that the CAD/CAM zirconia post system produced the lowest maximum von Mises stress in the dentin layer at 115.8 MPa, while the CAD/CAM glass fiber post produced the highest stress in the dentin at 518.2 MPa. For a severely damaged anterior tooth, a zirconia post system is the best choice while a cast gold post ranks second. The CAD/CAM glass fiber post is least recommended in terms of stress level in the dentin.

  15. A coarse-mesh nodal method-diffusive-mesh finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Joo, H.; Nichols, W.R.

    1994-05-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.

  16. SHALLOW WATER EQUATION SOLUTION IN 2D USING FINITE DIFFERENCE METHOD WITH EXPLICIT SCHEME

    Directory of Open Access Journals (Sweden)

    Nuraini Nuraini

    2017-09-01

    Full Text Available Abstract. Modeling the dynamics of seawater typically uses a shallow water model. The shallow water model is derived from the mass conservation equation and the momentum set into shallow water equations. A two-dimensional shallow water equation alongside the model that is integrated with depth is described in numerical form. This equation can be solved by finite different methods either explicitly or implicitly. In this modeling, the two dimensional shallow water equations are described in discrete form using explicit schemes. Keyword: shallow water equation, finite difference and schema explisit. REFERENSI  1. Bunya, S., Westerink, J. J. dan Yoshimura. 2005. Discontinuous Boundary Implementation for the Shallow Water Equations. Int. J. Numer. Meth. Fluids. 47: 1451-1468. 2. Kampf Jochen. 2009. Ocean Modelling For Beginners. Springer Heidelberg Dordrecht. London New York. 3. Rezolla, L 2011. Numerical Methods for the Solution of Partial Diferential Equations. Trieste. International Schoolfor Advanced Studies. 4. Natakussumah, K. D., Kusuma, S. B. M., Darmawan, H., Adityawan, B. M. Dan  Farid, M. 2007. Pemodelan Hubungan Hujan dan Aliran Permukaan pada Suatu DAS  dengan Metode Beda Hingga. ITB Sain dan Tek. 39: 97-123. 5. Casulli, V. dan Walters, A. R. 2000. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Meth. Fluids. 32: 331-348. 6. Triatmodjo, B. 2002. Metode Numerik  Beta Offset. Yogyakarta.

  17. Comparison of finite difference based methods to obtain sensitivities of stochastic chemical kinetic models.

    Science.gov (United States)

    Srivastava, Rishi; Anderson, David F; Rawlings, James B

    2013-02-21

    Sensitivity analysis is a powerful tool in determining parameters to which the system output is most responsive, in assessing robustness of the system to extreme circumstances or unusual environmental conditions, in identifying rate limiting pathways as a candidate for drug delivery, and in parameter estimation for calculating the Hessian of the objective function. Anderson [SIAM J. Numer. Anal. 50, 2237 (2012)] shows the advantages of the newly developed coupled finite difference (CFD) estimator over the common reaction path (CRP) [M. Rathinam, P. W. Sheppard, and M. Khammash, J. Chem. Phys. 132, 034103 (2010)] estimator. In this paper, we demonstrate the superiority of the CFD estimator over the common random number (CRN) estimator in a number of scenarios not considered previously in the literature, including the sensitivity of a negative log likelihood function for parameter estimation, the sensitivity of being in a rare state, and a sensitivity with fast fluctuating species. In all examples considered, the superiority of CFD over CRN is demonstrated. We also provide an example in which the CRN method is superior to the CRP method, something not previously observed in the literature. These examples, along with Anderson's results, lead to the conclusion that CFD is currently the best estimator in the class of finite difference estimators of stochastic chemical kinetic models.

  18. Finite difference methods for option pricing under Lévy processes: Wiener-Hopf factorization approach.

    Science.gov (United States)

    Kudryavtsev, Oleg

    2013-01-01

    In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence of linear algebraic systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic interpretation based on the infinitely divisible distributions theory to the Laurent operators in the correspondent factorization identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal matrix. However, our method is more accurate. We support the advantage of the new method in terms of accuracy and convergence by using numerical experiments.

  19. DNS of Sheared Particulate Flows with a 3D Explicit Finite-Difference Scheme

    Science.gov (United States)

    Perrin, Andrew; Hu, Howard

    2007-11-01

    A 3D explicit finite-difference code for direct simulation of the motion of solid particulates in fluids has been developed, and a periodic boundary condition implemented to study the effective viscosity of suspensions in shear. The code enforces the no-slip condition on the surface of spherical particles in a uniform Cartesian grid with a special particle boundary condition based on matching the Stokes flow solutions next to the particle surface with a numerical solution away from it. The method proceeds by approximating the flow next to the particle surface as a Stokes flow in the particle's local coordinates, which is then matched to the finite difference update in the bulk fluid on a ``cage'' of grid points near the particle surface. (The boundary condition is related to the PHYSALIS method (2003), but modified for explicit schemes and with an iterative process removed.) Advantages of the method include superior accuracy of the scheme on a relatively coarse grid for intermediate particle Reynolds numbers, ease of implementation, and the elimination of the need to track the particle surface. For the sheared suspension, the effects of fluid and solid inertia and solid volume fraction on effective viscosity at moderate particle Reynolds numbers and concentrated suspensions will be discussed.

  20. Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation

    Science.gov (United States)

    Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing

    2016-09-01

    Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a trade-off between accuracy and computational costs to incorporate Q into 2-D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second order in time and fourth order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.

  1. SEISMIC PROPAGATION SIMULATION IN COMPLEX MEDIA WITH NON-RECTANGULAR IRREGULAR-GRID FINITE-DIFFERENCE

    Institute of Scientific and Technical Information of China (English)

    SUN Weitao; YANG Huizhu

    2004-01-01

    This paper presents a finite-difference (FD) method with spatially non-rectangular irregular grids to simulate the elastic wave propagation. Staggered irregular grid finite difference operators with a second-order time and spatial accuracy are used to approximate the velocity-stress elastic wave equations. This method is very simple and the cost of computing time is not much. Complicated geometries like curved thin layers, cased borehole and nonplanar interfaces may be treated with nonrectangular irregular grids in a more flexible way. Unlike the multi-grid scheme, this method requires no interpolation between the fine and coarse grids and all grids are computed at the same spatial iteration. Compared with the rectangular irregular grid FD, the spurious diffractions from "staircase"interfaces can easily be eliminated without using finer grids. Dispersion and stability conditions of the proposed method can be established in a similar form as for the rectangular irregular grid scheme. The Higdon's absorbing boundary condition is adopted to eliminate boundary reflections. Numerical simulations show that this method has satisfactory stability and accuracy in simulating wave propagation near rough solid-fluid interfaces. The computation costs are less than those using a regular grid and rectangular grid FD method.

  2. Direct method of solving finite difference nonlinear equations for multicomponent diffusion in a gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Potemki, Valeri G. [Moscow State Engineering Physics Institute (Technical University), Moscow (Russian Federation). Dept. of Automatics and Electronics; Borisevich, Valentine D.; Yupatov, Sergei V. [Moscow State Enineering Physics Institute (Technical University), Moscow (Russian Federation). Dept. of Technical Physics

    1996-12-31

    This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner`s basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker`s form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author) 7 refs., 10 figs.

  3. Rasterizing geological models for parallel finite difference simulation using seismic simulation as an example

    Science.gov (United States)

    Zehner, Björn; Hellwig, Olaf; Linke, Maik; Görz, Ines; Buske, Stefan

    2016-01-01

    3D geological underground models are often presented by vector data, such as triangulated networks representing boundaries of geological bodies and geological structures. Since models are to be used for numerical simulations based on the finite difference method, they have to be converted into a representation discretizing the full volume of the model into hexahedral cells. Often the simulations require a high grid resolution and are done using parallel computing. The storage of such a high-resolution raster model would require a large amount of storage space and it is difficult to create such a model using the standard geomodelling packages. Since the raster representation is only required for the calculation, but not for the geometry description, we present an algorithm and concept for rasterizing geological models on the fly for the use in finite difference codes that are parallelized by domain decomposition. As a proof of concept we implemented a rasterizer library and integrated it into seismic simulation software that is run as parallel code on a UNIX cluster using the Message Passing Interface. We can thus run the simulation with realistic and complicated surface-based geological models that are created using 3D geomodelling software, instead of using a simplified representation of the geological subsurface using mathematical functions or geometric primitives. We tested this set-up using an example model that we provide along with the implemented library.

