WorldWideScience

Sample records for hybrid delivery system

  1. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    Science.gov (United States)

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  2. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  3. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.

    Science.gov (United States)

    Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2018-05-17

    Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable

  4. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su [Department of Agricultural Bioechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742 (Korea, Republic of)], E-mail: chocs@plaza.snu.ac.kr

    2008-06-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI.

  5. Efficient gene delivery using chitosan-polyethylenimine hybrid systems

    International Nuclear Information System (INIS)

    Jiang, Hu-Lin; Kim, Tae-Hee; Kim, You-Kyoung; Park, In-Young; Cho, Chong-Su; Cho, Myung-Haing

    2008-01-01

    Chitosan and chitosan derivatives have been investigated as non-viral vectors because they have several advantages, such as biocompatibility, biodegradability, low cytotoxicity and low immunogenicity. However, low transfection efficiency and low cell specificity must be solved for their use in clinical trials. In this paper, chitosan-polyethylenimine (PEI) hybrid systems such as chitosan/PEI blend and chitosan-graft-PEI are described for efficient gene delivery because the PEI has high transfection efficiency owing to a proton sponge effect and chitosan has biocompatibility. Also, hepatocyte specificity of the galactosylated chitosan is explained after combination with PEI

  6. A novel thermal and pH responsive drug delivery system based on ZnO@PNIPAM hybrid nanoparticles

    International Nuclear Information System (INIS)

    Tan, Licheng; Liu, Jian; Zhou, Weihua; Wei, Junchao; Peng, Zhiping

    2014-01-01

    A smart ZnO@PNIPAM hybrid was prepared by grafting thermal responsive poly(N-isopropylacrylamide) (PNIPAM) on zinc oxide (ZnO) nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). The thermal gravimetric analysis (TGA) shows that the grafting amount of PNIPAM was about 38%, and the SEM images show that the PNIPAM chains can prevent the aggregation of ZnO nanoparticles. The responsive properties of ZnO@PNIPAM were measured by photoluminescence spectra, and the results demonstrate that the PNIPAM chains grafted on ZnO surfaces can realize reversible thermal responsive and photoluminescence properties. An anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the hybrid nanoparticles, and an in vitro drug release test implied that ZnO@PNIPAM could work as a thermal responsive drug delivery system. Furthermore, pH sensitive drug releases were carried out in acetate buffer at pH 5.0 and pH 6.0 and in water at pH 7.0, and the results showed evident pH dependency, showing its pH responsive properties. - Graphical abstract: In this manuscript, thermal responsive poly(N-isopropylacrylamide) (PNIPAM) was grafted on the surface of ZnO nanoparticles. The obtained ZnO@PNIPAM hybrid showed reversible thermal responsive photoluminescent properties, and can also work as a thermal and pH responsive drug delivery system. - Highlights: • The ZnO@PNIPAM hybrid was prepared via ATRP. • The ZnO@PNIPAM hybrid showed thermal responsive properties. • The ZnO@PNIPAM hybrid can work as a thermal and pH responsive drug delivery system

  7. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  8. Eighteen-Month Final Evaluation of UPS Second Generation Diesel Hybrid-Electric Delivery Vans

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M.; Walkowicz, K.

    2012-09-01

    A parallel hybrid-electric diesel delivery van propulsion system was evaluated at a UPS facility in Minneapolis using on-vehicle data logging, fueling, and maintenance records. Route and drive cycle analysis showed different duty cycles for hybrid vs. conventional delivery vans; routes were switched between the study groups to provide a valid comparison. The hybrids demonstrated greater advantage on the more urban routes; the initial conventional vans' routes had less dense delivery zones. The fuel economy of the hybrids on the original conventional group?s routes was 10.4 mpg vs. 9.2 mpg for the conventional group on those routes a year earlier. The hybrid group's fuel economy on the original hybrid route assignments was 9.4 mpg vs. 7.9 mpg for the conventional group on those routes a year later. There was no statistically significant difference in total maintenance cost per mile or for the vehicle total cost of operation per mile. Propulsion-related maintenance cost per mile was 77% higher for the hybrids, but only 52% more on a cost-per-delivery-day basis. Laboratory dynamometer testing demonstrated 13%-36% hybrid fuel economy improvement, depending on duty cycle, and up to a 45% improvement in ton-mi/gal. NOx emissions increased 21%-49% for the hybrids in laboratory testing.

  9. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Gorzelanny, Christian; Halter, Natalia

    2016-01-01

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248 +/- 94 nm to 600 +/- 201 nm, depending on the amount of phospholipids...... used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7 days in Phosphate Buffer...... culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system....

  10. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  11. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    International Nuclear Information System (INIS)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng

    2015-01-01

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC 0–6h values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes

  12. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery.

    Science.gov (United States)

    Mendes, Ana C; Gorzelanny, Christian; Halter, Natalia; Schneider, Stefan W; Chronakis, Ioannis S

    2016-08-20

    Chitosan (Ch) polysaccharide was mixed with phospholipids (P) to generate electrospun hybrid nanofibers intended to be used as platforms for transdermal drug delivery. Ch/P nanofibers exibithed average diameters ranging from 248±94nm to 600±201nm, depending on the amount of phospholipids used. Fourier Transformed Infra-Red (FTIR) spectroscopy and Dynamic Light Scattering (DLS) data suggested the occurrence of electrostatic interactions between amine groups of chitosan with the phospholipid counterparts. The nanofibers were shown to be stable for at least 7days in Phosphate Buffer Saline (PBS) solution. Cytotoxicity studies (WST-1 and LDH assays) demonstrated that the hybrid nanofibers have suitable biocompatibility. Fluorescence microscopy, also suggested that L929 cells seeded on top of the CH/P hybrid have similar metabolic activity comparatively to the cells seeded on tissue culture plate (control). The release of curcumin, diclofenac and vitamin B12, as model drugs, from Ch/P hybrid nanofibers was investigated, demonstrating their potential utilization as a transdermal drug delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Synthesis and Characterization of Salicylate-zinc Layered Hydroxide Nano hybrid for Antiinflammatory Active Delivery

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Mohd Zobir Hussein; Munirah Ramli; Khatijah Yusoff

    2011-01-01

    The emergence of nano technology has prompted much advancement in various areas of research that includes cellular delivery systems, particularly those dealing with delivery of compounds with therapeutic effects. This study aimed at investigating the use of a layered nano material for formation of a new organic-inorganic nano hybrid material. In this work, a compound of zinc layered hydroxide (ZLH) used as a host for a guest, anti-inflammatory agent salicylate (SA) was synthesized. Through simple, direct reaction of SA solution at various concentrations with commercial zinc oxide, SA was found to be intercalated between the ZLH inorganic layers. Powder x-ray diffraction (PXRD) patterns revealed that the basal spacing of the nano hybrid is around 16.14 Angstrom. Further characterizations also confirmed that SA was successfully intercalated into the interlayers of the nano hybrid. Results generated from this work provide information beneficial for development of a new delivery system for therapeutic compounds consisting of antiinflammatory agents. (author)

  14. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    Directory of Open Access Journals (Sweden)

    Teerapong Yata

    2014-01-01

    Full Text Available Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage, viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage.

  15. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts.

    Science.gov (United States)

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization.

  16. Sustained co-delivery of BIO and IGF-1 by a novel hybrid hydrogel system to stimulate endogenous cardiac repair in myocardial infarcted rat hearts

    Science.gov (United States)

    Fang, Rui; Qiao, Shupei; Liu, Yi; Meng, Qingyuan; Chen, Xiongbiao; Song, Bing; Hou, Xiaolu; Tian, Weiming

    2015-01-01

    Dedifferentiation and proliferation of endogenous cardiomyocytes in situ can effectively improve cardiac repair following myocardial infarction (MI). 6-Bromoindirubin-3-oxime (BIO) and insulin-like growth factor 1 (IGF-1) are two potent factors that promote cardiomyocyte survival and proliferation. However, their delivery for sustained release in MI-affected areas has proved to be challenging. In the current research, we present a study on the sustained co-delivery of BIO and IGF-1 in a hybrid hydrogel system to simulate endogenous cardiac repair in an MI rat model. Both BIO and IGF-1 were efficiently encapsulated in gelatin nanoparticles, which were later cross-linked with the oxidized alginate to form a novel hybrid hydrogel system. The in vivo results indicated that the hybrid system could enhance the proliferation of cardiomyocytes in situ and could promote revascularization around the MI sites, allowing improved cardiac function. Taken together, we concluded that the hybrid hydrogel system can co-deliver BIO and IGF-1 to areas of MI and thus improve cardiac function by promoting the proliferation of cardiomyocytes and revascularization. PMID:26251592

  17. Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo.

    Science.gov (United States)

    Servant, Ania; Methven, Laura; Williams, Rhodri P; Kostarelos, Kostas

    2013-06-01

    Drug release triggered by an external non-invasive stimulus is of great interest for the development of new drug delivery systems. The preparation of an electroresponsive multiwalled carbon nanotube/poly(methylacrylic acid) (MWNT/PMAA)-based hybrid material is reported. The hydrogel hybrids achieve a controlled drug release upon the ON/OFF application of an electric field, giving rise to in vitro and in vivo pulsatile release profiles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sperm-Hybrid Micromotor for Targeted Drug Delivery.

    Science.gov (United States)

    Xu, Haifeng; Medina-Sánchez, Mariana; Magdanz, Veronika; Schwarz, Lukas; Hebenstreit, Franziska; Schmidt, Oliver G

    2018-01-23

    A sperm-driven micromotor is presented as a targeted drug delivery system, which is appealing to potentially treat diseases in the female reproductive tract. This system is demonstrated to be an efficient drug delivery vehicle by first loading a motile sperm cell with an anticancer drug (doxorubicin hydrochloride), guiding it magnetically, to an in vitro cultured tumor spheroid, and finally freeing the sperm cell to deliver the drug locally. The sperm release mechanism is designed to liberate the sperm when the biohybrid micromotor hits the tumor walls, allowing it to swim into the tumor and deliver the drug through the sperm-cancer cell membrane fusion. In our experiments, the sperm cells exhibited a high drug encapsulation capability and drug carrying stability, conveniently minimizing  toxic side effects and unwanted drug accumulation in healthy tissues. Overall, sperm cells are excellent candidates to operate in physiological environments, as they neither express pathogenic proteins nor proliferate to form undesirable colonies, unlike other cells or microorganisms. This sperm-hybrid micromotor is a biocompatible platform with potential application in gynecological healthcare, treating or detecting cancer or other diseases in the female reproductive system.

  19. Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    Science.gov (United States)

    Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489

  20. Generic delivery of payload of nanoparticles intracellularly via hybrid polymer capsules for bioimaging applications.

    Directory of Open Access Journals (Sweden)

    Haider Sami

    Full Text Available Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM capsules has been reported, where polystyrene sulfonate (PSS/polyallylamine hydrochloride (PAH polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells, without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+ was observed after internalization of LaF(3:Tb(3+(5% nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery without the need of individual cargo design/modification.

  1. Proposing a Hybrid Model Based on Robson's Classification for Better Impact on Trends of Cesarean Deliveries.

    Science.gov (United States)

    Hans, Punit; Rohatgi, Renu

    2017-06-01

    To construct a hybrid model classification for cesarean section (CS) deliveries based on the woman-characteristics (Robson's classification with additional layers of indications for CS, keeping in view low-resource settings available in India). This is a cross-sectional study conducted at Nalanda Medical College, Patna. All the women delivered from January 2016 to May 2016 in the labor ward were included. Results obtained were compared with the values obtained for India, from secondary analysis of WHO multi-country survey (2010-2011) by Joshua Vogel and colleagues' study published in "The Lancet Global Health." The three classifications (indication-based, Robson's and hybrid model) applied for categorization of the cesarean deliveries from the same sample of data and a semiqualitative evaluations done, considering the main characteristics, strengths and weaknesses of each classification system. The total number of women delivered during study period was 1462, out of which CS deliveries were 471. Overall, CS rate calculated for NMCH, hospital in this specified period, was 32.21% ( p  = 0.001). Hybrid model scored 23/23, and scores of Robson classification and indication-based classification were 21/23 and 10/23, respectively. Single-study centre and referral bias are the limitations of the study. Given the flexibility of the classifications, we constructed a hybrid model based on the woman-characteristics system with additional layers of other classification. Indication-based classification answers why, Robson classification answers on whom, while through our hybrid model we get to know why and on whom cesarean deliveries are being performed.

  2. Structural and biological properties of thermosensitive chitosan-graphene hybrid hydrogels for sustained drug delivery applications.

    Science.gov (United States)

    Saeednia, Leyla; Yao, Li; Berndt, Marcus; Cluff, Kim; Asmatulu, Ramazan

    2017-09-01

    Chitosan has the ability to make injectable thermosensitive hydrogels which has been highly investigated for drug delivery applications. The addition of nanoparticles is one way to increase the mechanical strength of thermosensitive chitosan hydrogel and subsequently and control the burst release of drug. Graphene nanoparticles have shown unique mechanical, optical and electrical properties which can be exploited for biomedical applications, especially in drug delivery. This study, have focused on the mechanical properties of a thermosensitive and injectable hybrid chitosan hydrogel incorporated with graphene nanoparticles. Scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD) have been used for morphological and chemical characterization of graphene infused chitosan hydrogels. The cell viability and cytotoxicity of graphene-contained hydrogels were analyzed using the alamarBlue ® technique. In-vitro methotrexate (MTX) release was investigated from MTX-loaded hybrid hydrogels as well. As a last step, to evaluate their efficiency as a cancer treatment delivery system, an in vitro anti-tumor test was also carried out using MCF-7 breast cancer cell lines. Results confirmed that a thermosensitive chitosan-graphene hybrid hydrogel can be used as a potential breast cancer therapy system for controlled delivery of methotrexate. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2381-2390, 2017. © 2017 Wiley Periodicals, Inc.

  3. Beyond the photocopy machine : Document delivery in a hybrid library environment

    NARCIS (Netherlands)

    Dekker, R.; Waaijers, L.

    2001-01-01

    Document delivery bridges the gap between where the customer is and where the document is. Libraries have to offer user-friendly access to hybrid collections, and design and implement document delivery mechanisms from paper originals to provide a seamless integration between delivery from electronic

  4. Effectiveness of a Hybrid Classroom in the Delivery of Medical Terminology Course Content

    Science.gov (United States)

    Martin, Jeffrey S.; Kreiger, Joan E.; Apicerno, Amy L

    2015-01-01

    Hybrid courses are emerging as a viable option for content delivery across college campuses. In an attempt to maximize learning outcomes while leveraging resources, one institution used several sections of a Medical Terminology course as a pilot. Traditional and hybrid course delivery were compared utilizing a quantitative research method to…

  5. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.

    Science.gov (United States)

    Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S

    2016-12-10

    Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment.

    Science.gov (United States)

    Liu, Hanqing; Tu, Zhigang; Feng, Fan; Shi, Haifeng; Chen, Keping; Xu, Ximing

    2015-06-01

    A virosome is an innovative hybrid drug delivery system with advantages of both viral and non-viral vectors. Studies have shown that a virosome can carry various biologically active molecules, such as nucleic acids, peptides, proteins and small organic molecules. Targeted drug delivery using virosome-based systems can be achieved through surface modifications of virosomes. A number of virosome-based prophylactic and therapeutic products with high safety profiles are currently available in the market. Cancer treatment is a big battlefield for virosome-based drug delivery systems. This review provides an overview of the general concept, preparation procedures, working mechanisms, preclinical studies and clinical applications of virosomes in cancer treatment.

  7. Hydrogen storage and delivery system development: Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Handrock, J.L. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  8. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system

    Directory of Open Access Journals (Sweden)

    Vivek Dave

    2017-12-01

    Full Text Available Poly lactic acid is a biodegradable, biocompatible, and non-toxic polymer, widely used in many pharmaceutical preparations such as controlled release formulations, parenteral preparations, surgical treatment applications, and tissue engineering. In this study, we prepared lipid-polymer hybrid nanoparticles for topical and site targeting delivery of Norfloxacin by emulsification solvent evaporation method (ESE. The design of experiment (DOE was done by using software to optimize the result, and then a surface plot was generated to compare with the practical results. The surface morphology, particle size, zeta potential and composition of the lipid-polymer hybrid nanoparticles were characterized by SEM, TEM, AFM, and FTIR. The thermal behavior of the lipid-polymer hybrid nanoparticles was characterized by DSC and TGA. The prepared lipid-polymer hybrid nanoparticles of Norfloxacin exhibited an average particle size from 178.6 ± 3.7 nm to 220.8 ± 2.3 nm, and showed very narrow distribution with polydispersity index ranging from 0.206 ± 0.36 to 0.383 ± 0.66. The surface charge on the lipid-polymer hybrid nanoparticles were confirmed by zeta potential, showed the value from +23.4 ± 1.5 mV to +41.5 ± 3.4 mV. An Antimicrobial study was done against Staphylococcus aureus and Pseudomonas aeruginosa, and the lipid-polymer hybrid nanoparticles showed potential activity against these two. Lipid-polymer hybrid nanoparticles of Norfloxacin showed the %cumulative drug release of 89.72% in 24 h. A stability study of the optimized formulation showed the suitable condition for the storage of lipid-polymer hybrid nanoparticles was at 4 ± 2 °C/60 ± 5% RH. These results illustrated high potential of lipid-polymer hybrid nanoparticles Norfloxacin for usage as a topical antibiotic drug carriers.

  9. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  10. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    Science.gov (United States)

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  11. Carbon Nanotubes Hybrid Hydrogels in Drug Delivery: A Perspective Review

    Science.gov (United States)

    Hampel, Silke; Spizzirri, Umile Gianfranco; Parisi, Ortensia Ilaria; Picci, Nevio; Iemma, Francesca

    2014-01-01

    The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review. PMID:24587993

  12. Folate-containing reduction-sensitive lipid-polymer hybrid nanoparticles for targeted delivery of doxorubicin.

    Science.gov (United States)

    Wu, Bo; Yu, Ping; Cui, Can; Wu, Ming; Zhang, Yang; Liu, Lei; Wang, Cai-Xia; Zhuo, Ren-Xi; Huang, Shi-Wen

    2015-04-01

    The development and evaluation of folate-targeted and reduction-triggered biodegradable nanoparticles are introduced to the research on targeted delivery of doxorubicin (DOX). This type of folate-targeted lipid-polymer hybrid nanoparticles (FLPNPs) is comprised of a poly(D,L-lactide-co-glycolide) (PLGA) core, a soybean lecithin monolayer, a monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16) reduction-sensitive shell, and a folic acid-targeted ligand. FLPNPs exhibited high size stability but fast disassembly in a simulated cancer cell reductive environment. The experiments on the release process in vitro revealed that as a reduction-sensitive drug delivery system, FLPNPs released DOX faster in the presence of 10 mM dithiothreitol (DTT). Results from flow cytometry, confocal image and in vitro cytotoxicity assays revealed that FLPNPs further enhanced cell uptake and generated higher cytotoxicity against human epidermoid carcinoma in the oral cavity than non-targeted redox-sensitive and targeted redox-insensitive controls. Furthermore, in vivo animal experiments demonstrated that systemic administration of DOX-loaded FLPNPs remarkably reduced tumor growth. Experiments on biodistribution of DOX-loaded FLPNPs showed that an increasing amount of DOX accumulated in the tumor. Therefore, FLPNPs formulations have proved to be a stable, controllable and targeted anticancer drug delivery system.

  13. Parallel Hybrid Vehicle Optimal Storage System

    Science.gov (United States)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  14. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    Science.gov (United States)

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  15. Thermoresponsive copolymer-grafted SBA-15 porous silica particles for temperature-triggered topical delivery systems

    Directory of Open Access Journals (Sweden)

    S. A. Jadhav

    2017-02-01

    Full Text Available A series of poly(N-isopropylacrylamide-co-acrylamide thermoresponsive random copolymers with different molecular weights and composition were synthesized and characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR, differential scanning calorimetry (DSC, size exclusion chromatography (SEC and proton nuclear magnetic resonance (NMR spectroscopy. The lower critical solution temperatures (LCST of the copolymers were tuned by changing the mole ratios of monomers. Copolymer with highest molecular weight and LCST (41.2 °C was grafted on SBA-15 type mesoporous silica particles by a two-step polymer grafting procedure. Bare SBA-15 and the thermoresponsive copolymergrafted (hybrid SBA-15 particles were fully characterized by scanning electron microscope (SEM, ATR-FTIR, thermogravimetric analysis (TGA and Brunauer-Emmett-Teller (BET analyses. The hybrid particles were tested for their efficiency as temperature-sensitive systems for dermal delivery of the antioxidant rutin (quercetin-3-O-rutinoside. Improved control over rutin release by hybrid particles was obtained which makes them attractive hybrid materials for drug delivery.

  16. Introduction of a hybrid treatment delivery system used for quality assurance in multi-catheter interstitial brachytherapy

    Science.gov (United States)

    Kallis, Karoline; Kreppner, Stephan; Lotter, Michael; Fietkau, Rainer; Strnad, Vratislav; Bert, Christoph

    2018-05-01

    Multi-catheter interstitial brachytherapy (iBT) is a treatment option for breast cancer patients after breast conserving surgery. Typically, only a few additional quality interventions after the first irradiation have been introduced to ensure the planned treatment delivery. Therefore, the purpose of this study is to show the possibilities of an electromagnetic tracking (EMT) system integrated into the afterloader for quality assurance (QA) in high-dose rate (HDR) iBT of patients with breast cancer. The hybrid afterloader system equipped with an electromagnetic sensor was used for all phantom and patient measurements. Phantom measurements were conducted to estimate the quality of different evaluation schemes. After a coherent point drift registration of the EMT traces to the reconstructed catheters based on computed tomograms the dwell positions (DP) were defined. Different fitting and interpolation methods were analyzed for the reconstruction of DPs. All estimated DPs were compared to the DPs defined in treatment planning. Until now, the implant geometry of 20 patients treated with HDR brachytherapy was acquired and explored. Regarding the reconstruction techniques, both fitting and interpolation were able to detect manually introduced shifts and swaps. Nonetheless, interpolation showed superior results (RMSE  =  1.27 mm), whereas fitting seemed to be more stable to distortion and motion. The EMT system proved to be beneficial for QA in brachytherapy and furthermore, clinical feasibility was proven.

  17. An injectable hybrid nanoparticle-in-oil-in-water submicron emulsion for improved delivery of poorly soluble drugs

    Science.gov (United States)

    Wang, Shuo; Wang, Hua; Liang, Wenquan; Huang, Yongzhuo

    2012-04-01

    Poor drugability problems are commonly seen in a class of chemical entities with poor solubility in water and oil, and moreover, physicochemical instability of these compounds poses extra challenges in design of dosage forms. Such problems contribute a significant high failure rate in new drug development. A hybrid nanoparicle-in-oil-in-water (N/O/W) submicron emulsion was proposed for improved delivery of poorly soluble and unstable drugs (e.g., dihydroartemisinin (DHA)). DHA is known for its potent antimalarial effect and antitumor activity. However, its insolubility and instability impose big challenges for formulations, and so far, no injectable dosage forms are clinically available yet. Therefore, an injectable DHA N/O/W system was developed. Unlike other widely-explored systems (e.g., liposomes, micelles, and emulsions), in which low drug load and only short-term storage are often found, the hybrid submicron emulsion possesses three-fold higher drug-loading capacity than the conventional O/W emulsion. Of note, it can be manufactured into a freeze-drying form and can render its storage up to 6 months even in room temperature. The in vivo studies demonstrated that the PK profiles were significantly improved, and this injectable system was effective in suppressing tumor growth. The strategy provides a useful solution to effective delivery of such a class of drugs.

  18. Parameter Design for the Energy Regeneration System of Series Hydraulic Hybrid Bus

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-02-01

    Full Text Available This paper simplifies the energy recovery process in the series hydraulic hybrid bus’ energy regeneration system into a process in which the main axle’s moment of inertia drives the secondary element variable delivery pump/motor and brings hydraulic oil from the oil tank to the accumulator. This process enables braking of the vehicle and also allows recovery of energy to the accumulator. Based on the flow equation for the secondary element variable delivery pump/motor and the torque equilibrium equation for its axle, the force equilibrium equation for vehicle braking and the pressure variation and flow continuity equations for the accumulator, simulation studies are conducted to analyze the effects of various system parameters, such as accumulator capacity, displacement of the secondary element variable delivery pump/motor, initial operating pressure of the system, etc. on system performance during regenerative braking.

  19. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-04-01

    Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.

  20. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid–polymer hybrid nanoparticles

    International Nuclear Information System (INIS)

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-01-01

    Lipid–polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid–polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid–polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification. (paper)

  1. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  2. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    John C. Leach

    2016-03-01

    Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

  3. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  4. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  5. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    Science.gov (United States)

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  7. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  8. FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Barnitt, R.

    2010-05-01

    This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

  9. New hybrid systems

    International Nuclear Information System (INIS)

    Bernardin, B.

    2001-01-01

    New hybrid systems are made up of a subcritical core, a spallation target and a proton accelerator. The neutrons that are produced in the target by the flux of protons are necessary to maintain the chain reaction of fission. Some parameters that are important for a classical nuclear reactor like doppler coefficient or delayed neutron fraction do not matter in a hybrid system. In a PWR-type reactor or in a fast reactor the concentration of actinides has a bad impact on these 2 parameters, so it is justified to study hybrid systems as actinide transmuters. The hybrid system, because of its external source of neutrons can put aside an important reactivity margin. This reactivity margin can be used to design safer nuclear reactors (particularly in some situations of reactivity accidents) or to irradiate fuel elements containing high concentrations of minor actinides that could not be allowed in a classical reactor. This article reviews various ways of integrating hybrid systems in a population of already existing nuclear reactors in order to manage quantities of plutonium, of minor actinides or of long-life fission products. (A.C.)

  10. TRANSDERMAL DRUG DELIVERY SYSTEM: REVIEW

    OpenAIRE

    Vishvakarama Prabhakar; Agarwal Shivendra; Sharma Ritika; Saurabh Sharma

    2012-01-01

    Various new technologies have been developed for the transdermal delivery of some important drugs. Today about 74% of drugs are taken orally and are found not to be as effective as desired. To improve such characters transdermal drug delivery system was emerged. Drug delivery through the skin to achieve a systemic effect of a drug is commonly known as transdermal drug delivery and differs from traditional topical drug delivery. Transdermal drug delivery systems (TDDS) are dosage forms involve...

  11. UAV Delivery Monitoring System

    Directory of Open Access Journals (Sweden)

    San Khin Thida

    2018-01-01

    Full Text Available UAV-based delivery systems are increasingly being used in the logistics field, particularly to achieve faster last-mile delivery. This study develops a UAV delivery system that manages delivery order assignments, autonomous flight operation, real time control for UAV flights, and delivery status tracking. To manage the delivery item assignments, we apply the concurrent scheduler approach with a genetic algorithm. The present paper describes real time flight data based on a micro air vehicle communication protocol (MAVLink. It also presents the detailed hardware components used for the field tests. Finally, we provide UAV component analysis to choose the suitable components for delivery in terms of battery capacity, flight time, payload weight and motor thrust ratio.

  12. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks.

    Science.gov (United States)

    Zhang, Rui Xue; Ahmed, Taksim; Li, Lily Yi; Li, Jason; Abbasi, Azhar Z; Wu, Xiao Yu

    2017-01-26

    Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.

  13. Buffer Management and Hybrid Probability Choice Routing for Packet Delivery in Opportunistic Networks

    Directory of Open Access Journals (Sweden)

    Daru Pan

    2012-01-01

    Full Text Available Due to the features of long connection delays, frequent network partitions, and topology unsteadiness, the design of opportunistic networks faces the challenge of how to effectively deliver data based only on occasional encountering of nodes, where the conventional routing schemes do not work properly. This paper proposes a hybrid probability choice routing protocol with buffer management for opportunistic networks. A delivery probability function is set up based on continuous encounter duration time, which is used for selecting a better node to relay packets. By combining the buffer management utility and the delivery probability, a total utility is used to decide whether the packet should be kept in the buffer or be directly transmitted to the encountering node. Simulation results show that the proposed routing outperforms the existing one in terms of the delivery rate and the average delay.

  14. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  15. Peptide and protein delivery using new drug delivery systems.

