WorldWideScience

Sample records for hybrid female mice

  1. Speciation and reduced hybrid female fertility in house mice.

    Science.gov (United States)

    Suzuki, Taichi A; Nachman, Michael W

    2015-09-01

    In mammals, intrinsic postzygotic isolation has been well studied in males but has been less studied in females, despite the fact that female gametogenesis and pregnancy provide arenas for hybrid sterility or inviability that are absent in males. Here, we asked whether inviability or sterility is observed in female hybrids of Mus musculus domesticus and M. m. musculus, taxa which hybridize in nature and for which male sterility has been well characterized. We looked for parent-of-origin growth phenotypes by measuring adult body weights in F1 hybrids. We evaluated hybrid female fertility by crossing F1 females to a tester male and comparing multiple reproductive parameters between intrasubspecific controls and intersubspecific hybrids. Hybrid females showed no evidence of parent-of-origin overgrowth or undergrowth, providing no evidence for reduced viability. However, hybrid females had smaller litter sizes, reduced embryo survival, fewer ovulations, and fewer small follicles relative to controls. Significant variation in reproductive parameters was seen among different hybrid genotypes, suggesting that hybrid incompatibilities are polymorphic within subspecies. Differences in reproductive phenotypes in reciprocal genotypes were observed and are consistent with cyto-nuclear incompatibilities or incompatibilities involving genomic imprinting. These findings highlight the potential importance of reduced hybrid female fertility in the early stages of speciation.

  2. Proteomic Analysis of Pachytene Spermatocytes of Sterile Hybrid Male Mice.

    Science.gov (United States)

    Wang, Lu; Guo, Yueshuai; Liu, Wenjing; Zhao, Weidong; Song, Gendi; Zhou, Tao; Huang, Hefeng; Guo, Xuejiang; Sun, Fei

    2016-09-01

    Incompatibilities in interspecific hybrids, such as reduced hybrid fertility and lethality, are common features resulting from reproductive isolation that lead to speciation. Subspecies crosses of house mice produce offspring in which one sex is infertile or absent, yet the molecular mechanisms of hybrid sterility are poorly understood. In this study, we observed extensive asynapsis of chromosomes and disturbance of the sex body in pachytene spermatocytes of sterile F1 males (PWK/Ph female × C57BL/6J male). We report the high-confidence identification of 4005 proteins in the pachytene spermatocytes of fertile F1 males (PWK/Ph male × C57BL/6J female) and sterile F1 males (PWK/Ph female × C57BL/6J male), of which 215 were upregulated and 381 were downregulated. Bioinformatics analysis of the proteome led to the identification of 43 and 59 proteins known to be essential for male meiosis and spermatogenesis in mice, respectively. Characterization of the proteome of pachytene spermatocytes associated with hybrid male sterility provides an inventory of proteins that is useful for understanding meiosis and the mechanisms of hybrid male infertility.

  3. Photoperiod and reproduction in female deer mice

    Energy Technology Data Exchange (ETDEWEB)

    Whitsett, J.M.; Miller, L.L.

    1982-03-01

    Female deer mice were exposed to a short day photoperiod beginning during 1 of 3 stages of life. In the first experiment, exposure to SD during adulthood resulted in a minimal disruption of reproductive condition; many females bore 2 litters after the onset of this treatment. In the second experiment, females reared on SD from weaning matured normally, as measured by vaginal introitus; however, vaginal closure occurred in approximately one-half of these females by 9 weeks of age. In the third experiment, females were born of mothers housed on either an SD or a long day photoperiod, and were continued on the maternal photoperiod until 6 weeks of postnatal age. The SD photoperiod markedly inhibited reproductive maturation as measured by vaginal patency, ovarian weight, and uterine weight. A comparison of reproductive organ weights and vaginal condition provided evidence for the validity of the latter measure as an index of reproductive state. As assayed by the present testing procedure, the sensitivity of the reproductive system to photoperiod decreases as a function of age in female deer mice.

  4. Concordance in mate choice in female mound-building mice.

    Science.gov (United States)

    Beigneux, Emilie; Féron, Christophe; Gouat, Patrick

    2012-03-01

    Females must evaluate male quality to perform mate choice. Since females generally base their selection on different male features, individual females may differ in their choice. In this study, we show that concordance between females in mate choice decisions may arise without any experimental maximization of a particular attractive trait. Choice tests were performed in mound-building mice, Mus spicilegus, a monogamous species. Body odours of two male donors were presented to 12 female subjects individually. To determine female choice, the same pair of males was presented three times to a female. Four different pairs of male body odours were used. Male donors, not related to females, were selected at random in our polymorphic breeding stock. Using this two-way choice design, female mice displayed a clear choice and had a similar preference for particular males.

  5. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  6. Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice.

    Science.gov (United States)

    Keller, Matthieu; Douhard, Quentin; Baum, Michael J; Bakker, Julie

    2006-05-01

    We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline (SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as nonvolatile odors from an intact versus a castrated male. Furthermore, sexual behavior in mating tests with a sexually experienced male was significantly reduced in ZnSO4-treated female mice. Vomeronasal function did not seem to be affected by ZnSO4 treatment: nasal application of male urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of ZnSO4 as well as SAL-treated female mice. Likewise, soybean agglutinin staining, which stains the axons of vomeronasal neurons projecting to the glomerular layer of the AOB was similar in ZnSO4-treated female mice compared to SAL-treated female mice. By contrast, a significant reduction of Fos in the main olfactory bulb was observed in ZnSO4-treated females in comparison to SAL-treated animals, confirming a substantial destruction of the MOE. These results show that the MOE is primarily involved in the detection and processing of odors that are used to localize and identify the sex and endocrine status of conspecifics. By contrast, both the main and accessory olfactory systems contribute to female sexual receptivity in female mice.

  7. Destruction of the main olfactory epithelium reduces female sexual behavior and olfactory investigation in female mice

    OpenAIRE

    Keller, Matthieu; Douhard, Quentin; Baum, M.J.; Bakker, Julie

    2006-01-01

    We studied the contribution of the main olfactory system to mate recognition and sexual behavior in female mice. Female mice received an intranasal irrigation of either a zinc sulfate (ZnSO4) solution to destroy the main olfactory epithelium (MOE) or saline (SAL) to serve as control. ZnSO4-treated female mice were no longer able to reliably distinguish between volatile as well as nonvolatile odors from an intact versus a castrated male. Furthermore, sexual behavior in mating tests with a sexu...

  8. Reproductive toxicity in acrylamide-treated female mice.

    Science.gov (United States)

    Wei, Quanwei; Li, Jian; Li, Xingmei; Zhang, Lei; Shi, Fangxiong

    2014-07-01

    We investigated the reproductive toxicity of acrylamide in female mice. The results from immunohistochemistry provided evidence that nitric oxide synthase (NOS) signaling was involved in the process of follicular development and atresia. Oral administration of acrylamide to female mice led to significantly reduced body weights, organ weights and the number of corpora lutea (Pacrylamide; however, 17β-estradiol (E2) concentrations were unchanged with treatment. Measurement of NOS activities indicated that total NOS (TNOS), iNOS and eNOS activities were significantly increased (Pacrylamide. The results from in vitro study indicated that acrylamide reduced the viability of mouse granulosa cells in a dose-dependent manner. In summary, acrylamide affected bodily growth and development, as well as reproductive organs, the number of corpora lutea and progesterone production in female mice, possibly acting through the NOS signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  10. Chronic Exposure to Diquat Causes Reproductive Toxicity in Female Mice

    OpenAIRE

    Jia-Qing Zhang; Bin-Wen Gao; Jing Wang; Xian-Wei Wang; Qiao-Ling Ren; Jun-Feng Chen; Qiang Ma; Bao-Song Xing

    2016-01-01

    Diquat is a bipyridyl herbicide that has been widely used as a model chemical for in vivo studies of oxidative stress due to its generation of superoxide anions, and cytotoxic effects. There is little information regarding the toxic effects of diquat on the female reproductive system, particularly ovarian function. Thus, we investigated the reproductive toxic effects of diquat on female mice. Chronic exposure to diquat reduced ovary weights, induced ovarian oxidative stress, resulted in granu...

  11. Chronic Exposure to Diquat Causes Reproductive Toxicity in Female Mice.

    Directory of Open Access Journals (Sweden)

    Jia-Qing Zhang

    Full Text Available Diquat is a bipyridyl herbicide that has been widely used as a model chemical for in vivo studies of oxidative stress due to its generation of superoxide anions, and cytotoxic effects. There is little information regarding the toxic effects of diquat on the female reproductive system, particularly ovarian function. Thus, we investigated the reproductive toxic effects of diquat on female mice. Chronic exposure to diquat reduced ovary weights, induced ovarian oxidative stress, resulted in granulosa cell apoptosis, and disrupted oocyte developmental competence, as shown by reactive oxygen species (ROS accumulation, decreased polar body extrusion rates and increased apoptosis-related genes expression. Additionally, after diquat treatment, the numbers of fetal mice and litter sizes were significantly reduced compared to those of control mice. Thus, our results indicated that chronic exposure to diquat induced reproductive toxicity in female mice by promoting the ROS production of gruanousa cells and ooctyes, impairing follicle development, inducing apoptosis, and reducing oocyte quality. In conclusion, our findings indicate that diquat can be used as a potent and efficient chemical for in vivo studies of female reproductive toxicity induced by oxidative stress. Moreover, the findings from this study will further enlarge imitative research investigating the effect of ovarian damage induced by oxidative stress on reproductive performance and possible mechanisms of action in large domestic animals.

  12. SEM analysis of body hairs and whiskers of heterozygous tortoiseshell (Moto/+) female mice (Mus musculus).

    OpenAIRE

    Sheedlo, H J; Beck, M L

    1982-01-01

    Back hairs of +/+ and Moto/+ female Mus musculus generally exhibited identical form when examined by SEM. However, the hair shafts of Moto/+ female mice were beaded in appearance (monilethrix), twisted (pili torti) or exhibited a rough nodular appearance. Also, some hairs of Moto/+ female mice which were devoid of pigment appeared enlarged and bitubular. The whiskers of +/+ and Moto/+ female mice were identical in form. The hair abnormalities of Moto/+ female mice resulted from a copper defic...

  13. Dietary sugar intake increases liver tumor incidence in female mice.

    Science.gov (United States)

    Healy, Marin E; Lahiri, Sujoy; Hargett, Stefan R; Chow, Jenny D Y; Byrne, Frances L; Breen, David S; Kenwood, Brandon M; Taddeo, Evan P; Lackner, Carolin; Caldwell, Stephen H; Hoehn, Kyle L

    2016-02-29

    Overnutrition can promote liver cancer in mice and humans that have liver damage caused by alcohol, viruses, or carcinogens. However, the mechanism linking diet to increased liver tumorigenesis remains unclear in the context of whether tumorigenesis is secondary to obesity, or whether nutrients like sugar or fat drive tumorigenesis independent of obesity. In male mice, liver tumor burden was recently found to correlate with sugar intake, independent of dietary fat intake and obesity. However, females are less susceptible to developing liver cancer than males, and it remains unclear how nutrition affects tumorigenesis in females. Herein, female mice were exposed to the liver carcinogen diethylnitrosamine (DEN) and fed diets with well-defined sugar and fat content. Mice fed diets with high sugar content had the greatest liver tumor incidence while dietary fat intake was not associated with tumorigenesis. Diet-induced postprandial hyperglycemia and fasting hyperinsulinemia significantly correlated with tumor incidence, while tumor incidence was not associated with obesity and obesity-related disorders including liver steatosis, glucose intolerance, or elevated serum levels of estrogen, ALT, and lipids. These results simplify the pathophysiology of diet-induced liver tumorigenesis by focusing attention on the role of sugar metabolism and reducing emphasis on the complex milieu associated with obesity.

  14. Impaired fertility in T-stock female mice after superovulation

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A J; Bishop, J B; Marchetti, F; Zudova, D

    2003-12-05

    Superovulation of female mice with exogenous gonadotrophins is routinely used for increasing the number of eggs ovulated by each female in reproductive and developmental studies. We report an unusual effect of superovulation on fertilization in mice. In vivo matings of superovulated T-stock females with B6C3F1 males resulted in a 2-fold reduction (P<0.001) in the frequencies of fertilized eggs compared to control B6C3F1 matings. In addition, {approx}22 hr after mating only 15% of fertilized eggs recovered in T-stock females had reached the metaphase stage of the first cleavage division versus 87% in B6C3F1 females (P < 0.0001). Matings with T-stock males did not improve the reproductive performance of T-stock females. To investigate the possible cause(s) for the impaired fertilization and zygotic development, the experiments were repeated using in vitro fertilization. Under these conditions, the frequencies of fertilized eggs were not different in superovulated T-stock and B6C3F1 females (51.7% {+-} 6.0 and 64.5% {+-}3.8, P=0.10). There was a 7-fold increase in the frequencies of fertilized T-stock eggs that completed the first cell cycle of development after in vitro versus in vivo fertilization. These results rule out an intrinsic deficiency of the T-stock oocyte as the main reason for the impaired fertility after in vivo matings and suggest that superovulation of T-stock females induces a hostile oviductal and uterine environment with dramatic effects on fertilization and zygotic development.

  15. Genetics and evolution of hybrid male sterility in house mice.

    Science.gov (United States)

    White, Michael A; Stubbings, Maria; Dumont, Beth L; Payseur, Bret A

    2012-07-01

    Comparative genetic mapping provides insights into the evolution of the reproductive barriers that separate closely related species. This approach has been used to document the accumulation of reproductive incompatibilities over time, but has only been applied to a few taxa. House mice offer a powerful system to reconstruct the evolution of reproductive isolation between multiple subspecies pairs. However, studies of the primary reproductive barrier in house mice-hybrid male sterility-have been restricted to a single subspecies pair: Mus musculus musculus and Mus musculus domesticus. To provide a more complete characterization of reproductive isolation in house mice, we conducted an F(2) intercross between wild-derived inbred strains from Mus musculus castaneus and M. m. domesticus. We identified autosomal and X-linked QTL associated with a range of hybrid male sterility phenotypes, including testis weight, sperm density, and sperm morphology. The pseudoautosomal region (PAR) was strongly associated with hybrid sterility phenotypes when heterozygous. We compared QTL found in this cross with QTL identified in a previous F(2) intercross between M. m. musculus and M. m. domesticus and found three shared autosomal QTL. Most QTL were not shared, demonstrating that the genetic basis of hybrid male sterility largely differs between these closely related subspecies pairs. These results lay the groundwork for identifying genes responsible for the early stages of speciation in house mice.

  16. Immunotoxicity of Acrylamide in Female BALB/c Mice

    Institute of Scientific and Technical Information of China (English)

    FANG Jin; LIANG Chun Lai; JIA Xu Dong; LI Ning

    2014-01-01

    Objective To investigate the immunotoxicity of acrylamide (ACR) in female BALB/c mice. Methods A total of 200 female mice weighing 18-22 g were randomly divided into four clusters based on body weight, and each weight-based cluster included five groups (10 mice per group): negative control, positive control (cyclophosphamide), low, intermediate, and high dose ACR groups, and all the groups were administered ACR by gavage for 30 days. At the end of the study, the immunotoxicological effects of the ACR were evaluated through immunopathology, humoral immunity, cellular immunity, and non-specific immunity. Results The terminal body weight, spleen and thymus weights, lymphocyte counts in the ACR-H group were decreased, pathological changes were observed in lymph glands, thymus and spleen.%T cells in blood lymphocytes were significantly increased in all ACR-treated groups, and a significant reduction of% natural killer(NK) cells and increase of %Th cells were observed in the ACR-H group. interleukin-6(IL-6), Concanavalin A(ConA)-induced splenocyte proliferation and serum half hemolysis value (HC50) were also significantly suppressed in the ACR-H group. Conclusion ACR elicited an inhibitory effect on cellular and humoral immunity of mice after 30 day feeding.

  17. Mycotoxicosis Caused by Aerosolized T-2 Toxin Administered to Female Mice

    Science.gov (United States)

    1988-11-01

    light cycle was 12 hours. The mice female mice exposed to aerosolized T-2 mycotoxin were were acclimated (1 week) before the study was begun. examined at...then, 10 ml of scintillation fluid was Mice - Female , 6-week-old Swiss ICR mice, weighing 15 to 20 added, and the PH] on the filter was quantitated 24

  18. Gene expression analysis of the ovary of hybrid females of Xenopus laevis and X. muelleri

    Directory of Open Access Journals (Sweden)

    Malone John H

    2008-03-01

    Full Text Available Abstract Background Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. Previous work has demonstrated a dramatic asymmetrical pattern of misexpression in hybrid males compared to the two parental species with relatively few genes misexpressed in comparisons of hybrids and the maternal species (X. laevis and dramatically more genes misexpressed in hybrids compared to the paternal species (X. muelleri. In this work, we examine the gene expression pattern in hybrid females of X. laevis × X. muelleri to determine if this asymmetrical pattern of expression also occurs in hybrid females. Results We find a similar pattern of asymmetry in expression compared to males in that there were more genes differentially expressed between hybrids and X. muelleri compared to hybrids and X. laevis. We also found a dramatic increase in the number of misexpressed genes with hybrid females having about 20 times more genes misexpressed in ovaries compared to testes of hybrid males and therefore the match between phenotype and expression pattern is not supported. Conclusion We discuss these intriguing findings in the context of reproductive isolation and suggest that divergence in female expression may be involved in sterility of hybrid males due to the inherent sensitivity of spermatogenesis as defined by the faster male evolution hypothesis for Haldane's rule.

  19. Female preproenkephalin-knockout mice display altered emotional responses.

    Science.gov (United States)

    Ragnauth, A; Schuller, A; Morgan, M; Chan, J; Ogawa, S; Pintar, J; Bodnar, R J; Pfaff, D W

    2001-02-13

    The endogenous opioid system has been implicated in sexual behavior, palatable intake, fear, and anxiety. The present study examined whether ovariectomized female transgenic preproenkephalin-knockout (PPEKO) mice and their wild-type and heterozygous controls displayed alterations in fear and anxiety paradigms, sucrose intake, and lordotic behavior. To examine stability of responding, three squads of the genotypes were tested across seasons over a 20-month period. In a fear-conditioning paradigm, PPEKO mice significantly increased freezing to both fear and fear + shock stimuli relative to controls. In the open field, PPEKO mice spent significantly less time and traversed significantly less distance in the center of an open field than wild-type controls. Further, PPEKO mice spent significantly less time and tended to be less active on the light side of a dark-light chamber than controls, indicating that deletion of the enkephalin gene resulted in exaggerated responses to fear or anxiety-provoking environments. These selective deficits were observed consistently across testing squads spanning 20 months and different seasons. In contrast, PPEKO mice failed to differ from corresponding controls in sucrose, chow, or water intake across a range (0.0001-20%) of sucrose concentrations and failed to differ in either lordotic or female approach to male behaviors when primed with estradiol and progesterone, thereby arguing strongly for the selectivity of a fear and anxiety deficit which was not caused by generalized and nonspecific debilitation. These transgenic data strongly suggest that opioids, and particularly enkephalin gene products, are acting naturally to inhibit fear and anxiety.

  20. Hybrid female mate choice as a species isolating mechanism: environment matters.

    Science.gov (United States)

    Schmidt, E M; Pfennig, K S

    2016-04-01

    A fundamental goal of biology is to understand how new species arise and are maintained. Female mate choice is potentially critical to the speciation process: mate choice can prevent hybridization and thereby generate reproductive isolation between potentially interbreeding groups. Yet, in systems where hybridization occurs, mate choice by hybrid females might also play a key role in reproductive isolation by affecting hybrid fitness and contributing to patterns of gene flow between species. We evaluated whether hybrid mate choice behaviour could serve as such an isolating mechanism using spadefoot toad hybrids of Spea multiplicata and Spea bombifrons. We assessed the mate preferences of female hybrid spadefoot toads for sterile hybrid males vs. pure-species males in two alternative habitat types in which spadefoots breed: deep or shallow water. We found that, in deep water, hybrid females preferred the calls of sterile hybrid males to those of S. multiplicata males. Thus, maladaptive hybrid mate preferences could serve as an isolating mechanism. However, in shallow water, the preference for hybrid male calls was not expressed. Moreover, hybrid females did not prefer hybrid calls to those of S. bombifrons in either environment. Because hybrid female mate choice was context-dependent, its efficacy as a reproductive isolating mechanism will depend on both the environment in which females choose their mates as well as the relative frequencies of males in a given population. Thus, reproductive isolation between species, as well as habitat specific patterns of gene flow between species, might depend critically on the nature of hybrid mate preferences and the way in which they vary across environments.

  1. Exploring female mice interstrain differences relevant for models of depression

    Directory of Open Access Journals (Sweden)

    Daniela de Sá Calçada

    2015-12-01

    Full Text Available Depression is an extremely heterogeneous disorder. Diverse molecular mechanisms have been suggested to underlie its etiology. To understand the molecular mechanisms responsible for this complex disorder, researchers have been using animal models extensively, namely mice from various genetic backgrounds and harboring distinct genetic modifications. The use of numerous mouse models has contributed to enrich our knowledge on depression. However, accumulating data also revealed that the intrinsic characteristics of each mouse strain might influence the experimental outcomes, which may justify some conflicting evidence reported in the literature. To further understand the impact of the genetic background we performed a multimodal comparative study encompassing the most relevant parameters commonly addressed in depression in three of the most widely used mouse strains: Balb/c, C57BL/6 and CD-1. Moreover, female mice were selected for this study taken into account the higher prevalence of depression in woman and the fewer animal studies using this gender. Our results show that Balb/c mice have a more pronounced anxious-like behavior than CD-1 and C57BL/6 mice, whereas C57BL/6 animals present the strongest depressive-like trait. Furthermore, C57BL/6 mice display the highest rate of proliferating cells and brain-derived neurotrophic factor expression levels in the hippocampus, while hippocampal dentate granular neurons of Balb/c mice show smaller dendritic lengths and fewer ramifications. Of notice, the expression levels of inducible nitric oxide synthase (iNos predict 39,5% of the depressive-like behavior index, which suggests a key role of hippocampal iNOS in depression.Overall, this study reveals important interstrain differences in several behavioral dimensions and molecular and cellular parameters that should be considered when preparing and analyzing experiments addressing depression using mouse models. It further contributes to the literature by

  2. Widespread Volumetric Brain Changes following Tooth Loss in Female Mice

    Science.gov (United States)

    Avivi-Arber, Limor; Seltzer, Ze'ev; Friedel, Miriam; Lerch, Jason P.; Moayedi, Massieh; Davis, Karen D.; Sessle, Barry J.

    2017-01-01

    Tooth loss is associated with altered sensory, motor, cognitive and emotional functions. These changes vary highly in the population and are accompanied by structural and functional changes in brain regions mediating these functions. It is unclear to what extent this variability in behavior and function is caused by genetic and/or environmental determinants and which brain regions undergo structural plasticity that mediates these changes. Thus, the overall goal of our research program is to identify genetic variants that control structural and functional plasticity following tooth loss. As a step toward this goal, here our aim was to determine whether structural magnetic resonance imaging (sMRI) is sensitive to detect quantifiable volumetric differences in the brains of mice of different genetic background receiving tooth extraction or sham operation. We used 67 adult female mice of 7 strains, comprising the A/J (A) and C57BL/6J (B) strains and a randomly selected sample of 5 of the 23 AXB-BXA strains (AXB1, AXB4, AXB24, BXA14, BXA24) that were produced from the A and B parental mice by recombinations and inbreeding. This panel of 25 inbred strains of genetically diverse inbred strains of mice is used for mapping chromosomal intervals throughout the genome that harbor candidate genes controlling the phenotypic variance of any trait under study. Under general anesthesia, 39 mice received extraction of 3 right maxillary molar teeth and 28 mice received sham operation. On post-extraction day 21, post-mortem whole-brain high-resolution sMRI was used to quantify the volume of 160 brain regions. Compared to sham operation, tooth extraction was associated with a significantly reduced regional and voxel-wise volumes of cortical brain regions involved in processing somatosensory, motor, cognitive and emotional functions, and increased volumes in subcortical sensorimotor and temporal limbic forebrain regions including the amygdala. Additionally, comparison of the 10 BXA14

  3. Effects of leached components from a hybrid resin composite on the reproductive system of male mice

    Directory of Open Access Journals (Sweden)

    Taher Akbari Saeed

    2012-01-01

    Full Text Available Background and Aims: There is concern that leached components from dental composites may cause adverse changes in the reproductive health. This study aimed to assess the effects of leached components from a hybrid resin composite on the reproductive system of male mice.Materials and Methods: In the present animal study, twenty adult Syrian male mice were divided into two groups of 10 mice each. In the test group, components which leached from samples made from Filtek Z250 resin composite into 75% ethanol were daily administered to the mice for 28 days. In the control group, the procedure was repeated in the same way as the test group but without placing composite samples in the solution. Then, the body weight, weights of paired testes, Gonado Somatic Index, sperm viability, sperm motility, epididymal sperm reserve and daily sperm production were recorded. Four male mice in each group were mated with untreated female mice for 10 days. After that, the number of pregnant females and number of infants were recorded. The data were analyzed using repeated measures ANOVA, Chi-square test and t-test.Results: There was a significant reduction in the sperm viability and sperm motility of male mice in the test group compared to the control group (P=0.001. There was no any significant differences in other parameters between two groups (P>0.05.Conclusion: This study showed that the leached components from resin composites cannot cause infertility but they could potentially cause some adverse effects on the reproductive system of male mice.

  4. Follicle-stimulating hormone increases bone mass in female mice.

    Science.gov (United States)

    Allan, Charles M; Kalak, Robert; Dunstan, Colin R; McTavish, Kirsten J; Zhou, Hong; Handelsman, David J; Seibel, Markus J

    2010-12-28

    Elevated follicle-stimulating hormone (FSH) activity is proposed to directly cause bone loss independent of estradiol deficiency in aging women. Using transgenic female mice expressing human FSH (TgFSH), we now reveal that TgFSH dose-dependently increased bone mass, markedly elevating tibial and vertebral trabecular bone volume. Furthermore, TgFSH stimulated a striking accrual of bone mass in hypogonadal mice lacking endogenous FSH and luteinizing hormone (LH) function, showing that FSH-induced bone mass occurred independently of background LH or estradiol levels. Higher TgFSH levels increased osteoblast surfaces in trabecular bone and stimulated de novo bone formation, filling marrow spaces with woven rather than lamellar bone, reflective of a strong anabolic stimulus. Trabecular bone volume correlated positively with ovarian-derived serum inhibin A or testosterone levels in TgFSH mice, and ovariectomy abolished TgFSH-induced bone formation, proving that FSH effects on bone require an ovary-dependent pathway. No detectable FSH receptor mRNA in mouse bone or cultured osteoblasts or osteoclasts indicated that FSH did not directly stimulate bone. Therefore, contrary to proposed FSH-induced bone loss, our findings demonstrate that FSH has dose-dependent anabolic effects on bone via an ovary-dependent mechanism, which is independent of LH activity, and does not involve direct FSH actions on bone cells.

  5. Bucking the trend in wolf-dog hybridization: first evidence from europe of hybridization between female dogs and male wolves.

    Science.gov (United States)

    Hindrikson, Maris; Männil, Peep; Ozolins, Janis; Krzywinski, Andrzej; Saarma, Urmas

    2012-01-01

    Studies on hybridization have proved critical for understanding key evolutionary processes such as speciation and adaptation. However, from the perspective of conservation, hybridization poses a concern, as it can threaten the integrity and fitness of many wild species, including canids. As a result of habitat fragmentation and extensive hunting pressure, gray wolf (Canis lupus) populations have declined dramatically in Europe and elsewhere during recent centuries. Small and fragmented populations have persisted, but often only in the presence of large numbers of dogs, which increase the potential for hybridization and introgression to deleteriously affect wolf populations. Here, we demonstrate hybridization between wolf and dog populations in Estonia and Latvia, and the role of both genders in the hybridization process, using combined analysis of maternal, paternal and biparental genetic markers. Eight animals exhibiting unusual external characteristics for wolves - six from Estonia and two from Latvia - proved to be wolf-dog hybrids. However, one of the hybridization events was extraordinary. Previous field observations and genetic studies have indicated that mating between wolves and dogs is sexually asymmetrical, occurring predominantly between female wolves and male dogs. While this was also the case among the Estonian hybrids, our data revealed the existence of dog mitochondrial genomes in the Latvian hybrids and, together with Y chromosome and autosomal microsatellite data, thus provided the first evidence from Europe of mating between male wolves and female dogs. We discuss patterns of sexual asymmetry in wolf-dog hybridization.

  6. Behavioral changes in female Swiss mice exposed to tannery effluents

    Directory of Open Access Journals (Sweden)

    Sabrina Ferreira de Almeida

    2016-06-01

    Full Text Available Among the anthropic activities generating potentially toxic residues are those involved with bovine hide processing (tannery industries. However, knowledge is scant regarding the damage caused to the health of various organisms by tannery waste and studies are rare, especially in mammalian experimental models. This study therefore aimed to evaluate the physical and behavioral effects of the exposure of female Swiss mice to tannery effluent. To accomplish this, for a period of 15 days the animals were fed tannery effluent diluted with water in the following concentrations: 0% (control group, received only potable water, 5% and 10%. The body mass of the animals was evaluated at the beginning and end of the experiment, as well as the daily consumption of water and food. After 15 days of exposure to the effluent, the animals were submitted to the elevated plus maze (predictive of anxiety and the forced swim test (predictive of depression. The treatments did not affect the animals' body mass, either in eating behavior or in consumption of water. However, it was found that the animals that ingested tannery effluent concentrations of 5% and 10% exhibited an anxiolytic (lower level of anxiety, greater percentage of time in the open arms, longer time and frequency in the diving behavior, less time of lurks and less frequency of freezing and an antidepressant effect (more time in climbing behavior and less time of immobility when compared to the control group. It was concluded that the exposure of female Swiss mice to tannery effluents (5% and 10% diluted with water causes behavioral changes, possibly related to the neurotoxicity of this waste, without causing physical changes in the animals.

  7. Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance.

    Science.gov (United States)

    Stubbins, R E; Najjar, K; Holcomb, V B; Hong, J; Núñez, N P

    2012-01-01

    Obesity is associated with insulin resistance, liver steatosis and low-grade inflammation. The role of oestrogen in sex differences in the above co-morbidities is not fully understood. Our aim was to assess the role oestrogen has in modulating adipocyte size, adipose tissue oxidative stress, inflammation, insulin resistance and liver steatosis. To determine the role oestrogen has in the above co-morbidities related to obesity, we randomized C57BL/6J mice into four groups (15 mice per group): (i) male, (ii) non-ovariectomized female (novx), (iii) ovariectomized female (ovx) and (iv) ovariectomized female mice supplemented with 17β estradiol (ovx-E). Mice received either a low-fat (LF) or a high-fat (HF) diet for 10 weeks. Outcomes measured were bodyweight, body fat, adipocyte diameter, adipose tissue lipolysis markers, adipose tissue oxidative stress, inflammation, insulin resistance and liver steatosis. Male and ovx-female mice consuming the HF diet had a higher propensity of gaining weight, specifically in the form of body fat. Oestrogen protected female mice from adipocyte hypertrophy and from developing adipose tissue oxidative stress and inflammation. Moreover, novx-female and ovx-female+E mice had higher phosphorylated levels of protein kinase A and hormone sensitive lipase, markers associated with lipolysis. Additionally, male and ovx female mice had a higher propensity of developing liver steatosis and insulin resistance. In contrast, oestrogen protected female mice from developing liver steatosis and from becoming insulin resistant. We show that oestrogen protects female mice from adipocyte hypertrophy and adipose tissue oxidative stress and inflammation. Furthermore, oestrogen prevented female mice from developing liver steatosis and from becoming insulin resistant. © 2011 Blackwell Publishing Ltd.

  8. The fertility of the hybrid lineage derived from female Megalobrama amblycephala × male Culter alburnus.

    Science.gov (United States)

    Xiao, Jun; Kang, Xuewei; Xie, Lihua; Qin, Qinbo; He, Zhoulin; Hu, Fangzhou; Zhang, Chun; Zhao, Rurong; Wang, Jun; Luo, Kaikun; Liu, Yun; Liu, Shaojun

    2014-12-10

    Distant hybridization can combine together the genomes of different species, which leads to changes of the offspring in phenotypes and genotypes. In this study, we successfully establish a fertile hybrid lineage by intergeneric hybridization of female blunt snout bream (BSB, Megalobrama amblycephala) × male topmouth culter (TC, Culter alburnus) and investigate some important biological traits of this lineage including the morphological traits, chromosomal number, karyotype, DNA content, gonadal development, egg and milt yield, sperm shape and density, fertilization rate and early survival rate. The results show that: (1) the diploid and triploid hybrids coexist in F1 and only diploid hybrids are found in F2, in which the diploid hybrids of F1 and F2 possess 48 chromosomes with one chromosome set of BSB and one chromosome set of TC, and the triploid hybrids of F1 possess 72 chromosomes with two chromosome sets of BSB and one chromosome set of TC. (2) All the tested males and females of the diploid F1 and F2 hybrids have the normal gonadal development and produce mature sperm and egg, respectively, which are fertilized with each other to form F2 and F3 hybrids, respectively, and finally form a diploid hybrid lineage (F1-F3). (3) The good fertility of the F1 and F2 hybrids of female BSB × male TC potentially provides reproductive base to make the hybrid lineage propagate from one generation to another. The formation of the hybrid lineage (F1-F3) also provides an ideal model to research the reproductive rules of distant hybrid progeny.

  9. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Directory of Open Access Journals (Sweden)

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  10. Oestrogen-independent, experience-induced maternal behaviour in female mice

    OpenAIRE

    Stolzenberg, Danielle S.; Rissman, Emilie F.

    2011-01-01

    Nulliparous female mice that have not experienced mating, pregnancy, or parturition show near immediate spontaneous maternal behaviour when presented with foster pups. The fact that virgin mice display spontaneous maternal behaviour indicates that the hormonal events of pregnancy and parturition are not necessary to produce a rapid onset of maternal behaviour in mice. However, it is not known how similar maternal behaviour is between virgin and lactating mice. Here we show that naturally post...

  11. Male and female NOD mice differentially express peroxisome proliferator-activated receptors and pathogenic cytokines.

    Science.gov (United States)

    Yaacob, Nik Soriani; Goh, Kenny Soen Keong; Norazmi, Mohd Nor

    2012-01-01

    The peroxisome proliferator-activated receptors (PPARs) have been implicated in regulating the immune response. We determined the relative changes in the transcriptional expression of PPAR isoforms (α, γ1 and γ2) and cytokines involved in the pathogenesis of type 1 diabetes (T1D) in the immune cells of 5 weeks, 10 weeks and diabetic male non-obese diabetic (NOD) mice compared to those of female NOD mice from our previous studies, "normalized" against their respective non-obese diabetic resistant (NOR) mice controls. Overall PPARα was significantly more elevated in the macrophages of female NOD mice of all age groups whereas PPARγ, particularly the PPARγ2 isoform was more depressed in the macrophages and CD4(+) lymphocytes of female NOD mice compared to their male counterparts. The pro-inflammatory cytokines, IL-1 and TNFα, as well as the Th1 cytokines, IL-2 and IFNγ were more elevated in female NOD mice whereas the Th2 cytokine, IL-4, was more depressed in these mice compared to their male counterparts. These findings suggest that the preponderance of T1D in female NOD mice may be influenced by the more pronounced changes in the expression of PPAR isoforms and pathogenic cytokines compared to those in male NOD mice. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Cadmium Increases the Sensitivity of Adolescent Female Mice to Nicotine-Related Behavioral Deficits

    OpenAIRE

    Philip Adeyemi Adeniyi; Babawale Peter Olatunji; Azeez Olakunle Ishola; Duyilemi Chris Ajonijebu; Olalekan Michael Ogundele

    2014-01-01

    This study investigates spatial and nonspatial working memory, anxiety related behavior, and motor activities in cadmium and/or nicotine exposed female adolescent mice. P28 female adolescent mice (albino strain) were divided into four groups of five (n = 5) mice each. A set of mice (Nic) received subcutaneous nicotine (2.0 mg/kg) while a separate set (Cd) was treated with 2.0 mg/kg cadmium (subcutaneous). For the combined treatments of cadmium and nicotine, we administered 2.0 mg/kg Nicotine ...

  13. Multiple origins of XY female mice (genus Akodon): phylogenetic and chromosomal evidence.

    OpenAIRE

    Hoekstra, H. E.; Edwards, S.V.

    2000-01-01

    Despite the diversity in sex determination across organisms, theory predicts that the evolution of XY females is rare in mammals due to fitness consequences associated with infertility or the loss of YY zygotes. We investigated this hypothesis from a phylogenetic perspective by examining the inter- and intraspecific distribution of Y chromosomes in males and females (XY females) in South American field mice (Akodon). We found that XY females occurred at appreciable frequencies (10-66%) in at ...

  14. Generation of fertile and fecund F0 XY female mice from XY ES cells.

    Science.gov (United States)

    Kuno, Junko; Poueymirou, William T; Gong, Guochun; Siao, Chia-Jen; Clarke, Georgia; Esau, Lakeisha; Kojak, Nada; Posca, Julita; Atanasio, Amanda; Strein, John; Yancopoulos, George D; Lai, Ka-Man Venus; DeChiara, Thomas M; Frendewey, David; Auerbach, Wojtek; Valenzuela, David M

    2015-02-01

    Known examples of male to female sex reversal in mice are caused by either strain incompatibilities or mutations in genes required for male sex determination. The resultant XY females are often sterile or exhibit very poor fertility. We describe here embryonic stem (ES) cell growth conditions that promote the production of healthy, anatomically normal fertile and fecund female F0 generation mice completely derived from gene-targeted XY male ES cells. The sex reversal is a transient trait that is not transmitted to the F1 progeny. Growth media with low osmolality and reduced sodium bicarbonate, maintained throughout the gene targeting process, enhance the yield of XY females. As a practical application of the induced sex reversal, we demonstrate the generation of homozygous mutant mice ready for phenotypic studies by the breeding of F0 XY females with their isogenic XY male clonal siblings, thereby eliminating one generation of breeding and the associated costs.

  15. The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice.

    Science.gov (United States)

    Fagman, Johan B; Wilhelmson, Anna S; Motta, Benedetta M; Pirazzi, Carlo; Alexanderson, Camilla; De Gendt, Karel; Verhoeven, Guido; Holmäng, Agneta; Anesten, Fredrik; Jansson, John-Olov; Levin, Malin; Borén, Jan; Ohlsson, Claes; Krettek, Alexandra; Romeo, Stefano; Tivesten, Åsa

    2015-04-01

    Androgens have important cardiometabolic actions in males, but their metabolic role in females is unclear. To determine the physiologic androgen receptor (AR)-dependent actions of androgens on atherogenesis in female mice, we generated female AR-knockout (ARKO) mice on an atherosclerosis-prone apolipoprotein E (apoE)-deficient background. After 8 weeks on a high-fat diet, but not on a normal chow diet, atherosclerosis in aorta was increased in ARKO females (+59% vs. control apoE-deficient mice with intact AR gene). They also displayed increased body weight (+18%), body fat percentage (+62%), and hepatic triglyceride levels, reduced insulin sensitivity, and a marked atherogenic dyslipidemia (serum cholesterol, +52%). Differences in atherosclerosis, body weight, and lipid levels between ARKO and control mice were abolished in mice that were ovariectomized before puberty, consistent with a protective action of ovarian androgens mediated via the AR. Furthermore, the AR agonist dihydrotestosterone reduced atherosclerosis (-41%; thoracic aorta), subcutaneous fat mass (-44%), and cholesterol levels (-35%) in ovariectomized mice, reduced hepatocyte lipid accumulation in hepatoma cells in vitro, and regulated mRNA expression of hepatic genes pivotal for lipid homeostasis. In conclusion, we demonstrate that the AR protects against diet-induced atherosclerosis in female mice and propose that this is mediated by modulation of body composition and lipid metabolism. © FASEB.

  16. Dietary sugar intake increases liver tumor incidence in female mice

    OpenAIRE

    Marin E. Healy; Sujoy Lahiri; Hargett, Stefan R.; Chow, Jenny D.Y.; Byrne, Frances L.; Breen, David S.; Kenwood, Brandon M.; Taddeo, Evan P.; Carolin Lackner; Caldwell, Stephen H.; Hoehn, Kyle L.

    2016-01-01

    Overnutrition can promote liver cancer in mice and humans that have liver damage caused by alcohol, viruses, or carcinogens. However, the mechanism linking diet to increased liver tumorigenesis remains unclear in the context of whether tumorigenesis is secondary to obesity, or whether nutrients like sugar or fat drive tumorigenesis independent of obesity. In male mice, liver tumor burden was recently found to correlate with sugar intake, independent of dietary fat intake and obesity. However,...

  17. Androgen (dihydrotestosterone) - mediated regulation of food intake and obesity in female mice

    OpenAIRE

    Kanaya, Noriko; Vonderfecht, Steven; Chen, Shiuan

    2013-01-01

    To better understand how elevated androgen levels regulate food intake and obesity in females, we treated ovariectomized female mice with dihydrotestosterone (non-aromatazable androgen), measured food intake and body weight, and evaluated physiological changes in liver function, glucose tolerance, and leptin resistance.

  18. Fatness rather than leptin sensitivity determines the timing of puberty in female mice.

    Science.gov (United States)

    Bohlen, Tabata M; Silveira, Marina A; Zampieri, Thais T; Frazão, Renata; Donato, Jose

    2016-03-05

    Leptin is a permissive factor for the onset of puberty. However, changes in adiposity frequently influence leptin sensitivity. Thus, the objective of the present study was to investigate how changes in body weight, fatness, leptin levels and leptin sensitivity interact to control the timing of puberty in female mice. Pre-pubertal obesity, induced by raising C57BL/6 mice in small litters, led to an early puberty onset. Inactivation of Socs3 gene in the brain or exclusively in leptin receptor-expressing cells reduced the body weight and leptin levels at pubertal onset, and increased leptin sensitivity. Notably, these female mice exhibited significant delays in vaginal opening, first estrus and onset of estrus cyclicity. In conclusion, our findings suggest that increased leptin sensitivity did not play an important role in favoring pubertal onset in female mice. Rather, changes in pubertal body weight, fatness and/or leptin levels were more important in influencing the timing of puberty.

  19. The role of p38 in mitochondrial respiration in male and female mice.

    Science.gov (United States)

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Estradiol enhances object recognition memory in Swiss female mice by activating hippocampal estrogen receptor α.

    Science.gov (United States)

    Pereira, Luciana M; Bastos, Cristiane P; de Souza, Jéssica M; Ribeiro, Fabíola M; Pereira, Grace S

    2014-10-01

    In rodents, 17β-estradiol (E2) enhances hippocampal function and improves performance in several memory tasks. Regarding the object recognition paradigm, E2 commonly act as a cognitive enhancer. However, the types of estrogen receptor (ER) involved, as well as the underlying molecular mechanisms are still under investigation. In the present study, we asked whether E2 enhances object recognition memory by activating ERα and/or ERβ in the hippocampus of Swiss female mice. First, we showed that immediately post-training intraperitoneal (i.p.) injection of E2 (0.2 mg/kg) allowed object recognition memory to persist 48 h in ovariectomized (OVX) Swiss female mice. This result indicates that Swiss female mice are sensitive to the promnesic effects of E2 and is in accordance with other studies, which used C57/BL6 female mice. To verify if the activation of hippocampal ERα or ERβ would be sufficient to improve object memory, we used PPT and DPN, which are selective ERα and ERβ agonists, respectively. We found that PPT, but not DPN, improved object memory in Swiss female mice. However, DPN was able to improve memory in C57/BL6 female mice, which is in accordance with other studies. Next, we tested if the E2 effect on improving object memory depends on ER activation in the hippocampus. Thus, we tested if the infusion of intra-hippocampal TPBM and PHTPP, selective antagonists of ERα and ERβ, respectively, would block the memory enhancement effect of E2. Our results showed that TPBM, but not PHTPP, blunted the promnesic effect of E2, strongly suggesting that in Swiss female mice, the ERα and not the ERβ is the receptor involved in the promnesic effect of E2. It was already demonstrated that E2, as well as PPT and DPN, increase the phospho-ERK2 level in the dorsal hippocampus of C57/BL6 mice. Here we observed that PPT increased phospho-ERK1, while DPN decreased phospho-ERK2 in the dorsal hippocampus of Swiss female mice subjected to the object recognition sample phase

  1. Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yani [Department of Neurology and Neurological Sciences, Stanford University, Stanford, California (United States); Leu, David [Department of Neurology and Neurological Sciences, Stanford University, Stanford, California (United States); Palo Alto Institute of Research and Education, Palo Alto, California (United States); Chui, Jennifer [Department of Neurology and Neurological Sciences, Stanford University, Stanford, California (United States); Fike, John R. [Departments of Neurosurgery and Radiation Oncology, University of California, San Francisco, California (United States); Huang, Ting-Ting, E-mail: tthuang@stanford.edu [Department of Neurology and Neurological Sciences, Stanford University, Stanford, California (United States); VA Palo Alto Health Care System, Palo Alto, California (United States)

    2013-11-15

    Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted.

  2. Studies on the dominant-lethal and fertility effects of the heavy metal compounds methylmercuric hydroxide, mercuric hydroxide, mercuric chloride, and cadmium chloride in male and female mice

    Energy Technology Data Exchange (ETDEWEB)

    Suter, K.E.

    1975-01-01

    Dominant-lethal effects of 10 mg/kg methylmercuric hydroxide were studied in male mice from two hybrid stocks and in females from one of these stocks. Two other compounds, mercuric chloride (2 mg/kg) and cadmium chloride (2 mg/kg), were studied only in females for dominant-lethal (in one hybrid stock) and reproductive capacity effects (in two hybrid and one mixed stocks). All compounds were administered in a single intraperitoneal injection. When males of one of the two stocks studied were treated with methylmercuric hydroxide, the females to which they were mated exhibited a slight reduction in the total number of implantations and in the number of living embryos. These reductions were accompanied by a very small increase in the incidence of dead implantations. In females, cadmium chloride had no detectable dominant-lethal or other fertility effects, except superovulation. On the other hand, the two mercury compounds slightly reduced the numbers of implants and living embryos in females subjected to dominant-lethal studies. The two mercury compounds also induced a slight reduction in the long-term reproductive performance of one stock of females. These results, and those reported earlier by others, indicate that the mercury compounds studied so far are not potent inducers of dominant-lethal mutations in male and female mice. It is not clear whether the small effects on male or female fertility induced in some cases, particularly the increase in dead implantations and reductions in the number of living embryos, were attributable to dominant-lethal mutations or to nongenetic causes. (auth)

  3. Androgen (dihydrotestosterone)-mediated regulation of food intake and obesity in female mice.

    Science.gov (United States)

    Kanaya, Noriko; Vonderfecht, Steven; Chen, Shiuan

    2013-11-01

    To better understand how elevated androgen levels regulate food intake and obesity in females, we treated ovariectomized female mice with dihydrotestosterone (DHT) (non-aromatazable androgen), measured food intake and body weight, and evaluated physiological changes in liver function, glucose tolerance, and leptin resistance. Ovariectomized mice were treated with DHT or placebo. Mice were then fed a high fat diet under free-feeding or pair-feeding conditions for 3 months. We found that when DHT-treated ovariectomized mice had free access to food (free-feeding), they had increased food intake and higher body weight compared with control animals. These mice also had a significantly greater accumulation of fat in the liver and exhibited increased fasting glucose, impaired glucose tolerance, and resistance to leptin. However, when these mice were placed on a restricted diet and fed the same caloric amounts as controls (pair-feeding), their body weight increased at the same rate as control animals. This suggests that androgen regulates food intake through altered leptin sensitivity, and this increase of food intake could significantly contribute to an obesity phenotype. In summary, we demonstrated a role for androgen in the regulation of food intake and weight gain in females using a mouse model. This model will be useful to further elucidate the role of elevated androgen in females. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. GPR30 regulates diet-induced adiposity in female mice and adipogenesis in vitro

    Science.gov (United States)

    Wang, Aihua; Luo, Jing; Moore, William; Alkhalidy, Hana; Wu, Ling; Zhang, Jinhua; Zhen, Wei; Wang, Yao; Clegg, Deborah J.; Bin Xu; Cheng, Zhiyong; McMillan, Ryan P.; Hulver, Matthew W.; Liu, Dongmin

    2016-01-01

    Recent studies showed that GPR30, a seven-transmembrane G-protein-coupled receptor, is a novel estrogen receptor (ER) that mediates some biological events elicited by estrogen in several types of cancer cells. However, its physiological or pathological role in vivo is unclear. Here, we show that GPR30 knockout (GPRKO) female mice were protected from high-fat diet (HFD)-induced obesity, blood glucose intolerance, and insulin resistance. The decreased body weight gain in GPRKO female mice is due to the reduction in body fat mass. These effects occurred in the absence of significant changes in food intake, intestinal fat absorption, triglyceride metabolism, or energy expenditure. However, GPR30 had no significant metabolic effects in male mice fed the HFD and both sexes of mice fed a chow diet. Further, GPR30 expression levels in fat tissues of WT obese female mice were greatly increased, whereas ERα and β expression was not altered. Deletion of GPR30 reduced adipogenic differentiation of adipose tissue-derived stromal cells. Conversely, activation of GPR30 enhanced adipogenic differentiation of 3T3-L1 preadipocytes. These findings provide evidence for the first time that GPR30 promotes adipogenesis and therefore the development of obesity in female mice exposed to excess fat energy. PMID:27698362

  5. Hyperprolactinemia induced by hCG leads to metabolic disturbances in female mice.

    Science.gov (United States)

    Ratner, Laura D; Stevens, Guillermina; Bonaventura, Maria Marta; Lux-Lantos, Victoria A; Poutanen, Matti; Calandra, Ricardo S; Huhtaniemi, Ilpo T; Rulli, Susana B

    2016-07-01

    The metabolic syndrome is a growing epidemic; it increases the risk for diabetes, cardiovascular disease, fatty liver, and several cancers. Several reports have indicated a link between hormonal imbalances and insulin resistance or obesity. Transgenic (TG) female mice overexpressing the human chorionic gonadotropin β-subunit (hCGβ+ mice) exhibit constitutively elevated levels of hCG, increased production of testosterone, progesterone and prolactin, and obesity. The objective of this study was to investigate the influence of hCG hypersecretion on possible alterations in the glucose and lipid metabolism of adult TG females. We evaluated fasting serum insulin, glucose, and triglyceride levels in adult hCGβ+ females and conducted intraperitoneal glucose and insulin tolerance tests at different ages. TG female mice showed hyperinsulinemia, hypertriglyceridemia, and dyslipidemia, as well as glucose intolerance and insulin resistance at 6 months of age. A 1-week treatment with the dopamine agonist cabergoline applied on 5-week-old hCGβ+ mice, which corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, effectively prevented the metabolic alterations. These data indicate a key role of the hyperprolactinemia-induced gonadal dysfunction in the metabolic disturbances of hCGβ+ female mice. The findings prompt further studies on the involvement of gonadotropins and prolactin on metabolic disorders and might pave the way for the development of new therapeutic strategies. © 2016 Society for Endocrinology.

  6. Lepidium meyenii (Maca increases litter size in normal adult female mice

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2005-05-01

    Full Text Available Abstract Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i Reproductive indexes group, ii Implantation sites group and iii Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to

  7. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    Directory of Open Access Journals (Sweden)

    David A Cappel

    Full Text Available Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD. Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α. These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  8. CETP Expression Protects Female Mice from Obesity-Induced Decline in Exercise Capacity.

    Science.gov (United States)

    Cappel, David A; Lantier, Louise; Palmisano, Brian T; Wasserman, David H; Stafford, John M

    2015-01-01

    Pharmacological approaches to reduce obesity have not resulted in dramatic reductions in the risk of coronary heart disease (CHD). Exercise, in contrast, reduces CHD risk even in the setting of obesity. Cholesteryl Ester Transfer Protein (CETP) is a lipid transfer protein that shuttles lipids between serum lipoproteins and tissues. There are sexual-dimorphisms in the effects of CETP in humans. Mice naturally lack CETP, but we previously reported that transgenic expression of CETP increases muscle glycolysis in fasting and protects against insulin resistance with high-fat diet (HFD) feeding in female but not male mice. Since glycolysis provides an important energy source for working muscle, we aimed to define if CETP expression protects against the decline in exercise capacity associated with obesity. We measured exercise capacity in female mice that were fed a chow diet and then switched to a HFD. There was no difference in exercise capacity between lean, chow-fed CETP female mice and their non-transgenic littermates. Female CETP transgenic mice were relatively protected against the decline in exercise capacity caused by obesity compared to WT. Despite gaining similar fat mass after 6 weeks of HFD-feeding, female CETP mice showed a nearly two-fold increase in run distance compared to WT. After an additional 6 weeks of HFD-feeding, mice were subjected to a final exercise bout and muscle mitochondria were isolated. We found that improved exercise capacity in CETP mice corresponded with increased muscle mitochondrial oxidative capacity, and increased expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). These results suggest that CETP can protect against the obesity-induced impairment in exercise capacity and may be a target to improve exercise capacity in the context of obesity.

  9. Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice.

    Science.gov (United States)

    Huby, Anne-Cécile; Otvos, Laszlo; Belin de Chantemèle, Eric J

    2016-05-01

    Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympathetic tone with obesity. Nevertheless, females show inappropriately high aldosterone levels that positively correlate with adiposity and blood pressure (BP). We hypothesized that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in females. Leptin control of the cardiovascular function was analyzed in female mice sensitized to leptin via the deletion of protein tyrosine phosphatase 1b (knockout) and in agouti yellow obese hyperleptinemic mice (Ay). Hypersensitivity to leptin (wild-type, 115 ± 2; protein tyrosine phosphatase 1b knockout, 124 ± 2 mm Hg; Pleptin receptor antagonism restored BP and endothelial function in protein tyrosine phosphatase 1b knockout and Ay mice. Hypersensitivity to leptin and obesity reduced BP response to ganglionic blockade in both strains and plasma catecholamine levels in protein tyrosine phosphatase 1b knockout mice. Hypersensitivity to leptin and obesity significantly increased plasma aldosterone levels and adrenal CYP11B2 expression. Chronic leptin receptor antagonism reduced aldosterone levels. Furthermore, chronic leptin and mineralocorticoid receptor blockade reduced BP and improved endothelial function in both leptin-sensitized and obese hyperleptinemic female mice. Together, these data demonstrate that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in female mice and suggest that obesity leads to cardiovascular disease via sex-specific mechanisms.

  10. How early life experience shapes mate preference in female mice

    OpenAIRE

    Dias, António José da Silva, 1990-

    2013-01-01

    Tese de mestrado. Biologia (Biologia Evolutiva e do Desenvolvimento). Universidade de Lisboa, Faculdade de Ciências, 2013 Mate choice is an evolutionary process with a profound impact in species morphology, behavioural displays and overall success. We are interested in understanding the proximate mechanisms underlying the assortative mate choice exhibited by Mus musculus musculus females when given a choice between a male of their own subspecies and a male from the closely related subspeci...

  11. Male and Female Mice Lacking Neuroligin-3 Modify the Behavior of Their Wild-Type Littermates.

    Science.gov (United States)

    Kalbassi, Shireene; Bachmann, Sven O; Cross, Ellen; Roberton, Victoria H; Baudouin, Stéphane J

    2017-01-01

    In most mammals, including humans, the postnatal acquisition of normal social and nonsocial behavior critically depends on interactions with peers. Here we explore the possibility that mixed-group housing of mice carrying a deletion of Nlgn3, a gene associated with autism spectrum disorders, and their wild-type littermates induces changes in each other's behavior. We have found that, when raised together, male Nlgn3 knockout mice and their wild-type littermates displayed deficits in sociability. Moreover, social submission in adult male Nlgn3 knockout mice correlated with an increase in their anxiety. Re-expression of Nlgn3 in parvalbumin-expressing cells in transgenic animals rescued their social behavior and alleviated the phenotype of their wild-type littermates, further indicating that the social behavior of Nlgn3 knockout mice has a direct and measurable impact on wild-type animals' behavior. Finally, we showed that, unlike male mice, female mice lacking Nlgn3 were insensitive to their peers' behavior but modified the social behavior of their littermates. Altogether, our findings show that the environment is a critical factor in the development of behavioral phenotypes in transgenic and wild-type mice. In addition, these results reveal that the social environment has a sexually dimorphic effect on the behavior of mice lacking Nlgn3, being more influential in males than females.

  12. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice

    DEFF Research Database (Denmark)

    Jall, Sigrid; Sachs, Stephan; Clemmensen, Christoffer

    2017-01-01

    . RESULTS: Our results show that GLP-1/GIP/glucagon triple agonism inhibits food intake and decreases body weight and body fat mass with comparable potency in male and female mice that have been matched for body fat mass. Treatment improved dyslipidemia in both sexes and reversed diet......OBJECTIVE: Obesity is a major health threat that affects men and women equally. Despite this fact, weight-loss potential of pharmacotherapies is typically first evaluated in male mouse models of diet-induced obesity (DIO). To address this disparity we herein determined whether a monomeric peptide...... mice and a cohort of fatmass-matched C57BL/6J male mice were treated for 27 days via subcutaneous injections with either the GLP-1/GIP/glucagon triagonist or PBS. A second cohort of C57BL/6J male mice was included to match the females in the duration of the high-fat, high-sugar diet (HFD) exposure...

  13. Paradoxical effects of partial leptin deficiency on bone in growing female mice.

    Science.gov (United States)

    Philbrick, Kenneth A; Turner, Russell T; Branscum, Adam J; Wong, Carmen P; Iwaniec, Urszula T

    2015-12-01

    Morbidly obese, leptin-deficient ob/ob mice display low bone mass, mild osteoclast-rich osteopetrosis, and increased bone marrow adiposity. While partial leptin deficiency results in increased weight, the skeletal manifestations of partial leptin deficiency are less well defined. We therefore analyzed femora and lumbar vertebrae in growing (7-week-old) female C57BL/6 wildtype (WT) mice, partial leptin-deficient ob/+ mice, and leptin-deficient ob/ob mice. The bones were evaluated by dual energy absorptiometry, microcomputed tomography and histomorphometry. As expected, ob/+ mice were heavier, had more white adipose tissue, and lower serum leptin than WT mice, but were lighter and had less white adipose tissue than ob/ob mice. With a few exceptions, cancellous bone architecture, cell (osteoblast, osteoclast, and adipocyte), and dynamic measurements did not differ between WT and ob/+ mice. In contrast, compared to WT and ob/+ mice, ob/ob mice had lower cancellous bone volume fraction, and higher bone marrow adiposity in the femur metaphysis, and higher cancellous bone volume fraction in lumbar vertebra. Paradoxically, ob/+ mice had greater femoral bone volume than either WT or ob/ob mice. There was a positive correlation between body weight and femur volume in all three genotypes. However, the positive effect of weight on bone occurred with lower body weight in leptin-producing mice. The paradoxical differences in bone size among WT, ob/+, and ob/ob mice may be explained if leptin, in addition to stimulating bone growth and cancellous bone turnover, acts to lower the set-point at which increased body weight leads to a commensurate increase in bone size. © 2015 Wiley Periodicals, Inc.

  14. Potential contribution of progesterone receptors to the development of sexual behavior in male and female mice.

    Science.gov (United States)

    Desroziers, Elodie; Brock, Olivier; Bakker, Julie

    2016-05-07

    We previously showed that estradiol can have both defeminizing and feminizing effects on the developing mouse brain. Pre- and early postnatal estradiol defeminized the ability to show lordosis in adulthood, whereas prepubertal estradiol feminized this ability. Furthermore, we found that estradiol upregulates progesterone receptors (PR) during development, inducing both a male-and female-typical pattern of PR expression in the mouse hypothalamus. In the present study, we took advantage of a newly developed PR antagonist (ZK 137316) to determine whether PR contributes to either male- or female-typical sexual differentiation. Thus groups of male and female C57Bl/6j mice were treated with ZK 137316 or OIL as control: males were treated neonatally (P0-P10), during the critical period for male sexual differentiation, and females were treated prepubertally (P15-P25), during the critical period for female sexual differentiation. In adulthood, mice were tested for sexual behavior. In males, some minor effects of neonatal ZK treatment on sexual behavior were observed: latencies to the first mount, intromission and ejaculation were decreased in neonatally ZK treated males; however, this effect disappeared by the second mating test. By contrast, female mice treated with ZK during the prepubertal period showed significantly less lordosis than OIL-treated females. Mate preferences were not affected in either males or females treated with ZK during development. Taken together, these results suggest a role for PR and thus perhaps progesterone in the development of lordosis behavior in female mice. By contrast, no obvious role for PR can be discerned in the development of male sexual behavior.

  15. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  16. Novel behavioural characteristics of female APPSwe/PS1ΔE9 double transgenic mice.

    Science.gov (United States)

    Cheng, David; Low, Jac Kee; Logge, Warren; Garner, Brett; Karl, Tim

    2014-03-01

    Murine models are commonly used to evaluate progression of Alzheimer's disease. APPSwe/PS1ΔE9 (APPxPS1) mice have previously been reported to demonstrate impaired learning and memory in the Morris water maze test. However, this paradigm introduces a variety of behaviours that may confound performance of the mice, thus an alternative was sought. A battery of behavioural tests (light-dark test, elevated plus maze, novel object recognition task, social recognition test, cheeseboard task and prepulse inhibition) was used to investigate various behavioural and cognitive domains with relevance to Alzheimer's disease. We found 9-month old female APPxPS1 mice exhibited impaired spatial memory in the reversal cheeseboard task. In addition, task-dependent hyperlocomotion and anxiolytic-like behaviours were observed in the light-dark test. Female APPxPS1 demonstrated intact object recognition memory and sensorimotor gating was not significantly decreased compared to control mice except for one particular interstimulus interval. The social recognition test failed to detect preference for social novelty in control females. In conclusion, this is the first study to describe a memory deficit in female APPxPS1 mice in the hidden cheeseboard task. Transgenic females also exhibited task-dependent reduction in anxiety behaviours and hyperlocomotion. These novel findings enhance our understanding of the behavioural phenotype of APPxPS1 females and present the cheeseboard as a valid alternative to other established spatial memory tests. Furthermore, the task-dependency of some of our findings suggests that behavioural profiling of APPxPS1 transgenic mice should be assessed using a variety of behavioural paradigms.

  17. Enhanced pelvic responses to stressors in female CRF-overexpressing mice.

    Science.gov (United States)

    Million, M; Wang, L; Stenzel-Poore, M P; Coste, S C; Yuan, P Q; Lamy, C; Rivier, J; Buffington, T; Taché, Y

    2007-04-01

    Acute stress affects gut functions through the activation of corticotropin-releasing factor (CRF) receptors. The impact of acute stress on pelvic viscera in the context of chronic stress is not well characterized. We investigated the colonic, urinary, and locomotor responses monitored as fecal pellet output (FPO), urine voiding, and ambulatory activity, respectively, in female and male CRF-overexpressing (CRF-OE) mice, a chronic stress model, and their wild-type littermates (WTL). Female CRF-OE mice, compared with WTL, had enhanced FPO to 2-min handling (150%) and 60-min novel environment (155%) but displayed a similar response to a 60-min partial restraint stress. Female CRF-OE mice, compared with WTL, also had a significantly increased number of urine spots (7.3 +/- 1.4 vs. 1.3 +/- 0.8 spots/h) and lower locomotor activity (246.8 +/- 47.8 vs. 388.2 +/- 31.9 entries/h) to a novel environment. Male CRF-OE mice and WTL both responded to a novel environment but failed to show differences between them in colonic and locomotor responses. Male WTL, compared with female WTL, had higher FPO (113%). In female CRF-OE mice, the CRF(1)/CRF(2) receptor antagonist astressin B and the selective CRF(2) receptor agonist mouse urocortin 2 (injected peripherally) prevented the enhanced defecation without affecting urine or locomotor responses to novel environment. RT-PCR showed that CRF(1) and CRF(2) receptors are expressed in the mouse colonic tissues. The data show that chronic stress, due to continuous central CRF overdrive, renders female CRF-OE mice to have enhanced pelvic and altered behavioral responses to superimposed mild stressors and that CRF(1)-initiated colonic response is counteracted by selective activation of CRF(2) receptor.

  18. Visualising androgen receptor activity in male and female mice.

    Directory of Open Access Journals (Sweden)

    D Alwyn Dart

    Full Text Available Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR, a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic "ARE-Luc" mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands, adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds.