  4. Biomechanical changes of spinous process osteotomy with different amounts of facetectomy using finite element model

    Science.gov (United States)

    Kang, K.-T.; Kim, K.-Y.; Jung, H.-J.; Lee, H.-Y.; Chun, H.-J.; Lee, H.-M.; Moon, S.-H.; Kim, H.-J.

    2010-03-01

    The aim of this study is to evaluate the biomechanical changes after Spinous Process Osteotomy (SPO) with different amounts of facetectomy of the lumbar spine and to compare the models with SPO and intact models using finite element models. Intact spine models and one decompression models (L3-4) with SPO were developed. SPO models included three different amounts of facetectomy (25%, 50%, and 75%). After validation of the models, finite element analyses were performed to investigate the ranges of motion and disc stresses at each corresponding level among three SPO models and intact lumbar spine models. The ranges of motion in the SPO models were increased more than the intact models. According to increase of amounts of facetectomy, ranges of motion were also increased. Similar to range of motion, the von Mises stress of disc in the SPO models was higher than that of intact models. Moreover, with the increase of amount of facetectomy, the disc stress increased at each segments under various moments. The decompression procedures using spinous process osteotomy has been reported to provide better postoperative stability compared to the conventional laminectomy. However, facetectomy over 50 % is likely to attenuate this advantage.

  5. A moving mesh finite difference method for equilibrium radiation diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  6. ATLAS: A Real-Space Finite-Difference Implementation of Orbital-Free Density Functional Theory

    CERN Document Server

    Mi, Wenhui; Sua, Chuanxun; Zhoua, Yuanyuan; Zhanga, Shoutao; Lia, Quan; Wanga, Hui; Zhang, Lijun; Miao, Maosheng; Wanga, Yanchao; Ma, Yanming

    2015-01-01

    Orbital-free density functional theory (OF-DFT) is a promising method for large-scale quantum mechanics simulation as it provides a good balance of accuracy and computational cost. Its applicability to large-scale simulations has been aided by progress in constructing kinetic energy functionals and local pseudopotentials. However, the widespread adoption of OF-DFT requires further improvement in its efficiency and robustly implemented software. Here we develop a real-space finite-difference method for the numerical solution of OF-DFT in periodic systems. Instead of the traditional self-consistent method, a powerful scheme for energy minimization is introduced to solve the Euler--Lagrange equation. Our approach engages both the real-space finite-difference method and a direct energy-minimization scheme for the OF-DFT calculations. The method is coded into the ATLAS software package and benchmarked using periodic systems of solid Mg, Al, and Al$_{3}$Mg. The test results show that our implementation can achieve ...

  7. A Proposed Stochastic Finite Difference Approach Based on Homogenous Chaos Expansion

    Directory of Open Access Journals (Sweden)

    O. H. Galal

    2013-01-01

    Full Text Available This paper proposes a stochastic finite difference approach, based on homogenous chaos expansion (SFDHC. The said approach can handle time dependent nonlinear as well as linear systems with deterministic or stochastic initial and boundary conditions. In this approach, included stochastic parameters are modeled as second-order stochastic processes and are expanded using Karhunen-Loève expansion, while the response function is approximated using homogenous chaos expansion. Galerkin projection is used in converting the original stochastic partial differential equation (PDE into a set of coupled deterministic partial differential equations and then solved using finite difference method. Two well-known equations were used for efficiency validation of the method proposed. First one being the linear diffusion equation with stochastic parameter and the second is the nonlinear Burger's equation with stochastic parameter and stochastic initial and boundary conditions. In both of these examples, the probability distribution function of the response manifested close conformity to the results obtained from Monte Carlo simulation with optimized computational cost.

  8. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    Science.gov (United States)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  9. The Formation of the Polyploid Hybrids From Different Subfamily Fish Crossings and Its Evolutionary Significance

    OpenAIRE

    Liu, Shaojun; Qin, Qinbo; Xiao, Jun; Lu, Wenting; Shen, Jiamin; Li, Wei; Liu, Jifang; Duan, Wei; Zhang, Chun; Tao, De Min; Zhao, Rurong; Yan, Jinpeng; Liu, Yun

    2007-01-01

    This study provides genetic evidences at the chromosome, DNA content, DNA fragment and sequence, and morphological levels to support the successful establishment of the polyploid hybrids of red crucian carp × blunt snout bream, which belonged to a different subfamily of fish (Cyprininae subfamily and Cultrinae subfamily) in the catalog. We successfully obtained the sterile triploid hybrids and bisexual fertile tetraploid hybrids of red crucian carp (RCC) (♀) × blunt snout bream (BSB) (♂) as w...

  10. Computationally efficient finite-difference modal method for the solution of Maxwell's equations.

    Science.gov (United States)

    Semenikhin, Igor; Zanuccoli, Mauro

    2013-12-01

    In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method.

  11. A finite difference method for the solution of the transonic flow around harmonically oscillating wings

    Science.gov (United States)

    Ehlers, E. F.

    1974-01-01

    A finite difference method for the solution of the transonic flow about a harmonically oscillating wing is presented. The partial differential equation for the unsteady transonic flow was linearized by dividing the flow into separate steady and unsteady perturbation velocity potentials and by assuming small amplitudes of harmonic oscillation. The resulting linear differential equation is of mixed type, being elliptic or hyperbolic whereever the steady flow equation is elliptic or hyperbolic. Central differences were used for all derivatives except at supersonic points where backward differencing was used for the streamwise direction. Detailed formulas and procedures are described in sufficient detail for programming on high speed computers. To test the method, the problem of the oscillating flap on a NACA 64A006 airfoil was programmed. The numerical procedure was found to be stable and convergent even in regions of local supersonic flow with shocks.

  12. Single Alternating Group Explicit (SAGE) Method for Electrochemical Finite Difference Digital Simulation

    Institute of Scientific and Technical Information of China (English)

    DENG,Zhao-Xiang(邓兆祥); LIN,Xiang-Qin(林祥钦); TONG,Zhong-Hua(童中华)

    2002-01-01

    The four different schemes of Group Explicit Method (GEM): GER, GEL, SAGE and DAGE have been claimed to be unstable when employed for electrochemical digital simulations with large model diffusion coefficient DM@ However, in this investigation, in spite of the conditional stability of GER and GEL, the SAGE scheme, which is a combination of GEL and GER, was found to be unconditionally stable when used for simulations of electrochemical reaction-diffusions and had a performance comparable with or even better than the Fast Quasi Explicit Finite Difference Method (FQEFD) in srme aspects. Corresponding differential equations of SAGE scheme for digital simulations of various electrochemical mechanisms with both uniform and exponentially expanded space units were established. The effectiveness of the SAGE method was further demonstrated by the simulations of an EC and a catalytic mechanism with very large homogoneous rate constants.

  13. Single-cone real-space finite difference schemes for the Dirac von Neumann equation

    CERN Document Server

    Schreilechner, Magdalena

    2015-01-01

    Two finite difference schemes for the numerical treatment of the von Neumann equation for the (2+1)D Dirac Hamiltonian are presented. Both utilize a single-cone staggered space-time grid which ensures a single-cone energy dispersion to formulate a numerical treatment of the mixed-state dynamics within the von Neumann equation. The first scheme executes the time-derivative according to the product rule for "bra" and "ket" indices of the density operator. It therefore directly inherits all the favorable properties of the difference scheme for the pure-state Dirac equation and conserves positivity. The second scheme proposed here performs the time-derivative in one sweep. This direct scheme is investigated regarding stability and convergence. Both schemes are tested numerically for elementary simulations using parameters which pertain to topological insulator surface states. Application of the schemes to a Dirac Lindblad equation and real-space-time Green's function formulations are discussed.

  14. Weighted Average Finite Difference Methods for Fractional Reaction-Subdiffusion Equation

    Directory of Open Access Journals (Sweden)

    Nasser Hassen SWEILAM

    2014-04-01

    Full Text Available In this article, a numerical study for fractional reaction-subdiffusion equations is introduced using a class of finite difference methods. These methods are extensions of the weighted average methods for ordinary (non-fractional reaction-subdiffusion equations. A stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. Simple and accurate stability criterion valid for different discretization schemes of the fractional derivative, arbitrary weight factor, and arbitrary order of the fractional derivative, are given and checked numerically. Numerical test examples, figures, and comparisons have been presented for clarity.doi:10.14456/WJST.2014.50

  15. Exact finite-size corrections for the spanning-tree model under different boundary conditions

    Science.gov (United States)

    Izmailian, N. Sh.; Kenna, R.