    Science.gov (United States)

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  16. Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery

    Directory of Open Access Journals (Sweden)

    Bose RJC

    2015-09-01

    Full Text Available Rajendran JC Bose,1,2 Yoshie Arai,1 Jong Chan Ahn,1 Hansoo Park,2 Soo-Hong Lee11Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 2Department of Integrative Engineering, Chung-Ang University, Seoul, South Korea Abstract: Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,l-lactic-co-glycolic acid (PLGA core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid–polymer hybrid nanospheres (LPHNSs were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52–60 mV, and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine–PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased. Keywords: core–shell hybrid nanospheres, lipid concentration, surface modification, low cytotoxicity, transfection efficiency

  17. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer

    Science.gov (United States)

    Yang, Zhe; Luo, Huiyan; Cao, Zhong; Chen, Ya; Gao, Jinbiao; Li, Yingqin; Jiang, Qing; Xu, Ruihua; Liu, Jie

    2016-06-01

    Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44.Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor

  18. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  19. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  20. Carbon and energy footprints of electric delivery trucks:a hybrid multi-regional input-output life cycle assessment

    OpenAIRE

    Zhao, Yang; Onat, Nuri Cihat; Küçükvar, Murat; Tatari, Ömer

    2016-01-01

    Due to frequent stop-and-go operation and long idling periods when driving in congested urban areas, the electrification of commercial delivery trucks has become an interesting topic nationwide. In this study, environmental impacts of various alternative delivery trucks including battery electric, diesel, diesel-electric hybrid, and compressed natural gas trucks are analyzed. A novel life cycle assessment method, an environmentally-extended multi-region input-output analysis, is utilized to c...

  1. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  2. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  3. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production.

    Science.gov (United States)

    Whitford, Ryan; Fleury, Delphine; Reif, Jochen C; Garcia, Melissa; Okada, Takashi; Korzun, Viktor; Langridge, Peter

    2013-12-01

    Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.

  4. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  5. Project delivery system (PDS)

    CERN Document Server

    2001-01-01

    As business environments become increasingly competitive, companies seek more comprehensive solutions to the delivery of their projects. "Project Delivery System: Fourth Edition" describes the process-driven project delivery systems which incorporates the best practices from Total Quality and is aligned with the Project Management Institute and ISO Quality Standards is the means by which projects are consistently and efficiently planned, executed and completed to the satisfaction of clients and customers.

  6. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  7. Colloidal drug delivery system: amplify the ocular delivery.

    Science.gov (United States)

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  8. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  9. Hy Tronic - The hybrid system for distributor commercial vehicles on the bases of a modular NKW gear family; Hy Tronic. Das Hybridsystem fuer Verteiler Nutzfahrzeuge basierend auf einer modularen NKW-Getriebefamilie

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, Stefan; Lamke, Martin; Sedlacek, Martin [ZF Friedrichshafen AG (Germany)

    2009-07-01

    Hybrid technology offers solutions to the intensely increasing delivery traffic requirements, such as a significant reduction in fuel consumption and noticeably reduced emissions. Diverse requirements result from the multitude of possible applications in delivery traffic. In response, ZF has developed a parallel hybrid system based on a modular and standardized transmission family. Composed of the automatic AS Tronic lite transmission, an electric machine, inverter, a highvoltage battery, wiring and a hybrid control unit, this system can be integrated into present vehicle concepts. Including start-stop operation, recuperation, boosting, purely electric driving and emission-free auxiliary drive, it offers the functionality of a full hybrid. (orig.)

  10. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Bhardwaj, Ankur; Mehta, Shuchi; Yadav, Shailendra; Singh, Sudheer K; Grobler, Anne; Goyal, Amit Kumar; Mehta, Abhinav

    2016-09-01

    The present study aimed to develop lipid-polymer hybrid nanoparticles (LPNs) for the combined pulmonary delivery of isoniazid (INH) and ciprofloxacin hydrochloride (CIP HCl). Drug-loaded LPNs were prepared by the double-emulsification solvent evaporation method using the three-factor three-level Box-Behnken design. The optimized formulation had a size of 111.81 ± 1.2 nm, PDI of 0.189 ± 1.4, and PDE of 63.64 ± 2.12% for INH-loaded LPN, and a size of 172.23 ± 2.31 nm, PDI of 0.169 ± 1.23, and PDE of 68.49 ± 2.54% for CIP HCl-loaded LPN. Drug release was found to be sustained and controlled at lower pH and followed the Peppas model. The in vitro uptake study in alveolar macrophage (AM) showed that uptake of the drugs was increased significantly if administered in the form of LPN. The stability study proved the applications of adding PLGA in LPN as the polymeric core, which leads to a much more stable product as compared to other novel drug delivery systems. Spray drying was done to produce an inhalable, dry, powdered form of drug-loaded LPN. The spray-dried (SD) powder was equally capable of producing nano-aggregates having morphology, density, flowability and reconstitutibility in the range ideal for inhaled drug delivery. The nano aggregates produced by spray drying manifested their aerosolization efficiency in terms of the higher emitted dose and fine particle fraction with lower mass median aerodynamic diameter. The in vivo study using pharmacokinetic and pharmacodynamic approaches revealed that maximum internalization efficiency was achieved by delivering LPN in SD powdered forms by pulmonary route.

  11. Poly(NIPAM-co-MPS-grafted multimodal porous silica nanoparticles as reverse thermoresponsive drug delivery system

    Directory of Open Access Journals (Sweden)

    Sushilkumar A. Jadhav

    2017-05-01

    Full Text Available Hybrid drug delivery systems (DDS have been prepared by grafting poly(NIPAM-co-MPS chains on multimodal porous silica nanoparticles having an inner mesoporous structure and an outer thin layer of micropores. The hybrid thermoresponsive DDS were fully characterized and loaded with a model drug. The in vitro drug release tests are carried out at below and above the lower critical solution temperature (LCST of the copolymer. The results have revealed that due to the presence of small diameter (~1.3 nm micropores at the periphery of the particles, the collapsed globules of the thermoresponsive copolymer above its LCST hinders the complete release of the drug which resulted in a reverse thermoresponsive drug release profile by the hybrid DDS.

  12. Hybrid systems, optimal control and hybrid vehicles theory, methods and applications

    CERN Document Server

    Böhme, Thomas J

    2017-01-01

    This book assembles new methods showing the automotive engineer for the first time how hybrid vehicle configurations can be modeled as systems with discrete and continuous controls. These hybrid systems describe naturally and compactly the networks of embedded systems which use elements such as integrators, hysteresis, state-machines and logical rules to describe the evolution of continuous and discrete dynamics and arise inevitably when modeling hybrid electric vehicles. They can throw light on systems which may otherwise be too complex or recondite. Hybrid Systems, Optimal Control and Hybrid Vehicles shows the reader how to formulate and solve control problems which satisfy multiple objectives which may be arbitrary and complex with contradictory influences on fuel consumption, emissions and drivability. The text introduces industrial engineers, postgraduates and researchers to the theory of hybrid optimal control problems. A series of novel algorithmic developments provides tools for solving engineering pr...

  13. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  14. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  15. Self-nanoemulsifying drug delivery systems for oral insulin delivery

    DEFF Research Database (Denmark)

    Li, Ping; Tan, Angel; Prestidge, Clive A

    2014-01-01

    This study aims at evaluating the combination of self-nanoemulsifying drug delivery systems (SNEDDS) and enteric-coated capsules as a potential delivery strategy for oral delivery of insulin. The SNEDDS preconcentrates, loaded with insulin-phospholipid complex at different levels (0, 2.5 and 10% w...

  16. Hybrid system concepts

    International Nuclear Information System (INIS)

    Landeyro, P.A.

    1995-01-01

    Hybrid systems studied for fissile material production, were reconsidered for minor actinide and long-lived fission product destruction as alternative to the traditional final disposal of nuclear waste. Now there are attempts to extend the use of the concepts developed for minor actinide incineration to plutonium burning. The most promising hybrid system concept considers fuel and target both as liquids. From the results obtained, the possibility to adopt composite targets seems the most promising solution, but still there remains the problem of Pu production, not acceptable in a burning system. This kind of targets can be mainly used for fissile material production, while for accelerator driven burners it is most convenient to use a liquid lead target. The most suitable solvent is heavy water for minor actinide annihilation in the blanket of a hybrid system. Due to the criticality conditions and the necessity of electric energy production, the blanket using plutonium dissolved in molten salts is the most convenient one. (author)

  17. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  18. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.

    Science.gov (United States)

    Xie, Ying; Qiao, Hongzhi; Su, Zhigui; Chen, Minglei; Ping, Qineng; Sun, Minjie

    2014-09-01

    Lack of safe and effective delivery vehicle is the main obstacle for siRNA mediated cancer therapy. In this study, we synthesized a pH-sensitive polymer of PEG grafted carboxymethyl chitosan (PEG-CMCS) and developed anionic-charged hybrid nanoparticles of PEG-CMCS and calcium phosphate (CaP) for siRNA delivery through a single-step self-assembly method in aqueous condition. The formed nanoparticles with charge of around -8.25 mv and average diameter of 102.1 nm exhibited efficient siRNA encapsulation and enhanced colloidal and serum stability. The test in vitro indicated that the nanoparticles entered into HepG2 cells by endocytosis, and achieved endosomal escape of siRNA effectively due to the pH-responsive disassembly of nanoparticles and dissolution of CaP in the endosome. Reporter gene silencing assay showed that luciferase siRNA delivered by the anionic nanoparticles could achieve gene silencing efficacy comparable to that of conventional Lipofectamine 2000. Additionally, dramatic hTERT knockdown mediated by the anionic nanoparticles transfection induced significant apoptosis of HepG2 cells in vitro. After intravenous injection in tumor-bearing BALB/c nude mice, the nanoparticles specifically accumulated into tumor regions by EPR effect, leading to efficient and specific gene silencing sequentially. Most importantly, the nanoparticles carrying hTERT siRNA inhibited tumor growth significantly via silencing hTERT expression and inducing cells apoptosis in HepG2 tumor xenograft. Moreover, comprehensive safety studies of the nanoparticles confirmed their superior safety both in vitro and in vivo. We concluded that the PEG-CMCS/CaP hybrid anionic nanoparticles possessed potential as a safe and effective siRNA delivery system for anticancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hybrid Electric Vehicle Publications | Transportation Research | NREL

    Science.gov (United States)

    Hybrid Electric Vehicle Publications Hybrid Electric Vehicle Publications The following technical papers, conference papers, and fact sheets provide information about NREL's hybrid electric fleet vehicle Class 8 Hybrid Electric Delivery Trucks. Mike Lammert. (2011) FedEx Delivery Trucks In-Use and Vehicle

  20. Arginine-Glycine-Aspartic Acid-Modified Lipid-Polymer Hybrid Nanoparticles for Docetaxel Delivery in Glioblastoma Multiforme.

    Science.gov (United States)

    Shi, Kairong; Zhou, Jin; Zhang, Qianyu; Gao, Huile; Liu, Yayuan; Zong, Taili; He, Qin

    2015-03-01

    Hybrid nanoparticles consisting of lipids and the biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), were developed for the targeted delivery of the anticancer drug, docetaxel. Transmission electron microscopic observations confirmed the presence of a lipid coating over the polymeric core. Using coumarin-6 as a fluorescent probe, the uptake efficacy of RGD conjugated lipid coated nanoparticles (RGD-L-P) by C6 cells was increased significantly, compared with that of lipid-polymer hybrid nanoparticles (L-P; 2.5-fold higher) or PLGA-nanoparticles (PLGA-P; 1.76-fold higher). The superior tumor spheroid penetration of RGD-L-P indicated that RGD-L-P could target effectively and specifically to C6 cells overexpressing integrin α(v)β3. The anti-proliferative activity of docetaxel-loaded RGD-L-P against C6 cells was increased 2.69- and 4.13-fold compared with L-P and PLGA-P, respectively. Regarding biodistribution, the strongest brain-localized fluorescence signals were detected in glioblastoma multiforme (GBM)-bearing rats treated with 1,10-Dioctadecyl-3,3,30,30-tetramethylindotricarb-ocyanine iodide (DiR)-loaded RGD-L-P, compared to rats treated with DiR-loaded L-P or PLGA-P. The median survival time of GBM-bearing rats treated with docetaxel-loaded RGD-L-P was 57 days, a fold increase of 1.43, 1.78, 3.35, and 3.56 compared with animals given L-P (P PLGA-P (P < 0.05), Taxotere (P < 0.01) and saline (P < 0.01), respectively. Collectively, these results support RGD-L-P as a promising drug delivery system for the specific targeting and the treatment of GBM.

  1. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.

    Science.gov (United States)

    Hadinoto, Kunn; Sundaresan, Ajitha; Cheow, Wean Sin

    2013-11-01

    Lipid-polymer hybrid nanoparticles (LPNs) are core-shell nanoparticle structures comprising polymer cores and lipid/lipid-PEG shells, which exhibit complementary characteristics of both polymeric nanoparticles and liposomes, particularly in terms of their physical stability and biocompatibility. Significantly, the LPNs have recently been demonstrated to exhibit superior in vivo cellular delivery efficacy compared to that obtained from polymeric nanoparticles and liposomes. Since their inception, the LPNs have advanced significantly in terms of their preparation strategy and scope of applications. Their preparation strategy has undergone a shift from the conceptually simple two-step method, involving preformed polymeric nanoparticles and lipid vesicles, to the more principally complex, yet easier to perform, one-step method, relying on simultaneous self-assembly of the lipid and polymer, which has resulted in better products and higher production throughput. The scope of LPNs' applications has also been extended beyond single drug delivery for anticancer therapy, to include combinatorial and active targeted drug deliveries, and deliveries of genetic materials, vaccines, and diagnostic imaging agents. This review details the current state of development for the LPNs preparation and applications from which we identify future research works needed to bring the LPNs closer to its clinical realization. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles.

    Science.gov (United States)

    Sekerdag, Emine; Lüle, Sevda; Bozdağ Pehlivan, Sibel; Öztürk, Naile; Kara, Aslı; Kaffashi, Abbas; Vural, Imran; Işıkay, Ilkay; Yavuz, Burҫin; Oguz, Kader Karlı; Söylemezoğlu, Figen; Gürsoy-Özdemir, Yasemin; Mut, Melike

    2017-09-10

    New drug delivery systems are highly needed in research and clinical area to effectively treat gliomas by reaching a high antineoplastic drug concentration at the target site without damaging healthy tissues. Intranasal (IN) administration, an alternative route for non-invasive drug delivery to the brain, bypasses the blood-brain-barrier (BBB) and eliminates systemic side effects. This study evaluated the antitumor efficacy of farnesylthiosalicylic acid (FTA) loaded (lipid-cationic) lipid-PEG-PLGA hybrid nanoparticles (HNPs) after IN application in rats. FTA loaded HNPs were prepared, characterized and evaluated for cytotoxicity. Rat glioma 2 (RG2) cells were implanted unilaterally into the right striatum of female Wistar rats. 10days later, glioma bearing rats received either no treatment, or 5 repeated doses of 500μM freshly prepared FTA loaded HNPs via IN or intravenous (IV) application. Pre-treatment and post-treatment tumor sizes were determined with MRI. After a treatment period of 5days, IN applied FTA loaded HNPs achieved a significant decrease of 55.7% in tumor area, equal to IV applied FTA loaded HNPs. Herewith, we showed the potential utility of IN application of FTA loaded HNPs as a non-invasive approach in glioblastoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  4. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D [Lenoir City, TN; Earl, Dennis D [Knoxville, TN; Beshears, David L [Knoxville, TN; Maxey, Lonnie C [Powell, TN; Jordan, John K [Oak Ridge, TN; Lind, Randall F [Lenoir City, TN

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  5. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery.

    Science.gov (United States)

    Wang, Lei; Li, Baoqiang; Xu, Feng; Xu, Zheheng; Wei, Daqing; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-10-15

    Innovative drug delivery technologies based on smart hydrogels for localized on-demand drug delivery had aroused great interest. To acquire smart UV-crosslinkable chitosan hydrogel for NIR-triggered localized on-demanded drug release, a novel UV-crosslinkable and thermo-responsive chitosan was first designed and synthesized by grafting with poly N-isopropylacrylamide, acetylation of methacryloyl groups and embedding with photothermal carbon. The UV-crosslinkable unit (methacryloyl groups) endowed chitosan with gelation via UV irradiation. The thermo-responsive unit (poly N-isopropylacrylamide) endowed chitosan hydrogel with temperature-triggered volume shrinkage and reversible swelling/de-swelling behavior. The chitosan hybrid hydrogel embedded with photothermal carbon exhibited distinct NIR-triggered volume shrinkage (∼42% shrinkage) in response to temperature elevation as induced by NIR laser irradiation. As a demonstration, doxorubicin release rate was accelerated and approximately 40 times higher than that from non-irradiated hydrogels. The UV-crosslinkable and thermal-responsive hybrid hydrogel served as in situ forming hydrogel-based drug depot is developed for NIR-triggered localized on-demand release. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stuttering Intervention in Three Service Delivery Models (Direct, Hybrid, and Telepractice): Two Case Studies

    OpenAIRE

    VALENTINE, DANIEL T.

    2015-01-01

    This study assessed outcomes in stuttering intervention across three service delivery models: direct, hybrid, and telepractice for two 11-year old children who stutter. The goal of the study was to investigate whether short-term goals were maintained through the telepractice sessions. The Stuttering Severity Instrument, Fourth Edition (SSI-4) was administered to each child before and after each intervention period and weekly fluency samples (percentage of stuttered syllables in a monologue) w...

  7. Preparing and evaluating delivery systems for proteins

    DEFF Research Database (Denmark)

    Jorgensen, L; Moeller, E H; van de Weert, M

    2006-01-01

    From a formulation perspective proteins are complex and therefore challenging molecules to develop drug delivery systems for. The success of a formulation depends on the ability of the protein to maintain the native structure and activity during preparation and delivery as well as during shipping...... and long-term storage of the formulation. Therefore, the development and evaluation of successful and promising drug delivery systems is essential. In the present review, some of the particulate drug delivery systems for parenteral delivery of protein are presented and discussed. The challenge...... for incorporation of protein in particulate delivery systems is exemplified by water-in-oil emulsions....

  8. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  9. Supermarket Refrigeration System - Benchmark for Hybrid System Control

    DEFF Research Database (Denmark)

    Sloth, Lars Finn; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2007-01-01

    This paper presents a supermarket refrigeration system as a benchmark for development of new ideas and a comparison of methods for hybrid systems' modeling and control. The benchmark features switch dynamics and discrete valued input making it a hybrid system, furthermore the outputs are subjected...

  10. Hybrid synchronization of hyperchaotic Lu system

    Indian Academy of Sciences (India)

    In this paper, we study the hybrid synchronization between two identical hyperchaotic Lu systems. Hybrid synchronization of hyperchaotic Lu system is achieved through synchronization of two pairs of states and anti-synchronization of the other two pairs of states. Active controls are designed to achieve hybrid ...

  11. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    Science.gov (United States)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  12. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2017-10-23

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  13. A Systems Approach to Nitrogen Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Goins, Bobby [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-17

    A systems based approach will be used to evaluate the nitrogen delivery process. This approach involves principles found in Lean, Reliability, Systems Thinking, and Requirements. This unique combination of principles and thought process yields a very in depth look into the system to which it is applied. By applying a systems based approach to the nitrogen delivery process there should be improvements in cycle time, efficiency, and a reduction in the required number of personnel needed to sustain the delivery process. This will in turn reduce the amount of demurrage charges that the site incurs. In addition there should be less frustration associated with the delivery process.

  14. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  15. Constructing decidable hybrid systems with velocity bounds

    NARCIS (Netherlands)

    Belta, C.; Habets, L.C.G.J.M.

    2004-01-01

    In this paper, the question of bi-similarity between hybrid systems and their discrete quotients is studied from a new point of view. We consider two classes of hybrid systems: piecewise affine hybrid systems on simplices and piecewise multi-affine systems on multi-dimensional rectangles. Given a

  16. STRATEGIES AND PROSPECTS OF NASAL DRUG DELIVERY SYSTEMS

    OpenAIRE

    Gannu Praveen Kumar

    2012-01-01

    The recent advancement of nasal drug delivery systems has increased enormously and is gaining significant importance. Intranasal therapy has been an accepted form of treatment in the Ayurvedic system of Indian Medicine. The non-invasive delivery of nasal drug delivery systems made to exploit for the development of successful treatment. The advantages, disadvantages, mechanism of action and application of nasal drug delivery system in local delivery, systematic delivery, nasal vaccines and CNS...

  17. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  18. Sterile Product Packaging and Delivery Systems.

    Science.gov (United States)

    Akers, Michael J

    2015-01-01

    Both conventional and more advanced product container and delivery systems are the focus of this brief article. Six different product container systems will be discussed, plus advances in primary packaging for special delivery systems and needle technology.

  19. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  20. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency.

    Science.gov (United States)

    Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong

    2017-11-01

    The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.

  1. Reduction of treatment delivery variances with a computer-controlled treatment delivery system

    International Nuclear Information System (INIS)

    Fraass, B.A.; Lash, K.L.; Matrone, G.M.; Lichter, A.S.

    1997-01-01

    Purpose: To analyze treatment delivery variances for 3-D conformal therapy performed at various levels of treatment delivery automation, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system. Materials and Methods: All external beam treatments performed in our department during six months of 1996 were analyzed to study treatment delivery variances versus treatment complexity. Treatments for 505 patients (40,641 individual treatment ports) on four treatment machines were studied. All treatment variances noted by treatment therapists or quality assurance reviews (39 in all) were analyzed. Machines 'M1' (CLinac (6(100))) and 'M2' (CLinac 1800) were operated in a standard manual setup mode, with no record and verify system (R/V). Machines 'M3' (CLinac 2100CD/MLC) and ''M4'' (MM50 racetrack microtron system with MLC) treated patients under the control of a computer-controlled conformal radiotherapy system (CCRS) which 1) downloads the treatment delivery plan from the planning system, 2) performs some (or all) of the machine set-up and treatment delivery for each field, 3) monitors treatment delivery, 4) records all treatment parameters, and 5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3, so it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments (ports), non-axial and non-coplanar plans, multi-segment intensity modulation, and pseudo-isocentric treatments (and other plans with computer-controlled table motions). Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines, so this analysis

  2. Sustainability assessment of a hybrid energy system

    International Nuclear Information System (INIS)

    Afgan, Nain H.; Carvalho, Maria G.

    2008-01-01

    A hybrid energy system in the form of the Object structure is the pattern for the structure of options in the evaluation of a hybrid system. The Object structure is defined as: Hybrid Energy System {[production (solar, wind, biomass, natural gas)] [utilization(electricity, heat, hydrogen)]}. In the evaluation of hybrid energy systems only several options are selected to demonstrate the sustainability assessment method application in the promotion of the specific quality of the hybrid energy system. In this analysis the following options are taken into a consideration: 1.Solar photo-voltaic power plant (PV PP), wind turbine power plant (WTPP) biomass thermal power plant (ThSTPP) for electricity, heat and hydrogen production. 2.Solar PV PP and wind power plant (WPP) for electricity and hydrogen production. 3.Biomass thermal steam turbine power plant (BThSTPP) and WPP for heat and hydrogen production. 4.Combined cycle gas turbine power plant for electricity and hydrogen production. 5.Cogeneration of electricity and water by the hybrid system. The sustainability assessment method is used for the evaluation of quality of the selected hybrid systems. In this evaluation the following indicators are used: economic indicator, environment indicator and social indicator

  3. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  4. MINI-SLAR delivery system

    International Nuclear Information System (INIS)

    Alstein, D.

    1996-01-01

    In the Spring of 1993, a need to complete Spacer Location and Repositioning (SLAR) on the Bruce 'A', Unit 1 Reactor was identified. An alternate SLAR delivery system was required due to conversion constraints that prevented the existing Bruce SLAR System from being used in Unit 1. A Portable SLAR Delivery System called MINI-SLAR Delivery System was developed, designed and fabricated in a 14 month period, then used to successfully SLAR 109 channels. The system is a portable remotely operated Nuclear Class 1 registered fitting that is independent of the Fuelling Machine, allowing the station to continue normal Fuelling and Maintenance activities. It is designed to a Level 'D' faulted condition of HPECI Pressure thus minimizing PHT Heat Sink configuration requirements and minimizing outage set-up times. The system is based on a modular design allowing for easy fabrication, assembly and repair. It consists of a Snout Assembly, a Closure Plug Assembly, Shield Plug Assembly, SLAR Ram assembly, Work Table Assembly and Control Panel. Controls are through a Programmable Logic Controller with software tested and certified to a Software Quality Assurance of Level Ill. (author). 2 refs., 2 figs

  5. MINI-SLAR delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Alstein, D [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A; Dalton, K [Spectrum Engineering, Peterborough, ON (Canada)

    1997-12-31

    In the Spring of 1993, a need to complete Spacer Location and Repositioning (SLAR) on the Bruce `A`, Unit 1 Reactor was identified. An alternate SLAR delivery system was required due to conversion constraints that prevented the existing Bruce SLAR System from being used in Unit 1. A Portable SLAR Delivery System called MINI-SLAR Delivery System was developed, designed and fabricated in a 14 month period, then used to successfully SLAR 109 channels. The system is a portable remotely operated Nuclear Class 1 registered fitting that is independent of the Fuelling Machine, allowing the station to continue normal Fuelling and Maintenance activities. It is designed to a Level `D` faulted condition of HPECI Pressure thus minimizing PHT Heat Sink configuration requirements and minimizing outage set-up times. The system is based on a modular design allowing for easy fabrication, assembly and repair. It consists of a Snout Assembly, a Closure Plug Assembly, Shield Plug Assembly, SLAR Ram assembly, Work Table Assembly and Control Panel. Controls are through a Programmable Logic Controller with software tested and certified to a Software Quality Assurance of Level Ill. (author). 2 refs., 2 figs.

  6. Health care delivery systems.

    NARCIS (Netherlands)

    Stevens, F.; Zee, J. van der

    2007-01-01

    A health care delivery system is the organized response of a society to the health problems of its inhabitants. Societies choose from alternative health care delivery models and, in doing so, they organize and set goals and priorities in such a way that the actions of different actors are effective,

  7. Hybrid macro-micro fluidics system for a chip-based biosensor

    Science.gov (United States)

    Tamanaha, C. R.; Whitman, L. J.; Colton, R. J.

    2002-03-01

    We describe the engineering of a hybrid fluidics platform for a chip-based biosensor system that combines high-performance microfluidics components with powerful, yet compact, millimeter-scale pump and valve actuators. The microfluidics system includes channels, valveless diffuser-based pumps, and pinch-valves that are cast into a poly(dimethylsiloxane) (PDMS) membrane and packaged along with the sensor chip into a palm-sized plastic cartridge. The microfluidics are driven by pump and valve actuators contained in an external unit (with a volume ~30 cm3) that interfaces kinematically with the PDMS microelements on the cartridge. The pump actuator is a simple-lever, flexure-hinge displacement amplifier that increases the motion of a piezoelectric stack. The valve actuators are an array of cantilevers operated by shape memory alloy wires. All components can be fabricated without the need for complex lithography or micromachining, and can be used with fluids containing micron-sized particulates. Prototypes have been modeled and tested to ensure the delivery of microliter volumes of fluid and the even dispersion of reagents over the chip sensing elements. With this hybrid approach to the fluidics system, the biochemical assay benefits from the many advantages of microfluidics yet we avoid the complexity and unknown reliability of immature microactuator technologies.

  8. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.

    Science.gov (United States)

    Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A

    2017-11-25

    Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Functional Abstraction of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Blom, Henk A.P.; Hermanns, H.

    2006-01-01

    The verification problem for stochastic hybrid systems is quite difficult. One method to verify these systems is stochastic reachability analysis. Concepts of abstractions for stochastic hybrid systems are needed to ease the stochastic reachability analysis. In this paper, we set up different ways

  10. New hybrid systems: strategy and research programs

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2001-01-01

    This short article gives a status of research and experimental programs concerning new hybrid systems. A hybrid system is made up of a subcritical core, a spallation target and of a particle accelerator that delivers a proton beam. The main asset of hybrid systems is to provide a large reactivity margin that would be very valuable to transmute actinide nuclei efficiently. As a consequence hybrid systems could be considered as actinide burner reactors integrated to a large population of classical nuclear reactors dedicated to electricity production. (A.C.)

  11. Some Recent Advances in Transdermal Drug Delivery Systems ...

    African Journals Online (AJOL)

    Some Recent Advances in Transdermal Drug Delivery Systems. ... Advances in Transdermal Drug Delivery Systems. EC Ibezim, B Kabele-Toge, CO Anie, C Njoku. Abstract. Transdermal delivery systems are forms of drug delivery involving the dermis, as distinct from topical, oral or other forms of parenteral dosage forms.

  12. Drug delivery systems with modified release for systemic and biophase bioavailability.

    Science.gov (United States)

    Leucuta, Sorin E

    2012-11-01

    This review describes the most important new generations of pharmaceutical systems: medicines with extended release, controlled release pharmaceutical systems, pharmaceutical systems for the targeted delivery of drug substances. The latest advances and approaches for delivering small molecular weight drugs and other biologically active agents such as proteins and nucleic acids require novel delivery technologies, the success of a drug being many times dependent on the delivery method. All these dosage forms are qualitatively superior to medicines with immediate release, in that they ensure optimal drug concentrations depending on specific demands of different disease particularities of the body. Drug delivery of these pharmaceutical formulations has the benefit of improving product efficacy and safety, as well as patient convenience and compliance. This paper describes the biopharmaceutical, pharmacokinetic, pharmacologic and technological principles in the design of drug delivery systems with modified release as well as the formulation criteria of prolonged and controlled release drug delivery systems. The paper presents pharmaceutical prolonged and controlled release dosage forms intended for different routes of administration: oral, ocular, transdermal, parenteral, pulmonary, mucoadhesive, but also orally fast dissolving tablets, gastroretentive drug delivery systems, colon-specific drug delivery systems, pulsatile drug delivery systems and carrier or ligand mediated transport for site specific or receptor drug targeting. Specific technologies are given on the dosage forms with modified release as well as examples of marketed products, and current research in these areas.