  19. Male mice song syntax depends on social contexts and influences female preferences

    Directory of Open Access Journals (Sweden)

    Jonathan eChabout

    2015-04-01

    Full Text Available In 2005 Holy & Guo advanced the idea that male mice produce ultrasonic vocalizations (USV with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

  20. Male mice song syntax depends on social contexts and influences female preferences.

    Science.gov (United States)

    Chabout, Jonathan; Sarkar, Abhra; Dunson, David B; Jarvis, Erich D

    2015-01-01

    In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.

  1. Loss of Bmal1 decreases oocyte fertilization, early embryo development and implantation potential in female mice.

    Science.gov (United States)

    Xu, Jian; Li, Yan; Wang, Yizi; Xu, Yanwen; Zhou, Canquan

    2016-10-01

    Biological clock genes expressed in reproductive tissues play important roles in maintaining the normal functions of reproductive system. However, disruption of female circadian rhythm on oocyte fertilization, preimplantation embryo development and blastocyst implantation potential is still unclear. In this study, ovulation, in vivo and in vitro oocyte fertilization, embryo development, implantation and intracellular reactive oxygen species (ROS) levels in ovary and oviduct were studied in female Bmal1+/+ and Bmal1-/- mice. The number of naturally ovulated oocyte in Bmal1-/- mice decreased (5.2 ± 0.8 vs 7.8 ± 0.8, P fertilization rate and obtained blastocyst number were observed in Bmal1-/- female mice either mated with wild-type in vivo or fertilized by sperm from wild-type male mice in vitro (all P fertilization rate of oocytes derived from Bmal1-/- increased significantly compared with in vivo study (P fertilization rate, early embryo development and implantation potential in female mice, and these may be possibly caused by excess ROS levels generated in ovary and oviduct.

  2. The lonely mouse: verification of a separation-induced model of depression in female mice.

    Science.gov (United States)

    Martin, Alison L; Brown, Richard E

    2010-02-11

    Animal models of depression seldom test females, even though women are twice as likely as men to suffer from major depressive disorder. Since female mice are sensitive to social isolation, we tested a separation-based model of depression in three experiments. In experiment 1 female C57BL/6J mice were housed in three conditions: isolated (housed individually from 8 weeks of age), separated (housed in groups and then separated and housed individually at 23 weeks of age) and grouped (housed in groups from 8 weeks of age). At 24 weeks of age, there was a significant increase in weight and in immobility in individually housed mice in the forced swim test (FST) and tail suspension test (TST), a reduction in transitions in the L/D box, a reduced startle response and reduced prepulse inhibition, but no differences in cued or context fear conditioning. Experiment 2 showed that fluoxetine treatment administered via drinking water attenuated depressive-like behaviour in the FST and TST in individually housed female C57BL/6J mice, but had no effect on anxiety-like behaviour. Experiment 3 found that group-housed females had higher baseline corticosterone (CORT) levels than isolated females and fluoxetine had no effect on CORT levels. Thus, separation from group housing is a reliable and valid method for inducing depression-like behaviour in female mice. This procedure is both versatile, allowing for the study of genetic and environmental interactions, and accessible, making it useful for studying depression and testing new drugs for its treatment.

  3. Female scent signals enhance the resistance of male mice to influenza.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Litvinova

    Full Text Available BACKGROUND: The scent from receptive female mice functions as a signal, which stimulates male mice to search for potential mating partners. This searching behavior is coupled with infection risk due to sniffing both scent marks as well as nasal and anogenital areas of females, which harbor bacteria and viruses. Consideration of host evolution under unavoidable parasitic pressures, including helminthes, bacteria, viruses, etc., predicts adaptations that help protect hosts against the parasites associated with mating. METHODS AND FINDINGS: We propose that the perception of female signals by BALB/c male mice leads to adaptive redistribution of the immune defense directed to protection against respiratory infection risks. Our results demonstrate migration of macrophages and neutrophils to the upper airways upon exposure to female odor stimuli, which results in an increased resistance of the males to experimental influenza virus infection. This moderate leukocyte intervention had no negative effect on the aerobic performance in male mice. CONCLUSIONS: Our data provide the first demonstration of the adaptive immunological response to female odor stimuli through induction of nonspecific immune responses in the upper respiratory tract.

  4. [Sexual motivation in male mice induced by the presence of the female].

    Science.gov (United States)

    Popova, N K; Amstislavskaia, T G; Kucheriavyĭ, S A

    1998-01-01

    Receptive female mouse placed in a cage behind a partition which prevented physical contacts but allowed the female to be smelt and seen produced in CBA and A/He males an elevation of plasma testosterone level and increase in time spent near the partition (TSNP) in attempts to reach the female. Both in CBA and A/He males the TSNP was much higher than in controls with empty adjacent compartment or with a male in it. The number of approaches to the partition was also increased but not sex-depended reflecting the general motor excitement of animals. A 3-4-fold increase in the TSNP preceding blood testosterone elevation was found within the first 10 min of female exposure. It was suggested that sexual motivation in males induced by female exposure was not caused by testosterone increase. The TSNP in male mice produced by female exposure can be used as an adequate index of sexual motivation.

  5. Male mice emit distinct ultrasonic vocalizations when the female leaves the social interaction arena

    Directory of Open Access Journals (Sweden)

    Mu eYang

    2013-11-01

    Full Text Available Adult male mice emit large number of complex ultrasonic vocalizations (USVs when interacting with adult females. Call numbers and call categories differ greatly among inbred mouse strains. Little is known about USV emissions when the social partner departs. To investigate whether call repertoires and call rates are different when the male is interacting with a female and after the removal of the female, we designed a novel male-female social interaction test in which vocalizations were recorded across three phases. During phase 1, the male subject freely interacts with an unfamiliar estrus female mouse in a clean cage for 5 minutes. During phase 2, the female is removed while the male remains in the cage for 3 minutes. During phase 3, the same female is returned to the cage to rejoin the male subject mouse for 3 minutes. C57BL/6J (B6, FVB.129P2-Pde6b(+ Tyr(c-ch/Ant (FVB, and BTBR T+ tf/J (BTBR male subject mice were tested in this paradigm. All three strains emitted USVs during the absence of the estrous female, although at lower rates. When the female was reintroduced in phase 3, numbers of USVs were similar to the initial introductory phase 1. Strain comparisons indicated fewer calls in pairs of BTBR males and stimulus females than in pairs of B6 males and stimulus females and pairs of FVB males and stimulus females. In the absence of the female, all FVB males vocalized, while only one third of B6 males and one third of BTBR males vocalized. In all three strains, changes in call repertoires were detected after the female was removed. Call categories reverted to the phase 1 pattern when the female was returned in phase 3. Present findings indicate that males of commonly used inbred strains emit USVs when a partner female leaves the testing arena, suggesting that removing a salient social stimulus may be a unique approach to elicit USVs from mice. Our three-phase paradigm may also be useful for studying attention to social cues, and qualitative

  6. Morphological Alterations in Gastrocnemius and Soleus Muscles in Male and Female Mice in a Fibromyalgia Model.

    Directory of Open Access Journals (Sweden)

    Gabriel Alejandro Bonaterra

    Full Text Available Fibromyalgia (FM is a chronic musculoskeletal pain disorder, characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances, however often with unknown etiology. According to recent reports, physical and psychological stress trigger FM. To develop new treatments for FM, experimental animal models for FM are needed to be development and characterized. Using a mouse model for FM including intermittent cold stress (ICS, we hypothesized that ICS leads to morphological alterations in skeletal muscles in mice.Male and female ICS mice were kept under alternating temperature (4 °C/room temperature [22 °C]; mice constantly kept at room temperature served as control. After scarification, gastrocnemius and soleus muscles were removed and snap-frozen in liquid nitrogen-cooled isopentane or fixed for electron microscopy.In gastrocnemius/soleus muscles of male ICS mice, we found a 21.6% and 33.2% decrease of fiber cross sectional area (FCSA, which in soleus muscle concerns the loss of type IIa and IIx FCSA. This phenomenon was not seen in muscles of female ICS mice. However, this loss in male ICS mice was associated with an increase in gastrocnemius of the density of MIF+ (8.6%-, MuRF+ (14.7%-, Fbxo32+ (17.8%-cells, a 12.1% loss of capillary contacts/muscle fiber as well as a 30.7% increase of damaged mitochondria in comparison with male control mice. Moreover, significant positive correlations exist among densities (n/mm(2 of MIF+, MuRF+, Fbxo32+-cells in gastrocnemius/ soleus muscles of male ICS mice; these cell densities inversely correlate with FCSA especially in gastrocnemius muscle of male ICS mice.The ICS-induced decrease of FCSA mainly concerns gastrocnemius muscle of male mice due to an increase of inflammatory and atrogenic cells. In soleus muscle of male ICS and soleus/gastrocnemius muscles of female ICS mice morphological alterations seem to occur not at all or delayed. The sex-specificity of

  7. Morphological Alterations in Gastrocnemius and Soleus Muscles in Male and Female Mice in a Fibromyalgia Model

    Science.gov (United States)

    Oezel, Lisa; Schwarzbach, Hans; Ocker, Matthias; Thieme, Kati; Di Fazio, Pietro; Kinscherf, Ralf

    2016-01-01

    Background Fibromyalgia (FM) is a chronic musculoskeletal pain disorder, characterized by chronic widespread pain and bodily tenderness and is often accompanied by affective disturbances, however often with unknown etiology. According to recent reports, physical and psychological stress trigger FM. To develop new treatments for FM, experimental animal models for FM are needed to be development and characterized. Using a mouse model for FM including intermittent cold stress (ICS), we hypothesized that ICS leads to morphological alterations in skeletal muscles in mice. Methods Male and female ICS mice were kept under alternating temperature (4°C/room temperature [22°C]); mice constantly kept at room temperature served as control. After scarification, gastrocnemius and soleus muscles were removed and snap-frozen in liquid nitrogen–cooled isopentane or fixed for electron microscopy. Results In gastrocnemius/soleus muscles of male ICS mice, we found a 21.6% and 33.2% decrease of fiber cross sectional area (FCSA), which in soleus muscle concerns the loss of type IIa and IIx FCSA. This phenomenon was not seen in muscles of female ICS mice. However, this loss in male ICS mice was associated with an increase in gastrocnemius of the density of MIF+ (8.6%)-, MuRF+ (14.7%)-, Fbxo32+ (17.8%)-cells, a 12.1% loss of capillary contacts/muscle fiber as well as a 30.7% increase of damaged mitochondria in comparison with male control mice. Moreover, significant positive correlations exist among densities (n/mm2) of MIF+, MuRF+, Fbxo32+-cells in gastrocnemius/ soleus muscles of male ICS mice; these cell densities inversely correlate with FCSA especially in gastrocnemius muscle of male ICS mice. Conclusion The ICS-induced decrease of FCSA mainly concerns gastrocnemius muscle of male mice due to an increase of inflammatory and atrogenic cells. In soleus muscle of male ICS and soleus/gastrocnemius muscles of female ICS mice morphological alterations seem to occur not at all or

  8. Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice.

    Science.gov (United States)

    Frick, Karyn M; Fernandez, Stephanie M

    2003-01-01

    The present study tested whether environmental enrichment can reduce age-related spatial reference memory deficits and alter synaptic protein levels in aged female mice. Female C57BL/6 mice, (4 or 27-28 months), were tested in spatial and cued Morris water maze tasks. Prior to (14 days) and during testing, a subset of aged females was exposed to rodent toys and running wheels for 3h per day. The remaining aged females were group housed but were not exposed to enriching objects. At the conclusion of testing, levels of the presynaptic protein synaptophysin were measured in hippocampus and frontoparietal cortex. Enrichment improved spatial memory acquisition; relative to young controls, aged enriched females performed similarly, whereas aged control females were impaired. Enrichment also accelerated the development of a spatial bias in spatial probe trials. In contrast, the cued task was not significantly affected by enrichment. Hippocampal and cortical synaptophysin levels were increased in aged enriched females relative to young and aged controls. These data suggest that environmental enrichment can be a potent cognitive enhancer for aged females and suggests a potential neurobiological mechanism of this effect.

  9. Can alternative mating tactics facilitate introgression across a hybrid zone by circumventing female choice?

    Science.gov (United States)

    Stewart, K A; Hudson, C M; Lougheed, S C

    2017-02-01

    Reproductive barriers and divergence in species' mate recognition systems underlie major models of speciation. However, hybridization between divergent species is common, and classic mechanisms to explain permeable reproductive barriers rarely consider how an individual may attain reproductive success. Alternative mating tactics (AMTs) exist in various forms across animal taxa. Such tactics may allow poorer quality individuals to gain mating opportunities and facilitate introgression either through asymmetrical positive selection or by circumventing female choice altogether in areas of secondary contact. One such tactic is satellite behaviour in frogs, where silent males perch near advertisers in an attempt to intercept females. To test whether such satellite male tactics are context-dependent and favoured by hybrids, we genotyped and quantified the morphology of 80 male spring peeper (Pseudacris crucifer) individuals involved in caller-satellite associations from a secondary contact zone between two intraspecific mitochondrial lineages. Irrespective of population, satellite behaviour was best predicted by size but not body condition. Within the contact zone, pure individuals showed a significantly greater probability of being active callers, whereas hybrids of one lineage were more likely to adopt the satellite tactic. We suggest that satellite behaviour in P. crucifer promotes introgression, breaks down reproductive isolating barriers and contributes to asymmetrical introgression in this secondary contact zone. AMTs may thus be an underexplored but important alternative to oft-discussed causes of genetic discordance found in hybrid zones.

  10. Gender- and region-specific alterations in bone metabolism in Scarb1-null female mice.

    Science.gov (United States)

    Martineau, Corine; Martin-Falstrault, Louise; Brissette, Louise; Moreau, Robert

    2014-08-01

    A positive correlation between plasma levels of HDL and bone mass has been reported by epidemiological studies. As scavenger receptor class B, type I (SR-BI), the gene product of Scarb1, is known to regulate HDL metabolism, we recently characterized bone metabolism in Scarb1-null mice. These mice display high femoral bone mass associated with enhanced bone formation. As gender differences have been reported in HDL metabolism and SR-BI function, we investigated gender-specific bone alterations in Scarb1-null mice by microtomography and histology. We found 16% greater relative bone volume and 39% higher bone formation rate in the vertebrae from 2-month-old Scarb1-null females. No such alteration was seen in males, indicating gender- and region-specific differences in skeletal phenotype. Total and HDL-associated cholesterol levels, as well as ACTH plasma levels, were increased in both Scarb1-null genders, the latter being concurrent to impaired corticosterone response to fasting. Plasma levels of estradiol did not differ between null and WT females, suggesting that the estrogen metabolism alteration is not relevant to the higher vertebral bone mass in female Scarb1-null mice. Constitutively, high plasma levels of leptin along with 2.5-fold increase in its expression in white adipose tissue were measured in female Scarb1-null mice only. In vitro exposure of bone marrow stromal cells to ACTH and leptin promoted osteoblast differentiation as evidenced by increased gene expression of osterix and collagen type I alpha. Our results suggest that hyperleptinemia may account for the gender-specific high bone mass seen in the vertebrae of female Scarb1-null mice.

  11. Stress and estrous cycle affect strategy but not performance of female C57BL/6J mice.

    Science.gov (United States)

    ter Horst, J P; Kentrop, J; de Kloet, E R; Oitzl, M S

    2013-03-15

    Stress induces a switch in learning strategies of male C57BL/6J mice from predominantly spatial to more stimulus-response learning. To study generalization of these findings over sex, we investigated female C57BL/6J mice at three phases of the estrous cycle under non stress and acute (10 min) restraint stress conditions. On a circular hole board (CHB) task, about half of the naive female mice used spatial and stimulus-response strategies to solve the task. Under stress, female mice favored spatial over stimulus-response strategies, with 100% of female mice in the estrus phase. Performance expressed as latency to solve the task is only improved in stressed female mice in the estrus phase. We conclude that the use of learning strategies is influenced by sex and this difference between sexes is aggravated by acute stress.

  12. Cadmium Increases the Sensitivity of Adolescent Female Mice to Nicotine-Related Behavioral Deficits

    Directory of Open Access Journals (Sweden)

    Philip Adeyemi Adeniyi

    2014-01-01

    Full Text Available This study investigates spatial and nonspatial working memory, anxiety related behavior, and motor activities in cadmium and/or nicotine exposed female adolescent mice. P28 female adolescent mice (albino strain were divided into four groups of five (n=5 mice each. A set of mice (Nic received subcutaneous nicotine (2.0 mg/kg while a separate set (Cd was treated with 2.0 mg/kg cadmium (subcutaneous. For the combined treatments of cadmium and nicotine, we administered 2.0 mg/kg Nicotine and 2.0 mg/kg of Cd. Subsequently, a separate group of animals (n=5; control received normal saline. The total duration of treatment for all groups was 28 days (P28–P56. At P56, the treatment was discontinued, after which the animals were examined in behavioural tests. Nicotine and cadmium increased the metabolism and food intake in the female adolescent mice. This also corresponded to an increase in weight when compared with the control. However, a combined nicotine-cadmium treatment induced a decline in weight of the animals versus the control. Also, nicotine administration increased the motor function, while cadmium and nicotine-cadmium treatment caused a decline in motor activity. Both nicotine and cadmium induced a reduction in memory index; however, nicotine-cadmium treatment induced the most significant decrease in nonspatial working memory.

  13. Efficacy of protocols for induction of chronic hyperthyroidism in male and female mice.

    Science.gov (United States)

    Engels, Kathrin; Rakov, Helena; Zwanziger, Denise; Hönes, Georg Sebastian; Rehders, Maren; Brix, Klaudia; Köhrle, Josef; Möller, Lars Christian; Führer, Dagmar

    2016-10-01

    Protocols for induction of hyperthyroidism in mice are highly variable and mostly involve short-term thyroid hormone (TH) treatment. In addition, little is known about a possible influence of sex on experimental TH manipulation. Here we analyzed the efficacy of intraperitoneal vs. oral levothyroxine (T4) administration to induce chronic hyperthyroidism in male and female mice and asked which T4 dosing intervals are required to achieve stable organ thyrotoxicosis. T4 was administered intraperitoneally or orally over a period of 6/7 weeks. Assessment included monitoring of body weight, TH serum concentrations, and serial quantitative TH target gene expression analysis in liver and heart. Our results show that both intraperitoneal and oral T4 treatment are reliable methods for induction of chronic hyperthyroidism in mice. Thereby T4 injection intervals should not exceed 48 h and oral levothyroxine should be administered continuously during experiments and up to sacrifice to ensure a hyperthyroid organ state. Furthermore, we found a sex-dependent variation in levothyroxine-induced TH serum state, with significantly higher T4 concentrations in female mice, while expression of investigated classical TH responsive genes in liver and heart did not vary with animal's sex. In summary, our study shows that common approaches for rendering rodents thyrotoxic can also be used for induction of chronic hyperthyroidism in male and female mice. Thereby T4 dosing intervals are critical as are read-out parameters to verify a chronic thyrotoxic organ state.

  14. Behavioral analysis of male and female Fmr1 knockout mice on C57BL/6 background.

    Science.gov (United States)

    Ding, Qi; Sethna, Ferzin; Wang, Hongbing

    2014-09-01

    Fragile X syndrome (FXS) is a monogenic disease caused by mutations in the FMR1 gene. The Fmr1 knockout (KO) mice show many aspects of FXS-related phenotypes, and have been used as a major pre-clinical model for FXS. Although FXS occurs in both male and female patients, most studies on the mouse model use male animals. Few studies test whether gender affects the face validity of the mouse model. Here, we examined multiple behavioral phenotypes with male hemizygous and female homozygous Fmr1 KO mice on C57BL/6 background. For each behavioral paradigm, we examined multiple cohorts from different litters. We found that both male and female Fmr1 KO mice displayed significant audiogenic seizures, hyperactivity in the open field test, deficits in passive avoidance and contextual fear memory, and significant enhancement of PPI at low stimulus intensity. Male and female Fmr1 KO mice also showed more transitional movement between the lit and dark chambers in the light-dark tests. The lack of gender effects suggests that the Fmr1 KO mouse is a reasonable tool to test the efficacy of potential FXS therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice

    DEFF Research Database (Denmark)

    Hougaard, Karin S.; Jackson, Petra; Kyjovska, Zdenka O.

    2013-01-01

    We studied the effects of preconceptional exposure to multiwalled carbon nanotubes (MWCNTs): mature, female C57BL/6J mice were intratracheally instilled with 67μg NM-400 MWCNT, and the following day co-housed with mature males, in breeding pairs. Time to delivery of the first litter, litter param...

  16. Disrupted reproduction, estrous cycle, and circadian rhythms in female mice deficient in vasoactive intestinal peptide.

    Science.gov (United States)

    Loh, D H; Kuljis, D A; Azuma, L; Wu, Y; Truong, D; Wang, H B; Colwell, C S

    2014-10-01

    The female reproductive cycle is gated by the circadian timing system and may be vulnerable to disruptions in the circadian system. Prior work suggests that vasoactive intestinal peptide (VIP)-expressing neurons in the suprachiasmatic nucleus (SCN) are one pathway by which the circadian clock can influence the estrous cycle, but the impact of the loss of this peptide on reproduction has not been assessed. In the present study, we first examine the impact of the genetic loss of the neuropeptide VIP on the reproductive success of female mice. Significantly, mutant females produce about half the offspring of their wild-type sisters even when mated to the same males. We also find that VIP-deficient females exhibit a disrupted estrous cycle; that is, ovulation occurs less frequently and results in the release of fewer oocytes compared with controls. Circadian rhythms of wheel-running activity are disrupted in the female mutant mice, as is the spontaneous electrical activity of dorsal SCN neurons. On a molecular level, the VIP-deficient SCN tissue exhibits lower amplitude oscillations with altered phase relationships between the SCN and peripheral oscillators as measured by PER2-driven bioluminescence. The simplest explanation of our data is that the loss of VIP results in a weakened SCN oscillator, which reduces the synchronization of the female circadian system. These results clarify one of the mechanisms by which disruption of the circadian system reduces female reproductive success.

  17. Effects of neonatal androgenization on growth and carcass composition in female mice.

    Science.gov (United States)

    Ventanas, J; López-Bote, C J; García, C; Gázquez, A; Burgos, J

    1989-02-01

    Sixty female mice were injected neonatally with testosterone propionate. This led to an increase in body weight at 56 days (P less than 0.01) and a reduction in carcass fat (P less than 0.005). Food conversion ratio from 28 to 49 days was lower in the treated group than in the controls (P less than 0.01). The data indicate that treated females can reach values similar to those of males. Histological studies revealed a lack of luteal tissue in treated females at 56 days. This effect might be due to a modification in the nervous control of ovarian activity. Growth hormone secretion was higher in treated females than in controls (P less than 0.05). These results suggest that androgenization of females to achieve the performance characteristics of intact males could have important implications in meat production.

  18. Role of Osteoblast Gi Signaling in Age-Related Bone Loss in Female Mice.

    Science.gov (United States)

    Millard, Susan M; Wang, Liping; Wattanachanya, Lalita; O'Carroll, Dylan; Fields, Aaron J; Pang, Joyce; Kazakia, Galateia; Lotz, Jeffrey C; Nissenson, Robert A

    2017-06-01

    Age-related bone loss is an important risk factor for fractures in the elderly; it results from an imbalance in bone remodeling mainly due to decreased bone formation. We have previously demonstrated that endogenous G protein-coupled receptor (GPCR)-driven Gi signaling in osteoblasts (Obs) restrains bone formation in mice during growth. Here, we launched a longitudinal study to test the hypothesis that Gi signaling in Obs restrains bone formation in aging mice, thereby promoting bone loss. Our approach was to block Gi signaling in maturing Obs by the induced expression of the catalytic subunit of pertussis toxin (PTX) after the achievement of peak bone mass. In contrast to the progressive cancellous bone loss seen in aging sex-matched littermate control mice, aging female Col1(2.3)+/PTX+ mice showed an age-related increase in bone volume. Increased bone volume was associated with increased bone formation at both trabecular and endocortical surfaces as well as increased bending strength of the femoral middiaphyses. In contrast, male Col1(2.3)+/PTX+ mice were not protected from age-related bone loss. Our results indicate that Gi signaling markedly restrains bone formation at cancellous and endosteal bone surfaces in female mice during aging. Blockade of the relevant Gi-coupled GPCRs represents an approach for the development of osteoporosis therapies-at least in the long bones of aging women.

  19. Effect of LA on the Growth and Development of the Main Organs in Female Mice.

    Science.gov (United States)

    He, Xiuyuan; Lin, Feng; Li, Yongtao; Chen, Yuxia; Li, Jing; Guo, Linlin; Han, Xuelei; Song, Huan

    2017-01-01

    Effects of lead acetate (LA) on the growth and development of major organs in female mice were studied. Female mice were divided randomly into four treatment groups and one control group. In treatment groups, mice were injected with different concentrations of LA solution every 2 days; whereas control-group mice received equal volumes of sterile normal saline. Body weight (BW) and symptoms were recorded every 2 days. After LA exposure, mice were executed by cervical dislocation and main organs (heart, liver, spleen, lung, kidney) collected for evaluation of morphologic and histologic changes. LA could greatly affect increases in BW, and BW decreased with increasing dose and time of exposure to LA. Compared with the control group, organ coefficients in treatment groups were of the order kidney and spleen > liver and lung > heart and demonstrated obvious dose-time effects. LA exposure could damage the heart, liver, spleen, lung, and kidney. Damage to the kidney and spleen was the most severe, followed by that to the liver, heart, and lung. Damage was aggravated with increasing doses and exposure time to LA in an obvious dose-time relationship; when LA dose was ≥20 mg/kg, the growth and development of mice were obviously inhibited. These results suggest that long-term exposure to low-dose LA can result in universal pathologic damage to mouse organs and that severity is dependent on the dose and duration of LA exposure.

  20. A Taenia crassiceps metacestode factor enhances ovarian follicle atresia and oocyte degeneration in female mice.

    Science.gov (United States)

    Solano, S; Zepeda, N; Copitin, N; Fernandez, A M; Tato, P; Molinari, J L

    2015-01-01

    The histopathological effects of Taenia crassiceps infection or T. crassiceps metacestode factor inoculation on the mouse ovary were determined using six female mice in three groups: infected mice, mice inoculated with the metacestode factor and control mice. The control group was subcutaneously inoculated with healthy peritoneal fluid. The infected group was intraperitoneally inoculated with 40 T. crassiceps metacestodes, and the metacestode factor group was subcutaneously inoculated with T. crassiceps metacestode factor (MF). Light and electron microscopy and TUNEL (terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labelling) assays revealed a significant increase in ovarian follicular atresia (predominantly in antral/preovulatory stages of development), oocyte degeneration (P< 0.05), and a decrease in the amount of corpus luteum in follicles of mice infected and inoculated with MF compared with the control group. Significant abnormalities of the granulosa cells and oocytes of the primordial, primary and secondary ovarian follicles occurred in both treated mouse groups (P< 0.05) compared with no degeneration in the control group. These pathological changes in female mice either infected with T. crassiceps metacestodes or inoculated with T. crassiceps MF may have consequences for ovulation and fertility.

  1. Efficacy of Tramadol as a Sole Analgesic for Postoperative Pain in Male and Female Mice

    Science.gov (United States)

    Wolfe, A Marissa; Kennedy, Lucy H; Na, Jane J; Nemzek-Hamlin, Jean A

    2015-01-01

    Tramadol is a centrally acting weak μ opioid agonist that has few of the adverse side effects common to other opioids. Little work has been done to establish an effective analgesic dose of tramadol specific for surgical laparotomy and visceral manipulation in mice. We used general appearance parameters to score positive indicators of pain including posture, coat condition, activity, breathing, and interactions with other mice, activity events (that is, the number of times each mouse stretched up in a 3-min period) used as an indicator of decreased pain, von Frey fibers, and plasma levels of corticosterone to determine whether tramadol at 20, 40, or 80 mg/kg prevented postoperative pain in male and female C57BL/6 mice. A ventral midline laparotomy with typhlectomy was used as a model of postoperative pain. In male mice, none of the markers differed between groups that received tramadol (regardless of dose) and the saline-treated controls. However, general appearance scores and plasma corticosterone levels were lower in female mice that received 80 mg/kg tramadol compared with saline. In summary, for severe postoperative pain after laparotomy and aseptic typhlectomy, tramadol was ineffective in male C57BL/6 mice at all doses tested. Although 80 mg/kg ameliorated postoperative pain in female C57BL/6 mice, this dose is very close to the threshold reported to cause toxic side effects, such as tremors and seizures. Therefore, we do not recommend the use of tramadol as a sole analgesic in this mouse model of postoperative pain. PMID:26224442

  2. Efficacy of Tramadol as a Sole Analgesic for Postoperative Pain in Male and Female Mice.

    Science.gov (United States)

    Wolfe, A Marissa; Kennedy, Lucy H; Na, Jane J; Nemzek-Hamlin, Jean A

    2015-07-01

    Tramadol is a centrally acting weak μ opioid agonist that has few of the adverse side effects common to other opioids. Little work has been done to establish an effective analgesic dose of tramadol specific for surgical laparotomy and visceral manipulation in mice. We used general appearance parameters to score positive indicators of pain including posture, coat condition, activity, breathing, and interactions with other mice, activity events (that is, the number of times each mouse stretched up in a 3-min period) used as an indicator of decreased pain, von Frey fibers, and plasma levels of corticosterone to determine whether tramadol at 20, 40, or 80 mg/kg prevented postoperative pain in male and female C57BL/6 mice. A ventral midline laparotomy with typhlectomy was used as a model of postoperative pain. In male mice, none of the markers differed between groups that received tramadol (regardless of dose) and the saline-treated controls. However, general appearance scores and plasma corticosterone levels were lower in female mice that received 80 mg/kg tramadol compared with saline. In summary, for severe postoperative pain after laparotomy and aseptic typhlectomy, tramadol was ineffective in male C57BL/6 mice at all doses tested. Although 80 mg/kg ameliorated postoperative pain in female C57BL/6 mice, this dose is very close to the threshold reported to cause toxic side effects, such as tremors and seizures. Therefore, we do not recommend the use of tramadol as a sole analgesic in this mouse model of postoperative pain.

  3. Similar response in male and female B10.RIII mice in a murine model of allergic airway inflammation

    DEFF Research Database (Denmark)

    Matheu, Victor; Barrios, Ysamar; Arnau, Maria-Rosa

    2009-01-01

    , and antigen-specific T-cell proliferation were measured. RESULTS: Immunization in both male and female B10.RIII mice with OVA elicited a classical Th2-type response. Results showed no significant differences among male and female mice. Also a high eosinophilia in BAL fluid and parenchyma was produced in both...

  4. Distribution and time course of corticosterone excretion in faeces and urine of female mice with varying systemic concentrations

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Hau, Jann; Jacobsen, Kirsten R;

    2010-01-01

    distribution and time course of corticosterone excretion, after intravenous injection of varying corticosterone concentrations, was investigated in female mice. Female BALB/c mice excreted 60% of all corticosterone in the urine with an approximate delay of 5h from tail vein administration. The remaining 40...

  5. Regulatory divergence of X-linked genes and hybrid male sterility in mice.

    Science.gov (United States)

    Oka, Ayako; Shiroishi, Toshihiko

    2014-01-01

    Postzygotic reproductive isolation is the reduction of fertility or viability in hybrids between genetically diverged populations. One example of reproductive isolation, hybrid male sterility, may be caused by genetic incompatibility between diverged genetic factors in two distinct populations. Genetic factors involved in hybrid male sterility are disproportionately located on the X chromosome. Recent studies showing the evolutionary divergence in gene regulatory networks or epigenetic effects suggest that the genetic incompatibilities occur at much broader levels than had previously been thought (e.g., incompatibility of protein-protein interactions). The latest studies suggest that evolutionary divergence of transcriptional regulation causes genetic incompatibilities in hybrid animals, and that such incompatibilities preferentially involve X-linked genes. In this review, we focus on recent progress in understanding hybrid sterility in mice, including our studies, and we discuss the evolutionary significance of regulatory divergence for speciation.

  6. Steroid Tumor Environment in Male and Female Mice Model of Canine and Human Inflammatory Breast Cancer

    Directory of Open Access Journals (Sweden)

    Sara Caceres

    2016-01-01

    Full Text Available Canine inflammatory mammary cancer (IMC shares clinical and histopathological characteristics with human inflammatory breast cancer (IBC and has been proposed as a good model for studying the human disease. The aim of this study was to evaluate the capacity of female and male mice to reproduce IMC and IBC tumors and identify the hormonal tumor environment. To perform the study sixty 6–8-week-old male and female mice were inoculated subcutaneously with a suspension of 106 IPC-366 and SUM149 cells. Tumors and serum were collected and used for hormonal analysis. Results revealed that IPC-366 reproduced tumors in 90% of males inoculated after 2 weeks compared with 100% of females that reproduced tumor at the same time. SUM149 reproduced tumors in 40% of males instead of 80% of females that reproduced tumors after 4 weeks. Both cell lines produce distant metastasis in lungs being higher than the metastatic rates in females. EIA analysis revealed that male tumors had higher T and SO4E1 concentrations compared to female tumors. Serum steroid levels were lower than those found in tumors. In conclusion, IBC and IMC male mouse model is useful as a tool for IBC research and those circulating estrogens and intratumoral hormonal levels are crucial in the development and progression of tumors.

  7. Efficacy of Sustained-Release Buprenorphine in an Experimental Laparotomy Model in Female Mice.

    Science.gov (United States)

    Kendall, Lon V; Wegenast, Daniel J; Smith, Brian J; Dorsey, Kathryn M; Kang, Sooah; Lee, Na Young; Hess, Ann M

    2016-01-01

    Mice purportedly require dosing with the opioid buprenorphine (Bup-HCl) at least every 8 to 12 h to maintain an adequate plane of analgesia. Here we used an experimental laparotomy model to determine the clinical efficacy of sustained-release formulations of buprenorphine (Bup-SR) after surgery in mice. Female CD1 mice underwent laparotomy and received either Bup-SR (0.6 mg/kg), Bup-HCl (0.1 mg/kg every 12 h), or saline (every 12 h). Pain was assessed at 1, 3, 6, 12, 24, 48, and 72 h according to the frequency of several behaviors (general activity, wheel-running activity, rearing, grooming, wound licking, orbital tightening, and percentage of integrated nest material) and daily body weight. Over time, wheel running was increased and wound licking was decreased in Bup-SR-treated mice compared with Bup-HCl- and saline-treated mice. Compared with Bup-HCl- and saline-treated mice, Bup-SR-treated mice had increased general activity and percentage of integrated nest material and decreased orbital tightening for 1 to 6 h after surgery. The Bup-HCl- and saline-treated mice had similar general activity, orbital tightening scores, and wheel running activity. Rearing activity and body weight did not differ throughout the study, and none of the observed behaviors differed between groups at 24, 48, and 72 h after surgery. These results suggest that Bup-SR at 0.6 mg/kg provides adequate analgesia after laparotomy in mice and can be used as an alternative analgesic in this context. Furthermore, Bup-HCl at 0.1 mg/kg every 12 h may be inadequate in providing analgesia for abdominal procedures in mice.

  8. Role of estrogen receptor signaling in skeletal response to leptin in female ob/ob mice.

    Science.gov (United States)

    Turner, Russell T; Philbrick, Kenneth A; Kuah, Amida F; Branscum, Adam J; Iwaniec, Urszula T

    2017-06-01

    Leptin, critical in regulation of energy metabolism, is also important for normal bone growth, maturation and turnover. Compared to wild type (WT) mice, bone mass is lower in leptin-deficient ob/ob mice. Osteopenia in growing ob/ob mice is due to decreased bone accrual, and is associated with reduced longitudinal bone growth, impaired cancellous bone maturation and increased marrow adipose tissue (MAT). However, leptin deficiency also results in gonadal dysfunction, disrupting production of gonadal hormones which regulate bone growth and turnover. The present study evaluated the role of increased estrogen in mediating the effects of leptin on bone in ob/ob mice. Three-month-old female ob/ob mice were randomized into one of the 3 groups: (1) ob/ob + vehicle (veh), (2) ob/ob + leptin (leptin) or (3) ob/ob + leptin and the potent estrogen receptor antagonist ICI 182,780 (leptin + ICI). Age-matched WT mice received vehicle. Leptin (40 µg/mouse, daily) and ICI (10 µg/mouse, 2×/week) were administered by subcutaneous injection for 1 month and bone analyzed by X-ray absorptiometry, microcomputed tomography and static and dynamic histomorphometry. Uterine weight did not differ between ob/ob mice and ob/ob mice receiving leptin + ICI, indicating that ICI successfully blocked the uterine response to leptin-induced increases in estrogen levels. Compared to leptin-treated ob/ob mice, ob/ob mice receiving leptin + ICI had lower uterine weight; did not differ in weight loss, MAT or bone formation rate; and had higher longitudinal bone growth rate and cancellous bone volume fraction. We conclude that increased estrogen signaling following leptin treatment is dispensable for the positive actions of leptin on bone and may attenuate leptin-induced bone growth. © 2017 Society for Endocrinology.

  9. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice.

    Science.gov (United States)

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Ul Amin, Faiz; Kim, Myeong Ok

    2015-10-01

    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  10. Papain-induced experimental pulmonary emphysema in male and female mice.

    Science.gov (United States)

    Machado, Mariana Nascimento; Figueirôa, Silviane Fernandes da Silva; Mazzoli-Rocha, Flavia; Valença, Samuel dos Santos; Zin, Walter Araújo

    2014-08-15

    In papain-induced models of emphysema, despite the existing extensive description of the cellular and molecular aspects therein involved, sexual hormones may play a complex and still not fully understood role. Hence, we aimed at exploring the putative gender-related differences in lung mechanics, histology and oxidative stress in papain-exposed mice. Thirty adult BALB/c mice received intratracheally either saline (50 μL) or papain (10 U/50 μL saline) once a week for 2 weeks. In males papain increased lung resistive and viscoelastic/inhomogeneous pressures, static elastance, and viscoelastic component of elastance, while females showed higher static elastance and resistive pressure only. Both genders presented similar higher parenchymal cellularity and mean alveolar diameter, and less collagen-elastic fiber content and body weight gain than their respective controls. Increased functional residual capacity was more prominent in males. Female papain-treated mice were more susceptible to oxidative stress. Thus, male and female papain-exposed mice respond differently, which should be carefully considered to avoid confounding results.

  11. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  12. Depletion of FKBP51 in female mice shapes HPA axis activity.

    Directory of Open Access Journals (Sweden)

    Lianne Hoeijmakers

    Full Text Available Psychiatric disorders such as depressive disorders and posttraumatic stress disorder are a major disease burden worldwide and have a higher incidence in women than in men. However, the underlying mechanism responsible for the sex-dependent differences is not fully understood. Besides environmental factors such as traumatic life events or chronic stress, genetic variants contribute to the development of such diseases. For instance, variations in the gene encoding the FK506 binding protein 51 (FKBP51 have been repeatedly associated with mood and anxiety. FKBP51 is a negative regulator of the glucocorticoid receptor and thereby of the hypothalamic-pituitary-adrenal axis that also interacts with other steroid hormone receptors such as the progesterone and androgen receptors. Thus, the predisposition of women to psychiatric disorders and the interaction of female hormones with FKBP51 and the glucocorticoid receptor implicate a possible difference in the regulation of the hypothalamic-pituitary-adrenal axis in female FKBP51 knockout (51KO mice. Therefore, we investigated neuroendocrine, behavioural and physiological alterations relevant to mood disorders in female 51KO mice. Female 51KOs and wild type littermates were subjected to various behavioural tests, including the open field, elevated plus maze and forced swim test. The neuroendocrine profile was investigated under basal conditions and in response to an acute stressor. Furthermore, we analysed the mRNA expression levels of the glucocorticoid receptor and corticotrophin release hormone in different brain regions. Overall, female 51KO mice did not display any overt behavioural phenotype under basal conditions, but showed a reduced basal hypothalamic-pituitary-adrenal axis activity, a blunted response to, and an enhanced recovery from, acute stress. These characteristics strongly overlap with previous studies in male 51KO mice indicating that FKBP51 shapes the behavioural and neuroendocrine

  13. Depletion of FKBP51 in female mice shapes HPA axis activity.

    Science.gov (United States)

    Hoeijmakers, Lianne; Harbich, Daniela; Schmid, Bianca; Lucassen, Paul J; Wagner, Klaus V; Schmidt, Mathias V; Hartmann, Jakob

    2014-01-01

    Psychiatric disorders such as depressive disorders and posttraumatic stress disorder are a major disease burden worldwide and have a higher incidence in women than in men. However, the underlying mechanism responsible for the sex-dependent differences is not fully understood. Besides environmental factors such as traumatic life events or chronic stress, genetic variants contribute to the development of such diseases. For instance, variations in the gene encoding the FK506 binding protein 51 (FKBP51) have been repeatedly associated with mood and anxiety. FKBP51 is a negative regulator of the glucocorticoid receptor and thereby of the hypothalamic-pituitary-adrenal axis that also interacts with other steroid hormone receptors such as the progesterone and androgen receptors. Thus, the predisposition of women to psychiatric disorders and the interaction of female hormones with FKBP51 and the glucocorticoid receptor implicate a possible difference in the regulation of the hypothalamic-pituitary-adrenal axis in female FKBP51 knockout (51KO) mice. Therefore, we investigated neuroendocrine, behavioural and physiological alterations relevant to mood disorders in female 51KO mice. Female 51KOs and wild type littermates were subjected to various behavioural tests, including the open field, elevated plus maze and forced swim test. The neuroendocrine profile was investigated under basal conditions and in response to an acute stressor. Furthermore, we analysed the mRNA expression levels of the glucocorticoid receptor and corticotrophin release hormone in different brain regions. Overall, female 51KO mice did not display any overt behavioural phenotype under basal conditions, but showed a reduced basal hypothalamic-pituitary-adrenal axis activity, a blunted response to, and an enhanced recovery from, acute stress. These characteristics strongly overlap with previous studies in male 51KO mice indicating that FKBP51 shapes the behavioural and neuroendocrine phenotype independent of

  14. Impact of leptin and ghrelin on food intake and metabolic parameters in obese ovariectomized female mice

    OpenAIRE

    Matyšková, Resha

    2011-01-01

    The thesis is focused on the effect of leptin and ghrelin receptor antagonists on food intake and metabolic parameters in ovariectomized (OVX) female mice on a high fat (HF) diet. In the first part of the thesis, diet-induced obesity was introduced in two strains of mice (NMRI and C57BL/6). Diet-induced obesity resulted from overconsumption of a HF diet containing 60 % of fat; a standard (St) diet contained only 9 % of fat. The strain C57BL/6 was more susceptible to a HF diet than the NMRI st...

  15. Asymmetry and polymorphism of hybrid male sterility during the early stages of speciation in house mice.

    Science.gov (United States)

    Good, Jeffrey M; Handel, Mary Ann; Nachman, Michael W

    2008-01-01

    House mice offer a powerful system for dissecting the genetic basis of phenotypes that isolate species in the early stages of speciation. We used a series of reciprocal crosses between wild-derived strains of Mus musculus and M. domesticus to examine F(1) hybrid male sterility, one of the primary phenotypes thought to isolate these species. We report four main results. First, we found significantly smaller testes and fewer sperm in hybrid male progeny of most crosses. Second, in some crosses hybrid male sterility was asymmetric and depended on the species origin of the X chromosome. These observations confirm and extend previous findings, underscoring the central role that the M. musculus X chromosome plays in reproductive isolation. Third, comparisons among reciprocal crosses revealed polymorphism at one or more hybrid incompatibilities within M. musculus. Fourth, the spermatogenic phenotype of this polymorphic interaction appears distinct from previously described hybrid incompatibilities between these species. These data build on previous studies of speciation in house mice and show that the genetic basis of hybrid male sterility is fairly complex, even at this early stage of divergence.

  16. Staphylococcus epidermidis is involved in a mechanism for female reproduction in mice

    Directory of Open Access Journals (Sweden)

    Chihiro Ono

    2015-06-01

    Full Text Available Both external and internal surfaces of organs (e.g., skin, mouth, gut, and intestine are covered with bacteria, which often contribute to physiological events in host animals. Despite externally opened organs, the presence of bacteria in the mammalian female reproductive tract is uncertain. Here we assessed this problem using wild-type strains of mice, C57BL/6N and ICR. We first demonstrated that bacterial colonies were formed from the oviductal fluid in the C57BL/6N mice with birth experience (“parous”, but not in the mice without birth experience (“non-parous”. Sequence analysis of 16S ribosomal RNA (rRNA revealed that Staphylococcus epidermidis existed in the oviductal fluid of the parous mice, confirmed by immunohistochemical analysis. Furthermore, extinction of bacterial population with intraperitoneal injection of antibiotics, penicillin G and streptomycin, disturbed the regularly implanted pattern of embryos in ICR mice. Our results indicate that symbiotic S. epidermidis plays a role in interaction between embryo and uterus upon implantation in mice.

  17. Production of transgenic mice by random recombination of targeted genes in female germline stem cells

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Ji Xiong; Jie Xiang; Ji Wu; Zhaojuan Yang; Yunze Yang; Shuzeng Wang; Lingjun Shi; Wenhai Xie; Kejing Sun; Kang Zou; Lei Wang

    2011-01-01

    Oocyte production in most mammalian species is believed to cease before birth. However, this idea has been challenged with the finding that postnatal mouse ovaries possess mitotically active germ cells. A recent study showed that female germline stem cells (FGSCs) from adult mice were isolated, cultured long term and produced oocytes and progeny after transplantation into infertile mice. Here, we demonstrate the successful generation of transgenic or gene knock-down mice using FGSCs. The FGSCs from ovaries of 5-day-old and adult mice were isolated and either infected with recombinant viruses carrying green fluorescent protein, Oocyte-G1 or the mouse dynein axonemal intermediate chain 2 gene, or transfected with the Oocyte-G1 specific shRNA expression vector (pRS shOocyte-G1 vector), and then transplanted into infertile mice. Transplanted cells in the ovaries underwent oogenesis and produced heterozygous offspring after mating with wild-type male mice. The offspring were genetically characterized and the biological functions of the transferred or knock-down genes were investigated. Efficiency of genetransfer or gene knock-down was 29%-37% and it took 2 months to produce transgenic offspring. Gene manipulation of FGSCs is a rapid and efficient method of animal transgenesis and may serve as a powerful tool for biomedical science and biotechnology.

  18. Administration of visfatin during superovulation improves developmental competency of oocytes and fertility potential in aged female mice.

    Science.gov (United States)

    Choi, Kyoung-Hwa; Joo, Bo-Sun; Sun, Sheng-Ta; Park, Min-Jung; Son, Jung-Bin; Joo, Jong-Kil; Lee, Kyu-Sup

    2012-05-01

    To examine whether visfatin administration during superovulation improves ovarian response, developmental competence of oocytes, and fertility in aged female mice. Controlled experimental study. University hospital. Two groups of differently aged C57BL female mice (6-11 and 26-31 weeks). Female mice were coinjected intraperitoneally with 5 IU pregnant mare's serum gonadotropin (PMSG) and visfatin of various doses (0-500 ng/mL), followed by 5 IU human chorionic gonadotropin (hCG) injection 48 hours later. Then the mice were immediately mated with an individual male. After 18 hours zygotes were cultured, and expression of ovarian visfatin and vascular endothelial growth factor (VEGF) was examined. Potential pregnancies of visfatin-administered aged female mice were monitored for delivery of offspring. Number of zygotes retrieved, embryo developmental competency, fertility potential, ovarian visfatin and VEGF expression. Ovarian visfatin expression was significantly decreased in the aged mice group compared with the young. Visfatin administration significantly increased embryo developmental rate and ovarian visfatin and VEGF expressions in the aged mice. Visfatin-administered aged mice delivered significantly higher numbers of offspring than controls. This study suggests that visfatin administration during superovulation plays an important role in regulating oocyte quality and can improve oocyte quality and fertility of aged female mice. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Acrylonitrile is a multisite carcinogen in male and female B6C3F1 mice.

    Science.gov (United States)

    Ghanayem, Burhan I; Nyska, Abraham; Haseman, Joseph K; Bucher, John R

    2002-07-01

    Acrylonitrile is a heavily produced unsaturated nitrile, which is used in the production of synthetic fibers, plastics, resins, and rubber. Acrylonitrile is a multisite carcinogen in rats after exposure via gavage, drinking water, or inhalation. No carcinogenicity studies of acrylonitrile in a second animal species were available. The current studies were designed to assess the carcinogenicity of acrylonitrile in B6C3F1 mice of both sexes. Acrylonitrile was administered by gavage at 0, 2.5, 10, or 20 mg/kg/day, 5 days per week, for 2 years. Urinary thiocyanate and N-acetyl-S-(2-cyanoethyl)-L-cysteine were measured as markers of exposure to acrylonitrile. In general, there were dose-related increases in urinary thiocyanate and N-acetyl-S-(2-cyanoethyl)-L-cysteine concentrations in all dosed groups of mice and at all time points. Survival was significantly (p acrylonitrile-dosed groups. In female mice, the incidence of benign or malignant granulosa cell tumors (combined) in the ovary in the 10 mg/kg dose group was greater than that in the vehicle control group, but because of a lack of dose response, this was considered an equivocal finding. In addition, the incidences of atrophy and cysts in the ovary of the 10 and 20 mg/kg dose groups were significantly increased. The incidences of alveolar/bronchiolar adenoma or carcinoma (combined) were significantly increased in female mice treated with acrylonitrile at 10 mg/kg/day for 2 years. This was also considered an equivocal result. In conclusion, these studies demonstrated that acrylonitrile causes multiple carcinogenic effects after gavage administration to male and female B6C3F1 mice for 2 years.

  20. Focal lesions within the ventral striato-pallidum abolish attraction for male chemosignals in female mice.

    Science.gov (United States)

    Agustín-Pavón, Carmen; Martínez-García, Fernando; Lanuza, Enrique

    2014-02-01

    In rodents, socio-sexual behaviour is largely mediated by chemosensory cues, some of which are rewarding stimuli. Female mice display an innate attraction towards male chemosignals, dependent on the vomeronasal system. This behaviour likely reflects the hedonic value of sexual chemosignals. The anteromedial aspect of the olfactory tubercle, along with its associated islands of Calleja, receives vomeronasal inputs and sexually-dimorphic vasopressinergic innervation. Thus, we hypothesised that this portion of the ventral striato-pallidum, known to be involved in reward processing, might be important for sexual odorant-guided behaviours. In this study, we demonstrate that lesions of this region, but not of regions in the posterolateral striato-pallidum, abolish the attraction of female mice for male chemosignals, without affecting significantly their preference for a different natural reward (a sucrose solution). These results show that, at least in female mice, the integrity of the anterior aspect of the medioventral striato-pallidum, comprising a portion of the olfactory tubercle and associated islands of Calleja, is necessary for the attraction for male chemosignals. We suggest that this region contributes to the processing of the hedonic properties of biologically significant odorants.

  1. Effects of mineralocorticoid receptor overexpression on anxiety and memory after early life stress in female mice

    Directory of Open Access Journals (Sweden)

    Sofia eKanatsou

    2016-01-01

    Full Text Available Early-life stress is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR, that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of early-life stress on anxiety and memory in adulthood. We found that early-life stress increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of early life stress on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice.

  2. Regulation of phase II enzymes by genistein and daidzein in male and female Swiss Webster mice.

    Science.gov (United States)

    Froyen, Erik B; Reeves, Jaime L Rudolf; Mitchell, Alyson E; Steinberg, Francene M

    2009-12-01

    The consumption of soy and soy isoflavones has been associated with a decreased risk of certain cancers. A factor contributing to this dietary chemoprevention is the activity of phase I and II biotransformation enzymes. This study evaluated the hypothesis that dietary soy isoflavones will increase hepatic and extrahepatic quinone reductase (QR), UDP-glucuronosyltransferase (UGT), and glutathione S-transferase (GST) phase II enzyme activities, under short-term feeding and basal (non-pharmacologic-induced) conditions. Male and female Swiss Webster mice were fed for 1, 3, 5, or 7 days of one of four treatments: control (casein AIN-93G) or control supplemented with flavone (positive control), genistein, or daidzein aglycones at 1,500 mg/kg of diet. QR activity was increased by daidzein in the liver, by both isoflavones in the kidney and small intestine, and by genistein in the heart. Genistein and daidzein slightly decreased UGT activities in some tissues. Liver GST activity was decreased by genistein in females. In contrast, genistein and daidzein increased kidney GST activity. In general, the greatest effects of isoflavones on phase II enzymes were observed in liver and kidney tissues, occurring at day 3, and peaking at day 5. Sex effects in the liver and kidney included females exhibiting higher QR activities and males exhibiting higher UGT and GST activities. In conclusion, individual soy isoflavones modulate phase II enzymes in mice under short-term feeding and basal conditions. This study provides insights into the actions of isolated isoflavones in mice.

  3. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    Science.gov (United States)

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women.

  4. Deficient Purposeful Use of Forepaws in Female Mice Modelling Rett Syndrome

    Directory of Open Access Journals (Sweden)

    Bianca De Filippis

    2015-01-01

    Full Text Available Rett syndrome (RTT is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2 cause more than 95% of classic cases. Motor abnormalities represent a significant part of the spectrum of RTT symptoms. In the present study we investigated motor coordination and fine motor skill domains in MeCP2-308 female mice, a validated RTT model. This was complemented by the in vivo magnetic resonance spectroscopy (MRS analysis of metabolic profile in behaviourally relevant brain areas. MeCP2-308 heterozygous female mice (Het, 10-12 months of age were impaired in tasks validated for the assessment of purposeful and coordinated forepaw use (Morag test and Capellini handling task. A fine-grain analysis of spontaneous behaviour in the home-cage also revealed an abnormal handling pattern when interacting with the nesting material, reduced motivation to explore the environment, and increased time devoted to feeding in Het mice. The brain MRS evaluation highlighted decreased levels of bioenergetic metabolites in the striatal area in Het mice compared to controls. Present results confirm behavioural and brain alterations previously reported in MeCP2-308 males and identify novel endpoints on which the efficacy of innovative therapeutic strategies for RTT may be tested.

  5. Peripubertal exposure to male chemosignals accelerates vaginal opening and induces male-directed odor preference in female mice

    Directory of Open Access Journals (Sweden)

    Mélanie eJouhanneau

    2015-03-01

    Full Text Available Reproductive physiology in female mouse is profoundly affected by male odor. A well-known effect of male odor is the acceleration of puberty onset in prepubertal female mice exposed to male urine. Whether peripubertal exposure to male odor also influences female sexual behavior in adulthood is poorly known. Recently, we reported that female mice exposed to male-soiled bedding showed advanced vaginal opening associated with early expression of male-directed odor preference in adulthood. The aim of the present study is to determine whether peripubertal exposure to male urinary chemosignals affects both occurrence of vaginal opening and attraction to male odor at older age in female mice. Therefore, we exposed female mice to (1R, 5S, 7R-3,4-dehydro-exo-brevicomin (DHB, 6-hydroxy-6-methyl-3-heptanone (HMH and (S-2-sec-butyl-4,5-dihydrothiazole (SBT, individually or in mixture, from postnatal day (PD 21 to PD38 and monitored the occurrence of vaginal opening. We measured then the time that the female mice spent sniffing male and female mouse urinary volatiles at PD45. As expected, peripubertal exposure to DHB, HMH or SBT accelerated vaginal opening in female mice. In addition, we showed that exposure to a mixture of these three compounds induced expression of male-directed odor preference at PD45, contrary to the single exposure to each of these molecules. In conclusion, the volatile compounds DHB, HMH and SBT in urine of male mice influence both occurrence of vaginal opening and adult expression of male-directed odor preference in female mice.

  6. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  7. Influence of thymodepressine on the course of autoimmune process in MRL/1 female mice

    Directory of Open Access Journals (Sweden)

    V A Nassonova

    2003-01-01

    Full Text Available Objective. To assess efficacy of new immunoactive peptide thymodepressine (TD selectively inhibiting T-cell immunity in rheumatic diseases Methods. Spleen, kidneys and synovial membrane morphological changes and survival were assessed in 100 MRL/1 female mice. 20 and 40 per animal TD injections in doses 10 mcg/kg and 10+100 mcg/kg were made. Control group animals received placebo (saline solution. Results were assessed by double blind method. Results. Survival of treated mice (10+100 mcg/kg at the 6 months age was two times higher than in control group. Morphometric indices of immunogenesis in spleen of treated animals were comparable with parameters of one month age mice. White and red pulp area, number of mature and immature plasmacytes per 1 mm 2, number of megacariocytes were increased. Results of the spleen examination shows immunosuppressive action of TD suppressing lymphoprolipherative process and increasing survival of animals having lpr/lpr gen. But TD does not influence course of autoimmune process providing rheumatoid like changes in kidneys and synovial membrane of mice. Conclusion. TD has dose-dependent effect on survival and morphological indices in MRL/1 mice. Survival of animals at dose 10+100 mcg/kg was higher but dose 10 mcg/kg more expressively effected morphological indices of immuno- and hemopoiesis. Additional examinations are needed to determine optimal dose and scheme of treatment.

  8. Osteoblast-targeted overexpression of PPARγ inhibited bone mass gain in male mice and accelerated ovariectomy-induced bone loss in female mice.

    Science.gov (United States)

    Cho, Sun Wook; Yang, Jae-Yeon; Her, Sun Ju; Choi, Hyung Jin; Jung, Ju Yeon; Sun, Hyun Jin; An, Jee Hyun; Cho, Hwa Young; Kim, Sang Wan; Park, Kyong Soo; Kim, Seong Yeon; Baek, Wook-Young; Kim, Jung-Eun; Yim, Mijung; Shin, Chan Soo

    2011-08-01

    PPARγ has critical role in the differentiation of mesenchymal stem cells into adipocytes while suppressing osteoblastic differentiation. We generated transgenic mice that overexpress PPARγ specifically in osteoblasts under the control of a 2.3-kb procollagen type 1 promoter (Col.1-PPARγ). Bone mineral density (BMD) of 6- to 14-week-old Col.1 - PPARγ male mice was 8% to 10% lower than that of their wild-type littermates, whereas no difference was noticed in Col.1-PPARγ female mice. Col.1-PPARγ male mice exhibited decreased bone volume (45%), trabecular thickness (23%), and trabecular number (27%), with a reciprocal increase in trabecular spacing (51%). Dynamic histomorphometric analysis also revealed that bone-formation rate (42%) and mineral apposition rate (32%) were suppressed significantly in Col.1-PPARγ male mice compared with their wild-type littermates. Interestingly, osteoclast number and surface also were decreased by 40% and 58%, respectively, in Col.1-PPARγ male mice. In vitro whole-marrow culture for osteoclastogenesis also showed a significant decrease in osteoclast formation (approximately 35%) with the cells from Col.1-PPARγ male mice, and OPG/RANKL ratio was reduced in stromal cells from Col.1-PPARγ male mice. Although there was no significant difference in BMD in Col.1-PPARγ female mice up to 30 weeks, bone loss was accelerated after ovariectomy compared with wild-type female mice (-3.9% versus -6.8% at 12 weeks after ovariectomy, p bone mass in male mice and accelerates estrogen-deficiency-related bone loss in female mice. Copyright © 2011 American Society for Bone and Mineral Research.

  9. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Good

    2010-09-01

    Full Text Available The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  10. Influence of hyperprolactinemia on collagen fibers in the lacrimal gland of female mice

    Directory of Open Access Journals (Sweden)

    Ariadne Stavare Leal Araujo

    2015-09-01

    Full Text Available OBJECTIVE: To quantify the collagen fibers in the lacrimal gland of female mice with hyperprolactinemia. METHODS: Forty adult female mice were randomly divided into two groups with 20 animals each: nonpregnant control (CTR1, control group, 0.2 mL of saline solution and nonpregnant experimental (HPRL1, experimental group, 200 µg/day metoclopramide. Treatments lasted for 50 consecutive days. On day 50, 10 females from each group (control and experimental were euthanized in the proestrus phase; then, the blood was collected and the lacrimal glands were removed. Thereafter, the remaining females were placed with the mates and continued to receive treatment with saline solution or metoclopramide. On the 6th post-coital day, 10 pregnant females from the control group (CTR2 and 10 pregnant females from the experimental group (HPRL2 were euthanized, after which blood was collected and the lacrimal glands removed. The lacrimal glands were processed for morphological analyses and collagen quantification, and prolactin and sex steroid levels were measured in the blood samples. Data were statistically analyzed using an unpaired Student t test (p<0.05. RESULTS: Morphological analysis revealed greater structural tissue disorganization of the lacrimal glands in the metoclopramide-treated groups. The total collagen content was significantly higher in the HPRL1 group than in the CTR1 group (p<0.05, whereas the difference between the CTR2 and HPRL2 groups was not significant. CONCLUSION: Our data suggest an impairment in the functioning of the lacrimal gland as a consequence of increased prolactin levels and decreased serum levels of estrogen and progesterone.

  11. Influence of hyperprolactinemia on collagen fibers in the lacrimal gland of female mice.

    Science.gov (United States)

    Araujo, Ariadne Stavare Leal; Simões, Manuel de Jesus; Verna, Carina; Simões, Ricardo Santos; Soares Júnior, José Maria; Baracat, Edmund Chada; Gomes, Regina Célia Teixeira

    2015-09-01

    To quantify the collagen fibers in the lacrimal gland of female mice with hyperprolactinemia. Forty adult female mice were randomly divided into two groups with 20 animals each: nonpregnant control (CTR1, control group, 0.2 mL of saline solution) and nonpregnant experimental (HPRL1, experimental group, 200 µg/day metoclopramide). Treatments lasted for 50 consecutive days. On day 50, 10 females from each group (control and experimental) were euthanized in the proestrus phase; then, the blood was collected and the lacrimal glands were removed. Thereafter, the remaining females were placed with the mates and continued to receive treatment with saline solution or metoclopramide. On the 6th post-coital day, 10 pregnant females from the control group (CTR2) and 10 pregnant females from the experimental group (HPRL2) were euthanized, after which blood was collected and the lacrimal glands removed. The lacrimal glands were processed for morphological analyses and collagen quantification, and prolactin and sex steroid levels were measured in the blood samples. Data were statistically analyzed using an unpaired Student t test (p<0.05). Morphological analysis revealed greater structural tissue disorganization of the lacrimal glands in the metoclopramide-treated groups. The total collagen content was significantly higher in the HPRL1 group than in the CTR1 group (p<0.05), whereas the difference between the CTR2 and HPRL2 groups was not significant. Our data suggest an impairment in the functioning of the lacrimal gland as a consequence of increased prolactin levels and decreased serum levels of estrogen and progesterone.

  12. Gonadal Steroids Negatively Modulate Oxidative Stress in CBA/Ca Female Mice Infected with P. berghei ANKA

    Directory of Open Access Journals (Sweden)

    Néstor Aarón Mosqueda-Romo

    2014-01-01

    Full Text Available We decreased the level of gonadal steroids in female and male mice by gonadectomy. We infected these mice with P. berghei ANKA and observed the subsequent impact on the oxidative stress response. Intact females developed lower levels of parasitaemia and lost weight faster than intact males. Gonadectomised female mice displayed increased levels of parasitaemia, increased body mass, and increased anaemia compared with their male counterparts. In addition, gonadectomised females exhibited lower specific catalase, superoxide dismutase, and glutathione peroxidase activities in their blood and spleen tissues compared with gonadectomised males. To further study the oxidative stress response in P. berghei ANKA-infected gonadectomised mice, nitric oxide levels were assessed in the blood and spleen, and MDA levels were assessed in the spleen. Intact, sham-operated, and gonadectomised female mice exhibited higher levels of nitric oxide in the blood and spleen compared with male mice. MDA levels were higher in all of the female groups. Finally, gonadectomy significantly increased the oxidative stress levels in females but not in males. These data suggest that differential oxidative stress is influenced by oestrogens that may contribute to sexual dimorphism in malaria.