    2015-02-01

    We express the partition functions of the spanning tree on finite square lattices under five different sets of boundary conditions in terms of a principal partition function with twisted-boundary conditions. Based on these expressions, we derive the exact asymptotic expansions of the logarithm of the partition function for each case. We have also established several groups of identities relating spanning-tree partition functions for the different boundary conditions. We also explain an apparent discrepancy between logarithmic correction terms in the free energy for a two-dimensional spanning-tree model with periodic and free-boundary conditions and conformal field theory predictions. We have obtained corner free energy for the spanning tree under free-boundary conditions in full agreement with conformal field theory predictions.

  16. High-Order Finite Difference GLM-MHD Schemes for Cell-Centered MHD

    CERN Document Server

    Mignone, A; Bodo, G

    2010-01-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting...

  17. THE UPWIND FINITE DIFFERENCE METHOD FOR MOVING BOUNDARY VALUE PROBLEM OF COUPLED SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Yuan Yirang

    2011-01-01

    Coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. The upwind finite difference schemes applicable to parallel arith- metic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as change of variables, calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order dif- ference operators and prior estimates, are adopted. The estimates in 12 norm are derived to determine the error in the approximate solution. This method was already applied to the numerical simulation of migration-accumulation of oil resources.

  18. FINITE DIFFERENCE ANALYSIS OF ACOUSTIC REFLECTION AND RADIATION FROM FLUID-LOADED PLATES

    Institute of Scientific and Technical Information of China (English)

    赵汉中

    2003-01-01

    A finite difference/boundary integral procedure to determine the acoustic reflected pressure from a fluid-loaded bi-laminate plate is described. The bi-laminate is composed of a piezoelectric layer and an elastic layer in contact with the fluid. The plate is either of finite length and held at its two ends in an acoustically hard baffle or of infinite length with periodically etched electrodes.In the numerical model, the fluid pressure at fluid/solid interface is replaced by a continuum of point sources weighted by the normal acceleration of the elastic plate, and the governing equation system is solved in the solid domain. It is demonstrated that an appropriate applied voltage potential across the baffled piezoelectric layer has the effect of cancelling the reflected pressure at any chosen field points,and a piecewise constant voltage potential with properly chosen amplitude and phase in the periodic structure has the effect of cancelling the fundamental propagating mode of the reflected waves.

  19. Transfer-matrix approach for finite-difference time-domain simulation of periodic structures.

    Science.gov (United States)

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2013-11-01

    Optical properties of periodic structures can be calculated using the transfer-matrix approach, which establishes a relation between amplitudes of the wave incident on a structure with transmitted or reflected waves. The transfer matrix can be used to obtain transmittance and reflectance spectra of finite periodic structures as well as eigenmodes of infinite structures. Traditionally, calculation of the transfer matrix is performed in the frequency domain and involves linear algebra. In this work, we present a technique for calculation of the transfer matrix using the finite-difference time-domain (FDTD) method and show the way of its implementation in FDTD code. To illustrate the performance of our technique we calculate the transmittance spectra for opal photonic crystal slabs consisting of multiple layers of spherical scatterers. Our technique can be used for photonic band structure calculations. It can also be combined with existing FDTD methods for the analysis of periodic structures at an oblique incidence, as well as for modeling point sources in a periodic environment.

  20. Contact Stress Analysis for Gears of Different Helix Angle Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Patil Santosh

    2014-07-01

    Full Text Available The gear contact stress problem has been a great point of interest for many years, but still an extensive research is required to understand the various parameters affecting this stress. Among such parameters, helix angle is one which has played a crucial role in variation of contact stress. Numerous studies have been carried out on spur gear for contact stress variation. Hence, the present work is an attempt to study the contact stresses among the helical gear pairs, under static conditions, by using a 3D finite element method. The helical gear pairs on which the analysis is carried are 0, 5, 15, 25 degree helical gear sets. The Lagrange multiplier algorithm has been used between the contacting pairs to determine the stresses. The helical gear contact stress is evaluated using FE model and results have also been found at different coefficient of friction, varying from 0.0 to 0.3. The FE results have been further compared with the analytical calculations. The analytical calculations are based upon Hertz and AGMA equations, which are modified to include helix angle. The commercial finite element software was used in the study and it was shown that this approach can be applied to gear design efficiently. The contact stress results have shown a decreasing trend, with increase in helix angle.

  1. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    Science.gov (United States)

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  2. GPU-accelerated 3D neutron diffusion code based on finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q.; Yu, G.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ. (China)

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  3. Finite Difference Solution of Response Time Delay of Magneto-rhelological Damper

    Institute of Scientific and Technical Information of China (English)

    ZOU Mingsong; HOU Baolin

    2009-01-01

    Magneto-rhelological(MR) dampers are devices that employ rheological fluids to modify their mechanical properties. Their mechanical simplicity, high dynamic range, lower power requirements, large force capacity, robustness and safe manner of operation in cases of failure have made them attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Time response characteristic is one of the most important technical performances of MR dampers, and response time directly affects the control frequency, application range and the actual effect of MR dampers. In this study, one kind of finite difference solution for predicting the response time of magneto-rheological dampers from "off-state" to "on-state" is put forward. A laminar flow model is used to describe the flow in the MR valve, and a bi-viscous fluid flow model is utilized to describe the relationship of shear stress and shear rate of MR fluid. An explicit difference format is used to discretize the Novior-Stoks equation, and stability condition of this algorithm is built by Von-Neumann stability criterion. The pressure gradient along the flow duct is solved by a dichotomy algorithm with iteration, and the changing curve of the damping force versus time of MR damper is obtained as well. According to the abovementioned numerical algorithm, the damping forces versus time curves from "off-state" to "on-state" of a cylindrical piston type MR damper are computed. Moreover, the MR damper is installed in a material test system(MTS), the magnetic field in the wire circles of the MR damper is "triggered" when the MR damper is imposed to do a constant speed motion, and the damping force curves are recorded. The comparison between numerical results and experimental results indicates that this finite difference algorithm can be used to estimate the response time delay of MR dampers.

  4. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    Science.gov (United States)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  5. 3-D thermal analysis using finite difference technique with finite element model for improved design of components of rocket engine turbomachines for Space Shuttle Main Engine SSME

    Science.gov (United States)

    Sohn, Kiho D.; Ip, Shek-Se P.

    1988-01-01

    Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.

  6. The use of the Finite Element method for the earthquakes modelling in different geodynamic environments

    Science.gov (United States)

    Castaldo, Raffaele; Tizzani, Pietro

    2016-04-01

    Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally

  7. Finite difference method to find period-one gait cycles of simple passive walkers

    Science.gov (United States)

    Dardel, Morteza; Safartoobi, Masoumeh; Pashaei, Mohammad Hadi; Ghasemi, Mohammad Hassan; Navaei, Mostafa Kazemi

    2015-01-01

    Passive dynamic walking refers to a class of bipedal robots that can walk down an incline with no actuation or control input. These bipeds are sensitive to initial conditions due to their style of walking. According to small basin of attraction of passive limit cycles, it is important to start with an initial condition in the basin of attraction of stable walking (limit cycle). This paper presents a study of the simplest passive walker with point and curved feet. A new approach is proposed to find proper initial conditions for a pair of stable and unstable period-one gait limit cycles. This methodology is based on finite difference method which can solve the nonlinear differential equations of motion on a discrete time. Also, to investigate the physical configurations of the walkers and the environmental influence such as the slope angle, the parameter analysis is applied. Numerical simulations reveal the performance of the presented method in finding two stable and unstable gait patterns.