  13. A Meta-analytic Comparison of Face-to-Face and Online Delivery in Ethics Instruction: The Case for a Hybrid Approach.

    Science.gov (United States)

    Todd, E Michelle; Watts, Logan L; Mulhearn, Tyler J; Torrence, Brett S; Turner, Megan R; Connelly, Shane; Mumford, Michael D

    2017-12-01

    Despite the growing body of literature on training in the responsible conduct of research, few studies have examined the effectiveness of delivery formats used in ethics courses (i.e., face-to-face, online, hybrid). The present effort sought to address this gap in the literature through a meta-analytic review of 66 empirical studies, representing 106 ethics courses and 10,069 participants. The frequency and effectiveness of 67 instructional and process-based content areas were also assessed for each delivery format. Process-based contents were best delivered face-to-face, whereas contents delivered online were most effective when restricted to compliance-based instructional contents. Overall, hybrid courses were found to be most effective, suggesting that ethics courses are best delivered using a blend of formats and content areas. Implications and recommendations for future development of ethics education courses in the sciences are discussed.

  14. Comments On Clock Models In Hybrid Automata And Hybrid Control Systems

    Directory of Open Access Journals (Sweden)

    Virginia Ecaterina OLTEAN

    2001-12-01

    Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.

  15. Multifunctional quantum dots and liposome complexes in drug delivery.

    Science.gov (United States)

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  16. Multifunctional quantum dots and liposome complexes in drug delivery

    Science.gov (United States)

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  17. Future of Automated Insulin Delivery Systems.

    Science.gov (United States)

    Castle, Jessica R; DeVries, J Hans; Kovatchev, Boris

    2017-06-01

    Advances in continuous glucose monitoring (CGM) have brought on a paradigm shift in the management of type 1 diabetes. These advances have enabled the automation of insulin delivery, where an algorithm determines the insulin delivery rate in response to the CGM values. There are multiple automated insulin delivery (AID) systems in development. A system that automates basal insulin delivery has already received Food and Drug Administration approval, and more systems are likely to follow. As the field of AID matures, future systems may incorporate additional hormones and/or multiple inputs, such as activity level. All AID systems are impacted by CGM accuracy and future CGM devices must be shown to be sufficiently accurate to be safely incorporated into AID. In this article, we summarize recent achievements in AID development, with a special emphasis on CGM sensor performance, and discuss the future of AID systems from the point of view of their input-output characteristics, form factor, and adaptability.

  18. Hybrid spread spectrum radio system

    Science.gov (United States)

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  19. Systems for hybrid cars

    Science.gov (United States)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  20. Biofilm formed from organic-inorganic hybrid tri-ureasil PPO for transdermal drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Eduardo F.; Jesus, Natana Aparecida; Oliveira, Pollyana Francielli; Furtado, Ricardo A.; Tavares, Denise Crispim, E-mail: eduardo.molina@unifran.edu.br [Universidade de Franca (UNIFRAN), SP (Brazil)

    2016-07-01

    Full text: In this work we evaluated the viability of the tri-ureasil PPO hybrid as biofilm forming for release of active substances such as lignans. The samples were characterized by X-ray diffraction (XRD) and infrared (FTIR). The swelling degree and the influence of the catalyst on time of formation of a hybrid biofilm were evaluated. The cytotoxicity of the materials were evaluated using the XTT colorimetric assay where GM07492A strain was treated with different concentrations of the hybrid. The time of film formation depends on the quantity of the catalyst used in the synthesis. By varying the catalyst quantity during the synthesis, a good flexible film can be obtained, which is easy to be coated on the skin surface and in situ formed a very thin and comfortable film with an aesthetical appearance. Moreover, the hybrid films were colorless and transparent. The toxicity/viability of all samples has also been studied using normal human cells for future applications. The hybrid matrices did not significantly reduce cell viability, demonstrating that siloxane-polyether materials were biocompatible. All the materials presenting a amorphous structure (XRD) and the characteristic bands of vibrations (FTIR) of the polymer chain do not change after incorporation of lignans. (author)

  1. Biofilm formed from organic-inorganic hybrid tri-ureasil PPO for transdermal drug delivery system

    International Nuclear Information System (INIS)

    Molina, Eduardo F.; Jesus, Natana Aparecida; Oliveira, Pollyana Francielli; Furtado, Ricardo A.; Tavares, Denise Crispim

    2016-01-01

    Full text: In this work we evaluated the viability of the tri-ureasil PPO hybrid as biofilm forming for release of active substances such as lignans. The samples were characterized by X-ray diffraction (XRD) and infrared (FTIR). The swelling degree and the influence of the catalyst on time of formation of a hybrid biofilm were evaluated. The cytotoxicity of the materials were evaluated using the XTT colorimetric assay where GM07492A strain was treated with different concentrations of the hybrid. The time of film formation depends on the quantity of the catalyst used in the synthesis. By varying the catalyst quantity during the synthesis, a good flexible film can be obtained, which is easy to be coated on the skin surface and in situ formed a very thin and comfortable film with an aesthetical appearance. Moreover, the hybrid films were colorless and transparent. The toxicity/viability of all samples has also been studied using normal human cells for future applications. The hybrid matrices did not significantly reduce cell viability, demonstrating that siloxane-polyether materials were biocompatible. All the materials presenting a amorphous structure (XRD) and the characteristic bands of vibrations (FTIR) of the polymer chain do not change after incorporation of lignans. (author)

  2. Communications data delivery system analysis task 2 report : high-level options for secure communications data delivery systems.

    Science.gov (United States)

    2012-05-16

    This Communications Data Delivery System Analysis Task 2 report describes and analyzes options for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications data delivery systems using various communication media (Dedicated Short Ra...

  3. Fault tolerant control design for hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Jiang, Bin [Nanjing University of Aeronautics and Astronautics, Nanjing (China); Cocquempot, Vincent [Universite des Sciences et Technologies de Lille, Villeneuve d' Ascq (France)

    2010-07-01

    This book intends to provide the readers a good understanding on how to achieve Fault Tolerant Control goal of Hybrid Systems. The book can be used as a reference for the academic research on Fault Tolerant Control and Hybrid Systems or used in Ph.D. study of control theory and engineering. The knowledge background for this monograph would be some undergraduate and graduate courses on Fault Diagnosis and Fault Tolerant Control theory, linear system theory, nonlinear system theory, Hybrid Systems theory and Discrete Event System theory. (orig.)

  4. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-03-01

    Full Text Available Linhua Zhang,1 Dunwan Zhu,1 Xia Dong,1 Hongfan Sun,1 Cunxian Song,1 Chun Wang,2 Deling Kong1 1Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China; 2Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA Abstract: The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA modified lipid-shell and polymer-core nanoparticles (FLPNPs for sustained, controlled, and targeted delivery of paclitaxel (PTX. The core-shell NPs consist of 1 a poly(ε-caprolactone hydrophobic core based on self-assembly of poly(ε-caprolactone–poly(ethylene glycol–poly(ε-caprolactone (PCL-PEG-PCL amphiphilic copolymers, 2 a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000] (DSPE-PEG2000, 3 a targeting ligand (FA on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation. In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More

  5. Levodopa delivery systems: advancements in delivery of the gold standard.

    Science.gov (United States)

    Ngwuluka, Ndidi; Pillay, Viness; Du Toit, Lisa C; Ndesendo, Valence; Choonara, Yahya; Modi, Girish; Naidoo, Dinesh

    2010-02-01

    Despite the fact that Parkinson's disease (PD) was discovered almost 200 years ago, its treatment and management remain immense challenges because progressive loss of dopaminergic nigral neurons, motor complications experienced by the patients as the disease progresses and drawbacks of pharmacotherapeutic management still persist. Various therapeutic agents have been used in the management of PD, including levodopa (l-DOPA), selegiline, amantadine, bromocriptine, entacapone, pramipexole dihydrochloride and more recently istradefylline and rasagiline. Of all agents, l-DOPA although the oldest, remains the most effective. l-DOPA is easier to administer, better tolerated, less expensive and is required by almost all PD patients. However, l-DOPA's efficacy in advanced PD is significantly reduced due to metabolism, subsequent low bioavailability and irregular fluctuations in its plasma levels. Significant strides have been made to improve the delivery of l-DOPA in order to enhance its bioavailability and reduce plasma fluctuations as well as motor complications experienced by patients purportedly resulting from pulsatile stimulation of the striatal dopamine receptors. Drug delivery systems that have been instituted for the delivery of l-DOPA include immediate release formulations, liquid formulations, dispersible tablets, controlled release formulations, dual-release formulations, microspheres, infusion and transdermal delivery, among others. In this review, the l-DOPA-loaded drug delivery systems developed over the past three decades are elaborated. The ultimate aim was to assess critically the attempts made thus far directed at improving l-DOPA absorption, bioavailability and maintenance of constant plasma concentrations, including the drug delivery technologies implicated. This review highlights the fact that neuropharmaceutics is at a precipice, which is expected to spur investigators to take that leap to enable the generation of innovative delivery systems for the

  6. Process algebras for hybrid systems : comparison and development

    NARCIS (Netherlands)

    Khadim, U.

    2008-01-01

    Our research is about formal speci¯cation and analysis of hybrid systems. The formalism used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous behaviour. An example of a hybrid system is a digital controller controlling a physical device such as present in

  7. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  8. Performance estimation of photovoltaic–thermoelectric hybrid systems

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin; Yang, Lili

    2014-01-01

    A theoretical model for evaluating the efficiency of concentrating PV–TE (photovoltaic–thermoelectric) hybrid system is developed in this paper. Hybrid systems with different photovoltaic cells are studied, including crystalline silicon photovoltaic cell, silicon thin-film photovoltaic cell, polymer photovoltaic cell and copper indium gallium selenide photovoltaic cell. The influence of temperature on the efficiency of photovoltaic cell has been taken into account based on the semiconductor equations, which reveals different efficiency temperature characteristic of polymer photovoltaic cells. It is demonstrated that the polycrystalline silicon thin-film photovoltaic cell is suitable for concentrating PV–TE hybrid system through optimization of the convection heat transfer coefficient and concentrating ratio. The polymer photovoltaic cell is proved to be suitable for non-concentrating PV–TE hybrid system. - Highlights: • Performances of four types of photovoltaic–thermoelectric hybrid systems are studied. • Temperature is one of dominant factors of affecting the conversion efficiency of PV–TE systems. • One can select a proper PV–TE assembly system according to given operating conditions

  9. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  10. Formal Engineering Hybrid Systems: Semantic Underpinnings

    NARCIS (Netherlands)

    Bujorianu, M.C.; Bujorianu, L.M.

    2008-01-01

    In this work we investigate some issues in applying formal methods to hybrid system development and develop a categorical framework. We study the themes of stochastic reasoning, heterogeneous formal specification and retrenchment. Hybrid systems raise a rich pallets of aspects that need to be

  11. An oral delivery system for indomethicin engineered from cationic lipid emulsions and silica nanoparticles

    DEFF Research Database (Denmark)

    Simovic, Spomenka; Hui, He; Song, Yunmei

    2010-01-01

    We report on a porous silica-lipid hybrid microcapsule (SLH) oral delivery system for indomethacin fabricated from Pickering emulsion templates, where the drug forms an electrostatic complex with cationic lipid present in the oil phase. Dry SLH microcapsules prepared either by spray drying...... (approximately 1-5 microm) or phase coacervation (20-50 microm) exhibit a specific internal porous matrix structure with pore diameters in the range of 20 to 100 nm. Dissolution studies under sink conditions and in the presence of electrolytes revealed a decreased extent of dissolution; this confirms...

  12. Ion-Responsive Drug Delivery Systems.

    Science.gov (United States)

    Yoshida, Takayuki; Shakushiro, Kohsuke; Sako, Kazuhiro

    2018-02-08

    Some kinds of cations and anions are contained in body fluids such as blood, interstitial fluid, gastrointestinal juice, and tears at relatively high concentration. Ionresponsive drug delivery is available to design the unique dosage formulations which provide optimized drug therapy with effective, safe and convenient dosing of drugs. The objective of the present review was to collect, summarize, and categorize recent research findings on ion-responsive drug delivery systems. Ions in body fluid/formulations caused structural changes of polymers/molecules contained in the formulations, allow formulations exhibit functions. The polymers/molecules responding to ions were ion-exchange resins/fibers, anionic or cationic polymers, polymers exhibiting transition at lower critical solution temperature, self-assemble supramolecular systems, peptides, and metalorganic frameworks. The functions of ion-responsive drug delivery systems were categorized to controlled drug release, site-specific drug release, in situ gelation, prolonged retention at the target sites, and enhancement of drug permeation. Administration of the formulations via oral, ophthalmic, transdermal, and nasal routes has showed significant advantages in the recent literatures. Many kinds of drug delivery systems responding to ions have been reported recently for several administration routes. Improvement and advancement of these systems can maximize drugs potential and contribute to patients in the world. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. A Comprehensive Review on: Transdermal drug delivery systems.

    OpenAIRE

    Kharat, Rekha; Bathe, Ritesh Suresh

    2016-01-01

    Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical  administration  of  therap...

  14. Electronic Nicotine Delivery Systems Key Facts Infographic

    Data.gov (United States)

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  15. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  16. Smart Drug Delivery Systems in Cancer Therapy.

    Science.gov (United States)

    Unsoy, Gozde; Gunduz, Ufuk

    2018-02-08

    Smart nanocarriers have been designed for tissue-specific targeted drug delivery, sustained or triggered drug release and co-delivery of synergistic drug combinations to develop safer and more efficient therapeutics. Advances in drug delivery systems provide reduced side effects, longer circulation half-life and improved pharmacokinetics. Smart drug delivery systems have been achieved successfully in the case of cancer. These nanocarriers can serve as an intelligent system by considering the differences of tumor microenvironment from healthy tissue, such as low pH, low oxygen level, or high enzymatic activity of matrix metalloproteinases. The performance of anti-cancer agents used in cancer diagnosis and therapy is improved by enhanced cellular internalization of smart nanocarriers and controlled drug release. Here, we review targeting, cellular internalization; controlled drug release and toxicity of smart drug delivery systems. We are also emphasizing the stimulus responsive controlled drug release from smart nanocarriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  18. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Farokhi, Mehdi, E-mail: mehdi13294@yahoo.com [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mottaghitalab, Fatemeh, E-mail: fatemeh.motaghi@gmail.com [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali, E-mail: mashokrgozar@pasteur.ac.ir [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hadjati, Jamshid; Azami, Mahmoud [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-02-01

    This study investigated the efficacy of bio-hybrid silk fibroin/Calcium phosphate/PLGA nanocomposite scaffold as vascular endothelial growth factor (VEGF) delivery system. The scaffold was fabricated using freeze-drying and electrospinning. Here, we highlight the structural changes of the scaffold using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The uniform dispersion of calcium phosohate (CaP) powder within silk fibroin (SF) solution was also confirmed using Zeta potential analysis. Moreover, good biocompatibility of osteoblast cells next to the scaffold was approved by cell adhesion, proliferation and alkaline phosphatase production. The release profile of VEGF during 28 days has established the efficacy of the scaffold as a sustained delivery system. The bioactivity of the released VEGF was maintained about 83%. The histology analysis has shown that the new bone tissue formation happened in the defected site after 10 weeks of implantation. Generally, our data showed that the fabricated scaffold could be considered as an effective scaffold for bone tissue engineering applications. - Highlights: • Silk fibroin/calcium phosphate/PLGA scaffold was successfully fabricated using freeze-drying and electrospinning. • The scaffold could control the release of VEGF during 28 days. • The bioactivity of electrospun VEGF was above 80%. • VEGF loaded scaffold could induce bone regeneration after 10 weeks in rabbit.

  19. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ai, Jafar; Hadjati, Jamshid; Azami, Mahmoud

    2014-01-01

    This study investigated the efficacy of bio-hybrid silk fibroin/Calcium phosphate/PLGA nanocomposite scaffold as vascular endothelial growth factor (VEGF) delivery system. The scaffold was fabricated using freeze-drying and electrospinning. Here, we highlight the structural changes of the scaffold using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). The uniform dispersion of calcium phosohate (CaP) powder within silk fibroin (SF) solution was also confirmed using Zeta potential analysis. Moreover, good biocompatibility of osteoblast cells next to the scaffold was approved by cell adhesion, proliferation and alkaline phosphatase production. The release profile of VEGF during 28 days has established the efficacy of the scaffold as a sustained delivery system. The bioactivity of the released VEGF was maintained about 83%. The histology analysis has shown that the new bone tissue formation happened in the defected site after 10 weeks of implantation. Generally, our data showed that the fabricated scaffold could be considered as an effective scaffold for bone tissue engineering applications. - Highlights: • Silk fibroin/calcium phosphate/PLGA scaffold was successfully fabricated using freeze-drying and electrospinning. • The scaffold could control the release of VEGF during 28 days. • The bioactivity of electrospun VEGF was above 80%. • VEGF loaded scaffold could induce bone regeneration after 10 weeks in rabbit

  20. Supersaturating drug delivery systems

    DEFF Research Database (Denmark)

    Laitinen, Riikka; Löbmann, Korbinian; Grohganz, Holger

    2017-01-01

    of the bioavailability of poorly water-soluble drugs by increasing the driving force for drug absorption. However, ASDs often require a high weight percentage of carrier (usually a hydrophilic polymer) to ensure molecular mixing of the drug in the carrier and stabilization of the supersaturated state, often leading......Amorphous solid dispersions (ASDs) are probably the most common and important supersaturating drug delivery systems for the formulation of poorly water-soluble compounds. These delivery systems are able to achieve and maintain a sustained drug supersaturation which enables improvement...... strategy for poorly-soluble drugs. While the current research on co-amorphous formulations is focused on preparation and characterization of these systems, more detailed research on their supersaturation and precipitation behavior and the effect of co-formers on nucleation and crystal growth inhibition...

  1. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  2. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  3. Wind Solar Hybrid System Rectifier Stage Topology Simulation

    OpenAIRE

    Anup M. Gakare; Subhash Kamdi

    2014-01-01

    This paper presents power-control strategies of a grid-connected hybrid generation system with versatile power transfer. The hybrid system allows maximum utilization of freely available renewable sources like wind and photovoltaic energies. This paper presents a new system configuration of the multi input rectifier stage for a hybrid wind and photovoltaic energy system. This configuration allows the two sources to supply the load simultaneously depending on the availability of...

  4. Specification and Verification of Hybrid System

    International Nuclear Information System (INIS)

    Widjaja, Belawati H.

    1997-01-01

    Hybrid systems are reactive systems which intermix between two components, discrete components and continuous components. The continuous components are usually called plants, subject to disturbances which cause the state variables of the systems changing continuously by physical laws and/or by the control laws. The discrete components can be digital computers, sensor and actuators controlled by programs. These programs are designed to select, control and supervise the behavior of the continuous components. Specification and verification of hybrid systems has recently become an active area of research in both computer science and control engineering, many papers concerning hybrid system have been published. This paper gives a design methodology for hybrid systems as an example to the specification and verification of hybrid systems. The design methodology is based on the cooperation between two disciplines, control engineering and computer science. The methodology brings into the design of control loops and decision loops. The external behavior of control loops are specified in a notation which is understandable by the two disciplines. The design of control loops which employed theory of differential equation is done by control engineers, and its correctness is also guaranteed analytically or experimentally by control engineers. The decision loops are designed in computing science based on the specifications of control loops. The verification of systems requirements can be done by computing scientists using a formal reasoning mechanism. For illustrating the proposed design, a problem of balancing an inverted pendulum which is a popular experiment device in control theory is considered, and the Mean Value Calculus is chosen as a formal notation for specifying the control loops and designing the decision loops

  5. Methods and metrics challenges of delivery-system research

    Directory of Open Access Journals (Sweden)

    Alexander Jeffrey A

    2012-03-01

    Full Text Available Abstract Background Many delivery-system interventions are fundamentally about change in social systems (both planned and unplanned. This systems perspective raises a number of methodological challenges for studying the effects of delivery-system change--particularly for answering questions related to whether the change will work under different conditions and how the change is integrated (or not into the operating context of the delivery system. Methods The purpose of this paper is to describe the methodological and measurement challenges posed by five key issues in delivery-system research: (1 modeling intervention context; (2 measuring readiness for change; (3 assessing intervention fidelity and sustainability; (4 assessing complex, multicomponent interventions; and (5 incorporating time in delivery-system models to discuss recommendations for addressing these issues. For each issue, we provide recommendations for how research may be designed and implemented to overcome these challenges. Results and conclusions We suggest that a more refined understanding of the mechanisms underlying delivery-system interventions (treatment theory and the ways in which outcomes for different classes of individuals change over time are fundamental starting points for capturing the heterogeneity in samples of individuals exposed to delivery-system interventions. To support the research recommendations outlined in this paper and to advance understanding of the "why" and "how" questions of delivery-system change and their effects, funding agencies should consider supporting studies with larger organizational sample sizes; longer duration; and nontraditional, mixed-methods designs. A version of this paper was prepared under contract with the Agency for Healthcare Research and Quality (AHRQ, US Department of Health and Human Services for presentation and discussion at a meeting on "The Challenge and Promise of Delivery System Research," held in Sterling, VA, on

  6. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  7. ANALYSING SOLAR-WIND HYBRID POWER GENERATING SYSTEM

    Directory of Open Access Journals (Sweden)

    Mustafa ENGİN

    2005-02-01

    Full Text Available In this paper, a solar-wind hybrid power generating, system that will be used for security lighting was designed. Hybrid system was installed and solar cells, wind turbine, battery bank, charge regulators and inverter performance values were measured through the whole year. Using measured values of overall system efficiency, reliability, demanded energy cost per kWh were calculated, and percentage of generated energy according to resources were defined. We also include in the paper a discussion of new strategies to improve hybrid power generating system performance and demanded energy cost per kWh.

  8. Local sustained delivery of acetylsalicylic acid via hybrid stent with biodegradable nanofibers reduces adhesion of blood cells and promotes reendothelialization of the denuded artery

    Directory of Open Access Journals (Sweden)

    Lee CH

    2014-01-01

    Full Text Available Cheng-Hung Lee,1,2 Yu-Huang Lin,3 Shang-Hung Chang,1 Chun-Der Tai,3 Shih-Jung Liu,2 Yen Chu,4 Chao-Jan Wang,5 Ming-Yi Hsu,5 Hung Chang,6 Gwo-Jyh Chang,7 Kuo-Chun Hung,1 Ming-Jer Hsieh,1 Fen-Chiung Lin,1 I-Chang Hsieh,1 Ming-Shien Wen,1 Yenlin Huang81Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, 2Department of Mechanical Engineering, 3Graduate Institute of Medical Mechatronics, Chang Gung University, 4Laboratory of Cardiovascular Physiology, Division of Thoracic and Cardiovascular Surgery, 5Department of Medical Imaging and Intervention, 6Hematology-Oncology Division, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, 7Graduate Institute of Clinical Medicinal Sciences, Chang Gung University College of Medicine, Linkou, 8Department of Anatomical Pathology, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, TaiwanAbstract: Incomplete endothelialization, blood cell adhesion to vascular stents, and inflammation of arteries can result in acute stent thromboses. The systemic administration of acetylsalicylic acid decreases endothelial dysfunction, potentially reducing thrombus, enhancing vasodilatation, and inhibiting the progression of atherosclerosis; but, this is weakened by upper gastrointestinal bleeding. This study proposes a hybrid stent with biodegradable nanofibers, for the local, sustained delivery of acetylsalicylic acid to injured artery walls. Biodegradable nanofibers are prepared by first dissolving poly(D,L-lactide-co-glycolide and acetylsalicylic acid in 1,1,1,3,3,3-hexafluoro-2-propanol. The solution is then electrospun into nanofibrous tubes, which are then mounted onto commercially available bare-metal stents. In vitro release rates of pharmaceuticals from nanofibers are characterized using an elution method, and a high-performance liquid chromatography assay. The experimental results suggest that biodegradable nanofibers

  9. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien; Bunker, Matt; Zhang, Jianxin; Martin-Bertelsen, Birte; Yaghmur, Anan; Braeckmans, Kevin; Nielsen, Hanne M; Foged, Camilla

    2015-03-10

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  11. Design of Hybrid Gels Based on Gellan-Cholesterol Derivative and P90G Liposomes for Drug Depot Applications

    Directory of Open Access Journals (Sweden)

    Nicole Zoratto

    2017-05-01

    Full Text Available Gels are extensively studied in the drug delivery field because of their potential benefits in therapeutics. Depot gel systems fall in this area, and the interest in their development has been focused on long-lasting, biocompatible, and resorbable delivery devices. The present work describes a new class of hybrid gels that stem from the interaction between liposomes based on P90G phospholipid and the cholesterol derivative of the polysaccharide gellan. The mechanical properties of these gels and the delivery profiles of the anti-inflammatory model drug diclofenac embedded in such systems confirmed the suitability of these hybrid gels as a good candidate for drug depot applications.

  12. Modular supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lemos Pereira, A. de

    2000-06-01

    The power supply of remote places has been commonly provided by thermal power plants, usually diesel generators. Although hybrid power systems may constitute the most economical solution in many applications their widespread application to the electrification schemes of remote areas still depends on improvements in the issues of design and operation control. The main limitations of the present hybrid power systems technology, which are identified in this work, are related to the control and supervision of the power system. Therefore this thesis focuses on the modularity of supervisory controllers in order to design cost-competitive and reliable hybrid power systems. The modular supervisory controller created in this project is considered an important part of a system design approach that aims to overcome the technical difficulties of the current engineering practice and contribute to open the market of hybrid power systems. The term modular refers to a set of design characteristics that allows the use of basically the same supervisory controller in different projects. The modularization and standardisation of the controller include several issues such as interfacing components, communication protocols, modelling, programming and control strategies. The modularity can reduce the highly specialised system engineering related to the integration of components, operation and control. It can also avoid the high costs for installation, service and maintenance. A modular algorithm for supervisory controllers has been developed (a Matlab program called SuperCon) using an object-oriented design and it has been tested through several simulations using different hybrid system configurations and different control strategies. This thesis presents a complete control system design process which can be used as the basis for the development and implementation of intelligent and autonomous supervisory controllers for hybrid power systems with modular characteristics. (au)

  13. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    Science.gov (United States)

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  14. Components and systems for hybrid- and electromobiles; Komponenten und Systeme fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Immle, Michael; Burgmayr, Thomas [Panasonic Electric Works Europe AG, Holzkirchen (Germany)

    2010-07-01

    On the Hybrid and Electric Vehicle sector Panasonic Electric Works is working among others on electro-mechanical products, such as contactors for battery disconnection or battery charging, on semi-conductor relays for battery monitoring and on complex systems as battery disconnect units. This paper will show experience on the hybrid vehicle sector. Further on different switching components and their usage will be introduced. As a main topic battery disconnected units will be discussed. Based on an actual example basic development items and system features will be touched and important development stages will be shown. As a general topic a future view on vehicles and batteries, as well as on charging systems and infrastructural necessities will be introduced. (orig.)

  15. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  16. PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.

    Science.gov (United States)

    Du, Jiang-bo; Song, Yan-feng; Ye, Wei-liang; Cheng, Ying; Cui, Han; Liu, Dao-zhou; Liu, Miao; Zhang, Bang-le; Zhou, Si-yuan

    2014-08-01

    The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.

  17. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  18. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  19. Optimization of Renewable Energy Hybrid System for Grid Connected Application

    Directory of Open Access Journals (Sweden)

    Mustaqimah Mustaqimah

    2012-10-01

    Full Text Available ABSTRACT. Hybrid energy systems are pollution free, takes low cost and less gestation period, user and social friendly. Such systems are important sources of energy for shops, schools, and clinics in village communities especially in remote areas. Hybrid systems can provide electricity at a comparatively economic price in many remote areas. This paper presents a method to jointly determine the sizing and operation control of hybrid energy systems. The model, PV wind hydro and biomass hybrid system connects to grid. The system configuration of the hybrid is derived based on a theoretical domestic load at a typical location and local solar radiation, wind and water flow rate data and biomass availability. The hybrid energy system is proposed for 10 of teacher’s houses of Industrial Training Institute, Mersing. It is predicted 10 kW load consumption per house. The hybrid energy system consists of wind, solar, biomass, hydro, and grid power. Approximately energy consumption is 860 kWh/day with a 105 kW peak demand load. The proposed hybrid renewable consists of solar photovoltaic (PV panels, wind turbine, hydro turbine and biomass. Battery and inverter are included as part of back-up and storage system. It provides the economic sensitivity of hybridization and the economic and environmental benefits of using a blend of technologies. It also presents the trade off that is involved in optimizing a hybrid energy system to harness and utilize the available renewable energy resources efficiently.