  13. Gonadal Steroids Negatively Modulate Oxidative Stress in CBA/Ca Female Mice Infected with P. berghei ANKA

    Science.gov (United States)

    Mosqueda-Romo, Néstor Aarón; Rodríguez-Morales, Ana Laura; Buendía-González, Fidel Orlando; Aguilar-Sánchez, Margarita; Morales-Montor, Jorge; Legorreta-Herrera, Martha

    2014-01-01

    We decreased the level of gonadal steroids in female and male mice by gonadectomy. We infected these mice with P. berghei ANKA and observed the subsequent impact on the oxidative stress response. Intact females developed lower levels of parasitaemia and lost weight faster than intact males. Gonadectomised female mice displayed increased levels of parasitaemia, increased body mass, and increased anaemia compared with their male counterparts. In addition, gonadectomised females exhibited lower specific catalase, superoxide dismutase, and glutathione peroxidase activities in their blood and spleen tissues compared with gonadectomised males. To further study the oxidative stress response in P. berghei ANKA-infected gonadectomised mice, nitric oxide levels were assessed in the blood and spleen, and MDA levels were assessed in the spleen. Intact, sham-operated, and gonadectomised female mice exhibited higher levels of nitric oxide in the blood and spleen compared with male mice. MDA levels were higher in all of the female groups. Finally, gonadectomy significantly increased the oxidative stress levels in females but not in males. These data suggest that differential oxidative stress is influenced by oestrogens that may contribute to sexual dimorphism in malaria. PMID:25243182

  14. Study of Foeniculum vulgare Effect on Folliculogenesis in Female Mice Kermanshah, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Rasool Khazaei

    2011-01-01

    Full Text Available Background: Foeniculum vulgare (FVE is used in traditional medicine for its antiseptic, palliativeand anti-inflammatory effects. Traditionally, FVE is utilized for treating female infertility. The presentstudy aims to investigate the effects of FVE extract on folliculogenesis in female albino mice.Materials and Methods: In this experimental study, a total of 20 female albino mice were divided into fourgroups. Groups 1 and 2 (experimental received FVE alcoholic extract at doses of 100 and 200 mg/kg bodyweight (BW/day for five days. Group 3 (negative control received ethanol and group 4 (positive controlwas administered normal saline, in the same doses as the experimental groups. Animals in all groups weresacrificed on the sixth day of the study; their ovaries were dissected out and prepared for histologicalexaminations. Hematoxylin and eosin (H&E stained microscopic slides were evaluated and the numbersof ovarian follicles were compared between groups. Data were analyzed by one way ANOVA.Results: The total follicle numbers were 26.5 ± 5.24 for group 1 (100 mg/kg FVE, 27.2 ± 4.1for group 2 (200 mg/kg FVE, 10.1 ± 2.53 for group 3 (ethanol control and 17.2 ± 3.9 for thesaline control group (group 4. The numbers of graffian, antral and multilaminar follicles increasedsignificantly in both experimental groups when compared with the control groups (p<0.05,however there were no significant differences in follicle numbers among the experimental groups.The number of unilaminar primary follicles did not significantly change between all groups. GCMSanalysis of FVE extract identified the presence of diosgenin, an estrogenic compound.Conclusion: FVE induced folliculogenesis in female mice ovary and increased the number ofgrowing ovarian follicles. The estrogenic component of FVE, diosgenin, may exert this effect.

  15. Spray-dried plasma attenuates inflammation and improves pregnancy rate of mated female mice.

    Science.gov (United States)

    Song, M; Liu, Y; Lee, J J; Che, T M; Soares-Almeida, J A; Chun, J L; Campbell, J M; Polo, J; Crenshaw, J D; Seo, S W; Pettigrew, J E

    2015-01-01

    Three studies were conducted to test the hypothesis that dietary spray-dried plasma (SDP) might improve pregnancy rate by ameliorating inflammation, using mice in an experimental model that produces a low pregnancy rate. Mated female mice (C57BL/6 strain) were purchased and shipped from a vendor (Bar Harbor, ME) to the university facility (Urbana, IL) on the day the vaginal plug was found (gestation day [GD] 1), arriving at the laboratory on GD 3 after 2 d transport by air and ground. Mice (Exp. 1: n = 250, 16.0 ± 1.2 g BW; Exp. 2: n = 202, 16.2 ± 1.2 g BW; Exp. 3: n = 156, 16.4 ± 1.1 g BW) were housed in individual cages and randomly assigned to dietary treatments (Exp. 1: 0 [CON] and 8% SDP in the diet, ≥ 90 mice/diet; Exp. 2: 0, 1, 2, 4, and 8% SDP in the diet, ≥ 40 mice/diet; Exp. 3: 0, 1, and 8% SDP in the diet, 48 mice/diet) fed from arrival. In Exp. 1 and 2, pregnancy of each mouse was determined on GD 17 based on BW, shape of abdomen, and inspection postmortem, and maternal growth performance from GD 3 to 17 was measured. On GD 19, pregnant mice in Exp. 2 were euthanized to measure number of fetuses and fetal and placental weights. Pregnancy rates in CON were low in both Exp. 1 (11%) and Exp. 2 (7%). The SDP consistently and markedly increased (P pregnancy rates in both Exp. 1 (49%) and Exp. 2 (35-43%) compared with the CON. In Exp. 3, 12 randomly selected mice were euthanized immediately after they arrived as an initial group. From GD 4 to 7, randomly selected mice were also euthanized each day (12 mice/diet). After euthanasia, the abdominal cavity was opened to check pregnancy by uterine inspection and to collect blood and uterus samples for immune measurements. The SDP increased (P pregnancy rate compared with the CON. Concentrations of indicators of inflammation and stress (uterine TNF-α and IFN-γ, and serum TNF-α, C-reactive protein, and cortisol) were greatest (P decreased (P pregnancy rates in this model, apparently by attenuating

  16. Pharmacological evaluation of anti-fertility activity of ethanolic extract of Jatropha gossypifolia leaf in female albino mice

    Institute of Scientific and Technical Information of China (English)

    Sachin Jain; Gajendra Pratap Choudhary; Dinesh Kumar Jain

    2012-01-01

    Objective: Anti-fertility activity of ethanolic extract of Jatropha gossypifolia leaf in female albino mice. Methods: Jatropha gossypifolia leaf extract, when administered orally, altered the estrous cycle pattern in female mice, prolong the length of estrous cycle with significant increase in the duration of diestrus stage and reduced significantly the number of litters in albino mice. Treatment of mice with extract of 250 and 450 mg/kg body weight/day for 21 days caused a prolonged estrous cycle with significant increase in the duration of diestrus phase and elongation of estrus stage in treatment with higher dose (450 mg/kg body weight/day). Results: The analysis of the principal hormones involved in estrous cycle regulation showed that the plant extracts altered gonadrotrophin release (LH, FSH and prolactinn) and estradiol secretion. Conclusions:The results indicated the anti-fertility effect of Jatropha gossypifolia leaf extract in female albino mice.

  17. An ERβ agonist induces browning of subcutaneous abdominal fat pad in obese female mice.

    Science.gov (United States)

    Miao, Yi-Fei; Su, Wen; Dai, Yu-Bing; Wu, Wan-Fu; Huang, Bo; Barros, Rodrigo P A; Nguyen, Hao; Maneix, Laure; Guan, You-Fei; Warner, Margaret; Gustafsson, Jan-Åke

    2016-12-06

    Estrogen, via estrogen receptor alpha (ERα), exerts several beneficial effects on metabolism and energy homeostasis by controlling size, enzymatic activity and hormonal content of adipose tissue. The actions of estrogen on sympathetic ganglia, which are key players in the browning process, are less well known. In the present study we show that ERβ influences browning of subcutaneous adipose tissue (SAT) via its actions both on sympathetic ganglia and on the SAT itself. A 3-day-treatment with a selective ERβ agonist, LY3201, induced browning of SAT in 1-year-old obese WT and ERα(-/-) female mice. Browning was associated with increased expression of ERβ in the nuclei of neurons in the sympathetic ganglia, increase in tyrosine hydroxylase in both nerve terminals in the SAT and sympathetic ganglia neurons and an increase of β3-adrenoceptor in the SAT. LY3201 had no effect on browning in young female or male mice. In the case of young females browning was already maximal while in males there was very little expression of ERβ in the SAT and very little expression of the β3-adrenoceptor. The increase in both sympathetic tone and responsiveness of adipocytes to catecholamines reveals a novel role for ERβ in controlling browning of adipose tissue.

  18. The ZEB1 transcription factor is a novel repressor of adiposity in female mice.

    Directory of Open Access Journals (Sweden)

    Jessica N Saykally

    Full Text Available BACKGROUND: Four genome-wide association studies mapped an "obesity" gene to human chromosome 10p11-12. As the zinc finger E-box binding homeobox 1 (ZEB1 transcription factor is encoded by the TCF8 gene located in that region, and as it influences the differentiation of various mesodermal lineages, we hypothesized that ZEB1 might also modulate adiposity. The goal of these studies was to test that hypothesis in mice. METHODOLOGY/PRINCIPAL FINDINGS: To ascertain whether fat accumulation affects ZEB1 expression, female C57BL/6 mice were fed a regular chow diet (RCD ad libitum or a 25% calorie-restricted diet from 2.5 to 18.3 months of age. ZEB1 mRNA levels in parametrial fat were six to ten times higher in the obese mice. To determine directly whether ZEB1 affects adiposity, wild type (WT mice and mice heterozygous for TCF8 (TCF8+/- were fed an RCD or a high-fat diet (HFD (60% calories from fat. By two months of age on an HFD and three months on an RCD, TCF8+/- mice were heavier than WT controls, which was attributed by Echo MRI to increased fat mass (at three months on an HFD: 0.517+/-0.081 total fat/lean mass versus 0.313+/-0.036; at three months on an RCD: 0.175+/-0.013 versus 0.124+/-0.012. No differences were observed in food uptake or physical activity, suggesting that the genotypes differ in some aspect of their metabolic activity. ZEB1 expression also increases during adipogenesis in cell culture. CONCLUSION/SIGNIFICANCE: These results show for the first time that the ZEB1 transcription factor regulates the accumulation of adipose tissue. Furthermore, they corroborate the genome-wide association studies that mapped an "obesity" gene at chromosome 10p11-12.

  19. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  20. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation

    Directory of Open Access Journals (Sweden)

    Mumeko C Tsuda

    2014-09-01

    Full Text Available Maternal separation (MS is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h from postnatal day 1 to 14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression.

  1. Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm.

    Science.gov (United States)

    Brzózka, M M; Rossner, M J; de Hoz, L

    2016-09-01

    Schizophrenia (SZ) is a severe mental disorder affecting about 1 % of the human population. Patients show severe deficits in cognitive processing often characterized by an improper filtering of environmental stimuli. Independent genome-wide association studies confirmed a number of risk variants for SZ including several associated with the gene encoding the transcription factor 4 (TCF4). TCF4 is widely expressed in the central nervous system of mice and humans and seems to be important for brain development. Transgenic mice overexpressing murine Tcf4 (Tcf4tg) in the adult brain display cognitive impairments and sensorimotor gating disturbances. To address the question of whether increased Tcf4 gene dosage may affect cognitive flexibility in an auditory associative task, we tested latent inhibition (LI) in female Tcf4tg mice. LI is a widely accepted translational endophenotype of SZ and results from a maladaptive delay in switching a response to a previously unconditioned stimulus when this becomes conditioned. Using an Audiobox, we pre-exposed Tcf4tg mice and their wild-type littermates to either a 3- or a 12-kHz tone before conditioning them to a 12-kHz tone. Tcf4tg animals pre-exposed to a 12-kHz tone showed significantly delayed conditioning when the previously unconditioned tone became associated with an air puff. These results support findings that associate TCF4 dysfunction with cognitive inflexibility and improper filtering of sensory stimuli observed in SZ patients.

  2. Effects of Carthamus tinctorius L. on the ovarian histomorphology and the female reproductive hormones in mice

    Directory of Open Access Journals (Sweden)

    Ali Louei Monfared

    2013-04-01

    Full Text Available Objective: Carthamus tinctorius L. (Safflower is a member of the asteraceae family which had been classified as a fertility regulator in the traditional medicine. The purpose of this study was to investigate its possible effects on the ovarian histomorphology and the levels of female reproductive hormones in the mice. Materials and Methods: Sixty adult female Balb/C mice were selected and randomly divided into one control and three experimental groups (n= 15. The control group received only distilled water, while experimental groups were administered intraperitoneally C. tinctorius extract at doses of  0.7, 1.4, and 2.8 mg/kg/day for 49 consecutive days. In the end of experiments, blood samples were collected and the sera were analyzed for the levels of FSH, LH, estrogen, and progesterone. Ovarian tissue samples were also taken and histomorphological changes of the ovaries were examined using optical microscope. The quantitative results were statistically analyzed by one-way ANOVA test. Results: The present findings showed that treatment with different concentrations of C. tinctorius extract reduced the number of ovarian follicles but number of atretic follicles showed an increase. The number and size of the corpora lutea were not affected by extract administration. In addition, in the treated mice with C. tinctorius extract, the thickness of the tunica albuginea was increased but the relative and absolute weights of the ovaries decreased significantly. Furthermore, the blood levels of the FSH and estrogen were decreased in the three experimental groups compared with those of the control animals. Conclusion: The present findings indicated that treatment with C. tinctorius extract has detrimental effects on the ovarian histomorphology and female reproductive hormones therefore popular consumption of this plant should be reconsidered.

  3. Activation of Estrogen Response Element-Independent ERα Signaling Protects Female Mice From Diet-Induced Obesity.

    Science.gov (United States)

    Yasrebi, Ali; Rivera, Janelle A; Krumm, Elizabeth A; Yang, Jennifer A; Roepke, Troy A

    2017-02-01

    17β-estradiol (E2) regulates central and peripheral mechanisms that control energy and glucose homeostasis predominantly through estrogen receptor α (ERα) acting via receptor binding to estrogen response elements (EREs). ERα signaling is also involved in mediating the effects of E2 on diet-induced obesity (DIO), although the roles of ERE-dependent and -independent ERα signaling in reducing the effects of DIO remain largely unknown. We hypothesize that ERE-dependent ERα signaling is necessary to ameliorate the effects of DIO. We addressed this question using ERα knockout (KO) and ERα knockin/knockout (KIKO) female mice, the latter expressing an ERα that lacks a functional ERE binding domain. Female mice were ovariectomized, fed a low-fat diet (LFD) or a high-fat diet (HFD), and orally dosed with vehicle or estradiol benzoate (EB) (300 μg/kg). After 9 weeks, body composition, glucose and insulin tolerance, peptide hormone and inflammatory cytokine levels, and hypothalamic arcuate nucleus and liver gene expression were assessed. EB reduced body weight and body fat in wild-type (WT) female mice, regardless of diet, and in HFD-fed KIKO female mice, in part by reducing energy intake and feeding efficiency. EB reduced fasting glucose levels in KIKO mice fed both diets but augmented glucose tolerance only in HFD-fed KIKO female mice. Plasma insulin and interleukin 6 were elevated in KIKO and KO female mice compared with LFD-fed WT female mice. Expression of arcuate neuropeptide and receptor genes and liver fatty acid biosynthesis genes was altered by HFD and by EB through ERE-dependent and -independent mechanisms. Therefore, ERE-independent signaling mechanisms in both the brain and peripheral organs mediate, in part, the effects of E2 during DIO. Copyright © 2017 by the Endocrine Society.

  4. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Bo; Csanaky, Iván L. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Aleksunes, Lauren M. [Department of Pharmacology and Toxicology, School of Pharmacy and Environmental and Occupational Health Institute, Rutgers University, Piscataway, NJ (United States); Patni, Meghan; Chen, Qi; Ma, Xiaochao; Jaeschke, Hartmut [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Weir, Scott; Broward, Melinda; Klaassen, Curtis D. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); University of Kansas Cancer Center, Kansas City, KS (United States); Guo, Grace L., E-mail: lguo@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); University of Kansas Cancer Center, Kansas City, KS (United States)

    2012-06-01

    Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity of the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury. -- Highlights: ► High-fat diet decreases hepatic Mrp2 expression only in female but not in male mice. ► HFD significantly reduces early-phase biliary ANIT excretion in female mice. ► HFD protects female mice against ANIT-induced liver injury.

  5. The ERa-PI3K cascade in proopiomelanocortin progenitor neurons regulates feeding and glucose balance in female mice

    Science.gov (United States)

    Estrogens act upon estrogen receptor (ER)a to inhibit feeding and improve glucose homeostasis in female animals. However, the intracellular signals that mediate these estrogenic actions remain unknown. Here, we report that anorexigenic effects of estrogens are blunted in female mice that lack ERa sp...

  6. Efficient production of intersubspecific hybrid mice and embryonic stem cells by intracytoplasmic sperm injection.

    Science.gov (United States)

    Shinmen, Akie; Honda, Arata; Ohkawa, Mika; Hirose, Michiko; Ogonuki, Narumi; Yuzuriha, Misako; Miki, Hiromi; Mochida, Keiji; Inoue, Kimiko; Abe, Kuniya; Ito, Masao; Ogura, Atsuo

    2007-09-01

    Recently, mice and embryonic stem (ES) cells with allelic polymorphisms have been used extensively in the field of genetics and developmental biology. In this study, we examined whether intersubspecific hybrid mice and ES cells with these genotypes can be efficiently produced by intracytoplasmic sperm injection (ICSI). Frozen-thawed spermatozoa from wild-derived strains, JF1 (Mus musculus molossinus), MSM (M. m. molossinus), HMI (M. m. castaneus), and SWN (M. m. spp.), were directly injected into mature oocytes from laboratory mice ([C57BL/6 x DBA2]F1; M. m. domesticus). The in vitro and in vivo developmental capacity of F1 embryos was not significantly different among the groups (P > 0.05), and term offspring were efficiently obtained in all groups (27%-34% of transferred embryos). However, the mean body and placental weights of the offspring differed significantly with genotype (P cell lines. The ES cell lines were established at a high efficiency (9 lines from 20 blastocysts) and their allelic polymorphisms were confirmed. Thus, ICSI using cryopreserved spermatozoa allows the efficient and immediate production of a number of F1 hybrid mice and ES cell lines, which can be used for polymorphic analysis of mouse genetics.

  7. 2-Methoxyestradiol Reduces Angiotensin II-Induced Hypertension and Renal Dysfunction in Ovariectomized Female and Intact Male Mice.

    Science.gov (United States)

    Pingili, Ajeeth K; Davidge, Karen N; Thirunavukkarasu, Shyamala; Khan, Nayaab S; Katsurada, Akemi; Majid, Dewan S A; Gonzalez, Frank J; Navar, L Gabriel; Malik, Kafait U

    2017-06-01

    Cytochrome P450 1B1 protects against angiotensin II (Ang II)-induced hypertension and associated cardiovascular changes in female mice, most likely via production of 2-methoxyestradiol. This study was conducted to determine whether 2-methoxyestradiol ameliorates Ang II-induced hypertension, renal dysfunction, and end-organ damage in intact Cyp1b1(-/-), ovariectomized female, and Cyp1b1(+/+) male mice. Ang II or vehicle was infused for 2 weeks and administered concurrently with 2-methoxyestradiol. Mice were placed in metabolic cages on day 12 of Ang II infusion for urine collection for 24 hours. 2-Methoxyestradiol reduced Ang II-induced increases in systolic blood pressure, water consumption, urine output, and proteinuria in intact female Cyp1b1(-/-) and ovariectomized mice. 2-Methoxyestradiol also reduced Ang II-induced increase in blood pressure, water intake, urine output, and proteinuria in Cyp1b1(+/+) male mice. Treatment with 2-methoxyestradiol attenuated Ang II-induced end-organ damage in intact Cyp1b1(-/-) and ovariectomized Cyp1b1(+/+) and Cyp1b1(-/-) female mice and Cyp1b1(+/+) male mice. 2-Methoxyestradiol mitigated Ang II-induced increase in urinary excretion of angiotensinogen in intact Cyp1b1(-/-) and ovariectomized Cyp1b1(+/+) and Cyp1b1(-/-) female mice but not in Cyp1b1(+/+) male mice. The G protein-coupled estrogen receptor 1 antagonist G-15 failed to alter Ang II-induced increases in blood pressure and renal function in Cyp1b1(+/+) female mice. These data suggest that 2-methoxyestradiol reduces Ang II-induced hypertension and associated end-organ damage in intact Cyp1b1(-/-), ovariectomized Cyp1b1(+/+) and Cyp1b1(-/-) female mice, and Cyp1b1(+/+) male mice independent of G protein-coupled estrogen receptor 1. Therefore, 2-methoxyestradiol could serve as a therapeutic agent for treating hypertension and associated pathogenesis in postmenopausal females, and in males. © 2017 American Heart Association, Inc.

  8. Novel object recognition ability in female mice following exposure to nanoparticle-rich diesel exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Win-Shwe, Tin-Tin, E-mail: tin.tin.win.shwe@nies.go.jp [Center for Environmental Health Sciences, National Institute for Environmental Studies, 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 (Japan); Fujimaki, Hidekazu; Fujitani, Yuji; Hirano, Seishiro [Center for Environmental Risk Research, National Institute for Environmental Studies, 16‐2 Onogawa, Tsukuba, Ibaraki 305‐8506 (Japan)

    2012-08-01

    Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 μg/m{sup 3}), high-dose NRDE (H-NRDE, 129 μg/m{sup 3}), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model. -- Highlights: ► The effects of nanoparticle-induced neurotoxicity remain unclear. ► We investigated the effect of exposure to

  9. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    Science.gov (United States)

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future.

  10. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    Directory of Open Access Journals (Sweden)

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  11. Impact of minimum daily dissolved oxygen concentration on production performance of hybrid female channel catfish x male blue catfish

    Science.gov (United States)

    Hybrid Catfish (female Channel Catfish Ictalurus punctatus X male Blue Catfish I. furcatus) were reared during two years as single-batch crops under two different dissolved oxygen (DO) regimes each year; a high-DO (control) treatment in which the minimum daily DO was maintained above 3.8 ppm during ...

  12. BALB/c mice deficient in CD4 T cell IL-4Rα expression control Leishmania mexicana Load although female but not male mice develop a healer phenotype.

    Directory of Open Access Journals (Sweden)

    Karen J Bryson

    2011-01-01

    Full Text Available Immunologically intact BALB/c mice infected with Leishmania mexicana develop non-healing progressively growing lesions associated with a biased Th2 response while similarly infected IL-4Rα-deficient mice fail to develop lesions and develop a robust Th1 response. In order to determine the functional target(s for IL-4/IL-13 inducing non-healing disease, the course of L. mexicana infection was monitored in mice lacking IL-4Rα expression in specific cellular compartments. A deficiency of IL-4Rα expression on macrophages/neutrophils (in LysM(creIL-4Rα(-/lox animals had minimal effect on the outcome of L. mexicana infection compared with control (IL-4Rα(-/flox mice. In contrast, CD4(+ T cell specific (Lck(creIL-4Rα(-/lox IL-4Rα(-/- mice infected with L. mexicana developed small lesions, which subsequently healed in female mice, but persisted in adult male mice. While a strong Th1 response was manifest in both male and female CD4(+ T cell specific IL-4Rα(-/- mice infected with L. mexicana, induction of IL-4 was manifest in males but not females, independently of CD4(+ T cell IL-4 responsiveness. Similar results were obtained using pan-T cell specific (iLck(creIL-4Rα(-/lox IL-4Rα(-/- mice. Collectively these data demonstrate that upon infection with L. mexicana, initial lesion growth in BALB/c mice is dependent on non-T cell population(s responsive to IL-4/IL-13 while progressive infection is dependent on CD4(+ T cells responsive to IL-4.

  13. Short-term pharmacological suppression of the hyperprolactinemia of infertile hCG-overproducing female mice persistently restores their fertility.

    Science.gov (United States)

    Ratner, Laura D; Gonzalez, Betina; Ahtiainen, Petteri; Di Giorgio, Noelia P; Poutanen, Matti; Calandra, Ricardo S; Huhtaniemi, Ilpo T; Rulli, Susana B

    2012-12-01

    Female infertility is often associated with deregulation of hormonal networks, and hyperprolactinemia is one of the most common endocrine disorders of the hypothalamic-pituitary axis affecting the reproductive functions. We have shown previously that transgenic female mice overexpressing human chorionic gonadotropin β-subunit (hCGβ+ mice), and producing elevated levels of bioactive LH/hCG, exhibit increased production of testosterone and progesterone, are overweight and infertile, and develop hyperprolactinemia associated with pituitary lactotrope adenomas in adult age. In the present study, we analyzed the influence of the hyperprolactinemia of hCGβ+ females on their reproductive phenotype by treating them with the dopamine agonists, bromocriptine and cabergoline. Long-term bromocriptine treatment of adult mice was effective in the control of obesity, pituitary growth, and disturbances in the hormone profile, demonstrating that hyperprolactinemia was the main cause of the hCGβ+ female phenotype. Interestingly, short-term treatment (1 wk) with cabergoline applied on 5-wk-old mice corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, prevented pituitary overgrowth, normalized gonadal function, and recovered fertility of adult hCGβ+ females after hormone-induced and natural ovulation. The same cabergoline treatment in the short term applied on 3-month-old hCGβ+ females failed to recover their reproductive function. Hence, we demonstrated that the short-term cabergoline treatment applied at a critical early stage of the phenotype progression effectively prevented the hyperprolactinemia-associated reproductive dysfunction of hCG-overproducing females.

  14. Loss of estrogen-related receptor alpha disrupts ventral-striatal synaptic function in female mice.

    Science.gov (United States)

    De Jesús-Cortés, Héctor; Lu, Yuan; Anderson, Rachel M; Khan, Michael Z; Nath, Varun; McDaniel, Latisha; Lutter, Michael; Radley, Jason J; Pieper, Andrew A; Cui, Huxing

    2016-08-01

    Eating disorders (EDs), including anorexia nervosa, bulimia nervosa and binge-ED, are mental illnesses characterized by high morbidity and mortality. While several studies have identified neural deficits in patients with EDs, the cellular and molecular basis of the underlying dysfunction has remained poorly understood. We previously identified a rare missense mutation in the transcription factor estrogen-related receptor alpha (ESRRA) associated with development of EDs. Because ventral-striatal signaling is related to the reward and motivation circuitry thought to underlie EDs, we performed functional and structural analysis of ventral-striatal synapses in Esrra-null mice. Esrra-null female, but not male, mice exhibit altered miniature excitatory postsynaptic currents on medium spiny neurons (MSNs) in the ventral striatum, including increased frequency, increased amplitude, and decreased paired pulse ratio. These electrophysiological measures are associated with structural and molecular changes in synapses of MSNs in the ventral striatum, including fewer pre-synaptic glutamatergic vesicles and enhanced GluR1 function. Neuronal Esrra is thus required for maintaining normal synaptic function in the ventral striatum, which may offer mechanistic insights into the behavioral deficits observed in Esrra-null mice.

  15. 9-cis -carotene Inhibits Atherosclerosis Development in Female LDLR-/- Mice

    Directory of Open Access Journals (Sweden)

    Noa Zolberg Relevy

    2015-02-01

    Full Text Available Background: Several epidemiological studies have shown that diets rich in carotenoids are associated with a reduced risk of cardiovascular disease. However, administration of synthetic all-trans -carotene was reported to have no effect on cardiovascular disease. We previously showed that the 9-cis -carotene-rich powder of the alga Dunaliella bardawil inhibits atherogenesis and reduces plasma non-HDL cholesterol levels in mice. Context and purpose of this study: We sought to study whether isolated 9-cis -carotene inhibits atherogenesis in a murine model of atherosclerosis. Results: Twelve-week-old female LDL receptor knockout mice (LDLR-/- were pretreated for 2 weeks with regular chow diet fortified with the alga Dunaliella powder, 9-cis β-carotene isomer, all-trans β-carotene isomer, or 9-cis retinoic acid, followed by 10 weeks of a high-fat diet with the same fortifications. In contrast to Dunaliella, 9-cis β-carotene did not inhibit the high fat dietinduced elevation of plasma cholesterol. In addition, diet fortification with Dunaliella powder, β-carotene isomers, or 9-cis retinoic acid did not change the plasma retinol or retinoic acid levels.Nevertheless, 9-cis β-carotene significantly inhibited atherogenesis compared to the control mice (39% reduction. Conclusions: The results suggest that 9-cis β-carotene should be considered as an antiatherogenic agent in the human diet

  16. Nanosized TiO2-induced reproductive system dysfunction and its mechanism in female mice.

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhao

    Full Text Available Recent studies have demonstrated nanosized titanium dioxide (nano-TiO2-induced fertility reduction and ovary injury in animals. To better understand how nano-TiO2 act in mice, female mice were exposed to 2.5, 5, and 10 mg/kg nano-TiO2 by intragastric administration for 90 consecutive days; the ovary injuries, fertility, hormone levels, and inflammation-related or follicular atresia-related cytokine expression were investigated. The results showed that nano-TiO2 was deposited in the ovary, resulting in significant reduction of body weight, relative weight of ovary and fertility, alterations of hematological and serum parameters and sex hormone levels, atretic follicle increases, inflammation, and necrosis. Furthermore, nano-TiO2 exposure resulted in marked increases of insulin-like growth factor-binding protein 2, epidermal growth factor, tumor necrosis factor-α, tissue plasminogen activator, interleukin-1β, interleukin -6, Fas, and FasL expression, and significant decreases of insulin-like growth factor-1, luteinizing hormone receptor, inhibin α, and growth differentiation factor 9 expression in mouse ovary. These findings implied that fertility reduction and ovary injury of mice following exposure to nano-TiO2 may be associated with alteration of inflammation-related or follicular atresia-related cytokine expressions, and humans should take great caution when handling nano-TiO2.

  17. Evapotranspiration partitioning and variation of sap flow in female and male parents of maize for hybrid seed production in arid region

    Science.gov (United States)

    Understanding the variation of sap flow in female and male parents of maize for hybrid seed production and evapotranspiration (ET) partitioning is useful in accurately determining water use of the female and male parents and improving irrigation management of maize for hybrid seed production. Sap fl...

  18. The effect of social stress on chronic pain perception in female and male mice.

    Science.gov (United States)

    Aghajani, Marjan; Vaez Mahdavi, Mohammad Reza; Khalili Najafabadi, Mohsen; Ghazanfari, Tooba

    2012-01-01

    The current investigations on social stress primarily point to the negative health consequences of being in a stressful social hierarchy. The repetitive nature of such stressors seems to affect behavioral response to pain both in rodents and humans. Moreover, a large discrepancy in the possibility of social stresses affecting pain perception in the two genders exists. The present study examined the effect of chronic social stress on nociceptive responses of both sexes by implementing of food deprivation, food intake inequality and unstable social status (cage-mate change every 3 days) for a period of 14 days in 96 Balb/c mice. In this regard we injected 20 µl formalin 2% into the plantar surface of hind paw at the end of stress period and scored pain behaviors of all subjects, then serum concentrations of proinflammatory cytokines were measured. Our results showed that there was significant difference in chronic phase of formalin test following implementation of food deprivation and inequality (Pperception was decreased considerably and this decline in inequality exposed subjects was well above isolated ones (Psocial situation did not affect pain perception. Moreover, IL-1 and IL-6 concentrations in serum of stressed mice of both genders were well above control group (pperception in control and unstable male subjects was larger than females; the decrease of chronic pain perception in male stressed animals (poverty and inequality experienced subjects) was much more than stressed females. These results revealed that although food deprivation and social inequality can induce hypoalgesia, some socioeconomic situations like social instability don't affect pain sensation, whereas there were similar increases of proinflammatory cytokines level in all socially stressed subjects. In addition, males display larger hypoalgesic responses to inequality as compared with females.

  19. Cdc20 is critical for meiosis I and fertility of female mice.

    Directory of Open Access Journals (Sweden)

    Fang Jin

    2010-09-01

    Full Text Available Chromosome missegregation in germ cells is an important cause of unexplained infertility, miscarriages, and congenital birth defects in humans. However, the molecular defects that lead to production of aneuploid gametes are largely unknown. Cdc20, the activating subunit of the anaphase-promoting complex/cyclosome (APC/C, initiates sister-chromatid separation by ordering the destruction of two key anaphase inhibitors, cyclin B1 and securin, at the transition from metaphase to anaphase. The physiological significance and full repertoire of functions of mammalian Cdc20 are unclear at present, mainly because of the essential nature of this protein in cell cycle progression. To bypass this problem we generated hypomorphic mice that express low amounts of Cdc20. These mice are healthy and have a normal lifespan, but females produce either no or very few offspring, despite normal folliculogenesis and fertilization rates. When mated with wild-type males, hypomorphic females yield nearly normal numbers of fertilized eggs, but as these embryos develop, they become malformed and rarely reach the blastocyst stage. In exploring the underlying mechanism, we uncover that the vast majority of these embryos have abnormal chromosome numbers, primarily due to chromosome lagging and chromosome misalignment during meiosis I in the oocyte. Furthermore, cyclin B1, cyclin A2, and securin are inefficiently degraded in metaphase I; and anaphase I onset is markedly delayed. These results demonstrate that the physiologically effective threshold level of Cdc20 is high for female meiosis I and identify Cdc20 hypomorphism as a mechanism for chromosome missegregation and formation of aneuploid gametes.

  20. Evidence for serotonergic modulation of progesterone-induced hyperphagia, depression and algesia in female mice.

    Science.gov (United States)

    Kaur, Gurpreet; Kulkarni, Shrinivas K

    2002-07-12

    The acute administration of the neurosteroid precursor, progesterone (10 mg/kg, s.c.) produced significant hyperphagia in female mice as observed at 0.5-, 1-, 2- and 3-h time intervals. At this dose progesterone also produced significant increase in immobility period duration in Porsolt's forced swim test and nociceptive response in hot-plate and tail-flick tests. Treatment with direct (quipazine, 5 mg/kg, i.p.) and indirect (fluoxetine, 10 mg/kg, i.p.) acting serotonergic agents per se produced significant hypophagia, decrease in immobility period and induced analgesic effect in hot-plate and tail-flick test. Further, treatment with both fluoxetine (10 mg/kg, i.p.) and quipazine (5 mg/kg, i.p.) significantly reversed progesterone-induced hyperphagia, depression and algesia in the female mice. Pretreatment with seganserin, a 5-HT(2) receptor antagonist (2 mg/kg, i.p.) significantly reversed fluoxetine and quipazine-induced antidepressant and analgesic effects. Seganserin reversed quipazine-induced hypophagia but in a replicate study it failed to reverse fluoxetine-induced hypophagia. Further, seganserin, 2 mg/kg, i.p., significantly reversed the suppressive effect of fluoxetine and quipazine on progesterone-induced hyperphagia, depression and algesia in hot-plate test. Seganserin also reversed the suppressive effect of fluoxetine and quipazine on progesterone-induced algesia in hot-plate test. These data suggest that the modulation of progesterone-induced effects by these serotonergic agents possibly involve 5-HT(2) receptor mechanisms. Further, the study underscores the use of serotonergic agents for the treatment of eating and affective disorders caused by the regular changes or disturbances of ovarian steroid levels in females.

  1. Re-engineering the zinc fingers of PRDM9 reverses hybrid sterility in mice.

    Science.gov (United States)

    Davies, Benjamin; Hatton, Edouard; Altemose, Nicolas; Hussin, Julie G; Pratto, Florencia; Zhang, Gang; Hinch, Anjali Gupta; Moralli, Daniela; Biggs, Daniel; Diaz, Rebeca; Preece, Chris; Li, Ran; Bitoun, Emmanuelle; Brick, Kevin; Green, Catherine M; Camerini-Otero, R Daniel; Myers, Simon R; Donnelly, Peter

    2016-02-11

    The DNA-binding protein PRDM9 directs positioning of the double-strand breaks (DSBs) that initiate meiotic recombination in mice and humans. Prdm9 is the only mammalian speciation gene yet identified and is responsible for sterility phenotypes in male hybrids of certain mouse subspecies. To investigate PRDM9 binding and its role in fertility and meiotic recombination, we humanized the DNA-binding domain of PRDM9 in C57BL/6 mice. This change repositions DSB hotspots and completely restores fertility in male hybrids. Here we show that alteration of one Prdm9 allele impacts the behaviour of DSBs controlled by the other allele at chromosome-wide scales. These effects correlate strongly with the degree to which each PRDM9 variant binds both homologues at the DSB sites it controls. Furthermore, higher genome-wide levels of such 'symmetric' PRDM9 binding associate with increasing fertility measures, and comparisons of individual hotspots suggest binding symmetry plays a downstream role in the recombination process. These findings reveal that subspecies-specific degradation of PRDM9 binding sites by meiotic drive, which steadily increases asymmetric PRDM9 binding, has impacts beyond simply changing hotspot positions, and strongly support a direct involvement in hybrid infertility. Because such meiotic drive occurs across mammals, PRDM9 may play a wider, yet transient, role in the early stages of speciation.

  2. Comparison of Neurological Function in Males and Females from Two Substrains of C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Amy Ashworth

    2014-12-01

    Full Text Available The C57BL/6 (B6 mouse is the background strain most frequently used for genetically-modified mice. Previous studies have found significant behavioral and genetic differences between the B6J (The Jackson Laboratory and B6N substrains (National Institutes of Health; however, most studies employed only male mice. We performed a comprehensive battery of motor function and learning and memory tests on male and female mice from both substrains. The B6N male mice had greater improvement in the rotarod test. In contrast, B6J female mice had longer latencies to falling from the rotarod. In the Morris water maze (MWM, B6J males had significantly shorter latencies to finding the hidden platform. However, B6N females had significantly shorter path lengths in the reversal and shifted-reduced phases. In open field locomotor activity, B6J males had higher activity levels, whereas B6N females took longer to habituate. In the fear conditioning test, B6N males had a significantly longer time freezing in the new context compared with B6J males, but no significant differences were found in contextual or cued tests. In summary, our findings demonstrate the importance of testing both males and females in neurobehavioral studies. Both factors (sex and substrain must be taken into account when designing developmental neurotoxicology studies.

  3. Hybrid embryonic stem cell-derived tetraploid mice show apparently normal morphological, physiological, and neurological characteristics.

    Science.gov (United States)

    Schwenk, Frieder; Zevnik, Branko; Brüning, Jens; Röhl, Mathias; Willuweit, Antje; Rode, Anja; Hennek, Thomas; Kauselmann, Gunther; Jaenisch, Rudolf; Kühn, Ralf

    2003-06-01

    ES cell-tetraploid (ES) mice are completely derived from embryonic stem cells and can be obtained at high efficiency upon injection of hybrid ES cells into tetraploid blastocysts. This method allows the immediate generation of targeted mouse mutants from genetically modified ES cell clones, in contrast to the standard protocol, which involves the production of chimeras and several breeding steps. To provide a baseline for the analysis of ES mouse mutants, we performed a phenotypic characterization of wild-type B6129S6F(1) ES mice in relation to controls of the same age, sex, and genotype raised from normal matings. The comparison of 90 morphological, physiological, and behavioral parameters revealed elevated body weight and hematocrit as the only major difference of ES mice, which exhibited an otherwise normal phenotype. We further demonstrate that ES mouse mutants can be produced from mutant hybrid ES cells and analyzed within a period of only 4 months. Thus, ES mouse technology is a valid research tool for rapidly elucidating gene function in vivo.

  4. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice.

    Science.gov (United States)

    Solomon, Matia B; Loftspring, Matthew; de Kloet, Annette D; Ghosal, Sriparna; Jankord, Ryan; Flak, Jonathan N; Wulsin, Aynara C; Krause, Eric G; Zhang, Rong; Rice, Taylor; McKlveen, Jessica; Myers, Brent; Tasker, Jeffrey G; Herman, James P

    2015-08-01

    Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.

  5. Effects of lung exposure to carbon nanotubes on female fertility and pregnancy. A study in mice.

    Science.gov (United States)

    Hougaard, Karin S; Jackson, Petra; Kyjovska, Zdenka O; Birkedal, Renie K; De Temmerman, Pieter-Jan; Brunelli, Andrea; Verleysen, Eveline; Madsen, Anne Mette; Saber, Anne T; Pojana, Giulio; Mast, Jan; Marcomini, Antonio; Jensen, Keld A; Wallin, Håkan; Szarek, Józef; Mortensen, Alicja; Vogel, Ulla

    2013-11-01

    We studied the effects of preconceptional exposure to multiwalled carbon nanotubes (MWCNTs): mature, female C57BL/6J mice were intratracheally instilled with 67μg NM-400 MWCNT, and the following day co-housed with mature males, in breeding pairs. Time to delivery of the first litter, litter parameters, maternal inflammation and histopathology of lung and liver were recorded. In male offspring, locomotor activity, startle response, and daily sperm production (DSP) were assessed. In the dams, lung and liver bore evidence of MWCNT exposure when assessed 6 weeks and 4 months after exposure. A short delay in the delivery of the first litter was observed in exposed females. Litter parameters, behavior and DSP were similar in control and exposed groups. In conclusion, instillation of a single dose of MWCNT induced long lasting pathological changes in dam lung and liver. Theoretically, lung inflammation due to particle exposure could interfere with female reproductive parameters. Whether the observed lag in delivery of a first litter was in fact caused by exposure to MWCNT should be addressed in a study designed specifically to elucidate effects on the early processes involved in establishment of pregnancy. Exposure was not associated with changes in the assessed gestational or offspring parameters.

  6. Liver DNA methylation analysis in adult female C57BL/6JxFVB mice following perinatal exposure to bisphenol A.

    Science.gov (United States)

    van Esterik, J C J; Vitins, A P; Hodemaekers, H M; Kamstra, J H; Legler, J; Pennings, J L A; Steegenga, W T; Lute, C; Jelinek, J; Issa, J P J; Dollé, M E T; van der Ven, L T M

    2015-01-05

    Bisphenol A (BPA) is a compound released from plastics and other consumer products used in everyday life. BPA exposure early in fetal development is proposed to contribute to programming of chronic diseases like obesity and diabetes, by affecting DNA methylation levels. Previously, we showed that in utero and lactational exposure of C57BL/6JxFVB hybrid mice via maternal feed using a dose range of 0-3000μg/kg body weight/day resulted in a sex-dependent altered metabolic phenotype in offspring at 23 weeks of age. The most univocal effects were observed in females, with reduced body weights and related metabolic effects associated with perinatal BPA exposure. To identify whether the effects of BPA in females are associated with changes in DNA methylation, this was analyzed in liver, which is important in energy homeostasis. Measurement of global DNA methylation did not show any changes. Genome-wide DNA methylation analysis at specific CpG sites in control and 3000μg/kg body weight/day females with the digital restriction enzyme analysis of methylation (DREAM) assay revealed potential differences, that could, however, not be confirmed by bisulfite pyrosequencing. Overall, we demonstrated that the observed altered metabolic phenotype in female offspring after maternal exposure to BPA was not detectably associated with liver DNA methylation changes. Still, other tissues may be more informative. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Response of male mice to odours of female mice in different stages of oestrous cycle: self-grooming behaviour and the effect of castration.

    Science.gov (United States)

    Achiraman, Shanmugam; SankarGanesh, Devaraj; Kannan, Soundarapandian; Kamalakkannan, Soundararajan; Nirmala, Natarajan; Archunan, Govindaraju

    2014-01-01

    The behavioural assays were carried out in a Y-maze wherein intact, castrated and testosterone-treated male mice were exposed to oestrus and non-oestrus urine samples. The intact male mice investigated more frequently and spent more time in the Y-maze arm with oestrus urine than in that with non-oestrus urine. In contrast, the castrated mice were not attracted to oestrus urine, whereas testosterone-treated mice showed preference for oestrus urine. The rate of self-grooming was higher in intact males in case of exposure to oestrus urine while the rate was lower with respect to non-oestrus urine. However, castrated mice exhibited less self-grooming behaviour which was partially restored by testosterone treatment. The results suggest that self-grooming behaviour is an indicator of detection and discrimination of oestrus by males, and supports the androgen role in male chemosensory ability to discriminate between oestrus and non-oestrus female odours.

  8. Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD.

    Science.gov (United States)

    Maddox, S A; Kilaru, V; Shin, J; Jovanovic, T; Almli, L M; Dias, B G; Norrholm, S D; Fani, N; Michopoulos, V; Ding, Z; Conneely, K N; Binder, E B; Ressler, K J; Smith, A K

    2017-01-17

    Women are at increased risk of developing post-traumatic stress disorder (PTSD) following a traumatic event. Recent studies suggest that this may be mediated, in part, by circulating estrogen levels. This study evaluated the hypothesis that individual variation in response to estrogen levels contributes to fear regulation and PTSD risk in women. We evaluated DNA methylation from blood of female participants in the Grady Trauma Project and found that serum estradiol levels associates with DNA methylation across the genome. For genes expressed in blood, we examined the association between each CpG site and PTSD diagnosis using linear models that adjusted for cell proportions and age. After multiple test correction, PTSD associated with methylation of CpG sites in the HDAC4 gene, which encodes histone deacetylase 4, and is involved in long-term memory formation and behavior. DNA methylation of HDAC4 CpG sites were tagged by a nearby single-nucleotide polymorphism (rs7570903), which also associated with HDAC4 expression, fear-potentiated startle and resting-state functional connectivity of the amygdala in traumatized humans. Using auditory Pavlovian fear conditioning in a rodent model, we examined the regulation of Hdac4 in the amygdala of ovariectomized (OVX) female mice. Hdac4 messenger RNA levels were higher in the amygdala 2 h after tone-shock presentations, compared with OVX-homecage control females. In naturally cycling females, tone-shock presentations increased Hdac4 expression relative to homecage controls for metestrous (low estrogen) but not the proestrous (high estrogen) group. Together, these results support an estrogenic influence of HDAC4 regulation and expression that may contribute to PTSD in women.Molecular Psychiatry advance online publication, 17 January 2017; doi:10.1038/mp.2016.250.

  9. Tetrachlorodibenzo-p-dioxin exposure alters radial arm maze performance and hippocampal morphology in female AhR mice.

    Science.gov (United States)

    Powers, B E; Lin, T-M; Vanka, A; Peterson, R E; Juraska, J M; Schantz, S L

    2005-02-01

    Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter spatial learning in rats tested on a radial arm maze (RAM). TCDD is believed to exert most of its effects through binding to the aryl hydrocarbon receptor (AhR). To determine whether the AhR mediates TCDD-induced alterations in spatial learning, we tested male and female AhR-knockout (AhR-/-), heterozygous (AhR+/-) and wild-type (AhR+/+) mice on the RAM. AhR+/- male and female mice were time mated, and treated dams were dosed with 5 microg TCDD/kg body weight on day 13 of gestation. When offspring reached adulthood, male and female AhR+/+, AhR+/- and AhR-/- mice from TCDD-exposed and unexposed litters were tested on the eight-arm RAM. After testing, we examined hippocampal morphology as visualized by the Timm's silver sulfide stain. TCDD-exposed female AhR+/- mice made more errors than their respective controls on the RAM and exhibited a decrease in the size of the intra- and infrapyramidal mossy fiber (IIP-MF) field of the hippocampus. None of the other TCDD-exposed groups differed from their respective control groups with regard to maze performance or hippocampal morphology. The reduction of IIP-MF field indicates a possible morphological basis for the learning deficit that was observed in the female AhR+/- mice. It is hypothesized that the effect of TCDD exposure is AhR dependent and that TCDD may alter GABAergic activity in the hippocampus of female mice during development.

  10. Depression-like behavior of aged male and female mice is ameliorated with administration of testosterone or its metabolites.

    Science.gov (United States)

    Frye, Cheryl A; Walf, Alicia A

    2009-05-25

    There may be a role of age-related decline in androgen production and/or its metabolism for late-onset depression disorders of men and women. Thus, the anti-depressant-like effects of testosterone (T) and its metabolites are of interest. Given that these androgens have disparate mechanisms of action, it is important to begin to characterize and compare their effects in an aged animal model. We hypothesized that there would be sex differences in depression behavior of aged mice and that androgens would reduce depression-like behaviors in the forced swim test. To investigate this, male and female mice (approximately 24 months old) were subcutaneously administered T, or one of its 5alpha-reduced metabolites (dihydrotesterone-DHT, 5alpha-androstane,17beta-diol-3alpha-diol), or aromatized metabolite (estradiol--E(2)), or oil vehicle. Mice were administered androgens (1 mg/kg) 1 h before being tested in the forced swim test, an animal model of depression. We found that males spent more time immobile, and less time swimming, than females. Administration of T, DHT, or 3alpha-diol similarly reduced time spent immobile, and increased time spent struggling, of male and female mice. E(2), compared to vehicle administration, decreased time spent immobile of males and females, but increased time spent swimming of females and time spent struggling of male mice. Together, these data suggest that T and its 5alpha-reduced and aromatized metabolites have anti-depressant-like effects in aged male and female mice.

  11. The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice

    Science.gov (United States)

    McMahon, Aisling C.; Ruohonen, Kari; Raubenheimer, David; Ballard, J. William O.; Le Couteur, David G.; Nicholls, Caroline; Li, Zhe; Maitz, Peter K. M.; Wang, Yiwei; Simpson, Stephen J.

    2016-01-01

    Nutrition influences skin structure; however, a systematic investigation into how energy and macronutrients (protein, carbohydrate and fat) affects the skin has yet to be conducted. We evaluated the associations between macronutrients, energy intake and skin structure in mice fed 25 experimental diets and a control diet for 15 months using the Geometric Framework, a novel method of nutritional analysis. Skin structure was associated with the ratio of dietary macronutrients eaten, not energy intake, and the nature of the effect differed between the sexes. In males, skin structure was primarily associated with protein intake, whereas in females carbohydrate intake was the primary correlate. In both sexes, the dermis and subcutaneous fat thicknesses were inversely proportional. Subcutaneous fat thickness varied positively with fat intake, due to enlarged adipocytes rather than increased adipocyte number. We therefore demonstrated clear interactions between skin structure and macronutrient intakes, with the associations being sex-specific and dependent on dietary macronutrient balance. PMID:27832138

  12. Glycidol modulation of the immune responses in female B6C3F1 mice.

    Science.gov (United States)

    Guo, T L; McCay, J A; Brown, R D; Musgrove, D L; Butterworth, L; Munson, A E; Germolec, D R; White, K L

    2000-08-01

    The immunotoxic potential of glycidol was evaluated in female B6C3F1 mice using a battery of functional assays and three host resistance models. Glycidol was administered to the animals by oral gavage as a solution in sterile distilled water daily for 14 days at doses of 25, 125 and 250 mg/kg. In tier I, we observed that glycidol exposure produced a dose-related decrease in splenocyte IgM antibody-forming cell response to sheep red blood cells (sRBC); the spleen natural killer (NK) cell activity was also decreased. A decrease in B cell proliferative responses to anti-IgM F(ab')2 and/or interleukin-4 (IL-4) was observed while the splenocyte proliferative responses to T cell mitogen ConA and B cell mitogen LPS were not affected. The splenocyte proliferative response to allogeneic cells as evaluated in the mixed leukocyte reaction (MLR) to DBA/2 spleen cells was not affected. In tier II, we found that exposure to glycidol decreased the number and percentage of B cells and the absolute number of CD4+ T cells in the spleen while the number of total T cells, CD8+ T cells and CD4+CD8+ T cells was not affected. The cytotoxic T lymphocyte (CTL) response to mitomycin C-treated P815 mastocytoma was not affected; the cytotoxic activity of peritoneal macrophages was not suppressed. Moreover, the host resistance to Listeria monocytogenes was not affected although a slight increase in host resistance to Streptococcus pneumoniae was observed. However, exposure to glycidol decreased host resistance to the B16F10 melanoma tumor model with the maximal tumor formation in lung observed in the high dose group. Overall, these dada support the finding that glycidol is an immunosuppressive agent in female B6C3F1 mice.

  13. Efficacy of native and hyperglycosylated follicle stimulating hormone analogues for promoting fertility in female mice

    Science.gov (United States)

    Trousdale, Rhonda K.; Yu, Bo; Pollak, Susan V.; Husami, Nabil; Vidali, Andrea; Lustbader, Joyce W.

    2009-01-01

    Objective To compare the efficacy of recombinant human follicle stimulating hormone (rhFSH), to rhFSH with 4 additional O-linked carbohydrates (rhFSH-CTP), rhFSH with 4 additional N-linked carbohydrates (rhFSH-N4) and the current gold-standard for rodent ovarian stimulation, pregnant mare serum gonadotropin (PMSG), on fertility parameters in mice. Design Animal Study Setting Academic Research Center Subjects Adult C57Bl/6J female mice Interventions Ovarian stimulation with 5IUof rhFSH, rhFSH-CTP, rhFSH-N4 or PMSG. 46 hours later 5IU of hCG was injected to promote ovulation then females were mated overnight. Main Outcome Measures Eggs retrieved following ovulation, in vitro embryo development, delivery rate, litter size Results Hyperglycosylated FSH analogues, rhFSH-CTP and rhFSH-N4, enhanced egg ovulation and embryo maturation significantly better than rhFSH. RhFSH-N4 produced more eggs (28.5±1.9 per mouse) and embryos (17.8±1.6) compared to rhFSH-CTP (18.3±1.2 and 9.0±1.0, respectively). Treatment with rhFSH, rhFSH-N4 and PMSG produced statistically equivalent delivery rates and litter sizes. The delivery rate was surprisingly lower with rhFSH-CTP (14%) compared to PMSG (33%). Conclusions Compared to rhFSH, treatment with hyperglycosylated rhFSH-CTP and rhFSH-N4 led to superior rates of ovulated eggs and subsequent in vitro embryo development. RhFSH-N4 was equivalent to PMSG while rhFSH-CTP was significantly lower than PMSG therapy for all fertility parameters studied. PMID:18249396

  14. Efficacy of native and hyperglycosylated follicle-stimulating hormone analogs for promoting fertility in female mice.

    Science.gov (United States)

    Trousdale, Rhonda K; Yu, Bo; Pollak, Susan V; Husami, Nabil; Vidali, Andrea; Lustbader, Joyce W

    2009-01-01

    To compare the efficacy of recombinant human FSH (rhFSH) with rhFSH with four additional O-linked carbohydrates (rhFSH-CTP), rhFSH with four additional N-linked carbohydrates (rhFSH-N4), and the current gold standard for rodent ovarian stimulation, pregnant mare serum gonadotropin (PMSG), on fertility parameters in mice. Animal study. Academic research center. Adult C57Bl/6J female mice. Ovarian stimulation with 5 IU of rhFSH, rhFSH-CTP, rhFSH-N4, or PMSG. Forty-six hours later, 5 IU of hCG was injected to promote ovulation and females were mated overnight. Eggs retrieved after ovulation, in vitro embryo development, delivery rate, and litter size. The hyperglycosylated FSH analogs, rhFSH-CTP and rhFSH-N4, enhanced ovulation and embryo maturation significantly better than rhFSH. RhFSH-N4 produced more eggs (28.5 +/- 1.9 per mouse) and embryos (17.8 +/- 1.6) compared with rhFSH-CTP (18.3 +/- 1.2 and 9.0 +/- 1.0, respectively). Treatment with rhFSH, rhFSH-N4, and PMSG produced statistically equivalent delivery rates and litter sizes. The delivery rate was surprisingly lower with rhFSH-CTP (14%) compared with PMSG (33%). Compared with rhFSH, treatment with hyperglycosylated rhFSH-CTP and rhFSH-N4 led to superior rates of ovulated eggs and subsequent in vitro embryo development. RhFSH-N4 was equivalent to PMSG, while all of the fertility parameters studied were lower with rhFSH-CTP than with PMSG therapy.

  15. Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.

    Science.gov (United States)

    Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena

    2017-03-01

    Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms.

  16. NanoTIO2 (UV-Titan does not induce ESTR mutations in the germline of prenatally exposed female mice

    Directory of Open Access Journals (Sweden)

    Boisen Anne Mette

    2012-06-01

    Full Text Available Abstract Background Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development. Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO2 produces a long-lasting inflammatory response in mice, it was chosen for the present study. Findings Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO2 UV-Titan L181 (~42.4 mg UV-Titan/m3 or filtered clean air on gestation days (GD 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls. ESTR mutation rates of 0.029 (maternal allele and 0.047 (paternal allele in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele and 0.061 (paternal allele. Conclusions We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.

  17. Different effects of bisphenol-A on memory behavior and synaptic modification in intact and estrogen-deprived female mice.

    Science.gov (United States)

    Xu, Xiaohong; Gu, Ting; Shen, Qiaoqiao

    2015-03-01

    Bisphenol-A (BPA) has the capability of interfering with the effects of estrogens on modulating brain function. The purpose of this study was to investigate the effects of BPA on memory and synaptic modification in the hippocampus of female mice under different levels of cycling estrogen. BPA exposure (40, 400 μg/kg/day) for 8 weeks did not affect spatial memory and passive avoidance task of gonadally intact mice but improved ovariectomy (Ovx)-induced memory impairment, whereas co-exposure of BPA with estradiol benzoate (EB) diminished the rescue effect of EB on memory behavior of Ovx mice. The results of morphometric measurement showed that BPA positively modified the synaptic interface structure and increased the synaptic density of CA1 pyramidal cell in the hippocampus of Ovx females, but inhibited the enhancement of EB on synaptic modification and synaptogenesis of Ovx mice. Furthermore, BPA up-regulated synaptic proteins synapsin I and PSD-95 and NMDA receptor NR2B but inhibited EB-induced increase in PSD-95 and NR2B in the hippocampus of Ovx mice. These results suggest that BPA interfered with normal hormonal regulation in synaptic plasticity and memory of female mice as a potent estrogen mimetic and as a disruptor of estrogen under various concentrations of cycling estrogen.

  18. Variable maturation and oviposition by female Schistosoma japonicum in mice: the effects of irradiation of the host prior to infection

    Energy Technology Data Exchange (ETDEWEB)

    Cheever, A.W.; Duvall, R.H.

    1987-11-01

    The maturation of female Schistosoma japonicum was found to vary greatly within each of two Philippine strains of this parasite and some females did not contain uterine eggs 7 to 15 weeks after infection while others contained numerous eggs before the fifth week of infection. It was found that female worms containing less than 20 uterine eggs contributed little to the accumulation of eggs in the tissues of infected mice. Such worms also generally appeared to be immature. The variable rate of maturation of worms is likely to have profound effects on the immune reactions of mice as well as on the pathologic response to infection. Systematic delay in oviposition was serendipitously found in worms from mice which had been irradiated for other purposes prior to exposure to S. japonicum, and from the fourth to the sixth week after infection egg production by worms in irradiated mice lagged well behind that in intact mice. Seven to 10 weeks after infection these worms were laying normal numbers of eggs, as judged by egg passage per worm pair in the feces and the accumulation of eggs in the tissues. S. mansoni developed normally in irradiated mice.

  19. The effects of social isolation on wound healing mechanisms in female mice.

    Science.gov (United States)

    Pyter, Leah M; Yang, Linglan; da Rocha, José M; Engeland, Christopher G

    2014-03-29

    Various stressors impair wound healing in humans and rodents. For example, social isolation delays wound closure in rodents, but the healing mechanisms that underlie this delay have yet to be identified. Here, the effects of three weeks of social isolation on hypothalamic-pituitary-adrenal axis responses and healing factors involved in the inflammatory and proliferative phases of wound healing were assessed in adult female hairless mice. Social isolation reduced basal circulating corticosterone concentrations and increased body and thymus weights compared with group-housed controls. Isolation impaired dermal wound closure by up to 30% and reduced initial total wound bacterial load relative to controls. Inflammatory gene expression in the wounds was not affected by the observed differences in wound bacterial load. However, isolation reduced wound gene expression of keratinocyte growth factor and vascular endothelial growth factor, which are involved in keratinocyte proliferation/migration and angiogenesis during the proliferative phase of healing. These data indicate that social isolation induces healing impairments that may be attributed to reductions in growth factors necessary for proper skin cell proliferation and blood vessel growth during healing. This healing impairment occurred in the absence of both high wound bacterial load and elevated circulating glucocorticoids, which have previously been hypothesized to be required for stress-impaired healing in mice.

  20. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    Science.gov (United States)

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.

  1. Histone variant macroH2A1 deletion in mice causes female-specific steatosis

    Directory of Open Access Journals (Sweden)

    Boulard Mathieu

    2010-04-01

    Full Text Available Abstract Background Vertebrate heterochromatin contains a non-allelic variant of the histone H2A called macroH2A1, which has the characteristic of being three times the size of the canonical H2A. The macroH2A1 C-terminal extension can recruit onto chromatin the poly-ADP-ribose polymerase (PARP1, which is crucial for DNA repair. This led to the speculation that macroH2A1 could be essential for genome surveillance; however, no experimental evidence supported this hypothesis. Because macroH2A1 has been found to be enriched on the inactive X-chromosome in females, it is thought to play a role in sex chromosome dosage compensation through its ability to regulate gene expression. However, more genetic data are needed to further understand the function of macroH2A1 in mammals. Results Deletion of the murine gene H2afy, which encodes for macroH2A1, resulted in lipid accumulation in liver. Hepatic steatosis caused by H2afy disruption occurred specifically in homozygous mutant females. The metabolic disorder constantly affected half of the number of homozygote females. Given the mixed genetic background of the mutants, an unreported genetic modifier is likely to influence the penetrance of the phenotype. In addition, the X-linked thyroxine-binding globulin (Tbg gene was specifically upregulated in steatotic livers. Chromatin immunoprecitation indicated that macroH2A1 is enriched at the Tbg promoter in wild-type female animals, indicating that increased Tbg expression in H2afy null mutants is likely to be a direct consequence of the absence of macroH2A1. Furthermore, male mice, which are not prone to the metabolic disorder, had a reduced level of macroH2A1 incorporated into the Tbg promoter. Conclusions Because TBG is the main carrier of the thyroid hormone T4, which regulates energy metabolism, we propose that overexpression of TBG is responsible for the fat accumulation observed in H2afy-deficient liver. Moreover, our results suggest that the sexual

  2. [Effect of airborne particulate matter exposure on pregnancy and fetal development in female mice].

    Science.gov (United States)

    Hong, Xin-ru; Wang, Yu-mei; Liu, Chao-bin; Hu, Dian; Song, Yan-feng; Zheng, Ling; Chen, Xiao-qiu

    2011-01-01

    To investigate subacute exposure of airborne particulate matter (PM) on pregnancy and fetal development in female mice. Forty female and forty male ICR adult mice were caged separately by 1:1 to get access to pregnancy. The pregnant mice were randomized into control group (A), small (B), middle (C), large (D) or overdose (E) PM challenge groups (n = 8-11), and were administered with 30 µl of phosphate buffered solution (A) or resuspended standard PM SRM 1649a at 0.09 (B), 0.52 (C), 1.85 (D) or 69.2 (E) µg/µl, once per trid from d 0 till d 19 of pregnancy via instillation onto the base of the tongue. Fetal mice were harvested by cesarean section at the time when spontaneous delivery occurred. Body weight of the pregnant mice, gestational days, intrauterine survival and growth, hepatic and pneumonic histopathological changes of the fetal mice were investigated. Lung/body and liver/body weight ratios were calculated. Expressions of mRNA and protein of CYP1A1 in the fetal lung and CYP1A2 in the fetal liver were assayed. (1) All of the pregnant mice survived pregnancy throughout the entire experiment. Body weight of the pregnant mice was not significantly different among all the groups at gestational d 1 and 7 (P > 0.05), but significantly lower in group E [(41.8 ± 5.8) and (48.9 ± 8.9) g] than in group A [(45.9 ± 1.8) and (56.2 ± 4.9) g] at gestational d 14 and 18 (P 0.05). Lung/body and liver/body weight ratios of the fetal mice were significantly increased in group E [(1.21 ± 0.18) and (4.68 ± 0.21)%] as compared with groups A, B, C and D (P 0.05) despite of an increasing tendency. (3) Pathological changes in the liver and lung of the fetuses were conspicuous in group E. The fetal liver injury was histopathologically evidenced by deranged tissue structure, degenerated parenchyma of hepatic cells, and mildly stained cytoplasm. Adipose degeneration was represented by clear-boundary intracytoplasmic vacuoles in most of the liver cells, and cell pyknosis with

  3. Comparison of Anxiolytic Effect of Matricaria Recutita in Male and Female Mice in the Presence and Absence of Gonads

    Directory of Open Access Journals (Sweden)

    Pourmehdi Rad Goli

    2009-06-01

    Full Text Available Background: Some studies indicated that the chamomile induces sedative and anxiolytic effects. It has been shown that this herbal drug contains some phytoestrogenic components. Concerning the different effects of sexual hormones on various physiological phenomena such as anxiety, it seems this herb has different effects on anxiety in males and females. So in this study we examined anxiolytic property of Iranian spicious of chamomile, Matricaria recutita (MR hydroalcholic extract in presence and absence of sexual glands in male and female animal models. Materials and Methods: This animal study was done in Shahid Chamran University in 2006. NMRI male and female mice were divided in 16 groups of seven mices including: intact, sham, gonadectomized, receiving hydroalcholic extract of MR (10, 30, 50 mg/kg, ip. Elevated plus maze was used to evaluate anxiety and locomotive activity in all groups. Statistical evaluation of data was performed using Student's t-test and analysis of variance (ANOVA with one factor followed by Tukey test. P<0.05 was considered significant. Results: MR induced anxiolytic effect (10, 30 mg/kg in intact (P<0.05 and gonadectomized male mice (P<0.05 while did not significant any effect on intact and gonadectomized females. Testectomized mice were more anxious than sham group (P<0.05. Ovariectomized mice had no difference in level of anxiety with sham group. MR had no effect on locomotive activity in male mice but decreased it in females only in dose of 50 mg/kg (P<0.05. Conclusion: It seems that the anxiolytic effect of MR is sex dependent and probably this different effect in two sexes is related to its phytoestrogenic components

  4. Effects of di(2-ethylhexyl) phthalate (DEHP) on female fertility and adipogenesis in C3H/N mice.

    Science.gov (United States)

    Schmidt, Juliane-Susanne; Schaedlich, Kristina; Fiandanese, Nadia; Pocar, Paola; Fischer, Bernd

    2012-08-01

    Di(2-ethylhexyl) phthalate (DEHP) and its metabolites are known to affect lipid metabolism and adipogenesis, mainly by activation of peroxisome proliferator-activated receptors (PPARs). Exposure to DEHP has been linked with testicular impairment and male subfertility. However, the effects of DEHP on female reproductive health and metabolism have not been studied in detail. We examined the effects of dietary DEHP exposure on metabolism and fertility in female mice. In two independent approaches, female C3H/N mice were exposed to DEHP (0.05, 5, or 500 mg/kg of body weight per day) via their diet for 8 weeks, and we recorded food intake, weight gain, and litter size. After exposure, liver, visceral fat, and plasma from F0 females (study I) and F0 dams and their F1 offspring (study II) were analyzed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. In study I, DEHP-exposed F0 females (all dose groups) had a significant increase in body weight, food intake, and visceral adipose tissue compared with controls. In the 500-mg DEHP group, PPARα and PPARγ transcripts were significantly changed in liver tissue. In the same group, PPARγ mRNA was significantly reduced in liver but not in fat tissue. In addition, leptin and FABP4 (fatty acid binding protein 4) mRNA were increased in adipose tissue, whereas adiponectin was decreased. In study II, we detected a 100% abortion rate in F0 dams in the 500-mg group. F1 offspring exposed in utero and during lactation had an increase in visceral fat tissue and body weight. Fertility was impaired in mice exposed to high doses of DEHP, and body weight and visceral fat deposits were increased in mice exposed to environmentally relevant doses. Although F1 mice were exposed to DEHP only in utero and during lactation, we observed metabolic changes in the offspring of diet-exposed females.