  8. Finite-Difference Time-Domain Simulation for Three-dimensional Polarized Light Imaging

    CERN Document Server

    Menzel, Miriam; De Raedt, Hans; Michielsen, Kristel

    2016-01-01

    Three-dimensional Polarized Light Imaging (3D-PLI) is a promising technique to reconstruct the nerve fiber architecture of human post-mortem brains from birefringence measurements of histological brain sections with micrometer resolution. To better understand how the reconstructed fiber orientations are related to the underlying fiber structure, numerical simulations are employed. Here, we present two complementary simulation approaches that reproduce the entire 3D-PLI analysis: First, we give a short review on a simulation approach that uses the Jones matrix calculus to model the birefringent myelin sheaths. Afterwards, we introduce a more sophisticated simulation tool: a 3D Maxwell solver based on a Finite-Difference Time-Domain algorithm that simulates the propagation of the electromagnetic light wave through the brain tissue. We demonstrate that the Maxwell solver is a valuable tool to better understand the interaction of polarized light with brain tissue and to enhance the accuracy of the fiber orientati...

  9. Multi-Dimensional High Order Essentially Non-Oscillatory Finite Difference Methods in Generalized Coordinates

    Science.gov (United States)

    Shu, Chi-Wang

    1998-01-01

    This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.

  10. Numerical modeling of skin tissue heating using the interval finite difference method.

    Science.gov (United States)

    Mochnacki, B; Belkhayat, Alicja Piasecka

    2013-09-01

    Numerical analysis of heat transfer processes proceeding in a nonhomogeneous biological tissue domain is presented. In particular, the skin tissue domain subjected to an external heat source is considered. The problem is treated as an axially-symmetrical one (it results from the mathematical form of the function describing the external heat source). Thermophysical parameters of sub-domains (volumetric specific heat, thermal conductivity, perfusion coefficient etc.) are given as interval numbers. The problem discussed is solved using the interval finite difference method basing on the rules of directed interval arithmetic, this means that at the stage of FDM algorithm construction the mathematical manipulations are realized using the interval numbers. In the final part of the paper the results of numerical computations are shown, in particular the problem of admissible thermal dose is analyzed.

  11. A finite difference method for the design of gradient coils in MRI--an initial framework.

    Science.gov (United States)

    Zhu, Minhua; Xia, Ling; Liu, Feng; Zhu, Jianfeng; Kang, Liyi; Crozier, Stuart

    2012-09-01

    This paper proposes a finite-difference (FD)-based method for the design of gradient coils in MRI. The design method first uses the FD approximation to describe the continuous current density of the coil space and then employs the stream function method to extract the coil patterns. During the numerical implementation, a linear equation is constructed and solved using a regularization scheme. The algorithm details have been exemplified through biplanar and cylindrical gradient coil design examples. The design method can be applied to unusual coil designs such as ultrashort or dedicated gradient coils. The proposed gradient coil design scheme can be integrated into a FD-based electromagnetic framework, which can then provide a unified computational framework for gradient and RF design and patient-field interactions.

  12. Computation of the acoustic radiation force using the finite-difference time-domain method.

    Science.gov (United States)

    Cai, Feiyan; Meng, Long; Jiang, Chunxiang; Pan, Yu; Zheng, Hairong

    2010-10-01

    The computational details related to calculating the acoustic radiation force on an object using a 2-D grid finite-difference time-domain method (FDTD) are presented. The method is based on propagating the stress and velocity fields through the grid and determining the energy flow with and without the object. The axial and radial acoustic radiation forces predicted by FDTD method are in excellent agreement with the results obtained by analytical evaluation of the scattering method. In particular, the results indicate that it is possible to trap the steel cylinder in the radial direction by optimizing the width of Gaussian source and the operation frequency. As the sizes of the relating objects are smaller than or comparable to wavelength, the algorithm presented here can be easily extended to 3-D and include torque computation algorithms, thus providing a highly flexible and universally usable computation engine.

  13. Low-dispersion finite difference methods for acoustic waves in a pipe

    Science.gov (United States)

    Davis, Sanford

    1991-01-01

    A new algorithm for computing one-dimensional acoustic waves in a pipe is demonstrated by solving the acoustic equations as an initial-boundary-value problem. Conventional dissipation-free second-order finite difference methods suffer severe phase distortion for grids with less that about ten mesh points per wavelength. Using the signal generation by a piston in a duct as an example, transient acoustic computations are presented using a new compact three-point algorithm which allows about 60 percent fewer mesh points per wavelength. Both pulse and harmonic excitation are considered. Coupling of the acoustic signal with the pipe resonant modes is shown to generate a complex transient wave with rich harmonic content.

  14. Solution of nonlinear finite difference ocean models by optimization methods with sensitivity and observational strategy analysis

    Science.gov (United States)

    Schroeter, Jens; Wunsch, Carl

    1986-01-01

    The paper studies with finite difference nonlinear circulation models the uncertainties in interesting flow properties, such as western boundary current transport, potential and kinetic energy, owing to the uncertainty in the driving surface boundary condition. The procedure is based upon nonlinear optimization methods. The same calculations permit quantitative study of the importance of new information as a function of type, region of measurement and accuracy, providing a method to study various observing strategies. Uncertainty in a model parameter, the bottom friction coefficient, is studied in conjunction with uncertain measurements. The model is free to adjust the bottom friction coefficient such that an objective function is minimized while fitting a set of data to within prescribed bounds. The relative importance of the accuracy of the knowledge about the friction coefficient with respect to various kinds of observations is then quantified, and the possible range of the friction coefficients is calculated.

  15. Finite Difference Approach for Estimating the Thermal Conductivity by 6-point Crank-Nicolson Scheme

    Institute of Scientific and Technical Information of China (English)

    SU Ya-xin; YANG Xiang-xiang

    2005-01-01

    Based on inverse heat conduction theory, a theoretical model using 6-point Crank-Nicolson finite difference scheme was used to calculate the thermal conductivity from temperature distribution, which can be measured experimentally. The method is a direct approach of second-order and the key advantage of the present method is that it is not required a priori knowledge of the functional form of the unknown thermal conductivity in the calculation and the thermal parameters are estimated only according to the known temperature distribution. Two cases were numerically calculated and the influence of experimental deviation on the precision of this method was discussed. The comparison of numerical and analytical results showed good agreement.

  16. A FINITE DIFFERENCE METHOD FOR THE ONE-DIMENSIONAL VARIATIONAL BOUSSINESQ EQUATIONS

    Directory of Open Access Journals (Sweden)

    A. Suryanto

    2012-06-01

    Full Text Available The variational Boussinesq equations derived by Klopman et. al. (2005 con-verse mass, momentum and positive-definite energy. Moreover, they were shown to have significantly improved frequency dispersion characteristics, making it suitable for wave simulation from relatively deep to shallow water. In this paper we develop a numerica lcode for the variational Boussinesq equations. This code uses a fourth-order predictor-corrector method for time derivatives and fourth-order finite difference method for the first-order spatial derivatives. The numerical method is validated against experimen-tal data for one-dimensional nonlinear wave transformation problems. Furthermore, the method is used to illustrate the dispersive effects on tsunami-type of wave propagation.

  17. Upwind finite difference method for miscible oil and water displacement problem with moving boundary values

    Institute of Scientific and Technical Information of China (English)

    Yi-rang YUAN; Chang-feng LI; Cheng-shun YANG; Yu-ji HAN

    2009-01-01

    The research of the miscible oil and water displacement problem with moving boundary values is of great value to the history of oil-gas transport and accumulation in the basin evolution as well as to the rational evaluation in prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values. For the two-dimensional bounded region, the upwind finite difference schemes are proposed. Some techniques, such as the calculus of variations, the change of variables, and the theory of a priori estimates, are used. The optimal order l2-norm estimates are derived for the errors in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, the model numerical method, and the software development.

  18. Linear and nonlinear Stability analysis for finite difference discretizations of higher order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrmann, David R.; Bingham, Harry B.; Madsen, Per A.;

    2004-01-01

    This paper considers a method of lines stability analysis for finite difference discretizations of a recently published Boussinesq method for the study of highly nonlinear and extremely dispersive water waves. The analysis demonstrates the near-equivalence of classical linear Fourier (von Neumann......) techniques with matrix-based methods for formulations in both one and two horizontal dimensions. The matrix-based method is also extended to show the local de-stabilizing effects of the nonlinear terms, as well as the stabilizing effects of numerical dissipation. A comparison of the relative stability...... moderately non-normal, suggesting that the eigenvalues are likely suitable for analysis purposes. Numerical experiments demonstrate excellent agreement with the linear analysis, and good qualitative agreement with the local nonlinear analysis. The various methods of analysis combine to provide significant...