  20. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    Science.gov (United States)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  1. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    Science.gov (United States)

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  2. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  3. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  4. Lifetime prognostics of hybrid backup power system

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Swierczynski, Maciej Jozef; Munk-Nielsen, Stig

    2017-01-01

    Modern telecommunication power supplies are based on renewable solutions, e.g. fuel cell/battery hybrid systems, for immediate and prolonged load support during grid faults. The high demand for power continuity increases the emphasis on power supply reliability and availability which raises...... the need for monitoring the system condition for timely maintenance and prevention of downtime. Although present on component level, no current literature addresses the condition monitoring from the perspective of a fuel cell/battery hybrid system such as the telecommunication power supply. This paper...... components: fuel cell, battery, and converters, is given. Finally, the paper presents a discussion on the available monitoring techniques from a commercial hybrid system point view....

  5. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  6. A study on nanodiamond-based drug delivery system

    International Nuclear Information System (INIS)

    Li Jing; Zhang Xiaoyong; Zhu Ying; Li Wenxin; Huang Qing

    2010-01-01

    A multifunctional drug delivery system based on nanodiamonds (NDs) has been developed. FITC, HCPT and TF were absorbed on NDs successively to form the multifunctional complex. The NDs and ND complex samples were characterized by TEM, FR-IR and UV-V. The results indicated that this drug delivery system is a high loading system. Efficacy of the drug delivery system on Hela cell was evaluated with MTT assays and fluorescence microscopy. The results show that multifunction of the NDs complex include fluorescence, targeting and high efficacy. (authors)

  7. Limit Cycle Analysis in a Class of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Antonio Favela-Contreras

    2016-01-01

    Full Text Available Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework.

  8. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    Science.gov (United States)

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  10. Modular component kit for hybrid drive systems; Modularer Komponentenbaukasten fuer Hybride Antriebssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Riegger, Peter; Schalk, Johannes; Schmalzing, Claus-Oliver [MTU Friedrichshafen GmbH, Friedrichshafen (Germany). Bereich Forschung Technologieentwicklung

    2013-10-15

    By hybrid drives, fuel consumption in off-road applications can be significantly reduced. However, the additional power train components and degrees of freedom required in the design of hybridised systems involve an increase in system variants. To keep the number of variants as low as possible whilst simultaneously ensuring that hybrid drives can serve as wide a spectrum of applications as possible, MTU has developed a modular system of components. This makes it possible to use customer requirements as a basis for creating innovative drive systems for the widest range of applications. (orig.)

  11. Hybrid attacks on model-based social recommender systems

    Science.gov (United States)

    Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao

    2017-10-01

    With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.

  12. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  13. Assume-Guarantee Abstraction Refinement Meets Hybrid Systems

    Science.gov (United States)

    Bogomolov, Sergiy; Frehse, Goran; Greitschus, Marius; Grosu, Radu; Pasareanu, Corina S.; Podelski, Andreas; Strump, Thomas

    2014-01-01

    Compositional verification techniques in the assume- guarantee style have been successfully applied to transition systems to efficiently reduce the search space by leveraging the compositional nature of the systems under consideration. We adapt these techniques to the domain of hybrid systems with affine dynamics. To build assumptions we introduce an abstraction based on location merging. We integrate the assume-guarantee style analysis with automatic abstraction refinement. We have implemented our approach in the symbolic hybrid model checker SpaceEx. The evaluation shows its practical potential. To the best of our knowledge, this is the first work combining assume-guarantee reasoning with automatic abstraction-refinement in the context of hybrid automata.

  14. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  15. Recent trends in challenges and opportunities of Transdermal drug delivery system

    OpenAIRE

    P.M.Patil; P.D.Chaudhari; Jalpa K.Patel; K.A.Kedar; P.P.Katolkar

    2012-01-01

    Drug delivery system relates to the production of a drug, its delivery medium, and the way of administration. Drug delivery systems are even used for administering nitroglycerin. Transdermal drug delivery system is the system in which the delivery of the active ingredients of the drug occurs by the means of skin. Various types of transdermal patches are used. There are various methods to enhance the transdermal drug delivery system. But using microfabricated microneedles drugs are delivered v...

  16. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  17. Analysis and design of hybrid control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malmborg, J.

    1998-05-01

    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs

  18. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...

  19. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  20. Novel targeted siRNA-loaded hybrid nanoparticles: preparation, characterization and in vitro evaluation.

    Science.gov (United States)

    Dim, Nneka; Perepelyuk, Maryna; Gomes, Olukayode; Thangavel, Chellappagounder; Liu, Yi; Den, Robert; Lakshmikuttyamma, Ashakumary; Shoyele, Sunday A

    2015-09-26

    siRNAs have a high potential for silencing critical molecular pathways that are pathogenic. Nevertheless, their clinical application has been limited by a lack of effective and safe nanotechnology-based delivery system that allows a controlled and safe transfection to cytosol of targeted cells without the associated adverse effects. Our group recently reported a very effective and safe hybrid nanoparticle delivery system composing human IgG and poloxamer-188 for siRNA delivery to cancer cells. However, these nanoparticles need to be optimized in terms of particle size, loading capacity and encapsulation efficiency. In the present study, we explored the effects of certain production parameters on particle size, loading capacity and encapsulation efficiency. Further, to make these nanoparticles more specific in their delivery of siRNA, we conjugated anti-NTSR1-mAb to the surface of these nanoparticles to target NTSR1-overexpressing cancer cells. The mechanism of siRNA release from these antiNTSR1-mAb functionalized nanoparticles was also elucidated. It was demonstrated that the concentration of human IgG in the starting nanoprecipitation medium and the rotation speed of the magnetic stirrer influenced the encapsulation efficiency, loading capacity and the size of the nanoparticles produced. We also successfully transformed these nanoparticles into actively targeted nanoparticles by functionalizing with anti-NTSR1-mAb to specifically target NTSR1-overexpressing cancer cells, hence able to avoid undesired accumulation in normal cells. The mechanism of siRNA release from these nanoparticles was elucidated to be by Fickian diffusion. Using flow cytometry and fluorescence microscopy, we were able to confirm the active involvement of NTSR1 in the uptake of these anti-NTSR1-mAb functionalized hybrid nanoparticles by lung adenocarcinoma cells. This hybrid nanoparticle delivery system can be used as a platform technology for intracellular delivery of siRNAs to NTSR1

  1. Auditing Information System : Delivery Product Service

    Directory of Open Access Journals (Sweden)

    Purwoko Purwoko

    2011-05-01

    Full Text Available Purpose of the research is to ensure the securities of information system asset and to ensure if informa-tion system support the operational and data collected was valid. Research method that used in this research were library studies and field studies. Field studies such an observation, questioner, and inter-view. the expected result are founding the weakness of security management control, operational man-agement control, input control, and output control of risk happened in the company. Conclusion of this research are the system on the company work good and there’s no potential risk happened and make an impact to the delivery process of information system.Index Terms - Auditing Information system, Delivery product process.

  2. Drug delivery from the oral cavity: a focus on mucoadhesive buccal drug delivery systems.

    Science.gov (United States)

    Shinkar, Dattatraya Manohar; Dhake, Avinash Sridhar; Setty, Chitral Mallikarjuna

    2012-01-01

    Since the early 1980s the concept of mucoadhesion has gained considerable interest in pharmaceutical technology. The various advantages associated with these systems made buccal drug delivery as a novel route of drug administration. It prolongs the residence time of the dosage form at the site of application. These systems remain in close contact with the absorption tissue, the mucous membrane, and thus contribute to improved and/or better therapeutic performance of the drug and of both local and systemic effects. This review highlights the anatomy and structure of oral mucosa, mechanism and theories of mucoadhesion, factors affecting mucoadhesion, characteristics and properties of desired mucoadhesive polymers, various types of dosage forms, and general considerations in design of mucoadhesive buccal dosage forms, permeation enhancers, and evaluation methods. Over the past few decades the mucoadhesive buccal drug delivery system has received a great deal of attention to develop mucoadhesive dosage forms to enable the prolonged retention at the site of action, providing a controlled release of drug for improved therapeutic outcome. Mucoadhesive drug delivery gives facility to include a permeation enhancer/enzyme inhibitor or pHmodifier in the formulation and versatility in designing as multidirectional or unidirectional release systems for local and systemic action. Local delivery to tissues of the oral cavity has a number of applications, including treatment of local conditions such as periodontal disease, bacterial and fungal infections, and aphthous stomatitis and vesiculo bullous diseases. For the treatment of chronic diseases, the mucoadhesive buccal drug delivery system allows easily accessibility and is generally well-accepted for administeringdrugs by systemic action.

  3. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  4. Event tree analysis for the system of hybrid reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; Qiu Lijian

    1993-01-01

    The application of probabilistic risk assessment for fusion-fission hybrid reactor is introduced. A hybrid reactor system has been analysed using event trees. According to the character of the conceptual design of Hefei Fusion-fission Experimental Hybrid Breeding Reactor, the probabilities of the event tree series induced by 4 typical initiating events were calculated. The results showed that the conceptual design is safe and reasonable. through this paper, the safety character of hybrid reactor system has been understood more deeply. Some suggestions valuable to safety design for hybrid reactor have been proposed

  5. A real-time virtual delivery system for photon radiotherapy delivery monitoring

    Directory of Open Access Journals (Sweden)

    Feng Shi

    2014-03-01

    Full Text Available Purpose: Treatment delivery monitoring is important for radiotherapy, which enables catching dosimetric error at the earliest possible opportunity. This project develops a virtual delivery system to monitor the dose delivery process of photon radiotherapy in real-time using GPU-based Monte Carlo (MC method.Methods: The simulation process consists of 3 parallel CPU threads. A thread T1 is responsible for communication with a linac, which acquires a set of linac status parameters, e.g. gantry angles, MLC configurations, and beam MUs every 20 ms. Since linac vendors currently do not offer interface to acquire data in real time, we mimic this process by fetching information from a linac dynalog file at the set frequency. Instantaneous beam fluence map (FM is calculated based. A FM buffer is also created in T1 and the instantaneous FM is accumulated to it. This process continues, until a ready signal is received from thread T2 on which an in-house developed MC dose engine executes on GPU. At that moment, the accumulated FM is transferred to T2 for dose calculations, and the FM buffer in T1 is cleared. Once the dose calculation finishes, the resulting 3D dose distribution is directed to thread T3, which displays it in three orthogonal planes in color wash overlaid on the CT image. This process continues to monitor the 3D dose distribution in real-time.Results: An IMRT and a VMAT cases used in our patient-specific QA are studied. Maximum dose differences between our system and treatment planning system are 0.98% and 1.58% for the IMRT and VMAT cases, respectively. The update frequency is >10Hz and the relative uncertainty level is 2%.Conclusion: By embedding a GPU-based MC code in a novel data/work flow, it is possible to achieve real-time MC dose calculations to monitor delivery process.------------------------------Cite this article as: Shi F, Gu X, Graves YJ, Jiang S, Jia X. A real-time virtual delivery system for photon radiotherapy delivery

  6. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.

    Science.gov (United States)

    Küçüktürkmen, Berrin; Devrim, Burcu; Saka, Ongun M; Yilmaz, Şükran; Arsoy, Taibe; Bozkir, Asuman

    2017-01-01

    Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.

  7. Distance Synchronous Information Systems Course Delivery

    Science.gov (United States)

    Peslak, Alan R.; Lewis, Griffith R.; Aebli, Fred

    2014-01-01

    Teaching computer information systems via distance education is a challenge for both student and faculty. Much research work has been performed on methods of teaching via distance education. Today we are faced with a variety of options for course delivery. Asynchronous delivery via online or lesson instruction still remains most common. But…

  8. The estimation of energy efficiency for hybrid refrigeration system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Kozioł, Joachim

    2013-01-01

    Highlights: ► We present the experimental setup and the model of the hybrid cooling system. ► We examine impact of the operating parameters of the hybrid cooling system on the energy efficiency indicators. ► A comparison of the final and the primary energy use for a combination of the cooling systems is carried out. ► We explain the relationship between the COP and PER values for the analysed cooling systems. -- Abstract: The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5 °C, −10 °C and −15 °C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

  9. Microemulsion Drug Delivery Systems for Radiopharmacy Studies

    Directory of Open Access Journals (Sweden)

    Emre Ozgenc

    2016-11-01

    Full Text Available Microemulsions have been used increasingly for last year’s because of ideal properties like favorable drug delivery, ease of preparation and physical stability. They have been improved the solubility and efficacy of the drug and reduce the side effects. Use of radiolabeled microemulsions plays an alternative role in drug delivery systems by investigating the formation, stability and application of microemulsions in radiopharmacy. Gama scintigraphic method is well recognized for developing and detecting the biodistribution of newly developed drugs or formulation. This review will focus on how radionuclides are able to play role with characterization studies of microemulsion drug delivery systems.

  10. A hybrid reconfigurable solar and wind energy system

    Science.gov (United States)

    Gadkari, Sagar A.

    We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.

  11. Weighted hybrid technique for recommender system

    Science.gov (United States)

    Suriati, S.; Dwiastuti, Meisyarah; Tulus, T.

    2017-12-01

    Recommender system becomes very popular and has important role in an information system or webpages nowadays. A recommender system tries to make a prediction of which item a user may like based on his activity on the system. There are some familiar techniques to build a recommender system, such as content-based filtering and collaborative filtering. Content-based filtering does not involve opinions from human to make the prediction, while collaborative filtering does, so collaborative filtering can predict more accurately. However, collaborative filtering cannot give prediction to items which have never been rated by any user. In order to cover the drawbacks of each approach with the advantages of other approach, both approaches can be combined with an approach known as hybrid technique. Hybrid technique used in this work is weighted technique in which the prediction score is combination linear of scores gained by techniques that are combined.The purpose of this work is to show how an approach of weighted hybrid technique combining content-based filtering and item-based collaborative filtering can work in a movie recommender system and to show the performance comparison when both approachare combined and when each approach works alone. There are three experiments done in this work, combining both techniques with different parameters. The result shows that the weighted hybrid technique that is done in this work does not really boost the performance up, but it helps to give prediction score for unrated movies that are impossible to be recommended by only using collaborative filtering.

  12. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  13. Powertrain system for a hybrid electric vehicle

    Science.gov (United States)

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  14. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye.

    Science.gov (United States)

    Turunen, Tytteli Anni Kaarina; Laakkonen, Johanna Päivikki; Alasaarela, Laura; Airenne, Kari Juhani; Ylä-Herttuala, Seppo

    2014-01-01

    A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    Science.gov (United States)

    Mohamed, Ahmed

    Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available

  16. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  17. Hybrid disposal systems and nitrogen removal in individual sewage disposal systems

    Energy Technology Data Exchange (ETDEWEB)

    Franks, A.L.

    1993-06-01

    The use of individual disposal systems in ground-water basins that have adverse salt balance conditions and/or geologically unsuitable locations, has become a major problem in many areas of the world. There has been much research in design of systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of domestic sewage. This research includes both hybrid systems for disposal of the treated waste in areas with adverse geologic conditions and systems for the removal of nitrogen and phosphorus prior to percolation to the ground water. This paper outlines the history of development and rationale for design and construction of individual sewage disposal systems and describes the designs and limitations of the hybrid and denitrification units. The disposal systems described include Mounds, Evapotranspiration and Evapotranspiration/Infiltration systems. The denitrification units include those using methanol, sulfur and limestone, gray water and secondary treated wastewater for energy sources.

  18. Hybrid Intrusion Detection System for DDoS Attacks

    Directory of Open Access Journals (Sweden)

    Özge Cepheli

    2016-01-01

    Full Text Available Distributed denial-of-service (DDoS attacks are one of the major threats and possibly the hardest security problem for today’s Internet. In this paper we propose a hybrid detection system, referred to as hybrid intrusion detection system (H-IDS, for detection of DDoS attacks. Our proposed detection system makes use of both anomaly-based and signature-based detection methods separately but in an integrated fashion and combines the outcomes of both detectors to enhance the overall detection accuracy. We apply two distinct datasets to our proposed system in order to test the detection performance of H-IDS and conclude that the proposed hybrid system gives better results than the systems based on nonhybrid detection.

  19. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor II of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  20. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While, the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor 2 of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  1. Hydrogen Delivery Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Delivery Technical Team (HDTT) is to enable the development of hydrogen delivery technologies, which will allow for fuel cell competitiveness with gasoline and hybrid technologies by achieving an as-produced, delivered, and dispensed hydrogen cost of $2-$4 per gallon of gasoline equivalent of hydrogen.

  2. Biomanufacturing and self-propulsion dynamics of nanoscale bacteria-enabled autonomous delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Traore, Mahama A.; Behkam, Bahareh, E-mail: behkam@vt.edu [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States); School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061 (United States); Damico, Carmen M. [Mechanical Engineering Department, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-10-27

    Flagellated bacteria have superb self-propulsion capabilities and are able to effectively move through highly viscous fluid and semi-solid (porous) environments. This innate aptitude has been harvested for whole-cell actuation of bio-hybrid microrobotic systems with applications in directed transport and microassembly. In this work, we present the biomanufacturing of Nanoscale Bacteria-Enabled Autonomous Delivery Systems (NanoBEADS) by controlled self-assembly and investigate the role of nanoparticle load on the dynamics of their self-propulsion in aqueous environments. Each NanoBEADS agent is comprised of spherical polystyrene nanoparticles assembled onto the body of a flagellated Escherichia coli bacterium. We demonstrate that the NanoBEADS assembly configuration is strongly dependent upon the nanoparticles to bacteria ratio. Furthermore, we characterized the stochastic motion of the NanoBEADS as a function of the quantity and size of the nanoparticle load and computationally analyzed the effect of the nanoparticle load on the experienced drag force. We report that the average NanoBEADS swimming speed is reduced to 65% of the free-swimming bacteria speed (31 μm/s) at the highest possible load. NanoBEADS can be utilized as single agents or in a collaborative swarm in order to carry out specific tasks in a wide range of applications ranging from drug delivery to whole cell biosensing.

  3. Buccal Transmucosal Delivery System of Enalapril for Improved ...

    African Journals Online (AJOL)

    Purpose: To prepare and characterize buccal transmucosal delivery system of enalapril maleate for overcoming its low bioavailability, and hence provide improved therapeutic efficacy and patient compliance. Methods: Transmucosal drug delivery systems of enalapril maleate were formulated as buccal films by solvent ...

  4. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  5. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  6. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A

  7. A novel high drug loading mussel-inspired polydopamine hybrid nanoparticle as a pH-sensitive vehicle for drug delivery.

    Science.gov (United States)

    Hou, Jie; Guo, Chunlei; Shi, Yuzhi; Liu, Ergang; Dong, Weibing; Yu, Bo; Liu, Shiyuan; Gong, Junbo

    2017-11-25

    A novel high drug loading pH-cleavable polymer hybrid nanoparticle was prepared via doxorubicin (DOX) grafted onto PEGylated, mussel-inspired polydopamine (PDA) and then coated onto hollow silica nanoparticles for drug delivery. A series of characterization shed light on the formation mechanisms of PDA coatings on hollow silica. We hypothesized that dopamine was first absorbed onto the surface of hollow silica and then began self-polymerization. A Dox-containing thiol moiety was fabricated with conjugation between doxorubicin hydrochloride and Mercaptopropionyalkali with a pH-cleavable hydrozone bond. Using a Michael addition reaction, several Dox-containing thiol moieties were grafted onto the surface of the PDA. The drug loading capacity can reach 35.43%. It can minimize the metabolic problem of silica. The released behavior of Dox can be significantly enhanced at endosomal pH compared to physiological pH. After folate modification, nanoparticles can lead to more cellular endocytosis. Meanwhile animal assays showed that more Dox accumulated in tumor tissue, which can enhanced the cytotoxicity to 4T1 cancer cells with a targeting group compared to free DOX and untargeted groups. Meanwhile, the tumor growth was significantly inhibited. This promising material shows a promising future as a drug delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  9. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    gramians. Generalized gramians are the solutions to the observability and controllability Lyapunov inequalities. In the first framework the projection matrices are found based on the common generalized gramians. This framework preserves the stability of the original switched system for all switching...... is guaranteed to be preserved for arbitrary switching signal. To compute the common generalized gramians linear matrix inequalities (LMI’s) need to be solved. These LMI’s are not always feasible. In order to solve the problem of conservatism, the second framework is presented. In this method the projection......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...

  10. A Hybrid Algorithm for Solving the Economic Lot and Delivery Scheduling Problem in the Common Cycle Case

    DEFF Research Database (Denmark)

    Ju, Suquan; Clausen, Jens

    2004-01-01

    The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit. This incl......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit....... This includes the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid...

  11. The under-critical reactors physics for the hybrid systems; La physique des reacteurs sous-critiques des systemes hybrides

    Energy Technology Data Exchange (ETDEWEB)

    Schapira, J P [Institut de Physique Nucleaire, IN2P3/CNRS 91 - Orsay (France); Vergnes, J [Electricite de France, EDF, Direction des Etudes et Recherches, 75 - Paris (France); Zaetta, A [CEA/Saclay, Direction des Reacteurs Nucleaires, DRN, 91 - Gif-sur-Yvette (France); and others

    1998-03-12

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  12. Recent Advances in Non-viral Vectors for Gene Delivery

    Science.gov (United States)

    Guo, Xia; Huang, Leaf

    2011-01-01

    CONSPECTUS Non-viral vectors, typically based on cationic lipids or polymers, are preferred due to safety concerns with viral vectors. So far, non-viral vectors can proficiently transfect cells in culture, but obtaining efficient nanomedicines is far from evident. To overcome the hurdles associated with non-viral vectors is significant for improving delivery efficiency and therapeutic effect of nucleic acid. The drawbacks include the strong interaction of cationic delivery vehicles with blood components, uptake by the reticuloendothelial system (RES), toxicity, targeting ability of the carriers to the cells of interest, and so on. PEGylation is the predominant method used to reduce the binding of plasma proteins with non-viral vectors and minimize the clearance by RES after intravenous administration. The nanoparticles that are not rapidly cleared from the circulation accumulate in the tumors due to the enhanced permeability and retention effect, and the targeting ligands attached to the distal end of the PEGylated components allow binding to the receptors on the target cell surface. Neutral or anionic liposomes have been also developed for systemic delivery of nucleic acids in experimental animal model. Designing and synthesizing novel cationic lipids and polymers, and binding nucleic acid with peptides, targeting ligands, polymers, or environmentally sensitive moieties also attract many attentions for resolving the problems encountered by non-viral vectors. The application of inorganic nanoparticles in nucleic acid delivery is an emerging field, too. Recently, different classes of non-viral vectors appear to be converging and the features of different classes of non-viral vectors could be combined in one strategy. More hurdles associated with efficient nucleic acid delivery therefore might be expected to be overcome. In this account, we will focus on these novel non-viral vectors, which are classified into multifunctional hybrid nucleic acid vectors, novel

  13. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  14. HyLTL: a temporal logic for model checking hybrid systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2013-08-01

    Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.

  15. The Hybrid Design: Integrating the Human and Technical Components of Just-In-Time Knowledge Management Systems

    Directory of Open Access Journals (Sweden)

    Nabie Y. Conteh

    2011-06-01

    Full Text Available This paper explores the right balance of human and technical resources in the design of Just-in-Time knowledge delivery. It also examines and analyzes the case study: “Teltech: The business of Knowledge Management” by Davenport. It further attempts to depict the characteristics of the hybrid. The paper describes how the hybrid can be applied to Just-In-Time knowledge delivery. It also seeks to analyze and explore its interplay with knowledge splits with a view to designing Just-In- Time Knowledge Management. These include: “tacit versus explicit knowledge”, “in-process” versus “after action” documentation, “process-centered versus product-centered approach”, “knowledge versus information” and the “culture of sharing versus hoarding.”

  16. Hybrid quantum systems of ions and atoms

    OpenAIRE

    Sias, Carlo; Köhl, Michael

    2014-01-01

    In this chapter we review the progress in experiments with hybrid systems of trapped ions and ultracold neutral atoms. We give a theoretical overview over the atom-ion interactions in the cold regime and give a summary of the most important experimental results. We conclude with an overview of remaining open challenges and possible applications in hybrid quantum systems of ions and neutral atoms.

  17. Design and Implementation of a Set-Top Box-Based Homecare System Using Hybrid Cloud.

    Science.gov (United States)

    Lin, Bor-Shing; Hsiao, Pei-Chi; Cheng, Po-Hsun; Lee, I-Jung; Jan, Gene Eu

    2015-11-01

    Telemedicine has become a prevalent topic in recent years, and several telemedicine systems have been proposed; however, such systems are an unsuitable fit for the daily requirements of users. The system proposed in this study was developed as a set-top box integrated with the Android™ (Google, Mountain View, CA) operating system to provide a convenient and user-friendly interface. The proposed system can assist with family healthcare management, telemedicine service delivery, and information exchange among hospitals. To manage the system, a novel type of hybrid cloud architecture was also developed. Updated information is stored on a public cloud, enabling medical staff members to rapidly access information when diagnosing patients. In the long term, the stored data can be reduced to improve the efficiency of the database. The proposed design offers a robust architecture for storing data in a homecare system and can thus resolve network overload and congestion resulting from accumulating data, which are inherent problems in centralized architectures, thereby improving system efficiency.

  18. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

    Science.gov (United States)

    Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester

    2015-05-26

    Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.

  19. Efficiency performance of China's health care delivery system.

    Science.gov (United States)

    Zhang, Luyu; Cheng, Gang; Song, Suhang; Yuan, Beibei; Zhu, Weiming; He, Li; Ma, Xiaochen; Meng, Qingyue

    2017-07-01

    Improving efficiency performance of the health care delivery system has been on the agenda for the health system reform that China initiated in 2009. This study examines the changes in efficiency performance and determinants of efficiency after the reform to provide evidence to assess the progress of the reform from the perspective of efficiency. Descriptive analysis, Data Envelopment Analysis, the Malmquist Index, and multilevel regressions are used with data from multiple sources, including the World Bank, the China Health Statistical Yearbook, and routine reports. The results indicate that over the last decade, health outcomes compared with health investment were relatively higher in China than in most other countries worldwide, and the trend was stable. The overall efficiency and total factor productivity increased after the reform, indicating that the reform was likely to have had a positive impact on the efficiency performance of the health care delivery system. However, the health care delivery structure showed low system efficiency, mainly attributed to the weakened primary health care system. Strengthening the primary health care system is central to enhancing the future performance of China's health care delivery system. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Improving Health Care Coverage, Equity, And Financial Protection Through A Hybrid System: Malaysia's Experience.

    Science.gov (United States)

    Rannan-Eliya, Ravindra P; Anuranga, Chamara; Manual, Adilius; Sararaks, Sondi; Jailani, Anis S; Hamid, Abdul J; Razif, Izzanie M; Tan, Ee H; Darzi, Ara

    2016-05-01

    Malaysia has made substantial progress in providing access to health care for its citizens and has been more successful than many other countries that are better known as models of universal health coverage. Malaysia's health care coverage and outcomes are now approaching levels achieved by member nations of the Organization for Economic Cooperation and Development. Malaysia's results are achieved through a mix of public services (funded by general revenues) and parallel private services (predominantly financed by out-of-pocket spending). We examined the distributional aspects of health financing and delivery and assessed financial protection in Malaysia's hybrid system. We found that this system has been effective for many decades in equalizing health care use and providing protection from financial risk, despite modest government spending. Our results also indicate that a high out-of-pocket share of total financing is not a consistent proxy for financial protection; greater attention is needed to the absolute level of out-of-pocket spending. Malaysia's hybrid health system presents continuing unresolved policy challenges, but the country's experience nonetheless provides lessons for other emerging economies that want to expand access to health care despite limited fiscal resources. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  2. Current and emerging lipid-based systems for transdermal drug delivery.

    Science.gov (United States)

    Singla, Sumeet K; Sachdeva, Vishal

    2015-01-01

    Developing a transdermal drug delivery system is a challenging task considering the selective permeability of the skin and the physicochemical properties the drug must possess to permeate through the skin. Lipid-based drug delivery systems have contributed a great deal in this direction in the last few decades, and thereby have helped to expand the range of therapeutic molecules that can be delivered through the skin in a safe and effective manner. Additionally, vesicular delivery systems such as nanoparticles and emulsions have also played important roles in providing alternative novel approaches for drug delivery. In this article, we will discuss some of the current and future lipid-based systems for transdermal drug delivery along with the associated challenges.

  3. Advanced drug delivery systems: Nanotechnology of health design A review

    Directory of Open Access Journals (Sweden)

    Javad Safari

    2014-04-01

    Full Text Available Nanotechnology has finally and firmly entered the realm of drug delivery. Performances of intelligent drug delivery systems are continuously improved with the purpose to maximize therapeutic activity and to minimize undesirable side-effects. This review describes the advanced drug delivery systems based on micelles, polymeric nanoparticles, and dendrimers. Polymeric carbon nanotubes and many others demonstrate a broad variety of useful properties. This review emphasizes the main requirements for developing new nanotech-nology-based drug delivery systems.