  5. The contribution of the Y chromosome to hybrid male sterility in house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Dean, Matthew D; Tucker, Priscilla K; Nachman, Michael W

    2012-08-01

    Hybrid sterility in the heterogametic sex is a common feature of speciation in animals. In house mice, the contribution of the Mus musculus musculus X chromosome to hybrid male sterility is large. It is not known, however, whether F1 male sterility is caused by X-Y or X-autosome incompatibilities or a combination of both. We investigated the contribution of the M. musculus domesticus Y chromosome to hybrid male sterility in a cross between wild-derived strains in which males with a M. m. musculus X chromosome and M. m. domesticus Y chromosome are partially sterile, while males from the reciprocal cross are reproductively normal. We used eight X introgression lines to combine different X chromosome genotypes with different Y chromosomes on an F1 autosomal background, and we measured a suite of male reproductive traits. Reproductive deficits were observed in most F1 males, regardless of Y chromosome genotype. Nonetheless, we found evidence for a negative interaction between the M. m. domesticus Y and an interval on the M. m. musculus X that resulted in abnormal sperm morphology. Therefore, although F1 male sterility appears to be caused mainly by X-autosome incompatibilities, X-Y incompatibilities contribute to some aspects of sterility.

  6. Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice

    Directory of Open Access Journals (Sweden)

    Kristen L Zuloaga

    2015-01-01

    Full Text Available Soluble epoxide hydrolase (sEH, a key enzyme in the metabolism of vasodilatory epoxyeicosatrienoic acids (EETs, is sexually dimorphic, suppressed by estrogen, and contributes to underlying sex differences in cerebral blood flow and injury after cerebral ischemia. We tested the hypothesis that sEH inhibition or gene deletion in reproductively senescent (RS female mice would increase cerebral perfusion and decrease infarct size following stroke. RS (15-18 month old and young (3-4 month old female sEH knockout (sEHKO mice and wild type (WT mice were subjected to 45 min middle cerebral artery occlusion (MCAO with laser Doppler perfusion monitoring. WT mice were treated with vehicle or a sEH inhibitor t-AUCB at the time of reperfusion and every 24hrs thereafter for 3 days. Differences in regional cerebral blood flow were measured in vivo using optical microangiography. Infarct size was measured 3 days after reperfusion. Infarct size and cerebral perfusion 24h after MCAO were not altered by age. Both sEH gene deletion and sEH inhibition increased cortical perfusion 24h after MCAO. Neither sEH gene deletion nor sEH inhibition reduced infarct size in young mice. However, sEH gene deletion, but not sEH inhibition of the hydrolase domain of the enzyme, decreased infarct size in RS mice. Results of these studies show that sEH gene deletion and sEH inhibition enhance cortical perfusion following MCAO and sEH gene deletion reduces damage after ischemia in RS female mice; however this neuroprotection in absent is young mice.

  7. A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice.

    Science.gov (United States)

    Kauffman, Alexander S; Thackray, Varykina G; Ryan, Genevieve E; Tolson, Kristen P; Glidewell-Kenney, Christine A; Semaan, Sheila J; Poling, Matthew C; Iwata, Nahoko; Breen, Kellie M; Duleba, Antoni J; Stener-Victorin, Elisabet; Shimasaki, Shunichi; Webster, Nicholas J; Mellon, Pamela L

    2015-09-01

    Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition.

  8. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  9. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    Science.gov (United States)

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  10. Compared to Sucrose, Previous Consumption of Fructose and Glucose Monosaccharides Reduces Survival and Fitness of Female Mice123

    Science.gov (United States)

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-01-01

    Background: Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar—high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). Objectives: We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. Methods: We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays—seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Results: Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. Conclusion: This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. PMID:25733457

  11. Compared to sucrose, previous consumption of fructose and glucose monosaccharides reduces survival and fitness of female mice.

    Science.gov (United States)

    Ruff, James S; Hugentobler, Sara A; Suchy, Amanda K; Sosa, Mirtha M; Tanner, Ruth E; Hite, Megumi E; Morrison, Linda C; Gieng, Sin H; Shigenaga, Mark K; Potts, Wayne K

    2015-03-01

    Intake of added sugar has been shown to correlate with many human metabolic diseases, and rodent models have characterized numerous aspects of the resulting disease phenotypes. However, there is a controversy about whether differential health effects occur because of the consumption of either of the two common types of added sugar-high-fructose corn syrup (fructose and glucose monosaccharides; F/G) or table sugar (sucrose, a fructose and glucose disaccharide). We tested the equivalence of sucrose- vs. F/G-containing diets on mouse (Mus musculus) longevity, reproductive success, and social dominance. We fed wild-derived mice, outbred mice descended from wild-caught ancestors, a diet in which 25% of the calories came from either an equal ratio of F/G or an isocaloric amount of sucrose (both diets had 63% of total calories as carbohydrates). Exposure lasted 40 wk, starting at weaning (21 d of age), and then mice (104 females and 56 males) were released into organismal performances assays-seminatural enclosures where mice competed for territories, resources, and mates for 32 wk. Within enclosures all mice consumed the F/G diet. Females initially fed the F/G diet experienced a mortality rate 1.9 times the rate (P = 0.012) and produced 26.4% fewer offspring than females initially fed sucrose (P = 0.001). This reproductive deficiency was present before mortality differences, suggesting the F/G diet was causing physiologic performance deficits prior to mortality. No differential patterns in survival, reproduction, or social dominance were observed in males, indicating a sex-specific outcome of exposure. This study provides experimental evidence that the consumption of human-relevant levels of F/G is more deleterious than an isocaloric amount of sucrose for key organism-level health measures in female mice. © 2015 American Society for Nutrition.

  12. Oral green tea catechins transiently lower plasma glucose concentrations in female db/db mice.

    Science.gov (United States)

    Wein, Silvia; Schrader, Eva; Rimbach, Gerald; Wolffram, Siegfried

    2013-04-01

    Polyphenols, including green tea catechins, are secondary plant compounds often discussed in the context of health-promoting potential. Evidence for such effects is mainly derived from epidemiological and cell culture studies. The aim of the present study was to investigate antidiabetic, antiadipogenic, and anti-inflammatory effects at nonpharmacological doses in an obese diabetic mouse model that exerts early relevant clinical signs of non-insulin-dependent diabetes mellitus. Female db/db mice received a flavonoid-poor diet either without additive, with rosiglitazone (RSG, 0.02 g/kg diet), or with green tea extract (low-dose green tea extract [LGTE] and high-dose green tea extract [HGTE], 0.1 and 1 g/kg diet). Food and water were freely available. The body weight was monitored weekly. Blood was sampled (12-h fasted) from the tail vein on day 28 and analyzed for glucose, cholesterol, triacylglycerol, nonesterified fatty acids, insulin, adiponectin, and soluble intercellular adhesion molecule-1 (sICAM-1). Blood glucose was also analyzed on day 14. Furthermore, sICAM-1 release was investigated in tumor necrosis factor alpha-stimulated EAhy926 cells. After 14 days, fasting glycemia was improved by RSG or HGTE supplementation compared to controls. However, at the end of the study (day 28), only RSG exhibited glucose-lowering effects and induced plasma adiponectin concentrations, paralleled by higher body weight gain and reduced periuterine fat pads compared to controls. However, only GTE treatment reduced sICAM-1 release in vitro and in vivo. Nonpharmacological HGTE supplementation in db/db mice caused (1) no adiponectin-inducing or antiadipogenic effects, (2) reduced sICAM-1 release, thereby potentially exerting anti-inflammatory effects in the progressive diabetic state, and (3) a transient improvement in glycemia.

  13. Developmental programming by androgen affects the circadian timing system in female mice.

    Science.gov (United States)

    Mereness, Amanda L; Murphy, Zachary C; Sellix, Michael T

    2015-04-01

    Circadian clocks play essential roles in the timing of events in the mammalian hypothalamo-pituitary-ovarian (HPO) axis. The molecular oscillator driving these rhythms has been localized to tissues of the HPO axis. It has been suggested that synchrony among these oscillators is a feature of normal reproductive function. The impact of fertility disorders on clock function and the role of the clock in the etiology of endocrine pathology remain unknown. Polycystic ovarian syndrome (PCOS) is a particularly devastating fertility disorder, affecting 5%-10% of women at childbearing age with features including a polycystic ovary, anovulation, and elevated serum androgen. Approximately 40% of these women have metabolic syndrome, marked by hyperinsulinemia, dyslipidemia, and insulin resistance. It has been suggested that developmental exposure to excess androgen contributes to the etiology of fertility disorders, including PCOS. To better define the role of the timing system in these disorders, we determined the effects of androgen-dependent developmental programming on clock gene expression in tissues of the metabolic and HPO axes. Female PERIOD2::luciferase (PER2::LUC) mice were exposed to androgen (dihydrotestosterone [DHT]) in utero (Days 16-18 of gestation) or for 9-10 wk (DHT pellet) beginning at weaning (pubertal androgen excess [PAE]). As expected, both groups of androgen-treated mice had disrupted estrous cycles. Analysis of PER2::LUC expression in tissue explants revealed that excess androgen produced circadian misalignment via tissue-dependent effects on phase distribution. In vitro treatment with DHT differentially affected the period of PER2::LUC expression in tissue explants and granulosa cells, indicating that androgen has direct and tissue-specific effects on clock gene expression that may account for the effects of developmental programming on the timing system.

  14. MC-LR Exposure Leads to Subfertility of Female Mice and Induces Oxidative Stress in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Jiang Wu

    2015-12-01

    Full Text Available Health risk of human exposure to microcystin-leucine arginine (MC-LR has aroused more and more attention over the past few decades. In the present study, MC-LR was orally administered to female mice at 0, 1, 10 and 40 μg/L for three and six months. We found that chronic exposure to MC-LR at environmental levels could stimulate follicle atresia and lead to decreased developmental follicles, accompanied by a reduction of gonadosomatic index (GSI. In line with the irregular gonadal hormone level and estrus cycles, subfertility of female mice was also confirmed by analyzing numbers of litters and pups. The in vitro study suggested that granulosa cells could uptake MC-LR and should be the target of the toxicant. Oxidative stress in granulose cells induced by MC-LR promoted follicle atresia and eventually leads to female subfertility.

  15. NanoTIO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner; Shipley, Thomas; Hougaard, Karin Sørig

    2012-01-01

    Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects...... on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development). Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed...... exposed by whole-body inhalation to the nanoTiO2 UV-Titan L181 (~42.4 mg UV-Titan/m3) or filtered clean air on gestation days (GD) 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates...

  16. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choonsik [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Lodwick, Daniel [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Hasenauer, Deanna [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States); Williams, Jonathan L [Department of Radiology, University of Florida, Gainesville, FL 32611 (United States); Lee, Choonik [MD Anderson Cancer Center-Orlando, Orlando, FL 32806 (United States); Bolch, Wesley E [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2007-07-21

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images-the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  17. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    Science.gov (United States)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  18. Hybrid resistance to EL-4 lymphoma cells. 2. Association between loss of hybrid resistance and detection of suppressor cells after treatment of mice with /sup 89/Sr

    Energy Technology Data Exchange (ETDEWEB)

    Luevano, E.; Kumar, V.; Bennett, M. (Boston Univ., MA (USA). School of Medicine)

    1981-01-01

    (C57BL/6XDBA/2)F/sub 1/ hybrid (B6D2F/sub 1/) mice resist the growth of parental-strain (B6) EL-4 lymphoma cells inoculated intraperitoneally; i.e., B6D2F/sub 1/ mice survive longer than B6 mice and do not develop ascites. As compared with B6 mice, B6D2F/sub 1/ mice have higher levels of natural killer (NK) activity against /sup 51/Cr-labelled EL-4 cells in their lymphoid organs. B6D2F/sub 1/ mice treated with /sup 89/Sr lose NK activity for certain lymphoma cell targets, e.g. YAC-1, but NK(EL-4) function is usually intact. However, /sup 89/Sr-treated mice had lost hybrid resistance to EL-4 cells in vivo, as determined by survival times and the development of ascites. NK(EL-4) and NK(YAC-1) activities were stimulated by irradiated or unirradiated EL-4 cells, Corynebacterium parvum, or polyinosinic:polycytiylic acid (pI:pC) in spleens of normal B6D2F/sub 1/ mice, but NK(EL-4) activity was depressed within 3 days by such treatment in B6D2F/sub 1/ mice previously injected with /sup 89/Sr. Suppressor cells for NK(EL-4) but not for NK(YAC-1) effectors were easily detected in spleens of /sup 89/Sr- treated mice 'challenged' with C. parvum. Thus, agents capable of stimulating NK cell function in normal mice may lead to suppression of that activity in mice depleted of marrow-dependent cell function by /sup 89/Sr. Spleen cells of /sup 89/Sr-treated B6D2F/sub 1/ mice were also unable to generate anti-EL-4 cytotoxic T lymphocytes in a cell-mediated lympholysis system; this defect appeared also to be mediated by suppressor cells. Lymphoid cells depleted by /sup 89/Sr- induced marrow aplasia may have two functions in host defences against tumours (especially lymphomas): they may lyse tumour cells directly and they may 'down-regulate' suppressor cells capable of inhibiting other 'natural' or 'induced' immune functions.

  19. Dopamine regulation of gonadotropin-releasing hormone neuron excitability in male and female mice.

    Science.gov (United States)

    Liu, Xinhuai; Herbison, Allan E

    2013-01-01

    Numerous in vivo studies have shown that dopamine is involved in the regulation of LH secretion in mammals. However, the mechanisms through which this occurs are not known. In this study, we used green fluorescent protein-tagged GnRH neurons to examine whether and how dopamine may modulate the activity of adult GnRH neurons in the mouse. Bath-applied dopamine (10-80 μm) potently inhibited the firing of approximately 50% of GnRH neurons. This resulted from direct postsynaptic inhibitory actions through D1-like, D2-like, or both receptors. Further, one third of GnRH neurons exhibited an increase in their basal firing rate after administration of SCH23390 (D1-like antagonist) and/or raclopride (D2-like antagonist) indicating tonic inhibition by endogenous dopamine in the brain slice. The role of dopamine in presynaptic modulation of the anteroventral periventricular nucleus (AVPV) γ-aminobutyric acid/glutamate input to GnRH neurons was examined. Exogenous dopamine was found to presynaptically inhibit AVPV-evoked γ-aminobutyric acid /glutamate postsynaptic currents in about 50% of GnRH neurons. These effects were, again, mediated by both D1- and D2-like receptors. Neither postsynaptic nor presynaptic actions of dopamine were found to be different between diestrous, proestrous, and estrous females, or males. Approximately 20% of GnRH neurons were shown to receive a dopaminergic input from AVPV neurons in male and female mice. Together, these observations show that dopamine is one of the most potent inhibitors of GnRH neuron excitability and that this is achieved through complex pre- and postsynaptic actions that each involve D1- and D2-like receptor activation.

  20. The Skeletal Response to Estrogen is Impaired in Female but not in Male Steroid Receptor Coactivator (SRC)-1 Knock Out Mice

    OpenAIRE

    Mödder, U. I.; Sanyal, A.; Xu, J; O’Malley, B.W.; Spelsberg, T C; Khosla, S.

    2007-01-01

    Estrogen (E) is critical for the maintenance of bone mass in both female and male mice and steroid receptor coactivator (SRC)-1 has been shown to be important for mediating E effects on bone, at least in female mice. In the present study, we defined the skeletal phenotype of male SRC-1 knock out (KO) mice and compared it with their female littermates. Further, to determine the role of SRC-1 in mediating effects of E on bone in male mice, we examined the skeletal effects of gonadectomy (gnx) w...

  1. Baclofen prevents the elevated plus maze behavior and BDNF expression during naloxone precipitated morphine withdrawal in male and female mice.

    Science.gov (United States)

    Pedrón, Valeria T; Varani, André P; Balerio, Graciela N

    2016-05-01

    In previous studies we have shown that baclofen, a selective GABAB receptor agonist, prevents the somatic expression and reestablishes the dopamine and μ-opioid receptors levels, modified during naloxone-precipitated morphine withdrawal syndrome in male and female mice. There are no previous reports regarding sex differences in the elevated plus maze (EPM) and the expression of BDNF in morphine-withdrawn mice. The present study analyses the behavioral and biochemical variations during morphine withdrawal in mice of both sexes, and whether these variations are prevented with baclofen. Swiss-Webster albino prepubertal mice received morphine (2 mg/kg, i.p.) twice daily, for 9 consecutive days. On the 10th day, one group of morphine-treated mice received naloxone (opioid receptor antagonist; 6 mg/kg, i.p.) 1 h after the last dose of morphine to precipitate withdrawal. A second group received baclofen (2 mg/kg, i.p.) before naloxone administration. The EPM behavior was measured during 15 min after naloxone injection. The expression of BDNF-positive cells was determined by immunohistochemistry. Withdrawn male mice showed a higher percentage of time spent and number of entries to the open arms compared to withdrawn female mice. Baclofen prevented this behavior in both sexes. BDNF expression decreased in the AcbC, BNST, CeC, and CA3 of the hippocampus while increased in the BLA of morphine withdrawn male. Baclofen pretreatment prevented the BDNF expression observed in morphine withdrawn male mice in all the brain areas studied except in the CeC. Baclofen prevention of the EPM behavior associated to morphine withdrawal could be partially related to changes in BDNF expression.

  2. A selfish genetic element influencing longevity correlates with reactive behavioural traits in female house mice (Mus domesticus).

    Science.gov (United States)

    Auclair, Yannick; König, Barbara; Lindholm, Anna K

    2013-01-01

    According to theory in life-history and animal personality, individuals with high fitness expectations should be risk-averse, while individuals with low fitness expectations should be more bold. In female house mice, a selfish genetic element, the t haplotype, is associated with increased longevity under natural conditions, representing an appropriate case study to investigate this recent theory empirically. Following theory, females heterozygous for the t haplotype (+/t) are hypothesised to express more reactive personality traits and be more shy, less explorative and less active compared to the shorter-lived homozygous wildtype females (+/+). As males of different haplotype do not differ in survival, no similar pattern is expected. We tested these predictions by quantifying boldness, exploration, activity, and energetic intake in both +/t and +/+ mice. +/t females, unlike +/+ ones, expressed some reactive-like personality traits: +/t females were less active, less prone to form an exploratory routine and tended to ingest less food. Taken together these results suggest that differences in animal personality may contribute to the survival advantage observed in +/t females but fail to provide full empirical support for recent theory.

  3. Loss of X-linked Protocadherin-19 differentially affects the behavior of heterozygous female and hemizygous male mice.

    Science.gov (United States)

    Hayashi, Shuichi; Inoue, Yoko; Hattori, Satoko; Kaneko, Mari; Shioi, Go; Miyakawa, Tsuyoshi; Takeichi, Masatoshi

    2017-07-19

    Mutations in the X-linked gene Protocadherin-19 (Pcdh19) cause female-limited epilepsy and mental retardation in humans. Although Pcdh19 is known to be a homophilic cell-cell adhesion molecule, how its mutations bring about female-specific disorders remains elusive. Here, we report the effects of Pcdh19 knockout in mice on their development and behavior. Pcdh19 was expressed in various brain regions including the cerebral cortex and hippocampus. Although Pcdh19-positive cells were evenly distributed in layer V of wild-type cortices, their distribution became a mosaic in Pcdh19 heterozygous female cortices. In cortical and hippocampal neurons, Pcdh19 was localized along their dendrites, showing occasional accumulation on synapses. Pcdh19 mutants, however, displayed no detectable abnormalities in dendrite and spine morphology of layer V neurons. Nevertheless, Pcdh19 hemizygous males and heterozygous females showed impaired behaviors including activity defects under stress conditions. Notably, only heterozygous females exhibited decreased fear responses. In addition, Pcdh19 overexpression in wild-type cortices led to ectopic clustering of Pcdh19-positive neurons. These results suggest that Pcdh19 is required for behavioral control in mice, but its genetic loss differentially affects the male and female behavior, as seen in human, and they also support the hypothesis that the mosaic expression of Pcdh19 in brains perturbs neuronal interactions.

  4. A selfish genetic element influencing longevity correlates with reactive behavioural traits in female house mice (Mus domesticus.

    Directory of Open Access Journals (Sweden)

    Yannick Auclair

    Full Text Available According to theory in life-history and animal personality, individuals with high fitness expectations should be risk-averse, while individuals with low fitness expectations should be more bold. In female house mice, a selfish genetic element, the t haplotype, is associated with increased longevity under natural conditions, representing an appropriate case study to investigate this recent theory empirically. Following theory, females heterozygous for the t haplotype (+/t are hypothesised to express more reactive personality traits and be more shy, less explorative and less active compared to the shorter-lived homozygous wildtype females (+/+. As males of different haplotype do not differ in survival, no similar pattern is expected. We tested these predictions by quantifying boldness, exploration, activity, and energetic intake in both +/t and +/+ mice. +/t females, unlike +/+ ones, expressed some reactive-like personality traits: +/t females were less active, less prone to form an exploratory routine and tended to ingest less food. Taken together these results suggest that differences in animal personality may contribute to the survival advantage observed in +/t females but fail to provide full empirical support for recent theory.

  5. Plasticity of the prolactin (PRL) axis: mechanisms underlying regulation of output in female mice.

    Science.gov (United States)

    Le Tissier, P R; Hodson, D J; Martin, A O; Romanò, N; Mollard, P

    2015-01-01

    The output of prolactin (PRL) is highly dynamic with dramatic changes in its secretion from the anterior pituitary gland depending on prevailing physiological status. In adult female mice, there are three distinct phases of output and each of these is related to the functions of PRL at specific stages of reproduction. Recent studies of the changes in the regulation of PRL during its period of maximum output, lactation, have shown alterations at both the level of the anterior pituitary and hypothalamus. The PRL-secreting cells of the anterior pituitary are organised into a homotypic network in virgin animals, facilitating coordinated bouts of activity between interconnected PRL cells. During lactation, coordinated activity increases due to the changes in structural connectivity, and this drives large elevations in PRL secretion. Surprisingly, these changes in connectivity are maintained after weaning, despite reversion of PRL output to that of virgin animals, and result in an augmented output of hormone during a second lactation. At the level of the hypothalamus, tuberoinfundibular dopamine (TIDA) neurons, the major inhibitors of PRL secretion, have unexpectedly been shown to remain responsive to PRL during lactation. However, there is an uncoupling between TIDA neuron firing and dopamine secretion, with a potential switch to enkephalin release. Such a process may reinforce hormone secretion through dual disinhibition and stimulation of PRL cell activity. Thus, integration of signalling along the hypothalamo-pituitary axis is responsible for increased secretory output of PRL cells during lactation, as well as allowing the system to anticipate future demands.

  6. EFFECT OF COSTUS SPECIOSUS KOEN ON REPRODUCTIVE ORGANS OF FEMALE ALBINO MICE

    Directory of Open Access Journals (Sweden)

    Haque Ansarul

    2012-04-01

    Full Text Available Costus speciosus Koen. Retz. belongs to family Zingiberaceae. It is known as Crepe zinger in English and Jom lakhuti in Assamese. Traditionally, rhizome of this plant is used as ethno-medicine for curing different health ailments. This plant is widely used for fertility control in women by the rural people of Rangia Sub-division of Kamrup District, Assam. In ayurveda, the rhizomes are ascribed to be bitter, astringent, acrid, cooling, aphrodisiac, purgative, antihelminthic, depurative, febrifuge, expectorant and tonic. The methanolic rhizome extract was investigated for its effect on ovary and uterus of Gonado-intact female adult mice. The extract at two different doses (250 mg/kg, 500mg/kg body weight for 10 days has showed significant decrease in ovarian weight and increase in uterine weight in comparison to normal control. The phytochemical screening revealed the presence of secondary metabolites i.e., alkaloids and flavonoids. The finding of the present study put some light showing the endocrine active effects of the Costus speciosus in animal model.

  7. Cyclophosphamide: effect in the biodistribution of the radiopharmaceutical in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Alves, I.P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Paula, E.F. de; Correa, T.G.; Freitas, L.C. de; Fonseca, L. [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil); Bernardo Filho, M. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Biologia

    1995-12-31

    The effect of cyclophosphamide in the biological distribution of pertechnetate ({sup 99m} TcO{sub 4}), entered intravenously in mice (female) Balb/c in two doses with an interval of 48 hours. Then, a dose of {sup 99m} Tc, as Na{sup 99m} Tc O{sub 4} (250 kBq), milked from a {sup 99} Mo/{sup 99m} Tc generator was administered. These animals were sacrificed, the organs isolated and the activities determined in a well counter. The percentage of radioactivity was calculated dividing the activity in each organ by the sum of the activities in the isolated organs. The analysis of the results has shown that cyclophosphamide did not modify the radioactivity in heart, kidney and stomach. In the spleen the percentage of radioactivity per gram of tissue increased (6.83 to 9.14). Cyclophosphamide increased radioactivity in brain, thyroid, uterus, ovary, liver and lung. These results can be explained by the metabolic process and/or therapeutic effect of cyclophosphamide. (author). 13 refs, 4 tabs.

  8. Short-term social memory deficits in adult female mice exposed to tannery effluent and possible mechanism of action.

    Science.gov (United States)

    Estrela, Fernanda Neves; Rabelo, Letícia Martins; Vaz, Boniek Gontijo; de Oliveira Costa, Denys Ribeiro; Pereira, Igor; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2017-10-01

    The accumulated organic residues in tannery-plant courtyards are an eating attraction to small rodents; however, the contact of these animals with these residues may change their social behavior. Thus, the aim of the present study is to investigate whether the exposure to tannery effluent (TE) can damage the social recognition memory of female Swiss mice, as well as to assess whether vitamin C supplementation could provide information about how TE constituents can damage these animals' memory. We have observed that resident females exposed to TE (without vitamin supplementation) did not explore the anogenital region, their body or chased intruding females for shorter time or with lower frequency during the retest session of the social recognition test, fact that indicates social recognition memory deficit in these animals. Such finding is reinforced by the confirmation that there was no change in the animals' olfactory function during the buried food test, or locomotor changes in females exposed to the pollutant. Since no behavioral change was observed in the females exposed to TE and treated with vitamin C (before or after the exposure), it is possible saying that these social cognitive impairments seem to be directly related to the imbalance between the cellular production of reactive oxygen species and the counteracting antioxidant mechanisms (oxidative stress) in female mice exposed to the pollutant (without vitamin supplementation). Therefore, the present study evidences that the direct contact with tannery effluent, even for a short period-of-time, may cause short-term social memory deficits in adult female Swiss mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Immunotoxicity of the organochlorine pesticide methoxychlor in female ICR, BALB/c, and C3H/He mice.

    Science.gov (United States)

    Hayashi, Koichi; Fukuyama, Tomoki; Ohnuma, Aya; Tajima, Yukari; Kashimoto, Yukiko; Yoshida, Toshinori; Kosaka, Tadashi

    2013-01-01

    Several types of pesticides, including organochlorines, are known to suppress or modulate immune responses. The present study evaluated the immunotoxicity of the organochlorine pesticide methoxychlor (MXC) in female BALB/c, C3H/He, and ICR mice. Mice were given oral MXC doses of 0, 30, 100, and 300 mg/kg each day for 7 consecutive days. On day 4, the mice also received an intravenous injection of sheep red blood cells (SRBC). The splenic plaque-forming cell (PFC) IgM response and the serum anti-SRBC IgM antibody titer were evaluated while splenic lymphocytes were counted by flow cytometry and the spleen underwent histopathological analysis. Significant decreases in IgM PFC responses were seen in BALB/c, C3H/He, and ICR mice that received MXC doses of 100 and 300 mg/kg. Similar changes in serum anti-SRBC IgM antibody titers occurred in three strain mice. Flow cytometric analysis revealed significantly decreased splenic T-cell (CD3+) populations in a dose dependent manner in BALB/c mice, and in the 300 mg/kg of MXC-treated group of C3H/He mice. Germinal center (GC) B-cell (CD19+PNA+) populations were significantly decreased in the 300 mg/kg of MXC-treated groups of all three mouse strains and in the 30 and 100 mg/kg of MXC-treated groups of BALB/c and C3H/He strain mice. Histopathological analysis revealed decreased cellularity of the periarteriolar lymphoid sheath (PALS; T-cell area) and decreased GC development in all three strains of mice treated with 300 mg/kg MXC. These results suggest that MXC has an immune-suppressive effect in mice, and that our protocol may be useful for rapidly detecting immunosuppression induced by environmental chemicals.

  10. Early obesity and age-related mimicry of metabolic syndrome in female mice with sex hormonal imbalances.

    Science.gov (United States)

    Sairam, M Ram; Wang, Min; Danilovich, Natalia; Javeshghani, Danesh; Maysinger, Dusica

    2006-07-01

    To investigate the relationship of early obesity to metabolic syndrome during sex hormonal imbalances in mutant female mice at different ages. Hormonal imbalances, accumulation and nature of adipose tissue, food intake, glucose tolerance, and expression of candidate genes and markers of inflammation were studied by comparing wild-type, null, and haploinsufficient follitropin receptor knockout female mice at different ages. Follitropin receptor deletion in mice produced null females that are infertile and haploinsufficient mice that undergo accelerated biological aging. Both types of mutants with sex hormonal imbalances have central obesity without hyperphagia, but circulating leptin is elevated. Adipocyte hyperplasia and hypertrophy is attributed to elevated peroxisome proliferator-activated receptor gamma expression. Adiponectin protein levels increase in fat tissue and plasma. Only mutants but not controls acquire age-dependent decline in glucose tolerance with high insulin and altered pancreatic beta cells. Changes in inflammation markers, decreased muscle insulin receptor phosphorylation, and increase of the enzyme protein tyrosine phosphatase 1B indicate insulin resistance. In this animal model, the chronological appearance of early obesity induced by hormonal imbalances culminates in characteristics that are attributable to metabolic syndrome, including cardiovascular abnormalities. Dissection of the depot-specific alterations and defining molecular interrelationships could help in developing targeted remedies and resolving complications and controversies related to health benefits and adversities of current hormone replacement therapy.

  11. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Dan, E-mail: y.dan@lacdr.leidenuniv.nl [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Meurs, Illiana [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Ohigashi, Megumi [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Calpe-Berdiel, Laura; Habets, Kim L.L.; Zhao, Ying [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Kubo, Yoshiyuki [Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University (Japan); Yamaguchi, Akihito [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Van Berkel, Theo J.C. [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands); Nishi, Tsuyoshi [Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University (Japan); Van Eck, Miranda [Division of Biopharmaceutics, LACDR, Leiden University (Netherlands)

    2010-05-07

    Objectives: To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. Methods and results: Chimeras with dysfunctional macrophage ABCA5 (ABCA5{sup -M/-M}) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5{sup -/-}) mice into irradiated LDLr{sup -/-} mice. In vitro, bone marrow-derived macrophages from ABCA5{sup -M/-M} chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr{sup -/-} mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5{sup -M/-M} chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5{sup -M/-M} chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding. Conclusions: ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr{sup -/-} mice.

  12. Differential effect of gamma-radiation-induced heme oxygenase-1 activity in female and male C57BL/6 mice.

    Science.gov (United States)

    Han, Youngsoo; Platonov, Alexander; Akhalaia, Medea; Yun, Yeon-Sook; Song, Jie-Young

    2005-08-01

    Ionizing radiation produces reactive oxygen species, which exert diverse biological effects on cells and animals. We investigated alterations of heme oxygenase (HO) and non-protein thiols (NPSH), which are known as two major anti-oxidant enzymes, in female and male C57BL/6 mice in the lung, liver, and brain after whole-body gamma-irradiation with 10 Gy (1-7 days) as well as in the lung after whole-thorax gamma-irradiation (WTI) with 12.5 Gy (1-26 weeks). Most significant alteration of HO activity was observed in the liver, which elevated 250% in males. NPSH level in female liver was increased on the 5th-7th days but decreased in males on the 3rd day. In the lung, the elevation of HO activity in both sexes and the pattern of NPSH change were similar to that of the liver. On the other hand, the increase of HO activity on the 16th week and the decrease of NPSH level on the 2nd week were observed only in male lung after WTI. This study shows that the liver is the most sensitive tissue to gamma-irradiation-induced alterations of HO activity in both female and male mice. In addition, there exists significant differential effect of gamma-irradiation on anti-oxidant system in female and male mice.

  13. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice

    Science.gov (United States)

    Anisimov, Vladimir N.; Berstein, Lev M.; Popovich, Irina G.; Zabezhinski, Mark A.; Egormin, Peter A.; Piskunova, Tatiana S.; Semenchenko, Anna V.; Tyndyk, Margarita L.; Yurova, Maria N.; Kovalenko, Irina G.; Poroshina, Tatiana E.

    2011-01-01

    Hyperglycemia and hyperinsulinemia accelerate both aging and cancer. Antidiabetic biguanides such as metformin decrease glucose, insulin and IGF-1 level. Metformin increases lifespan and prevents cancer in mice, although its effects vary, depending on mice strain and gender. Here we showed that chronic treatment of female outbred SHR mice with metformin started at the age of 3, 9 or 15 months decreased body temperature and postponed age-related switch-off of estrous function. Surprisingly, metformin did not affect levels of serum cholesterol, triglycerides, glucose and insulin. Treatment with metformin started at the age of 3 months increased mean life span by 14% and maximum life span by 1 month. The treatment started at the age of 9 months insignificantly increased mean life span by only 6%, whereas the treatment started at the age of 15 months failed to increase life span. The mean life span of tumor-free mice was increased by 21% in ‘the youngest group’, by 7% in ‘middle-aged group’ and in contrast was reduced by 13% in ‘the oldest group’. When started at the age of 3 and 9 months, metformin delayed the first tumor detection by 22% and 25%, correspondingly. Thus, in female SHR mice, metformin increased life span and postponed tumors when started at the young and middle but not at the old age. In contrast, metformin improves reproductive function when started at any age. PMID:21386129

  14. The apelinergic system: sexual dimorphism and tissue-specific modulations by obesity and insulin resistance in female mice.

    Science.gov (United States)

    Butruille, Laura; Drougard, Anne; Knauf, Claude; Moitrot, Emmanuelle; Valet, Philippe; Storme, Laurent; Deruelle, Philippe; Lesage, Jean

    2013-08-01

    It has been proposed that the apelinergic system (apelin and its receptor APJ) may be a promising therapeutic target in obesity-associated insulin resistance syndrome. However, due to the extended tissue-distribution of this system, the therapeutic use of specific ligands for APJ may target numerous tissues resulting putatively to collateral deleterious effects. To unravel specific tissular dysfunctions of this system under obesity and insulin-resistance conditions, we measured the apelinemia and gene-expression level of both apelin (APL) and APJ in 12-selected tissues of insulin-resistant obese female mice fed with a high fat (HF) diet. In a preliminary study, we compared between adult male and female mice, the circadian plasma apelin variation and the effect of fasting on apelinemia. No significant differences were found for these parameters suggesting that the apelinemia is not affected by the sex. Moreover, plasma apelin level was not modulated during the four days of the estrous cycle in females. In obese and insulin-resistant HF female mice, plasma apelin concentration after fasting was not modified but, the gene-expression level of the APL/APJ system was augmented in the white adipose tissue (WAT) and reduced in the brown adipose tissue (BAT), the liver and in kidneys. BAT apelin content was reduced in HF female mice. Our data suggest that the apelinergic system may be implicated into specific dysfunctions of these tissues under obesity and diabetes and that, pharmacologic modulations of this system may be of interest particularly in the treatment of adipose, liver and renal dysfunctions that occur during these pathologies.

  15. Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice.

    Science.gov (United States)

    Long, Caela C; Sadler, Katelyn E; Kolber, Benedict J

    2016-10-15

    The evolutionary advantages to the suppression of pain during a stressful event (stress-induced analgesia (SIA)) are obvious, yet the reasoning behind sex-differences in the expression of this pain reduction are not. The different ways in which males and females integrate physiological stress responses and descending pain inhibition are unclear. A potential supraspinal modulator of stress-induced analgesia is the central nucleus of the amygdala (CeA). This limbic brain region is involved in both the processing of stress and pain; the CeA is anatomically and molecularly linked to regions of the hypothalamic pituitary adrenal (HPA) axis and descending pain network. The CeA exhibits sex-based differences in response to stress and pain that may differentially induce SIA in males and females. Here, sex-based differences in behavioral and molecular indices of SIA were examined following noxious stimulation. Acute restraint stress in male and female mice was performed prior to intraplantar injections of formalin, a noxious inflammatory agent. Spontaneous pain-like behaviors were measured for 60min following formalin injection and mechanical hypersensitivity was evaluated 120 and 180min post-injection. Restraint stress altered formalin-induced spontaneous behaviors in male and female mice and formalin-induced mechanical hypersensitivity in male mice. To assess molecular indices of SIA, tissue samples from the CeA and blood samples were collected at the 180min time point. Restraint stress prevented formalin-induced increases in extracellular signal regulated kinase 2 (ERK2) phosphorylation in the male CeA, but no changes associated with pERK2 were seen with formalin or restraint in females. Sex differences were also seen in plasma corticosterone concentrations 180min post injection. These results demonstrate sex-based differences in behavioral, molecular, and hormonal indices of acute stress in mice that extend for 180min after stress and noxious stimulation.

  16. Different effects of L-arginine on morphine tolerance in sham and ovariectomized female mice

    Institute of Scientific and Technical Information of China (English)

    Reza KARAMI; Mahmoud HOSSEINI; Fatimeh KHODABANDEHLOO; Leila KHATAMI; Zahra TAIARANI

    2011-01-01

    Objective: The roles of gonadal hormones and nitric oxide (NO) on the analgesic effects of morphine,tolerance to morphine,and their interactions have been widely investigated.In the present study,the effect of L-arginine (an NO precursor) on morphine tolerance in sham and ovariectomized (OVX) female mice was investigated.Methods: Forty mice were divided into sham and OVX groups.On the first day,a hot plate test ((55±0.2) ℃; cut-off 30 s)was carried out as a base record 15 min before injection of morphine (10 mg/kg,subcutaneously (s.c.)) and was repeated every 15 min after injection.The sham group was then divided into two subgroups: sham-toleranceL-arginine (Sham-ToI-LA) and sham-tolerance-saline (Sham-ToI-Sal) which received either L-arginine 50 mg/kg (intraperitoneally (i.p.)) or saline 10 mi/kg (i.p.),respectively,three times in a day for three consecutive days.Morphine tolerance was induced in animals by injecting 30 mg/kg morphine (s.c.) three times/day for three days.This treatment was also used for OVX subgroups.On the fifth day,the hot plate test was repeated.The analgesic effect of morphine was calculated as the maximal percent effect (MPE).The results were compared using repeated measure analysis of variance (ANOVA).Results: There was no significant difference in MPE between the OVX and sham groups.The MPEs in both the Sham-ToI-Sal and OVX-ToI-Sal groups were lower than those in both the sham and OVX groups (P<0.01).The MPE in the OVX-ToI-Sal group was greater than that in the Sham-ToI-Sal group (P<0.01).The MPE in the Sham-ToI-LA group was higher than that in the Sham-ToI-Sal group (P<0.01).However,there was no significant difference between the Sham-ToI-LA and sham groups or between the OVX-ToI-LA and OVX-ToI-Sal groups.Conclusions: The results of the present study showed that repeated administration of morphine causes tolerance to the analgesic effect of morphine.L-Arginine could prevent tolerance to morphine but its effect was different in

  17. Segregated responses of mammary gland development and vaginal opening to prepubertal genistein exposure in Bscl2(-/-) female mice with lipodystrophy.

    Science.gov (United States)

    Li, Rong; El Zowalaty, Ahmed E; Chen, Weiqin; Dudley, Elizabeth A; Ye, Xiaoqin

    2015-07-01

    Berardinelli-Seip congenital lipodystrophy 2-deficient (Bscl2(-/-)) mice recapitulate human BSCL2 disease with lipodystrophy. Bscl2-encoded seipin is detected in adipocytes and epithelium of mammary gland. Postnatal mammary gland growth spurt and vaginal opening signify pubertal onset in female mice. Bscl2(-/-) females have longer and dilated mammary gland ducts at 5-week old and delayed vaginal opening. Prepubertal exposure to 500ppm genistein diet increases mammary gland area and accelerates vaginal opening in both control and Bscl2(-/-) females. However, genistein treatment increases ductal length in control but not Bscl2(-/-) females. Neither prepubertal genistein treatment nor Bscl2-deficiency affects phospho-estrogen receptor α or progesterone receptor expression patterns in 5-week old mammary gland. Interestingly, Bscl2-deficiency specifically reduces estrogen receptor β expression in mammary gland ductal epithelium. In summary, Bscl2(-/-) females have accelerated postnatal mammary ductal development but delayed vaginal opening; they display segregated responses in mammary gland development and vaginal opening to prepubertal genistein treatment.

  18. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    carry germline mutations. Importantly, the effect of a long-term suppression of the GH/IGF-1 axis during adulthood, as would be considered for human therapeutic purposes, has not been tested. The goal of this study was to determine whether temporally controlled Ghr gene deletion in adult mice would...... affect metabolism and longevity. Thus, we produced adult-onset GHRKO (aGHRKO) mice by disrupting the Ghr gene at 6 weeks of age. We found that aGHRKO mice replicate many of the beneficial effects observed in long-lived GHRKO mice. For example, aGHRKO mice, like GHRKO animals, displayed retarded growth...

  19. Evaluation of social and physical enrichment in modulation of behavioural phenotype in C57BL/6J female mice.

    Directory of Open Access Journals (Sweden)

    Natalia Kulesskaya

    Full Text Available Housing conditions represent an important environmental variable playing a critical role in the assessment of mouse behaviour. In the present study the effects of isolation and nesting material on the behaviour of female C57BL/6J mice were evaluated. The mice were subjected to different rearing conditions from weaning (at the age of 3 weeks. The study groups were group- and single-housed mice, divided further into groups with or without nesting material (species-specific enrichment. After 8 weeks spent in respective conditions the behavioural testing began. Both factors (social conditions and nesting material appeared to have a significant impact on the behavioural phenotype. However, it is important to stress that the interaction between the factors was virtually absent. We established that isolation increased locomotor activity and reduced anxiety-like behaviour in several tests of exploration. In contrast, absence of nesting material increased anxiety-like behaviour. Neither factor affected rota-rod performance, nociception and prepulse inhibition. Contextual fear memory was significantly reduced in single-housed mice, and interestingly, in mice with nesting material. Cued fear memory was reduced by single-housing, but not affected by enrichment. Mice from enriched cages displayed faster and better learning and spatial search strategy in the water maze. In contrast, isolation caused significant impairment in the water maze. In conclusion, both isolation and species-specific enrichment have profound effects on mouse behaviour and should be considered in design of the experiments and in assessment of animal welfare issues.

  20. Phylogeography of Chinese house mice (Mus musculus musculus/castaneus): distribution, routes of colonization and geographic regions of hybridization.

    Science.gov (United States)

    Jing, Meidong; Yu, Hon-Tsen; Bi, Xiaoxin; Lai, Yung-Chih; Jiang, Wei; Huang, Ling

    2014-09-01

    House mice (Mus musculus) are human commensals and have served as a primary model in biomedical, ecological and evolutionary research. Although there is detailed knowledge of the biogeography of house mice in Europe, little is known of the history of house mice in China, despite the fact that China encompasses an enormous portion of their range. In the present study, 535 house mice caught from 29 localities in China were studied by sequencing the mitochondrial D-loop and genotyping 10 nuclear microsatellite markers distributed on 10 chromosomes. Phylogenetic analyses revealed two evolutionary lineages corresponding to Mus musculus castaneus and Mus musculus musculus in the south and north, respectively, with the Yangtze River approximately representing the boundary. More detailed analyses combining published sequence data from mice sampled in neighbouring countries revealed the migration routes of the two subspecies into China: M. m. castaneus appeared to have migrated through a southern route (Yunnan and Guangxi), whereas M. m. musculus entered China from Kazakhstan through the north-west border (Xinjiang). Bayesian analysis of mitochondrial sequences indicated rapid population expansions in both subspecies, approximately 4650-9300 and 7150-14 300 years ago for M. m. castaneus and M. m. musculus, respectively. Interestingly, the migration routes of Chinese house mice coincide with the colonization routes of modern humans into China, and the expansion times of house mice are consistent with the development of agriculture in southern and northern China, respectively. Finally, our study confirmed the existence of a hybrid zone between M. m. castaneus and M. m. musculus in China. Further study of this hybrid zone will provide a useful counterpart to the well-studied hybrid zone between M. m. musculus and Mus musculus domesticus in central Europe.

  1. Investigating the role of tbx4 in the female germline in mice.

    Science.gov (United States)

    Douglas, Nataki C; Arora, Ripla; Chen, Cayla Yiyu; Sauer, Mark V; Papaioannou, Virginia E

    2013-12-01

    Normal development of germ cells is essential for fertility and mammalian reproduction. Although abnormal development of oocytes or follicles may lead to primary ovarian insufficiency (POI), a disorder that causes infertility in 1% of women less than 40 yr of age, the genes and signaling pathways activated in POI are not as yet fully elucidated. Tbx4, a member of the T-box family of transcription factors, is expressed in embryonic germ cells and postnatal oocytes at all stages of folliculogenesis. To investigate the requirement for Tbx4 in the germline, we analyzed germ cell development in the absence of Tbx4. We show that primordial germ cells (PGCs) are reduced in Tbx4 homozygous null (Tbx4(-/-)) embryos at Embryonic Day (E) 10.0. Tbx4(-/-) embryos die by E10.5; to study later time points in vitro, a tamoxifen-inducible estrogen receptor Cre recombinase was used to delete Tbx4 conditional mutant alleles. In addition, Gdf9cre and Zp3cre, two oocyte-specific Cre recombinases, were used to delete Tbx4 from postnatal primordial and primary follicles, respectively. We show that in vitro differentiation of the gonad into morphologically distinct testes and ovaries occurs normally starting at E11.5 when Tbx4 is deleted. In Gdf9cre; Tbx4(fl/-) and Zp3cre; Tbx4(fl/-) adult females, primordial, primary, secondary, and antral follicles form, ovulation occurs, corpus luteum formation is normal, and the mice are fertile without any evidence of diminished ovarian reserve. Although postnatal deletion of Tbx4 in oocytes does not obviously impair fertility, it is possible that the reduction in PGCs observed in Tbx4 homozygous null mutant embryos could affect long-term fertility in adults.

  2. Context-dependent effects of rimonabant on ethanol-induced conditioned place preference in female mice.

    Science.gov (United States)

    Silva, Aline A F; Barbosa-Souza, Evelyn; Confessor-Carvalho, Cassio; Silva, Raiany R R; De Brito, Ana Carolina L; Cata-Preta, Elisangela G; Silva Oliveira, Thaynara; Berro, Lais F; Oliveira-Lima, Alexandre J; Marinho, Eduardo A V

    2017-10-01

    The CB1 receptor antagonist rimonabant has been previously found to prevent behavioral effects of drugs of abuse in a context-dependent manner, suggesting an important role of endocannabinoid signaling in drug-induced environmental conditioning. The aim of the present study was to evaluate the effects of rimonabant on ethanol-induced conditioned place preference (CPP) in female mice. Animals were conditioned with saline or ethanol (1.8g/kg) during 8 sessions, and subsequently treated with either saline or rimonabant (1 or 10mg/kg) in the CPP environment previously associated with saline (unpaired) or ethanol (paired) for 6 consecutive days. Animals were then challenged with ethanol (1.8g/kg) in the ethanol-paired environment and ethanol-induced CPP was quantified on the following day. While treatment with 1mg/kg rimonabant in the saline-associated environment had no effects on the subsequent expression of ethanol-induced CPP, it blocked the expression of CPP to ethanol when paired to the ethanol-associated environment. When given in the ethanol-paired environment, 10mg/kg rimonabant induced aversion to the ethanol-associated environment. The same aversion effect was observed for 10mg/kg rimonabant when given in the saline-associated environment, thereby potentiating the expression of ethanol-induced CPP. Importantly, rimonabant did not induce CPP or conditioned place aversion on its own. Controlling for the estrous cycle phase showed no influences of hormonal cycle on the development and expression of ethanol-induced CPP. Our data suggest that rimonabant reduces the rewarding properties of ethanol by abolishing drug-environment conditioning in the CPP paradigm in a context-dependent manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice.

    Science.gov (United States)

    Xue, Baojian; Pamidimukkala, Jaya; Lubahn, Dennis B; Hay, Meredith

    2007-04-01

    It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.

  4. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Directory of Open Access Journals (Sweden)

    Alex Langford-Smith

    Full Text Available Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A, is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  5. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    Directory of Open Access Journals (Sweden)

    Judith P Ter Horst

    2014-02-01

    Full Text Available Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptors (MR and glucocorticoid receptors (GR. The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MRCaMKCre mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  6. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  7. Neural growth hormone: regional regulation by estradiol and/or sex chromosome complement in male and female mice

    OpenAIRE

    Quinnies, Kayla M; Bonthuis, Paul J.; Harris, Erin P; Shetty, Savera RJ; Rissman, Emilie F.

    2015-01-01

    Background Sex differences in pituitary growth hormone (GH) are well documented and coordinate maturation and growth. GH and its receptor are also produced in the brain where they may impact cognitive function and synaptic plasticity, and estradiol produces Gh sex differences in rat hippocampus. In mice, circulating estradiol increases Gh mRNA in female but not in male medial preoptic area (mPOA); therefore, additional factors regulate sexually dimorphic Gh expression in the brain. Thus, we h...

  8. Effects of the SARM ACP-105 on rotorod performance and cued fear conditioning in sham-irradiated and irradiated female mice.

    Science.gov (United States)

    Dayger, Catherine; Villasana, Laura; Pfankuch, Timothy; Davis, Matthew; Raber, Jacob

    2011-03-24

    Female mice are more susceptible to radiation-induced cognitive changes than male mice. Previously, we showed that, in female mice, androgens antagonize age-related cognitive decline in aged wild-type mice and androgens and selective androgen receptor modulators (SARMs) antagonize cognitive changes induced by human apolipoprotein E4, a risk factor for developing age-related cognitive decline. In this study, the potential effects of the SARM ACP-105 were assessed in female mice that were either sham-irradiated or irradiated with ¹³⁷Cesium at a dose of 10Gy. Behavioral testing started 2 weeks following irradiation. Irradiation impaired sensorimotor function in vehicle-treated mice but not in ACP-105-treated mice. Irradiation impaired cued fear conditioning and ACP-105 enhanced fear conditioning in sham-irradiated and irradiated mice. When immunoreactivity for microtubule-associated protein 2 was assessed in the cortex of sham-irradiated mice, there was a brain area × ACP-105 interaction. While ACP-105 reduced MAP-2 immunoreactivity in the sensorimotor cortex, there was a trend towards increased MAP-2 immunoreactivity in the enthorhinal cortex. No effect on MAP-2 immunoreactivity was seen in the irradiated cortex or sham-irradiated or irradiated hippocampus. Thus, there are relatively early radiation-induced behavioral changes in female mice and reduced MAP-2 levels in the sensorimotor cortex following ACP-105 treatment might contribute to enhanced rotorod performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Behavioral abnormalities in female mice following administration of aluminum adjuvants and the human papillomavirus (HPV) vaccine Gardasil.

    Science.gov (United States)

    Inbar, Rotem; Weiss, Ronen; Tomljenovic, Lucija; Arango, Maria-Teresa; Deri, Yael; Shaw, Christopher A; Chapman, Joab; Blank, Miri; Shoenfeld, Yehuda

    2017-02-01

    Vaccine adjuvants and vaccines may induce autoimmune and inflammatory manifestations in susceptible individuals. To date most human vaccine trials utilize aluminum (Al) adjuvants as placebos despite much evidence showing that Al in vaccine-relevant exposures can be toxic to humans and animals. We sought to evaluate the effects of Al adjuvant and the HPV vaccine Gardasil versus the true placebo on behavioral and inflammatory parameters in female mice. Six-week-old C57BL/6 female mice were injected with either, Gardasil, Gardasil + pertussis toxin (Pt), Al hydroxide, or, vehicle control in amounts equivalent to human exposure. At 7.5 months of age, Gardasil and Al-injected mice spent significantly more time floating in the forced swimming test (FST) in comparison with vehicle-injected mice (Al, p = 0.009; Gardasil, p = 0.025; Gardasil + Pt, p = 0.005). The increase in floating time was already highly significant at 4.5 months of age for the Gardasil and Gardasil + Pt group (p ≤ 0.0001). No significant differences were observed in the number of stairs climbed in the staircase test which measures locomotor activity. These results indicate that differences observed in the FST were unlikely due to locomotor dysfunction, but rather due to depression. Moreover, anti-HPV antibodies from the sera of Gardasil and Gardasil + Pt-injected mice showed cross-reactivity with the mouse brain protein extract. Immunohistochemistry analysis revealed microglial activation in the CA1 area of the hippocampus of Gardasil-injected mice. It appears that Gardasil via its Al adjuvant and HPV antigens has the ability to trigger neuroinflammation and autoimmune reactions, further leading to behavioral changes.

  10. Morphologic effects of hGRH gene expression on the pituitary, liver, and pancreas of MT-hGRH transgenic mice. An in situ hybridization analysis.

    OpenAIRE

    Lloyd, R. V.; Jin, L; A.; Chang; Kulig, E.; Camper, S A; Ross, B. D.; Downs, T. R.; Frohman, L A

    1992-01-01

    Morphologic changes in the pituitary, liver, and pancreas of mice with the metallothionein-human growth hormone--releasing hormone (MT-hGRH) transgene were analyzed by in situ hybridization histochemistry (ISH). There was progression from somatotroph hyperplasia to neoplasia in pituitaries of transgenic mice. Pituitary neoplasms were present between 9 to 12 months of age in some mice. Magnetic resonance imaging (MRI) readily identified enlarged pituitaries in MT-hGRH transgenic mice. Serum mo...

  11. Chronic resveratrol intake reverses pro-inflammatory cytokine profile and oxidative DNA damage in ageing hybrid mice.

    Science.gov (United States)

    Wong, Yee Ting; Gruber, Jan; Jenner, Andrew M; Tay, Francis Eng Hock; Ruan, Runsheng

    2011-09-01

    Thymic involution and shrinkage of secondary lymphoid organs are leading causes of the deterioration of the T-cell compartment with age. Inflamm-aging, a sustained inflammatory status, has been associated with chronic diseases and shortened longevity. This is the first study to investigate the effect of treating aging hybrid mice with long-term, low-dose resveratrol (RSV) in drinking water by assessing multiple immunological markers and profiles in the immune system. We found that hybrid mice exhibited marked age-related changes in the CD3+CD4+, C3+CD8+, CD4+CD25+, CD4M and CD8M surface markers. RSV reversed surface phenotypes of old mice to that of young mice by maintaining the CD4+ and CD8+ population in splenocytes as well as reducing CD8+CD44+ (CD8M) cells in the aged. RSV also enhanced the CD4+CD25+ population in old mice. Interestingly, pro-inflammatory status in young mice was transiently elevated by RSV but it consequently mitigated the age-dependent increased pro-inflammatory cytokine profile while preserving the anti-inflammatory cytokine condition in the old mice. Age-dependent increase in 8OHdG, an oxidative DNA damage marker was ameliorated by RSV. Immunological-focused microarray gene expression analysis showed that only the CD72 gene was significantly downregulated in the 12-month RSV-treated mice compared to age-matched controls. Our study indicates that RSV even at low physiological relevant levels is able to affect the immune system without causing marked gene expression changes.

  12. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice.

    Science.gov (United States)

    Palmisano, Brian T; Le, Thao D; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M

    2016-08-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Science.gov (United States)

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R; Newman, John W; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  14. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Science.gov (United States)

    Sica, Monica; Martini, Mariangela; Viglietti-Panzica, Carla; Panzica, GianCarlo

    2009-01-01

    Background Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS) is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir) neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. Results Changes were observed in the medial preoptic area (MPA) (significantly higher number in estrus) and in the arcuate nucleus (Arc) (significantly higher number in proestrus). In the ventrolateral part of the ventromedial nucleus (VMHvl) and in the bed nucleus of the stria terminalis (BST) no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle) in the VMHvl and in the BST (when considering only the less intensely stained elements). In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. Conclusion These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle. PMID:19604366

  15. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Directory of Open Access Journals (Sweden)

    Michele La Merrill

    Full Text Available Dichlorodiphenyltrichloroethane (DDT has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  16. Social investigation and long-term recognition memory performance in 129S1/SvImJ and C57BL/6JOlaHsd mice and their hybrids.

    Directory of Open Access Journals (Sweden)

    Jana Hädicke

    Full Text Available When tested for their behavioural performance, the mixed genetic background of transgenic mice is a critical, but often ignored, issue. Such issues can arise because of the significant differences in defined behavioural parameters between embryonic stem cell donor and recipient strains. In this context, the commonly used stem cell donor strain '129' shows 'deficits' in different paradigms for learning and long-term memory. We investigated the long-term social recognition memory performance and the investigative behaviour in commercially available 129S1/SvImJ and C57BL/6JOlaHsd mice and two F1-hybrids (129S1/SvImJ×C57BL/6JOlaHsd by using the social discrimination procedure and its modification, the volatile fraction cage (VFC. Our data revealed an unimpaired olfactory long-term recognition memory not only in female and male 129S1/SvImJ and C57BL/6JOlaHsd mice but also in the two hybrid lines (129S1/SvImJxC57BL/6JOlaHsd when the full 'olfactory signature' of the 'to-be-recognized' conspecific was presented. Under these conditions we also failed to detect differences in the long-term recognition memory between male and female mice of the tested strains and revealed that the oestrus cycle did not affect the performance in this memory task. The performance in the VFC, based only on the volatile components of the 'olfactory signature' of the 'to-be-recognized' conspecific, was similar to that observed under direct exposure except that females of one F1 hybrid group failed to show an intact long-term memory. Thus, the social discrimination procedure allowing direct access between the experimental subject and the stimulus animal(s is highly suitable to investigate the impact of genetic manipulations on long-term memory in male and female mice of the strain 129S1/SvImJ, C57BL/6JOlaHsd and 129S1/SvImJxC57BL/6JOlaHsd hybrids.

  17. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice

    Directory of Open Access Journals (Sweden)

    Diz-Chaves Yolanda

    2012-04-01

    Full Text Available Abstract Background Stress during fetal life increases the risk of affective and immune disorders later in life. The altered peripheral immune response caused by prenatal stress may impact on brain function by the modification of local inflammation. In this study we have explored whether prenatal stress results in alterations in the immune response in the hippocampus of female mice during adult life. Methods Pregnant C57BL/6 mice were subjected three times/day during 45 minutes to restraint stress from gestational Day 12 to delivery. Control non-stressed pregnant mice remained undisturbed. At four months of age, non-stressed and prenatally stressed females were ovariectomized. Fifteen days after surgery, mice received an i.p. injection of vehicle or of 5 mg/kg of lipopolysaccharide (LPS. Mice were sacrificed 20 hours later by decapitation and the brains were removed. Levels of interleukin-1β (IL1β, interleukin-6 (IL-6, tumor necrosis factor α (TNF-α, interferon γ-inducible protein 10 (IP10, and toll-like receptor 4 mRNA were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 immunoreactivity was assessed by immunocytochemistry. Statistical significance was determined by one-way or two-way analysis of variance. Results Prenatal stress, per se, increased IL1β mRNA levels in the hippocampus, increased the total number of Iba1-immunoreactive microglial cells and increased the proportion of microglial cells with large somas and retracted cellular processes. In addition, prenatally stressed and non-stressed animals showed different responses to peripheral inflammation induced by systemic administration of LPS. LPS induced a significant increase in mRNA levels of IL-6, TNF-α and IP10 in the hippocampus of prenatally stressed mice but not of non-stressed animals. In addition, after LPS treatment, prenatally stressed animals showed a higher proportion of Iba1-immunoreactive cells in the hippocampus with

  18. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    Science.gov (United States)

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor.

  19. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu

    2014-11-15

    Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300 mg/kg) caused severe liver injury in male mice but 69–77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4 h, and 2.5 and 3.3 fold higher in the total liver at 4 h and 6 h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6 h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4 h post-APAP, it was 3.1 fold lower at 6 h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. Conclusion: The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery. - Highlights: • Female mice are less susceptible to acetaminophen overdose than males. • GSH depletion and protein adduct formation are similar in both genders. • Recovery of hepatic GSH levels is faster in females and correlates with Gclc. • Reduced oxidant stress in females leads to reduced JNK activation. • JNK activation and mitochondrial translocation are critical

  20. Fibroblast growth factor 21 has no direct role in regulating fertility in female mice

    Directory of Open Access Journals (Sweden)

    Garima Singhal

    2016-08-01

    Conclusions: We conclude that FGF21 is not a direct physiological regulator of fertility in mice. The infertility observed in FGF21 overexpressing mice is likely driven by the increased energy expenditure and consequent excess calorie requirements resulting from high FGF21 levels.

  1. Conditional loss of hepatocellular Hedgehog signaling in female mice leads to the persistence of hepatic steroidogenesis, androgenization and infertility.