  19. An energy conserving finite-difference model of Maxwell's equations for soliton propagation

    CERN Document Server

    Bachiri, H; Vázquez, L

    1997-01-01

    We present an energy conserving leap-frog finite-difference scheme for the nonlinear Maxwell's equations investigated by Hile and Kath [C.V.Hile and W.L.Kath, J.Opt.Soc.Am.B13, 1135 (96)]. The model describes one-dimensional scalar optical soliton propagation in polarization preserving nonlinear dispersive media. The existence of a discrete analog of the underlying continuous energy conservation law plays a central role in the global accuracy of the scheme and a proof of its generalized nonlinear stability using energy methods is given. Numerical simulations of initial fundamental, second and third-order hyperbolic secant soliton pulses of fixed spatial full width at half peak intensity containing as few as 4 and 8 optical carrier wavelengths, confirm the stability, accuracy and efficiency of the algorithm. The effect of a retarded nonlinear response time of the media modeling Raman scattering is under current investigation in this context.

  20. Study Notes on Numerical Solutions of the Wave Equation with the Finite Difference Method

    CERN Document Server

    Adib, A B

    2000-01-01

    In this introductory work I will present the Finite Difference method for hyperbolic equations, focusing on a method which has second order precision both in time and space (the so-called leap-frog method) and applying it to the case of the 1d and 2d wave equation. A brief derivation of the energy and equation of motion of a wave is done before the numerical part in order to make the transition from the continuum to the lattice clearer. To illustrate the extension of the method to more complex equations, I also add dissipative terms of the kind $-\\eta \\dot{u}$ into the equations. The von Neumann numerical stability analysis and the Courant criterion, two of the most popular in the literature, are briefly discussed. In the end I present some numerical results obtained with the leap-frog algorithm, illustrating the importance of the lattice resolution through energy plots.

  1. A 3D staggered-grid finite difference scheme for poroelastic wave equation

    Science.gov (United States)

    Zhang, Yijie; Gao, Jinghuai

    2014-10-01

    Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.

  2. Dispersive finite-difference time-domain (FDTD) analysis of the elliptic cylindrical cloak

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. Y.; Ahn, D. [University of Seoul, Seoul (Korea, Republic of)

    2012-05-15

    A dispersive full-wave finite-difference time-domain (FDTD) model is used to calculate the performance of elliptic cylindrical cloaking devices. The permittivity and the permeability tensors for the cloaking structure are derived by using an effective medium approach in general relativity. The elliptic cylindrical invisibility devices are found to show imperfect cloaking, and the cloaking performance is found to depend on the polarization of the incident waves, the direction of the propagation of those waves, the semi-focal distances and the loss tangents of the meta-material. When the semifocal distance of the elliptic cylinder decreases, the performance of the cloaking becomes very good, with neither noticeable scatterings nor field penetrations. For a larger semi-focal distance, only the TM wave with a specific propagation direction shows good cloaking performance. Realistic cloaking materials with loss still show a cloak that is working, but attenuated back-scattering waves exist.

  3. Finite difference time domain method forward simulation of complex geoelectricity ground penetrating radar model

    Institute of Scientific and Technical Information of China (English)

    DAI Qian-wei; FENG De-shan; HE Ji-shan

    2005-01-01

    The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or "v" figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell's vorticity equations as departure point, makes use of the principles of Yee's space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.

  4. Finite-Difference Simulation of Elastic Wave with Separation in Pure P- and S-Modes

    Directory of Open Access Journals (Sweden)

    Ke-Yang Chen

    2014-01-01

    Full Text Available Elastic wave equation simulation offers a way to study the wave propagation when creating seismic data. We implement an equivalent dual elastic wave separation equation to simulate the velocity, pressure, divergence, and curl fields in pure P- and S-modes, and apply it in full elastic wave numerical simulation. We give the complete derivations of explicit high-order staggered-grid finite-difference operators, stability condition, dispersion relation, and perfectly matched layer (PML absorbing boundary condition, and present the resulting discretized formulas for the proposed elastic wave equation. The final numerical results of pure P- and S-modes are completely separated. Storage and computing time requirements are strongly reduced compared to the previous works. Numerical testing is used further to demonstrate the performance of the presented method.

  5. Mathematical stencil and its application in finite difference approximation to the Poisson equation

    Institute of Scientific and Technical Information of China (English)

    FENG Hui; ZHANG Baolin; LIU Yang

    2005-01-01

    The concept of mathematical stencil and the strategy of stencil elimination for solving the finite difference equation is presented, and then a new type of the iteration algorithm is established for the Poisson equation. The new algorithm has not only the obvious property of parallelism, but also faster convergence rate than that of the classical Jacobi iteration. Numerical experiments show that the time for the new algorithm is less than that of Jacobi and Gauss-Seidel methods to obtain the same precision, and the computational velocity increases obviously when the new iterative method, instead of Jacobi method, is applied to polish operation in multi-grid method, furthermore, the polynomial acceleration method is still applicable to the new iterative method.

  6. Efficient Non-Uniform Orthogonal Mesh Generation Algorithm for Cylindrical Finite Difference Time Domain Applications

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guoxiang; CHEN Yinchao; SHEN Guoqiang

    2001-01-01

    The paper presents an efficient andfast non-uniform, orthogonal mesh generation algo-rithm for the analysis and design of cylindrical mi-crowave devices and integrated circuits using thecylindrical finite-difference time-domain (CFDTD)methods. By using this algorithm, we can easily gen-erate a suitable CFDTD grid fitting for the devel-oped CFDTD Maxwell's solver. In the paper, wewill introduce in detail the algorithm and the graph-ical functions of the corresponding software package,CylinMesh. In addition, we will illustrate the algo-rithm by demonstrating various one, two, and three-dimensional grid patterns for a double-layered cylin-drical microstrip stepped-impedance low pass filter.

  7. The analysis of reactively loaded microstrip antennas by finite difference time domain modelling

    Science.gov (United States)

    Hilton, G. S.; Beach, M. A.; Railton, C. J.

    1990-01-01

    In recent years, much interest has been shown in the use of printed circuit antennas in mobile satellite and communications terminals at microwave frequencies. Although such antennas have many advantages in weight and profile size over more conventional reflector/horn configurations, they do, however, suffer from an inherently narrow bandwidth. A way of optimizing the bandwidth of such antennas by an electronic tuning technique using a loaded probe mounted within the antenna structure is examined, and the resulting far-field radiation patterns are shown. Simulation results from a 2D finite difference time domain (FDTD) model for a rectangular microstrip antenna loaded with shorting pins are given and compared to results obtained with an actual antenna. It is hoped that this work will result in a design package for the analysis of microstrip patch antenna elements.

  8. The mimetic finite difference method for the Landau-Lifshitz equation

    Science.gov (United States)

    Kim, Eugenia; Lipnikov, Konstantin

    2017-01-01

    The Landau-Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. The developed schemes are tested on general meshes that include distorted and randomized meshes. The numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.

  9. Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations

    Energy Technology Data Exchange (ETDEWEB)

    Skolski, J. Z. P., E-mail: j.z.p.skolski@utwente.nl; Vincenc Obona, J. [Materials innovation institute M2i, Faculty of Engineering Technology, Chair of Applied Laser Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Römer, G. R. B. E.; Huis in ' t Veld, A. J. [Faculty of Engineering Technology, Chair of Applied Laser Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2014-03-14

    A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by “ablation after each laser pulse,” according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelength of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.

  10. Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations

    Science.gov (United States)

    Skolski, J. Z. P.; Römer, G. R. B. E.; Vincenc Obona, J.; Huis in't Veld, A. J.

    2014-03-01

    A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by "ablation after each laser pulse," according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to "grow" either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelength of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.

  11. An Efficient Finite Difference Method for Parameter Sensitivities of Continuous Time Markov Chains

    CERN Document Server

    Anderson, David F

    2011-01-01

    We present an efficient finite difference method for the computation of parameter sensitivities for a wide class of continuous time Markov chains. The motivating class of models, and the source of our examples, are the stochastic chemical kinetic models commonly used in the biosciences, though other natural application areas include population processes and queuing networks. The method is essentially derived by making effective use of the random time change representation of Kurtz, and is no harder to implement than any standard continuous time Markov chain algorithm, such as "Gillespie's algorithm" or the next reaction method. Further, the method is analytically tractable, and, for a given number of realizations of the stochastic process, produces an estimator with substantially lower variance than that obtained using other common methods. Therefore, the computational complexity required to solve a given problem is lowered greatly. In this work, we present the method together with the theoretical analysis de...