  4. Simulation of hybrid renewable microgeneration systems for variable electricity prices

    International Nuclear Information System (INIS)

    Brandoni, C.; Renzi, M.; Caresana, F.; Polonara, F.

    2014-01-01

    This paper addresses a hybrid renewable system that consists of a micro-Combined Cooling Heat and Power (CCHP) unit and a solar energy conversion device. In addition to a traditional PV system, a High Concentrator Photovoltaic (HCPV) device, the design of which is suitable for building integration application, was also modelled and embedded in the hybrid system. The work identifies the optimal management strategies for the hybrid renewable system in an effort to minimise the primary energy usage, the carbon dioxide emissions and the operational costs for variable electricity prices that result from the day-ahead electricity market. An “ad hoc” model describes the performance of the HCPV module, PV and Internal Combustion Engine, whilst the other units were simulated based on their main characteristic parameters. The developed algorithm was applied to three different building typologies. The results indicate that the best configuration is the hybrid renewable system with PV, which can provide a yearly primary energy reduction of between 20% and 30% compared to separate production. The hybrid renewable system with HCPV becomes competitive with the PV technology when the level of solar radiation is high. - Highlights: • The paper addresses a hybrid renewable system that consists of a micro-CCHP unit and a solar energy conversion device. • Both PV and High Concentrator Photovoltaic (HCPV) systems have been modelled and embedded in the hybrid system. • The work identifies the optimal management strategies for variable electricity prices. • Hybrid renewable systems provide a yearly primary energy reduction of between 20% and 30% compared to separate production. • When the level of solar radiation is high, HCPV becomes competitive with the PV technology

  5. Formal Description of Hybrid Systems

    DEFF Research Database (Denmark)

    Zhou, Chaochen; Ji, Wang; Ravn, Anders P.

    1996-01-01

    A language to describe hybrid systems, i.e. networks of communicating discrete and continuous processes, is proposed. A semantics of the language is given in Extended Duration Calculus, a real-time interval logic with a proof system that allows reasoning in mathematical analysis about continuous ...

  6. Multiuser hybrid switched-selection diversity systems

    KAUST Repository

    Shaqfeh, Mohammad

    2011-09-01

    A new multiuser scheduling scheme is proposed and analyzed in this paper. The proposed system combines features of conventional full-feedback selection-based diversity systems and reduced-feedback switch-based diversity systems. The new hybrid system provides flexibility in trading-off the channel information feedback overhead with the prospected multiuser diversity gains. The users are clustered into groups, and the users\\' groups are ordered into a sequence. Per-group feedback thresholds are used and optimized to maximize the system overall achievable rate. The proposed hybrid system applies switched diversity criterion to choose one of the groups, and a selection criterion to decide the user to be scheduled from the chosen group. Numerical results demonstrate that the system capacity increases as the number of users per group increases, but at the cost of more required feedback messages. © 2011 IEEE.

  7. Engineering the system of healthcare delivery

    National Research Council Canada - National Science Library

    Rouse, William B; Cortese, Denis A

    2010-01-01

    "As the United States continues to debate reform of its healthcare system, this book argues that providing health insurance for all without improving the delivery system will not improve the current...

  8. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  9. Model predictive control of hybrid systems : stability and robustness

    NARCIS (Netherlands)

    Lazar, M.

    2006-01-01

    This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior

  10. Food Delivery System with the Utilization of Vehicle Using Geographical Information System (GIS) and A Star Algorithm

    Science.gov (United States)

    Siregar, B.; Gunawan, D.; Andayani, U.; Sari Lubis, Elita; Fahmi, F.

    2017-01-01

    Food delivery system is one kind of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery system is the way to determine the shortest path and food delivery vehicle movement tracking. Therefore, to make sure that the digitation process of food delivery system can be applied efficiently, it is needed to add shortest path determination facility and food delivery vehicle tracking. This research uses A Star (A*) algorithm for determining shortest path and location-based system (LBS) programming for moving food delivery vehicle object tracking. According to this research, it is generated the integrated system that can be used by food delivery driver, customer, and administrator in terms of simplifying the food delivery system. Through the application of shortest path and the tracking of moving vehicle, thus the application of food delivery system in the scope of geographical information system (GIS) can be executed.

  11. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Probabilistic modelling and analysis of stand-alone hybrid power systems

    International Nuclear Information System (INIS)

    Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.

    2013-01-01

    As a part of the Hybrid Intelligent Algorithm, a model based on an ANN (artificial neural network) has been proposed in this paper to represent hybrid system behaviour considering the uncertainty related to wind speed and solar radiation, battery bank lifetime, and fuel prices. The Hybrid Intelligent Algorithm suggests a combination of probabilistic analysis based on a Monte Carlo simulation approach and artificial neural network training embedded in a genetic algorithm optimisation model. The installation of a typical hybrid system was analysed. Probabilistic analysis was used to generate an input–output dataset of 519 samples that was later used to train the ANNs to reduce the computational effort required. The generalisation ability of the ANNs was measured in terms of RMSE (Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error), and R-squared estimators using another data group of 200 samples. The results obtained from the estimation of the expected energy not supplied, the probability of a determined reliability level, and the estimation of expected value of net present cost show that the presented model is able to represent the main characteristics of a typical hybrid power system under uncertain operating conditions. - Highlights: • This paper presents a probabilistic model for stand-alone hybrid power system. • The model considers the main sources of uncertainty related to renewable resources. • The Hybrid Intelligent Algorithm has been applied to represent hybrid system behaviour. • The installation of a typical hybrid system was analysed. • The results obtained from the study case validate the presented model

  13. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  14. Analysis of Hybrid Hydrogen Systems: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  15. Analysis of Synchronization for Coupled Hybrid Systems

    DEFF Research Database (Denmark)

    Li, Zheng; Wisniewski, Rafal

    2006-01-01

    In the control systems with coupled multi-subsystem, the subsystems might be synchronized (i.e. all the subsystems have the same operation states), which results in negative influence to the whole system. For example, in the supermarket refrigeration systems, the synchronized switch of each...... subsystem will cause low efficiency, inferior control performance and a high wear on the compressor. This paper takes the supermarket refrigeration systems as an example to analyze the synchronization and its coupling strengths of coupled hybrid systems, which may provide a base for further research...... of control strategies. This paper combines topology and section mapping theories together to show a new way of analyzing hybrid systems...

  16. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  17. Nanotechnology-based drug delivery systems

    Directory of Open Access Journals (Sweden)

    Singh Baljit

    2007-12-01

    Full Text Available Abstract Nanoparticles hold tremendous potential as an effective drug delivery system. In this review we discussed recent developments in nanotechnology for drug delivery. To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. To achieve efficient drug delivery it is important to understand the interactions of nanomaterials with the biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signalling involved in pathobiology of the disease under consideration. Several anti-cancer drugs including paclitaxel, doxorubicin, 5-fluorouracil and dexamethasone have been successfully formulated using nanomaterials. Quantom dots, chitosan, Polylactic/glycolic acid (PLGA and PLGA-based nanoparticles have also been used for in vitro RNAi delivery. Brain cancer is one of the most difficult malignancies to detect and treat mainly because of the difficulty in getting imaging and therapeutic agents past the blood-brain barrier and into the brain. Anti-cancer drugs such as loperamide and doxorubicin bound to nanomaterials have been shown to cross the intact blood-brain barrier and released at therapeutic concentrations in the brain. The use of nanomaterials including peptide-based nanotubes to target the vascular endothelial growth factor (VEGF receptor and cell adhesion molecules like integrins, cadherins and selectins, is a new approach to control disease progression.

  18. Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid Titania—Synthesis and Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Olga L. Evdokimova

    2018-04-01

    Full Text Available Spherical cellulose nanocrystal-based hybrids grafted with titania nanoparticles were successfully produced for topical drug delivery. The conventional analytical filter paper was used as a precursor material for cellulose nanocrystals (CNC production. Cellulose nanocrystals were extracted via a simple and quick two-step process based on first the complexation with Cu(II solution in aqueous ammonia followed by acid hydrolysis with diluted H2SO4. Triclosan was selected as a model drug for complexation with titania and further introduction into the nanocellulose based composite. Obtained materials were characterized by a broad variety of microscopic, spectroscopic, and thermal analysis methods. The drug release studies showed long-term release profiles of triclosan from the titania based nanocomposite that agreed with Higuchi model. The bacterial susceptibility tests demonstrated that released triclosan retained its antibacterial activity against Escherichia coli and Staphylococcus aureus. It was found that a small amount of titania significantly improved the antibacterial activity of obtained nanocomposites, even without immobilization of model drug. Thus, the developed hybrid patches are highly promising candidates for potential application as antibacterial agents.

  19. Resistive-wall Wake Effect in the Beam Delivery System

    International Nuclear Information System (INIS)

    Delayen, J.R.; Jefferson Lab; Wu, Juhao; Raubenheimer, T.O.; SLAC; Wang, Jiunn-Ming; BNL, NSLS

    2005-01-01

    General formulae for resistive-wall induced beam dilution are presented and then applied to the final beam delivery system of linear colliders. Criteria for the design of final beam delivery systems are discussed

  20. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  1. Hydrogen atom as a quantum-classical hybrid system

    International Nuclear Information System (INIS)

    Zhan, Fei; Wu, Biao

    2013-01-01

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  2. DIAGNOSIS WINDOWS PROBLEMS BASED ON HYBRID INTELLIGENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    SAFWAN O. HASOON

    2013-10-01

    Full Text Available This paper describes the artificial intelligence technologies by integrating Radial Basis Function networks with expert systems to construct a robust hybrid system. The purpose of building the hybrid system is to give recommendations to repair the operating system (Windows problems and troubleshoot the problems that can be repaired. The neural network has unique characteristics which it can complete the uncompleted data, the expert system can't deal with data that is incomplete, but using the neural network individually has some disadvantages which it can't give explanations and recommendations to the problems. The expert system has the ability to explain and give recommendations by using the rules and the human expert in some conditions. Therefore, we have combined the two technologies. The paper will explain the integration methods between the two technologies and which method is suitable to be used in the proposed hybrid system.

  3. A Game-Theoretic approach to Fault Diagnosis of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2011-06-01

    Full Text Available Physical systems can fail. For this reason the problem of identifying and reacting to faults has received a large attention in the control and computer science communities. In this paper we study the fault diagnosis problem for hybrid systems from a game-theoretical point of view. A hybrid system is a system mixing continuous and discrete behaviours that cannot be faithfully modeled neither by using a formalism with continuous dynamics only nor by a formalism including only discrete dynamics. We use the well known framework of hybrid automata for modeling hybrid systems, and we define a Fault Diagnosis Game on them, using two players: the environment and the diagnoser. The environment controls the evolution of the system and chooses whether and when a fault occurs. The diagnoser observes the external behaviour of the system and announces whether a fault has occurred or not. Existence of a winning strategy for the diagnoser implies that faults can be detected correctly, while computing such a winning strategy corresponds to implement a diagnoser for the system. We will show how to determine the existence of a winning strategy, and how to compute it, for some decidable classes of hybrid automata like o-minimal hybrid automata.

  4. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  5. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Evaluation of a Compact Hybrid Brain-Computer Interface System

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2017-01-01

    Full Text Available We realized a compact hybrid brain-computer interface (BCI system by integrating a portable near-infrared spectroscopy (NIRS device with an economical electroencephalography (EEG system. The NIRS array was located on the subjects’ forehead, covering the prefrontal area. The EEG electrodes were distributed over the frontal, motor/temporal, and parietal areas. The experimental paradigm involved a Stroop word-picture matching test in combination with mental arithmetic (MA and baseline (BL tasks, in which the subjects were asked to perform either MA or BL in response to congruent or incongruent conditions, respectively. We compared the classification accuracies of each of the modalities (NIRS or EEG with that of the hybrid system. We showed that the hybrid system outperforms the unimodal EEG and NIRS systems by 6.2% and 2.5%, respectively. Since the proposed hybrid system is based on portable platforms, it is not confined to a laboratory environment and has the potential to be used in real-life situations, such as in neurorehabilitation.

  7. Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control

    Science.gov (United States)

    Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan

    2014-03-01

    This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

  8. Dueco Plug-In Hybrid Engines

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  9. Review of the Optimal Design on a Hybrid Renewable Energy System

    Directory of Open Access Journals (Sweden)

    Wu Yuan-Kang

    2016-01-01

    Full Text Available Hybrid renewable energy systems, combining various kinds of technologies, have shown relatively high capabilities to solve reliability problems and have reduced cost challenges. The use of hybrid electricity generation/storage technologies is reasonable to overcome related shortcomings. While the hybrid renewable energy system is attractive, its design, specifically the determination of the size of PV, wind, and diesel power generators and the size of energy storage system in each power station, is very challenging. Therefore, this paper will focus on the system planning and operation of hybrid generation systems, and several corresponding topics and papers by using intelligent computing methods will be reviewed. They include typical case studies, modeling and system simulation, control and management, reliability and economic studies, and optimal design on a reliable hybrid generation system.

  10. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    Science.gov (United States)

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  11. Feasibility Study and Optimization of An Hybrid System (Eolian ...

    African Journals Online (AJOL)

    Feasibility Study and Optimization of An Hybrid System (Eolian- Photovoltaic - Diesel) With Provision of Electric Energy Completely Independent. ... reducing emissions of greenhouse gas (CO2 rate = 16086 kg / year for a system using only the generator diesel and is 599 kg / year for the stand alone hybrid system studied).

  12. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  13. [Formulation aspects and ex-vivo examination of buccal drug delivery systems].

    Science.gov (United States)

    Szabó, Barnabás; Hetényi, Gergely; Majoros, Klaudia; Miszori, Veronika; Kállai, Nikolett; Zelkó, Romána

    2011-01-01

    Application of buccal dosage forms has several advantages. Buccal route can be used for systemic delivery because the mucosa has a rich blood supply and it is relatively permeable. This route of drug delivery is of special advantages, including the bypass of first pass effect and the avoidance of presystemic elimination within the GIT. Buccal delivery systems enable the systemic delivery of peptides and proteins. In our previous study the physiological background of this application and the excipients of the possible formulations were reviewed. In the present work the formulation and ex vivo examination aspects of buccal drug delivery systems are summarized.

  14. Study of a SOFC-PEM hybrid system

    International Nuclear Information System (INIS)

    Fillman, B.; Bjornbom, P.; Sylwan, C.

    2004-01-01

    'Full text:' In the present project a system study of a SOFC-PEM hybrid system is in progress. Positive synergy effects are expected when combining a SOFC system with a PEM system. By combining the advantages of each fuel cell type it is promising that the hybrid system has higher overall efficiency than a SOFC-only system or a reformer-PEM system. A SOFC stack produces electricity and a reformate gas that can be further processed to hydrogen by the shift reaction. The produced hydrogen can be used by PEM stack in order to produce further electricity. In the PEM system case the complex fuel reformer processing could be eliminated. The simulations were performed with the flowsheeting simulation software Aspen Plus. (author)

  15. A REVIEW ON OSMOTIC DRUG DELIVERY SYSTEM

    OpenAIRE

    Harnish Patel; Upendra Patel; Hiren Kadikar; Bhavin Bhimani; Dhiren Daslaniya; Ghanshyam Patel

    2012-01-01

    Conventional oral drug delivery systems supply an instantaneous release of drug, which cannot control the release of the drug and effective concentration at the target site. This kind of dosing pattern may result in constantly changing, unpredictable plasma concentrations. Drugs can be delivered in a controlled pattern over a long period of time by the process of osmosis. Osmotic devices are the most promising strategy based systems for controlled drug delivery. They are the most reliable con...

  16. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    Science.gov (United States)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  17. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    Directory of Open Access Journals (Sweden)

    C. Shashidhar

    2012-02-01

    Full Text Available Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, lead-acid storage batteries, an inverter unit to convert DC to AC, electrical lighting loads, electrical heating loads, several fuse and junction boxes and associated wiring, and test instruments for measuring voltages, currents, power factors, and harmonic contamination data throughout the system. The proposed hybrid solar-wind power generating system can be extensively used to illustrate electrical concepts in hands-on laboratories and also for demonstrations in the Industrial Technology curriculum. This paper describes an analysis of local PV-wind hybrid systems for supplying electricity to a private house, farmhouse or small company with electrical power depending on the site needs. The major system components, work principle and specific working condition are presented.

  18. Drug delivery systems and materials for wound healing applications.

    Science.gov (United States)

    Saghazadeh, Saghi; Rinoldi, Chiara; Schot, Maik; Kashaf, Sara Saheb; Sharifi, Fatemeh; Jalilian, Elmira; Nuutila, Kristo; Giatsidis, Giorgio; Mostafalu, Pooria; Derakhshandeh, Hossein; Yue, Kan; Swieszkowski, Wojciech; Memic, Adnan; Tamayol, Ali; Khademhosseini, Ali

    2018-04-05

    Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Improvement of different vaccine delivery systems for cancer therapy

    Directory of Open Access Journals (Sweden)

    Safaiyan Shima

    2011-01-01

    Full Text Available Abstract Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.

  20. Specification of real-time automation systems with HybridUML; Spezifikation von Echtzeit-Automatisierungssystemen mit HybridUML

    Energy Technology Data Exchange (ETDEWEB)

    Berkenkoetter, K.; Bisanz, S.; Hannemann, U.; Peleska, J. [Univ. Bremen (Germany)

    2004-07-01

    Complex automation systems require specification formalisms supporting the description of real-time requirements with respect to both discrete and time-continuous observables. For this purpose, the authors have designed the HybridUML specification language. Discrete events, communication, and variable assignments are specified by state machines, timers, and invariant conditions. The time-continuous aspects of system behaviour are described by associating differential equations or time-dependent algebraic conditions with system states. The complexity of large systems is controlled by decomposing the specification into parallel components and hierarchical state machines. Instead of inventing a new language syntax, HybridUML is represented as a profile of the Unified Modeling Language UML 2.0. This allows to re-use the syntactic framework of well-accepted graphical UML constructs and development support provided by various UML case tools. The profile is associated with a precise language semantics linking unambiguous meaning to all HybridUML specifications. As a consequence, HybridUML specifications can be compiled into executable code which is suitable for execution in hard realtime on multi-processor computers. This serves both for the development of automation systems and for specification-based testing in real-time. This paper contains an introduction to HybridUML which is illustrated by an example from the field of automated train control. (orig.)

  1. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Rönnkö, M.; Ravn, Anders Peter; Sere, K.

    2003-01-01

    In this paper we investigate the use of action systems with differential actions in the specifcation of hybrid systems. As the main contribution we generalize the definition of a differential action, allowing the use of arbitrary relations over model variables and their time......-derivatives in modelling continuous-time dynamics. The generalized differential action has an intuitively appealing predicate transformer semantics, which we show to be both conjunctive and monotonic. In addition, we show that differential actions blend smoothly with conventional actions in action systems, even under...... parallel composition. Moreover, as the strength of the action system formalism is the support for stepwise development by refinement, we investigate refinement involving a differential action. We show that, due to the predicate transformer semantics, standard action refinement techniques apply also...

  2. Oral controlled release drug delivery system and Characterization of oral tablets; A review

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2016-01-01

    Full Text Available Oral route of drug administration is considered as the safest and easiest route of drug administration. Control release drug delivery system is the emerging trend in the pharmaceuticals and the oral route is most suitable for such kind of drug delivery system. Oral route is more convenient for It all age group including both pediatric and geriatrics. There are various systems which are adopted to deliver drug in a controlled manner to different target sites through oral route. It includes diffusion controlled drug delivery systems; dissolution controlled drug delivery systems, osmotically controlled drug delivery systems, ion-exchange controlled drug delivery systems, hydrodynamically balanced systems, multi-Particulate drug delivery systems and microencapsulated drug delivery system. The systems are formulated using different natural, semi-synthetic and synthetic polymers. The purpose of the review is to provide information about the orally controlled drug delivery system, polymers which are used to formulate these systems and characterizations of one of the most convenient dosage form which is the tablets. 

  3. Modelling and Verifying Communication Failure of Hybrid Systems in HCSP

    DEFF Research Database (Denmark)

    Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, in the presence of communication failure, the expected control from the controller will get lost and as a consequence the physical process cannot behave as expected. In this paper, we mainly consider the communication failure caused by the non-engagement of one party in communication action, i.......e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems...

  4. Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries

    Science.gov (United States)

    2015-09-01

    Systems in Systemic , Dermal, Transdermal , and Ocular Drug Delivery . Crit. Rev. Ther. Drug 2008, 25, 545–584. 14. Choy, Y. B.; Park, J.-H.; McCarey, B...AWARD NUMBER: W81XWH-13-1-0146 TITLE: Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries PRINCIPAL INVESTIGATOR: Dr...Broadly Applicable Nanowafer Drug Delivery System for Treating Eye Injuries” 5b. GRANT NUMBER W81XWH-13-1-0146 5c. PROGRAM ELEMENT NUMBER 6

  5. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  6. Chitosan microspheres in novel drug delivery systems.

    Science.gov (United States)

    Mitra, Analava; Dey, Baishakhi

    2011-07-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems.

  7. Renewable energy delivery systems and methods

    Science.gov (United States)

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  8. Injectable In-Situ Gelling Controlled Release Drug Delivery System

    OpenAIRE

    Kulwant Singh; S. L. HariKumar

    2012-01-01

    The administration of poorly bioavailable drug through parenteral route is regarded the most efficient for drug delivery. Parenteral delivery provides rapid onset even for the drug with narrow therapeutic window, but to maintain the systemic drug level repeated installation are required which cause the patient discomfort. This can be overcome by designing the drug into a system, which control the drug release even through parenteral delivery, which improve patient compliance as well as pharma...

  9. San Juanico Hybrid System Technical and Institutional Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Newcomb, C.; Yewdall, Z.

    2004-07-01

    San Juanico is a fishing village of approximately 120 homes in the Municipality of Comondu, Baja California. In April, 1999, a hybrid power system was installed in San Juanico to provide 24-hour power, which was not previously available. Before the installation of the hybrid power system, a field study was conducted to characterize the electrical usage and institutional and social framework of San Juanico. One year after the installation of the hybrid power system a''post-electrification'' study was performed to document the changes that had occurred after the installation. In December of 2003, NREL visited the site to conduct a technical assessment of the system.

  10. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  11. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications.

    Science.gov (United States)

    Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K

    2014-06-01

    Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.

  12. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  13. Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent

    Science.gov (United States)

    1993-11-01

    was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further

  14. Electric energy storage systems for future hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kemper, Hans; Huelshorst, Thomas [FEV Motorentechnik GmbH, Aachen (Germany); Sauer, Dirk Uwe [Elektrochemische Energiewandlung und Speichersystemtechnik, ISEA, RWTH Aachen Univ. (Germany)

    2008-07-01

    Electric energy storage systems play a key role in today's and even more in future hybrid and electric vehicles. They enable new additional functionalities like Start/Stop, regenerative braking or electric boost and pure electric drive. This article discusses properties and requirements of battery systems like power provision, energy capacity, life time as a function of the hybrid concepts and the real operating conditions of the today's and future hybrid drivetrains. Battery cell technology, component sizing, system design, operating strategy safety measures and diagnosis, modularity and vehicle integration are important battery development topics. A final assessment will draw the conclusion that future drivetrain concepts with higher degree of electrician will be significantly dependent on the progress of battery technology. (orig.)

  15. Local analysis of hybrid systems on polyhedral sets with state-dependent switching

    Directory of Open Access Journals (Sweden)

    Leth John

    2014-06-01

    Full Text Available This paper deals with stability analysis of hybrid systems. Various stability concepts related to hybrid systems are introduced. The paper advocates a local analysis. It involves the equivalence relation generated by reset maps of a hybrid system. To establish a tangible method for stability analysis, we introduce the notion of a chart, which locally reduces the complexity of the hybrid system. In a chart, a hybrid system is particularly simple and can be analyzed with the use of methods borrowed from the theory of differential inclusions. Thus, the main contribution of this paper is to show how stability of a hybrid system can be reduced to a specialization of the well established stability theory of differential inclusions. A number of examples illustrate the concepts introduced in the paper.

  16. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  17. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  18. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions

    International Nuclear Information System (INIS)

    Lau, K.Y.; Yousof, M.F.M.; Arshad, S.N.M.; Anwari, M.; Yatim, A.H.M.

    2010-01-01

    Standalone diesel generating system utilized in remote areas has long been practiced in Malaysia. Due to highly fluctuating diesel price, such a system is seemed to be uneconomical, especially in the long run if the supply of electricity for rural areas solely depends on such diesel generating system. This paper would analyze the potential use of hybrid photovoltaic (PV)/diesel energy system in remote locations. National Renewable Energy Laboratory's (NREL) HOMER software was used to perform the techno-economic feasibility of hybrid PV/diesel energy system. The investigation demonstrated the impact of PV penetration and battery storage on energy production, cost of energy and number of operational hours of diesel generators for the given hybrid configurations. Emphasis has also been placed on percentage fuel savings and reduction in carbon emissions of different hybrid systems. At the end of this paper, suitability of utilizing hybrid PV/diesel energy system over standalone diesel system would be discussed mainly based on different solar irradiances and diesel prices. (author)

  19. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe...... delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract...... biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral...

  20. Modelling dependable systems using hybrid Bayesian networks

    International Nuclear Information System (INIS)

    Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter

    2008-01-01

    A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems

  1. Controlled drug delivery systems towards new frontiers in patient care

    CERN Document Server

    Rossi, Filippo; Masi, Maurizio

    2016-01-01

    This book offers a state-of-the-art overview of controlled drug delivery systems, covering the most important innovative applications. The principles of controlled drug release and the mechanisms involved in controlled release are clearly explained. The various existing polymeric drug delivery systems are reviewed, and new frontiers in material design are examined in detail, covering a wide range of polymer modification techniques. The concluding chapter is a case study focusing on use of a drug-eluting stent. The book is designed to provide the reader with a complete understanding of the mechanisms and design of controlled drug delivery systems, and to this end includes numerous step-by-step tutorials. It illustrates how chemical engineers can advance medical care by designing polymeric delivery systems that achieve either temporal or spatial control of drug delivery and thus ensure more effective therapy that eliminates the potential for both under-and overdosing.

  2. Printing technologies in fabrication of drug delivery systems.

    Science.gov (United States)

    Kolakovic, Ruzica; Viitala, Tapani; Ihalainen, Petri; Genina, Natalja; Peltonen, Jouko; Sandler, Niklas

    2013-12-01

    There has been increased activity in the field recently regarding the development and research on various printing techniques in fabrication of dosage forms and drug delivery systems. These technologies may offer benefits and flexibility in manufacturing, potentially paving the way for personalized dosing and tailor-made dosage forms. In this review, the most recent observations and advancements in fabrication of drug delivery systems by utilizing printing technologies are summarized. A general overview of 2D printing techniques is presented including a review of the most recent literature where printing techniques are used in fabrication of drug delivery systems. The future perspectives and possible impacts on formulation strategies, flexible dosing and personalized medication of using printing techniques for fabrication of drug delivery systems are discussed. It is evident that there is an urgent need to meet the challenges of rapidly growing trend of personalization of medicines through development of flexible drug-manufacturing approaches. In this context, various printing technologies, such as inkjet and flexography, can play an important role. Challenges on different levels exist and include: i) technological development of printers and production lines; ii) printable formulations and carrier substrates; iii) quality control and characterization; and iv) regulatory perspectives.

  3. Model for determining and optimizing delivery performance in industrial systems

    Directory of Open Access Journals (Sweden)

    Fechete Flavia

    2017-01-01

    Full Text Available Performance means achieving organizational objectives regardless of their nature and variety, and even overcoming them. Improving performance is one of the major goals of any company. Achieving the global performance means not only obtaining the economic performance, it is a must to take into account other functions like: function of quality, delivery, costs and even the employees satisfaction. This paper aims to improve the delivery performance of an industrial system due to their very low results. The delivery performance took into account all categories of performance indicators, such as on time delivery, backlog efficiency or transport efficiency. The research was focused on optimizing the delivery performance of the industrial system, using linear programming. Modeling the delivery function using linear programming led to obtaining precise quantities to be produced and delivered each month by the industrial system in order to minimize their transport cost, satisfying their customers orders and to control their stock. The optimization led to a substantial improvement in all four performance indicators that concern deliveries.