    Science.gov (United States)

    Rennert, Christiane; Eplinius, Franziska; Hofmann, Ute; Johänning, Janina; Rolfs, Franziska; Schmidt-Heck, Wolfgang; Guthke, Reinhardt; Gebhardt, Rolf; Ricken, Albert M; Matz-Soja, Madlen

    2017-05-30

    The Hedgehog signaling pathway is known to be involved in embryogenesis, tissue remodeling, and carcinogenesis. Because of its involvement in carcinogenesis, it seems an interesting target for cancer therapy. Indeed, Sonidegib, an approved inhibitor of the Hedgehog receptor Smoothened (Smo), is highly active against diverse carcinomas, but its use is also reported to be associated with several systemic side effects. Our former work in adult mice demonstrated hepatic Hedgehog signaling to play a key role in the insulin-like growth factor axis and lipid metabolism. The current work using mice with an embryonic and hepatocyte-specific Smo deletion describes an adverse impact of the hepatic Hedgehog pathway on female fertility. In female SAC-KO mice, we detected androgenization characterized by a 3.3-fold increase in testosterone at 12 weeks of age based on an impressive induction of steroidogenic gene expression in hepatocytes, but not in the classic steroidogenic organs (ovary and adrenal gland). Along with the elevated level of testosterone, the female SAC-KO mice showed infertility characterized by juvenile reproductive organs and acyclicity. The endocrine and reproductive alterations resembled polycystic ovarian syndrome and could be confirmed in a second mouse model with conditional deletion of Smo at 8 weeks of age after an extended period of 8 months. We conclude that the down-regulation of hepatic Hedgehog signaling leads to an impaired hormonal balance by the induction of steroidogenesis in the liver. These effects of Hedgehog signaling inhibition should be considered when using Hedgehog inhibitors as anti-cancer drugs.

  2. High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.

    Science.gov (United States)

    Mahmoud, Ahmed M; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B; Martin, Karen H; Mustafa, S Jamal; Mukdadi, Osama M

    2013-03-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum

  3. Hypothalamic transcriptomic alterations in male and female California mice (Peromyscus californicus) developmentally exposed to bisphenol A or ethinyl estradiol.

    Science.gov (United States)

    Johnson, Sarah A; Spollen, William G; Manshack, Lindsey K; Bivens, Nathan J; Givan, Scott A; Rosenfeld, Cheryl S

    2017-02-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) prevalent in many household items. Rodent models and human epidemiological studies have linked this chemical to neurobehavior impairments. In California mice, developmental exposure to BPA results in sociosexual disorders at adulthood, including communication and biparental care deficits, behaviors that are primarily regulated by the hypothalamus. Thus, we sought to examine the transcriptomic profile in this brain region of juvenile male and female California mice offspring exposed from periconception through lactation to BPA or ethinyl estradiol (EE, estrogen present in birth control pills and considered a positive estrogen control for BPA studies). Two weeks prior to breeding, P0 females were fed a control diet, or this diet supplemented with 50 mg BPA/kg feed weight or 0.1 ppb EE, and continued on the diets through lactation. At weaning, brains from male and female offspring were collected, hypothalamic RNA isolated, and RNA-seq analysis performed. Results indicate that BPA and EE groups clustered separately from controls with BPA and EE exposure leading to unique set of signature gene profiles. Kcnd3 was downregulated in the hypothalamus of BPA- and EE-exposed females, whereas Tbl2, Topors, Kif3a, and Phactr2 were upregulated in these groups. Comparison of transcripts differentially expressed in BPA and EE groups revealed significant enrichment of gene ontology terms associated with microtubule-based processes. Current results show that perinatal exposure to BPA or EE can result in several transcriptomic alterations, including those associated with microtubule functions, in the hypothalamus of California mice. It remains to be determined whether these genes mediate BPA-induced behavioral disruptions. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Rapid estrogen receptor alpha signaling mediated by ERK activation regulates vascular tone in male and ovary-intact female mice.

    Science.gov (United States)

    Kim, Seong Chul; Boese, Austin C; Moore, Matthew H; Cleland, Rea M; Chang, Lin; Delafontaine, Patrice; Yin, Ke-Jie; Lee, Jean-Pyo; Hamblin, Milton H

    2017-09-08

    Estrogen has been shown to affect vascular reactivity. Here, we assessed estrogen receptor-alpha (ERα) dependency of estrogenic effects on vasorelaxation via a rapid nongenomic pathway in both male and ovary-intact female mice. We compared the effect of a primary estrogen, 17 beta-estradiol (E2) or 4,4',4"-(4-propyl-[1H]pyrazole-1,3,5-triyl)tris-phenol (PPT) (selective ERα agonist). We found that E2 and PPT induced greater aortic relaxation in females than males, indicating ERα mediation, which is further validated by employing ERα antagonism. Treatment with 1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP dihydrochloride) (ERα antagonist) attenuated PPT-mediated vessel relaxation in both sexes. ERα-mediated vessel relaxation is further validated by the absence of significant PPT-mediated relaxation in aortas isolated from ERα knockout mice. Treatment with a specific extracellular signal-regulated kinase (ERK) inhibitor, PD98059 reduced E2-induced vessel relaxation in both sexes, but to a lesser extent in females. Further, PD98059 prevented PPT-induced vessel relaxation in both sexes. Both E2 and PPT treatment activated ERK as early as 5-10 min, which was attenuated by PD98059 in aortic tissue, cultured primary vascular smooth muscle cells (VSMCs), and endothelial cells (ECs). Aortic rings denuded of endothelium showed no differences in vessel relaxation following E2 or PPT treatment, implicating a role of ECs in the observed sex differences. Here, our results are unique to show estrogen-stimulated rapid ERα signaling mediated by ERK activation in aortic tissue, as well as VSMCs and ECs in vitro, in regulating vascular function by employing side-by-side comparisons in male and ovary-intact female mice in response to E2 or PPT. Copyright © 2017, American Journal of Physiology-Heart and Circulatory Physiology.

  5. Illumination of murine gammaherpesvirus-68 cycle reveals a sexual transmission route from females to males in laboratory mice.

    Directory of Open Access Journals (Sweden)

    Sylvie François

    Full Text Available Transmission is a matter of life or death for pathogen lineages and can therefore be considered as the main motor of their evolution. Gammaherpesviruses are archetypal pathogenic persistent viruses which have evolved to be transmitted in presence of specific immune response. Identifying their mode of transmission and their mechanisms of immune evasion is therefore essential to develop prophylactic and therapeutic strategies against these infections. As the known human gammaherpesviruses, Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus are host-specific and lack a convenient in vivo infection model; related animal gammaherpesviruses, such as murine gammaherpesvirus-68 (MHV-68, are commonly used as general models of gammaherpesvirus infections in vivo. To date, it has however never been possible to monitor viral excretion or virus transmission of MHV-68 in laboratory mice population. In this study, we have used MHV-68 associated with global luciferase imaging to investigate potential excretion sites of this virus in laboratory mice. This allowed us to identify a genital excretion site of MHV-68 following intranasal infection and latency establishment in female mice. This excretion occurred at the external border of the vagina and was dependent on the presence of estrogens. However, MHV-68 vaginal excretion was not associated with vertical transmission to the litter or with horizontal transmission to female mice. In contrast, we observed efficient virus transmission to naïve males after sexual contact. In vivo imaging allowed us to show that MHV-68 firstly replicated in penis epithelium and corpus cavernosum before spreading to draining lymph nodes and spleen. All together, those results revealed the first experimental transmission model for MHV-68 in laboratory mice. In the future, this model could help us to better understand the biology of gammaherpesviruses and could also allow the development of strategies that could prevent

  6. The formation of diploid and triploid hybrids of female grass carp × male blunt snout bream and their 5S rDNA analysis.

    Science.gov (United States)

    He, Weiguo; Xie, Lihua; Li, Tangluo; Liu, Shaojun; Xiao, Jun; Hu, Jie; Wang, Jing; Qin, Qinbo; Liu, Yun

    2013-11-23

    Hybridization is a useful strategy to alter the genotypes and phenotypes of the offspring. It could transfer the genome of one species to another through combing the different genome of parents in the hybrid offspring. And the offspring may exhibit advantages in growth rate, disease resistance, survival rate and appearance, which resulting from the combination of the beneficial traits from both parents. Diploid and triploid hybrids of female grass carp (Ctenopharyngodon idellus, GC, Cyprininae, 2n = 48) × male blunt snout bream (Megalobrama amblycephala, BSB, Cultrinae, 2n = 48) were successfully obtained by distant hybridization. Diploid hybrids had 48 chromosomes, with one set from GC and one set from BSB. Triploid hybrids possessed 72 chromosomes, with two sets from GC and one set from BSB.The morphological traits, growth rates, and feeding ecology of the parents and hybrid offspring were compared and analyzed. The two kinds of hybrid offspring exhibited significantly phenotypic divergence from GC and BSB. 2nGB hybrids showed similar growth rate compared to that of GC, and 3nGB hybrids significantly higher results. Furthermore, the feeding ecology of hybrid progeny was omnivorous.The 5S rDNA of GC, BSB and their hybrid offspring were also cloned and sequenced. There was only one type of 5S rDNA (designated type I: 180 bp) in GC and one type of 5S rDNA (designated type II: 188 bp) in BSB. However, in the hybrid progeny, diploid and triploid hybrids both inherited type I and type II from their parents, respectively. In addition, a chimera of type I and type II was observed in the genome of diploid and triploid hybrids, excepting a 10 bp of polyA insertion in type II sequence of the chimera of the diploid hybrids. This is the first report of diploid and triploid hybrids being produced by crossing GC and BSB, which have the same chromosome number. The obtainment of two new hybrid offspring has significance in fish genetic breeding. The results illustrate the effect

  7. Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice.

    Science.gov (United States)

    Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Schroeder, Friedhelm; Kier, Ann B

    2015-08-15

    Although roles for both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed in hepatic lipid accumulation, individually ablating these genes has been complicated by concomitant alterations in the other gene product(s). For example, ablating SCP2/SCP-x induces upregulation of L-FABP in female mice. Therefore, the impact of ablating SCP-2/SCP-x (DKO) or L-FABP (LKO) individually or both together (TKO) was examined in female mice. Loss of SCP-2/SCP-x (DKO, TKO) more so than loss of L-FABP alone (LKO) increased hepatic total lipid and total cholesterol content, especially cholesteryl ester. Hepatic accumulation of nonesterified long chain fatty acids (LCFA) and phospholipids occurred only in DKO and TKO mice. Loss of SCP-2/SCP-x (DKO, TKO) increased serum total lipid primarily by increasing triglycerides. Altered hepatic level of proteins involved in cholesterol uptake, efflux, and/or secretion was observed, but did not compensate for the loss of L-FABP, SCP-2/SCP-x or both. However, synergistic responses were not seen with the combinatorial knock out animals-suggesting that inhibiting SCP-2/SCP-x is more correlative with hepatic dysfunction than L-FABP. The DKO- and TKO-induced hepatic accumulation of cholesterol and long chain fatty acids shared significant phenotypic similarities with non-alcoholic fatty liver disease (NAFLD).

  8. Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice.

    Science.gov (United States)

    Erickson, Sandra K; Lear, Steven R; Deane, Sean; Dubrac, Sandrine; Huling, Sandra L; Nguyen, Lien; Bollineni, Jaya S; Shefer, Sarah; Hyogo, Hideyuki; Cohen, David E; Shneider, Benjamin; Sehayek, Ephraim; Ananthanarayanan, Meena; Balasubramaniyan, Natarajan; Suchy, Fredrick J; Batta, Ashok K; Salen, Gerald

    2003-05-01

    Cholesterol 7alpha-hydroxylase, a rate-limiting enzyme for bile acid synthesis, has been implicated in genetic susceptibility to atherosclerosis. The gene, CYP7A1, encoding a protein with this activity, is expressed normally only in hepatocytes and is highly regulated. Our cyp7A1 gene knockout mouse colony, as young adults on a chow diet, is hypercholesterolemic. These mice were characterized extensively to understand how cyp7A1 affects lipid and bile acid homeostasis in different tissue compartments and whether gender plays a modifying role. Both male and female cyp7A1-deficient mice had decreased hepatic LDL receptors, unchanged hepatic cholesterol synthesis, increased intestinal cholesterol synthesis and bile acid transporters, and decreased fecal bile acids but increased fecal sterols. In females, cyp7A1 deficiency also caused changes in hepatic fatty acid metabolism, decreased hepatic canalicular bile acid transporter, Bsep, and gallbladder bile composition altered to a lithogenic profile. Taken together, the data suggest that cyp7A1 deficiency results in a proatherogenic phenotype in both genders and leads to a prolithogenic phenotype in females.

  9. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG-Treated Mice

    Directory of Open Access Journals (Sweden)

    René J. Hernández-Bautista

    2014-06-01

    Full Text Available Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old, the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline.

  10. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG)-Treated Mice

    Science.gov (United States)

    Hernández-Bautista, René J.; Alarcón-Aguilar, Francisco J.; Escobar-Villanueva, María Del C.; Almanza-Pérez, Julio C.; Merino-Aguilar, Héctor; Konigsberg Fainstein, Mina; López-Diazguerrero, Norma E.

    2014-01-01

    Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline. PMID:24979131

  11. Relative contributions of L-FABP, SCP-2/SCP-x, or both to hepatic biliary phenotype of female mice.

    Science.gov (United States)

    Martin, Gregory G; Landrock, Danilo; Landrock, Kerstin K; Howles, Philip N; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2015-12-15

    Both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed to function in hepatobiliary bile acid metabolism/accumulation. To begin to address this issue, the impact of ablating L-FABP (LKO) or SCP-2/SCP-x (DKO) individually or both together (TKO) was examined in female mice. Biliary bile acid levels were decreased in LKO, DKO, and TKO mice; however, hepatic bile acid concentration was decreased in LKO mice only. In contrast, biliary phospholipid level was decreased only in TKO mice, while biliary cholesterol levels were unaltered regardless of phenotype. The loss of either or both genes increased hepatic expression of the major bile acid synthetic enzymes (CYP7A1 and/or CYP27A1). Loss of L-FABP and/or SCP-2/SCP-x genes significantly altered the molecular composition of biliary bile acids, but not the proportion of conjugated/unconjugated bile acids or overall bile acid hydrophobicity index. These data suggested that L-FABP was more important in hepatic retention of bile acids, while SCP-2/SCP-x more broadly affected biliary bile acid and phospholipid levels.

  12. Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues.

    Science.gov (United States)

    Seagraves, Kelly M; Arthur, Ben J; Egnor, S E Roian

    2016-05-15

    Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience - with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice.

  13. Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome.

    Science.gov (United States)

    De Filippis, Bianca; Valenti, Daniela; Chiodi, Valentina; Ferrante, Antonella; de Bari, Lidia; Fiorentini, Carla; Domenici, Maria Rosaria; Ricceri, Laura; Vacca, Rosa Anna; Fabbri, Alessia; Laviola, Giovanni

    2015-06-01

    Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.

  14. Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice

    Directory of Open Access Journals (Sweden)

    Lluís eFortes-Marco

    2015-10-01

    Full Text Available Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP, a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT, a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA, unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 μmol, respectively than 2-HP (35 μmol. All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation-dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g. hormonal levels or neural measures (e.g. immediate early gene expression to

  15. AgRP Neuron-Specific Deletion of Glucocorticoid Receptor Leads to Increased Energy Expenditure and Decreased Body Weight in Female Mice on a High-Fat Diet.

    Science.gov (United States)

    Shibata, Miyuki; Banno, Ryoichi; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Tsunekawa, Taku; Azuma, Yoshinori; Hagiwara, Daisuke; Lu, Wenjun; Ito, Yoshihiro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Oiso, Yutaka; Arima, Hiroshi

    2016-04-01

    Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions.

  16. Oral toxicity of isotretinoin, misoprostol, methotrexate, mifepristone and levonorgestrel as pregnancy category X medications in female mice

    OpenAIRE

    KIM, SEONG-KWAN; Shin, Soo-Jeong; YOO, YOHAN; KIM, NA-HYUN; KIM, DONG-SOON; Zhang, Dan; PARK, JIN-A; Yi, Hee; Kim, Jin-Suk; Shin, Ho-Chul

    2015-01-01

    An oral toxicity study of several pregnancy category X drugs was performed in female ICR mice. The drugs were administered orally once daily for 3 days at doses of 1, 10 and 100 ?g/kg for isotretinoin; 6.7, 67 and 670 ?g/kg for misoprostol; 83, 830 and 8,300 ?g/kg for methotrexate; 3.3, 33 and 330 ?g/kg for mifepristone; and 25, 250 and 2,500 ?g/kg for levonorgestrel. During the test period, clinical signs, mortality, body weight, hematology, serum biochemistry and necropsy findings were exam...

  17. 17ß-Estradiol Regulates Histone Alterations Associated with Memory Consolidation and Increases "Bdnf" Promoter Acetylation in Middle-Aged Female Mice

    Science.gov (United States)

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.; Frick, Karyn M.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17ß-estradiol…

  18. Differential Effects of Dietary Fat Content and Protein Source on Bone Phenotype and Fatty Acid Oxidation in Female C57Bl/6 Mice

    Science.gov (United States)

    Sawin, Emily A.; Stroup, Bridget M.; Murali, Sangita G.; O’Neill, Lucas M.; Ntambi, James M.

    2016-01-01

    Background Glycomacropeptide (GMP) is a 64-amino acid glycophosphopeptide released from κ-casein during cheesemaking that promotes satiety, reduces body fat, increases bone mass and infers prebiotic and anti-inflammatory effects. The impact of adiposity and gender on bone health is unclear. Objective To determine how feeding female mice diets providing 60% Fat Kcal (high-fat) or 13% Fat Kcal (control) with either GMP or casein as the protein source impacts: body composition, ex vivo fatty acid oxidation, bone (femoral) biomechanical performance, and the relationship between body composition and bone. Methods Weanling female C57Bl/6 mice were fed high-fat (60% Fat Kcal) or control diets (13% Fat Kcal) with GMP or casein from 3 to 32 weeks of age with assessment of body weight and food intake. Body composition was assessed by dual-energy X-ray absorptiometry (DXA). Fatty acid oxidation was measured in liver, muscle, and fat tissues using 14C-palmitate. Plasma concentrations of hormones and cytokines were determined. Bone biomechanical performance was assessed by the 3-point bending test. Results Female mice fed high-fat diets showed increased fatty acid oxidation capacity in both gastrocnemius muscle and brown adipose tissue compared to mice fed the control diets with a lower fat content. Despite increased fat mass in mice fed the high-fat diets, there was little evidence of glucose impairment or inflammation. Mice fed the high-fat diets had significantly greater total body bone mineral density (BMD), femoral BMD, and femoral cross-sectional area than mice fed the control diets. Femora of mice fed the high-fat diets had increased yield load and maximum load before fracture, consistent with greater bone strength, but reduced post-yield displacement or ductility, consistent with bone brittleness. Female mice fed a high-fat GMP diet displayed increased fat oxidation capacity in subcutaneous fat relative to mice fed the high-fat casein diet. Regardless of dietary fat

  19. Postweaning Exposure to Dietary Zearalenone, a Mycotoxin, Promotes Premature Onset of Puberty and Disrupts Early Pregnancy Events in Female Mice

    Science.gov (United States)

    Ye, Xiaoqin

    2013-01-01

    Zearalenone (ZEA) is a mycotoxin commonly found in contaminated livestock feed and human food with levels in the range of ppb and low ppm. It was hypothesized that ZEA, an endocrine disruptor, could affect puberty and early pregnancy. To test this hypothesis, newly weaned (3 weeks old) C57BL/6J female mice were exposed to 0, 0.002, 4, 10, and 40 ppm ZEA and 0.05 ppm diethylstilbestrol (positive control) in phytoestrogen-free AIN-93G diet. Females exposed to 10 and 40 ppm ZEA diets showed earlier onset of vaginal opening. Those treated with 40 ppm ZEA diet also had earlier first copulation plug and irregular estrous cyclicity. At 8 weeks old, all females were mated with untreated stud males on AIN-93G diet during mating. Treatment resumed upon identification of a vaginal plug on gestation day 0.5 (D0.5). Embryo implantation was assessed on D4.5. Exposure to 40 ppm ZEA diet resulted in reduced percentage of plugged mice with implantation sites, distended uterine appearance, and retained expression of progesterone receptor in D4.5 uterine epithelium. To determine the exposure timing and mechanisms of disrupted embryo implantation, four groups of females were fed with 0 or 40 ppm ZEA diets during premating (weaning to mating) and postmating (D0.5–D4.5), respectively. Premating exposure to 40 ppm ZEA diet reduced fertilization rate, whereas postmating exposure to 40 ppm ZEA diet delayed embryo transport and preimplantation embryo development, which subsequently affected embryo implantation. These data demonstrate that postweaning exposure to dietary ZEA can promote premature onset of puberty and disrupt early pregnancy events. PMID:23291560

  20. Reduced neuronal signaling in the ageing apolipoprotein-E4 targeted replacement female mice.

    Science.gov (United States)

    Yong, Shan-May; Lim, Mei-Li; Low, Chian-Ming; Wong, Boon-Seng

    2014-10-10

    The effect of ApoE on NMDAR-dependent ERK/CREB signaling is isoform-dependent, and ApoE4 accelerates memory decline in ageing. However, this isoform-dependent function on neuronal signaling during ageing is unclear. In this study, we have examined NMDAR-associated ERK/CREB signal transduction in young and aged huApoE3 and huApoE4 targeted replacement (TR) mice. At 12 weeks huApoE4 mouse brain, increased NR1-S896 phosphorylation was linked to higher protein kinase C (PKC) activation. This up-regulation was accompanied by higher phosphorylation of AMPA GluR1-S831, CaMKII, ERK1/2 and CREB. But at 32 weeks, there was no significant difference between huApoE3 and huApoE4 TR mice on NMDAR-associated ERK/CREB signaling. Interestingly, in 72-week-old huApoE4 TR mice, protein phosphorylation that were increased in younger mice were significantly reduced. Lower NR1-S896 phosphorylation was linked to reduced PKC, GluR1-S831, CaMKII, ERK1/2 and CREB phosphorylation in huApoE4 TR mice as compared to huApoE3 TR mice. Furthermore, we have consistently detected lower ApoE levels in young and aged huApoE4 TR mouse brain, and this was associated with reduced expression of the ApoE receptor, LRP1 and NR2A-Y1246 phosphorylation. These results suggest age-specific, isoform-dependent effects of ApoE on neuronal signaling.

  1. Routes of allergic sensitization and myeloid cell IKKβ differentially regulate antibody responses and allergic airway inflammation in male and female mice.

    Science.gov (United States)

    Bonnegarde-Bernard, Astrid; Jee, Junbae; Fial, Michael J; Steiner, Haley; DiBartola, Stephanie; Davis, Ian C; Cormet-Boyaka, Estelle; Tomé, Daniel; Boyaka, Prosper N

    2014-01-01

    Gender influences the incidence and/or the severity of several diseases and evidence suggests a higher rate of allergy and asthma among women. Most experimental models of allergy use mice sensitized via the parenteral route despite the fact that the mucosal tissues of the gastrointestinal and respiratory tracts are major sites of allergic sensitization and/or allergic responses. We analyzed allergen-specific Ab responses in mice sensitized either by gavage or intraperitoneal injection of ovalbumin together with cholera toxin as adjuvant, as well as allergic inflammation and lung functions following subsequent nasal challenge with the allergen. Female mice sensitized intraperitoneally exhibited higher levels of serum IgE than their male counterparts. After nasal allergen challenge, these female mice expressed higher Th2 responses and associated inflammation in the lung than males. On the other hand, male and female mice sensitized orally developed the same levels of allergen-specific Ab responses and similar levels of lung inflammation after allergen challenge. Interestingly, the difference in allergen-specific Ab responses between male and female mice sensitized by the intraperitoneal route was abolished in IKKβΔMye mice, which lack IKKβ in myeloid cells. In summary, the oral or systemic route of allergic sensitization and IKKβ signaling in myeloid cells regulate how the gender influences allergen-specific responses and lung allergic inflammation.

  2. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss.

    Science.gov (United States)

    Iwaniec, U T; Philbrick, K A; Wong, C P; Gordon, J L; Kahler-Quesada, A M; Olson, D A; Branscum, A J; Sargent, J L; DeMambro, V E; Rosen, C J; Turner, R T

    2016-10-01

    Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies. Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18-23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture. Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks. C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption. Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies

  3. Efficient Inhibition of HIV Replication in the Gastrointestinal and Female Reproductive Tracts of Humanized BLT Mice by EFdA.

    Directory of Open Access Journals (Sweden)

    Uma Shanmugasundaram

    Full Text Available The nucleoside reverse transcriptase inhibitor (NRTI 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA in preclinical development exhibits improved safety and antiviral activity profiles with minimal drug resistance compared to approved NRTIs. However, the systemic antiviral efficacy of EFdA has not been fully evaluated. In this study, we utilized bone marrow/liver/thymus (BLT humanized mice to investigate the systemic effect of EFdA treatment on HIV replication and CD4+ T cell depletion in the peripheral blood (PB and tissues. In particular, we performed a comprehensive analysis of the female reproductive tract (FRT and gastrointestinal (GI tract, major sites of transmission, viral replication, and CD4+ T cell depletion and where some current antiretroviral drugs have a sub-optimal effect.EFdA treatment resulted in reduction of HIV-RNA in PB to undetectable levels in the majority of treated mice by 3 weeks post-treatment. HIV-RNA levels in cervicovaginal lavage of EFdA-treated BLT mice also declined to undetectable levels demonstrating strong penetration of EFdA into the FRT. Our results also demonstrate a strong systemic suppression of HIV replication in all tissues analyzed. In particular, we observed more than a 2-log difference in HIV-RNA levels in the GI tract and FRT of EFdA-treated BLT mice compared to untreated HIV-infected control mice. In addition, HIV-RNA was also significantly lower in the lymph nodes, liver, lung, spleen of EFdA-treated BLT mice compared to untreated HIV-infected control mice. Furthermore, EFdA treatment prevented the depletion of CD4+ T cells in the PB, mucosal tissues and lymphoid tissues.Our findings indicate that EFdA is highly effective in controlling viral replication and preserving CD4+ T cells in particular with high efficiency in the GI and FRT tract. Thus, EFdA represents a strong potential candidate for further development as a part of antiretroviral therapy regimens.

  4. Chronic voluntary alcohol consumption results in tolerance to sedative/hypnotic and hypothermic effects of alcohol in hybrid mice.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2013-03-01

    The continuous two-bottle choice test is the most common measure of alcohol consumption but there is remarkably little information about the development of tolerance or dependence with this procedure. We showed that C57BL/6J × FVB/NJ and FVB/NJ×C57BL/6JF1 hybrid mice demonstrate greater preference for and consumption of alcohol than either parental strain. In order to test the ability of this genetic model of high alcohol consumption to produce neuroadaptation, we examined development of alcohol tolerance and dependence after chronic self-administration using a continuous access two-bottle choice paradigm. Ethanol-experienced mice stably consumed about 16-18 g/kg/day of ethanol. Ethanol-induced withdrawal severity was assessed (after 59 days of drinking) by scoring handling-induced convulsions; withdrawal severity was minimal and did not differ between ethanol-experienced and -naïve mice. After 71 days of drinking, the rate of ethanol clearance was similar for ethanol-experienced and -naïve mice. After 77 days of drinking, ethanol-induced loss of righting reflex (LORR) was tested daily for 5 days. Ethanol-experienced mice had a shorter duration of LORR. For both ethanol-experienced and -naïve mice, blood ethanol concentrations taken at gain of righting reflex were greater on day 5 than on day 1, indicative of tolerance. After 98 days of drinking, ethanol-induced hypothermia was assessed daily for 3 days. Both ethanol-experienced and -naïve mice developed rapid and chronic tolerance to ethanol-induced hypothermia, with significant group differences on the first day of testing. In summary, chronic, high levels of alcohol consumption in F1 hybrid mice produced rapid and chronic tolerance to both the sedative/hypnotic and hypothermic effects of ethanol; additionally, a small degree of metabolic tolerance developed. The development of tolerance supports the validity of using this model of high alcohol consumption in genetic studies of alcoholism.

  5. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Micheli Stéfani Zarzecki

    2014-01-01

    Full Text Available Chrysin (5,7-dihydroxyflavone is a flavonoid, natural component of traditional medicinal herbs, present in honey, propolis and many plant extracts. The objective of this study was to investigate the hypolipidemic properties of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Triton WR-1339 was administered intraperitoneally (400 mg/kg to overnight-fasted mice to develop acute hyperlipidemia. Chrysin was administered orally (10 mg/kg 30 min before Triton WR-1339. At 24 h after Triton WR-1339 injection, blood samples were collected to measure plasma lipid levels. The hepatic thiobarbituric acid reactive substances (TBARS, carbonyl content, non-protein sulfhydryl (NPSH and ascorbic acid (AA levels, as well as catalase (CAT and superoxide dismutase (SOD activity were recorded. Chrysin administration significantly decreased total cholesterol levels. In addition, it partially decreased non-high density lipoprotein-cholesterol and triglycerides levels in plasma of hyperlipidaemic mice. In addition chrysin administration prevented the increase on TBARS levels and prevented the decrease in SOD activity induced by Triton WR-1339. These findings indicated that chrysin was able to decrease plasma lipids concentration and that its antioxidant properties was, at least in part, involved in the hypolipidaemic action of chrysin.

  6. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome.

    Science.gov (United States)

    De Filippis, Bianca; Chiodi, Valentina; Adriani, Walter; Lacivita, Enza; Mallozzi, Cinzia; Leopoldo, Marcello; Domenici, Maria Rosaria; Fuso, Andrea; Laviola, Giovanni

    2015-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family-crucially involved in the regulation of brain structural plasticity and cognitive processes-can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.

  7. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome

    Directory of Open Access Journals (Sweden)

    Bianca eDe Filippis

    2015-04-01

    Full Text Available Rett syndrome (RTT is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2 cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R. This member of the serotonin receptor family – crucially involved in the regulation of brain structural plasticity and cognitive processes – can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days rescues RTT-related phenotypic alterations, motor coordination (Dowel test, spatial reference memory (Barnes maze test and synaptic plasticity (hippocampal long-term-potentiation in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to two months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.

  8. Pituitary-specific overexpression of porcine follicle-stimulating hormone leads to improvement of female fecundity in BAC transgenic mice.

    Directory of Open Access Journals (Sweden)

    Mingjun Bi

    Full Text Available Follicle-stimulating hormone (FSH is a pituitary glycoprotein that, together with luteinizing hormone, plays a crucial role in ovarian folliculogenesis and female fertility. We previously found that FSH beta is a major gene controlling high prolificacy of Chinese Erhualian pigs. To directly study the biological effects on reproductive function of porcine FSH (pFSH for polyovulatory species, we generated a novel gain-of-function mouse model using a bacterial artificial chromosome (BAC system to jointly introduce 92 kb and 165 kb genomic fragments comprising the pFSH α- and β-subunit genes. These directed the physiological expression of pFSH with the same temporal and spatial pattern as endogenous FSH in female transgenic (TG mice. Serum levels of biologically active pFSH heterodimers in independent TG lines ranged from 6.36 to 19.83 IU/L. High basal pFSH activity led to a significant reduction of serum LH and testosterone levels in TG females compared to wild-type (WT littermates, yet endogenous FSH and estradiol levels were significantly elevated. Interestingly, ovarian histology showed that the number of corpora lutea was significantly higher at 14 and 28 weeks of age in TG females and breeding curves revealed that mean litter sizes of TG females were obviously larger than for WT littermates before 52 weeks of age. These findings indicate that pituitary-specific overexpression of pFSH within physiological boundaries can increase ovulation rate and litter size, but it does not cause reproductive defects. Therefore, our TG mouse model provides exciting insights for investigating the actions of pFSH in vivo.

  9. Effects of social defeat on dopamine neurons in the ventral tegmental area in male and female California mice.

    Science.gov (United States)

    Greenberg, Gian D; Steinman, Michael Q; Doig, Ian E; Hao, Rebecca; Trainor, Brian C

    2015-12-01

    Dopamine neurons in the ventral tegmental area (VTA) have important functions related to rewards but are also activated in aversive contexts. Electrophysiology studies suggest that the degree to which VTA dopamine neurons respond to noxious stimuli is topographically organized across the dorsal-ventral extent. We used c-fos immunohistochemistry to examine the responses of VTA dopamine neurons in contexts of social defeat and social approach. Studying monogamous California mice (Peromyscus californicus) allowed us to observe the effects of social defeat on both males and females. Females exposed to three episodes of defeat, but not a single episode, had more tyrosine hydroxylase (TH)/c-fos-positive cells in the ventral (but not dorsal) VTA compared with controls. This observation suggests that repeated exposure to aversive contexts is necessary to trigger activation of VTA dopamine neurons. Defeat did not affect TH/c-fos colocalizations in males. We also examined the long-term effects of defeat on c-fos expression in a social interaction test. As previously reported, defeat reduced social interaction in females but not males. Surprisingly, there were no effects of defeat stress on TH/c-fos colocalizations in any subregion of the VTA. However, females had more TH/c-fos-positive cells than males across the entire VTA, and also had greater c-fos-positive cell counts in posterior subregions of the nucleus accumbens shell. Our results show that dopamine neurons in the VTA are more responsive to social contexts in females and that the ventral VTA in particular is sensitive to aversive contexts.

  10. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    Science.gov (United States)

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Neuropeptide Y Overexpressing Female and Male Mice Show Divergent Metabolic but Not Gut Microbial Responses to Prenatal Metformin Exposure

    Science.gov (United States)

    Salomäki-Myftari, Henriikka; Vähätalo, Laura H.; Ailanen, Liisa; Pietilä, Sami; Laiho, Asta; Hänninen, Arno; Pursiheimo, Juha-Pekka; Munukka, Eveliina; Rintala, Anniina; Savontaus, Eriika; Pesonen, Ullamari; Koulu, Markku

    2016-01-01

    Background Prenatal metformin exposure has been shown to improve the metabolic outcome in the offspring of high fat diet fed dams. However, if this is evident also in a genetic model of obesity and whether gut microbiota has a role, is not known. Methods The metabolic effects of prenatal metformin exposure were investigated in a genetic model of obesity, mice overexpressing neuropeptide Y in the sympathetic nervous system and in brain noradrenergic neurons (OE-NPYDβH). Metformin was given for 18 days to the mated female mice. Body weight, body composition, glucose tolerance and serum parameters of the offspring were investigated on regular diet from weaning and sequentially on western diet (at the age of 5–7 months). Gut microbiota composition was analysed by 16S rRNA sequencing at 10–11 weeks. Results In the male offspring, metformin exposure inhibited weight gain. Moreover, weight of white fat depots and serum insulin and lipids tended to be lower at 7 months. In contrast, in the female offspring, metformin exposure impaired glucose tolerance at 3 months, and subsequently increased body weight gain, fat mass and serum cholesterol. In the gut microbiota, a decline in Erysipelotrichaceae and Odoribacter was detected in the metformin exposed offspring. Furthermore, the abundance of Sutterella tended to be decreased and Parabacteroides increased. Gut microbiota composition of the metformin exposed male offspring correlated to their metabolic phenotype. Conclusion Prenatal metformin exposure caused divergent metabolic phenotypes in the female and male offspring. Nevertheless, gut microbiota of metformin exposed offspring was similarly modified in both genders. PMID:27681875

  12. Cytological Analyses on Development of Male and Female Gametophytes in an Interspecific Hybrid F1 from Cucumis hystrix Chakr. × Cucumis sativus L.

    Institute of Scientific and Technical Information of China (English)

    LUO Xiang-dong; DAI Liang-fang; QIAN Chun-tao; CHEN Jin-feng

    2006-01-01

    An interspecific hybrid F1 of Cucumis hystrix Chakr. × Cucumis sativus L. (NC4406) was used to establish the developmental sequence and to characterize the male and female gametophytes at cytological level for further understanding of the phylogenic relationship and the mechanism of fertility or sterility in the interspecific hybrid F1. The development of male and female gametophytes was studied through meiotic analysis and paraffin section observation technique, respectively.Meanwhile, the fertility level was assessed through hybrid F1 backcrossing to cultivated cucumber 4406. Variable chromosome confgurations were observed in the pollen mother cells (PMCs) of hybrid F1 at metaphase Ⅰ, e.g., univalents,bivalents, trivalents, quadravalents, etc. At anaphase Ⅰ and Ⅱ, chromosome lagging and bridges were frequently observed as well, which led to the formation of polyads and only a partial number of microspores could develop into fertile pollen grains (about 23.3%). Observations of the paraffin sections showed numerous degenerated and abnormal embryo sacs during the development of female gametophytes, and only 40% of the female gametophytes could develop into normal eight-nuclear megaspore. On an average, 22.8 and 6.3 seeds per fruit could be obtained from the reciprocal backcross. The interspecific hybrid F1 of C. hystrix × NC4406 was partially fertile; however, the meiotic behaviors of hybrid F1 showed a high level of intergenomic recombination between C. hystrix and C. sativus chromosomes, which indicated that it plays an important role for introgression of useful traits from C. hystrix into C. sativus.

  13. Differential effects of a high-fat diet on serum lipid parameters and ovarian gene expression in young and aged female mice.

    Science.gov (United States)

    Garcia, Driele Neske; Prietsch, Lígia Antunes; Rincón, Joao Alveiro Alvarado; Moreira, Iraê de Lima; Valle, Sandra Costa; Barros, Carlos Castilho; Helbig, Elizabete; Corrêa, Marcio Nunes; Schneider, Augusto

    2016-10-01

    The aim of this study was to compare serum lipid profiles and ovarian gene expression between aged and younger female mice fed a control or a high-fat diet for 2 months. For this 16 female mice (C57BL/6) of 4 months (Young, n = 8) or 13 months (Old, n = 8) of age were used. The females were divided into four groups: (i) young females fed a normal diet; (ii) young females fed a high-fat diet; (iii) old females fed a normal diet; and (iv) old females fed a high-fat diet. Food intake was reduced (P < 0.05) in mice fed with a high-fat (2.9 ± 0.1 g) diet in comparison with control mice (3.9 ± 0.1 g). Body weight was higher for old females on the high-fat diet (35.1 ± 0.3 g) than for young females on the same diet (23.3 ± 0.4 g; P < 0.05). PON1 activity was lower in the high-fat than control diet group (114.3 ± 5.8 vs. 78.1 ± 6.0 kU/L, respectively) and was higher in older than younger females (85.9 ± 6.4 vs. 106.5 ± 5.3; P < 0.05, respectively). Females fed a high-fat diet had lower expression of Igf1 mRNA (P = 0.04). There was an interaction between age and diet for the expression of Gdf9 and Survivin, with lower expression in older females in both diets and young females that received the high-fat diet (P < 0.05). Concluding, the high-fat diet reduced the expression of ovarian Igf1 mRNA, and Gdf9 and Survivin mRNA in younger females, which can indicate lower fertility rates. High-density lipoprotein concentration and PON1 activity were higher in aged female mice.

  14. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice

    OpenAIRE

    Waleed Barakat; Elshazly, Shimaa M.; Amr A A Mahmoud

    2015-01-01

    Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels...

  15. Activation of BDNF Signaling Prevents the Return of Fear in Female Mice

    Science.gov (United States)

    Baker-Andresen, Danay; Flavell, Charlotte R.; Li, Xiang; Bredy, Timothy W.

    2013-01-01

    There are significant sex differences in vulnerability to develop fear-related anxiety disorders. Females exhibit twice the rate of post-traumatic stress disorder (PTSD) as males and sex differences have been observed in fear extinction learning in both humans and rodents, with a failure to inhibit fear emerging as a precipitating factor in the…

  16. Discriminative stimulus effects of morphine and oxycodone in the absence and presence of acetic acid in male and female C57Bl/6 mice.

    Science.gov (United States)

    Neelakantan, Harshini; Ward, Sara Jane; Walker, Ellen Ann

    2015-08-01

    The use of prescription opioids for clinical management of pain remains problematic because of concerns about addiction associated with opioid use. Another difficulty in pain management is the increasing evidence for sex differences in pain behavior and opioid-induced behavioral effects. However, few studies have documented the abuse potential of prescription opioids as a function of pain in rodents, with significant gaps in the literature pertaining to sex differences in the interaction between pain and opioid effects. The present study evaluated the effects of an experimentally induced acute pain state (acetic acid injections) on the potency of morphine and oxycodone to produce discriminative stimulus effects in male and female C57Bl/6 mice trained to discriminate 3.2 mg/kg morphine from saline. Acetic acid injections attenuated the stimulus potency of morphine by 2.2-fold but not the stimulus potency of oxycodone in male mice. Acetic acid injections did not alter the discriminative stimulus effects of either morphine or oxycodone in female mice. The antinociceptive effects of the 2 opioids were evaluated using the acetic acid-induced stretching test. For antinociceptive effects, morphine was 2.0-fold less potent relative to oxycodone in male mice, whereas morphine and oxycodone were equipotent in female mice. Taken together, these results indicate that acetic acid-induced acute pain differentially modulates the discriminative stimulus effects of morphine in male and female mice and that this change may be related to the variable antinociceptive effectiveness of these opioids across sexes.

  17. Test-retest paradigm of the forced swimming test in female mice is not valid for predicting antidepressant-like activity: participation of acetylcholine and sigma-1 receptors.

    Science.gov (United States)

    Su, Jing; Hato-Yamada, Noriko; Araki, Hiroaki; Yoshimura, Hiroyuki

    2013-01-01

    The forced swimming test (FST) in mice is widely used to predict the antidepressant activity of a drug, but information describing the immobility of female mice is limited. We investigated whether a prior swimming experience affects the immobility duration in a second FST in female mice and whether the test-retest paradigm is a valid screening tool for antidepressants. Female ICR mice were exposed to the FST using two experimental paradigms: a single FST and a double FST in which mice had experienced FST once 24 h prior to the second trail. The initial FST experience reliably prolonged immobility duration in the second FST. The antidepressants imipramine and paroxetine significantly reduced immobility duration in the single FST, but not in the double FST. Scopolamine and the sigma-1 (σ1) antagonist NE-100 administered before the second trial significantly prevented the prolongation of immobility. Neither a 5-HT1A nor a 5-HT2A receptor agonist affected immobility duration. We suggest that the test-retest paradigm in female mice is not adequate for predicting antidepressant-like activity of a drug; the prolongation of immobility in the double FST is modulated through acetylcholine and σ1 receptors.

  18. Isolating cells from female/male blood mixtures using florescence in situ hybridization combined with low volume PCR and its application in forensic science.

    Science.gov (United States)

    Feng, Lei; Li, Cai-Xia; Han, Jun-Ping; Xu, Cheng; Hu, Lan

    2015-11-01

    To obtain single-source short tandem repeat (STR) profiles in trace female/male blood mixture samples, we combined florescence in situ hybridization (FISH), laser microdissection, and low volume PCR (LV-PCR) to isolate male/female cells and improve sensitivity. The results showed that isolation of as few as 10 leukocytes was sufficient to yield full STR profiles in fresh female or male blood samples for 32 independent tests with a low additional alleles rate (3.91%) and drop-out alleles rate (5.01%). Moreover, this procedure was tested in two fresh blood mixture series at three ratios (1:5, 1:10, and 1:20), two mock female/male blood mixture casework samples, and one practical casework sample. Male and female STR profiles were successfully detected in all of these samples, showing that this procedure could be used in forensic casework in the future.

  19. [Analysis of chromosome composition in interspecific embryonic stem hybrid cells of mice].

    Science.gov (United States)

    Pristiazhniuk, I E; Matveeva, N M; Grafodatskiĭ, A S; Serdiukova, N A; Serov, O L

    2010-01-01

    Chromosome complements of twenty hybrid clones obtained by fusion of Mus musculus embryonic stem cells (ESC) and M. caroli splenocytes were studied. Using of double-color in situ hybridization with chromosome- and species-specific probes we were able to detect the parental origin for each chromosome in hybrid cells. Based on parental chromosome ratio, all 20 hybrid clones were separated in some different groups: from the group containing practically tetraploid M. musculus genome with single M. caroli chromosomes to hybrids with dominance of M. caroli chromosome homologues. In 8 hybrid cells clones we observed prevalence of chromosomes originated from ESC in ratio from 5:1 to 3:1. Another hybrid cells clones have either equal (1:1, 1:2) ratio of M. musculus to M. caroli chromosomes or with the prevalence of ESC- (2:1) or splenocyte- (1:2) originated parental chromosome homologues. In 3 hybrid cells clones, we observed preferable segregation of ESC-originated pluripotent chromosomes. This phenomenon was found for the first time and it possibly indicates compensation of the epigenetic differences between parental chromosomes of ESC- and splenocyte-origination.

  20. Developmental lead effects on behavior and brain gene expression in male and female BALB/cAnNTac mice.

    Science.gov (United States)

    Kasten-Jolly, Jane; Pabello, Nina; Bolivar, Valerie J; Lawrence, David A

    2012-10-01

    that Pb differentially affects the behavior of male and female mice in that females did less exploration and the males were selectively more aggressive. Gene expression data pointed to evidence of neuroinflammation in the brain of both female and male mice. Pb had more of an effect in the males on expression of vomeronasal receptor genes associated with odor detection and social behavior.

  1. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1G93A amyotrophic lateral sclerosis mice

    Directory of Open Access Journals (Sweden)

    Rachael Bartlett

    2017-03-01

    Full Text Available Background Amyotrophic lateral sclerosis (ALS is a rapidly progressive neurodegenerative disease characterised by the accumulation of aggregated proteins, microglia activation and motor neuron loss. The mechanisms underlying neurodegeneration and disease progression in ALS are unknown, but the ATP-gated P2X7 receptor channel is implicated in this disease. Therefore, the current study aimed to examine P2X7 in the context of neurodegeneration, and investigate whether the P2X7 antagonist, Brilliant Blue G (BBG, could alter disease progression in a murine model of ALS. Methods Human SOD1G93A transgenic mice, which normally develop ALS, were injected with BBG or saline, three times per week, from pre-onset of clinical disease (62–64 days of age until end-stage. During the course of treatment mice were assessed for weight, clinical score and survival, and motor coordination, which was assessed by rotarod performance. Various parameters from end-stage mice were assessed as follows. Motor neuron loss and microgliosis were assessed by immunohistochemistry. Relative amounts of lumbar spinal cord SOD1 and P2X7 were quantified by immunoblotting. Serum monocyte chemoattractant protein-1 was measured by ELISA. Splenic leukocyte populations were assessed by flow cytometry. Relative expression of splenic and hepatic P2X7 mRNA was measured by quantitative real-time PCR. Lumbar spinal cord SOD1 and P2X7 were also quantified by immunoblotting in untreated female SOD1G93A mice during the course of disease. Results BBG treatment reduced body weight loss in SOD1G93A mice of combined sex, but had no effect on clinical score, survival or motor coordination. BBG treatment reduced body weight loss in female, but not male, SOD1G93A mice. BBG treatment also prolonged survival in female, but not male, SOD1G93A mice, extending the mean survival time by 4.3% in female mice compared to female mice treated with saline. BBG treatment had no effect on clinical score or motor

  2. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1G93A amyotrophic lateral sclerosis mice

    Science.gov (United States)

    Bartlett, Rachael; Sluyter, Vanessa; Watson, Debbie

    2017-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterised by the accumulation of aggregated proteins, microglia activation and motor neuron loss. The mechanisms underlying neurodegeneration and disease progression in ALS are unknown, but the ATP-gated P2X7 receptor channel is implicated in this disease. Therefore, the current study aimed to examine P2X7 in the context of neurodegeneration, and investigate whether the P2X7 antagonist, Brilliant Blue G (BBG), could alter disease progression in a murine model of ALS. Methods Human SOD1G93A transgenic mice, which normally develop ALS, were injected with BBG or saline, three times per week, from pre-onset of clinical disease (62–64 days of age) until end-stage. During the course of treatment mice were assessed for weight, clinical score and survival, and motor coordination, which was assessed by rotarod performance. Various parameters from end-stage mice were assessed as follows. Motor neuron loss and microgliosis were assessed by immunohistochemistry. Relative amounts of lumbar spinal cord SOD1 and P2X7 were quantified by immunoblotting. Serum monocyte chemoattractant protein-1 was measured by ELISA. Splenic leukocyte populations were assessed by flow cytometry. Relative expression of splenic and hepatic P2X7 mRNA was measured by quantitative real-time PCR. Lumbar spinal cord SOD1 and P2X7 were also quantified by immunoblotting in untreated female SOD1G93A mice during the course of disease. Results BBG treatment reduced body weight loss in SOD1G93A mice of combined sex, but had no effect on clinical score, survival or motor coordination. BBG treatment reduced body weight loss in female, but not male, SOD1G93A mice. BBG treatment also prolonged survival in female, but not male, SOD1G93A mice, extending the mean survival time by 4.3% in female mice compared to female mice treated with saline. BBG treatment had no effect on clinical score or motor coordination in

  3. Progesterone receptor-dependent regulation of genes in the oviducts of female mice.

    Science.gov (United States)

    Akison, Lisa K; Boden, Michael J; Kennaway, David J; Russell, Darryl L; Robker, Rebecca L

    2014-08-15

    Oviducts play a critical role in gamete and embryo transport, as well as supporting early embryo development. Progesterone receptor (PGR) is a transcription factor highly expressed in oviductal cells, while its activating ligand, progesterone, surges to peak levels as ovulation approaches. Progesterone is known to regulate oviduct cilia beating and muscular contractions in vitro, but how PGR may mediate this in vivo is poorly understood. We used PGR null mice to identify genes potentially regulated by PGR in the oviducts during the periovulatory period. Histologically, oviducts from PGR null mice showed no gross structural or morphological defects compared with normal littermates. However, microarray analysis of oviducts at 8 h posthuman chorionic gonadotropin revealed >1,000 PGR-dependent genes. Using reverse-transcription polymerase chain reaction (RT-PCR) we selected 10 genes for validation based on their potential roles in oocyte/embryo transport and support. Eight genes were confirmed to be downregulated (Adamts1, Itga8, Edn3, Prlr, Ptgfr, Des, Myocd, and Actg2) and one upregulated (Agtr2) in PGR null oviducts. Expression of these genes was also assessed in oviducts of naturally cycling mice during ovulation and day 1 and day 4 of pregnancy. Adamts1, Itga8, Edn3, Prlr, and Ptgfr were significantly upregulated in oviducts at ovulation/mating. However, most genes showed basal levels of expression at other times. The exceptions were Prlr and Ptgfr, which showed pulsatile increases on day 1 and/or day 4 of pregnancy. This is the first, comprehensive study to elucidate putative PGR-regulated genes in the oviduct and reveals key downstream targets potentially mediating oocyte and embryo transport. Copyright © 2014 the American Physiological Society.

  4. Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    El Akoum Souhad

    2011-12-01

    Full Text Available Abstract Background Adverse effects of high-fat diets (HFD on metabolic homeostasis are linked to adipose tissue dysfunction. The goal of this study was to examine the effect of the HFD nature on adipose tissue activity, metabolic disturbances and glucose homeostasis alterations in male mice compared with female mice. Methods C57BL/6J mice were fed either a chow diet or HFD including vegetal (VD or animal (AD fat. Body weight, plasmatic parameters and adipose tissue mRNA expression levels of key genes were evaluated after 20 weeks of HFD feeding. Results HFD-fed mice were significantly heavier than control at the end of the protocol. Greater abdominal visceral fat accumulation was observed in mice fed with AD compared to those fed a chow diet or VD. Correlated with weight gain, leptin levels in systemic circulation were increased in HFD-fed mice in both sexes with a significant higher level in AD group compared to VD group. Circulating adiponectin levels as well as adipose tissue mRNA expression levels were significantly decreased in HFD-fed male mice. Although its plasma levels remained unchanged in females, adiponectin mRNA levels were significantly reduced in adipose tissue of both HFD-fed groups with a more marked decrease in AD group compared to VD group. Only HFD-fed male mice were diabetic with increased fasting glycaemia. On the other hand, insulin levels were only increased in AD-fed group in both sexes associated with increased resistin levels. VD did not induce any apparent metabolic alteration in females despite the increased weight gain. Peroxisome Proliferator-Activated Receptors gamma-2 (PPARγ2 and estrogen receptor alpha (ERα mRNA expression levels in adipose tissue were decreased up to 70% in HFD-fed mice but were more markedly reduced in male mice as compared with female mice. Conclusions The nature of dietary fat determines the extent of metabolic alterations reflected in adipocytes through modifications in the pattern of

  5. Influence Of Acacia nilotica On Arsenic Induced Genotoxicity In Male and Female Mice

    Directory of Open Access Journals (Sweden)

    INAS S. Ghaly AND ZEINAB E. HANAFY

    2010-06-01

    Full Text Available For centuries, plants have been used in traditional medicine and there has been recent interest in the chemopreventive properties of compounds derived from plants. In the present study, we investigated the effects of extracts of Acacia nilotica leaves on the genotoxicity of arsinic . Arsenic contamination in groundwater a global human health hazard .There is no effective remedial action of chronic arsenicsis. However, a well-nourished diet can modulate the onset of adverse health effects and delayed the effect of arsenic in drinking water. In the present work, genotoxic effects were induced by sodium arsenate through oral administration,and the protective effect of Acacia nilotica was studied. Chromosomal aberrations were more pronounced in sodium arsenate treated mice, while supplementation of Acacia nilotica with sodium arsenate reduced the incidence of the aberrations. The mean of DNA fragmentation induced by sodium arsenate was highly significant increase. However, the administration of Acacia nilotica significantly decreased DNA fragmentation induced by sodium arsenate. The mean number of sperms, were decreased significantly after treatment with sodium arsenate, while administration of Acacia nilotica increased the number of sperm in mice treated with sodium arsenate, and also decreased the percentage of sperm abnormalities induced by sodium arsenate. The outcome of study showed that Acacia nilotica has the efficiency to encounter the genotoxic effects induced by arsenic.

  6. Triclosan exacerbates the presence of {sup 14}C-bisphenol A in tissues of female and male mice

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Tyler; Tang, Brandon; Catanzaro, Denys de, E-mail: decatanz@mcmaster.ca

    2014-07-15

    Current human generations are commonly exposed to both triclosan (TCS), an antimicrobial agent, and bisphenol A (BPA), the monomer of polycarbonate plastics and epoxies. Both are readily absorbed into circulation and found distributed among diverse tissues. Potential interactions between TCS and BPA are largely unstudied. We investigated whether TCS exposure affects the distribution of ingested {sup 14}C-BPA in select tissues. CF-1 mice were each subcutaneously injected with TCS then orally administered 50 μg/kg {sup 14}C-BPA. Females received 0, 0.2, 0.6, 1, 2, or 18 mg TCS (equivalent respectively to 0, 6.3, 16.9, 30.1, 60.5, and 558.9 mg/kg). Males received 0, 0.2, 2, or 18 mg TCS (equivalent respectively to 0, 5.3, 53.4, and 415.0 mg/kg). Levels of radioactivity were measured through liquid scintillation counting in blood serum and brain, reproductive, and other tissues. Significantly elevated levels of radioactivity were observed following combined TCS and {sup 14}C-BPA administration, with minimally effective TCS doses being tissue-dependent (Females: lungs, 0.6 mg; uterus, 1 mg; heart, muscle, ovaries, and serum, 18 mg. Males: serum, 0.2 mg; epididymides, 2 mg). Subsequently, we found that 2 or 6 mg TCS increased radioactivity in the ovaries and serum of females orally given only 5 μg/kg {sup 14}C-BPA. These data indicate that TCS can interact with BPA in vivo, magnifying its presence in certain tissues and serum. The data are consistent with evidence that TCS utilizes enzymes that are critical for metabolism and excretion of BPA. Further research should investigate the mechanisms through which these two chemicals interact at environmentally-relevant doses. - Highlights: • We examined whether triclosan exposure affects the distribution of oral {sup 14}C-BPA. • Radioactivity was elevated in select tissues of mice injected sc with triclosan. • In females, this effect was most pronounced in the uterus, ovaries, and lungs. • In males, this effect was

  7. Dissecting the genetic architecture of F1 hybrid sterility in house mice.

    Science.gov (United States)

    Dzur-Gejdosova, Maria; Simecek, Petr; Gregorova, Sona; Bhattacharyya, Tanmoy; Forejt, Jiri

    2012-11-01

    Hybrid sterility as a postzygotic reproductive isolation mechanism has been studied for over 80 years, yet the first identifications of hybrid sterility genes in Drosophila and mouse are quite recent. To study the genetic architecture of F(1) hybrid sterility between young subspecies of house mouse Mus m. domesticus and M. m. musculus, we conducted QTL analysis of a backcross between inbred strains representing these two subspecies and probed the role of individual chromosomes in hybrid sterility using the intersubspecific chromosome substitution strains. We provide direct evidence that the asymmetry in male infertility between reciprocal crosses is conferred by the middle region of M. m. musculus Chr X, thus excluding other potential candidates such as Y, imprinted genes, and mitochondrial DNA. QTL analysis identified strong hybrid sterility loci on Chr 17 and Chr X and predicted a set of interchangeable autosomal loci, a subset of which is sufficient to activate the Dobzhansky-Muller incompatibility of the strong loci. Overall, our results indicate the oligogenic nature of F(1) hybrid sterility, which should be amenable to reconstruction by proper combination of chromosome substitution strains. Such a prefabricated model system should help to uncover the gene networks and molecular mechanisms underlying hybrid sterility.

  8. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap

    Directory of Open Access Journals (Sweden)

    Hua Jiang

    2015-09-01

    Full Text Available In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap.

  9. Inhibition of Advanced Glycation End Products (AGEs Accumulation by Pyridoxamine Modulates Glomerular and Mesangial Cell Estrogen Receptor α Expression in Aged Female Mice.

    Directory of Open Access Journals (Sweden)

    Simone Pereira-Simon

    Full Text Available Age-related increases in oxidant stress (OS play a role in regulation of estrogen receptor (ER expression in the kidneys. In this study, we establish that in vivo 17β-estradiol (E2 replacement can no longer upregulate glomerular ER expression by 21 months of age in female mice (anestrous. We hypothesized that advanced glycation end product (AGE accumulation, an important source of oxidant stress, contributes to these glomerular ER expression alterations. We treated 19-month old ovariectomized female mice with pyridoxamine (Pyr, a potent AGE inhibitor, in the presence or absence of E2 replacement. Glomerular ERα mRNA expression was upregulated in mice treated with both Pyr and E2 replacement and TGFβ mRNA expression decreased compared to controls. Histological sections of kidneys demonstrated decreased type IV collagen deposition in mice receiving Pyr and E2 compared to placebo control mice. In addition, anti-AGE defenses Sirtuin1 (SIRT1 and advanced glycation receptor 1 (AGER1 were also upregulated in glomeruli following treatment with Pyr and E2. Mesangial cells isolated from all groups of mice demonstrated similar ERα, SIRT1, and AGER1 expression changes to those of whole glomeruli. To demonstrate that AGE accumulation contributes to the observed age-related changes in the glomeruli of aged female mice, we treated mesangial cells from young female mice with AGE-BSA and found similar downregulation of ERα, SIRT1, and AGER1 expression. These results suggest that inhibition of intracellular AGE accumulation with pyridoxamine may protect glomeruli against age-related oxidant stress by preventing an increase of TGFβ production and by regulation of the estrogen receptor.

  10. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap.

    Science.gov (United States)

    Jiang, Hua; Hurt, K Joseph; Breen, Kelsey; Stabler, Sally P; Allen, Robert H; Orlicky, David J; Maclean, Kenneth N

    2015-08-14

    In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL) is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap.

  11. Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice.

    Directory of Open Access Journals (Sweden)

    Toru Takeo

    Full Text Available Superovulation is a reproductive technique generally used to produce genetically engineered mice. Superovulation in mice involves the administration of equine chorionic gonadotropin (eCG to promote follicle growth and then that of human chorionic gonadotropin (hCG to induce ovulation. Previously, some published studies reported that inhibin antiserum (IAS increased the number of ovulated oocytes in ddY and wild-derived strains of mice. However, the effect of IAS on the C57BL/6 strain, which is the most widely used inbred strain for the production of genetically engineered mice, has not been investigated. In addition, the combined effect of IAS and eCG (IASe on the number of ovulated oocytes in superovulation treatment has not been examined. In this study, we examined the effect of IAS and eCG on the number of ovulated oocytes in immature female mice of the C57BL/6 strain in superovulation treatment. Furthermore, we evaluated the quality of obtained oocytes produced by superovulation using IASe by in vitro fertilization (IVF with sperm from C57BL/6 or genetically engineered mice. The developmental ability of fresh or cryopreserved embryos was examined by embryo transfer. The administration of IAS or eCG had a similar effect on the number of ovulated oocytes in C57BL/6 female mice. The number of ovulated oocytes increased to about 3-fold by the administration of IASe than by the administration of IAS or eCG alone. Oocytes derived from superovulation using IASe normally developed into 2-cell embryos by IVF using sperm from C57BL/6 mice. Fresh or cryopreserved 2-cell embryos produced by IVF between oocytes of C57BL/6 mice and sperm from genetically engineered mice normally developed into live pups following embryo transfer. In summary, a novel technique of superovulation using IASe is extremely useful for producing a great number of oocytes and offspring from genetically engineered mice.

  12. Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice.

    Science.gov (United States)

    Takeo, Toru; Nakagata, Naomi

    2015-01-01

    Superovulation is a reproductive technique generally used to produce genetically engineered mice. Superovulation in mice involves the administration of equine chorionic gonadotropin (eCG) to promote follicle growth and then that of human chorionic gonadotropin (hCG) to induce ovulation. Previously, some published studies reported that inhibin antiserum (IAS) increased the number of ovulated oocytes in ddY and wild-derived strains of mice. However, the effect of IAS on the C57BL/6 strain, which is the most widely used inbred strain for the production of genetically engineered mice, has not been investigated. In addition, the combined effect of IAS and eCG (IASe) on the number of ovulated oocytes in superovulation treatment has not been examined. In this study, we examined the effect of IAS and eCG on the number of ovulated oocytes in immature female mice of the C57BL/6 strain in superovulation treatment. Furthermore, we evaluated the quality of obtained oocytes produced by superovulation using IASe by in vitro fertilization (IVF) with sperm from C57BL/6 or genetically engineered mice. The developmental ability of fresh or cryopreserved embryos was examined by embryo transfer. The administration of IAS or eCG had a similar effect on the number of ovulated oocytes in C57BL/6 female mice. The number of ovulated oocytes increased to about 3-fold by the administration of IASe than by the administration of IAS or eCG alone. Oocytes derived from superovulation using IASe normally developed into 2-cell embryos by IVF using sperm from C57BL/6 mice. Fresh or cryopreserved 2-cell embryos produced by IVF between oocytes of C57BL/6 mice and sperm from genetically engineered mice normally developed into live pups following embryo transfer. In summary, a novel technique of superovulation using IASe is extremely useful for producing a great number of oocytes and offspring from genetically engineered mice.

  13. Comparative analysis of meiotic progression in female mice bearing mutations in genes of the DNA mismatch repair pathway.

    Science.gov (United States)

    Kan, Rui; Sun, Xianfei; Kolas, Nadine K; Avdievich, Elena; Kneitz, Burkhard; Edelmann, Winfried; Cohen, Paula E

    2008-03-01

    The DNA mismatch repair (MMR) family functions in a variety of contexts to preserve genome integrity in most eukaryotes. In particular, members of the MMR family are involved in the process of meiotic recombination in germ cells. MMR gene mutations in mice result in meiotic disruption during prophase I, but the extent of this disruption often differs between male and female meiocytes. To address the role of MMR proteins specifically in female meiosis, we explored the progression of oocytes through prophase I and the meiotic divisions in mice harboring deletions in members of the MMR pathway (Mlh1, Mlh3, Exo1, and an ATPase-deficient variant of Mlh1, Mlh1(G67R)). The colocalization of MLH1 and MLH3, key proteins involved in stabilization of nascent crossovers, was dependent on intact heterodimer formation and was highly correlated with the ability of oocytes to progress through to metaphase II. The exception was Exo1(-/-) oocytes, in which normal MLH1/MLH3 localization was observed followed by failure to proceed to metaphase II. All mutant oocytes were able to resume meiosis after dictyate arrest, but they showed a dramatic decline in chiasmata (to less than 25% of normal), accompanied by varied progression through metaphase I. Taken together, these results demonstrate that MMR function is required for the formation and stabilization of crossovers in mammalian oocytes and that, in the absence of a functional MMR system, the failure to maintain chiasmata results in a reduced ability to proceed normally through the first and second meiotic divisions, despite near-normal levels of meiotic resumption after dictyate arrest.

  14. A complex genetic basis to X-linked hybrid male sterility between two species of house mice.

    Science.gov (United States)

    Good, Jeffrey M; Dean, Matthew D; Nachman, Michael W

    2008-08-01

    The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome.

  15. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice

    Science.gov (United States)

    Barakat, Waleed; Elshazly, Shimaa M.; Mahmoud, Amr A. A.

    2015-01-01

    Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive. PMID:26366170

  16. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice

    Directory of Open Access Journals (Sweden)

    Waleed Barakat

    2015-01-01

    Full Text Available Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg. Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive.