  12. GPU-acceleration of parallel unconditionally stable group explicit finite difference method

    CERN Document Server

    Parand, K; Hossayni, Sayyed A

    2013-01-01

    Graphics Processing Units (GPUs) are high performance co-processors originally intended to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purpose, their application has been extended to other fields out of computer graphics scope. The main objective of this paper is to evaluate the impact of using GPU in solution of the transient diffusion type equation by parallel and stable group explicit finite difference method. To accomplish that, GPU and CPU-based (multi-core) approaches were developed. Moreover, we proposed an optimal synchronization arrangement for its implementation pseudo-code. Also, the interrelation of GPU parallel programming and initializing the algorithm variables was discussed, using numerical experiences. The GPU-approach results are faster than a much expensive parallel 8-thread CPU-based approach results. The GPU, used in this paper, is an ordinary laptop GPU (GT 335M) and is accessible for e...

  13. Finite difference method and analysis for three-dimensional semiconductor device of heat conduction

    Institute of Scientific and Technical Information of China (English)

    袁益让

    1996-01-01

    The mathematical model of the three-dimensional semiconductor devices of heat conduction is described by a system of four quasilinear partial differential equations for initial boundary value problem. One equation in elliptic form is for the electric potential; two equations of convection-dominated diffusion type are for the electron and hole concentration; and one heat conduction equation is for temperature. Characteristic finite difference schemes for two kinds of boundary value problems are put forward. By using the thick and thin grids to form a complete set and treating the product threefold-quadratic interpolation, variable time step method with the boundary condition, calculus of variations and the theory of prior estimates and techniques, the optimal error estimates in L2 norm are derived in the approximate solutions.

  14. Simulation of acoustic streaming by means of the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2012-01-01

    Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...

  15. Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures.

    Science.gov (United States)

    Zhao, Yan; Argyropoulos, Christos; Hao, Yang

    2008-04-28

    This paper proposes a radial dependent dispersive finite-difference time-domain method for the modeling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are 'invisible' to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being 'visible'. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance.

  16. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    Science.gov (United States)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  17. Application of finite difference method in the study of diffusion with chemical kinetics of first order

    Directory of Open Access Journals (Sweden)

    Beltrán-Prieto Juan Carlos

    2016-01-01

    Full Text Available The mathematical modelling of diffusion of a bleaching agent into a porous material is studied in the present paper. Law of mass conservation was applied to analize the mass transfer of a reactant from the bulk into the external surface of a solid geometrically described as a flat plate. After diffusion of the reactant, surface reaction following kinetics of first order was considered to take place. The solution of the differential equation that described the process leaded to an equation that represents the concentration profile in function of distance, porosity and Thiele modulus. The case of interfacial mass resistance is also discused. In this case, finite difference method was used for the solution of the differential equation taking into account the respective boundary conditions. The profile of concentration can be obtained after numerical especification of Thiele modulus and Biot number.

  18. Analysis and modeling of different topologies for linear switched reluctance motor using finite element method

    Directory of Open Access Journals (Sweden)

    Babak Ganji

    2016-09-01

    Full Text Available In the present paper, an electromagnetic simulation model is introduced for the conventional type of linear switched reluctance motor (LSRM in which the dynamic characteristics of the motor are predicted precisely by carrying out 2D finite element (FE transient analysis using ANSYS FE package. The simulation model is created totally in ANSYS parametric design language (APDL as a parametric model and it can be used easily for different designs of the conventional LSRMs. Introducing linear switched reluctance motor with segmental translator as a new type of LSRM, performance principles and design criteria are presented for two various topologies of this motor. Carrying out 2D FE transient analysis, dynamic characteristics of these two motors are predicted and compared to those obtained for the conventional LSRM.

  19. Numerical simulation of the second-order Stokes theory using finite difference method

    Directory of Open Access Journals (Sweden)

    M.A. Maâtoug

    2016-09-01

    Full Text Available The nonlinear water waves problem is of great importance because, according to the mechanical modeling of this problem, a relationship exists between the potential flow and pressure exerted by water waves. The difficulty of this problem comes not only from the fact that the kinematic and dynamic conditions are nonlinear in relation to the velocity potential, but especially because they are applied at an unknown and variable free surface. To overcome this difficulty, Stokes used an approach consisting of perturbations series around the still water level to develop a nonlinear theory. This paper deals with computation of the second-order Stokes theory in order to simulate the potential flow and the surface elevation and then to deduct the pressure loads. The Crank–Nicholson scheme and the finite difference method are used. The modeling accuracy was proved and is of order two in time and in space. Some computational results are presented and discussed.

  20. Thermal Analysis of Ball screw Systems by Explicit Finite Difference Method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Bog Ki [Hanyang Univ., Seoul (Korea, Republic of); Park, Chun Hong; Chung, Sung Chong [KIMM, Daejeon (Korea, Republic of)

    2016-01-15

    Friction generated from balls and grooves incurs temperature rise in the ball screw system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ball screw shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ball screw. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

  1. ESTIMATING THE PARAMETER DELTA IN THE BLACK MODEL USING THE FINITE DIFFERENCE METHOD FOR FUTURES OPTIONS

    Directory of Open Access Journals (Sweden)

    Lucia Švábová

    2015-09-01

    Full Text Available Financial derivatives are a widely used tool for investors to hedge against the risk caused by changes in asset prices in the financial markets. A usual type of hedging derivative is an asset option. In case of unexpected changes in asset prices, in the investment portfolio, the investor will exercise the option to eliminate losses resulting from these changes. Therefore, it is necessary to include the options in the investor´s portfolio in such a ratio that the losses caused by decreasing of assets prices will be covered by profits from those options. Futures option is a type of call or put option to buy or to sell an option contract at a designated strike price. The change in price of the underlying assets or underlying futures contract causes a change in the prices of options themselves. For investor exercising option as a tool for risk insurance, it is important to quantify these changes. The dependence of option price changes, on the underlying asset or futures option price changes, can be expressed by the parameter delta. The value of delta determines the composition of the portfolio to be risk-neutral. The parameter delta is calculated as a derivation of the option price with respect to the price of the underlying asset, if the option price formula exists. But for some types of more complex options, the analytical formula does not exist, so calculation of delta by derivation is not possible. However, it is possible to estimate the value of delta numerically using the principles of the numerical method called “Finite Difference Method.” In the paper the parameter delta for a Futures call option calculated from the analytical formula and estimated from the Finite difference method are compared.

  2. Implicit predictor-corrector central finite difference scheme for the equations of magnetohydrodynamic simulations

    Science.gov (United States)

    Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.

    2015-11-01

    Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.

  3. Stress distribution around osseointegrated implants with different internal-cone connections: photoelastic and finite element analysis.

    Science.gov (United States)

    Anami, Lilian Costa; da Costa Lima, Júlia Magalhães; Takahashi, Fernando Eidi; Neisser, Maximiliano Piero; Noritomi, Pedro Yoshito; Bottino, Marco Antonio

    2015-04-01

    The goal of this study was to evaluate the distribution of stresses generated around implants with different internal-cone abutments by photoelastic (PA) and finite element analysis (FEA). For FEA, implant and abutments with different internal-cone connections (H- hexagonal and S- solid) were scanned, 3D meshes were modeled and objects were loaded with computer software. Trabecular and cortical bones and photoelastic resin blocks were simulated. The PA was performed with photoelastic resin blocks where implants were included and different abutments were bolted. Specimens were observed in the circular polariscope with the application device attached, where loads were applied on same conditions as FEA. FEA images showed very similar stress distribution between two models with different abutments. Differences were observed between stress distribution in bone and resin blocks; PA images resembled those obtained on resin block FEA. PA images were also quantitatively analyzed by comparing the values assigned to fringes. It was observed that S abutment distributes loads more evenly to bone adjacent to an implant when compared to H abutment, for both analysis methods used. It was observed that the PA has generated very similar results to those obtained in FEA with the resin block.