  4. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  5. Servir: an automated document delivery system

    International Nuclear Information System (INIS)

    Lima, E.C.; Azevedo Coutinho, O.C. de

    1986-01-01

    SERVIR, an automated document delivery system developed by CIN/CNEN, is described. Parametric procedures for reading bibliographic data bases and requesting documents from libraries through computer are specified. Statistical procedures, accounting system and the on-line fulfillment of requests are presented. (Author) [pt

  6. Recent trends in drug delivery system using protein nanoparticles.

    Science.gov (United States)

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  7. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  8. Grizzli mobile systems and LPG delivery management; Grizzli mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-07-01

    Complete text of publication follows: Grizzli Mobile Systems (and its sister companies) specialists in data communications and system solutions, offer their complete management solution for LPG deliveries, right through from remote reading of the gas level in the tank, through route management, management of the delivery itself and finally on-site invoicing and payment. The system permits a supplier to really differentiate itself from its competitors in terms of customer service and control of its operations. Domestic gas tanks are often difficult to access; visual reading of the gauge is not always easy and often leads to the customer re-ordering in panic mode. The supplier has also to react in panic mode to the customer. Grizzli Mobile Systems has developed a radio module that is fitted to the gas tank that calls, at regular set intervals with the tank level to a Call Rider gateway plug. The Call Rider is a small box plugged into the regular telephone socket (also supplying multiple operator telephony and other home automation services). As soon as the gas level reaches a predetermined minimum level, this radio information is relayed via the Internet to the LPG supplier. The supplier can then arrange (in non-panic mode) to deliver gas to the customer, via conventional means or by use of an interactive radio display (attached to a refrigerator or similar by magnets) that communicates with the Call Rider by radio. Once a delivery date has been set, a Grizzli Mobile Systems' dispatch system, installed at the supplier's headquarters creates and transfers routes via GSM communications to its fleet of delivery vehicles. A main-frame mapping software provides real-time follow-up and status checks of the vehicles using the GPS functionality and imports data back from the vehicles and updates databases. The driver is also assisted in localizing delivery sites. Inside the cabin of the vehicle the driver has available a Fujitsu PenCentra pen computer, a Microsoft

  9. Performance assessment of a novel hybrid district energy system

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2012-01-01

    In this paper, a new hybrid system for improving the efficiency of geothermal district heating systems (GDHSs) is proposed. This hybrid system consists of biogas based electricity production and a water-to-water geothermal heat pump unit (GHPU), which uses the waste heat for both heating and domestic hot water purposes. Electricity generated by the biogas plant (BP) is utilized to drive the GDHS's pumps, BP systems and the heat pump units. Both the biogas reactor heating unit and the heat pump unit utilize the waste heat from the GDHS and use the system as a heat source. The feasibility of utilizing a hybrid system in order to increase the overall system (GDHS + BP + GHPU) efficiency is then investigated for possible efficiency improvements. The Edremit GDHS in Turkey, which is selected for investigation in this case study, reinjects 16.8 MW of thermal power into the river at a low temperature; namely at 40 °C. Such a temperature is ideal for mesophilic bacterial growth in the digestion process during biogas production. 1.45 MW of biogas based electricity production potential is obtainable from the waste heat output of the Edremit GDHS. The average overall system efficiencies through the utilization of this kind of hybridized system approach are increased by 7.5% energetically and 13% for exergetically. - Highlights: ► A new hybrid system is proposed for improving the efficiency of geothermal district heating systems (GDHSs). ► The average overall system efficiencies are increased by 7.5% for energy and 13% for exergy, respectively. ► Various energetic and exergetic parameters are studied.

  10. A Novel Nonviral Gene Delivery System: Multifunctional Envelope-Type Nano Device

    Science.gov (United States)

    Hatakeyama, Hiroto; Akita, Hidetaka; Kogure, Kentaro; Harashima, Hideyoshi

    In this review we introduce a new concept for developing a nonviral gene delivery system which we call "Programmed Packaging." Based on this concept, we succeeded in developing a multifunctional envelope-type nano device (MEND), which exerts high transfection activities equivalent to those of an adenovirus in a dividing cell. The use of MEND has been extended to in vivo applications. PEG/peptide/DOPE ternary conjugate (PPD)-MEND, a new in vivo gene delivery system for the targeting of tumor cells that dissociates surface-modified PEG in tumor tissue by matrix metalloproteinase (MMP) and exerts significant transfection activities, was developed. In parallel with the development of MEND, a quantitative gene delivery system, Confocal Image-assisted 3-dimensionally integrated quantification (CIDIQ), also was developed. This method identified the rate-limiting step of the nonviral gene delivery system by comparing it with adenoviral-mediated gene delivery. The results of this analysis provide a new direction for the development of rational nonviral gene delivery systems.

  11. Guidelines for Psychological Practice in Health Care Delivery Systems

    Science.gov (United States)

    American Psychologist, 2013

    2013-01-01

    Psychologists practice in an increasingly diverse range of health care delivery systems. The following guidelines are intended to assist psychologists, other health care providers, administrators in health care delivery systems, and the public to conceptualize the roles and responsibilities of psychologists in these diverse contexts. These…

  12. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  13. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  14. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  15. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors

    International Nuclear Information System (INIS)

    Mohtaram, Nima Khadem; Montgomery, Amy; Willerth, Stephanie M

    2013-01-01

    This review highlights recent work on the use of biomaterial-based drug delivery systems to control the release of neurotrophic factors as a potential strategy for the treatment of neurological disorders. Examples of neurotrophic factors include the nerve growth factor, the glial cell line-derived neurotrophic factor, the brain-derived neurotrophic factor and neurotrophin-3. In particular, this review focuses on two methods of drug delivery: affinity-based and reservoir-based systems. We review the advantages and challenges associated with both types of drug delivery system and how these systems can be applied to neurological diseases and disorders. While a limited number of affinity-based delivery systems have been developed for the delivery of neurotrophic factors, we also examine the broad spectrum of reservoir-based delivery systems, including microspheres, electrospun nanofibers, hydrogels and combinations of these systems. Finally, conclusions are drawn about the current state of such drug delivery systems as applied to neural tissue engineering along with some thoughts on the future direction of the field. (topical review)

  16. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  17. User acceptance of diesel/PV hybrid system in an island community

    International Nuclear Information System (INIS)

    Phuangpornpitak, N.; Kumar, S.

    2011-01-01

    This paper presents the results of a study conducted at a rural (island) community to understand the role of PV hybrid system installed on an island. Until 2004, most islanders had installed diesel generators in their homes to generate electricity, which was directly supplied to appliances or stored in the batteries for later use. A field survey was carried out to study the user satisfaction of the PV hybrid system in the island community. The attitude of islanders to the PV hybrid system was mostly positive. The islanders can use more electricity, the supply of which can meet the demand. A comparison of pollutions before and after installation of the PV hybrid system was made along with the interviews with the users. The data show that the users are highly satisfied with the PV hybrid system which can reduce environmental impact, especially air and noise pollutions. New opportunities as a result of access to electric service include studying and reading at night that were not possible earlier. All the islanders use the PV hybrid system and more importantly, no one found that the system made their life worse as compared to the earlier state of affairs. (author)

  18. Control of hybrid fuel cell/energy storage distributed generation system against voltage sag

    Energy Technology Data Exchange (ETDEWEB)

    Hajizadeh, Amin; Golkar, Masoud Aliakbar [Electrical Engineering Department, K.N. Toosi University of Technology, Seyedkhandan, Dr. Shariati Ave, P.O. Box 16315-1355, Tehran (Iran)

    2010-06-15

    Fuel cell (FC) and energy storage (ES) based hybrid distributed power generation systems appear to be very promising for satisfying high energy and high power requirements of power quality problems in distributed generation (DG) systems. In this study, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage disturbance occurs in distribution system and hybrid system stays connected to the main grid. Hence, modeling, controller design, and simulation study of a hybrid distributed generation system are investigated. The physical model of the fuel cell stack, energy storage and the models of power conditioning units are described. Then the control design methodology for each component of the hybrid system is proposed. Simulation results are given to show the overall system performance including active power control and voltage sag ride-through capability of the hybrid distributed generation system. (author)

  19. Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management.

    Science.gov (United States)

    Yang, Hu; Leffler, Christopher T

    2013-03-01

    Glaucoma therapy typically begins with topical medications, of which there are 4 major classes in common use in the United States: beta-adrenergic antagonists, alpha-agonists, carbonic anhydrase inhibitors, and prostaglandin analogs. Unfortunately, all 4 classes require at least daily dosing, and 3 of the 4 classes are approved to be administered 2 or 3 times daily. This need for frequent dosing with multiple medications makes compliance difficult. Longer-acting formulations and combinations that require less frequent administration might improve compliance and therefore medication effectiveness. Recently, we developed an ocular drug delivery system, a hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform for delivering glaucoma therapeutics topically. This platform is designed to deliver glaucoma drugs to the eye efficiently and release the drug in a slow fashion. Furthermore, this delivery platform is designed to be compatible with many of the glaucoma drugs that are currently approved for use. In this article, we review this new delivery system with in-depth discussion of its structural features, properties, and preclinical application in glaucoma treatment. In addition, future directions and translational efforts for marketing this technology are elaborated.

  20. Using hybrid expert system approaches for engineering applications

    Science.gov (United States)

    Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.

    1987-01-01

    In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.

  1. Voith hybrid systems - parallel hybrid for rail vehicles; Voith Hybridsysteme - Parallelhybrid fuer Schienenfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Groezinger, Thomas; Berger, Juergen; Discher, Andreas; Bartosch, Stephan [Voith Turbo GmbH und Co. KG (Germany)

    2010-03-15

    The article presents a variety of ways help to save fuel, reduce noise and minimize harmful emissions for rail vehicles. These ECO components can be used separately or in combination with drive systems for various types of hybrid concepts. For example, via a hydrostatic or electric hybrid system can recuperate and store braking energy and utilize it for powering the vehicle or driving auxiliary systems. Another system converts lost heat from the drive motor into mechanical or electrical energy. With EcoConsult, Voith Turbo also offers a ''toolbox'' comprising software, hardware and consultancy which allows identifying the exact operating conditions and a reliable calculation of the life cycle cost (LCC) for a variety of vehicle categories and operating profiles. (orig.)

  2. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  3. Split-gene system for hybrid wheat seed production.

    Science.gov (United States)

    Kempe, Katja; Rubtsova, Myroslava; Gils, Mario

    2014-06-24

    Hybrid wheat plants are superior in yield and growth characteristics compared with their homozygous parents. The commercial production of wheat hybrids is difficult because of the inbreeding nature of wheat and the lack of a practical fertility control that enforces outcrossing. We describe a hybrid wheat system that relies on the expression of a phytotoxic barnase and provides for male sterility. The barnase coding information is divided and distributed at two loci that are located on allelic positions of the host chromosome and are therefore "linked in repulsion." Functional complementation of the loci is achieved through coexpression of the barnase fragments and intein-mediated ligation of the barnase protein fragments. This system allows for growth and maintenance of male-sterile female crossing partners, whereas the hybrids are fertile. The technology does not require fertility restorers and is based solely on the genetic modification of the female crossing partner.

  4. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Wu, Bo; Lu, Shu-Ting; Deng, Kai; Yu, Hui; Cui, Can; Zhang, Yang; Wu, Ming; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP) for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX). They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo.

  5. Hybrid FRP-concrete bridge deck system final report I : development and system performance validation.

    Science.gov (United States)

    2009-10-01

    In this study, the concept of the hybrid FRP-concrete structural systems was applied to both bridge : superstructure and deck systems. Results from the both experimental and computational analysis for : both the hybrid bridge superstructure and deck ...

  6. Carrier-Based Drug Delivery System for Treatment of Acne

    Science.gov (United States)

    Vyas, Amber; Kumar Sonker, Avinesh

    2014-01-01

    Approximately 95% of the population suffers at some point in their lifetime from acne vulgaris. Acne is a multifactorial disease of the pilosebaceous unit. This inflammatory skin disorder is most common in adolescents but also affects neonates, prepubescent children, and adults. Topical conventional systems are associated with various side effects. Novel drug delivery systems have been used to reduce the side effect of drugs commonly used in the topical treatment of acne. Topical treatment of acne with active pharmaceutical ingredients (API) makes direct contact with the target site before entering the systemic circulation which reduces the systemic side effect of the parenteral or oral administration of drug. The objective of the present review is to discuss the conventional delivery systems available for acne, their drawbacks, and limitations. The advantages, disadvantages, and outcome of using various carrier-based delivery systems like liposomes, niosomes, solid lipid nanoparticles, and so forth, are explained. This paper emphasizes approaches to overcome the drawbacks and limitations associated with the conventional system and the advances and application that are poised to further enhance the efficacy of topical acne formulations, offering the possibility of simplified dosing regimen that may improve treatment outcomes using novel delivery system. PMID:24688376

  7. Outage Performance of Hybrid FSO/RF System with Low-Complexity Power Adaptation

    KAUST Repository

    Rakia, Tamer

    2016-02-26

    Hybrid free-space optical (FSO) / radio-frequency (RF) systems have emerged as a promising solution for high data- rate wireless communication systems. We consider truncated channel inversion based power adaptation strategy for coherent and non- coherent hybrid FSO/RF systems, employing an adaptive combining scheme. Specifically, we activate the RF link along with the FSO link when FSO link quality is unacceptable, and adaptively set RF transmission power to ensure constant combined signal-to-noise ratio at receiver terminal. Analytical expressions for the outage probability of the hybrid system with and without power adaptation are derived. Numerical examples show that, the hybrid FSO/RF systems with power adaptation achieve considerable outage performance improvement over conventional hybrid FSO/RF systems without power adaptation. © 2015 IEEE.

  8. The possibility of developing hybrid PV/T solar system

    Science.gov (United States)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  9. Event-triggered hybrid control based on multi-Agent systems for Microgrids

    DEFF Research Database (Denmark)

    Dou, Chun-xia; Liu, Bin; Guerrero, Josep M.

    2014-01-01

    This paper is focused on a multi-agent system based event-triggered hybrid control for intelligently restructuring the operating mode of an microgrid (MG) to ensure the energy supply with high security, stability and cost effectiveness. Due to the microgrid is composed of different types...... of distributed energy resources, thus it is typical hybrid dynamic network. Considering the complex hybrid behaviors, a hierarchical decentralized coordinated control scheme is firstly constructed based on multi-agent sys-tem, then, the hybrid model of the microgrid is built by using differential hybrid Petri...

  10. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  11. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  12. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  13. Lipid nanoparticles as drug/gene delivery systems to the retina.

    Science.gov (United States)

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  14. Joint Adaptive Modulation and Combining for Hybrid FSO/RF Systems

    KAUST Repository

    Rakia, Tamer

    2015-11-12

    In this paper, we present and analyze a new transmission scheme for hybrid FSO/RF communication system based on joint adaptive modulation and adaptive combining. Specifically, the data rate on the FSO link is adjusted in discrete manner according to the FSO link\\'s instantaneous received signal-to-noise-ratio (SNR). If the FSO link\\'s quality is too poor to maintain the target bit-error-rate, the system activates the RF link along with the FSO link. When the RF link is activated, simultaneous transmission of the same modulated data takes place on both links, where the received signals from both links are combined using maximal ratio combining scheme. In this case, the data rate of the system is adjusted according to the instantaneous combined SNRs. Novel analytical expression for the cumulative distribution function (CDF) of the received SNR for the proposed adaptive hybrid system is obtained. This CDF expression is used to study the spectral and outage performances of the proposed adaptive hybrid FSO/RF system. Numerical examples are presented to compare the performance of the proposed adaptive hybrid FSO/RF system with that of switch-over hybrid FSO/RF and FSO-only systems employing the same adaptive modulation schemes. © 2015 IEEE.

  15. Hybrid Ventilation with Innovative Heat Recovery—A System Analysis

    Directory of Open Access Journals (Sweden)

    Bengt Hellström

    2013-02-01

    Full Text Available One of the most important factors when low energy houses are built is to have good heat recovery on the ventilation system. However, standard ventilation units use a considerable amount of electricity. This article discusses the consequences on a system level of using hybrid ventilation with heat recovery. The simulation program TRNSYS was used in order to investigate a ventilation system with heat recovery. The system also includes a ground source storage and waste water heat recovery system. The result of the analysis shows that the annual energy gain from ground source storage is limited. However, this is partly a consequence of the fact that the well functioning hybrid ventilation system leaves little room for improvements. The analysis shows that the hybrid ventilation system has potential to be an attractive solution for low energy buildings with a very low need for electrical energy.

  16. Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery.

    Science.gov (United States)

    Barbucci, Rolando; Giani, Gabriele; Fedi, Serena; Bottari, Severino; Casolaro, Mario

    2012-12-01

    Hybrid magnetic hydrogels are of interest for applications in biomedical science as controlled drug-delivery systems. We have developed a strategy to obtain novel hybrid hydrogels with magnetic nanoparticles (NPs) of CoFe(2)O(3) and Fe(3)O(4) as crosslinker agents of carboxymethylcellulose (CMC) or hyaluronic acid (HYAL) polymers and we have tested these systems for controlled doxorubicin release. The magnetic NPs are functionalized with (3-aminopropyl)trimethoxysilane (APTMS) in order to introduce amino groups on the surface. The amino coating is determined and quantified by standard Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy methods, and by cyclic voltammetry, a novel approach that permits us to look at the solution properties of the functionalized NPs. The gel formation involves the creation of an amide bond between the carboxylic groups of CMC or HYAL and the amine groups of functionalized NPs, which work as crosslinking agents of the polymer chains. The hybrid hydrogels are chemically and morphologically characterized. The rheological and the water uptake properties of the hydrogels are also investigated. Under the application of an alternating magnetic field, the CMC-HYAL hybrid hydrogel previously loaded with doxorubicin shows a drug release greater than that showed by the CMC-HYAL hydrogel crosslinked with 1,3-diaminopropane. In conclusion, the presence of magnetic NPs makes the synthesized hybrid hydrogels suitable for application as a drug-delivery system by means of alternating magnetic fields. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. An Energy Management System of a Fuel Cell/Battery Hybrid Boat

    Directory of Open Access Journals (Sweden)

    Jingang Han

    2014-04-01

    Full Text Available All-electric ships are now a standard offering for energy/propulsion systems in boats. In this context, integrating fuel cells (FCs as power sources in hybrid energy systems can be an interesting solution because of their high efficiency and low emission. The energy management strategy for different power sources has a great influence on the fuel consumption, dynamic performance and service life of these power sources. This paper presents a hybrid FC/battery power system for a low power boat. The hybrid system consists of the association of a proton exchange membrane fuel cell (PEMFC and battery bank. The mathematical models for the components of the hybrid system are presented. These models are implemented in Matlab/Simulink environment. Simulations allow analyzing the dynamic performance and power allocation according to a typical driving cycle. In this system, an efficient energy management system (EMS based on operation states is proposed. This EMS strategy determines the operating point of each component of the system in order to maximize the system efficiency. Simulation results validate the adequacy of the hybrid power system and the proposed EMS for real ship driving cycles.

  18. An Integrated Hybrid Transportation Architecture for Human Mars Expeditions

    Science.gov (United States)

    Merrill, Raymond G.; Chai, Patrick R.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.

  19. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2015-10-01

    Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  20. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  1. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut

    International Nuclear Information System (INIS)

    Ghali, Kamel

    2008-01-01

    In this work, the transient performance of a hybrid desiccant vapor compression air conditioning system is numerically simulated for the ambient conditions of Beirut. The main feature of this hybrid system is that the regenerative heat needed by the desiccant wheel is partly supplied by the condenser dissipated heat while the rest is supplied by an auxiliary gas heater. The hybrid air conditioning system of the present study replaces a 23 kW vapor compression unit for a typical office in Beirut characterized by a high latent load. The vapor compression subsystem size in the hybrid air conditioning system is reduced to 15 kW at the peak load when the regeneration temperature was fixed at 75 deg. C. Also the sensible heat ratio of the combined hybrid system increased from 0.47 to 0.73. Based on hour by hour simulation studies for a wide range of recorded ambient conditions of Beirut city, this paper predicts the annual energy consumption of the hybrid system in comparison with the conventional vapor compression system for the entire cooling season. The annual running costs savings for the hybrid system is 418.39 USD for a gas cost price of 0.141 USD/kg. The pay back period of the hybrid system is less than five years when the initial cost of the hybrid air conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life cycle, the life cycle savings of the hybrid air conditioning system are 4295.19 USD

  2. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Isao Murata; Shoichi Shido; Masayuki Matsunaka; Keitaro Kondo; Hiroyuki Miyamaru

    2006-01-01

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  3. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  4. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  5. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  6. Hybrid context aware recommender systems

    Science.gov (United States)

    Jain, Rajshree; Tyagi, Jaya; Singh, Sandeep Kumar; Alam, Taj

    2017-10-01

    Recommender systems and context awareness is currently a vital field of research. Most hybrid recommendation systems implement content based and collaborative filtering techniques whereas this work combines context and collaborative filtering. The paper presents a hybrid context aware recommender system for books and movies that gives recommendations based on the user context as well as user or item similarity. It also addresses the issue of dimensionality reduction using weighted pre filtering based on dynamically entered user context and preference of context. This unique step helps to reduce the size of dataset for collaborative filtering. Bias subtracted collaborative filtering is used so as to consider the relative rating of a particular user and not the absolute values. Cosine similarity is used as a metric to determine the similarity between users or items. The unknown ratings are calculated and evaluated using MSE (Mean Squared Error) in test and train datasets. The overall process of recommendation has helped to personalize recommendations and give more accurate results with reduced complexity in collaborative filtering.

  7. Microcontainers - an oral drug delivery system for poorly soluble drugs

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Petersen, Ritika Singh; Marizza, Paolo

    In oral delivery, it can sometimes be necessary to employ drug delivery systems to achieve targeted delivery to the intestine. Microcontainers are polymeric, cylindrical devices in the micrometer size range (Figure 1), and are suggested as a promising oral drug delivery system [1],[2]. The purpose...... of these studies was to fabricate microcontainers in either SU-8 or biodegradable poly-L-lactic acid (PLLA), and fill the microcontainers with poorly soluble drugs. Furthermore, the application of the microcontainers as an oral drug delivery system was investigated in terms of release, in situ intestinal perfusion...... medium at pH 6.5 was observed. In situ intestinal perfusions were performed in rats of the Eudragit-coated ASSF-filled microcontainers and compared to a furosemide solution. At the end of the study, the small intestine was harvested from the rat and imaged under a light microscope. The absorption rate...

  8. Optimal Photovoltaic System Sizing of a Hybrid Diesel/PV System

    Directory of Open Access Journals (Sweden)

    Ahmed Belhamadia

    2017-03-01

    Full Text Available This paper presents a cost analysis study of a hybrid diesel and Photovoltaic (PV system in Kuala Terengganu, Malaysia. It first presents the climate conditions of the city followed by the load profile of a 2MVA network; the system was evaluated as a standalone system. Diesel generator rating was considered such that it follows ISO 8528. The maximum size of the PV system was selected such that its penetration would not exceed 25%. Several sizes were considered but the 400kWp system was found to be the most cost efficient. Cost estimation was done using Hybrid Optimization Model for Electric Renewable (HOMER. Based on the simulation results, the climate conditions and the NEC 960, the numbers of the maximum and minimum series modules were suggested as well as the maximum number of the parallel strings.

  9. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jianan

    2009-01-01

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  10. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lue chaotic system

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China)], E-mail: yuhuaxu2004@163.com; Zhou Wuneng [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)], E-mail: wnzhou@163.com; Fang Jianan [College of Information Science and Technology, Donghua University, Shanghai 201620 (China)

    2009-11-15

    This paper introduces a modified Lue chaotic system, and some basic dynamical properties are studied. Based on these properties, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. In addition, based on the Lyapunov stability theorem, general hybrid projective dislocated synchronization (GHPDS) is proposed, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). As examples, the modified Lue chaotic system, Chen chaotic system and hyperchaotic Chen system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  11. Stochastic hybrid systems with renewal transitions

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Hespanha, J.P.; Silvestre, C.J.

    2010-01-01

    We consider Stochastic Hybrid Systems (SHSs) for which the lengths of times that the system stays in each mode are independent random variables with given distributions. We propose an analysis framework based on a set of Volterra renewal-type equations, which allows us to compute any statistical

  12. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative

  13. 15th International conference on Hybrid Intelligent Systems

    CERN Document Server

    Han, Sang; Al-Sharhan, Salah; Liu, Hongbo

    2016-01-01

    This book is devoted to the hybridization of intelligent systems which is a promising research field of modern computational intelligence concerned with the development of the next generation of intelligent systems. This Volume contains the papers presented in the Fifteenth International conference on Hybrid Intelligent Systems (HIS 2015) held in Seoul, South Korea during November 16-18, 2015. The 26 papers presented in this Volume were carefully reviewed and selected from 90 paper submissions. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  14. Sizing PV-wind hybrid energy system for lighting

    Directory of Open Access Journals (Sweden)

    Mustafa Engin

    2012-09-01

    Full Text Available Sizing of wind and photovoltaic generators ensures lower operational costs and therefore, is considered as an important issue. An approach for sizing along with a best management technique for a PV-wind hybrid system with batteries is proposed in this paper, in which the best size for every component of the system could be optimized according to the weather conditions and the load profile. The average hourly values for wind speed and solar radiation for Izmir, Turkey has been used in the design of the systems, along with expected load profile. A hybrid power model is also developed for battery operation according to the power balance between generators and loads used in the software, to anticipate performances for the different systems according to the different weather conditions. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Using proposed procedure, a 1.2 kWp PV-wind hybrid system was designed for Izmir, and simulated and measured results are presented.

  15. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  16. Hybrid Type II fuzzy system & data mining approach for surface finish

    Directory of Open Access Journals (Sweden)

    Tzu-Liang (Bill Tseng

    2015-07-01

    Full Text Available In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.

  17. Nanostructured lipid carriers system: recent advances in drug delivery.

    Science.gov (United States)

    Iqbal, Md Asif; Md, Shadab; Sahni, Jasjeet Kaur; Baboota, Sanjula; Dang, Shweta; Ali, Javed

    2012-12-01

    Nanostructured lipid carrier (NLC) is second generation smarter drug carrier system having solid matrix at room temperature. This carrier system is made up of physiological, biodegradable and biocompatible lipid materials and surfactants and is accepted by regulatory authorities for application in different drug delivery systems. The availability of many products in the market in short span of time reveals the success story of this delivery system. Since the introduction of the first product, around 30 NLC preparations are commercially available. NLC exhibit superior advantages over other colloidal carriers viz., nanoemulsions, polymeric nanoparticles, liposomes, SLN etc. and thus, have been explored to more extent in pharmaceutical technology. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes NLC versatile delivery system for various routes of administration. The present review gives insights on the definitions and characterization of NLC as colloidal carriers including the production techniques and suitable formulations. This review paper also highlights the importance of NLC in pharmaceutical applications for the various routes of drug delivery viz., topical, oral, pulmonary, ocular and parenteral administration and its future perspective as a pharmaceutical carrier.

  18. A Review of Hybrid Brain-Computer Interface Systems

    Directory of Open Access Journals (Sweden)

    Setare Amiri

    2013-01-01

    Full Text Available Increasing number of research activities and different types of studies in brain-computer interface (BCI systems show potential in this young research area. Research teams have studied features of different data acquisition techniques, brain activity patterns, feature extraction techniques, methods of classifications, and many other aspects of a BCI system. However, conventional BCIs have not become totally applicable, due to the lack of high accuracy, reliability, low information transfer rate, and user acceptability. A new approach to create a more reliable BCI that takes advantage of each system is to combine two or more BCI systems with different brain activity patterns or different input signal sources. This type of BCI, called hybrid BCI, may reduce disadvantages of each conventional BCI system. In addition, hybrid BCIs may create more applications and possibly increase the accuracy and the information transfer rate. However, the type of BCIs and their combinations should be considered carefully. In this paper, after introducing several types of BCIs and their combinations, we review and discuss hybrid BCIs, different possibilities to combine them, and their advantages and disadvantages.

  19. Nebuliser systems for drug delivery in cystic fibrosis.

    Science.gov (United States)

    Daniels, Tracey; Mills, Nicola; Whitaker, Paul

    2013-04-30

    Nebuliser systems are used to deliver medications to control the symptoms and the progression of lung disease in people with cystic fibrosis. Many types of nebuliser systems are available for use with various medications; however, there has been no previous systematic review which has evaluated these systems. To evaluate effectiveness, safety, burden of treatment and adherence to nebulised therapy using different nebuliser systems for people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching of relevant journals and abstract books of conference proceedings. We searched the reference lists of each study for additional publications and approached the manufacturers of both nebuliser systems and nebulised medications for published and unpublished data. Date of the most recent search: 15 Oct 2012. Randomised controlled trials or quasi-randomised controlled trials comparing nebuliser systems including conventional nebulisers, vibrating mesh technology systems, adaptive aerosol delivery systems and ultrasonic nebuliser systems. Two authors independently assessed studies for inclusion. They also independently extracted data and assessed the risk of bias. A third author assessed studies where agreement could not be reached. The search identified 40 studies with 20 of these (1936 participants) included in the review. These studies compared the delivery of tobramycin, colistin, dornase alfa, hypertonic sodium chloride and other solutions through the different nebuliser systems. This review demonstrates variability in the delivery of medication depending on the nebuliser system used. Conventional nebuliser systems providing higher flows, higher respirable fractions and smaller particles decrease treatment time, increase deposition and may be preferred by people with CF, as compared to conventional nebuliser systems providing

  20. Delivery systems and local administration routes for therapeutic siRNA.

    Science.gov (United States)

    Vicentini, Fabiana Testa Moura de Carvalho; Borgheti-Cardoso, Lívia Neves; Depieri, Lívia Vieira; de Macedo Mano, Danielle; Abelha, Thais Fedatto; Petrilli, Raquel; Bentley, Maria Vitória Lopes Badra

    2013-04-01

    With the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.