  17. Spirulina platensis Lacks Antitumor Effect against Solid Ehrlich Carcinoma in Female Mice.

    Science.gov (United States)

    Barakat, Waleed; Elshazly, Shimaa M; Mahmoud, Amr A A

    2015-01-01

    Spirulina is a blue-green alga used as a dietary supplement. It has been shown to possess anti-inflammatory, antioxidant, and hepatoprotective properties. This study was designed to evaluate the antitumor effect of spirulina (200 and 800 mg/kg) against a murine model of solid Ehrlich carcinoma compared to a standard chemotherapeutic drug, 5-fluorouracil (20 mg/kg). Untreated mice developed a palpable solid tumor after 13 days. Unlike fluorouracil, spirulina at the investigated two dose levels failed to exert any protective effect. In addition, spirulina did not potentiate the antitumor effect of fluorouracil when they were administered concurrently. Interestingly, their combined administration resulted in a dose-dependent increase in mortality. The present study demonstrates that spirulina lacks antitumor effect against this model of solid Ehrlich carcinoma and increased mortality when combined with fluorouracil. However, the implicated mechanism is still elusive.

  18. Role of glutathione conjugation in the hepatotoxicity and immunotoxicity induced by 1-bromopropane in female BALB/c mice.

    Science.gov (United States)

    Lee, Sang Kyu; Jeon, Tae Won; Kim, Yong Beom; Lee, Eung Seok; Jeong, Hye Gwang; Jeong, Tae Cheon

    2007-01-01

    1-Bromopropane (1-BP) is used as a cleaning agent or adhesive solvent in the workplace. In the present study, the hepatotoxic and immunotoxic effects of 1-bromopropane and its conjugation with glutathione (GSH) were investigated in female BALB/c mice. The animals were treated orally with 200, 500 and 1000 mg kg(-1) of 1-BP in corn oil for a dose response study or treated orally with 1000 mg kg(-1) of 1-BP for 6, 12, 24 and 48 h for a time course study. The hepatic and splenic contents of GSH were significantly decreased by 1-BP in a dose-dependent manner. S-propyl GSH was identified in livers following treatment with 1-BP by liquid chromatography-electrospray ionization tandem mass spectrometry. When the production of conjugates from 1-BP was investigated in livers following oral treatment with 1000 mg kg(-1) of 1-BP for 6, 12, 24 and 48 h, the GSH conjugates were detected maximally 6 h after treatment. Treatment of mice with 1-BP increased the serum activity of alanine aminotransferase dose-dependently. The oral 1-BP treatment significantly suppressed the antibody response to a T-dependent antigen and the production of splenic intracellular IL-2 in response to Con A in a dose-dependent manner. The present results suggested that 1-BP could cause hepatotoxicity and immunotoxicity as well as depletion of GSH content due to the formation of GSH conjugates.

  19. Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature.

    Science.gov (United States)

    Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J

    2017-09-01

    Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.

  20. Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice.

    Science.gov (United States)

    Winn, Nathan C; Vieira-Potter, Victoria J; Gastecki, Michelle L; Welly, Rebecca J; Scroggins, Rebecca J; Zidon, Terese M; Gaines, T'Keaya L; Woodford, Makenzie L; Karasseva, Natalia G; Kanaley, Jill A; Sacks, Harold S; Padilla, Jaume

    2017-01-01

    We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced "whitening" of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1(-/-)) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1(-/-) exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress (P diet (P diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1(-/-) were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis. Copyright © 2017 the American Physiological Society.

  1. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    Science.gov (United States)

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD).Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD.Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography.Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice (P loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  2. Loss of Fertility in the Absence of Progesterone Receptor Expression in Kisspeptin Neurons of Female Mice.

    Directory of Open Access Journals (Sweden)

    Arnon Gal

    Full Text Available Ovarian steroids, estradiol and progesterone, play central roles in regulating female reproduction by acting as both positive and negative regulators of gonadotropin-releasing hormone (GnRH secretion in the hypothalamus. Recent studies have identified kisspeptin neurons of the hypothalamus as the target of estrogenic regulation of GnRH secretion. In this study, we aimed to determine the significance of progesterone receptor (PGR expression in the kisspeptin neurons. To this end, the Pgr gene was selectively ablated in mouse kisspeptin neurons and the reproductive consequence assessed. The hypothalamus of the Pgr deficient female mouse expressed kisspeptin, the pituitary released LH in response to GnRH stimulation, and the ovary ovulated when stimulated with gonadotropins. However, the mutant mouse gradually lost cyclicity, was unable to generate a LH surge in response to rising estradiol, and eventually became infertile. Taken together, these results indicate that the loss of PGR impairs kisspeptin secretory machinery and therefore that PGR plays a critical role in regulating kisspeptin secretion.

  3. Cellular mechanism by which estradiol protects female ovariectomized mice from high-fat diet-induced hepatic and muscle insulin resistance.

    Science.gov (United States)

    Camporez, João Paulo G; Jornayvaz, François R; Lee, Hui-Young; Kanda, Shoichi; Guigni, Blas A; Kahn, Mario; Samuel, Varman T; Carvalho, Carla R O; Petersen, Kitt Falk; Jurczak, Michael J; Shulman, Gerald I

    2013-03-01

    Estrogen replacement therapy reduces the incidence of type 2 diabetes in postmenopausal women; however, the mechanism is unknown. Therefore, the aim of this study was to evaluate the metabolic effects of estrogen replacement therapy in an experimental model of menopause. At 8 weeks of age, female mice were ovariectomized (OVX) or sham (SHAM) operated, and OVX mice were treated with vehicle (OVX) or estradiol (E2) (OVX+E2). After 4 weeks of high-fat diet feeding, OVX mice had increased body weight and fat mass compared with SHAM and OVX+E2 mice. OVX mice displayed reduced whole-body energy expenditure, as well as impaired glucose tolerance and whole-body insulin resistance. Differences in whole-body insulin sensitivity in OVX compared with SHAM mice were accounted for by impaired muscle insulin sensitivity, whereas both hepatic and muscle insulin sensitivity were impaired in OVX compared with OVX+E2 mice. Muscle diacylglycerol (DAG), content in OVX mice was increased relative to SHAM and OVX+E2 mice. In contrast, E2 treatment prevented the increase in hepatic DAG content observed in both SHAM and OVX mice. Increases in tissue DAG content were associated with increased protein kinase Cε activation in liver of SHAM and OVX mice compared with OVX+E2 and protein kinase Cθ activation in skeletal muscle of OVX mice compared with SHAM and OVX+E2. Taken together, these data demonstrate that E2 plays a pivotal role in the regulation of whole-body energy homeostasis, increasing O(2) consumption and energy expenditure in OVX mice, and in turn preventing diet-induced ectopic lipid (DAG) deposition and hepatic and muscle insulin resistance.

  4. Prenatal diethylstilbestrol induces malformation of the external genitalia of male and female mice and persistent second-generation developmental abnormalities of the external genitalia in two mouse strains

    Science.gov (United States)

    Mahawong, Phitsanu; Sinclair, Adriane; Li, Yi; Schlomer, Bruce; Rodriguez, Esequiel; Max, Ferretti M.; Liu, Baomei; Baskin, Laurence S.; Cunha, Gerald R.

    2014-01-01

    Potential trans-generational influence of diethylstilbestrol (DES) exposure emerged with reports of effects in grandchildren of DES-treated pregnant women and of reproductive tract tumors in offspring of mice exposed in utero to DES. Accordingly, we examined the trans-generational influence of DES on development of external genitalia (ExG) and compared effects of in utero DES exposure in CD-1 and C57BL/6 mice injected with oil or DES every other day from gestational days 12 to 18. Mice were examined at birth, and on 5 to 120 days postnatal to evaluate ExG malformations. Of 23 adult (≥60 days) prenatally DES-exposed males, features indicative of urethral meatal hypospadias (see text for definitions) ranged from 18 to 100% in prenatally DES-exposed CD-1 males and 31 to 100% in prenatally DES-exposed C57BL/6 males. Thus, the strains differed in the incidence of male urethral hypospadias. Ninety-one percent of DES-exposed CD-1 females and 100% of DES-exposed C57BL/6 females had urethral-vaginal fistula. All DES-exposed CD-1 and C57BL/6 females lacked an os clitoris. None of the prenatally oil-treated CD-1 and C57BL/6 male and female mice had ExG malformations. For the second-generation study, 10 adult CD-1 males and females, from oil- and DES-exposed groups, respectively, were paired with untreated CD-1 mice for 30 days, and their offspring evaluated for ExG malformations. None of the F1 DES-treated females were fertile. Nine of 10 prenatally DES-exposed CD-1 males sired offspring with untreated females, producing 55 male and 42 female pups. Of the F2 DES-lineage adult males, 20% had exposed urethral flaps, a criterion of urethral meatal hypospadias. Five of 42 (11.9%) F2 DES lineage females had urethral-vaginal fistula. In contrast, all F2 oil-lineage males and all oil-lineage females were normal. Thus, prenatal DES exposure induces malformations of ExG in both sexes and strains of mice, and certain malformations are transmitted to the second-generation. PMID

  5. Reversal of glial and neurovascular markers of unhealthy brain aging by exercise in middle-aged female mice.

    Directory of Open Access Journals (Sweden)

    Caitlin S Latimer

    Full Text Available Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.

  6. Peculiarities of the Inflammatory Process in the Reproductive Organs of C57Bl/6 Female Mice with Experimental Tuberculosis.

    Science.gov (United States)

    Sukhikh, G T; Kayukova, S I; Bocharova, I V; Donnikov, A E; Lepekha, L N; Demikhova, O V; Uvarova, E V; Berezovskii, Yu S; Smirnova, T G

    2016-04-01

    Intravenous infection of C57Bl/6 female mice with M. tuberculosis H37Rv led to involvement of the lungs and dissemination of the tuberculous infection to the abdominal and pelvic organs. M. tuberculosis were detected in the lungs and spleen in 14, 35, and 90 days and in the uterine horns in 90 days after infection. Morphological analysis of organs showed successive development of exudative necrotic tuberculosis of the lungs, acute and chronic nonspecific inflammation in the reproductive organs (vagina, uterus, and uterine horns). The inflammatory process in the reproductive organs was associated with the development of anaerobic dysbiosis, that was most pronounced in 35 days after infection. Antituberculous therapy was followed by reduction of M. tuberculosis count in the lungs and spleen in 60 and 90 days after infection, eliminatation of M. tuberculosis in the uterine horns, arrest of nonspecific inflammation in female reproductive organs, recovery of the balance between aerobic and anaerobic microflora, and development of candidiasis of the urogenital mucosa.

  7. Reduced serum levels of oestradiol and brain derived neurotrophic factor in both diabetic women and HFD-feeding female mice.

    Science.gov (United States)

    Zhang, Yi; Zhang, Shan-Wen; Khandekar, Neeta; Tong, Shi-Fei; Yang, He-Qin; Wang, Wan-Ru; Huang, Xu-Feng; Song, Zhi-Yuan; Lin, Shu

    2017-04-01

    The estrogen levels in the pre and post menstrual phases interact with brain-derived neurotrophic factor in a complex manner, which influences the overall state of the body. To study the role of oestradiol and brain-derived neurotrophic factor in modulating obesity related type 2 diabetes and the interactions between two factors, we enrolled 15 diabetic premenopausal women and 15 diabetic postmenopausal women respectively, the same number of healthy pre and postmenopausal women were recruited as two control groups. The fasting blood glucose, insulin, lipids, estrogen, and brain-derived neurotrophic factor levels were measured through clinical tests. Additionally, we set up obese female mouse model to mimic human trial stated above, to verify the relationship between estrogen and brain-derived neurotrophic factor. Our findings revealed that there is a moderately positive correlation between brain-derived neurotrophic factor and oestradiol in females, and decreased brain-derived neurotrophic factor may worsen impaired insulin function. The results further confirmed that high fat diet-fed mice which exhibited impaired glucose tolerance, showed lower levels of oestradiol and decreased expression of brain-derived neurotrophic factor mRNA in the ventromedial hypothalamus. The level of brain-derived neurotrophic factor reduced on condition that the level of oestradiol is sufficiently low, such as women in postmenopausal period, which aggravates diabetes through feeding-related pathways. Increasing the level of brain-derived neurotrophic factor may help to alleviate the progression of the disease in postmenopausal women with diabetes.

  8. Altered gene expression in hippocampus and depressive-like behavior in young adult female mice by early protein malnutrition.

    Science.gov (United States)

    Belluscio, L M; Alberca, C D; Pregi, N; Cánepa, E T

    2016-11-01

    Perinatal development represents a critical period in the life of an individual. A common cause of poor development is that which comes from undernutrition or malnutrition. In particular, protein deprivation during development has been shown to have deep deleterious effects on brain's growth and plasticity. Early-life stress has also been linked with an increased risk to develop different psychopathologies later in life. We have previously shown that perinatal protein malnutrition in mice leads to the appearance of anxiety-related behaviors in the adulthood. We also found evidence that the female offspring was more susceptible to the development of depression-related behaviors. In the present work, we further investigated this behavior together with its molecular bases. We focused our study on the hippocampus, as it is a structure involved in coping with stressful situations. We found an increase in immobility time in the forced swimming test in perinatally malnourished females, and an alteration in the expression of genes related with neuroplasticity, early growth response 1, calcineurin and c-fos. We also found that perinatal malnutrition causes a reduction in the number of neurons in the hippocampus. This reduction, together with altered gene expression, could be related to the increment in immobility time observed in the forced swimming test. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1

    DEFF Research Database (Denmark)

    Zhao, Liang; Svingen, Terje; Ting Ng, Ee

    2015-01-01

    Genes related to Dmrt1, which encodes a DNA-binding DM domain transcription factor, act as triggers for primary sex determination in a broad range of metazoan species. However, this role is fulfilled in mammals by Sry, a newly evolved gene on the Y chromosome, such that Dmrt1 has become dispensable...... for primary sex determination and instead maintains Sertoli cell phenotype in postnatal testes. Here, we report that enforced expression of Dmrt1 in XX mouse fetal gonads using a Wt1-BAC transgene system is sufficient to drive testicular differentiation and male secondary sex development. XX transgenic fetal...... into testicular cell types, including steroidogenic fetal Leydig cells and non-meiotic germ cells. As a consequence, male internal and external reproductive organs developed postnatally, with an absence of female reproductive tissues. These results reveal that Dmrt1 has retained its ability to act as the primary...

  10. Antitumor immunopreventive and immunotherapeutic effect in mice induced by hybrid vaccine of dendritic cells and hepatocarcinoma in vivo

    Institute of Scientific and Technical Information of China (English)

    Jin-Kun Zhang; Jun Li; Juan Zhang; Hai-Bin Chen; Su-Biao Chen

    2003-01-01

    AIM: To develop atumor vaccine by fusion of H22 hepatocarcinoma cells and DC, and to study its protective and therapeutical effect against H22 cell.METHODS: H22-DC vaccine was produced by PEG fusion of H22 and DC induced by cytokine released from splenic mononuclear cells, sorted by CD11c magnetic microbead marker. It was injected through the tail vein of the mice and the H22-DC oncogenesis was detected in the liver, spleen and lung. In order to study the therapeutical and protective effect of H22-DC against tumor H22, two groups were divided:immune group and therapeutic group. Immune group was further divided into P, D, HD and H subgroups, immunized by PBS, DC, H22-DC and inactivated H22, respectively, and attacked by H22 cell. The tumor size, tumor weight, mice survival time and tumor latent period were recorded and statistically analyzed; Therapeutical group was divided into three subgroups of P, D and HD, and attacked by H22, then treated with PBS, DC, and H22-DC, respectively. Pathology and flow cytometry were also applied to study the mechanism how the H22-DC vaccine attacked on the H22 cell.RESULTS: 1. No oncogenesis was found in spleen, lung and liver after H22-DC injection. 2. Hybrid vaccine immunized mice had strongest CTL activity. 3. In the immune group,latent period was longer in HD subgroup than that in P, H and D subgroup; and tumor size and weight were smaller in HD subgroup than that in P, H and D subgroup. 4. In therapeutic group, tumor size was smaller in HD subgroup than that in P, D subgroup.CONCLUSION: 1. H22-DC tumor vaccine is safe without oncogenesis in vivo. 2. Hybrid vaccine can stimulate potent specific CTL activity against H22.3. H22-DC vaccine has distinctive prophylatic effect on tumor H22 and can inhibit the tumor growth.

  11. Repeated Superovulation via PMSG/hCG Administration Induces 2-Cys Peroxiredoxins Expression and Overoxidation in the Reproductive Tracts of Female Mice.

    Science.gov (United States)

    Park, Sun-Ji; Kim, Tae-Shin; Kim, Jin-Man; Chang, Kyu-Tae; Lee, Hyun-Shik; Lee, Dong-Seok

    2015-12-01

    Superovulation induced by exogenous gonadotropin treatment (PMSG/hCG) increases the number of available oocytes in humans and animals. However, Superovulatory PMSG/hCG treatment is known to affect maternal environment, and these effects may result from PMSG/hCG treatment-induced oxidative stress. 2-Cys peroxiredoxins (2-Cys Prxs) act as antioxidant enzymes that protect cells from oxidative stress induced by various exogenous stimuli. Therefore, the objective of this study was to test the hypothesis that repeated PMSG/hCG treatment induces 2-Cys Prx expression and overoxidation in the reproductive tracts of female mice. Immunohistochemistry and western blotting analyses further demonstrated that, after PMSG/hCG treatment, the protein expression levels of 2-Cys Prxs increased most significantly in the ovaries, while that of Prx1 was most affected by PMSG/hCG stimulation in all tissues of the female reproductive tract. Repeated PMSG/hCG treatment eventually leads to 2-Cys Prxs overoxidation in all reproductive organs of female mice, and the abundance of the 2-Cys Prxs-SO2/3 proteins reported here supports the hypothesis that repeated superovulation induces strong oxidative stress and damage to the female reproductive tract. Our data suggest that excessive oxidative stress caused by repeated PMSG/hCG stimulation increases 2-Cys Prxs expression and overoxidation in the female reproductive organs. Intracellular 2-Cys Prx therefore plays an important role in maintaining the reproductive organ environment of female mice upon exogenous gonadotropin treatment.

  12. Passive Response to Stress in Adolescent Female and Adult Male Mice after Intermittent Nicotine Exposure in Adolescence.

    Science.gov (United States)

    Thanos, Panayotis; Delis, Foteini; Rosko, Lauren; Volkow, Nora D

    2013-04-23

    Smoking is frequently co-morbid with depression. Although it is recognized that depression increases the risk for smoking, it is unclear if early smoking exposure may increase the risk for depression. To test this possibility we assessed the effects of adolescent nicotine exposure on the Forced Swim Test (FST), which is used as a measure of passive coping, and depressive-like behavior in rodents, and on the open field test (OFT), which is used as a measure of locomotion and exploratory behavior. Male and female mice received daily saline or nicotine (0.3 or 0.6 mg/kg) injections from postnatal day (PD) 30 to PD 44. FST and OFT were performed either 1 or 30 days after the last injection (PD 45 and PD 74, respectively). In females, treatment with 0.3 mg/kg nicotine lead to increased FST immobility (64%) and decreased OFT locomotor activity (12%) one day following the last nicotine injection (PD 45); while no effects were observed in adulthood (PD 74). In contrast, on PD45, nicotine treatment did not change the male FST immobility but lead to lower OFT locomotor activity (0.6 mg/kg, 10%). In adulthood (PD 74), both nicotine doses lead to higher FST immobility (87%) in males while 0.6 mg/kg nicotine to lower OFT locomotor activity (13%). The results (i) identify females as more vulnerable to the immediate withdrawal that follows nicotine discontinuation in adolescence and (ii) suggest that adolescent nicotine exposure may enhance the risk for passive response towards unavoidable stress in adult males.

  13. Neurochemical and electrophysiological deficits in the ventral hippocampus and selective behavioral alterations caused by high-fat diet in female C57BL/6 mice.

    Science.gov (United States)

    Krishna, S; Keralapurath, M M; Lin, Z; Wagner, J J; de La Serre, C B; Harn, D A; Filipov, N M

    2015-06-25

    Mounting experimental evidence, predominantly from male rodents, demonstrates that high-fat diet (HFD) consumption and ensuing obesity are detrimental to the brain. To shed additional light on the neurological consequences of HFD consumption in female rodents and to determine the relatively early impact of HFD in the likely continuum of neurological dysfunction in the context of chronic HFD intake, this study investigated effects of HFD feeding for up to 12weeks on selected behavioral, neurochemical, and electrophysiological parameters in adult female C57BL/6 mice; particular focus was placed on the ventral hippocampus (vHIP). Selected locomotor, emotional and cognitive functions were evaluated using behavioral tests after 5weeks on HFD or control (low-fat diet) diets. One week later, mice were sacrificed and brain regional neurochemical (monoamine) analysis was performed. Behaviorally naïve mice were maintained on their respective diets for an additional 5-6weeks at which time synaptic plasticity was determined in ex vivo slices from the vHIP. HFD-fed female mice exhibited increased: (i) locomotor activity in the open field testing, (ii) mean turn time on the pole test, (iii) swimming time in the forced swim test, and (iv) number of marbles buried in the marble burying test. In contrast, the novel object recognition memory was unaffected. Mice on HFD also had decreased norepinephrine and dopamine turnover, respectively, in the prefrontal cortex and the vHIP. HFD consumption for a total of 11-12weeks altered vHIP synaptic plasticity, evidenced by significant reductions in the paired-pulse ratio and long-term potentiation (LTP) magnitude. In summary, in female mice, HFD intake for several weeks induced multiple behavioral alterations of mainly anxiety-like nature and impaired monoamine pathways in a brain region-specific manner, suggesting that in the female, certain behavioral domains (anxiety) and associated brain regions, i.e., the vHIP, are preferentially

  14. Female White-Footed Mice (Peromyscus leucopus) Trade Off Offspring Skeletal Quality for Self-Maintenance When Dietary Calcium Intake is Low.

    Science.gov (United States)

    Schmidt, Christina M; Hood, Wendy R

    2016-11-01

    During gestation and lactation in mammals, calcium and other minerals are transferred from female to offspring to support skeletal ossification. To meet mineral requirements, females commonly mobilize mineral from their own skeleton to augment dietary intake. Because the fitness costs of bone loss are expected to limit the amount of endogenous mineral that females transfer to their young, the amount of mineral allocated to offspring is predicted to be influenced by the availability of mineral in the female's diet. Calcium is the most abundant element in bone, and exogenous calcium appears to be limiting for many species. Thus, we expected that females would adjust mineral allocation to offspring relative to calcium abundance in the diet. We provided breeding female white-footed mice (Peromyscus leucopus) with a low-calcium (0.1% Ca) or a standard diet (0.85% Ca) for approximately 1 year. Body mass and skeletal size of pups did not differ between diets. Relative to pups from females on the standard diet, pups from females on the low-calcium diet had less calcium and phosphorus in their femurs and humeri, less body calcium content, reduced mass of their femurs and humeri, and had femurs with a reduced width. Reproducing white-footed mice mobilize more bone when calcium intake is low; however, our results suggest that this does not completely compensate for a reduction in calcium intake. Thus, it appears that when calcium availability is low, female white-footed mice reduce the quantity of mineral allocated per offspring as a means of maintaining their own skeletal condition.

  15. The Effects of a Single Developmentally Entrained Pulse of Testosterone in Female Neonatal Mice on Reproductive and Metabolic Functions in Adult Life.

    Science.gov (United States)

    Jang, Hyeran; Bhasin, Shalender; Guarneri, Tyler; Serra, Carlo; Schneider, Mary; Lee, Mi-Jeong; Guo, Wen; Fried, Susan K; Pencina, Karol; Jasuja, Ravi

    2015-10-01

    Early postnatal exposures to sex steroids have been well recognized to modulate predisposition to diseases of adulthood. There is a complex interplay between timing, duration and dose of endocrine exposures through environmental or dietary sources that may alter the sensitivity of target tissues to the exogenous stimuli. In this study, we determined the metabolic and reproductive programming effects of a single developmentally entrained pulse of testosterone (T) given to female mice in early postnatal period. CD-1 female mice pups were injected with either 5 μg of T enanthate (TE) or vehicle (control [CON] group) within 24 hours after birth and followed to adult age. A total of 66% of T-treated mice exhibited irregular cycling, anovulatory phenotype, and significantly higher ovarian weights than vehicle-treated mice. Longitudinal nuclear magnetic resonance measurements revealed that TE group had greater body weight, whole-body lean, and fat mass than the CON group. Adipose tissue cellularity analysis in TE group revealed a trend toward higher size and number than their littermate CONs. The brown adipose tissue of TE mice exhibited white fat infiltration with down-regulation of several markers, including uncoupling protein 1 (UCP-1), cell death-inducing DNA fragmentation factor, α-subunit-like effector A, bone morphogenetic protein 7 as well as brown adipose tissue differentiation-related transcription regulators. T-injected mice were also more insulin resistant than CON mice. These reproductive and metabolic reprogramming effects were not observed in animals exposed to TE at 3 and 6 weeks of age. Collectively, these data suggest that sustained reproductive and metabolic alterations may result in female mice from a transient exposure to T during a narrow postnatal developmental window.

  16. Immunotoxicity of dibromoacetic acid administered via drinking water to female B₆C₃F₁ mice.

    Science.gov (United States)

    Smith, Matthew J; Germolec, Dori R; Luebke, Robert W; Sheth, Christopher M; Auttachoat, Wimolnut; Guo, Tai L; White, Kimber L

    2010-01-01

    Dibromoacetic acid (DBA) is a disinfection by-product commonly found in drinking water as a result of chlorination/ ozonation processes. The Environmental Protection Agency estimates that more than 200 million people consume disinfected water in the United States. This study was conducted to evaluate the potential immunotoxicological effects of DBA exposure when administered for 28 days via drinking water to B₆C₃F₁ mice, at concentrations of 125, 500, and 1000 mg/L. Multiple endpoints were evaluated to assess innate, humoral, and cell-mediated immune components, as well as host resistance. Standard toxicological parameters were unaffected, with the exception of a dose-responsive increase in liver weight and a decrease in thymus weight at the two highest exposure levels. Splenocyte differentials were affected, although the effects were not dose-responsive. Exposure to DBA did not significantly affect humoral immunity (immunoglobulin M [IgM] plaque assay and serum IgM anti-sheep erythrocyte titers) or cell-mediated immunity (mixed-leukocyte response). No effects were observed on innate immune function in either interferon-γ-induced in vitro macrophage cytotoxic activity or basal natural killer (NK)-cell activity. Augmented NK-cell activity (following exposure to polyinosinic-polycytidylic acid) was decreased at the low dose, however the effect was not dose-responsive. Finally, DBA exposure had no effect on resistance to infection with either Streptococcus pneumoniae or Plasmodium yoelii, or challenge with B16F10 melanoma cells. With the exception of changes in thymus weight, these results indicate that DBA exposure resulted in no immunotoxic effects at concentrations much larger than those considered acceptable in human drinking water.

  17. EVALUATION OF THE IMMUNOMODULATORY EFFECTS OF THE DISINFECTION BYPRODUCT, SODIUM CHLORITE, IN FEMALE B6C3F1 MICE: A DRINKING WATER STUDY

    Science.gov (United States)

    Evaluation of the Immunomodulatory Effects of the Disinfection By-product, Sodium chlorite, in Female B6C3f1 mice: A Drinking Water Study. Niel A. Karrow, Tal, L. Guo, J. Ann McCay, Greg W. Johnson, Ronnetta D. Brown, Debrorah L. Musgrove, Dori R. Germolec, Robert W. Lueb...

  18. Liver-derived IGF-I regulates cortical bone mass but is dispensable for the osteogenic response to mechanical loading in female mice.

    Science.gov (United States)

    Svensson, Johan; Windahl, Sara H; Saxon, Leanne; Sjögren, Klara; Koskela, Antti; Tuukkanen, Juha; Ohlsson, Claes

    2016-07-01

    Low circulating IGF-I is associated with increased fracture risk. Conditional depletion of IGF-I produced in osteoblasts or osteocytes inhibits the bone anabolic effect of mechanical loading. Here, we determined the role of endocrine IGF-I for the osteogenic response to mechanical loading in young adult and old female mice with adult, liver-specific IGF-I inactivation (LI-IGF-I(-/-) mice, serum IGF-I reduced by ≈70%) and control mice. The right tibia was subjected to short periods of axial cyclic compressive loading three times/wk for 2 wk, and measurements were performed using microcomputed tomography and mechanical testing by three-point bending. In the nonloaded left tibia, the LI-IGF-I(-/-) mice had lower cortical bone area and increased cortical porosity, resulting in reduced bone mechanical strength compared with the controls. Mechanical loading induced a similar response in LI-IGF-I(-/-) and control mice in terms of cortical bone area and trabecular bone volume fraction. In fact, mechanical loading produced a more marked increase in cortical bone mechanical strength, which was associated with a less marked increase in cortical porosity, in the LI-IGF-I(-/-) mice compared with the control mice. In conclusion, liver-derived IGF-I regulates cortical bone mass, cortical porosity, and mechanical strength under normal (nonloaded) conditions. However, despite an ∼70% reduction in circulating IGF-I, the osteogenic response to mechanical loading was not attenuated in the LI-IGF-I(-/-) mice.

  19. Synergistic efficacy of γ-radiation together with gallium trichloride and/or doxorubicin against Ehrlich carcinoma in female mice.

    Science.gov (United States)

    Kandil, Eman; Aziz, Nahed Abdel

    2016-02-01

    Combining chemotherapy with radiotherapy represents a key oncology strategy for a more comprehensive attack toward cancers and improves treatment outcome for various solid tumor malignancies. The present study aims to evaluate the synergistic antitumor effect of γ-radiation together with gallium trichloride (GaCl3) and/or doxorubicin (DOX) against solid Ehrlich carcinoma (EC) in female mice. GaCl3 (300 mg/kg body weight (b.w.)) was administered by gavages daily on the seventh day after tumor inoculation, while the cytotoxic drug DOX (4 mg/kg b.w.) was administered intraperitoneally once a week. Whole-body γ-radiation was carried out at a dose 2 Gy once a week. Biochemical analysis showed that solid EC induced a significant increase in malondialdehyde (MDA) content with a significant decrease in the antioxidant state (glutathione peroxidase (GPx) and catalase (CAT) activities) and depleted serum iron concentration compared to normal control. Moreover, a significant increase was observed in calcium level and caspase-3 concentrations in both serum and tumor homogenate respectively associated with a significant alteration in heart, liver, and kidney functions, as compared to control. Treatment of EC-bearing mice with GaCl3and/or DOX combined with γ-radiation exposure significantly reduced tumor volume and displayed a significant improvement in most studied markers which may indicate a synergistic effect of this combination against organ dysfunction and cellular injury. The histopathologically investigation showed that treatment of animals bearing EC with GaCl3and/or DOX with γ-radiation exposure showed shrinkage in tumor lesions and wide zones of apoptotic cells with signs of regenerations. It was concluded that the combination of GaCl3and/or DOX with γ-radiation exposure resulted in super-additive cytotoxic effects on treatment of cancer cells.

  20. Investigation of peripubertal expression of Lin28a and Lin28b in C57BL/6 female mice.

    Science.gov (United States)

    Grieco, Anthony; Rzeczkowska, Paulina; Alm, Christina; Palmert, Mark R

    2013-01-30

    Genome-wide association studies recently identified 32 loci that associate with the age at menarche (AAM) in humans. Because the locus most robustly associated with AAM is in/near LIN28B, the goal of this study was to investigate how the Lin28 pathway might modulate pubertal timing by examining expression of Lin28b, and its homologue, Lin28a, across the pubertal transition in female mice. Quantitative reverse-transcriptase PCR data indicate that, prior to the onset of puberty, expression of both Lin28b and Lin28a decreases in the ovary, while expression of only Lin28a decreases in the hypothalamus; the expression of Lin28a increases after the onset of puberty in the pituitary. Immunohistochemistry in ovarian tissue verified that Lin28a protein levels decreased in parallel with gene expression. Although these data do not demonstrate cause and effect, they do suggest that decreased expression of Lin28a/Lin28b may facilitate the transition into puberty, consistent with previous data showing that overexpression of Lin28a in transgenic mice leads to delayed puberty. In addition, although Lin28b and/or Lin28a expression significantly decreased prior to puberty, neither Let-7a nor Let-7g miRNA levels changed significantly, raising the possibility that some effects of Lin28b and Lin28a within the hypothalamic-pituitary-gonadal (HPG) axis may be Let-7 miRNA independent. Subsequent studies, such as tissue and age specific modulation of Lin28b and Lin28a expression, could determine whether the expression patterns observed are responsible for modulating the onset of puberty and delineate further the role of this pathway in the HPG axis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Comparison of pulsatile vs. continuous administration of human placental growth hormone in female C57BL/6J mice.

    Science.gov (United States)

    Liao, Shutan; Vickers, Mark H; Evans, Angharad; Stanley, Joanna L; Baker, Philip N; Perry, Jo K

    2016-10-01

    Exogenous growth hormone has different actions depending on the method of administration. However, the effects of different modes of administration of the placental variant of growth hormone on growth, body composition and glucose metabolism have not been investigated. In this study, we examined the effect of pulsatile vs. continuous administration of recombinant variant of growth hormone in a normal mouse model. Female C57BL/6J mice were randomized to receive vehicle or variant of growth hormone (2 or 5 mg/kg per day) by daily subcutaneous injection (pulsatile) or osmotic pump for 6 days. Pulsatile treatment with 2 and 5 mg/kg per day significantly increased body weight. There was also an increase in liver, kidney and spleen weight via pulsatile treatment, whereas continuous treatment did not affect body weight or organ size. Pulsatile treatment with 5 mg/kg per day significantly increased fasting plasma insulin concentration, whereas with continuous treatment, fasting insulin concentration was not significantly different from the vehicle-treated control. However, a dose-dependent increase in fasting insulin concentration and decrease in insulin sensitivity, as assessed by HOMA, was observed with both modes of treatment. At 5 mg/kg per day, hepatic growth hormone receptor expression was increased compared to vehicle-treated animals, by both modes of administration. Pulsatile variant of growth hormone did not alter the plasma insulin-like growth factor-1 concentration, whereas a slight decrease was observed with continuous variant of growth hormone treatment. Neither pulsatile nor continuous treatment affected hepatic insulin-like growth factor-1 mRNA expression. Our findings suggest that pulsatile variant of growth hormone treatment was more effective in stimulating growth but caused marked hyperinsulinemia in mice.

  2. The Effect of a High-Fat Diet on Brain Plasticity, Inflammation and Cognition in Female ApoE4-Knockin and ApoE-Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Carola I F Janssen

    Full Text Available Apolipoprotein E4 (ApoE4, one of three common isoforms of ApoE, is a major risk factor for late-onset Alzheimer disease (AD. ApoE-deficient mice, as well as mice expressing human ApoE4, display impaired learning and memory functions and signs of neurodegeneration. Moreover, ApoE protects against high-fat (HF diet induced neurodegeneration by its role in the maintenance of the integrity of the blood-brain barrier. The influence of a HF diet on the progression of AD-like cognitive and neuropathological changes was assessed in wild-type (WT, human ApoE4 and ApoE-knockout (ApoE-/- mice to evaluate the modulatory role of ApoE in this process. From 12 months of age, female WT, ApoE4, and ApoE-/- mice were fed either a standard or a HF diet (19% butter, 0.5% cholate, 1.25% cholesterol throughout life. At 15 months of age mice performed the Morris water maze, evaluating spatial learning and memory. ApoE-/- showed increased spatial learning compared to WT mice (p = 0.009. HF diet improved spatial learning in WT mice (p = 0.045, but did not affect ApoE4 and ApoE-/- mice. Immunohistochemical analyses of the hippocampus demonstrated increased neuroinflammation (CD68 in the cornu ammonis 1 (CA1 region in ApoE4 (p = 0.001 and in ApoE-/- (p = 0.032 mice on standard diet. HF diet tended to increase CD68 in the CA1 in WT mice (p = 0.052, while it decreased in ApoE4 (p = 0.009, but ApoE-/- remained unaffected. A trend towards increased neurogenesis (DCX was found in both ApoE4 (p = 0.052 and ApoE-/- mice (p = 0.068. In conclusion, these data suggest that HF intake induces different effects in WT mice compared to ApoE4 and ApoE-/- with respect to markers for cognition and neurodegeneration. We propose that HF intake inhibits the compensatory mechanisms of neuroinflammation and neurogenesis in aged female ApoE4 and ApoE-/- mice.

  3. Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice.

    Science.gov (United States)

    Lambert, Talley J; Fernandez, Stephanie M; Frick, Karyn M

    2005-05-01

    Environmental enrichment paradigms that incorporate cognitive stimulation, exercise, and motor learning benefit memory and synaptic plasticity across the rodent lifespan. However, the contribution each individual element of the enriched environment makes to enhancing memory and synaptic plasticity has yet to be delineated. Therefore, the current study tested the effects of three of these elements on memory and synaptic protein levels. Young female C57BL/6 mice were given 3h of daily exposure to either rodent toys (cognitive stimulation) or running wheels (exercise), or daily acrobatic training for 6 weeks prior to and throughout behavioral testing. Controls were group housed, but did not receive enrichment. Spatial working and reference memory were tested in a water-escape motivated radial arm maze. Levels of the presynaptic protein synaptophysin were then measured in frontoparietal cortex, hippocampus, striatum, and cerebellum. Exercise, but not cognitive stimulation or acrobat training, improved spatial working memory relative to controls, despite the fact that both exercise and cognitive stimulation increased synaptophysin levels in the neocortex and hippocampus. These data suggest that exercise alone is sufficient to improve working memory, and that enrichment-induced increases in synaptophysin levels may not be sufficient to improve working memory in young females. Spatial reference memory was unaffected by enrichment. Acrobat training had no effect on memory or synaptophysin levels, suggesting a minimal contribution of motor learning to the mnemonic and neuronal benefits of enrichment. These results provide the first evidence that different elements of the enriched environment have markedly distinct effects on spatial memory and synaptic alterations.

  4. Extracting female inbred lines from commercial sunflower hybrids Extração de linhagens fêmeas a partir de híbridos comerciais de girassol

    Directory of Open Access Journals (Sweden)

    Claudio Guilherme Portela de Carvalho

    2008-09-01

    Full Text Available The objective of this study was to obtain female inbred lines from sunflower (Helianthus annuus hybrids. A methodology based on altering inbred lines carrying the fertility restorer gene (Rf obtained from self pollinating hybrids into inbred lines with normal cytoplasm without the Rf gene was described. Further, derived male-sterile inbred lines were developed. The methodology was successfully used to obtain female inbreds from sunflower commercial hybrids. Although more time and labor consuming than the conventional female inbred line extraction methods, this methodology is advantageous in exploiting superior germplasms (commercial hybrids, which prompted us to develop practical procedures to allow its routinely use.O objetivo desse trabalho foi obter linhagens fêmeas a partir de híbridos de girassol (Helianthus annuus. A metodologia foi descrita com base na alteração de linhagens com o gene restaurador de fertilidade (Rf, obtidas da auto-fecundação dos híbridos, em linhagens com citoplasma normal e sem o gene Rf. Em seguida, linhagens macho-estéreis foram desenvolvidas. Com o uso dessa metodologia foi possível obter linhagens fêmeas, a partir de híbridos comerciais de girassol. Apesar de essa requerer maior tempo e mão-de-obra do que o procedimento usual de obtenção de linhagens fêmeas, essa metodologia tem a vantagem de propiciar a exploração de germoplasmas superiores (híbridos comerciais, o que estimulou a descrição de procedimentos que permitam tornar a metodologia mais rotineira.

  5. Comparison between C-FOS Expression in Male and Female Mice During Morphine Withdrawal in the Presence and Absence of Acute Administration of Matricaria Recutita

    Directory of Open Access Journals (Sweden)

    Kesmati Mahnaz

    2009-06-01

    Full Text Available Background: There are some evidences that indicate there are sexual differences in drug abuse and response to synthetic and herbal drugs. It has been shown that the expression of C-FOS increases in many areas of brain during morphine withdrawal. Concerning the sedative effect of Matricaria recutita extract, the aim of this study was to compare expression of C-FOS transcription factor during morphine withdrawal with and without acute administration of Matricaria recutita on male and female adult mice.Materials and Methods: This study was done at Shahid Chamran University of Ahvaz in 2007 on NMRI mice. Male and female mice were assigned into 8 groups (morphine + saline; morphine + naloxone; morphine + Matricaria recutita + naloxone; and morphine + saline + naloxone. To develop morphine dependency, increasing doses of morphine (20, 40, 80 mg/kg injected subcutaneously for 4 days. Mice received a final morphine injection (40 mg/kg 3hours prior to naloxone (5 mg/kg on the day of testing (day 4. Matricaria recutita extract whit a dose of 30 mg/kg was administered intraperitoneally 5 minutes before naloxone injection. In cellular study, 90minute after naloxone injection, mice were decapitated and their brains were separated, then mRNA was extracted from brain tissue. Using DIG-labeled DNA probe of C-FOS, beta-actin and dot blot technique, expression of C-FOS was analyzed by Zero Dscan software. Statistical evaluation of data was performed using student t-test and ANOVA with one factor followed by Duncan test in SPSS software. P values less than 0.05 were considered significant. Results: The rate of expression of C-FOS increased in male mice but decreased significantly in female mice after naloxone-precipitated abstinence P<0.01(. Matricaria recutita attenuated the rate of expression of C-FOS in male mice but it showed synergistic effect on it in female mice P<0.05(.Conclusion: It seems that the cellular processes involving morphine dependency and

  6. Correlation of brain levels of progesterone and dehydroepiandrosterone with neurological recovery after traumatic brain injury in female mice.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Giatti, Silvia; Caruso, Donatella; Viveros, Maria-Paz; Melcangi, Roberto C; Garcia-Segura, Luis M

    2015-06-01

    Traumatic brain injury (TBI) is an important cause of disability in humans. Neuroactive steroids, such as progesterone and dehydroepiandrosterone (DHEA), are neuroprotective in TBI models. However in order to design potential neuroprotective strategies based on neuroactive steroids it is important to determine whether its brain levels are altered by TBI. In this study we have used a weight-drop model of TBI in young adult female mice to determine the levels of neuroactive steroids in the brain and plasma at 24h, 72 h and 2 weeks after injury. We have also analyzed whether the levels of neuroactive steroids after TBI correlated with the neurological score of the animals. TBI caused neurological deficit detectable at 24 and 72 h, which recovered by 2 weeks after injury. Brain levels of progesterone, tetrahydroprogesterone (THP), isopregnanolone and 17β-estradiol were decreased 24h, 72 h and 2 weeks after TBI. DHEA and brain testosterone levels presented a transient decrease at 24h after lesion. Brain levels of progesterone and DHEA showed a positive correlation with neurological recovery. Plasma analyses showed that progesterone was decreased 72 h after lesion but, in contrast with brain progesterone, its levels did not correlate with neurological deficit. These findings indicate that TBI alters the levels of neuroactive steroids in the brain with independence of its plasma levels and suggest that the pharmacological increase in the brain of the levels of progesterone and DHEA may result in the improvement of neurological recovery after TBI.

  7. Progressive Obesity Alters Ovarian Folliculogenesis with Impacts on Pro-Inflammatory and Steroidogenic Signaling in Female Mice1

    Science.gov (United States)

    Nteeba, Jackson; Ganesan, Shanthi; Keating, Aileen F.

    2014-01-01

    ABSTRACT Diet-induced obesity induces immune cell infiltration and inflammation in peri-ovarian adipose tissue and mRNA expression of inflammatory markers in ovarian tissue. Whether these changes are associated with obesity-related ovarian dysfunction remains unknown. In the present study, qRT-PCR and Western blotting techniques were used to compare mRNA and protein abundance of ovarian immune cell and inflammation markers, along with NF-kappaB and steroidogenic pathway members in normal wild-type non-agouti (a/a; lean) and lethal yellow mice (KK.CG-Ay/J; obese) at 6, 12, 18, or 24 wk of age. Our data revealed that, beginning at 12 wk of age, NF-kappaB inflammatory signaling members were elevated (P obese females. Interestingly obesity had opposing and temporal effects on the steroidogenic enzyme pathway. Obesity decreased (P ovaries at 6 wk of age, potentially indicating early puberty onset. These data demonstrate that obesity alters expression of ovarian inflammatory and steroidogenic pathway genes in ways which could adversely affect ovarian function. PMID:25143355

  8. Biomarkers of aging, life span and spontaneous carcinogenesis in the wild type and HER-2 transgenic FVB/N female mice.

    Science.gov (United States)

    Panchenko, Andrey V; Popovich, Irina G; Trashkov, Alexandr P; Egormin, Peter A; Yurova, Maria N; Tyndyk, Margarita L; Gubareva, Ekaterina A; Artyukin, Ilia N; Vasiliev, Andrey G; Khaitsev, Nikolai V; Zabezhinski, Mark A; Anisimov, Vladimir N

    2016-04-01

    FVB/N wild type and transgenic HER-2/neu FVB/N female mice breed at N.N. Petrov Research Institute of Oncology were under observation until natural death without any special treatment. Age-related dynamics of body weight, food consumption and parameters of carbohydrate and lipid metabolism, level of nitric oxide, malonic dialdehyde, catalase, Cu, Zn-superoxide dismutase, vascular endothelial growth factor were studied in both mice strains. The parameters of life span and tumor pathology were studied as well. Cancer-prone transgenic HER-2/neu mice developed in 100 % multiple mammary adenocarcinomas and died before the age of 1 year. Forty tree percent of long-lived wild type mice survived the age of 2 years and 19 %-800 days. The total tumor incidence in wild type mice was 34 %. The age-associated changes in the level of serum IGF-1, glucose and insulin started much earlier in transgene HER-2/neu mice as compared with wild type FVB/N mice. It was suggested that transgenic HER-2/neu involves in initiation of malignization of mammary epithelial cells but also in acceleration of age-related hormonal and metabolic changes in turn promoting mammary carcinogenesis.

  9. Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Nachman, Michael W

    2013-03-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.

  10. Effects of BACE1 haploinsufficiency on APP processing and Aβ concentrations in male and female 5XFAD Alzheimer mice at different disease stages.

    Science.gov (United States)

    Devi, L; Ohno, M

    2015-10-29

    β-Site APP-cleaving enzyme 1 (BACE1) initiates the generation of amyloid-β (Aβ), thus representing a prime therapeutic target for Alzheimer's disease (AD). Previous work including ours has used BACE1 haploinsufficiency (BACE1(+/-); i.e., 50% reduction) as a therapeutic relevant model to evaluate the efficacy of partial β-secretase inhibition. However, it is unclear whether the extent of Aβ reductions in amyloid precursor protein (APP) transgenic mice with BACE1(+/-) gene ablation may vary with sex or disease progression. Here, we compared the impacts of BACE1 haploinsufficiency on Aβ concentrations and APP processing in 5XFAD Alzheimer mice (1) between males and females and (2) between different stages with moderate and robust Aβ accumulation. First, male and female 5XFAD mice at 6-7 months of age showed equivalent levels of Aβ, BACE1, full-length APP and its metabolites. BACE1 haploinsufficiency significantly lowered soluble Aβ oligomers, total Aβ42 levels and plaque burden in 5XFAD mouse brains irrespective of sex. Furthermore, there was no sex difference in reductions of β-cleavage products of APP (C99 and sAPPβ) found in BACE1(+/-)·5XFAD mice relative to BACE1(+/+)·5XFAD controls. Meanwhile, APP and sAPPα levels in BACE1(+/-)·5XFAD mice were higher than those of 5XFAD controls regardless of sex. Based on these observations, we next combined male and female data to examine the effects of BACE1 haploinsufficiency in 5XFAD mice at 12-14 months of age, as compared with those in 6-7-month-old 5XFAD mice. Oligomeric Aβ and C99 levels were dramatically elevated in older 5XFAD mice. Although the β-metabolites of APP were significantly reduced by BACE1 haploinsufficiency in both age groups, high levels of these toxic amyloidogenic fragments remained in 12-14-month-old BACE1(+/-)·5XFAD mice. The present findings are consistent with our previous behavioral data showing that BACE1 haploinsufficiency rescues memory deficits in 5XFAD mice irrespective of

  11. Suppression subtractive hybridization method for the identification of a new strain of murine hepatitis virus from xenografted SCID mice.

    Science.gov (United States)

    Islam, Mohammed M; Toohey, Brendan; Purcell, Damian F J; Kannourakis, George

    2015-12-01

    During attempts to clone retroviral determinants associated with a mouse model of Langerhans cell histiocytosis (LCH), suppression subtractive hybridization (SSH) was used to identify unique viruses in the liver of severe combined immunodeficiency (SCID) mice transplanted with LCH tissues. A partial genomic sequence of a murine coronavirus was identified, and the whole genome (31428 bp) of the coronavirus was subsequently sequenced using PCR cloning techniques. Nucleotide sequence comparisons revealed that the genome sequence of the new virus was 91-93% identical to those of known murine hepatitis viruses (MHVs). The predicted open reading frame from the nucleotide sequence encoded all known proteins of MHVs. Analysis at the protein level showed that the virus was closely related to the highly virulent MHV-JHM strain. The virus strain was named MHV-MI. No type D retroviruses were found. Degenerate PCR targeting of type D retrovirus and 5'-RACE targeting of other types of retroviruses confirmed the absence of any retroviral association with the LCH xenografted SCID mice.

  12. Higher pain perception and lack of recovery from neuropathic pain in females: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice.

    Science.gov (United States)

    Vacca, Valentina; Marinelli, Sara; Pieroni, Luisa; Urbani, Andrea; Luvisetto, Siro; Pavone, Flaminia

    2014-02-01

    In experimental and clinical pain studies, the sex of subjects was rarely taken into account, even if nociceptive inputs appear to be processed and modulated by partially distinct neural mechanisms in each sex. In this study we analysed, in male and female mice, behavioural and neuronal responses in developing, maintaining, and recovering from neuropathic pain. Experiments were carried out in adult CD1 mice by using Chronic Constriction Injury (CCI) as neuropathic pain model. We investigated the temporal trend of mechanical nociceptive threshold together with functional recovery of the injured paw, and the immunofluorescence staining of proteins associated with nerve injury and repair and with spinal gliosis, 7 and 121days after CCI. A proteomic analysis on proteins extracted from sciatic nerves was also performed. Male mice showed a gradual decrease of CCI-induced allodynia, the complete recovery occurring 81days after the sciatic nerve ligation. On the contrary, in female mice, allodynia was still present 121days after CCI. Sex-dependent differences also resulted from immunofluorescence experiments: in sciatic nerve, the expression of P0 and Neu200 is greater in neuropathic males than in neuropathic females, suggesting faster nerve regeneration. Proteomic analysis confirmed sex-related differences of proteins associated with nerve regenerative processes. In addition, the reactive gliosis induced by CCI at day 7, as revealed by colocalization of glial fibrillary acidic protein (astrocytes) and CD11b (microglia) with phosphorylated p38, disappeared 121 days after CCI in male but not in female mice. These results may have important therapeutic implications for the treatment of neuropathic pain.

  13. The Role of Dorsal Hippocampal Dopamine D1-Type Receptors in Social Learning, Social Interactions, and Food Intake in Male and Female Mice.

    Science.gov (United States)

    Matta, Richard; Tiessen, Angela N; Choleris, Elena

    2017-03-29

    The neurobiological mechanisms underlying social learning (ie, in which an animal's learning is influenced by another) are slowly being unraveled. Previous work with systemic treatments shows that dopamine (DA) D1-type receptors mediate social learning in the social transmission of food preferences (STFP) in mice. This study examines the involvement of one brain region underlying this effect. The ventral tegmental area has dopaminergic projections to many limbic structures, including the hippocampus-a site important for social learning in the STFP in rodents. In this study, adult male and female CD-1 mice received a dorsal hippocampal microinfusion of the D1-like receptor antagonist SCH23390 at 1, 2, 4, or 6 μg/μl 15 min before a 30 min social interaction with a same-sex conspecific, in which mice had the opportunity to learn a socially transmitted food preference. Results show that social learning was blocked in female mice microinfused with 6 μg/μl, and in males infused with 1, 4, or 6 μg/μl of SCH23390. This social learning impairment could not be explained by changes in total food intake, or olfactory discrimination. A detailed analysis of the social interactions also revealed that although SCH23390 did not affect oronasal investigation for either sex, drug treatments affected other social behaviors in a sex-specific manner; there was primarily a reduction in agonistic-related behaviors among males, and social investigatory-related behaviors among females. Thus, this study shows that dorsal hippocampal D1-type receptors mediate social learning and social behaviors in male and female mice.Neuropsychopharmacology advance online publication, 29 March 2017; doi:10.1038/npp.2017.43.

  14. Superovulation does not affect the endocrine activity nor increase susceptibility to carcinogenesis of uterine and mammary glands of female offspring in mice.

    Science.gov (United States)

    Gao, Zong; Zhang, Gang; Yu, Jing; Lu, Xi-Lan; Li, Jun-Tao; Zhang, Jian-Min

    2014-09-01

    To evaluate the dual effects of superovulation on the endocrine activity and susceptibility to carcinogenesis of uterine and mammary glands of female offspring in mice The mice were superovaluted. The relative uterine weight, ERα protein expression, and endocrine activity of female offspring (F1 generation and F2 generation) were measured. Furthermore, proliferative lesion of uterine and mammary glands of female offspring (F1 generation and F2 generation) was assessed by histopathologic examinations. There were no significant differences in relative uterine weight, ERα protein expression, incidence of proliferative lesion in mammary glands, and incidence of atypical hyperplasia, adenocarcinoma, and squamous metaplasia in uterine among the offspring (F1 generation and F2 generation) in each group. Likewise, there were no significant intergroup differences in the serum levels of sex related hormones. No significant alterations were found in the endocrine activity and susceptibility to carcinogenesis of uterine and mammary glands of female offspring in mice produced by superovaluted oocytes compared with those of naturally conceived offspring.

  15. Perturbation in protein expression of the sterile salmonid hybrids between female brook trout Salvelinus fontinalis and male masu salmon Oncorhynchus masou during early spermatogenesis.

    Science.gov (United States)

    Zheng, Liang; Senda, Yoshie; Abe, Syuiti

    2013-05-01

    Most males and females of intergeneric hybrid (BM) between female brook trout (Bt) Salvelinus fontinalis and male masu salmon (Ms) Oncorhynchus masou had undeveloped gonads, with abnormal germ cell development shown by histological examination. To understand the cause of this hybrid sterility, expression profiles of testicular proteins in the BM and parental species were examined with 2-DE coupled with MALDI-TOF/TOF MS. Compared with the parental species, more than 60% of differentially expressed protein spots were down-regulated in BM. A total of 16 up-regulated and 48 down-regulated proteins were identified in BM. Up-regulated were transferrin and other somatic cell-predominant proteins, whereas down-regulated were some germ cell-specific proteins such as DEAD box RNA helicase Vasa. Other pronouncedly down-regulated proteins included tubulins and heat shock proteins that are supposed to have roles in spermatogenesis. The present findings suggest direct association of the observed perturbation in protein expression with the failure of spermatogenesis and the sterility in the examined salmonid hybrids.

  16. Infertility in Female Mice with a Gain-of-Function Mutation in the Luteinizing Hormone Receptor Is Due to Irregular Estrous Cyclicity, Anovulation, Hormonal Alterations, and Polycystic Ovaries.

    Science.gov (United States)

    Hai, Lan; McGee, Stacey R; Rabideau, Amanda C; Paquet, Marilène; Narayan, Prema

    2015-07-01

    The luteinizing hormone receptor, LHCGR, is essential for fertility in males and females, and genetic mutations in the receptor have been identified that result in developmental and reproductive defects. We have previously generated and characterized a mouse model (KiLHR(D582G)) for familial male-limited precocious puberty caused by an activating mutation in the receptor. We demonstrated that the phenotype of the KiLHR(D582G) male mice is an accurate phenocopy of male patients with activating LHCGR mutations. In this study, we observed that unlike women with activating LHCGR mutations who are normal, female KiLHR(D582G) mice are infertile. Mice exhibit irregular estrous cyclicity, anovulation, and precocious puberty. A temporal study from 2-24 wk of age indicated elevated levels of progesterone, androstenedione, testosterone, and estradiol and upregulation of several steroidogenic enzyme genes. Ovaries of KiLHR(D582G) mice exhibited significant pathology with the development of large hemorrhagic cysts as early as 3 wk of age, extensive stromal cell hyperplasia and hypertrophy with luteinization, numerous atretic follicles, and granulosa cell tumors. Ovulation could not be rescued by the addition of exogenous gonadotropins. The body weights of the KiLHR(D582G) mice were higher than wild-type counterparts, but there was no increase in the body fat composition or metabolic abnormalities such as impaired glucose tolerance and insulin resistance. These studies demonstrate that activating LHCGR mutations do not produce the same phenotype in female mice as in humans and clearly illustrate species differences in the expression and regulation of LHCGR in the ovary, but not in the testis. © 2015 by the Society for the Study of Reproduction, Inc.

  17. High-fat-diet-induced weight gain ameliorates bone loss without exacerbating AβPP processing and cognition in female APP/PS1 mice

    Directory of Open Access Journals (Sweden)

    Yunhua ePeng

    2014-08-01

    Full Text Available Osteoporosis is negatively correlated with body mass, whereas both osteoporosis and weight loss occur at higher incidence during the progression of Alzheimer’s disease (AD than the age-matched non-dementia individuals. Given that there is no evidence that overweight associated with AD-type cognitive dysfunction, we hypothesized that moderate weight gain might have a protective effect on the bone loss in AD without exacerbating cognitive dysfunction. In the present study, feeding a high-fat-diet (HFD, 45% calorie from fat to female APP/PS1 transgenic mice, an AD animal model, induced weight gain. The bone mineral density, microarchitecture, and biomechanical properties of the femurs were then evaluated. The results showed that the middle-aged female APP/PS1 transgenic mice were susceptible to osteoporosis of the femoral bones and that weight gain significantly enhanced bone mass and mechanical properties. Notably, HFD was not detrimental to brain insulin signaling and AβPP processing, as well as to exploration ability and working, learning and memory performance of the transgenic mice measured by T maze and water maze, compared with the mice fed a normal fat diet (10% calorie from fat. In addition, the circulating levels of leptin but not estradiol were remarkably elevated in HFD-treated mice. These results suggest that a body weight gain induced by the HFD feeding regimen significantly improved bone mass in female APP/PS1 mice with no detriments to exploration ability and spatial memory, most likely via the action of elevated circulating leptin.

  18. Effects of in Utero Exposure to Arsenic during the Second Half of Gestation on Reproductive End Points and Metabolic Parameters in Female CD-1 Mice

    Science.gov (United States)

    Rodriguez, Karina F.; Ungewitter, Erica K.; Crespo-Mejias, Yasmin; Liu, Chang; Nicol, Barbara; Kissling, Grace E.; Yao, Humphrey Hung-Chang

    2015-01-01

    Background Mice exposed to high levels of arsenic in utero have increased susceptibility to tumors such as hepatic and pulmonary carcinomas when they reach adulthood. However, the effects of in utero arsenic exposure on general physiological functions such as reproduction and metabolism remain unclear. Objectives We evaluated the effects of in utero exposure to inorganic arsenic at the U.S. Environmental Protection Agency (EPA) drinking water standard (10 ppb) and at tumor-inducing levels (42.5 ppm) on reproductive end points and metabolic parameters when the exposed females reached adulthood. Methods Pregnant CD-1 mice were exposed to sodium arsenite [none (control), 10 ppb, or 42.5 ppm] in drinking water from gestational day 10 to birth, the window of organ formation. At birth, exposed offspring were fostered to unexposed dams. We examined reproductive end points (age at vaginal opening, reproductive hormone levels, estrous cyclicity, and fertility) and metabolic parameters (body weight changes, hormone levels, body fat content, and glucose tolerance) in the exposed females when they reached adulthood. Results Arsenic-exposed females (10 ppb and 42.5 ppm) exhibited early onset of vaginal opening. Fertility was not affected when females were exposed to the 10-ppb dose. However, the number of litters per female was decreased in females exposed to 42.5 ppm of arsenic in utero. In both 10-ppb and 42.5-ppm groups, arsenic-exposed females had significantly greater body weight gain, body fat content, and glucose intolerance. Conclusion Our findings revealed unexpected effects of in utero exposure to arsenic: exposure to both a human-relevant low dose and a tumor-inducing level led to early onset of vaginal opening and to obesity in female CD-1 mice. Citation Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, Yao HH. 2016. Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic

  19. Parentage Analysis of Dongfang No.2, a Hybrid of a Female Gametophyte Clone of Laminariajaponica (Laminariales, Phaeophyta) and a Male Clone of L. longissima

    Institute of Scientific and Technical Information of China (English)

    SHI Yuanyuan; YANG Guanpin; LIAO Meijie; LI Xiaojie; CONG Yizhou; QU Shancun; WANG Tongyong

    2008-01-01

    The cultivation of the first filial generation of monoploid gametophyte clones of different Laminaria species (hybrid Laminaria) is an effective way of utilizing heterozygous vigor (heterosis). A female gametophyte clone of L. japonica and a male gametophyte clone of L. longissima were hybridized, generating Dongfang No.2 hybrid Laminaria. The parentage of this hybrid Laminaria was determined using AFLP of total DNA, SNP of the ITS region of ribosomal RNA transcription unit and microsatellite DNA variation at two loci. In addition to 167 AFLP bands shared by Dongfang No.2, L. japonica and L. longissima, Dongfang No.2 hybrid Laminaria shared another 70 and 55 bands with L. japonica and L. longissima, respectively, which were obviously more than 11 bands shared by L. japonica and L. longissima. Dongfang No.2 held both 'T' and 'C' at position 847 of the ITS region, while 'T' at this position was specific for L. japonica and 'C' for L. longissima, respectively. Dongfang No.2 also held the mierosatellite DNA alleles of two parents together at two microsatellite DNA marker loci. These observations dearly proved that Dongfang No.2 is a true hybrid of L. japonica and L. longissiuma. Unfortunately, the origin of the chloroplast of Dongfang No.2 was not determined based on the variation of RuBisCo spacer. More sequence variants of both ITS region and RuBisCo spacer were identified in Dongfang No.2 and most of them did not exist in either L. japonica or L. longissima. The unexpected variants may be due to the mutation of ga-metophyte clones occurring during their vegetative amplification.

  20. Three-generation experiment showed female C57BL/6J mice drink drainage canal water containing low level of TCDD-like activity causing high pup mortality.

    Science.gov (United States)

    Huang, Li; Huang, Ren; Ran, Xin-Ru; Liu, Han-Ying; Zhang, Yu; Dai, Li-Jun; Li, Bing

    2011-01-01

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated biphenyls (PCBs) and similar compounds are toxic to animals and humans. Based on a yeast reporter system, AhR-activating ligands similar in concentration to 2 ng/l of TCDD were detected in two canal waters in Guangzhou, China. In this study, a three-generation experiment was conducted to assess the reproductive and developmental risks associated with these waters in C57BL/6J female mice, including female reproduction, pup indices, reproductive hormone levels, and levels of AhR, ARNT, and CYP1A2 in the uterus. Similar reproductive toxic effects were produced in the offspring of mice that drank the canal water as would occur if they drank 2 ng/l/day TCDD. The major reproductive indices that were affected included mating time and gestation length over all the generations. A striking finding is the TCDD (2 ng/l) and the water samples significantly reduced Day 4 pup survival rates in the F2 and F3. Both TCDD exposure and drinking canal water decreased estradiol-17β (E2) levels in the multiparous females and decreased follicle-stimulating hormone (FSH), luteinizing hormone (LH) and E2 levels in the virgin females. Immunochemical staining revealed that the AhR and CYP1A2 positive signals were enhanced, and the ARNT positive signal was weakened in the uteri of mice drinking water with TCDD (2 ng/l) and the canal water samples. These results imply that the canal water contains AhR ligands that could induce similar toxic effects as do low levels of TCDD. Exposure to these contaminants can significantly impair the reproductive health of female mice. Considering this canals are open directly to Pearl River, whether these effects could be caused in human reproduction and development warrants further study.