  4. Finite element analysis of multi-piece post-crown restoration using different types of adhesives

    Institute of Scientific and Technical Information of China (English)

    Lin-Wei Lu; Guang-Wei Meng; Zhi-Hui Liu

    2013-01-01

    The multi-piece post-crown technique is more effective in restoring residual root than other restoration techniques. Various types of adhesives have different material properties that affect restoration. Therefore, the choice of adhesive is particularly important for patients. However, the effect of different kinds of adhesives was not too precise by experimental methods when concerning about individual differences of teeth. One tooth root can only be restored with one type of adhesive in experiment. After the mechanical test, this tooth root cannot be restored with other adhesives. With the help of medical imaging technology, reverse engineering and finite element analysis, a molar model can be reconstructed precisely and restored using different types of adhesives. The same occlusal and chewing loads were exerted on the same restored residual root models with different types of adhesives separately. Results of von Mises stress analysis showed that the adhesives with low Young’s modulus can protect the root canal effectively. However, a root canal concentration is apparently produced around the root canal orifice when chewing. Adhesives with large Young’s modulus can buffer the stress concentration of the root canal orifice. However, the root canal tissue may be destroyed because the adhesive is too hard to buffer the load.

  5. An improved three-dimensional full-vectorial finite-difference imaginary-distance beam propagation method

    Institute of Scientific and Technical Information of China (English)

    XIAO Jinbiao; LIU Xu; CAI Chun; FAN Hehong; SUN Xiaohan

    2006-01-01

    A modified alternating direction implicit approach is proposed to discretize the three-dimensional full-vectorial beam propagation method (3D-FV-BPM) formulation along the longitudinal direction. The cross-coupling terms (CCTs) are neglected at the first substep, and then double used at the second substep. The order of two substeps is reversed for each transverse electric field component so that the CCTs are always expressed in an implicit form, thus the calculation is efficient and stable. Based on the multinomial interpolation, a universal finite difference scheme with a high accuracy is developed to approximate the 3D-FV-BPM formulation along the transverse directions, in which the discontinuities of the normal components of the electric field across the abrupt dielectric interfaces are taken into account and can be applied to both uniform and non-uniform grids. The corresponding imaginary-distance procedure is first applied to a buried rectangular and a GaAs-based deeply-etched rib waveguide. The field patterns and the normalized propagation constants of the fundamental and the first order modes are presented and the hybrid nature of the full-vectorial guided-modes is demonstrated, which shows the validity and utility of the present approach. Then the modal characteristics of the deeply- and shallow-etched rib waveguides based on the InGaAsp/InGaAsP strained multiple quantum wells in InP substrate are investigated in detail. The results are necessary for modeling and the design of the planar lightwave circuits or photonic integrated circuits based on these waveguides.

  6. Numerical simulation of standing wave with 3D predictor-corrector finite difference method for potential flow equations

    Institute of Scientific and Technical Information of China (English)

    罗志强; 陈志敏

    2013-01-01

    A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa-tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa-tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.

  7. Label-free detection of hybridization of oligonucleotides by oblique-incidence reflectivity difference method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The microarrays of 20-base oligonucleotide with different concentrations are detected before and after hybridization by the oblique-incidence reflectivity difference (OI-RD) method. The experimental results prove that OI-RD is a label-free method which can not only distinguish the concentration difference of oligonucleotides before and after the hybridization but also detect the hybridization of short oligonucleotides. At present the OI-RD method can detect 0.39 μmol/L 20-base oligonucleotide or less. These results suggest that the OI-RD method is a promising and potential technique for label-free detection of biological microarrays.

  8. FINITE DIFFERENCE APPROXIMATE SOLUTIONS FOR THE RLW EQUATION%非线性RLW方程的有限差分逼近

    Institute of Scientific and Technical Information of China (English)

    冯民富; 潘璐; 王殿志

    2003-01-01

    A finite difference scheme is proposed to solve the regularized long wave(RLW)equation for computational simplicity compared to finite element methods. Exis-tence and uniqueness of numerical solutions are shown. A priori bound and the error estimates as well as conservation of energy of the finite difference approximate solutions are discussed with theory and numerical examples.

  9. Modeling and finite difference numerical analysis of reaction-diffusion dynamics in a microreactor.

    Science.gov (United States)

    Plazl, Igor; Lakner, Mitja

    2010-03-01

    A theoretical description with numerical experiments and analysis of the reaction-diffusion processes of homogeneous and non-homogeneous reactions in a microreactor is presented considering the velocity profile for laminar flows of miscible and immiscible fluids in a microchannel at steady-state conditions. A Mathematical model in dimensionless form, containing convection, diffusion, and reaction terms are developed to analyze and to forecast the reactor performance. To examine the performance of different types of reactors, the outlet concentrations for the plug-flow reactor (PFR), and the continuous stirred-tank reactor (CSTR) are also calculated for the case of an irreversible homogeneous reaction of two components. The comparison of efficiency between ideal conventional macroscale reactors and the microreactor is presented for a wide range of operating conditions, expressed as different Pe numbers (0.01 < Pe < 10). The numerical procedure of complex non-linear systems based on an implicit finite-difference method improved by non-equidistant differences is proposed.

  10. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    Science.gov (United States)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  11. A method of solving the stiffness problem in Biot's poroelastic equations using a staggered high-order finite-difference

    Institute of Scientific and Technical Information of China (English)

    Zhao Hai-Bo; Wang Xiu-Ming; Chen Hao

    2006-01-01

    In modelling elastic wave propagation in a porous medium, when the ratio between the fluid viscosity and the medium permeability is comparatively large, the stiffness problem of Biot's poroelastic equations will be encountered. In the paper, a partition method is developed to solve the stiffness problem with a staggered high-order finite-difference. The method splits the Biot equations into two systems. One is stiff, and solved analytically, the other is nonstiff,and solved numerically by using a high-order staggered-grid finite-difference scheme. The time step is determined by the staggered finite-difference algorithm in solving the nonstiff equations, thus a coarse time step 05 be employed.Therefore, the computation efficiency and computational stability are improved greatly. Also a perfect by matched layer technology is used in the split method as absorbing boundary conditions. The numerical results are compared with the analytical results and those obtained from the conventional staggered-grid finite-difference method in a homogeneous model, respectively. They are in good agreement with each other. Finally, a slightly more complex model is investigated and compared with related equivalent model to illustrate the good performance of the staggered-grid finite-difference scheme in the partition method.

  12. Physiological changes in eucalyptus hybrids under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Jane Valadares

    Full Text Available With the expansion of the cultivation of eucalyptus into areas with limited water resources, recommending genotypes which are tolerant to low water availability is important in order to maximize productivity under such conditions. The aim of this work therefore was to evaluate five hybrids of Eucalyptus grandis x E. urophylla (H1 to H5 subjected to four irrigation regimes in the greenhouse: daily (IR1, every two days (IR2, every four days (IR4 and every six days (IR6. The following characteristics were evaluated: photosynthetic rate (A, transpiration (E, stomatal conductance (g s, leaf water potential (Ψw, leaf relative water content, photochemical efficiency and chlorophyll content index. Evaluations of A, g s and E were carried out on two occasions: 1 - under stress, at the end of the interval between irrigations for each treatment; and 2 - in recovery, 48 h after irrigation for all plants in the experiment. On average, there was reduction of 25 and 40% in A values, 40 and 55% in g s, 15 and 22% in E, and 96 and 103% in Ψw respectively in those plants under regimes IR4 and IR6, compared to under IR1. Stomatal conductance had only partially recovered 48 h after irrigation, and due to being more sensitive, its changes are a good indication of water stress. Hybrid H3 is the most tolerant and H5 the most sensitive to a reduction in water availability in soil.