  1. Harmonic Resonance Damping with a Hybrid Compensation System in Power Systems with Dispersed Generation

    DEFF Research Database (Denmark)

    Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...

  2. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  3. Hybrid Lentivirus-transposon Vectors With a Random Integration Profile in Human Cells

    DEFF Research Database (Denmark)

    Staunstrup, Nicklas H; Moldt, Brian; Mátés, Lajos

    2009-01-01

    Gene delivery by human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors (LVs) is efficient, but genomic integration of the viral DNA is strongly biased toward transcriptionally active loci resulting in an increased risk of insertional mutagenesis in gene therapy protocols. Nonviral...... Sleeping Beauty (SB) transposon vectors have a significantly safer insertion profile, but efficient delivery into relevant cell/tissue types is a limitation. In an attempt to combine the favorable features of the two vector systems we established a novel hybrid vector technology based on SB transposase......-mediated insertion of lentiviral DNA circles generated during transduction of target cells with integrase (IN)-defective LVs (IDLVs). By construction of a lentivirus-transposon hybrid vector allowing transposition exclusively from circular viral DNA substrates, we demonstrate that SB transposase added in trans...

  4. Otic drug delivery systems: formulation principles and recent developments.

    Science.gov (United States)

    Liu, Xu; Li, Mingshuang; Smyth, Hugh; Zhang, Feng

    2018-04-25

    Disorders of the ear severely impact the quality of life of millions of people, but the treatment of these disorders is an ongoing, but often overlooked challenge particularly in terms of formulation design and product development. The prevalence of ear disorders has spurred significant efforts to develop new therapeutic agents, but perhaps less innovation has been applied to new drug delivery systems to improve the efficacy of ear disease treatments. This review provides a brief overview of physiology, major diseases, and current therapies used via the otic route of administration. The primary focuses are on the various administration routes and their formulation principles. The article also presents recent advances in otic drug deliveries as well as potential limitations. Otic drug delivery technology will likely evolve in the next decade and more efficient or specific treatments for ear disease will arise from the development of less invasive drug delivery methods, safe and highly controlled drug delivery systems, and biotechnology targeting therapies.

  5. Generalised Computability and Applications to Hybrid Systems

    DEFF Research Database (Denmark)

    Korovina, Margarita V.; Kudinov, Oleg V.

    2001-01-01

    We investigate the concept of generalised computability of operators and functionals defined on the set of continuous functions, firstly introduced in [9]. By working in the reals, with equality and without equality, we study properties of generalised computable operators and functionals. Also we...... propose an interesting application to formalisation of hybrid systems. We obtain some class of hybrid systems, which trajectories are computable in the sense of computable analysis. This research was supported in part by the RFBR (grants N 99-01-00485, N 00-01- 00810) and by the Siberian Branch of RAS (a...... grant for young researchers, 2000)...

  6. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    . The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...

  7. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    Science.gov (United States)

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time intervals from 0.5 to 96 hours in cornea, sclera, and conjunctiva and at six time intervals from 0.5 to 12 hours in aqueous. Two peak concentrations were noted at approximately one and eight hours, with measurable levels present at 96 hours. This study demonstrates the ability of this liposomal delivery system to prolong levels of 5-fluorouracial in normal pigmented rabbits. PMID:3179257

  8. Safety design integrated in the Building Delivery System

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    phases of the building delivery system by using the principle of the lean construction modelling. The method for the research was to go through the lean construction building delivery system step by step and create a normative description of what to do, when to do and how to do to fully integration...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...... and the consultants. The result is a concept and guideline including control schemes for how to integrate safety design in the lean construction building delivery system including what to do and when. The concept has been tested in an educational context and found useful by the designers. The practical value...

  9. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    International Nuclear Information System (INIS)

    Zhang, Xingming; Le, Tuan-Anh; Yoon, Jungwon

    2017-01-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery. - Highlights: • A real-time system comprised of an electromagnetic actuator and a low-amplitude-excitation-field MPI can navigate magnetic nanoparticles. • The imaging scheme is feasible to enlarge field of view size. • The proposed navigation system can be cost efficient, compact, and optimized for targeting of the nanoparticles.

  10. Development of a real time imaging-based guidance system of magnetic nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xingming [School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology at Weihai, Weihai, Shandong (China); School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Le, Tuan-Anh [School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Yoon, Jungwon, E-mail: jwyoon@gnu.ac.kr [School of Mechanical and Aerospace Engineering & ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2017-04-01

    Targeted drug delivery using magnetic nanoparticles is an efficient technique as molecules can be directed toward specific tissues inside a human body. For the first time, we implemented a real-time imaging-based guidance system of nanoparticles using untethered electro-magnetic devices for simultaneous guiding and tracking. In this paper a low-amplitude-excitation-field magnetic particle imaging (MPI) is introduced. Based on this imaging technology, a hybrid system comprised of an electromagnetic actuator and MPI was used to navigate nanoparticles in a non-invasive way. The real-time low-amplitude-excitation-field MPI and electromagnetic actuator of this navigation system are achieved by applying a time-division multiplexing scheme to the coil topology. A one dimensional nanoparticle navigation system was built to demonstrate the feasibility of the proposed approach and it could achieve a 2 Hz navigation update rate with the field gradient of 3.5 T/m during the imaging mode and 8.75 T/m during the actuation mode. Particles with both 90 nm and 5 nm diameters could be successfully manipulated and monitored in a tube through the proposed system, which can significantly enhance targeting efficiency and allow precise analysis in a real drug delivery. - Highlights: • A real-time system comprised of an electromagnetic actuator and a low-amplitude-excitation-field MPI can navigate magnetic nanoparticles. • The imaging scheme is feasible to enlarge field of view size. • The proposed navigation system can be cost efficient, compact, and optimized for targeting of the nanoparticles.

  11. An Overview of Clinical and Commercial Impact of Drug Delivery Systems

    Science.gov (United States)

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. PMID:24747160

  12. Understanding the organization of public health delivery systems: an empirical typology.

    Science.gov (United States)

    Mays, Glen P; Scutchfield, F Douglas; Bhandari, Michelyn W; Smith, Sharla A

    2010-03-01

    Policy discussions about improving the U.S. health care system increasingly recognize the need to strengthen its capacities for delivering public health services. A better understanding of how public health delivery systems are organized across the United States is critical to improvement. To facilitate the development of such evidence, this article presents an empirical method of classifying and comparing public health delivery systems based on key elements of their organizational structure. This analysis uses data collected through a national longitudinal survey of local public health agencies serving communities with at least 100,000 residents. The survey measured the availability of twenty core public health activities in local communities and the types of organizations contributing to each activity. Cluster analysis differentiated local delivery systems based on the scope of activities delivered, the range of organizations contributing, and the distribution of effort within the system. Public health delivery systems varied widely in organizational structure, but the observed patterns of variation suggested that systems adhere to one of seven distinct configurations. Systems frequently migrated from one configuration to another over time, with an overall trend toward offering a broader scope of services and engaging a wider range of organizations. Public health delivery systems exhibit important structural differences that may influence their operations and outcomes. The typology developed through this analysis can facilitate comparative studies to identify which delivery system configurations perform best in which contexts.

  13. Analysis of hybrid energy systems for application in southern Ghana

    International Nuclear Information System (INIS)

    Adaramola, Muyiwa S.; Agelin-Chaab, Martin; Paul, Samuel S.

    2014-01-01

    Highlights: • The option of using hybrid energy for electricity in remote areas of Ghana is examined. • The cost of electricity produced by the hybrid system is found to be $0.281/kW h. • The levelized cost of electricity increase by 9% when the PV price is increased from $3000/kW to $7500/kW. - Abstract: Due to advances in renewable energy technologies and increase in oil price, hybrid renewable energy systems are becoming increasingly attractive for power generation applications in remote areas. This paper presents an economic analysis of the feasibility of utilizing a hybrid energy system consisting of solar, wind and diesel generators for application in remote areas of southern Ghana using levelized cost of electricity (LCOE) and net present cost of the system. The annual daily average solar global radiation at the selected site is 5.4 kW h/m 2 /day and the annual mean wind speed is 5.11 m/s. The National Renewable Energy Laboratory’s Hybrid Optimization Model for Electric Renewable (HOMER) software was employed to carry out the present study. Both wind data and the actual load data have been used in the simulation model. It was found that a PV array of 80 kW, a 100 kW wind turbine, two generators with combined capacity of 100 kW, a 60 kW converter/inverter and a 60 Surrette 4KS25P battery produced a mix of 791.1 MW h of electricity annually. The cost of electricity for this hybrid system is found to be $0.281/kW h. Sensitivity analysis on the effect of changes in wind speed, solar global radiation and diesel price on the optimal energy was investigated and the impact of solar PV price on the LCOE for a selected hybrid energy system was also presented

  14. Buccoadhesive drug delivery systems--extensive review on recent patents.

    Science.gov (United States)

    Pathan, Shadab A; Iqbal, Zeenat; Sahani, Jasjeet K; Talegaonkar, Sushma; Khar, Roop K; Ahmad, Farhan J

    2008-01-01

    Peroral administration of drugs, although most preferred by both clinicians and patients has several disadvantages such as hepatic first pass metabolism and enzymatic degradation within the GI tract, that prohibit oral administration of certain classes of drugs especially peptides and proteins. Consequently, other absorptive mucosae are considered as potential sites for administration of these drugs. Among the various transmucosal routes studied the buccal mucosa offers several advantages for controlled drug delivery for extended period of time. The mucosa is well supplied with both vascular and lymphatic drainage and first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract is avoided. The area is well suited for a retentive device and appears to be acceptable to the patient. With the right dosage form, design and formulation, the permeability and the local environment of the mucosa can be controlled and manipulated in order to accommodate drug permeation. Buccal drug delivery is thus a promising area for continued research with the aim of systemic and local delivery of orally inefficient drugs as well as feasible and attractive alternative for non-invasive delivery of potent protein and peptide drug molecules. Extensive review pertaining specifically to the patents relating to buccal drug delivery is currently available. However, many patents e.g. US patents 6, 585,997; US20030059376A1 etc. have been mentioned in few articles. It is the objective of this article to extensively review buccal drug delivery by discussing the recent patents available. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems.

  15. Hybrid electronic/optical synchronized chaos communication system.

    Science.gov (United States)

    Toomey, J P; Kane, D M; Davidović, A; Huntington, E H

    2009-04-27

    A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.

  16. A Simple Hybrid Synchronization for a Class of Chaotic Financial Systems

    Directory of Open Access Journals (Sweden)

    Jiming Zheng

    2017-01-01

    Full Text Available It is an important to achieve the hybrid synchronization of the chaotic financial system. Chaos synchronization is equivalent to the error system which is asymptotically stable. The hybrid synchronization for a class of finance chaotic systems is discussed. First, a simple single variable controller is obtained to synchronize two identical chaotic financial systems with different initial conditions. Second, a novel algorithm is proposed to determine the variables of the master system that should antisynchronize with corresponding variables of the slave system and use this algorithm to determine the corresponding variables in the chaotic financial systems. The hybrid synchronization of the chaotic financial systems is realized by a simple controller. At the same time, different controllers can implement the chaotic financial system hybrid synchronization. In comparison with the existing results, the obtained controllers in this paper are simpler than those of the existing results. Finally, numerical simulations show the effectiveness of the proposed results.

  17. Hybrid Control System for Greater Resilience Using Multiple Isolation and Building Connection

    Directory of Open Access Journals (Sweden)

    Masaki Taniguchi

    2016-10-01

    Full Text Available An innovative hybrid control building system of multiple isolation and connection is proposed and investigated using both time-history and input energy responses for various types of ground motions together with transfer functions. It is concerned that the seismic displacement response at the base-isolation layer of the existing base-isolated buildings may extremely increase under long-period and long-duration ground motions which are getting great attention recently. In order to enhance the seismic performance of those base-isolated buildings, a novel hybrid system of multiple isolation and building-connection is proposed and compared with other structural systems such as an independent multiple isolation system, a hybrid system of base-isolation and building-connection. Furthermore, the robustness of seismic responses of the proposed hybrid system for various types of ground motion is discussed through the comparison of various structural systems including non-hybrid systems. Finally the optimal connection damper location is investigated using a sensitivity-type optimization approach.

  18. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    Science.gov (United States)

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  19. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  20. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  1. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  2. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    Science.gov (United States)

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Application of three-dimensional printing for colon targeted drug delivery systems.

    Science.gov (United States)

    Charbe, Nitin B; McCarron, Paul A; Lane, Majella E; Tambuwala, Murtaza M

    2017-01-01

    Orally administered solid dosage forms currently dominate over all other dosage forms and routes of administrations. However, human gastrointestinal tract (GIT) poses a number of obstacles to delivery of the drugs to the site of interest and absorption in the GIT. Pharmaceutical scientists worldwide have been interested in colon drug delivery for several decades, not only for the delivery of the drugs for the treatment of colonic diseases such as ulcerative colitis and colon cancer but also for delivery of therapeutic proteins and peptides for systemic absorption. Despite extensive research in the area of colon targeted drug delivery, we have not been able to come up with an effective way of delivering drugs to the colon. The current tablets designed for colon drug release depend on either pH-dependent or time-delayed release formulations. During ulcerative colitis the gastric transit time and colon pH-levels is constantly changing depending on whether the patient is having a relapse or under remission. Hence, the current drug delivery system to the colon is based on one-size-fits-all. Fails to effectively deliver the drugs locally to the colon for colonic diseases and delivery of therapeutic proteins and peptides for systemic absorption from the colon. Hence, to overcome the current issues associated with colon drug delivery, we need to provide the patients with personalized tablets which are specifically designed to match the individual's gastric transit time depending on the disease state. Three-dimensional (3D) printing (3DP) technology is getting cheaper by the day and bespoke manufacturing of 3D-printed tablets could provide the solutions in the form of personalized colon drug delivery system. This review provides a bird's eye view of applications and current advances in pharmaceutical 3DP with emphasis on the development of colon targeted drug delivery systems.

  4. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  5. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    Science.gov (United States)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  6. Quantum state engineering in hybrid open quantum systems

    Science.gov (United States)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  7. Drug delivery system and radiation therapy

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    2005-01-01

    This paper describes the review of radiation therapy, neutron capture therapy (NCT) and drug delivery system for the latter. In cancer radiation therapy, there are problems of body movement like breathing, needless irradiation of normal tissues, difficulty to decide the correct irradiation position and tumor morphology. NCT has advantages to overcome these, and since boron has a big cross section for thermal neutron, NPT uses the reaction 10 B(n, α) 7 Li in the target cancer which previously incorporated the boron-containing drug. During the period 1966-1996, 246 patients were treated with this in Japan and the treatment has been continued thereafter. The tasks for NCT are developments of drug delivery system efficient to deliver the drug into the tumor and of convenient neutron source like the accelerator. (S.I.)

  8. Design and management of energy-efficient hybrid electrical energy storage systems

    CERN Document Server

    Kim, Younghyun

    2014-01-01

    This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an act

  9. The rural areas electrification with a hybrid photovoltaic systems

    International Nuclear Information System (INIS)

    Kocev, Kiril I.; Dimitrov, Dimitar; Tudzharov, Gjorgji

    2001-01-01

    Depending on a daily load demand, distance from the utility grid and the available solar energy, the rural villages electrification with a hybrid photovoltaic (PV) system can be a cheaper solution than the classic electrification, by connecting them to the utility grid. Besides PV generator, the considered hybrid system is consisted of a battery and a diesel gen set. For the concrete case - rural village with estimated daily load demand of 15.5 kWh/day, with the computer program PVFORM, which is modified for such hybrid system, were simulated a few hundreds PV systems, with different sizes of the PV generator and of the battery capacity. Analyzing the obtained results, it can be foreseen the influence of the component size on the system functionality. From the mass of possible system combinations, it is chosen one that has 42 % lower initial investment, than the initial investment for connection of the village to the utility grid. (Original)

  10. Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-01

    This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.

  11. Description and Documentation of the Dental School Dental Delivery System.

    Science.gov (United States)

    Chase, Rosen and Wallace, Inc., Alexandria, VA.

    A study was undertaken to describe and document the dental school dental delivery system using an integrated systems approach. In late 1976 and early 1977, a team of systems analysts and dental consultants visited three dental schools to observe the delivery of dental services and patient flow and to interview administrative staff and faculty.…

  12. Oral delivery of peptides and proteins using lipid-based drug delivery systems

    DEFF Research Database (Denmark)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-01-01

    INTRODUCTION: In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism...... by which intestinal absorption of peptides and proteins is promoted. AREAS COVERED: The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two...... and proteins. EXPERT OPINION: Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve...

  13. Stochastic linear hybrid systems: Modeling, estimation, and application

    Science.gov (United States)

    Seah, Chze Eng

    Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS

  14. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    Science.gov (United States)

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  15. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    OpenAIRE

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time interva...

  16. Engineering bioceramic microstructure for customized drug delivery

    Science.gov (United States)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (pproducts and the released drug did not cause measurable negative effects on the bioactivity of the tested drugs. The therapeutic effects of the SCPC-Cis hybrid were evaluated using a rat model of hepatocellular carcinoma (HCC). Animals were treated by either systemic cisplatin injection (sCis), or with SCPC-Cis hybrid placed adjacent (ADJ) to, or within (IT), the tumor. Five days after implantation 50-55% of the total cisplatin loaded was released from the SCPC-Cis hybrids resulting in an approximately 50% decrease in tumor volume compared to

  17. Biopolymers/poly(ε-caprolactone)/polyethylenimine functionalized nano-hydroxyapatite hybrid cryogel: Synthesis, characterization and application in gene delivery.

    Science.gov (United States)

    Simionescu, Bogdan C; Drobota, Mioara; Timpu, Daniel; Vasiliu, Tudor; Constantinescu, Cristina Ana; Rebleanu, Daniela; Calin, Manuela; David, Geta

    2017-12-01

    Nano-hydroxyapatite (nHAp), surface functionalized with linear polyethylenimine (LPEI), was used for the preparation of biocomposites in combination with biopolymers and poly(ε-caprolactone) (PCL), by cryogelation technique, to yield biomimetic scaffolds with controlled interconnected macroporosity, mechanical stability, and predictable degradation behavior. The structural characteristics, swelling and degradation behavior of hydroxyapatite and hydroxyapatite/β-tricalcium phosphate (β-TCP) filled matrices were investigated as compared to the corresponding naked polymer 3D system. It was found that the homogeneity and cohesivity of the composite are significantly dependent on the size and amount of the included inorganic particles, which are thus determining the structural parameters. Surface modification with LPEI and nanodimensions favored the nHAp integration in the organic matrix, with preferential location along protein fibers, while β-TCP microparticles induced an increased disorder in the hybrid system. The biocomposite including nHAp only was further investigated targeting biomedical uses, and proved to be non-cytotoxic and capable of acting as gene-activated matrix (GAM). It allowed sustained delivery over time (until 22days) of embedded PEI 25 -pDNA polyplexes at high levels of transgene expression, while insuring a decrease in cytotoxicity as compared to polyplexes alone. Experimental data recommend such biocomposite as an attractive material for regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mucoadhesive drug delivery systems

    Directory of Open Access Journals (Sweden)

    Rahamatullah Shaikh

    2011-01-01

    Full Text Available Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal.

  19. Nanocomposites chitosan/montmorillonite for drug delivery system

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Barbosa, Rossemberg C.; Lima, Rosemary S. Cunha; Fook, Marcus V. Lia; Silva, Suedina M. Lima

    2009-01-01

    In drugs delivery system the incorporation of an inorganic nanophase in polymer matrix, i.e. production of an inorganic-organic nanocomposite is an attractive alternative to obtain a constant release rate for a prolonged time. This study was performed to obtain films of nanocomposites Chitosan/montmorillonite intercalation by the technique of solution in the proportions of 1:1, 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for drugs delivery system. (author)

  20. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  1. Automatic generation of smart earthquake-resistant building system: Hybrid system of base-isolation and building-connection

    Directory of Open Access Journals (Sweden)

    M. Kasagi

    2016-02-01

    Full Text Available A base-isolated building may sometimes exhibit an undesirable large response to a long-duration, long-period earthquake ground motion and a connected building system without base-isolation may show a large response to a near-fault (rather high-frequency earthquake ground motion. To overcome both deficiencies, a new hybrid control system of base-isolation and building-connection is proposed and investigated. In this new hybrid building system, a base-isolated building is connected to a stiffer free wall with oil dampers. It has been demonstrated in a preliminary research that the proposed hybrid system is effective both for near-fault (rather high-frequency and long-duration, long-period earthquake ground motions and has sufficient redundancy and robustness for a broad range of earthquake ground motions.An automatic generation algorithm of this kind of smart structures of base-isolation and building-connection hybrid systems is presented in this paper. It is shown that, while the proposed algorithm does not work well in a building without the connecting-damper system, it works well in the proposed smart hybrid system with the connecting damper system.

  2. An insight on advantage of hybrid sun–wind-tracking over sun-tracking PV system

    International Nuclear Information System (INIS)

    Rahimi, Masoud; Banybayat, Meisam; Tagheie, Yaghoub; Valeh-e-Sheyda, Peyvand

    2015-01-01

    Graphical abstract: Real photograph of hybrid sun–wind-tracking system. - Highlights: • Novel hybrid sun–wind-tracking system proposed to enhance PV cell performance. • The wind tracker can cool down the PV cell as sun-tracking system work. • The hybrid tracker achieved 7.4% increase in energy gain over the sun tracker. • The overall daily output energy gain was increased by 49.83% by using this system. - Abstract: This paper introduces the design and application of a novel hybrid sun–wind-tracking system. This hybrid system employs cooling effect of wind, besides the advantages of tracking sun for enhancing power output from examined hybrid photovoltaic cell. The principal experiment focuses on comparison between dual-axes sun-tracking and hybrid sun–wind-tracking photovoltaic (PV) panels. The deductions based on the research tests confirm that the overall daily output energy gain was increased by 49.83% compared with that of a fixed system. Moreover, an overall increase of about 7.4% in the output power was found for the hybrid sun–wind-tracking over the two-axis sun tracking system.

  3. Safety Verification for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Zhang, Lijun; She, Zhikun; Ratschan, Stefan

    2010-01-01

    The interplay of random phenomena and continuous real-time control deserves increased attention for instance in wireless sensing and control applications. Safety verification for such systems thus needs to consider probabilistic variations of systems with hybrid dynamics. In safety verification o...... on a number of case studies, tackled using a prototypical implementation....

  4. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application.

    Science.gov (United States)

    Aditya, N P; Espinosa, Yadira Gonzalez; Norton, Ian T

    2017-07-01

    Increased health risk associated with the sedentary life style is forcing the food manufacturers to look for food products with specific or general health benefits e.g. beverages enriched with nutraceuticals like catechin, curcumin rutin. Compounds like polyphenols, flavonoids, vitamins are the good choice of bioactive compounds that can be used to fortify the food products to enhance their functionality. However due to low stability and bioavailability of these bioactives (both hydrophobic and hydrophilic) within the heterogeneous food microstructure and in the Gastro Intestinal Tract (GIT), it becomes extremely difficult to pass on the real health benefits to the consumers. Recent developments in the application of nano-delivery systems for food product development is proving to be a game changer which has raised the expectations of the researchers, food manufacturers and consumers regarding possibility of enhancing the functionality of bioactives within the fortified food products. In this direction, nano/micro delivery systems using lipids, surfactants and other materials (carbohydrates, polymers, complexes, protein) have been fabricated to stabilize and enhance the biological activity of the bioactive compounds. In the present review, current status of the various delivery systems that are used for the delivery of hydrophilic bioactives and future prospects for using other delivery systems that have been not completely explored for the delivery of hydrophilic bioactives e.g. niosomes; bilosomes, cubosomes are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Multicompartment vectors as novel drug delivery systems: selective activation of Tγδ lymphocytes after zoledronic acid delivery.

    Science.gov (United States)

    Agrati, Chiara; Marianecci, Carlotta; Sennato, Simona; Carafa, Maria; Bordoni, Veronica; Cimini, Eleonora; Tempestilli, Massimo; Pucillo, Leopoldo P; Turchi, Federica; Martini, Federico; Borioni, Giorgio; Bordi, Federico

    2011-04-01

    Multicompartment nanoscopic carriers can be easily assembled by inducing the aggregation of anionic "hybrid" niosomes by means of cationic biocompatible polyelectrolytes. The resulting vesicle clusters, whose size and overall net charge can be easily controlled by varying the polyelectrolyte-to-particle charge ratio, show an interesting potential for multidrug delivery. In this article we provide strong evidence for their effective use in vitro as multicompartment vectors selectively directed toward monocyte/macrophage cells, showing that the monocyte/macrophage-mediated activation of Tγδ lymphocytes induced by zoledronic acid is enhanced by a factor 10(3) when the zoledronic acid is intracellularly delivered through these carriers. Furthermore, the multicompartment ɛ-polylysine niosome clusters, with their intrinsic selectivity toward macrophages, appear particularly suitable for implementing therapeutic strategies against chronically infected macrophages. ɛ-polylysine niosome clusters, with their intrinsic selectivity toward macrophages, offer the potential for multidrug delivery. The effectiveness of aminobisphosphonate zoledronate is demonstrated to enhance the recruitment of Tγδ lymphocytes by macrophages by 2 orders of magnitude, suggesting a new therapeutic strategy for addressing pathologies featuring chronically infected macrophages. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil, E-mail: simina.dreve@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610{sup 0}C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  7. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    International Nuclear Information System (INIS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-01-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610 0 C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  8. Severe Slugging in Air-Water Hybrid Riser System

    Directory of Open Access Journals (Sweden)

    Jing Gong

    2014-11-01

    Full Text Available In the subsea pipeline gathering system, severe slugging flow is prone to occur. Severe slugging flow brings major threat to production and flow assurance in oil and gas industry due to periodical pressure oscillation and large liquid volume. Currently many researchers pay much more attention on L-shaped riser, catenaries, and S-shaped riser; little research has been made on hybrid riser, which is applied in the Africa West and Gulf of Mexico oil fields. Flow characteristics simulation for hybrid riser is made in this paper, using the one-dimensional and quasi-equilibrium model to simulate not only the riser-base pressure, severe slugging period, and the liquid slug length of the whole system but also base-pressure in the flexible pipe section. The calculated results match well with the experiment data. Besides, the influence of flexible pipe to the severe slugging characteristics of hybrid riser system is analyzed, which are significant for the determination of riser structure.

  9. Microemulsions based transdermal drug delivery systems.

    Science.gov (United States)

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  10. Excimer laser beam delivery systems for medical applications

    Science.gov (United States)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  11. Renewable Energy Systems: Development and Perspectives of a Hybrid Solar-Wind System

    OpenAIRE

    C. Shashidhar; K. Bhanupriya; P. Alluvada; Bandana; J. B. V. Subrahmanyam

    2012-01-01

    Considering the intermittent natural energy resources and the seasonal un-balance, a phtovoltaic-wind hybrid electrical power supply system was developed to accommodate remote locations where a conventional grid connection is inconvenient or expensive. However, the hybrid system can also be applied with grid connection and owners are allowed to sell excessive power back to the electric utility. The proposed set-up consists of a photo-voltaic solar-cell array, a mast mounted wind generator, le...

  12. Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Adrian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has been tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.

  13. Village power hybrid systems development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L.; Green, J. [National Renewable Energy Lab., Golden, CO (United States); Bergey, M. [Bergey Windpower Co., Norman, OK (United States); Lilley, A. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Mott, L. [Northern Power Systems, Moretown, VT (United States)

    1994-11-01

    The energy demand in developing countries is growing at a rate seven times that of the OECD countries, even though there are still 2 billion people living in developing countries without electricity. Many developing countries have social and economic development programs aimed at stemming the massive migration from the rural communities to the overcrowded, environmentally problematic, unemployment-bound urban centers. To address the issue of providing social, educational, health, and economic benefits to the rural communities of the developing world, a number of government and nongovernment agencies are sponsoring pilot programs to install and evaluate renewable energy systems as alternatives to line extension, diesels, kerosene, and batteries. The use of renewables in remote villages has yielded mixed results over the last 20 years. However, recently, photovoltaics, small wind turbines, and microhydro system shave gained increasing recognition as reliable, cost-effective alternatives to grid extension and diesel gensets for village-electricity applications. At the same time, hybrid systems based on combinations of PV/wind/batteries/diesel gensets have proven reliable and economic for remote international telecommunications markets. With the growing emphasis on environmentally and economically sustainable development of international rural communities, the US hybrid industry is responding with the development and demonstration of hybrid systems and architectures that will directly compete with conventional alternatives for village electrification. Assisting the US industry in this development, the National Renewable Energy Laboratory (NREL) has embarked on a program of collaborative technology development and technical assistance in the area of hybrid systems for village power. Following a brief review of village-power hybrid systems application and design issues, this paper presents the present industry development activities of three US suppliers and the NREL.