  1. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities

    Directory of Open Access Journals (Sweden)

    Jakub Sikora

    2016-01-01

    Full Text Available Christianson syndrome (CS is an X-linked neurodevelopmental and neurological disorder characterized in males by core symptoms that include non-verbal status, intellectual disability, epilepsy, truncal ataxia, postnatal microcephaly and hyperkinesis. CS is caused by mutations in the SLC9A6 gene, which encodes a multipass transmembrane sodium (potassium-hydrogen exchanger 6 (NHE6 protein, functional in early recycling endosomes. The extent and variability of the CS phenotype in female heterozygotes, who presumably express the wild-type and mutant SLC9A6 alleles mosaically as a result of X-chromosome inactivation (XCI, have not yet been systematically characterized. Slc9a6 knockout mice (Slc9a6 KO were generated by insertion of the bacterial lacZ/β-galactosidase (β-Gal reporter into exon 6 of the X-linked gene. Mutant Slc9a6 KO male mice have been shown to develop late endosomal/lysosomal dysfunction associated with glycolipid accumulation in selected neuronal populations and patterned degeneration of Purkinje cells (PCs. In heterozygous female Slc9a6 KO mice, β-Gal serves as a transcriptional/XCI reporter and thus facilitates testing of effects of mosaic expression of the mutant allele on penetrance of the abnormal phenotype. Using β-Gal, we demonstrated mosaic expression of the mutant Slc9a6 allele and mosaically distributed lysosomal glycolipid accumulation and PC pathology in the brains of heterozygous Slc9a6 KO female mice. At the behavioral level, we showed that heterozygous female mice suffer from visuospatial memory and motor coordination deficits similar to but less severe than those observed in X-chromosome hemizygous mutant males. Our studies in heterozygous Slc9a6 KO female mice provide important clues for understanding the likely phenotypic range of Christianson syndrome among females heterozygous for SLC9A6 mutations and might improve diagnostic practice and genetic counseling by helping to characterize this presumably

  2. Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia.

    Science.gov (United States)

    Walker, Michael D; Mason, Georgia

    2011-10-10

    Environmental enrichment typically improves learning, increases cortical thickness and hippocampal neurogenesis, reduces anxiety, and reduces stereotypic behaviour, yet sometimes such effects are absent or even reversed. We investigated whether neophobia governs how mice interact with enrichments, since this could explain why enrichments vary in impact. Female C57BL/6 mice, previously screened for neophobia, had free access to enriched cages connected to their standard cages. The relative consumption of food in each cage revealed approximate dwelling times; the use of two enrichments was also measured. High neophobia significantly predicted reduced use of the enriched cage. Thus even within this homogeneous population, provided with identical enrichments, differential neophobia predicted differential enrichment use.

  3. Reprint of: Female C57BL/6 mice show consistent individual differences in spontaneous interaction with environmental enrichment that are predicted by neophobia.

    Science.gov (United States)

    Walker, Michael D; Mason, Georgia

    2012-02-14

    Environmental enrichment typically improves learning, increases cortical thickness and hippocampal neurogenesis, reduces anxiety, and reduces stereotypic behaviour, yet sometimes such effects are absent or even reversed. We investigated whether neophobia governs how mice interact with enrichments, since this could explain why enrichments vary in impact. Female C57BL/6 mice, previously screened for neophobia, had free access to enriched cages connected to their standard cages. The relative consumption of food in each cage revealed approximate dwelling times; the use of two enrichments was also measured. High neophobia significantly predicted reduced use of the enriched cage. Thus even within this homogeneous population, provided with identical enrichments, differential neophobia predicted differential enrichment use.

  4. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation.

    Science.gov (United States)

    Eggan, K; Akutsu, H; Loring, J; Jackson-Grusby, L; Klemm, M; Rideout, W M; Yanagimachi, R; Jaenisch, R

    2001-05-22

    To assess whether heterozygosity of the donor cell genome was a general parameter crucial for long-term survival of cloned animals, we tested the ability of embryonic stem (ES) cells with either an inbred or F(1) genetic background to generate cloned mice by nuclear transfer. Most clones derived from five F(1) ES cell lines survived to adulthood. In contrast, clones from three inbred ES cell lines invariably died shortly after birth due to respiratory failure. Comparison of mice derived from nuclear cloning, in which a complete blastocyst is derived from a single ES cell, and tetraploid blastocyst complementation, in which only the inner cell mass is formed from a few injected ES cells, allows us to determine which phenotypes depend on the technique or on the characteristics of the ES cell line. Neonatal lethality also has been reported in mice entirely derived from inbred ES cells that had been injected into tetraploid blastocysts (ES cell-tetraploids). Like inbred clones, ES cell-tetraploid pups derived from inbred ES cell lines died shortly after delivery with signs of respiratory distress. In contrast, most ES cell-tetraploid neonates, derived from six F(1) ES cell lines, developed into fertile adults. Cloned pups obtained from both inbred and F(1) ES cell nuclei frequently displayed increased placental and birth weights whereas ES cell-tetraploid pups were of normal weight. The potency of F(1) ES cells to generate live, fertile adults was not lost after either long-term in vitro culture or serial gene targeting events. We conclude that genetic heterozygosity is a crucial parameter for postnatal survival of mice that are entirely derived from ES cells by either nuclear cloning or tetraploid embryo complementation. In addition, our results demonstrate that tetraploid embryo complementation using F(1) ES cells represents a simple, efficient procedure for deriving animals with complex genetic alterations without the need for a chimeric intermediate.

  5. Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice.

    Science.gov (United States)

    Zeng, Yu-Xiang; Hu, Chao-Yue; Lu, Yong-Gen; Li, Jin-Quan; Liu, Xiang-Dong

    2009-01-01

    Embryo sac abortion is one of the major reasons for sterility in indica/japonica hybrids in rice. To clarify the causal mechanism of embryo sac abortion, we studied the female gametophyte development in two indica/japonica hybrids via an eosin B staining procedure for embryo sac scanning using confocal laser scanning microscope. Different types of abnormalities occurred during megasporogenesis and megagametogenesis were demonstrated. The earliest abnormality was observed in the megasporocyte. A lot of the chalazal-most megaspores were degenerated before the mono-nucleate embryo sac stage. Disordered positioning of nucleus and abnormal nucellus tissue were characteristics of the abnormal female gametes from the mono-nucleate to four-nucleate embryo sac stages. The abnormalities that occurred from the early stage of the eight-nucleate embryo sac development to the mature embryo sac stage were characterized by smaller sizes and wrinkled antipodals. Asynchronous nuclear migration, abnormal positioning of nucleus, and degeneration of egg apparatus were also found at the eight-nucleate embryo sac stage. The abnormalities that occurred during female gametophyte development resulted in five major types of abnormal embryo sacs. These abnormal embryo sacs led to abnormal fertilization. Hand pollination using normal pollens on the spikelets during anthesis showed that normal pollens could not exclude the effect of abnormal embryo sac on seed setting.

  6. Abnormalities Occurring during Female Gametophyte Development Result in the Diversity of Abnormal Embryo Sacs and Leads to Abnormal Fertilization in indicaljaponica Hybrids in Rice

    Institute of Scientific and Technical Information of China (English)

    Yu-Xiang Zeng; Chao-Yue Hu; Yong-Gen Lu; Jin-Quan Li; Xiang-Dong Liu

    2009-01-01

    Embryo sac abortion is one of the major masons for sterility in indicaljaponica hybrids In rice. To clarify the causal mechanism of embryo sac abortion, we studied the female gametophyte development in two indicaljaponica hybrids via an eosin B staining procedure for embryo sac scanning using confocal laser scanning microscope. Different types of abnormalities occurred during megasporogenesis and megagamatogenesis were demonstrated. The earliest abnormality was observed in the megasporocyte. A lot of the chalazal-most megaspores were degenerated before the mono-nucleate embryo sac stage. Disordered positioning of nucleus and abnormal nucallus tissue were characteristics of the abnormal female gametes from the mono-nucleate to four-nucleate embryo sac stages. The abnormalities that occurred from the early stage of the eight-nucleate embryo sac development to the mature embryo sac stage were characterized by smaller sizes and wrinkled antipodals. Asynchronous nuclear migration, abnormal positioning of nucleus, and degeneration of egg apparatus were also found at the eight-nucleate embryo sac stage. The abnormalities that occurred during female gametophyte development resulted in five major types of abnormal embryo sacs. These abnormal embryo sacs led to abnormal fertilization. Hand pollination using normal pollens on the spikelets during anthesis showed that normal pollens could not exclude the effect of abnormal embryo sac on seed setting.

  7. Early social enrichment provided by communal nest increases resilience to depression-like behavior more in female than in male mice.

    Science.gov (United States)

    D'Andrea, Ivana; Gracci, Fiorenza; Alleva, Enrico; Branchi, Igor

    2010-12-20

    Early experiences produce persistent changes in behavior and brain function. Being reared in a communal nest (CN), consisting of a single nest where three mouse mothers keep their pups together and share care-giving behavior from birth to weaning, provides an highly stimulating social environment to the developing pup since both mother-offspring and peer-to-peer interactions are markedly increased. Here we show that being reared in a CN affects adult behavior of CD-1 mice in a gender-dependent fashion, with reduced depression-like responses in females and increased anxiety-like behavior in males. In particular, CN females showed higher sucrose preference at baseline condition, drinking more sweet solution compared to female mice reared in a standard laboratory condition (SN). In the isolation test, both SN and CN females showed a reduction in sucrose preference after exposure to isolation stress. However, after 24h, only CN females significantly recovered. Finally, in the forced swim test, compared to SN, CN females spent longer time floating, a behavioral response that in the CN model has been inversely associated with display of endophenotypes of depression. With regard to the emotional response, CN males displayed an increased anxiety-like behavior in comparison to SN, spending less time in the open arms and displaying reduced head-dippings in the elevated plus-maze test. No difference was found in females. Overall, our findings show that gender and early experiences interact in modulating adult behavior. In particular, we show that early experiences modified developmental trajectories shaping adult endophenotypes of depression more markedly in females than in males.

  8. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice

    Directory of Open Access Journals (Sweden)

    Dezun Ma

    2015-08-01

    Full Text Available Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y. This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS, C313Y, and wild-type porcine myostatin propeptide (ppMS, respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  9. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  10. Differential expression of brain immune genes and schizophrenia-related behavior in C57BL/6N and DBA/2J female mice.

    Science.gov (United States)

    Ma, Li; Kulesskaya, Natalia; Võikar, Vootele; Tian, Li

    2015-03-30

    Mounting evidence suggests the association of immune genes with complex neuropsychiatric diseases, such as schizophrenia. However, immune gene expression in the brain and their involvement in schizophrenia-related behavior in animal models have not been well studied so far. We analyzed the social (resident-intruder) and sensorimotor gating (pre-pulse inhibition (PPI) of acoustic startle) behaviors, and expression profiles of several brain immune genes in adult C57BL/6N and DBA/2J female mice. Compared to C57BL/6N mice, DBA/2J mice exhibited less social interaction in the resident-intruder test and reduced pre-pulse inhibition. The mRNA levels of Il1b and Il6 genes were significantly higher in the cortex and hypothalamus, while the mRNA level of C1qb was lower in the cortex, hippocampus and hypothalamus of DBA/2J mice compared to C57BL/6N mice. Furthermore, Tnfsf13b was up-regulated in the cortex and hippocampus, and so did Cd47 in the hippocampus, while Cx3cl1 was down-regulated in the cortex of DBA/2J mice. Our study demonstrates the differential expression of several immune genes in C57BL/6N and DBA/2J strains and more importantly provides clues on their potential importance in regulating schizophrenia-related endophenotypes in animal models.

  11. Malarial Infection of Female BWF1 Lupus Mice Alters the Redox State in Kidney and Liver Tissues and Confers Protection against Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Saleh Al-Quraishy

    2013-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototypic autoimmune disease characterized by an imbalanced redox state and increased apoptosis. Tropical infections, particularly malaria, may confer protection against SLE. Oxidative stress is a hallmark of SLE. We have measured changes in the levels of nitric oxide (NO, hydrogen peroxide (H2O2, malondialdehyde (MDA, and reduced glutathione (GSH in both kidney and liver tissues of female BWF1 lupus mice, an experimental model of SLE, after infection with either live or gamma-irradiated malaria. We observed a decrease in NO, H2O2, and MDA levels in kidney tissues after infection of lupus mice with live malaria. Similarly, the levels of NO and H2O2 were significantly decreased in the liver tissues of lupus mice after infection with live malaria. Conversely, GSH levels were obviously increased in both kidney and liver tissues after infection of lupus mice with either live or gamma-irradiated malaria. Liver and kidney functions were significantly altered after infection of lupus mice with live malaria. We further investigated the ultrastructural changes and detected the number of apoptotic cells in kidney and liver tissues in situ by electron microscopy and TUNEL assays. Our data reveal that infection of lupus mice with malaria confers protection against lupus nephritis.

  12. Estrogenicity of food-associated estrogenic compounds in the fetuses of female transgenic mice upon oral and IP maternal exposure.

    Science.gov (United States)

    Ter Veld, Marcel G R; Zawadzka, E; Rietjens, Ivonne M C M; Murk, Albertinka J

    2009-04-01

    The present study investigated to what extent seven food-associated in vitro estrogenic compounds can induce estrogenic effects in the fetuses of pregnant female mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc-induction was determined either 8h after maternal dosing with a single intraperitoneal (IP) dose or 24h after the last of a series of 8 daily oral dosages. Three known estrogens, 17beta-estradiol (E(2)), 17 alpha-ethynylestradiol (EE) and 17beta-estradiol 3,17-dipropionate (EP) were used as positive controls at 1mg/kgbw and DMSO as solvent control. The food-associated estrogenic compounds tested were: bisphenol A (BPA), nonylphenol (NP) both at 50mg/kgbw, dichlorodiphenyldichloroethylene (p,p'-DDE) at 50mg/kgbw, quercetin at 16.6 mg/kgbw, and di-isoheptyl phthalate (DIHP), di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) all at 100mg/kgbw. Exposure to E(2), EE and EP resulted in significant luc inductions upon both oral and/or IP dosing in a variety of tissues including liver, tibia and femurs, and upon IP dosing also in fetuses. BPA, NP, DEHA, DEHP, DIHP, DDE and quercetin were unable to significantly induce luc activity in fetuses. However, after maternal oral exposure during gestation to NP, BPA and DIHP placental luc activity was significantly lowered. The results indicate that at the current levels of exposure to food-associated estrogenic compounds, estrogenic effects to the fetus are not expected. The significant luc reduction in the placenta, should be further studied for its significance for fetal development and relevance for the human situation.

  13. Pharmacokinetics of bisphenol A in serum and adipose tissue following intravenous administration to adult female CD-1 mice.

    Science.gov (United States)

    Doerge, Daniel R; Twaddle, Nathan C; Vanlandingham, Michelle; Fisher, Jeffrey W

    2012-06-01

    Bisphenol A (BPA) is an important industrial chemical used as the monomer for polycarbonate plastic and in epoxy resins for use in food can liners. Worldwide biomonitoring studies consistently find high prevalence of BPA conjugates in urine consistent with pervasive exposure at levels typically below 1 μg/kg bw/day. The current study used LC/MS/MS to measure serum pharmacokinetics of unconjugated (active) and conjugated (inactive) BPA in adult female CD-1 mice following intravenous (IV) injection, which produces higher serum levels by circumventing the processes of absorption from the GI tract and presystemic metabolism that occur after oral administration. Deuterated BPA (100 μg/kg bw) was used to avoid interference by background contamination from trace amounts of native BPA. Additionally, the pharmacokinetics of unconjugated BPA were determined in adipose tissue, a proposed site of action and "depot" for BPA. After IV injection, unconjugated BPA rapidly distributed out of the circulation (t(1/2)=0.2 h) and terminal elimination also proceeded rapidly (t(1/2)=0.8 h). Consistent with the degree of aqueous solubility, lipid/water solubility ratio, and partitioning from blood into adipose tissue in vivo, the levels of unconjugated BPA in mouse adipose tissue rapidly reached a maximal level (0.25 h) that did not exceed the serum maximum at the initial sampling time (0.08 h). Terminal elimination of unconjugated BPA from adipose tissue (t(1/2)=7.0 h) was similar to that for conjugated BPA in serum (t(1/2)=6.6 h) and persistent nature of BPA, particularly when compared with slowly metabolized lipophilic organic pollutants like halogenated dibenzodioxins.

  14. Oral toxicity of isotretinoin, misoprostol, methotrexate, mifepristone and levonorgestrel as pregnancy category X medications in female mice.

    Science.gov (United States)

    Kim, Seong-Kwan; Shin, Soo-Jeong; Yoo, Yohan; Kim, Na-Hyun; Kim, Dong-Soon; Zhang, Dan; Park, Jin-A; Yi, Hee; Kim, Jin-Suk; Shin, Ho-Chul

    2015-03-01

    An oral toxicity study of several pregnancy category X drugs was performed in female ICR mice. The drugs were administered orally once daily for 3 days at doses of 1, 10 and 100 μg/kg for isotretinoin; 6.7, 67 and 670 μg/kg for misoprostol; 83, 830 and 8,300 μg/kg for methotrexate; 3.3, 33 and 330 μg/kg for mifepristone; and 25, 250 and 2,500 μg/kg for levonorgestrel. During the test period, clinical signs, mortality, body weight, hematology, serum biochemistry and necropsy findings were examined. Following administration of methotrexate at 8,300 μg/kg, a number of animals exhibited decreased spontaneous activity, and one animal died. In the hematological analysis, compared with those treated with the control, the animals treated with the drugs exhibited similar significant decreases in the number of granulocytes and granulocyte differentiation, and increases in lymphocyte differentiation. In the serum biochemical analysis, animals receiving high doses of the five drugs demonstrated significant changes in uric acid, glucose, alkaline phosphatase, total bilirubin, lipase, total cholesterol and calcium. At necropsy, intestinal redness was frequently observed in animals that received the high dose of methotrexate. Uterus enlargement and ovary dropsy were also detected in the groups receiving mifepristone and levonorgestrel. Despite the short-term exposure, these drugs exhibited significant side effects, including white blood cell toxicity, in the mouse model. Category X drugs can be traded illegally via the internet for the purpose of early pregnancy termination. Thus, illegal abuse of the drugs should be further discouraged to protect mothers.

  15. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Science.gov (United States)

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Reduced energy intake and moderate exercise reduce mammary tumor incidence in virgin female BALB/c mice treated with 7,12-dimethylbenz(a)anthracene

    Science.gov (United States)

    Lane, Helen W.; Teer, Patricia; Keith, Robert E.; White, Marguerite T.; Strahan, Susan

    1991-01-01

    The concurrent effects of diet (standard AIN-76A, restricted AIN-76A and high-fat diet) and moderate rotating-drum treadmill exercise on the incidence of 7,12-dimethylbenz(a)anthracene-induced mammary carcinomas in virgin female BALB/cMed mice free of murine mammary tumor virus are evaluated. Analyses show that, although energy intake was related to mammary tumor incidence, neither body weight nor dietary fat predicted tumor incidence.

  17. Effects of the Female Estrous Cycle on the Sexual Behaviors and Ultrasonic Vocalizations of Male C57BL/6 and Autistic BTBR T+ tf/J Mice

    OpenAIRE

    Kim, Hyopil; Son, Junehee; Yoo, Hyoungseob; Kim, Hakyoo; Oh, Jihae; Han, Daehee; Hwang, Yoon; Kaang, Bong-Kiun

    2016-01-01

    A primary characteristic of autism, which is a neurodevelopmental disorder, is impaired social interaction and communication. Furthermore, patients with autism frequently show abnormal social recognition. In mouse models of autism, social recognition is usually assessed by examining same-sex social behavior using various tests, such as the three-chamber test. However, no studies have examined the ability of male mice with autism to recognize the estrous cycle of female partners. In this study...

  18. Hormonal status modifies renin-angiotensin system-regulating aminopeptidases and vasopressin-degrading activity in the hypothalamus-pituitary-adrenal axis of female mice.

    Science.gov (United States)

    García, María Jesús; Martínez-Martos, José Manuel; Mayas, María Dolores; Carrera, María Pilar; De la Chica, Susana; Cortés, Pedro; Ramírez-Expósito, María Jesús

    2008-07-01

    The hypothalamus-pituitary-adrenal axis (HPA) participates in the maintenance of cardiovascular functions and in the control of blood pressure. By other hand, it is known that blood pressure regulation and HPA activity are affected by sex hormones. The aim of the present work is to analyze the influence of estradiol and progesterone on renin-angiotensin system (RAS)-regulating aminopeptidase A, aminopeptidase B and aminopeptidase N activities and vasopressin-degrading activity in the HPA axis of ovariectomized mice and ovariectomized mice treated subscutaneously with different doses of estradiol and progesterone. Our data suggest that in female mice, estradiol and progesterone influence RAS-regulating and vasopressin-degrading activities at different levels of the HPA axis.

  19. Adult female wildtype, but not oestrogen receptor beta knockout, mice have decreased depression-like behaviour during pro-oestrus and following administration of oestradiol or diarylpropionitrile.

    Science.gov (United States)

    Walf, A A; Koonce, C J; Frye, C A

    2009-06-01

    Studies in people and animal models suggest that depression is influenced by natural fluctuations in the levels of 17beta-oestradiol (E(2)), as well as administration of E(2)-based therapies, such as selective oestrogen receptor modulators (SERMs). Elucidating the effects and mechanisms of E(2) is important to improve future E(2)-based therapeutics. An important question is whether effects of E(2) or SERMs for mood regulation act at the alpha or beta isoform of the oestrogen receptor (ER) because some of the unwanted trophic effects of E(2)-based therapies may involve actions at ERalpha, rather than ERbeta. In the present study, whether there are sex differences in depression-like behaviour of adult mice (experiment 1), and the effects of natural fluctuations in E(2) (experiment 2), or administration of E(2) or a SERM that has higher affinity for ERbeta than for ERalpha (diarylpropionitrile; DPN) to ovariectomised (experiment 3) wildtype and ERbeta knockout (betaERKO) mice were investigated. Results of this study supported our hypotheses that: there would be sex differences favouring males for depression-like behaviour and endogenous increases in, or exogenous administration of, E(2) or administration of an ERbeta SERM would decrease depression-like behaviour in wildtype, but not betaERKO, mice. In experiment 1, adult male mice spent less time immobile in the forced swim test (i.e., showed less depression-like behaviour) compared with female mice. In experiment 2, pro-oestrous (higher circulating E(2) levels), compared with dioestrous (lower circulating E(2) levels), mice had reduced immobility in the forced swim test; this effect was not observed in betaERKO mice. In experiment 3, administration of E(2) or DPN to ovariectomised wildtype, but not betaERKO, mice decreased immobility compared with vehicle administration, these data suggest that ERbeta may be required for some of the anti-depressant-like effects of E(2).

  20. [Histometry of the sublingual gland in male and female mice (Mus musculus) infected with the RAL strain of the Chagas parasite, Trypanosoma cruzi].

    Science.gov (United States)

    de Albuquerque, Sérgio; Lopes, Ruberval Armando; Sala, Miguel Angel; Abrahão, Ana Amélia Carraro; Rosa, Domingues Ribeiro

    2008-06-01

    The aim of this work was to analyze histologically and histometrically the sublingual gland of mice infected with the RAL strain of T. cruzi, according to the sex. Swiss mice (Mus musculus) were inoculated with 2 x 10(4) blood trypomastigotes of the RAL strain of T. cruzi. In the peak of the parasitemia (12th day) the mice were sacrificed, and the sublingual glands were fixed in ALFAC. HE-stained histological sections were evaluated histometrically. The parasitemia was higher in females. Histopatologically, acini of the infected animals were smaller, with scanty production of secretion, and smaller striated ducts. The nuclei of the demilunes were smaller and showed amastigote nests in the cytoplasm. Karyometrically, nuclei of the acini, demilunes and striated ducts were smaller in the infected mice. Stereologically, it was observed that relative volumes of acini and ducts were smaller and, inversely, relative volumen were greater for the conjunctive tissue in the infected males. The surface densities of acini and ducts were bigger and the diameter and thickness of the wall were smaller in this group. On the other hand, relative volume of acini was smaller and those of the ducts and conjunctive tissue were bigger in the infected females. The diameter and thickness of the wall of acini were smaller, and those of the striated ducts were bigger in this group. The RAL strain of T. cruzi caused general atrophy in the sublingual gland, with numerous nests of parasites in the glandular parenchyma.

  1. Recombinant IL-7/HGFβ hybrid cytokine enhances T cell recovery in mice following allogeneic bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Laijun Lai

    Full Text Available T cell immunodeficiency is a major complication of bone marrow (BM transplantation (BMT. Therefore, approaches to enhance T cell reconstitution after BMT are required. We have purified a hybrid cytokine, consisting of IL-7 and the β-chain of hepatocyte growth factor (HGFβ (IL-7/HGFβ, from a unique long-term BM culture system. We have cloned and expressed the IL-7/HGFβ gene in which the IL-7 and HGFβ genes are connected by a flexible linker to generate rIL-7/HGFβ protein. Here, we show that rIL-7/HGFβ treatment enhances thymopoiesis after allogeneic BMT. Although rIL-7 treatment also enhances the number of thymocytes, rIL-7/HGFβ hybrid cytokine was more effective than was rIL-7 and the mechanisms by which rIL-7 and rIL-7/HGFβ increase the numbers of thymocytes are different. rIL-7 enhances the survival of double negative (DN, CD4 and CD8 single positive (SP thymocytes. In contrast, rIL-7/HGFβ enhances the proliferation of the DN, SP thymocytes, as well as the survival of CD4 and CD8 double positive (DP thymocytes. rIL-7/HGFβ treatment also increases the numbers of early thymocyte progenitors (ETPs and thymic epithelial cells (TECs. The enhanced thymic reconstitution in the rIL-7/HGFβ-treated allogeneic BMT recipients results in increased number and functional activities of peripheral T cells. Graft-versus-host-disease (GVHD is not induced in the rIL-7/HGFβ-treated BMT mice. Therefore, rIL-7/HGFβ may offer a new tool for the prevention and/or treatment of T cell immunodeficiency following BMT.

  2. Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice.

    Science.gov (United States)

    Yaghmaie, Farzin; Saeed, Omar; Garan, Steven A; Freitag, Warren; Timiras, Paola S; Sternberg, Hal

    2005-06-01

    Life-long calorie restriction (CR) remains the most robust and reliable means of extending life span in mammals. Among the several theories to explain CR actions, one variant of the neuroendocrine theories of aging postulates that changing hypothalamic sensitivity to endocrine feedback is the clock that times phenotypic change over the life span. If the feedback sensitivity hypothesis is correct, CR animals should display a significantly different pattern of hormone-sensitive cell density and distribution in the hypothalamus. Of the many endocrine signal receptors that may be involved in maintaining hypothalamic feedback sensitivity, our study has selected to begin mapping those for estrogen (E). Altered hypothalamic sensitivity to E is known to schedule reproductive maturation and influence reproductive senescence. Taking estrogen receptor-alpha (ERalpha) immunoreactivity as an index of sensitivity to E, we counted ERalpha immunoreactive and non-immunoreactive cells in the pre-optic hypothalamus of young (6 weeks), ad-libitum (Old-AL) fed old (22 months), and calorie restricted (Old-CR) old (22 months) female B6D2F1 mice. An automated imaging microscopy system (AIMS) was used to generate cell counts for each sampled section of pre-optic hypothalamus. Results show a 38% reduction in ERalpha immunoreactive cells and an 18% reduction in total cell numbers in AL-old mice in comparison to young mice. However, CR mice only show a 19% reduction in ERalpha immunoreactive cells and a 13% reduction in total cell numbers in comparison to young mice. This indicates CR prevents age-related cell loss and maintains estrogen sensitivity in the pre-optic hypothalamus of old female B6D2F1 mice.

  3. Peak littering and the stud male in relation to virgin and remated female P(SD) mice.

    Science.gov (United States)

    Eveleigh, J R; Gunner, M; Haslam, F

    1979-01-01

    Peak littering occurred on the 22nd day after pairing. The percentage of pregnancies from virgin females increased as the stud males became more experienced; their success with remated females showed a more varied and lower response.

  4. Efficacy of crystalline lysine in alternative diets for pond-raised hybrid catfish, female Ictalurus punctatus X male Ictalurus furcatus

    Science.gov (United States)

    study was conducted to examine the efficacy of crystalline lysine in alternative diets for pond-raised hybrid catfish, ' Ictalurus punctatus × ' Ictalurus furcatus. Two 28% protein alternative diets supplemented with l-lysine HCl at the required level based on 62% (previously published value) or 10...

  5. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice.

    Science.gov (United States)

    Viby, Niels-Erik; Isidor, Marie S; Buggeskov, Katrine B; Poulsen, Steen S; Hansen, Jacob B; Kissow, Hannelouise

    2013-12-01

    The incretin hormone glucagon-like peptide-1 (GLP-1) is an important insulin secretagogue and GLP-1 analogs are used for the treatment of type 2 diabetes. GLP-1 displays antiinflammatory and surfactant-releasing effects. Thus, we hypothesize that treatment with GLP-1 analogs will improve pulmonary function in a mouse model of obstructive lung disease. Female mice were sensitized with injected ovalbumin and treated with GLP-1 receptor (GLP-1R) agonists. Exacerbation was induced with inhalations of ovalbumin and lipopolysaccharide. Lung function was evaluated with a measurement of enhanced pause in a whole-body plethysmograph. mRNA levels of GLP-1R, surfactants (SFTPs), and a number of inflammatory markers were measured. GLP-1R was highly expressed in lung tissue. Mice treated with GLP-1R agonists had a noticeably better clinical appearance than the control group. Enhanced pause increased dramatically at day 17 in all control mice, but the increase was significantly less in the groups of GLP-1R agonist-treated mice (P agonist-treated mice (P agonist treatment. These results show that GLP-1R agonists have potential therapeutic potential in the treatment of obstructive pulmonary diseases, such as chronic obstructive pulmonary disease, by decreasing the severity of acute exacerbations. The mechanism of action does not seem to be the modulation of inflammation and SFTP expression.

  6. Insulin receptor signaling in the GnRH neuron plays a role in the abnormal GnRH pulsatility of obese female mice.

    Directory of Open Access Journals (Sweden)

    Sara A DiVall

    Full Text Available Infertility associated with obesity is characterized by abnormal hormone release from reproductive tissues in the hypothalamus, pituitary, and ovary. These tissues maintain insulin sensitivity upon peripheral insulin resistance. Insulin receptor signaling may play a role in the dysregulation of gonadotropin-releasing hormone (GnRH secretion in obesity, but the interdependence of hormone secretion in the reproductive axis and the multi-hormone and tissue dysfunction in obesity hinders investigations of putative contributing factors to the disrupted GnRH secretion. To determine the role of GnRH insulin receptor signaling in the dysregulation of GnRH secretion in obesity, we created murine models of diet-induced obesity (DIO with and without intact insulin signaling in the GnRH neuron. Obese control female mice were infertile with higher luteinizing hormone levels and higher GnRH pulse amplitude and total pulsatile secretion compared to lean control mice. In contrast, DIO mice with a GnRH specific knockout of insulin receptor had improved fertility, luteinizing hormone levels approaching lean mice, and GnRH pulse amplitude and total secretion similar to lean mice. Pituitary responsiveness was similar between genotypes. These results suggest that in the obese state, insulin receptor signaling in GnRH neurons increases GnRH pulsatile secretion and consequent LH secretion, contributing to reproductive dysfunction.

  7. Polyphenolic drug composition based on benzenepolycarboxylic acids (BP-C3) increases life span and inhibits spontaneous tumorigenesis in female SHR mice

    Science.gov (United States)

    Anisimov, Vladimir N.; Popovich, Irina G.; Zabezhinski, Mark A.; Yurova, Maria N.; Tyndyk, Margarita L.; Anikin, Ivan V.; Egormin, Peter A.; Baldueva, Irina A.; Fedoros, Elena I.; Pigarev, Sergey E.; Panchenko, Andrey V.

    2016-01-01

    Effects of long-term application of novel polyphenolic composition BP-C3, containing polyphenolic benzenepolycarboxylic acids, vitamins and minerals on some biomarkers of aging, life span and spontaneous tumorigenesis has been studied in female SHR mice. Administration of BP-C3 with drinking water (0.005%) did not exert any toxic effect (did not have effect on general condition of animals, weight dynamics and consumption of food), postponed age-related switch-off of estrous function, caused slight reduction of body temperature. An increased survival was observed in mice treated with BP-C3 (p=0.00164, log rank test). BP-C3 increased mean lifespan – by 8.4%, lifespan of the last 10% of animals – by 12.4%, and life span of tumor-free mice – by 11.6%. A tendency in ability of BP-C3 to inhibit development of spontaneous tumors in mice was detected, though it did not reach the level of statistical significance (p=0.166, log rank test). The number of malignant mammary tumors was 1.5 times less and total number of tumors of various localizations was 1.6 times less in BP-C3 treated animals. Multiple tumors were registered in 8% of mice in the control group and no cases – in BP-C3 treated group. Thus, BP-C3 demonstrated some anti-carcinogenic and a pronounced geroprotective activity. PMID:27574962

  8. The long-term effects of stress and kappa opioid receptor activation on conditioned place aversion in male and female California mice.

    Science.gov (United States)

    Laman-Maharg, Abigail R; Copeland, Tiffany; Sanchez, Evelyn Ordoñes; Campi, Katharine L; Trainor, Brian C

    2017-08-14

    Psychosocial stress leads to the activation of kappa opioid receptors (KORs), which induce dysphoria and facilitate depression-like behaviors. However, less is known about the long-term effects of stress and KORs in females. We examined the long-term effects of social defeat stress on the aversive properties of KOR activation in male and female California mice (Peromyscus californicus) using a conditioned place aversion paradigm. Female California mice naïve to social defeat, formed a place aversion following treatment with 2.5mg/kg of the KOR agonist U50,488, but females exposed to defeat did not form a place aversion to this dose. This supports the finding by others that social defeat weakens the aversive properties of KOR agonists. In contrast, both control and stressed males formed an aversion to 10mg/kg of U50,488. We also examined EGR1 immunoreactivity, an indirect marker of neuronal activity, in the nucleus accumbens (NAc) and found that stress and treatment with 10mg/kg of U50,488 increased EGR1 immunoreactivity in the NAc core in females but reduced activation in males. The effects of stress and U50,488 on EGR1 were specific to the NAc, as we found no differences in the bed nucleus of the stria terminalis. In summary, our data indicate important sex differences in the long-term effects of stress and indicate the need for further study of the molecular mechanisms mediating the behavioral effects of KOR in both males and females. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Spatial organization of bacterial flora in normal and inflamed intestine:A fluorescence in situ hybridization study in mice

    Institute of Scientific and Technical Information of China (English)

    Alexander Swidsinski; Vera Loening-Baucke; Herbert Lochs; Laura P. Hale

    2005-01-01

    AIM: To studythe role of intestinal flora in inflammatory bowel disease (IBD).METHODS: The spatial organization of intestinal flora was investigated in normal mice and in two models of murine colitis using fluorescence in situ hybridization.RESULTS: The murine small intestine was nearly bacteriafree. The normal colonic flora was organized in three distinct compartments (crypt, interlaced, and fecal), each with different bacterial compositions. Crypt bacteria were present in the cecum and proximal colon. The fecal compartment was composed of homogeneously mixed bacterial groups that directly contacted the colonic wall in the cecum but were separated from the proximal colonic wall by a dense interlaced layer. Beginning in the middle colon, a mucus gap of growing thickness physically separated all intestinal bacteria from contact with the epithelium. Colonic inflammation was accompanied with a depletion of bacteria within the fecal compartment, a reduced surface area in which feces had direct contact with the colonic wall, increased thickness and spread of the mucus gap, and massive increases of bacterial concentrations in the crypt and interlaced compartments. Adhesive and infiltrative bacteria were observed in inflamed colon only, with dominant Bacteroides species.CONCLUSION: The proximal and distal colons are functionally different organs with respect to the intestinal flora, representing a bioreactor and a Segregation device.The highly organized structure of the colonic flora, its specific arrangement in different colonic segments, and its specialized response to inflammatory stimuli indicate that the intestinal flora is an innate part of host immunity that is under complex control.

  10. Reduced p75NTRexpression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Küst, B.M.; Brouwer, N.; Mantingh, I.J.; Boddeke, H.W.G.M.; Copray, J.C.V.M.

    2003-01-01

    hSOD1 (G93A) transgenic mice develop pathological changes similar to those in patients with familial amyotrophic lateral sclerosis (FALS). In particular, the progressive degeneration of motoneurons is charactered in this mouse model. One feature of stressed motoneurons in ALS and the hSOD1 mice is t

  11. Reduced p75NTRexpression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Küst, B.M.; Brouwer, N.; Mantingh, I.J.; Boddeke, H.W.G.M.; Copray, J.C.V.M.

    2003-01-01

    hSOD1 (G93A) transgenic mice develop pathological changes similar to those in patients with familial amyotrophic lateral sclerosis (FALS). In particular, the progressive degeneration of motoneurons is charactered in this mouse model. One feature of stressed motoneurons in ALS and the hSOD1 mice is

  12. Reduced p75NTRexpression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Küst, B.M.; Brouwer, N.; Mantingh, I.J.; Boddeke, H.W.G.M.; Copray, J.C.V.M.

    2003-01-01

    hSOD1 (G93A) transgenic mice develop pathological changes similar to those in patients with familial amyotrophic lateral sclerosis (FALS). In particular, the progressive degeneration of motoneurons is charactered in this mouse model. One feature of stressed motoneurons in ALS and the hSOD1 mice is t

  13. Communal nursing in wild house mice is not a by-product of group living: Females choose

    Science.gov (United States)

    Weidt, Andrea; Lindholm, Anna K.; König, Barbara

    2014-01-01

    Communal nursing, the provision of milk to non-offspring, has been argued to be a non-adaptive by-product of group living. We used 2 years of field data from a wild house mouse population to investigate this question. Communal nursing never occurred among females that previously lacked overlap in nest box use. Females nursed communally in only 33 % of cases in which there was a communal nursing partner available from the same social group. Solitarily nursing females were not socially isolated in their group; nevertheless, high spatial associations prior to reproduction predict which potential female partner was chosen for communal nursing. An increase in partner availability increased the probability of communal nursing, but population density itself had a negative effect, which may reflect increased female reproductive competition during summer. These results argue that females are selective in their choice of nursing partners and provide further support that communal nursing with the right partner is adaptive.

  14. NTP Toxicology and Carcinogenesis Studies of Polyvinyl Alcohol (CAS No.9002-89-5) in Female B6C3F1 Mice (Intravaginal Studies).

    Science.gov (United States)

    1998-05-01

    Polyvinyl alcohol is produced primarily for use in textile sizing, adhesives, polymerization aids, and paper coatings. It is also used in surgical drapes, towels, and gauze sponges; protective gloves; cosmetic formulations; topical ophthalmic preparations; plastic sponge implants for reconstructive surgery; and intravaginal contraceptive foam and film. In addition, polyvinyl alcohol is used with magnesium sulfate to dilate the cervix of women prior to induction of labor. It is estimated that hundreds of thousands of women in the United States use an intravaginal product containing polyvinyl alcohol each year. The Food and Drug Administration nominated low-viscosity polyvinyl alcohol for a 2-year study because of concern about the lack of information about the long-term toxic and carcinogenic effects by the intravaginal route. Female B6C3F1 mice received polyvinyl alcohol (approximately 99% pure) in deionized water by intravaginal administration for 30 days or 2 years. 30-DAY STUDY IN MICE: Three groups of 50 female B6C3F1 mice were used in this intravaginal study. The vehicle control group received only 20 &mgr;L of a deionized water vehicle. The other two groups each received 20 &mgr;L of 25% polyvinyl alcohol in deionized water. Animals in one dose group were returned to their cages after dosing; animals in the other dose group were restrained in a vertical nose-down position in restraint bags for several minutes after dosing. Animals were dosed daily for 30 consecutive days. All mice survived to the end of the study. The final mean body weights and body weight gains of dosed mice were similar to those of the vehicle control group. Abnormalities noted in the vaginal area after dosing included vaginal plugs, secretions, and swelling. These vaginal changes were minimal to mild and occurred in vehicle controls as well as in dosed mice. Restraint of mice after dosing appeared to eliminate vaginal secretions but increased both the incidence of vaginal irritation and

  15. Efeitos da hiperprolactinemia sobre o útero de camundongos no proestro Hyperprolactinemia effects on the female mice uterus during proestrous

    Directory of Open Access Journals (Sweden)

    Regina Célia Teixeira Gomes

    2009-08-01

    Full Text Available OBJETIVO: avaliar o efeito da hiperprolactinemia induzida pela metoclopramida sobre o endométrio e miométrio de camundongos fêmeas na fase de proestro. MÉTODOS: 24 camundongos fêmeas foram divididas aleatoriamente em dois grupos: GCtr/controle e GExp/tratadas com metoclopramida (6,7 µg/g por dia. Após 50 dias, os animais foram sacrificados na fase de proestro, e o sangue foi coletado para determinação dos níveis de estradiol, progesterona e prolactina. Os cornos uterinos foram removidos e fixados em formol a 10%; foram, então, processados para inclusão em parafina. Cortes de 4 µm foram corados pela hematoxilina-eosina (H/E. Na análise morfológica, foi utilizado microscópio de luz, da marca Carl Zeiss, com objetivas variando de 4 a 400 X, para caracterização de cada corte histológico. Na análise morfométrica, foi avaliada a espessura do epitélio superficial, da lâmina própria e do miométrio, com auxílio de um analisador de imagem (AxionVision, Carl Zeiss acoplado ao microscópio de luz (Carl Zeiss. A análise estatística foi realizada pela ANOVA seguida pelo teste Wilcoxon. O valor de p foi considerado significante quando PURPOSE: to evaluate the effect of hyperprolactinemia induced by metoclopramide on the endometrium and myometrium of female mice in the proestrus phase. METHODS: 24 female mice were randomly divided in two groups: CtrG/control and ExpG/treated with metoclopramide (6.7 mg/g daily. After 50 days, the animals were sacrificed in the proestrus phase, and the blood was collected to determine the levels of estradiol, progesterone and prolactin. The uterine horns were removed, fixed in 10% formaldehyde and processed before being included in paraffin. Slices of 4 µm were stained by hematoxylin and eosin (H/E. In the morphological analysis, a Carl Zeiss light microscope, with objectives varying from 4 to 400 X was used for each histological slice characterization. In the morphometrical analysis, the superficial

  16. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    Science.gov (United States)

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour.

  17. Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice.

    Science.gov (United States)

    Di Liberto, Valentina; Mäkelä, Johanna; Korhonen, Laura; Olivieri, Melania; Tselykh, Timofey; Mälkiä, Annika; Do Thi, Hai; Belluardo, Natale; Lindholm, Dan; Mudò, Giuseppa

    2012-02-01

    Treatment with resveratrol (RSV) has been shown to protect vulnerable neurons after various brain injuries and in neurodegenerative diseases. The mechanisms for the effects of RSV in brain are not fully understood, but RSV may affect the expression of various gene products. RSV is structurally related to the synthetic estrogen, diethylstilbestrol so the effects of RSV may be gender-specific. Here we studied the role of RSV in the regulation of dopamine transporter (DAT) in the striatum using male and female mice. The basic levels of DAT in the striatum showed no sex difference, but the levels increased significantly by RSV (20 mg/kg i.p.) in female but not in male mice. Pretreatment of mice with the selective estrogen receptor (ER), ERα- and ERβ antagonist ICI 182,780, led to a complete block of RSV effect on DAT protein levels, suggesting that ERs are involved in the up-regulation of DAT by RSV. Similar data was also obtained in culture using human MESC2.10 and mouse SN4741 dopaminergic cells after treatment with RSV. Data further showed that RSV specifically induced gene transcription of DAT in the dopaminergic cells. These results show that estrogen receptors are involved in the up-regulation of DAT by RSV in the dopaminergic neurons, demonstrating a sex-dependent effect of RSV in the brain that may be of clinical importance. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  18. Immunotoxicological profile of chloramine in female B6C3F1 mice when administered in the drinking water for 28 days.

    Science.gov (United States)

    Guo, Tai L; Germolec, Dori R; Collins, Bradley J; Luebke, Robert W; Auttachoat, Wimolnut; Smith, Matthew J; White, Kimber L

    2011-01-01

    Monochloramine has been used to provide a disinfecting residual in water distribution systems where it is difficult to maintain an adequate free-chlorine residual or where disinfection by-product formation is of concern. The goal of this study was to characterize the immunotoxic effects of chloramine in female B(6)C(3)F(1) mice when administered via the drinking water. Mice were exposed to chloramine-containing deionized tap water at 2, 10, 20, 100, or 200 ppm for 28 days. No statistically significant differences in drinking water consumption, body weight, body weight gain, organ weights, or hematological parameters between the exposed and control animals were noted during the experimental period. There were no changes in the percentages and numbers of total B-lymphocytes, T-lymphocytes, CD4(+) and CD8(+) T-lymphocytes, natural killer (NK) cells, and macrophages in the spleen. Exposure to chloramine did not affect the IgM antibody-forming cell response to sheep red blood cells (SRBC) or anti-SRBC IgM antibody production. Minimal effects, judged to be biologically insignificant, were observed in the mixed-leukocyte response and NK activity. In conclusion, chloramine produced no toxicological and immunotoxic effects in female B(6)C(3)F(1) mice when administered for 28 days in the drinking water at concentrations ranging from 2-200 ppm.

  19. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently.

    Science.gov (United States)

    Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio

    2015-08-01

    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P brain (P brain, liver, and kidney (all P brain (all P brain (P drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences.

  20. Organ and effective dose conversion coefficients for a sitting female hybrid computational phantom exposed to monoenergetic protons in idealized irradiation geometries

    Science.gov (United States)

    Alves, M. C.; Santos, W. S.; Lee, Choonsik; Bolch, Wesley E.; Hunt, John G.; Carvalho Júnior, A. B.

    2014-12-01

    The conversion coefficients (CCs) relate protection quantities, mean absorbed dose (DT) and effective dose (E), with physical radiation field quantities, such as fluence (Φ). The calculation of CCs through Monte Carlo simulations is useful for estimating the dose in individuals exposed to radiation. The aim of this work was the calculation of conversion coefficients for absorbed and effective doses per fluence (DT/ Φ and E/Φ) using a sitting and standing female hybrid phantom (UFH/NCI) exposure to monoenergetic protons with energy ranging from 2 MeV to 10 GeV. The radiation transport code MCNPX was used to develop exposure scenarios implementing the female UFH/NCI phantom in sitting and standing postures. Whole-body irradiations were performed using the recommended irradiation geometries by ICRP publication 116 (AP, PA, RLAT, LLAT, ROT and ISO). In most organs, the conversion coefficients DT/Φ were similar for both postures. However, relative differences were significant for organs located in the abdominal region, such as ovaries, uterus and urinary bladder, especially in the AP, RLAT and LLAT geometries. Anatomical differences caused by changing the posture of the female UFH/NCI phantom led an attenuation of incident protons with energies below 150 MeV by the thigh of the phantom in the sitting posture, for the front-to-back irradiation, and by the arms and hands of the phantom in the standing posture, for the lateral irradiation.

  1. Green tea (Camellia sinesis) ameliorates female Schistosoma mansoni-induced changes in the liver of Balb/C mice.

    Science.gov (United States)

    Bin Dajem, Saad M; Shati, Ali A; Adly, Mohamed A; Ahmed, Osama M; Ibrahim, Essam H; Mostafa, Osama M S

    2011-10-01

    This study was designed to assess the effect of green tea, an aqueous extract of Camellia sinensis, on the oxidative stress, antioxidant defense system and liver pathology of Schistosoma mansoni-infected mice. Green tea at concentration of 3% (w/v) was given orally to treated mice as sole source of drinking water from the end of the 4th week to the end of 10th week post-infection; untreated mice were allowed to drink normal water. The data of the studied S. mansoni-infected mice exhibited a suppression of hepatic total antioxidant capacity, superoxide dismutase (SOD), catalase (CAT) activity and glutathione content. The liver lipid peroxidation was deleteriously elevated in S. mansoni-infected mice. The hepatic total protein content, AST and ALT activities were profoundly decreased in the S. mansoni-infected mice. Most hepatocytes were damaged and showed abnormal microscopic appearance with aggressive necrosis. Both total protein and glycogen levels have been greatly reduced as indicated by histochemical examination. The treatment of S. mansoni-infected mice with green tea succeeded to suppress oxidative stress by decreasing the lipid peroxides but failed to significantly enhance the antioxidant defense system and deteriorated changes owing to liver damage and necrosis. In consistence with biochemical data, histopathological and histochemical data indicated that treatment of S. mansoni-infected mice with green tea could ameliorate hepatocytes thus reduce cellular necrosis and partially restore both total protein and glycogen levels. Thus, the study concluded that the green tea suppresses the oxidative stress through its constituent with free radicals scavenging properties rather than through the endogenous antioxidant defense system.

  2. A Unique Egg Cortical Granule Localization Motif Is Required for Ovastacin Sequestration to Prevent Premature ZP2 Cleavage and Ensure Female Fertility in Mice.

    Directory of Open Access Journals (Sweden)

    Bo Xiong

    2017-01-01

    Full Text Available Monospermic fertilization is mediated by the extracellular zona pellucida composed of ZP1, ZP2 and ZP3. Sperm bind to the N-terminus of ZP2 which is cleaved after fertilization by ovastacin (encoded by Astl exocytosed from egg cortical granules to prevent sperm binding. AstlNull mice lack the post-fertilization block to sperm binding and the ability to rescue this phenotype with AstlmCherry transgenic mice confirms the role of ovastacin in providing a definitive block to polyspermy. During oogenesis, endogenous ovastacin traffics through the endomembrane system prior to storage in peripherally located cortical granules. Deletion mutants of ovastacinmCherry expressed in growing oocytes define a unique 7 amino acid motif near its N-terminus that is necessary and sufficient for cortical granule localization. Deletion of the 7 amino acids by CRISPR/Cas9 at the endogenous locus (AstlΔ prevents cortical granule localization of ovastacin. The misdirected enzyme is present within the endomembrane system and ZP2 is prematurely cleaved. Sperm bind poorly to the zona pellucida of AstlΔ/Δ mice with partially cleaved ZP2 and female mice are sub-fertile.

  3. A Unique Egg Cortical Granule Localization Motif Is Required for Ovastacin Sequestration to Prevent Premature ZP2 Cleavage and Ensure Female Fertility in Mice

    Science.gov (United States)

    Xiong, Bo; Zhao, Yangu; Beall, Stephanie; Sadusky, Anna Burkart

    2017-01-01

    Monospermic fertilization is mediated by the extracellular zona pellucida composed of ZP1, ZP2 and ZP3. Sperm bind to the N-terminus of ZP2 which is cleaved after fertilization by ovastacin (encoded by Astl) exocytosed from egg cortical granules to prevent sperm binding. AstlNull mice lack the post-fertilization block to sperm binding and the ability to rescue this phenotype with AstlmCherry transgenic mice confirms the role of ovastacin in providing a definitive block to polyspermy. During oogenesis, endogenous ovastacin traffics through the endomembrane system prior to storage in peripherally located cortical granules. Deletion mutants of ovastacinmCherry expressed in growing oocytes define a unique 7 amino acid motif near its N-terminus that is necessary and sufficient for cortical granule localization. Deletion of the 7 amino acids by CRISPR/Cas9 at the endogenous locus (AstlΔ) prevents cortical granule localization of ovastacin. The misdirected enzyme is present within the endomembrane system and ZP2 is prematurely cleaved. Sperm bind poorly to the zona pellucida of AstlΔ/Δ mice with partially cleaved ZP2 and female mice are sub-fertile. PMID:28114310

  4. Enkephalin levels and the number of neuropeptide Y-containing interneurons in the hippocampus are decreased in female cannabinoid-receptor 1 knock-out mice.

    Science.gov (United States)

    Rogers, Sophie A; Kempen, Tracey A Van; Pickel, Virginia M; Milner, Teresa A

    2016-05-04

    Drug addiction requires learning and memory processes that are facilitated by activation of cannabinoid-1 (CB1) and opioid receptors in the hippocampus. This involves activity-dependent synaptic plasticity that is partially regulated by endogenous opioid (enkephalin and dynorphin) and non-opioid peptides, specifically cholecystokinin, parvalbumin and neuropeptide Y, the neuropeptides present in inhibitory interneurons that co-express CB1 or selective opioid receptors. We tested the hypothesis that CB1 receptor expression is a determinant of the availability of one or more of these peptide modulators in the hippocampus. This was achieved by quantitatively analyzing the immunoperoxidase labeling for each of these neuropeptide in the dorsal hippocampus of female wild-type (CB1+/+) and cannabinoid receptor 1 knockout (CB1-/-) C57/BL6 mice. The levels of Leu(5)-enkephalin-immunoreactivity were significantly reduced in the hilus of the dentate gyrus and in stratum lucidum of CA3 in CB1-/- mice. Moreover, the numbers of neuropeptide Y-immunoreactive interneurons in the dentate hilus were significantly lower in the CB1-/- compared to wild-type mice. However, CB1+/+ and CB1-/- mice did not significantly differ in expression levels of either dynorphin or cholecystokinin, and showed no differences in numbers of parvalbumin-containing interneurons. These findings suggest that the cannabinoid and opioid systems have a nuanced, regulatory relationship that could affect the balance of excitation and inhibition in the hippocampus and thus processes such as learning that rely on this balance.

  5. Reduced hippocampal IL-10 expression, altered monoaminergic activity and anxiety and depressive-like behavior in female mice subjected to chronic social instability stress.

    Science.gov (United States)

    Labaka, Ainitze; Gómez-Lázaro, Eneritz; Vegas, Oscar; Pérez-Tejada, Joana; Arregi, Amaia; Garmendia, Larraitz

    2017-09-29

    Evidence indicates that release of pro-inflammatory cytokines induced by social stress contributes to affective disorders. Additionally, there are known sex differences in both the stress response and the stressors that can elicit this response. In this regard, the chronic social instability (CSI) rodent model of stress appears to be the best fit for the social nature of females. This study analyzed the effects of CSI on female mouse behavior, hippocampal cytokine expression, tryptophan metabolism and monoaminergic activity. The activity of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes were also measured. Results showed a decrease in sucrose consumption in stressed subjects, indicative of anhedonic behavior and an increase in climbing activity in the forced swimming test (FST) and in whisking behavior, which have been associated with anxiety. Decreased interleukin-10 (IL-10) expression was found in the hippocampus of the stressed mice, while no differences in pro-inflammatory cytokine expression and tryptophan (TRYP), kynurenine (KYN) or 3-hydroxy kynurenine (3-HK) levels were found. Increased hippocampal serotoninergic and noradrenergic activity was observed in stressed mice. The higher plasma corticosterone and lower hypothalamic glucocorticoid receptor (GR) expression levels showed an increase in HPA activity after CSI. No differences were found in the plasma estradiol levels or the central estrogen receptors (ERα and ERβ) expression levels. These data indicate that the CSI stress-induced behavioral and physiological changes associated with anxiety and depressive disorders. Although additional studies are warranted, the results suggest an involvement of anti-inflammatory cytokines in the biobehavioral effects of social stress in female mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effectiveness of an immunocastration vaccine formulation to reduce the gonadal function in female and male mice by Th1/Th2 immune response.

    Science.gov (United States)

    Siel, Daniela; Vidal, Sonia; Sevilla, Rafael; Paredes, Rodolfo; Carvallo, Francisco; Lapierre, Lisette; Maino, Mario; Pérez, Oliver; Sáenz, Leonardo

    2016-10-01

    Immunocastration has emerged as an alternative to surgical castration in different animal species. This study examined the effectiveness of a new vaccine formulation for immunocastration using the biopolymer chitosan as adjuvant. First, female and male mice (n = 4), in three subsequent experiments were vaccinated at Days 1 and 30 of the study, to determine the immune response profile and gonadal alterations due to immunization. The results demonstrated that the vaccine was able to elicit strong antibody responses against native GnRH hormone (P germinal cellular layers (3.58 ± 0.26 and 5.08 ± 0.29) of immunized males and control animals, respectively, were observed (P < 0.01). Then, in a study of long-term immune response due to vaccination in female and male mice (n = 4) from two subsequent experiments, a suppression of gonadal function and an induction of a Th1/Th2 immune response was also observed, determined by both, immunoglobulin and cytokine profiles, which lasted until the end of the study (7 months; P < 0.01). The findings of this study have demonstrated that vaccination with a new immunocastration vaccine inducing a Th1/Th2 immune response against GnRH (P < 0.01) elicit a decrease of gonadal function in male and female mice (P < 0.01). Owing to long-term duration of the antibody levels generated, this vaccine formulation appears as a promising alternative for immunocastration of several animal species where long-lasting reproductive block is needed.

  7. Evaluation of the immunomodulatory effects of the disinfection by-product, sodium chlorite, in female B6C3F1 mice: a drinking water study.

    Science.gov (United States)

    Karrow, N A; Guo, T L; McCay, J A; Johnson, G W; Brown, R D; Musgrove, D L; Germolec, D R; Luebke, R W; White, K L

    2001-08-01

    Sodium chlorite is an inorganic by-product of chlorine dioxide formed during the chlorination of drinking water. Relatively little is known about the adverse health effects of exposure to sodium chlorite in drinking water. In this study, we evaluated sodium chlorite's immunomodulatory properties using female B6C3F1 mice and a panel of immune assays that were designed to evaluate potential changes in innate and acquired cellular and humoral immune responses. Female B6C3F1 mice were exposed to sodium chlorite in their drinking water (0, 0.1, 1, 5, 15, and 30 mg/L) for 28 days, and then evaluated for immunomodulation. Overall, minimal toxicological and immunological changes were observed after exposure to sodium chlorite. Increases in the percentages of blood reticulocytes, and the relative spleen weights were both observed at different sodium chlorite treatment levels; however, these increases were not dose-dependent. An increasing trend in the number of spleen antibody-forming cells was observed over the range of sodium chlorite concentrations. This increase was not, however, significant at any individual treatment level, and was not reflected by changes in serum IgM levels. A significant increase (26%) in the total number of splenic CD8+ cells was observed in mice treated with 30 mg/L of sodium chlorite, but not at the other concentrations. Splenic mixed leukocyte response and peritoneal macrophage activity were unaffected by sodium chlorite. Lastly, exposure to sodium chlorite did not affect natural killer cell activity, although a decrease in augmented natural killer cell activity (42%) was observed at the lowest sodium chlorite treatment level. These results suggest that sodium chlorite, within the range 0.1-30 mg/L, produces minimal immunotoxicity in mice.

  8. Loss of miR-10a activates lpo and collaborates with activated Wnt signaling in inducing intestinal neoplasia in female mice.

    Directory of Open Access Journals (Sweden)

    Gustavo Stadthagen

    2013-10-01

    Full Text Available miRNAs are small regulatory RNAs that, due to their considerable potential to target a wide range of mRNAs, are implicated in essentially all biological process, including cancer. miR-10a is particularly interesting considering its conserved location in the Hox cluster of developmental regulators. A role for this microRNA has been described in developmental regulation as well as for various cancers. However, previous miR-10a studies are exclusively based on transient knockdowns of this miRNA and to extensively study miR-10a loss we have generated a miR-10a knock out mouse. Here we show that, in the Apc(min mouse model of intestinal neoplasia, female miR-10a deficient mice develop significantly more adenomas than miR-10(+/+ and male controls. We further found that Lpo is extensively upregulated in the intestinal epithelium of mice deprived of miR-10a. Using in vitro assays, we demonstrate that the primary miR-10a target KLF4 can upregulate transcription of Lpo, whereas siRNA knockdown of KLF4 reduces LPO levels in HCT-116 cells. Furthermore, Klf4 is upregulated in the intestines of miR-10a knockout mice. Lpo has previously been shown to have the capacity to oxidize estrogens into potent depurinating mutagens, creating an instable genomic environment that can cause initiation of cancer. Therefore, we postulate that Lpo upregulation in the intestinal epithelium of miR-10a deficient mice together with the predominant abundance of estrogens in female animals mainly accounts for the sex-related cancer phenotype we observed. This suggests that miR-10a could be used as a potent diagnostic marker for discovering groups of women that are at high risk of developing colorectal carcinoma, which today is one of the leading causes of cancer-related deaths.

  9. Helicobacter pylori infection and low dietary iron alter behavior, induce iron deficiency anemia, and modulate hippocampal gene expression in female C57BL/6 mice

    Science.gov (United States)

    Burns, Monika; Amaya, Aldo; Bodi, Caroline; Ge, Zhongming; Bakthavatchalu, Vasudevan; Ennis, Kathleen; Wang, Timothy C.; Georgieff, Michael

    2017-01-01

    Helicobacter pylori (H.pylori), a bacterial pathogen, is a causative agent of gastritis and peptic ulcer disease and is a strong risk factor for development of gastric cancer. Environmental conditions, such as poor dietary iron resulting in iron deficiency anemia (IDA), enhance H.pylori virulence and increases risk for gastric cancer. IDA affects billions of people worldwide, and there is considerable overlap between regions of high IDA and high H.pylori prevalence. The primary aims of our study were to evaluate the effect of H.pylori infection on behavior, iron metabolism, red blood cell indices, and behavioral outcomes following comorbid H. pylori infection and dietary iron deficiency in a mouse model. C57BL/6 female mice (n = 40) were used; half were placed on a moderately iron deficient (ID) diet immediately post-weaning, and the other half were maintained on an iron replete (IR) diet. Half were dosed with H.pylori SS1 at 5 weeks of age, and the remaining mice were sham-dosed. There were 4 study groups: a control group (-Hp, IR diet) as well as 3 experimental groups (-Hp, ID diet; +Hp, IR diet; +Hp,ID diet). All mice were tested in an open field apparatus at 8 weeks postinfection. Independent of dietary iron status, H.pylori -infected mice performed fewer exploratory behaviors in the open field chamber than uninfected mice (p<0.001). Hippocampal gene expression of myelination markers and dopamine receptor 1 was significantly downregulated in mice on an ID diet (both p<0.05), independent of infection status. At 12 months postinfection, hematocrit (Hct) and hemoglobin (Hgb) concentration were significantly lower in +Hp, ID diet mice compared to all other study groups. H.pylori infection caused IDA in mice maintained on a marginal iron diet. The mouse model developed in this study is a useful model to study the neurologic, behavioral, and hematologic impact of the common human co-morbidity of H. pylori infection and IDA. PMID:28355210

  10. A low-carbohydrate high-fat diet decreases lean mass and impairs cardiac function in pair-fed female C57BL/6J mice.

    Science.gov (United States)

    Nilsson, Jessica; Ericsson, Madelene; Joibari, Masoumeh Motamedi; Anderson, Fredrick; Carlsson, Leif; Nilsson, Stefan K; Sjödin, Anna; Burén, Jonas

    2016-01-01

    Excess body fat is a major health issue and a risk factor for the development of numerous chronic diseases. Low-carbohydrate diets like the Atkins Diet are popular for rapid weight loss, but the long-term consequences remain the subject of debate. The Scandinavian low-carbohydrate high-fat (LCHF) diet, which has been popular in Scandinavian countries for about a decade, has very low carbohydrate content (~5 E %) but is rich in fat and includes a high proportion of saturated fatty acids. Here we investigated the metabolic and physiological consequences of a diet with a macronutrient composition similar to the Scandinavian LCHF diet and its effects on the organs, tissues, and metabolism of weight stable mice. Female C57BL/6J mice were iso-energetically pair-fed for 4 weeks with standard chow or a LCHF diet. We measured body composition using echo MRI and the aerobic capacity before and after 2 and 4 weeks on diet. Cardiac function was assessed by echocardiography before and after 4 weeks on diet. The metabolic rate was measured by indirect calorimetry the fourth week of the diet. Mice were sacrificed after 4 weeks and the organ weight, triglyceride levels, and blood chemistry were analyzed, and the expression of key ketogenic, metabolic, hormonal, and inflammation genes were measured in the heart, liver, and adipose tissue depots of the mice using real-time PCR. The increase in body weight of mice fed a LCHF diet was similar to that in controls. However, while control mice maintained their body composition throughout the study, LCHF mice gained fat mass at the expense of lean mass after 2 weeks. The LCHF diet increased cardiac triglyceride content, impaired cardiac function, and reduced aerobic capacity. It also induced pronounced alterations in gene expression and substrate metabolism, indicating a unique metabolic state. Pair-fed mice eating LCHF increased their percentage of body fat at the expense of lean mass already after 2 weeks, and after 4 weeks the

  11. MKP1-dependent PTH modulation of bone matrix mineralization in female mice is osteoblast maturation stage specific and involves P-ERK and P-p38 MAPKs.