  13. Stability of finite difference numerical simulations of acoustic logging-while-drilling with different perfectly matched layer schemes

    Institute of Scientific and Technical Information of China (English)

    Wang Hua; Tao Guo; Shang Xue-Feng; Fang Xin-Ding; Daniel R. Burns

    2013-01-01

    In acoustic logging-while-drilling (ALWD) finite difference in time domain (FDTD) simulations, large drill collar occupies, most of the fluid-filled borehole and divides the borehole fluid into two thin fluid columns (radius~27 mm). Fine grids and large computational models are required to model the thin fluid region between the tool and the formation. As a result, small time step and more iterations are needed, which increases the cumulative numerical error. Furthermore, due to high impedance contrast between the drill collar and fluid in the borehole (the difference is>30 times), the stability and efficiency of the perfectly matched layer (PML) scheme is critical to simulate complicated wave modes accurately. In this paper, we compared four different PML implementations in a staggered grid finite difference in time domain (FDTD) in the ALWD simulation, including field-splitting PML (SPML), multiaxial PML(M-PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from the computational boundaries more efficiently than SPML and M-PML. For large simulation time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML method is used in FDTD to eliminate the numerical instability and to improve the efficiency of absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD cases, the best maximum value of the quadratic damping profile was obtained using one d0. The optimal parameter space for the maximum value of the linear frequency-shifted factor (α0) and the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the PML thickness is 10 grid points, the global error can be reduced to<1%using

  14. Comparison of SAR calculation algorithms for the finite-difference time-domain method.

    Science.gov (United States)

    Laakso, Ilkka; Uusitupa, Tero; Ilvonen, Sami

    2010-08-07

    Finite-difference time-domain (FDTD) simulations of specific-absorption rate (SAR) have several uncertainty factors. For example, significantly varying SAR values may result from the use of different algorithms for determining the SAR from the FDTD electric field. The objective of this paper is to rigorously study the divergence of SAR values due to different SAR calculation algorithms and to examine if some SAR calculation algorithm should be preferred over others. For this purpose, numerical FDTD results are compared to analytical solutions in a one-dimensional layered model and a three-dimensional spherical object. Additionally, the implications of SAR calculation algorithms for dosimetry of anatomically realistic whole-body models are studied. The results show that the trapezium algorithm-based on the trapezium integration rule-is always conservative compared to the analytic solution, making it a good choice for worst-case exposure assessment. In contrast, the mid-ordinate algorithm-named after the mid-ordinate integration rule-usually underestimates the analytic SAR. The linear algorithm-which is approximately a weighted average of the two-seems to be the most accurate choice overall, typically giving the best fit with the shape of the analytic SAR distribution. For anatomically realistic models, the whole-body SAR difference between different algorithms is relatively independent of the used body model, incident direction and polarization of the plane wave. The main factors affecting the difference are cell size and frequency. The choice of the SAR calculation algorithm is an important simulation parameter in high-frequency FDTD SAR calculations, and it should be explained to allow intercomparison of the results between different studies.

  15. Effects of different abutment connection designs on the stress distribution around five different implants: a 3-dimensional finite element analysis.

    Science.gov (United States)

    Balik, Ali; Karatas, Meltem Ozdemir; Keskin, Haluk

    2012-09-01

    The stability of the bone-implant interface is required for the long-term favorable clinical outcome of implant-supported prosthetic rehabilitation. The implant failures that occur after the functional loading are mainly related to biomechanical factors. Micro movements and vibrations due to occlusal forces can lead to mechanical complications such as loosening of the screw and fractures of the abutment or implants. The aim of this study was to investigate the strain distributions in the connection areas of different implant-abutment connection systems under similar loading conditions. Five different implant-abutment connection designs from 5 different manufacturers were evaluated in this study. The investigation was performed with software using the finite element method. The geometrical modeling of the implant systems was done with CATIA virtual design software. The MSC NASTRAN solver and PATRAN postprocessing program were used to perform the linear static solution. According to the analysis, the implant-abutment connection system with external hexagonal connection showed the highest strain values, and the internal hexagonal implant-abutment connection system showed the lowest strain values. Conical + internal hexagonal and screw-in implant abutment connection interface is more successful than other systems in cases with increased vertical dimension, particularly in the posterior region.

  16. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

    Directory of Open Access Journals (Sweden)

    Tsugio Fukuchi

    2014-06-01

    Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

  17. Sound field of thermoacoustic tomography based on a modified finite-difference time-domain method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chi; WANG Yuanyuan

    2009-01-01

    A modified finite-difference time-domain (FDTD) method is proposed for the sound field simulation of the thermoacoustic tomography (TAT) in the acoustic speed inhomogeneous medium. First, the basic equations of the TAT are discretized to difference ones by the FDTD. Then the electromagnetic pulse, the excitation source of the TAT, is modified twice to eliminate the error introduced by high frequency electromagnetic waves. Computer simulations are carried out to validate this method. It is shown that the FDTD method has a better accuracy than the commonly used time-of-flight (TOF) method in the TAT with the inhomogeneous acoustic speed. The error of the FDTD is ten times smaller than that of the TOF in the simulation for the acoustic speed difference larger than 50%. So this FDTD method is an efficient one for the sound field simulation of the TAT and can provide the theoretical basis for the study of reconstruction algorithms of the TAT in the acoustic heterogeneous medium.

  18. Numerical simulation of digital holographic microscopy through transparent samples based on pupil imaging and finite-difference time-domain methods.

    Science.gov (United States)

    Hadachi, Hirotaka; Saito, Takashi

    2013-04-20

    Digital holographic microscopy (DHM) has been used to determine the morphology and shape of transparent objects. However, the obtained shape is often inaccurate depending on the object properties and the setup of the optical imaging system. To understand these effects, we developed a new DHM model on the basis of a hybrid pupil imaging and finite-difference time-domain method. To demonstrate this model, we compared the results of an experiment with those of a simulation using borosilicate glass microspheres and a mold with a linear step structure. The simulation and experimental results showed good agreement. We also showed how the curvature and refractive index of objects affect the accuracy of thickness measurements.

  19. Comparison of finite difference and pseudo-spectral methods in forward modelling based on metal ore model of random media

    Institute of Scientific and Technical Information of China (English)

    LIU Dongyu,HAN Liguo,ZHANG Pan; XU Dexin

    2016-01-01

    With more applications of seismic exploration in metal ore exploration,forward modelling of seismic wave has become more important in metal ore.Finite difference method and pseudo-spectral method are two im-portant methods of wave-field simulation.Results of previous studies show that both methods have distinct ad-vantages and disadvantages:Finite difference method has high precision but its dispersion is serious;pseudo-spectral method considers both computational efficiency and precision but has less precision than finite-diffe-rence.The authors consider the complex structural characteristics of the metal ore,furthermore add random media in order to simulate the complex effects produced by metal ore for wave field.First,the study introduced the theories of random media and two forward modelling methods.Second,it compared the simulation results of two methods on fault model.Then the authors established a complex metal ore model,added random media and compared computational efficiency and precision.As a result,it is found that finite difference method is better than pseudo-spectral method in precision and boundary treatment,but the computational efficiency of pseudo-spectral method is slightly higher than the finite difference method.

  20. Extending geometric conservation law to cell-centered finite difference methods on moving and deforming grids

    Science.gov (United States)

    Liao, Fei; Ye, Zhengyin

    2015-12-01

    Despite significant progress in recent computational techniques, the accurate numerical simulations, such as direct-numerical simulation and large-eddy simulation, are still challenging. For accurate calculations, the high-order finite difference method (FDM) is usually adopted with coordinate transformation from body-fitted grid to Cartesian grid. But this transformation might lead to failure in freestream preservation with the geometric conservation law (GCL) violated, particularly in high-order computations. GCL identities, including surface conservation law (SCL) and volume conservation law (VCL), are very important in discretization of high-order FDM. To satisfy GCL, various efforts have been made. An early and successful approach was developed by Thomas and Lombard [6] who used the conservative form of metrics to cancel out metric terms to further satisfy SCL. Visbal and Gaitonde [7] adopted this conservative form of metrics for SCL identities and satisfied VCL identity through invoking VCL equation to acquire the derivative of Jacobian in computation on moving and deforming grids with central compact schemes derived by Lele [5]. Later, using the metric technique from Visbal and Gaitonde [7], Nonomura et al. [8] investigated the freestream and vortex preservation properties of high-order WENO and WCNS on stationary curvilinear grids. A conservative metric method (CMM) was further developed by Deng et al. [9] with stationary grids, and detailed discussion about the innermost difference operator of CMM was shown with proof and corresponding numerical test cases. Noticing that metrics of CMM is asymmetrical without coordinate-invariant property, Deng et al. proposed a symmetrical CMM (SCMM) [12] by using the symmetric forms of metrics derived by Vinokur and Yee [10] to further eliminate asymmetric metric errors with stationary grids considered only. The research from Abe et al. [11] presented new asymmetric and symmetric conservative forms of time metrics and