    Science.gov (United States)

    Mahalingam, Chandrika D; Sampathi, Bharat Reddy; Sharma, Sonali; Datta, Tanuka; Das, Varsha; Abou-Samra, Abdul B; Datta, Nabanita S

    2013-03-01

    Limited information is available on the role of MAPK phosphatase 1 (MKP1) signaling in osteoblasts. We have recently reported distinct roles for MKP1 during osteoblast proliferation, differentiation, and skeletal responsiveness to parathyroid hormone (PTH). As MKP1 regulates the phosphorylation status of MAPKs, we investigated the involvement of P-ERK and P-p38 MAPKs in MKP1 knockout (KO) early and mature osteoblasts with respect to mineralization and PTH response. Calvarial osteoblasts from 9-14-week-old WT and MKP1 KO male and female mice were examined. Western blot analysis revealed downregulation and sustained expressions of P-ERK and P-p38 with PTH treatment in differentiated osteoblasts derived from KO males and females respectively. Exposure of early osteoblasts to p38 inhibitor, SB203580 (S), markedly inhibited mineralization in WT and KO osteoblasts from both genders as determined by von Kossa assay. In osteoblasts from males, ERK inhibitor U0126 (U), not p38 inhibitor (S), prevented the inhibitory effects of PTH on mineralization in early or mature osteoblasts. In osteoblasts from KO females, PTH sustained mineralization in early osteoblasts and decreased mineralization in mature cells. This effect of PTH was attenuated by S in early osteoblasts and by U in mature KO cells. Changes in matrix Gla protein expression with PTH in KO osteoblasts did not correlate with mineralization, indicative of MKP1-dependent additional mechanisms essential for PTH action on osteoblast mineralization. We conclude that PTH regulation of osteoblast mineralization in female mice is maturation stage specific and involves MKP1 modulation of P-ERK and P-p38 MAPKs.

  12. Investigating the Effect of Endurance Training on Tumor Level of IL-8 and Serum Level of IL-17 in Female Mice with Breast Cancer

    Directory of Open Access Journals (Sweden)

    AR Kazemi

    2015-11-01

    Full Text Available Background & Objectives: Breast cancer is nowadays one of the most harmful threats to women’s health. However, exercise training plays an adjuvant role in breast cancer (Adjuvant also means preventive. So, no need to repeat preventing.. Therefore, the aim of this study is to investigate the effect of 6-week endurance training on the levels of interleukin-8 in the tumor and Interleukin-17 in the serum of mice suffering from breast cancer.  Materials & Methods: In this study, 20 female Balb/C mice were randomly divided into exercise-tumor (RET and rest-tumor (RRT groups. The mice were oriented in the environment, and one million estrogen-dependent breast cancer cells (MC4L2 were injected into the top of the right thigh of each mouse. Subsequently, the RET group performed the endurance exercise 5 days per week for 6 weeks. The tumor volume was measured by a digital caliper each week. Finally, the mice were sacrificed, and the tumor tissue was removed and kept in -70°C. Then, ELISA method was performed and the data were collected. Results: After 6 weeks of training, a significant decrease was observed in the RTE group in the serum level of IL-17 and IL-8 protein in tumor (P< 0.05. These results were consistent with the tumor growth rate. Conclusion: The findings of the present study indicate that endurance training can reduce IL-8 and IL-17 proteins in the tumor and serum of mice ill with breast cancer. Therefore, the physical activity is utilized as an important factor in the improvement of adjutant therapy along with other therapeutic methods to treat breast cancer.

  13. Disruption of glucocorticoid receptors in the noradrenergic system leads to BDNF up-regulation and altered serotonergic transmission associated with a depressive-like phenotype in female GR(DBHCre) mice.

    Science.gov (United States)

    Chmielarz, Piotr; Kreiner, Grzegorz; Kot, Marta; Zelek-Molik, Agnieszka; Kowalska, Marta; Bagińska, Monika; Daniel, Władysława Anna; Nalepa, Irena

    2015-10-01

    Recently, we have demonstrated that conditional inactivation of glucocorticoid receptors (GRs) in the noradrenergic system, may evoke depressive-like behavior in female but not male mutant mice (GR(DBHCre) mice). The aim of the current study was to dissect how selective ablation of glucocorticoid signaling in the noradrenergic system influences the previously reported depressive-like phenotype and whether it might be linked to neurotrophic alterations or secondary changes in the serotonergic system. We demonstrated that selective depletion of GRs enhances brain derived neurotrophic factor (BDNF) expression in female but not male GR(DBHCre) mice on both the mRNA and protein levels. The possible impact of the mutation on brain noradrenergic and serotonergic systems was addressed by investigating the tissue neurotransmitter levels under basal conditions and after acute restraint stress. The findings indicated a stress-provoked differential response in tissue noradrenaline content in the GR(DBHCre) female but not male mutant mice. An analogous gender-specific effect was identified in the diminished content of 5-hydroxyindoleacetic acid, the main metabolite of serotonin, in the prefrontal cortex, which suggests down-regulation of this monoamine system in female GR(DBHCre) mice. The lack of GR also resulted in an up-regulation of alpha2-adrenergic receptor (α2-AR) density in the female but not male mutants in the locus coeruleus. We have also confirmed the utility of the investigated model in pharmacological studies, which demonstrates that the depressive-like phenotype of GR(DBHCre) female mice can be reversed by antidepressant treatment with desipramine or fluoxetine, with the latter drug evoking more pronounced effects. Overall, our study validates the use of female GR(DBHCre) mice as an interesting and novel genetic tool for the investigation of the cross-connected mechanisms of depression that is not only based on behavioral phenotypes.

  14. Behavioural and nociceptive response in male and female spiny mice (Acomys cahirinus) upon exposure to snake odour

    NARCIS (Netherlands)

    Carere, C; Casetti, R; de Acetis, L; Perretta, G; Cirulli, F; Alleva, E

    1999-01-01

    Predator cues (both mammalian odour or avian vocalizations) are known to elicit fear-associated responses in rodents, including analgesia. In previous studies it was reported that spiny mice fail to show fear responses when presented with the calls of an owl. In order to test the hypothesis that thi

  15. Behavioural and nociceptive response in male and female spiny mice (Acomys cahirinus) upon exposure to snake odour

    NARCIS (Netherlands)

    Carere, C; Casetti, R; de Acetis, L; Perretta, G; Cirulli, F; Alleva, E

    1999-01-01

    Predator cues (both mammalian odour or avian vocalizations) are known to elicit fear-associated responses in rodents, including analgesia. In previous studies it was reported that spiny mice fail to show fear responses when presented with the calls of an owl. In order to test the hypothesis that

  16. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice *.

    NARCIS (Netherlands)

    Oz, O.K.; Hajibeigi, A.; Howard, K.; Cummins, C.L.; Abel, M. van; Bindels, R.J.M.; Word, R.A.; Kuro-o, M.; Pak, C.Y.; Zerwekh, J.E.

    2007-01-01

    Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling. INTRODU

  17. The regulation of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone-induced lung tumor promotion by estradiol in female A/J mice.

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    Full Text Available Epidemiological studies indicate that women are at a higher risk developing lung cancer than men are. It is suggested that estrogen is one of the most important factors in lung cancer development in females. Additionally, cigarette smoke, and environmental pollutants, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, may play salient roles in female lung carcinogenesis. However, the mechanisms responsible for the interaction of these factors in the promotion of lung cancer are still poorly understood. The present study was designed to explore two ideas: first, the synergistic lung tumorigenic effects of 4-(methylnitrosamino-1-(3-pyridyl-butanol (NNK combined with TCDD, 17β-estradiol (E2 or both through a long-term treatment experiment, and second, to identify early changes in the inflammatory and signaling pathways through short-term treatment experiments. The results indicate that A/J mice given E2 had strong effects in potentiating NNK-induced activation of MAPK signaling, NFκB, and COX-2 expression. In the long-term exposure model, E2 had a strong tumor promoting effect, whereas TCDD antagonized this effect in A/J mice. We conclude that treatment with NNK combined with either E2 or TCDD induces lung carcinogenesis and the promotion effects could be correlated with lung inflammation. E2 was shown to potentiate NNK-induced inflammation, cell proliferation, thereby leading to lung tumorigenesis.

  18. A Black Cohosh Extract Causes Hematologic and Biochemical Changes Consistent with a Functional Cobalamin Deficiency in Female B6C3F1/N Mice.

    Science.gov (United States)

    Cora, Michelle C; Gwinn, William; Wilson, Ralph; King, Debra; Waidyanatha, Suramya; Kissling, Grace E; Brar, Sukhdev S; Olivera, Dorian; Blystone, Chad; Travlos, Greg

    2017-07-01

    Black cohosh rhizome, available as a dietary supplement, is most commonly marketed as a remedy for dysmenorrhea and menopausal symptoms. A previous subchronic toxicity study of black cohosh dried ethanolic extract (BCE) in female mice revealed a dose-dependent ineffective erythropoiesis with a macrocytosis consistent with the condition known as megaloblastic anemia. The purpose of this study was to investigate potential mechanisms by which BCE induces these particular hematological changes. B6C3F1/N female mice (32/group) were exposed by gavage to vehicle or 1,000 mg/kg BCE for 92 days. Blood samples were analyzed for hematology, renal and hepatic clinical chemistry, serum folate and cobalamin, red blood cell (RBC) folate, and plasma homocysteine and methylmalonic acid (MMA). Folate levels were measured in liver and kidney. Hematological changes included decreased RBC count; increased mean corpuscular volume; and decreased reticulocyte, white blood cell, neutrophil, and lymphocyte counts. Blood smear evaluation revealed increased Howell-Jolly bodies and occasional basophilic stippling in treated animals. Plasma homocysteine and MMA concentrations were increased in treated animals. Under the conditions of our study, BCE administration caused hematological and clinical chemistry changes consistent with a functional cobalamin, and possibly folate, deficiency. Further studies are needed to elucidate the mechanism by which BCE causes increases in homocysteine and MMA.

  19. Injection anaesthesia with fentanyl-midazolam-medetomidine in adult female mice: importance of antagonization and perioperative care.

    Science.gov (United States)

    Fleischmann, Thea; Jirkof, Paulin; Henke, Julia; Arras, Margarete; Cesarovic, Nikola

    2016-08-01

    Injection anaesthesia is commonly used in laboratory mice; however, a disadvantage is that post-anaesthesia recovery phases are long. Here, we investigated the potential for shortening the recovery phase after injection anaesthesia with fentanyl-midazolam-medetomidine by antagonization with naloxone-flumazenil-atipamezole. In order to monitor side-effects, the depth of anaesthesia, heart rate (HR), core body temperature (BT) and concentration of blood gases, as well as reflex responses, were assessed during a 50 min anaesthesia. Mice were allowed to recover from the anaesthesia in their home cages either with or without antagonization, while HR, core BT and spontaneous home cage behaviours were recorded for 24 h. Mice lost righting reflex at 330 ± 47 s after intraperitoneal injection of fentanyl-midazolam-medetomidine. During anaesthesia, HR averaged 225 ± 23 beats/min, respiratory rate and core BT reached steady state at 131 ± 15 breaths/min and 34.3 ± 0.25℃, respectively. Positive pedal withdrawal reflex, movement triggered by tail pinch and by toe pinch, still occurred in 25%, 31.2% and 100% of animals, respectively. Arterial blood gas analysis revealed acidosis, hypoxia, hypercapnia and a marked increase in glucose concentration. After anaesthesia reversal by injection with naloxone-flumazenil-atipamezole, animals regained consciousness after 110 ± 18 s and swiftly returned to physiological baseline values, yet they displayed diminished levels of locomotion and disrupted circadian rhythm. Without antagonization, mice showed marked hypothermia (22 ± 1.9℃) and bradycardia (119 ± 69 beats/min) for several hours. Fentanyl-midazolam-medetomidine provided reliable anaesthesia in mice with reasonable intra-anaesthetic side-effects. Post-anaesthetic period and related adverse effects were both reduced substantially by antagonization with naloxone-flumazenil-atipamezole.

  20. The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults—application to CT dosimetry

    Science.gov (United States)

    Geyer, Amy M.; O'Reilly, Shannon; Lee, Choonsik; Long, Daniel J.; Bolch, Wesley E.

    2014-09-01

    Substantial increases in pediatric and adult obesity in the US have prompted a major revision to the current UF/NCI (University of Florida/National Cancer Institute) family of hybrid computational phantoms to more accurately reflect current trends in larger body morphometry. A decision was made to construct the new library in a gridded fashion by height/weight without further reference to age-dependent weight/height percentiles as these become quickly outdated. At each height/weight combination, circumferential parameters were defined and used for phantom construction. All morphometric data for the new library were taken from the CDC NHANES survey data over the time period 1999-2006, the most recent reported survey period. A subset of the phantom library was then used in a CT organ dose sensitivity study to examine the degree to which body morphometry influences the magnitude of organ doses for patients that are underweight to morbidly obese in body size. Using primary and secondary morphometric parameters, grids containing 100 adult male height/weight bins, 93 adult female height/weight bins, 85 pediatric male height/weight bins and 73 pediatric female height/weight bins were constructed. These grids served as the blueprints for construction of a comprehensive library of patient-dependent phantoms containing 351 computational phantoms. At a given phantom standing height, normalized CT organ doses were shown to linearly decrease with increasing phantom BMI for pediatric males, while curvilinear decreases in organ dose were shown with increasing phantom BMI for adult females. These results suggest that one very useful application of the phantom library would be the construction of a pre-computed dose library for CT imaging as needed for patient dose-tracking.

  1. No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice

    Directory of Open Access Journals (Sweden)

    Hansen Volkert W

    2004-11-01

    Full Text Available Abstract Background Several reports indicated that non-thermal electromagnetic radiation such as from mobile phones and base stations may promote cancer. Therefore, it was investigated experimentally, whether 900 MHz electromagnetic field exposure influences lymphoma development in a mouse strain that is genetically predisposed to this disease. The AKR/J mice genome carries the AK-virus, which leads within one year to spontaneous development of thymic lymphoblastic lymphoma. Methods 320 unrestrained female mice were sham-exposed or exposed (each n = 160 animals to GSM like 900 MHz electromagnetic fields for 24 hours per day, 7 days per week, at an average whole body specific absorption rate (SAR value of 0.4 W/kg. Animals were visually checked daily and were weighed and palpated weekly. Starting with an age of 6 months, blood samples were taken monthly from the tail. Animals with signs of disease or with an age of about 46 weeks were sacrificed and a gross necropsy was performed. Results Electromagnetic field exposure had a significant effect on body weight gain, with higher values in exposed than in sham-exposed animals. However, survival rate and lymphoma incidence did not differ between exposed and sham-exposed mice. Conclusion These data do not support the hypothesis that exposure to 900 MHz electromagnetic fields is a significant risk factor for developing lymphoma in a genetically predisposed species, even at a relatively high exposure level.

  2. Mixed-strain housing for female C57BL/6, DBA/2, and BALB/c mice: validating a split-plot design that promotes refinement and reduction

    Directory of Open Access Journals (Sweden)

    Michael Walker

    2016-01-01

    Full Text Available Abstract Background Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects differing in a variable of interest (e.g. genotype share an experimental unit (e.g. a cage or litter to which a treatment is applied (e.g. a drug, diet, or cage manipulation. We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. Methods The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Results Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables. It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases to achieve a power of 80 %. Conclusions Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices

  3. Sexually dimorphic genome-wide binding of retinoid X receptor alpha (RXRα) determines male-female differences in the expression of hepatic lipid processing genes in mice.

    Science.gov (United States)

    Kosters, Astrid; Sun, Deqiang; Wu, Hao; Tian, Feng; Felix, Julio C; Li, Wei; Karpen, Saul J

    2013-01-01

    Many hepatic functions including lipid metabolism, drug metabolism, and inflammatory responses are regulated in a sex-specific manner due to distinct patterns of hepatic gene expression between males and females. Regulation for the majority of these genes is under control of Nuclear Receptors (NRs). Retinoid X Receptor alpha (RXRα) is an obligate partner for multiple NRs and considered a master regulator of hepatic gene expression, yet the full extent of RXRα chromatin binding in male and female livers is unclear. ChIP-Seq analysis of RXRα and RNA Polymerase2 (Pol2) binding was performed livers of both genders and combined with microarray analysis. Mice were gavage-fed with the RXR ligand LG268 for 5 days (30 mg/kg/day) and RXRα-binding and RNA levels were determined by ChIP-qPCR and qPCR, respectively. ChIP-Seq revealed 47,845 (male) and 46,877 (female) RXRα binding sites (BS), associated with ∼12,700 unique genes in livers of both genders, with 91% shared between sexes. RXRα-binding showed significant enrichment for 2227 and 1498 unique genes in male and female livers, respectively. Correlating RXRα binding strength with Pol2-binding revealed 44 genes being male-dominant and 43 female-dominant, many previously unknown to be sexually-dimorphic. Surprisingly, genes fundamental to lipid metabolism, including Scd1, Fasn, Elovl6, and Pnpla3-implicated in Fatty Liver Disease pathogenesis, were predominant in females. RXRα activation using LG268 confirmed RXRα-binding was 2-3 fold increased in female livers at multiple newly identified RXRα BS including for Pnpla3 and Elovl6, with corresponding ∼10-fold and ∼2-fold increases in Pnpla3 and Elovl6 RNA respectively in LG268-treated female livers, supporting a role for RXRα regulation of sexually-dimorphic responses for these genes. RXRα appears to be one of the most widely distributed transcriptional regulators in mouse liver and is engaged in determining sexually-dimorphic expression of key lipid

  4. Detection of pseudorabies virus DNA in the inner ear of intranasally infected BALB/c mice with nucleic acid hybridization in situ

    Energy Technology Data Exchange (ETDEWEB)

    Falser, N.; Bandtlow, I.; Haus, M.; Wolf, H.

    1986-01-01

    Evidence for the pathogenicity of pseudorabies virus for the auditory and vestibular organs of experimentally infected mice is presented. The authors demonstrate viral genomes in cells of the peripheral sensory organs, the nerve structures, and the affected areas of the brain in single sections from an entire cranium of an adult mouse. The data were obtained by an in situ hybridization technique adapted for use with fixed, plastic-embedded materials using /sup 3/H and /sup 125/I-labeled EBV. In contrast to conventional methods which use frozen sections, they were able to analyze cartilaginous and bony materials with high resolution.

  5. 52. INHIBITORY EFFECTS OF VITAMIN E SUCCINATE ON BENZO(A) PYRENE-INDUCED FORESTOMACH CARCINOGENESIS IN FEMALE MICE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@This study is a part of an effort to develop effective chemoprevention for carcinogenesis of the forestomach. Vitamin E succinate(VES) administered by oral gavage and by intraperitioneal (IP) injections was used for the studies. Experimental design involved treating mice with Benzo(a) pyrene and VES(1.25 g/kg and 2.5 g/kg for gavage; 20 mg/kg for IP injections) for 4 weeks in order to study the

  6. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Directory of Open Access Journals (Sweden)

    Kiran Chaudhari

    2014-09-01

    Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.

  7. Maternal Dietary Vitamin D Does Not Program Systemic Inflammation and Bone Health in Adult Female Mice Fed an Obesogenic Diet

    Directory of Open Access Journals (Sweden)

    Christopher R. Villa

    2016-10-01

    Full Text Available Obesity is associated with systemic inflammation and impaired bone health. Vitamin D regulates bone metabolism, and has anti-inflammatory properties and epigenetic effects. We showed that exposure to high dietary vitamin D during pregnancy and lactation beneficially programs serum concentration of lipopolysaccharide (LPS and bone structure in male offspring fed an obesogenic diet. Here we assessed if this effect is also apparent in females. C57BL/6J dams were fed AIN93G diet with high (5000 IU/kg diet or low (25 IU/kg diet vitamin D during pregnancy and lactation. Post-weaning, female offspring remained on their respective vitamin D level or were switched and fed a high fat and sucrose diet (44.2% fat, 19.8% sucrose until age seven months when glucose response, adiposity, serum LPS, and bone mineral, trabecular and cortical structure, and biomechanical strength properties of femur and vertebra were assessed. There was no evidence for a programming effect of vitamin D for any outcomes. However, females exposed to a high vitamin D diet post-weaning had higher bone mineral content (p = 0.037 and density (p = 0.015 of lumbar vertebra. This post-weaning benefit suggests that in females, bone mineral accrual but not bone structure is compromised with low vitamin D status in utero until weaning in an obesogenic context.

  8. Estrogenic Effect of 70% Ethanol Turmeric (Curcuma domestica Val. Extract on Ovariectomized Female Mice (Mus musculus L.

    Directory of Open Access Journals (Sweden)

    A.N. Dewi

    2007-11-01

    Full Text Available The influence of extract turmeric (Curcuma domestica Val. on endometrium thickness, vaginal epithelium, mammary gland, and protein of estrogen receptor of ovariectomized mice was examined. Twenty five ovariectomized mice which were divided into five groups, were treated by ethynilestradiol (8,4 x 10-3 g, aquades (10 ml, and turmeric extract at doses 230 mg/kg b.w.; 310 mg/kg b.w.; and 390 mg/kg b.w. for eight days. At the end of experiments the mice were killed, then the uterus, vagina, and mammae were removed and the wet weight of uterus was recorded. Uterus, vagina, and mammae were examined histologically. Estrogen receptor protein from uterus were analized by using SDS-PAGE. One way anava test showed that turmeric extract at doses 310 mg/kg b.w. and 390 mg/kg b.w give estrogenic effect on vaginal ephitelium, endometrium thickness, and diametre of mammary glands. SDS-PAGE analysis showed there were differences in protein concentration between control and treatment groups which were seen in the thickness of the bands. Estrogen receptor band could be detected in sampel of treatment groups at molecular weight 45 kDa.

  9. Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice.

    Science.gov (United States)

    Croze, Marine L; Vella, Roxane E; Pillon, Nicolas J; Soula, Hédi A; Hadji, Lilas; Guichardant, Michel; Soulage, Christophe O

    2013-02-01

    Type 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g(-1) day(-1), 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (-33%, Padipose tissue deposition was due to a decrease in adipose cell volume (-33%, Pinsulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Increased susceptibility to collagen-induced arthritis in female mice carrying congenic Cia40/Pregq2 fragments

    DEFF Research Database (Denmark)

    Liljander, Maria; Andersson, Åsa Inga Maria; Holmdahl, Rikard;

    2008-01-01

    of the B10.Q strain. The major polymorphic candidate genes for the effects on CIA are Cd79b, Abca8a, and Map2k6. The congenic fragment also contains polymorphic genes that affect reproductive behavior and reproductive success. The Sox9 gene, known to influence sex reversal, is a candidate gene...... with another locus, denoted Pregq2, known to affect reproductive success. The present study was performed to evaluate the role of the Cia40 locus in congenic B10.Q mice and to identify possible polymorphic candidate genes, which may also be relevant in the context of RA. METHODS: Congenic B10.Q mice carrying...... an NFR/N fragment surrounding the Cia40/Pregq2 loci were created by 10 generations of backcrossing (N10). The congenic mice were investigated in the CIA model, and the incidence and severity of arthritis as well as the serum levels of anti-collagen II (CII) antibodies were recorded. RESULTS: Significant...

  11. Severe but not moderate vitamin B12 deficiency impairs lipid profile, induces adiposity and leads to adverse gestational outcome in female C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shampa eGhosh

    2016-01-01

    Full Text Available Vitamin B12 deficiency is widely prevalent in women of childbearing age especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters and reproductive performance. Female weanling C57BL/6 mice were fed for four weeks, (a control AIN-76A diet, (b vitamin B12 restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption or (c vitamin B12 restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption. After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat % significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 hours of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  12. Severe but Not Moderate Vitamin B12 Deficiency Impairs Lipid Profile, Induces Adiposity, and Leads to Adverse Gestational Outcome in Female C57BL/6 Mice.

    Science.gov (United States)

    Ghosh, Shampa; Sinha, Jitendra Kumar; Putcha, Uday Kumar; Raghunath, Manchala

    2016-01-01

    Vitamin B12 deficiency is widely prevalent in women of childbearing age, especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters, and reproductive performance. Female weanling C57BL/6 mice were fed for 4 weeks: (a) control AIN-76A diet, (b) vitamin B12-restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption), or (c) vitamin B12-restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption). After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation, and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat% significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 h of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  13. Obesity-Dependent Increases in Oocyte mRNAs Are Associated With Increases in Proinflammatory Signaling and Gut Microbial Abundance of Lachnospiraceae in Female Mice.

    Science.gov (United States)

    Xie, Fang; Anderson, Christopher L; Timme, Kelsey R; Kurz, Scott G; Fernando, Samodha C; Wood, Jennifer R

    2016-04-01

    RNAs stored in the metaphase II-arrested oocyte play important roles in successful embryonic development. Their abundance is defined by transcriptional activity during oocyte growth and selective degradation of transcripts during LH-induced oocyte maturation. Our previous studies demonstrated that mRNA abundance is increased in mature ovulated oocytes collected from obese humans and mice and therefore may contribute to reduced oocyte developmental competence associated with metabolic dysfunction. In the current study mouse models of diet-induced obesity were used to determine whether obesity-dependent increases in proinflammatory signaling regulate ovarian abundance of oocyte-specific mRNAs. The abundance of oocyte-specific Bnc1, Dppa3, and Pou5f1 mRNAs as well as markers of proinflammatory signaling were significantly increased in ovaries of obese compared with lean mice which were depleted of fully grown preovulatory follicles. Chromatin-immunoprecipitation analyses also demonstrated increased association of phosphorylated signal transducer and activator of transcription 3 with the Pou5f1 promoter in ovaries of obese mice suggesting that proinflammatory signaling regulates transcription of this gene in the oocyte. The cecum microbial content of lean and obese female mice was subsequently examined to identify potential relationships between microbial composition and proinflammatory signaling in the ovary. Multivariate Association with Linear Models identified significant positive correlations between cecum abundance of the bacterial family Lachnospiraceae and ovarian abundance of Tnfa as well as Dppa3, Bnc1, and Pou5f1 mRNAs. Together, these data suggest that diet-induced changes in gut microbial composition may be contributing to ovarian inflammation which in turn alters ovarian gene expression and ultimately contributes to obesity-dependent reduction in oocyte quality and development of infertility in obese patients.

  14. SERMs have substance-specific effects on bone, and these effects are mediated via ERαAF-1 in female mice

    Science.gov (United States)

    Börjesson, Anna E.; Farman, Helen H.; Movérare-Skrtic, Sofia; Engdahl, Cecilia; Antal, Maria Cristina; Koskela, Antti; Tuukkanen, Juha; Carlsten, Hans; Krust, Andrée; Chambon, Pierre; Sjögren, Klara; Lagerquist, Marie K.; Windahl, Sara H.

    2016-01-01

    The bone-sparing effect of estrogens is mediated primarily via estrogen receptor (ER)α, which stimulates gene transcription through activation function (AF)-1 and AF-2. The role of ERαAF-1 for the estradiol (E2) effects is tissue specific. The selective ER modulators (SERMs) raloxifene (Ral), lasofoxifene (Las), and bazedoxifene (Bza) can be used to treat postmenopausal osteoporosis. They all reduce the risk for vertebral fractures, whereas Las and partly Bza, but not Ral, reduce the risk for nonvertebral fractures. Here, we have compared the tissue specificity of Ral, Las, and Bza and evaluated the role of ERαAF-1 for the effects of these SERMs, with an emphasis on bone parameters. We treated ovariectomized (OVX) wild-type (WT) mice and OVX mice lacking ERαAF-1 (ERαAF-10) with E2, Ral, Las, or Bza. All three SERMs increased trabecular bone mass in the axial skeleton. In the appendicular skeleton, only Las increased the trabecular bone volume/tissue volume and trabecular number, whereas both Ral and Las increased the cortical bone thickness and strength. However, Ral also increased cortical porosity. The three SERMs had only a minor effect on uterine weight. Notably, all evaluated effects of these SERMs were absent in ovx ERαAF-10 mice. In conclusion, all SERMs had similar effects on axial bone mass. However, the SERMs had slightly different effects on the appendicular skeleton since only Las increased the trabecular bone mass and only Ral increased the cortical porosity. Importantly, all SERM effects require a functional ERαAF-1 in female mice. These results could lead to development of more specific treatments for osteoporosis. PMID:27048997

  15. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice.

    Science.gov (United States)

    Allah Yar, Razia; Akbar, Atif; Iqbal, Furhan

    2015-01-21

    Currently there are no uniform standard treatments for newborn suffering from cerebral hypoxia-ischemia (HI) and to find new and effective strategies for treating the HI injury remains a key direction for future research. Present study was designed to demonstrate that optimal dose (1 or 3%) of creatine monohydrate (Cr) for the treatment of neonatal HI in female albino mice. On postnatal day 10, animals were subjected to left carotid artery ligation followed by 8% hypoxia for 25 minutes. Following weaning on postnatal day 20, mice were divided into three treatments on the basis of diet supplementation (Normal rodent diet, 1% and 3% creatine supplemented diet) for 10 week. A battery of neurological tests (Rota rod, open field and Morris water maze) was used to demonstrate effect of Cr supplementation on neurofunction and infarct size following HI. Open field test results indicated that Cr supplementation had significantly improved locomotory and exploratory behavior in subjects. It was observed that Cr treated mice showed better neuromuscular coordination (rota rod) and improved spatial memory (Morris Water Maze test). A significant affect of creatine supplementation in reducing infarct size was also observed. Post hoc analysis of post hoc multiple comparisons revealed that mice supplemented with 3% Cr for 10 weeks performed better during Morris water maze test while 1% Cr supplementation improved the exploratory behavior and gain in body weight than control group indicating that Cr supplementation has the potential to improve the neurofunction following neonatal brain damage. This article is part of a Special Issue entitled SI: Brain and Memory.

  16. Fat and carbohydrate intake over three generations modify growth, metabolism and cardiovascular phenotype in female mice in an age-related manner.

    Directory of Open Access Journals (Sweden)

    Samuel P Hoile

    Full Text Available Environmental challenges such as a high fat diet during pregnancy can induce changes in offspring growth, metabolism and cardiovascular function. However, challenges that are sustained over several generations can induce progressive compensatory metabolic adjustments in young adults. It is not known if such effects persist during ageing. We investigated whether diets with different fat and carbohydrate contents over three generations modifies markers of ageing. Female C57BL/6 F0 mice were fed diets containing 5% or 21% fat (w/w throughout pregnancy and lactation. Female offspring were fed the same diet as their dams until the F3 generation. In each generation, body weight, 24-hour food intake were recorded weekly, and plasma metabolites were measured by colorimetric assays, blood pressure by tail cuff plethysmography and vasoconstriction by myography on postnatal day 90 or 456. There was little effect of diet or generation on phenotypic markers in day 90 adults. There was a significant increase in whole body, liver and heart weight with ageing (d456 in the F3 21% fat group compared to the F1 and F3 5% groups. Fasting plasma glucose concentration was significantly increased with ageing in the 5% group in the F3 generation and in the 21% group in both generations. There was a significant effect of diet and generation on ex-vivo vasoconstriction in ageing females. Differences in dietary fat may induce metabolic compensation in young adults that persist over three generations. However, such compensatory effects decline during ageing.

  17. ASPECTOS CITOPATOLÓGICOS DA MUCOSA VAGINAL DE CAMUNDONGAS TRATADAS COM PROGESTERONA CYTOPATHOLOGICAL ASPECTS OF FEMALE MICES VAGINAL MUCOSA TREATEDS WITH MEDROXYPROGESTERONE

    Directory of Open Access Journals (Sweden)

    Liriane Baratella-Evêncio

    2007-07-01

    Full Text Available A regulação da atividade do ciclo estral dos mamí¬feros domésticos é um processo complexo e está, basica¬mente, sob o controle do eixo hipotálamo-adenohipófise-ovários, através de mecanismos endócrinos e neuroendócri¬nos. A progesterona constitui-se em importante regulador da atividade funcional e estrutural do sistema reprodutor das fêmeas domésticas. Considerando-se sua importância e sua freqüente utilização, realizou-se o presente trabalho, que teve por objetivo avaliar os aspectos citopatológicos da vagina de camundongas tratadas com progesterona. Foram utilizadas 36 camundongas da linhagem Swiss Webster di¬vididas em quatro grupos e submetidas aos seguintes pro¬cedimentos: Grupo S (controle – camundongas tratadas com o veículo e avaliadas durante quinze dias consecuti¬vos; Grupos E1, E2 e E3 (camundongas tratadas com 0,375 mg, 0,75 mg e 1,5 mg de acetato de medroxiprogesterona respectivamente e avaliadas durante quinze dias de experi¬mento. De acordo com os resultados obtidos pode-se con¬cluir que o acetato de medroxiprogesterona em dose única de 0,75 ou 1,5 mg predispõe a interrupção do cliclo estral e o aumento do número de leucócitos no colpocitológico de camundongas. PALAVRAS-CHAVES: Bloqueio do ciclo estral, ciclo estral, colpocitologia, medroxiprogesterona. The domestic mammal’s estrus cycle regulation is a complex process, controlled by hypothalamus-adenohy¬pofisis-ovary axis, through endocrine and neuroendocrine mechanisms. The use of progesterone hormone is an im¬portant way to regulate the functional and structural female reproductive tract activity. Considering the frequent pro¬gesterone usage and its importance, we intended to study the vagina citopathologycal aspects of female mice treated with progesterone. We used thirty six Swiss Webster female mice. These animals were divided in four groups: S Group (control group- female mice treated with vehicle and valued during fifteen days

  18. Toxicokinetics of α-thujone following intravenous and gavage administration of α-thujone or α- and β-thujone mixture in male and female F344/N rats and B6C3F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Waidyanatha, Suramya, E-mail: waidyanathas@niehs.nih.gov [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Johnson, Jerry D.; Hong, S. Peter [Battelle Memorial Institute, Columbus, OH 43201 (United States); Robinson, Veronica Godfrey [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Gibbs, Seth; Graves, Steven W. [Battelle Memorial Institute, Columbus, OH 43201 (United States); Hooth, Michelle J.; Smith, Cynthia S. [Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)

    2013-09-01

    Plants containing thujone have widespread use and hence have significant human exposure. α-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of α-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of α-thujone or a mixture of α- and β-thujone (which will be referred to as α,β-thujone). Absorption of α-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of α-thujone following administration of α-thujone or α,β-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. C{sub max} and AUC{sub ∞} increased greater than proportional to the dose in female rats following administration of α-thujone and in male and female mice following administration of α,β-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC{sub ∞} for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of α-thujone and α,β-thujone, respectively (p-value < 0.0001 for all comparisons). Following both intravenous and gavage administration, α-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of α-thujone and α,β-thujone where females were more sensitive than males of both species to α-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to α-thujone concentration. - Highlights: • Absorption of α-thujone following gavage administration was rapid in rats and mice. • Rats undergo higher exposure to α-thujone than mice. • α-Thujone brain

  19. Depression-like behavior of aged male and female mice is ameliorated with administration of testosterone or its metabolites

    OpenAIRE

    Frye, Cheryl A.; Walf, Alicia A.

    2009-01-01

    There may be a role of age-related decline in androgen production and/or its metabolism for late-onset depression disorders of men and women. Thus, the antidepressant-like effects of testosterone (T) and its metabolites are of interest. Given that these androgens have disparate mechanisms of action, it is important to begin to characterize and compare their effects in an aged animal model. We hypothesized that there would be sex differences in depression behavior of aged mice and that androge...

  20. Methylation changes in muscle and liver tissues of male and female mice exposed to acute and chronic low-dose X-ray-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, Olga; Burke, Paula; Besplug, Jill; Slovack, Mark; Filkowski, Jody; Pogribny, Igor

    2004-04-14

    The biological and genetic effects of chronic low-dose radiation (LDR) exposure and its relationship to carcinogenesis have received a lot of attention in the recent years. For example, radiation-induced genome instability, which is thought to be a precursor of tumorogenesis, was shown to have a transgenerational nature. This indicates a possible involvement of epigenetic mechanisms in LDR-induced genome instability. Genomic DNA methylation is one of the most important epigenetic mechanisms. Existing data on radiation effects on DNA methylation patterns is limited, and no one has specifically studied the effects of the LDR. We report the first study of the effects of whole-body LDR exposure on global genome methylation in muscle and liver tissues of male and female mice. In parallel, we evaluated changes in promoter methylation and expression of the tumor suppressor gene p16{sup INKa} and DNA repair gene O{sup 6}-methylguanine-DNA methyltransferase (MGMT). We observed different patterns of radiation-induced global genome DNA methylation in the liver and muscle of exposed males and females. We also found sex and tissue-specific differences in p16{sup INKa} promoter methylation upon LDR exposure. In male liver tissue, p16{sup INKa} promoter methylation was more pronounced than in female tissue. In contrast, no significant radiation-induced changes in p16{sup INKa} promoter methylation were noted in the muscle tissue of exposed males and females. Radiation also did not significantly affect methylation status of MGMT promoter. We also observed substantial sex differences in acute and chronic radiation-induced expression of p16{sup INKa} and MGMT genes. Another important outcome of our study was the fact that chronic low-dose radiation exposure proved to be a more potent inducer of epigenetic effects than the acute exposure. This supports previous findings that chronic exposure leads to greater genome destabilization than acute exposure.

  1. 哺乳期母鼠接触氯氰菊酯对雄性仔鼠睾酮合成的影响%Effects of cypermethrin exposure during lactation of female mice on testicular steroidogenesis in male baby mice

    Institute of Scientific and Technical Information of China (English)

    王素芳; 马兴好; 宁萑; 穆敏; 万艳梅; 徐德祥

    2011-01-01

    Objective To discuss the influence on the testicular steroidogenesis synthesation during baby mice cut-milking period and adult period of male mice by the cypermethrin exposure during lactation of the female mice.Methods Fourteen dams of new-born mice were randomly divided into two groups, cypermethrin poisoning group and solution control group.Since the first day after baby delivery, the sternal mice in the cypermethrin poisoning group were given stomach cypermethrin poisoning, using the corn oil as the solution and the poison dose is 25mg/ kg, until the 21st day after the delivery when the baby mice has cut-milking.While the control group is given the gavagy of the corn oil of the same volume.In each group, 15 male baby mice were killed at 21st day and 70th day after delivery, respectively.Taking blood from the eye-balls, and separate the testes.Use radioimmunoassay (RIA) method to measure serum testosterone (T) and estrogen ( E2 ) levels.Use RT-PCR method to measure StAR in the testes and the mRNA expression level of testosterone synthetic enzymes.Use Western blot to meausre StAR in the testes and the protein expression level of testosterone synthetic enzymes.Results Cypermethrin exposure during lactation of the female mice significantly leads to the decrease of serum testosterone of the male baby mice ( P < 0.01 ) and the decrease of the testosterone in the testes ( P < 0.05 ) , having no influence of the famale hormones ( P < 0.05 ).And the cypermethrin exposure during lactation makes the significant decrease of the expression levels of the mRNA and the protein, of P450scc in the male baby mice testes, compared with the control group.And themRNA expression levels of StAR, 17β-HSD, and P450 17α decrease somewhat (P < 0.05), compared with the control group, but the protein expression levels of the above almost suffer no influence.Cypermethrin exposure during lactation of the female mice has almost no influence on the serum testosterone level

  2. Metabolic changes in serum steroids induced by total-body irradiation of female C57B/6 mice.

    Science.gov (United States)

    Moon, Ju-Yeon; Shin, Hee-June; Son, Hyun-Hwa; Lee, Jeongae; Jung, Uhee; Jo, Sung-Kee; Kim, Hyun Sik; Kwon, Kyung-Hoon; Park, Kyu Hwan; Chung, Bong Chul; Choi, Man Ho

    2014-05-01

    The short- and long-term effects of a single exposure to gamma radiation on steroid metabolism were investigated in mice. Gas chromatography-mass spectrometry was used to generate quantitative profiles of serum steroid levels in mice that had undergone total-body irradiation (TBI) at doses of 0Gy, 1Gy, and 4Gy. Following TBI, serum samples were collected at the pre-dose time point and 1, 3, 6, and 9 months after TBI. Serum levels of progestins, progesterone, 5β-DHP, 5α-DHP, and 20α-DHP showed a significant down-regulation following short-term exposure to 4Gy, with the exception of 20α-DHP, which was significantly decreased at each of the time points measured. The corticosteroids 5α-THDOC and 5α-DHB were significantly elevated at each of the time points measured after exposure to either 1 or 4Gy. Among the sterols, 24S-OH-cholestoerol showed a dose-related elevation after irradiation that reached significance in the high dose group at the 6- and 9-month time points.

  3. Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice

    DEFF Research Database (Denmark)

    Hufeldt, Majbritt Ravn; Nielsen, Dennis Sandris; Vogensen, Finn Kvist

    2010-01-01

    The gut microbiota (GM) may influence disease expression in several animal models for inflammatory diseases. It may therefore seem reasonable to pursue reduction in the number of animals used for individual studies by reducing the variation in the GM. Previous studies have shown that the composit......The gut microbiota (GM) may influence disease expression in several animal models for inflammatory diseases. It may therefore seem reasonable to pursue reduction in the number of animals used for individual studies by reducing the variation in the GM. Previous studies have shown...... that the composition of the GM is related to genetics to a certain extent. We hypothesized that the GM similarity in a group of mice born by mothers not being sisters would be lower than that in a group born by mothers being sisters. The lower similarity could lead to clustering of the GM of mice born by non......-sisters according to their mothers, while such clustering would not be visible if the mothers were sisters. We used 16S rRNA gene (V3 region) polymerase chain reaction-derived amplicon profiling by denaturing gradient gel electrophoresis (DGGE) to study the GM composition in caecum samples of 33 eight-week-old C57...

  4. Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice

    DEFF Research Database (Denmark)

    Hufeldt, Majbritt Ravn; Nielsen, Dennis Sandris; Vogensen, Finn Kvist

    2010-01-01

    The gut microbiota (GM) may influence disease expression in several animal models for inflammatory diseases. It may therefore seem reasonable to pursue reduction in the number of animals used for individual studies by reducing the variation in the GM. Previous studies have shown that the composit......The gut microbiota (GM) may influence disease expression in several animal models for inflammatory diseases. It may therefore seem reasonable to pursue reduction in the number of animals used for individual studies by reducing the variation in the GM. Previous studies have shown...... that the composition of the GM is related to genetics to a certain extent. We hypothesized that the GM similarity in a group of mice born by mothers not being sisters would be lower than that in a group born by mothers being sisters. The lower similarity could lead to clustering of the GM of mice born by non......-sisters according to their mothers, while such clustering would not be visible if the mothers were sisters. We used 16S rRNA gene (V3 region) polymerase chain reaction-derived amplicon profiling by denaturing gradient gel electrophoresis (DGGE) to study the GM composition in caecum samples of 33 eight-week-old C57...

  5. Data on hepatic lipolysis, adipose triglyceride lipase, and hormone-sensitive lipase in fasted and non-fasted C57BL/6J female mice

    Directory of Open Access Journals (Sweden)

    Phillip M. Marvyn

    2016-06-01

    Full Text Available Liver homogenates produced from fasted and non-fasted C57BL/6J female mice were assayed for total lipolytic activity measured as hydrolysis of [9,10-3H(N]-triolein into [3H] free fatty acids (FFA. Liver homogenates were also used for immunoblotting to determine levels of the lipolytic enzymes adipose-triglyceride lipase (ATGL and hormone-sensitive lipase (HSL, as well as site specific phosphorylation at the 14-3-3 binding site of ATGL and the serine 565 and serine 660 sites of HSL. Significantly higher triolein hydrolysis activity was observed in fasted liver samples, as well as a significant increase in total ATGL and a significant decrease in HSL phosphorylation at the S565 site.

  6. [Differentially expressed genes identified in the main olfactory epithelium of mice with deficiency of adenylate cyclase 3 by using suppression subtractive hybridization approach].

    Science.gov (United States)

    Zhenlong, Cao; Jiangye, Hao; Yanfen, Zhou; Zhe, Zhang; Zhihua, Ni; Yuanxiang, Hu; Weili, Liu; Yongchao, Li; Daniel, R Storm; Runlin, Z Ma; Zhenshan, Wang

    2014-06-01

    Adenylate cyclase 3 (AC3) is one of the major players in the olfactory signaling within the main olfactory epithelium (MOE) of mice. However, we are not ascertained whether deficiency of AC3 will lead to the differential expression of related genes in the MOE. Forward and reverse subtractive libraries were constructed by suppression subtractive hybridization (SSH) approach, with MOEs from AC3(-/-) and AC3(+/+) mice. These two libraries were primarily screened by Dot blot, differential expressed clones were sequenced and analyzed by bioinformatics, and differential expressed genes were verified by qRT-PCR. A total of 386 differentially expressed clones were picked out after Dot blot. The DNA sequences of 80 clones randomly selected were determined, and 62 clones were identified by blasting in GenBank. We found that 24 up-regulated clones were corresponded to genes of kcnk3, mapk7, megf11, and 38 down-regulated clones were corresponded to tmem88b, c-mip, skp1a, mlycd, etc. Their functions were annotated with Gene Ontology (GO) and found to be mainly focused on molecular binding, cell cycle, processes of biology and cells. Five genes (kcnk3, c-mip, mlycd, tmem88b and trappc5) were verified by qRT-PCR with individuals of AC3(+/+) and AC3(-/-) mice. The data indicate that kcnk3 gene is up-regulated significantly, increasing 1.27 folds compared to control mice, whereas c-mip, mlycd, tmem88b and trappc5 are down-regulated significantly, decreasing 20%, 7%, 32% and 29% compared to the AC3(+/+)mice. The functions of these genes are closely related with K(+) channels, cell differentiation, metabolism of fats, membrane transportation, and so on. It is tempting to speculate that these genes might work together with AC3 to orchestrate the olfactory transduction signaling in the MOE.

  7. Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brains of normal, aneuploid, and lesioned mice

    Energy Technology Data Exchange (ETDEWEB)

    Bendotti, C.; Forloni, G.L.; Morgan, R.A.; O' Hara, B.F.; Oster-Granite, M.L.; Reeves, R.H.; Gearhart, J.D.; Coyle, J.T. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1988-05-01

    Amyloid precursor protein mRNA was localized in frozen sections from normal and experimentally lesioned adult mouse brain and from normal and aneuploid fetal mouse brain by in situ hybridization with a {sup 35}S-labeled mouse cDNA probe. The highest levels of hybridization in adult brain were associated with neurons, primarily in telencephalic structures. The dense labeling associated with hippocampal pyramidal cells was reduced significantly when the cells were eliminated by injection of the neurotoxin ibotenic acid but was not affected when electrolytic lesions were placed in the medial septum. Since the gene encoding amyloid precursor protein has been localized to mouse chromosome 16, the authors also examined the expression of this gene in the brains of mouse embryos with trisomy 16 and trisomy 19 at 15 days of gestation. RNA gel blot analysis and in situ hybridization showed a marked increase in amyloid precursor protein mRNA in the trisomy 16 mouse head and brain when compared with euploid littermates or with trisomy 19 mice.

  8. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice.

    Science.gov (United States)

    Pathak, Rupak; Koturbash, Igor; Hauer-Jensen, Martin

    2017-01-11

    Ionizing radiation (IR) induces numerous stable and unstable chromosomal aberrations. Unstable aberrations, where chromosome morphology is substantially compromised, can easily be identified by conventional chromosome staining techniques. However, detection of stable aberrations, which involve exchange or translocation of genetic materials without considerable modification in the chromosome morphology, requires sophisticated chromosome painting techniques that rely on in situ hybridization of fluorescently labeled DNA probes, a chromosome painting technique popularly known as fluorescence in situ hybridization (FISH). FISH probes can be specific for whole chromosome/s or precise sub-region on chromosome/s. The method not only allows visualization of stable aberrations, but it can also allow detection of the chromosome/s or specific DNA sequence/s involved in a particular aberration formation. A variety of chromosome painting techniques are available in cytogenetics; here two highly sensitive methods, multiple fluorescence in situ hybridization (mFISH) and spectral karyotyping (SKY), are discussed to identify inter-chromosomal stable aberrations that form in the bone marrow cells of mice after exposure to total body irradiation. Although both techniques rely on fluorescent labeled DNA probes, the method of detection and the process of image acquisition of the fluorescent signals are different. These two techniques have been used in various research areas, such as radiation biology, cancer cytogenetics, retrospective radiation biodosimetry, clinical cytogenetics, evolutionary cytogenetics, and comparative cytogenetics.

  9. Aging negatively affects estrogens-mediated effects on nitric oxide bioavailability by shifting ERα/ERβ balance in female mice.

    Directory of Open Access Journals (Sweden)

    Laura Novensà

    Full Text Available AIMS: Aging is among the major causes for the lack of cardiovascular protection by estrogen (E2 during postmenopause. Our study aims to determine the mechanisms whereby aging changes E2 effects on nitric oxide (NO production in a mouse model of accelerated senescence (SAM. METHODS AND RESULTS: Although we found no differences on NO production in females SAM prone (SAMP, aged compared to SAM resistant (SAMR, young, by either DAF-2 fluorescence or plasmatic nitrite/nitrate (NO2/NO3, in both cases, E2 treatment increased NO production in SAMR but had no effect in SAMP. Those results are in agreement with changes of eNOS protein and gene expression. E2 up-regulated eNOS expression in SAMR but not in SAMP. E2 is also known to increase NO by decreasing its catabolism by superoxide anion (O(2(-. Interestingly, E2 treatment decreased O(2(- production in young females, while increased O(2(- in aged ones. Furthermore, we observed that aging changed expression ratio of estrogen receptors (ERβ/ERα and levels of DNA methylation. Increased ratio ERβ/ERα in aged females is associated to a lack of estrogen modulation of NO production and with a reversal in its antioxidant effect to a pro-oxidant profile. CONCLUSIONS: Together, our data suggest that aging has detrimental effects on E2-mediated benefits on NO bioavailability, partially by affecting the ability of E2 to induce up regulation of eNOS and decrease of O(2(-. These modifications may be associated to aging-mediated modifications on global DNA methylation status, but not to a specific methylation at 5'flanking region of ERα gene.

  10. MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice

    Science.gov (United States)

    Risal, Sanjiv; Zhang, Jingjing; Adhikari, Deepak; Liu, Xiaoman; Shao, Jingchen; Hu, Mengwen; Busayavalasa, Kiran; Tu, Zhaowei; Chen, Zijiang; Kaldis, Philipp; Liu, Kui

    2017-01-01

    In mammals, primordial germ cells (PGCs) are the embryonic cell population that serve as germ cell precursors in both females and males. During mouse embryonic development, the majority of PGCs are arrested at the G2 phase when they migrate into the hindgut at 7.75–8.75 dpc (days post coitum). It is after 9.5 dpc that the PGCs undergo proliferation with a doubling time of 12.6 h. The molecular mechanisms underlying PGC proliferation are however not well studied. In this work. Here we studied how MASTL (microtubule-associated serine/threonine kinase-like)/Greatwall kinase regulates the rapid proliferation of PGCs. We generated a mouse model where we specifically deleted Mastl in PGCs and found a significant loss of PGCs before the onset of meiosis in female PGCs. We further revealed that the deletion of Mastl in PGCs did not prevent mitotic entry, but led to a failure of the cells to proceed beyond metaphase-like stage, indicating that MASTL-mediated molecular events are indispensable for anaphase entry in PGCs. These mitotic defects further led to the death of Mastl-null PGCs by 12.5 dpc. Moreover, the defect in mitotic progression observed in the Mastl-null PGCs was rescued by simultaneous deletion of Ppp2r1a (α subunit of PP2A). Thus, our results demonstrate that MASTL, PP2A, and therefore regulated phosphatase activity have a fundamental role in establishing female germ cell population in gonads by controlling PGC proliferation during embryogenesis. PMID:28224044

  11. Normal X-inactivation mosaicism in corneas of heterozygous FlnaDilp2/+ female mice--a model of human Filamin A (FLNA diseases

    Directory of Open Access Journals (Sweden)

    Douvaras Panagiotis

    2012-02-01

    Full Text Available Abstract Background Some abnormalities of mouse corneal epithelial maintenance can be identified by the atypical mosaic patterns they produce in X-chromosome inactivation mosaics and chimeras. Human FLNA/+ females, heterozygous for X-linked, filamin A gene (FLNA mutations, display a range of disorders and X-inactivation mosaicism is sometimes quantitatively unbalanced. FlnaDilp2/+ mice, heterozygous for an X-linked filamin A (Flna nonsense mutation have variable eye, skeletal and other abnormalities, but X-inactivation mosaicism has not been investigated. The aim of this study was to determine whether X-inactivation mosaicism in the corneal epithelia of FlnaDilp2/+ mice was affected in any way that might predict abnormal corneal epithelial maintenance. Results X-chromosome inactivation mosaicism was studied in the corneal epithelium and a control tissue (liver of FlnaDilp2/+ and wild-type (WT female X-inactivation mosaics, hemizygous for the X-linked, LacZ reporter H253 transgene, using β-galactosidase histochemical staining. The corneal epithelia of FlnaDilp2/+ and WT X-inactivation mosaics showed similar radial, striped patterns, implying epithelial cell movement was not disrupted in FlnaDilp2/+ corneas. Corrected stripe numbers declined with age overall (but not significantly for either genotype individually, consistent with previous reports suggesting an age-related reduction in stem cell function. Corrected stripe numbers were not reduced in FlnaDilp2/+ compared with WT X-inactivation mosaics and mosaicism was not significantly more unbalanced in the corneal epithelia or livers of FlnaDilp2/+ than wild-type Flna+/+ X-inactivation mosaics. Conclusions Mosaic analysis identified no major effect of the mouse FlnaDilp2 mutation on corneal epithelial maintenance or the balance of X-inactivation mosaicism in the corneal epithelium or liver.

  12. Effects of Maternal Isocaloric Diet Containing Different Amounts of Soy Oil and Extra Virgin Olive Oil on Weight, Serum Glucose, and Lipid Profile of Female Mice Offspring

    Science.gov (United States)

    Mousavi, Seyedeh Neda; Koohdani, Fariba; Shidfar, Farzad; Eslaminejad, Mohamadreza Baghaban; Izadi, Pantea; Eshraghian, Mohammadreza; Shafieineek, Leila; Tohidinik, Hamidreza

    2017-01-01

    Background: Health status of offspring is programmed by maternal diet throughout gestation and lactation. The present study investigates the lasting effects of maternal supplementation with different amounts of soy oil or extra virgin olive oil (EVOO) on weight and biochemical parameters during gestation and lactation of female mice offspring. Methods: Eight weeks old female C57BL/6 mice (n=40) were assigned through simple randomization into four isocaloric dietary groups (16% of calories as soy oil (LSO) or EVOO (LOO) and 45% of calories as soy oil (HSO) or EVOO (HOO)) during three weeks of gestation and lactation. After weaning (at 3 weeks), all offspring received a diet containing 16% of calories as soy oil and were sacrificed at 6 weeks. Two-way ANOVA was used to adjust for confounding variables and repeated measures test for weight gain trend. Statistical analyses were performed with the IBM SPSS package. Results: At birth and adolescence, the weight of offspring was significantly higher in the soy oil than the olive oil groups (P<0.001 and P<0.001, respectively). Adolescence weight was significantly higher in the offspring born to mothers fed with 16% oil than those with 45% oil (P=0.001). Serum glucose, triglyceride and total cholesterol were significantly higher in the LSO than LOO (P<0.001, P<0.001 and P<0.001), LSO than HSO (P<0.001, P=0.03 and P<0.001), and LOO than HOO (P<0.001, P<0.001 and P<0.001) dietary groups, respectively. Serum triglyceride and total cholesterol were significantly higher in the offspring of HSO than HOO fed mothers (P<0.001 and P<0.001, respectively). Conclusion: A maternal diet containing EVOO has better effects on birth weight, as well as weight and serum biochemical parameters in offspring at adolescence. PMID:28360442

  13. Effects of Prolactin and Lactation on A15 Dopamine Neurones in the Rostral Preoptic Area of Female Mice.

    Science.gov (United States)

    Brown, R S E; Herbison, A E; Grattan, D R

    2015-09-01

    There are several distinct populations of dopamine neurones in the hypothalamus. Some of these, such as the A12 tuberoinfundibular dopamine neurones and the A14 periventricular dopamine neurones, are known to be regulated by the anterior pituitary hormone prolactin, whereas others, such as the A13 zona incerta dopaminergic neurones, are not. The present study aimed to investigate the role of prolactin in the regulation of a fourth population of hypothalamic dopamine neurones: the A15 dopamine population in the rostral hypothalamus. These neurones may play a role in the regulation of gonadotrophin-releasing hormone (GnRH) secretion, and we hypothesised that they might contribute to the suppression of GnRH release and infertility caused by hyperprolactinaemia. Under basal (low prolactin) conditions, only 8% of A15 dopamine neurones in the anteroventral periventricular nucleus (AVPV) of vehicle-treated dioestrous mice expressed phosphorylated signal transducer and activator of transcription 5 (pSTAT5), as labelled by immunohistochemistry. We have previously shown that this transcription factor can be used as an index of prolactin-receptor activation. Following acute prolactin administration, 35% of AVPV dopamine neurones co-expressed pSTAT5, whereas, during lactation, when endogenous prolactin levels are chronically elevated, 55% of AVPV dopamine neurones expressed pSTAT5. There was also a significant increase in dopamine turnover in the rostral hypothalamus, both in the diagonal band of Broca at the level of the organum vasculosum of the lamina terminalis and in the rostral preoptic area during lactation, with the 3,4-dihydroxyphenylacetic acid/dopamine ratio increasing from 0.28 ± 0.04 and 0.14 ± 0.01 in dioestrous mice to 0.82 ± 0.06 and 0.38 ± 0.03, respectively, in day 7 lactating mice. It is not yet known whether this change is driven by the hyperprolactinaemia of lactation, or another lactation-specific signal. These data demonstrate that the A15

  14. Morphology of the external genitalia of the adult male and female mice as an endpoint of sex differentiation

    Science.gov (United States)

    Weiss, Dana A.; Rodriguez, Esequiel; Cunha, Tristan; Menshenina, Julia; Barcellos, Dale; Chan, Lok Yun; Risbridger, Gail; Baskin, Laurence; Cunha, Gerald

    2013-01-01

    Adult external genitalia (ExG) are the endpoints of normal sex differentiation. Detailed morphometric analysis and comparison of adult mouse ExG has revealed 10 homologous features distinguishing the penis and clitoris that define masculine vs. feminine sex differentiation. These features have enabled the construction of a simple metric to evaluate various intersex conditions in mutant or hormonally manipulated mice. This review focuses on the morphology of the adult mouse penis and clitoris through detailed analysis of histologic sections, scanning electron microscopy, and three-dimensional reconstruction. We also present previous results from evaluation of “non-traditional” mammals, such as the spotted hyena and wallaby to demonstrate the complex process of sex differentiation that involves not only androgen-dependent processes, but also estrogen-dependent and hormone-independent mechanisms. PMID:21893161

  15. A lyophilized red grape pomace containing proanthocyanidin-rich dietary fiber induces genetic and metabolic alterations in colon mucosa of female C57BL/6J mice.

    Science.gov (United States)

    Lizarraga, Daneida; Vinardell, M Pilar; Noé, Véronique; van Delft, Joost H; Alcarraz-Vizán, Gema; van Breda, Simone G; Staal, Yvonne; Günther, Ulrich L; Carrigan, John B; Reed, Michelle A; Ciudad, Carlos J; Torres, Josep L; Cascante, Marta

    2011-09-01

    Diet plays a decisive role in promoting or preventing colon cancer. However, the specific effects of some nutrients remain unclear. The capacity of fruit and vegetables to prevent cancer has been associated with their fiber and antioxidant composition. We investigated whether consumption of a lyophilized red grape pomace containing proanthocyanidin-rich dietary fiber (grape antioxidant dietary fiber, GADF) by female C57BL/6J mice would affect the serum metabolic profile or colon mucosa gene expression using NMR techniques and DNA microarray, respectively. The mice were randomly assigned to 2 groups that for 2 wk consumed a standard rodent diet and were gavaged with 100 mg/kg body weight GADF suspended in water or an equivalent volume of plain tap water (10 mL/kg body weight). The amount of fiber supplemented was calculated to equal the current recommended daily levels of fiber consumption for humans. The inclusion of dietary GADF induced alterations in the expression of tumor suppressor genes and proto-oncogenes as well as the modulation of genes from pathways, including lipid biosynthesis, energy metabolism, cell cycle, and apoptosis. Overexpression of enzymes pertaining to the xenobiotic detoxifying system and endogenous antioxidant cell defenses was also observed. In summary, the genetic and metabolic profiles induced by GADF were consistent with the preventive effects of fiber and polyphenols. On the basis of these observations, we propose that GADF may contribute to reducing the risk of colon cancer.

  16. Susceptibility and morbidity between male and female Swiss mice infected with Angiostrongylus costaricensis: Susceptibilidade e morbidade entre camundongos Swiss machos e fêmeas infectados com Angiostrongylus costaricensis

    Directory of Open Access Journals (Sweden)

    Márcia B. Mentz

    2010-10-01

    Full Text Available The gender of vertebrate hosts may affect the outcome of parasitic infections. An experimental murine infection with Angiostrongylus costaricensis was followed with determinations of body weight, fecal larval elimination, number and length of adult worms, number of macroscopic intestinal lesions, and mortality. Groups of male and female Swiss mice were infected with 10 3rd-stage A. costaricensis larvae per animal. The results indicate there are no significant differences related to gender of the host, except for higher length of worms developed in male mice.O sexo dos hospedeiros vertebrados pode influenciar no resultado de infecções parasitárias. A infecção experimental de camundongos com Angiostrongylus costaricensis foi acompanhada com observação do peso corporal, eliminação de larvas nas fezes, número e comprimento dos vermes adultos, número de lesões macroscópicas nos intestinos e mortalidade. Grupos de camundongos Swiss machos e fêmeas foram infectados cada um com 10 larvas de terceiro estágio de A. costaricensis. Os resultados indicam que não há diferenças significativas relacionados ao sexo dos hospedeiros, exceto pelo maior comprimento dos vermes nos hospedeiros machos.

  17. Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin.

    Science.gov (United States)

    Villa-Osaba, Alicia; Gahete, Manuel D; Cordoba-Chacon, José; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M

    2016-10-15

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response.

  18. No effect of route of exposure (oral; subcutaneous injection) on plasma bisphenol A throughout 24h after administration in neonatal female mice.

    Science.gov (United States)

    Taylor, Julia A; Welshons, Wade V; Vom Saal, Frederick S

    2008-02-01

    Route of administration of chemicals in adults is an important factor in pharmacokinetics of chemicals such as bisphenol A (BPA), the monomer with estrogenic activity used to make polycarbonate plastic products and to line food and beverage cans. Based on findings in adults it has been proposed (CERHR, 2007) that non-oral routes of administration in newborn rodents would also lead to high exposure relative to oral administration. However, in fetuses and neonates, the enzyme that conjugates BPA (UDP-glucuronosyltransferase) is expressed at low levels, suggesting that there may be no differences in pharmacokinetics between oral and non-oral dosing. We thus conducted an analysis of plasma concentrations of unconjugated 3H-BPA after HPLC separation in postnatal day 3 female mice throughout the 24h after administering 3H-BPA orally or via subcutaneous injection at doses above and below the current EPA reference dose. We found no significant difference in plasma BPA based on route of administration in neonatal mice at either dose. However, compared to data from other studies conducted with adults, there was a markedly higher plasma BPA level after oral administration of BPA in newborn mice. This finding sets aside the belief that non-oral administration of BPA renders data as not suitable for consideration of the hazard posed by low-dose exposure to BPA during neonatal life. Therefore the large numbers of BPA studies that used non-oral administration at very low doses during the neonatal period should not be dismissed by scientists or the regulatory community based on route of administration.

  19. [Effect of oregano essential oil on the engraftment and development of Lewis carcinoma in F1 DBA C57 black hybrid mice].

    Science.gov (United States)

    Misharina, T A; Burlakova, E B; Fatkullina, L D; Alinkina, E S; Vorob'eva, A K; Medvedeva, I B; Erokhin, V N; Semenov, V A; Nagler, L G; Kozachenko, A I

    2013-01-01

    The effect of a low uptake dose of oregano essential oil with drinking water for three months (Origanum vulgare L.) on the degree of Lewis carcinoma engraftment and some parameters of oxidative stress has been studied in vivo using F1 DBA C57 Black hybrid mice. Oregano essential oil has been established to possess an anticancer activity. The degree of tumor engraftment decreased by 1.8 times, its size decreased by