  14. Performance Analysis of a Hybrid Power Cutting System for Roadheader

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-01-01

    Full Text Available An electrohydraulic hybrid power cutting transmission system for roadheader under specific working condition was proposed in this paper. The overall model for the new system composed of an electric motor model, a hydraulic pump-motor model, a torsional planetary set model, and a hybrid power train model was established. The working mode characteristics were simulated under the conditions of taking the effect of cutting picks into account. The advantages of new hybrid power cutting system about the dynamic response under shock load were investigated compared with the traditional cutting system. The results illustrated that the hybrid power system had an obvious cushioning in terms of the dynamic load of cutting electric motor and planetary gear set. Besides, the hydraulic motor could provide an auxiliary power to improve the performance of the electric motor. With further analysis, a dynamic load was found to have a high relation to the stiffness and damping of coupling in the transmission train. The results could be a useful guide for the design of cutting transmission of roadheader.

  15. A hybrid press system: Motion design and inverse kinematics issues

    Directory of Open Access Journals (Sweden)

    M. Erkan Kütük

    2016-06-01

    Full Text Available A hybrid machine (HM is a system integrating two types of motor; servo and constant velocity with a mechanism. The purpose is to make use of the energy in the system efficiently with a flexible system having more than one degree of freedom (DOF. A review is included on hybrid press systems. This study is included as a part of an industrial project used for metal forming. The system given here includes a 7 link mechanism, one of link is driven by a constant velocity motor (CV and the other is driven by a servo motor (SM. Kinematics analysis of the hybrid driven mechanism is presented here as inverse kinematics analysis. Motion design is very crucial step when using a hybrid machine. So motion design procedure is given with motion curve examples needed. Curve Fitting Toolbox (CFT in Matlab® is offered as an auxiliary method which can be successfully applied. Motion characteristics are chosen by looking at requirements taken from metal forming industry. Results are then presented herein.

  16. Optimization of hybrid system (wind-solar energy) for pumping water ...

    African Journals Online (AJOL)

    This paper presents an optimization method for a hybrid (wind-solar) autonomous system designed for pumping water. This method is based on mathematical models demonstrated for the analysis and control of the performance of the various components of the hybrid system. These models provide an estimate of ...

  17. Development of Traction Drive Motors for the Toyota Hybrid System

    Science.gov (United States)

    Kamiya, Munehiro

    Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.

  18. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y; Sakuma, H; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  19. Polyamidoamine-Decorated Nanodiamonds as a Hybrid Gene Delivery Vector and siRNA Structural Characterization at the Charged Interfaces.

    Science.gov (United States)

    Lim, Dae Gon; Rajasekaran, Nirmal; Lee, Dukhee; Kim, Nam Ah; Jung, Hun Soon; Hong, Sungyoul; Shin, Young Kee; Kang, Eunah; Jeong, Seong Hoon

    2017-09-20

    Nanodiamonds have been discovered as a new exogenous material source in biomedical applications. As a new potent form of nanodiamond (ND), polyamidoamine-decorated nanodiamonds (PAMAM-NDs) were prepared for E7 or E6 oncoprotein-suppressing siRNA gene delivery for high risk human papillomavirus-induced cervical cancer, such as types 16 and 18. It is critical to understand the physicochemical properties of siRNA complexes immobilized on cationic solid ND surfaces in the aspect of biomolecular structural and conformational changes, as the new inert carbon material can be extended into the application of a gene delivery vector. A spectral study of siRNA/PAMAM-ND complexes using differential scanning calorimetry and circular dichroism spectroscopy proved that the hydrogen bonding and electrostatic interactions between siRNA and PAMAM-NDs decreased endothermic heat capacity. Moreover, siRNA/PAMAM-ND complexes showed low cell cytotoxicity and significant suppressing effects for forward target E6 and E7 oncogenic genes, proving functional and therapeutic efficacy. The cellular uptake of siRNA/PAMAM-ND complexes at 8 h was visualized by macropinocytes and direct endosomal escape of the siRNA/PAMAM-ND complexes. It is presumed that PAMAM-NDs provided a buffering cushion to adjust the pH and hard mechanical stress to escape endosomes. siRNA/PAMAM-ND complexes provide a potential organic/inorganic hybrid material source for gene delivery carriers.

  20. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  1. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  2. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    Science.gov (United States)

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  3. Oral delivery of peptides and proteins using lipid-based drug delivery systems.

    Science.gov (United States)

    Li, Ping; Nielsen, Hanne Mørck; Müllertz, Anette

    2012-10-01

    In order to successfully develop lipid-based drug delivery systems (DDS) for oral administration of peptides and proteins, it is important to gain an understanding of the colloid structures formed by these DDS, the mode of peptide and protein incorporation as well as the mechanism by which intestinal absorption of peptides and proteins is promoted. The present paper reviews the literature on lipid-based DDS, employed for oral delivery of peptides and proteins and highlights the mechanisms by which the different lipid-based carriers are expected to overcome the two most important barriers (extensive enzymatic degradation and poor transmucosal permeability). This paper also gives a clear-cut idea about advantages and drawbacks of using different lipidic colloidal carriers ((micro)emulsions, solid lipid core particles and liposomes) for oral delivery of peptides and proteins. Lipid-based DDS are safe and suitable for oral delivery of peptides and proteins. Significant progress has been made in this area with several technologies on clinical trials. However, a better understanding of the mechanism of action in vivo is needed in order to improve the design and development of lipid-based DDS with the desired bioavailability and therapeutic profile.

  4. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    Science.gov (United States)

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  5. Quantum dot-dye hybrid systems for energy transfer applications

    International Nuclear Information System (INIS)

    Ren, Ting

    2010-01-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  6. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting

    2010-07-01

    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  7. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    Science.gov (United States)

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  8. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  9. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Gene delivery systems by the combination of lipid bubbles and ultrasound.

    Science.gov (United States)

    Negishi, Yoichi; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2016-11-28

    Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.

  11. Stuttering Intervention in Three Service Delivery Models (Direct, Hybrid, and Telepractice: Two Case Studies

    Directory of Open Access Journals (Sweden)

    Daniel T. Valentine

    2015-01-01

    Full Text Available This study assessed outcomes in stuttering intervention across three service delivery models: direct, hybrid, and telepractice for two 11-year old children who stutter. The goal of the study was to investigate whether short-term goals were maintained through the telepractice sessions. The Stuttering Severity Instrument, Fourth Edition (SSI-4 was administered to each child before and after each intervention period and weekly fluency samples (percentage of stuttered syllables in a monologue were obtained in each of the 10-week intervention periods. In addition, the Communication Attitudes Test-Revised was used to assess the children’s attitudes toward speaking. Following the telepractice period, parents and children completed a questionnaire concerning the therapy experience via telepractice. Both children continued to improve fluency as measured by the weekly fluency samples. SSI-4 severity ratings improved for one child and remained consistent for the other. These outcomes appear to demonstrate that telepractice is viable for improving and maintaining fluency.

  12. Electric and hydraulic hybrid actuator. Competing and complementary systems?; Elektrische und hydraulische Hybridantriebe. Konkurrierende oder komplementaere Systeme?

    Energy Technology Data Exchange (ETDEWEB)

    Dehnert, Klaus [Eaton Corporation, Rastatt (Germany)

    2011-07-01

    Hybrid drives for commercial vehicles and for mobile processing machines are evolving rapidly to a future-oriented technology. Hybrid drives significantly affect issues such as fuel efficiency, emissions, productivity and life cycle cost. For recovery and storage of kinetic energy, different technologies are used. Under this aspect, the author of the contribution under consideration reports on the key distinguishing features of some currently available hybrid concepts and their appropriate application. In the selection of suitable hydraulic hybrid drive systems, the essential features of different hybrid systems have to be considered.

  13. Outage Analysis of Practical FSO/RF Hybrid System With Adaptive Combining

    KAUST Repository

    Rakia, Tamer

    2015-08-01

    Hybrid free-space optical (FSO)/radio-frequency (RF) systems have emerged as a promising solution for high-data-rate wireless transmission. We present and analyze a transmission scheme for the hybrid FSO/RF communication system based on adaptive combining. Specifically, only FSO link is active as long as the instantaneous signal-to-noise ratio (SNR) at the FSO receiver is above a certain threshold level. When it falls below this threshold level, the RF link is activated along with the FSO link and the signals from the two links are combined at the receiver using a dual-branch maximal ratio combiner. Novel analytical expression for the cumulative distribution function (CDF) of the received SNR for the proposed hybrid system is obtained. This CDF expression is used to study the system outage performance. Numerical examples are presented to compare the outage performance of the proposed hybrid FSO/RF system with that of the FSO-only and RF-only systems. © 1997-2012 IEEE.

  14. Nano-hybrid carboxymethyl-hexanoyl chitosan modified with (3-aminopropyl)triethoxysilane for camptothecin delivery.

    Science.gov (United States)

    Hsiao, Meng-Hsuan; Tung, Tsan-Hua; Hsiao, Chi-Sheng; Liu, Dean-Mo

    2012-06-20

    Silane-modified amphiphilic chitosan was synthesized by anchoring a silane coupling agent, (3-aminopropyl)triethoxysilane, to a novel amphiphilic carboxymethyl-hexanoyl chitosan (CHC). The chemical structure of this new organic-inorganic hybrid molecule was characterized by FTIR and 13C-, 29Si-nuclear magnetic resonance, while the structural evolution was examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS). Experimental results indicated a self-assembly behaviour of molecules into nanoparticles with a stable polygonal geometry, consisting of ordered silane layers of 6 nm in thickness. The self-assembly property was found to be influenced by chemical composition and concentration of silane incorporated, while the size can be varied by the amount of anchored silane. It was also demonstrated that such vesicle exhibited excellent cytocompatibility and cellular internalization capability in ARPE-19 cell line, and presented well-controlled encapsulation and release profiles for (S)-(+)-camptothecin. These unique properties render it as a potential drug delivery nanosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Development of a solar-hydrogen hybrid energy system

    International Nuclear Information System (INIS)

    Sebastian, P.J.; Gamboa, S.A.; Vejar, Set; Campos, J.

    2009-01-01

    Full text: The details of the development of a PV-hydrogen hybrid energy system is presented. An arrangement of photovoltaic modules (125 W/module) was established to provide 9 kW installed power in a three-phase configuration at 127 Vrms/phase. A 5 kW fuel cell system (hydrogen/oxygen) operate as a dynamic backup of the photovoltaic system. The autonomous operation of the hybrid power system implies the production of hydrogen by electrolysis. The hydrogen is produced by water electrolysis using an electrolyzer of 1 kW power. The electrical energy used to produce hydrogen is supplied from solar panels by using 1kW of photovoltaic modules. The photovoltaic modules are installed in a sun-tracker arrangement for increasing the energy conversion efficiency. The hydrogen is stored in solar to electric commercial metal hydride based containers and supplied to the fuel cell. The hybrid system is monitored by internet and some dynamic characteristics such as demanding power, energy and power factor could be analyzed independently from the system. Some energy saving recommendations has been implemented as a pilot program at CIE-UNAM to improve the efficient use of clean energy in normal operating conditions in offices and laboratories. (author)

  16. Nanoparticulate systems for nucleic acid delivery

    NARCIS (Netherlands)

    Varkouhi, A.K.

    2011-01-01

    Development of carrier systems with controllable physicochemical and delivery properties has opened up the possibility of nanomedicines containing nucleic acids. In the last decades, much effort has been dedicated to two exciting approaches in biomedicine, namely gene and RNA interference

  17. Adamantane in Drug Delivery Systems and Surface Recognition.

    Science.gov (United States)

    Štimac, Adela; Šekutor, Marina; Mlinarić-Majerski, Kata; Frkanec, Leo; Frkanec, Ruža

    2017-02-16

    The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  18. Adamantane in Drug Delivery Systems and Surface Recognition

    Directory of Open Access Journals (Sweden)

    Adela Štimac

    2017-02-01

    Full Text Available The adamantane moiety is widely applied in design and synthesis of new drug delivery systems and in surface recognition studies. This review focuses on liposomes, cyclodextrins, and dendrimers based on or incorporating adamantane derivatives. Our recent concept of adamantane as an anchor in the lipid bilayer of liposomes has promising applications in the field of targeted drug delivery and surface recognition. The results reported here encourage the development of novel adamantane-based structures and self-assembled supramolecular systems for basic chemical investigations as well as for biomedical application.

  19. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  20. Modelling and Optimising the Value of a Hybrid Solar-Wind System

    Science.gov (United States)

    Nair, Arjun; Murali, Kartik; Anbuudayasankar, S. P.; Arjunan, C. V.

    2017-05-01

    In this paper, a net present value (NPV) approach for a solar hybrid system has been presented. The system, in question aims at supporting an investor by assessing an investment in solar-wind hybrid system in a given area. The approach follow a combined process of modelling the system, with optimization of major investment-related variables to maximize the financial yield of the investment. The consideration of solar wind hybrid supply presents significant potential for cost reduction. The investment variables concern the location of solar wind plant, and its sizing. The system demand driven, meaning that its primary aim is to fully satisfy the energy demand of the customers. Therefore, the model is a practical tool in the hands of investor to assess and optimize in financial terms an investment aiming at covering real energy demand. Optimization is performed by taking various technical, logical constraints. The relation between the maximum power obtained between individual system and the hybrid system as a whole in par with the net present value of the system has been highlighted.

  1. Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Hu, Xiaosong; Johannesson, Lars; Murgovski, Nikolce; Egardt, Bo

    2015-01-01

    Highlights: • Hybrid energy storage system is optimally sized and controlled for a hybrid bus. • Dynamic battery health model is incorporated in the optimization. • Convex programming is efficient for optimizing hybrid propulsion systems. • Optimal battery replacement strategy is explored. • Comparison to the battery-only option is made in the health-aware optimization. - Abstract: Energy storage systems (ESSs) play an important role in the performance and economy of electrified vehicles. Hybrid energy storage system (HESS) combining both lithium-ion cells and supercapacitors is one of the most promising solutions. This paper discusses the optimal HESS dimensioning and energy management of a fuel cell hybrid electric bus. Three novel contributions are added to the relevant literature. First, efficient convex programming is used to simultaneously optimize the HESS dimension (including sizes of both the lithium-ion battery pack and the supercapacitor stack) and the power allocation between the HESS and the fuel cell system (FCS) of the hybrid bus. In the combined plant/controller optimization problem, a dynamic battery State-of-Health (SOH) model is integrated to quantitatively examine the impact of the battery replacement strategy on both the HESS size and the bus economy. Second, the HESS and the battery-only ESS options are systematically compared in the proposed optimization framework. Finally, the battery-health-perceptive HESS optimization outcome is contrasted to the ideal one neglecting the battery degradation (assuming that the battery is durable over the bus service period without deliberate power regulation)

  2. Existence of Periodic Orbits with Zeno Behavior in Completed Lagrangian Hybrid Systems

    OpenAIRE

    Or, Yizhar; Ames, Aaron D.

    2009-01-01

    In this paper, we consider hybrid models of mechanical systems undergoing impacts, Lagrangian hybrid systems, and study their periodic orbits in the presence of Zeno behavior-an infinite number of impacts occurring in finite time. The main result of this paper is explicit conditions under which the existence of stable periodic orbits for a Lagrangian hybrid system with perfectly plastic impacts implies the existence of periodic orbits in the same system with non-plastic impacts. Such periodic...

  3. Dissipative dynamics of superconducting hybrid qubit systems

    International Nuclear Information System (INIS)

    Montes, Enrique; Calero, Jesus M; Reina, John H

    2009-01-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a σ x x σ z interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  4. Dissipative dynamics of superconducting hybrid qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Enrique; Calero, Jesus M; Reina, John H, E-mail: enriquem@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u [Departamento de Fisica, Universidad del Valle, A.A. 25360, Cali (Colombia)

    2009-05-01

    We perform a theoretical study of composed superconducting qubit systems for the case of a coupled qubit configuration based on a hybrid qubit circuit made of both charge and phase qubits, which are coupled via a sigma{sub x} x sigma{sub z} interaction. We compute the system's eigen-energies in terms of the qubit transition frequencies and the strength of the inter-qubit coupling, and describe the sensitivity of the energy crossing/anti-crossing features to such coupling. We compute the hybrid system's dissipative dynamics for the cases of i) collective and ii) independent decoherence, whereby the system interacts with one common and two different baths of harmonic oscillators, respectively. The calculations have been performed within the Bloch-Redfield formalism and we report the solutions for the populations and the coherences of the system's reduced density matrix. The dephasing and relaxation rates are explicitly calculated as a function of the heat bath temperature.

  5. LOGISTIC SYSTEM OF LOAD DELIVERY AND QUALITY OF ITS OPERATION

    Directory of Open Access Journals (Sweden)

    O. G. Drozdovskaya

    2006-01-01

    Full Text Available The paper considers an opportunity for obtaining a competitive advantage by a transport and dispatch service company in the market of transport services while establishing a logistic system of load delivery. A model of delivery system, an universal scheme of system designing for every specific case are presented and also indices for evaluation of its operational quality are proposed in the paper.

  6. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Anupama Shrivastav

    2013-01-01

    Full Text Available Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system.

  7. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  8. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  9. PV-wind hybrid system performance. A new approach and a case study

    International Nuclear Information System (INIS)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio; Mata, Montserrat; Llobet, Ermen

    2010-01-01

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  10. PV-wind hybrid system performance. A new approach and a case study

    Energy Technology Data Exchange (ETDEWEB)

    Arribas, Luis; Cano, Luis; Cruz, Ignacio [Departamento de Energias Renovables, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Mata, Montserrat; Llobet, Ermen [Ecotecnia, Roc Boronat 78, 08005 Barcelona (Spain)

    2010-01-15

    Until now, there is no internationally accepted guideline for the measurement, data exchange and analysis of PV-Wind Hybrid Systems. As there is a need for such a tool, so as to overcome the barrier that the lack of confidence due to the absence of reliability means for the development of the market of Hybrid Systems, an effort has been made to suggest one tool for PV-Wind Hybrid Systems. The suggested guidelines presented in this work are based on the existing guidelines for PV Systems, as a PV-Wind Hybrid system can be roughly thought of as a PV System to which wind generation has been added. So, the guidelines for PV Systems are valid for the PV-Wind System, and only the part referred to wind generation should be included. This has been the process followed in this work. The proposed method is applied to a case study, the CICLOPS Project, a 5 kW PV, 7.5 kW Wind Hybrid system installed at the Isolated Wind Systems Test Site that CIEMAT owns in CEDER (Soria, Spain). This system has been fully monitored through a year and the results of the monitoring activity, characterizing the long-term performance of the system are shown in this work. (author)

  11. Hybrid synchronization of two independent chaotic systems on ...

    Indian Academy of Sciences (India)

    Keywords. Hybrid synchronization; complex network; information source; chaotic system. ... encryption and decryption through synchronization. However, the ... Certainly, if the two systems are different, the security would be improved. How.

  12. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  13. Integrating Quality Matters into Hybrid Course Design: A Principles of Marketing Case Study

    Science.gov (United States)

    Young, Mark R.

    2014-01-01

    Previous research supports the idea that the success of hybrid or online delivery modes is more a function of course design than delivery media. This article describes a case study of a hybrid Principles of Marketing course that implemented a comprehensive redesign based on design principles espoused by the Quality Matters Program, a center for…

  14. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  15. Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications

    International Nuclear Information System (INIS)

    Tsuanyo, David; Azoumah, Yao; Aussel, Didier; Neveu, Pierre

    2015-01-01

    This paper presents a new model and optimization procedure for off-grid hybrid PV (photovoltaic)/Diesel systems operating without battery storage. The proposed technico-economic model takes into account the variability of both the solar irradiation and the electrical loads. It allows optimizing the design and the operation of the hybrid systems by searching their lowest LCOE (Levelized Cost of Electricity). Two cases have been investigated: identical Diesel generators and Diesel generators with different sizes, and both are compared to conventional standalone Diesel generator systems. For the same load profile, the optimization results show that the LCOE of the optimized batteryless hybrid solar PV/Diesel (0.289 €/kWh for the hybrid system with identical Diesel generators and 0.284 €/kWh for the hybrid system with different sizes of Diesel generators) is lower than the LCOE obtained with standalone Diesel generators (0.32 €/kWh for the both cases). The obtained results are then confirmed by HOMER (Hybrid Optimization Model for Electric Renewables) software. - Highlights: • A technico-economic model for optimal design and operation management of batteryless hybrid systems is developed. • The model allows optimizing design and operation of hybrid systems by ensuring their lowest LCOE. • The model was validated by HOMER. • Batteryless hybrid system are suitable for off-grid applications

  16. Intelligent Power Management of hybrid Wind/ Fuel Cell/ Energy Storage Power Generation System

    OpenAIRE

    A. Hajizadeh; F. Hassanzadeh

    2013-01-01

    This paper presents an intelligent power management strategy for hybrid wind/ fuel cell/ energy storage power generation system. The dynamic models of wind turbine, fuel cell and energy storage have been used for simulation of hybrid power system. In order to design power flow control strategy, a fuzzy logic control has been implemented to manage the power between power sources. The optimal operation of the hybrid power system is a main goal of designing power management strategy. The hybrid ...

  17. Distance Learning Delivery Systems: Instructional Options.

    Science.gov (United States)

    Steele, Ray L.

    1993-01-01

    Discusses the availability of satellite and cable programing to provide distance education opportunities in school districts. Various delivery systems are described, including telephones with speakers, personal computers, and satellite dishes; and a sidebar provides a directory of distance learning opportunities, including telecommunications…

  18. Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system

    KAUST Repository

    Kim, Jung Eun; Phuntsho, Sherub; Chekli, Laura; Hong, Seungkwan; Ghaffour, NorEddine; Leiknes, TorOve; Choi, Joon Yong; Shon, Ho Kyong

    2017-01-01

    Environmental and economic impacts of the fertilizer drawn forward osmosis (FDFO) and nanofiltration (NF) hybrid system were conducted and compared with conventional reverse osmosis (RO) hybrid scenarios using microfiltration (MF) or ultrafiltration (UF) as a pre-treatment process. The results showed that the FDFO-NF hybrid system using thin film composite forward osmosis (TFC) FO membrane has less environmental impact than conventional RO hybrid systems due to lower consumption of energy and cleaning chemicals. The energy requirement for the treatment of mine impaired water by the FDFO-NF hybrid system was 1.08 kWh/m, which is 13.6% less energy than an MF-RO and 21% less than UF-RO under similar initial feed solution. In a closed-loop system, the FDFO-NF hybrid system using a TFC FO membrane with an optimum NF recovery rate of 84% had the lowest unit operating expenditure of AUD $0.41/m. Besides, given the current relatively high price and low flux performance of the cellulose triacetate and TFC FO membranes, the FDFO-NF hybrid system still holds opportunities to reduce operating expenditure further. Optimizing NF recovery rates and improving the water flux of the membrane would decrease the unit OPEX costs, although the TFC FO membrane would be less sensitive to this effect.

  19. Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system

    KAUST Repository

    Kim, Jung Eun

    2017-05-08

    Environmental and economic impacts of the fertilizer drawn forward osmosis (FDFO) and nanofiltration (NF) hybrid system were conducted and compared with conventional reverse osmosis (RO) hybrid scenarios using microfiltration (MF) or ultrafiltration (UF) as a pre-treatment process. The results showed that the FDFO-NF hybrid system using thin film composite forward osmosis (TFC) FO membrane has less environmental impact than conventional RO hybrid systems due to lower consumption of energy and cleaning chemicals. The energy requirement for the treatment of mine impaired water by the FDFO-NF hybrid system was 1.08 kWh/m, which is 13.6% less energy than an MF-RO and 21% less than UF-RO under similar initial feed solution. In a closed-loop system, the FDFO-NF hybrid system using a TFC FO membrane with an optimum NF recovery rate of 84% had the lowest unit operating expenditure of AUD $0.41/m. Besides, given the current relatively high price and low flux performance of the cellulose triacetate and TFC FO membranes, the FDFO-NF hybrid system still holds opportunities to reduce operating expenditure further. Optimizing NF recovery rates and improving the water flux of the membrane would decrease the unit OPEX costs, although the TFC FO membrane would be less sensitive to this effect.

  20. Nanoparticulate delivery systems for antiviral drugs.

    Science.gov (United States)

    Lembo, David; Cavalli, Roberta

    2010-01-01

    Nanomedicine opens new therapeutic avenues for attacking viral diseases and for improving treatment success rates. Nanoparticulate-based systems might change the release kinetics of antivirals, increase their bioavailability, improve their efficacy, restrict adverse drug side effects and reduce treatment costs. Moreover, they could permit the delivery of antiviral drugs to specific target sites and viral reservoirs in the body. These features are particularly relevant in viral diseases where high drug doses are needed, drugs are expensive and the success of a therapy is associated with a patient's adherence to the administration protocol. This review presents the current status in the emerging area of nanoparticulate delivery systems in antiviral therapy, providing their definition and description, and highlighting some peculiar features. The paper closes with a discussion on the future challenges that must be addressed before the potential of nanotechnology can be translated into safe and effective antiviral formulations for clinical use.

  1. Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system

    International Nuclear Information System (INIS)

    Lamba, Ravita; Kaushik, S.C.

    2016-01-01

    Highlights: • Thermodynamic model of concentrated photovoltaic–thermoelectric system is analysed. • Thomson effect reduces the power output of PV, TE and hybrid PV–TEG system. • Effect of thermocouple number, irradiance, PV and TE current have been studied. • The optimum concentration ratio for maximum power output has been found out. • The overall efficiency and power output of hybrid PV–TEG system has been improved. - Abstract: In this study, a thermodynamic model for analysing the performance of a concentrated photovoltaic–thermoelectric generator (CPV–TEG) hybrid system including Thomson effect in conjunction with Seebeck, Joule and Fourier heat conduction effects has been developed and simulated in MATALB environment. The expressions for calculating the temperature of photovoltaic (PV) module, hot and cold sides of thermoelectric (TE) module are derived analytically as well. The effect of concentration ratio, number of thermocouples in TE module, solar irradiance, PV module current and TE module current on power output and efficiency of the PV, TEG and hybrid PV–TEG system have been studied. The optimum concentration ratio corresponding to maximum power output of the hybrid system has been found out. It has been observed that by considering Thomson effect in TEG module, the power output of the PV, TE and hybrid PV–TEG systems decreases and at C = 1 and 5, it reduces the power output of hybrid system by 0.7% and 4.78% respectively. The results of this study may provide basis for performance optimization of a practical irreversible CPV–TEG hybrid system.

  2. Non-viral Nucleic Acid Delivery Strategies to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    James-Kevin Tan

    2016-11-01

    Full Text Available With an increased prevalence and understanding of central nervous system injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the central nervous system and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection, and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the central nervous system are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for central nervous system applications and will ultimately bring non-viral vectors closer to clinical application.

  3. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.

    Science.gov (United States)

    Resquín, Francisco; Cuesta Gómez, Alicia; Gonzalez-Vargas, Jose; Brunetti, Fernando; Torricelli, Diego; Molina Rueda, Francisco; Cano de la Cuerda, Roberto; Miangolarra, Juan Carlos; Pons, José Luis

    2016-11-01

    In recent years the combined use of functional electrical stimulation (FES) and robotic devices, called hybrid robotic rehabilitation systems, has emerged as a promising approach for rehabilitation of lower and upper limb motor functions. This paper presents a review of the state of the art of current hybrid robotic solutions for upper limb rehabilitation after stroke. For this aim, studies have been selected through a search using web databases: IEEE-Xplore, Scopus and PubMed. A total of 10 different hybrid robotic systems were identified, and they are presented in this paper. Selected systems are critically compared considering their technological components and aspects that form part of the hybrid robotic solution, the proposed control strategies that have been implemented, as well as the current technological challenges in this topic. Additionally, we will present and discuss the corresponding evidences on the effectiveness of these hybrid robotic therapies. The review also discusses the future trends in this field. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

    Science.gov (United States)

    Mohammed, Leena; Ragab, Doaa; Gomaa, Hassan

    2016-01-01

    Engineered magnetic nanoparticles (MNPs) possess unique properties and hold great potential in biomedicine and clinical applications. With their magnetic properties and their ability to work at cellular and molecular level, MNP have been applied both in-vitro and in-vivo in targeted drug delivery and imaging. Focusing on Iron Oxide Superparamagnetic nanoparticles (SPIONs), this paper elaborates on the recent advances in development of hybrid polymeric-magnetic nanoparticles. Their main applications in drug delivery include Chemotherapeutics, Hyperthermia treatment, Radio-therapeutics, Gene delivary, and Biotheraputics. Physiochemical properties such as size, shape, surface and magnetic properties are key factors in determining their behavior. Additionally tailoring SPIONs surface is often vital for desired cell targetting and improved efficiency. Polymer coating is specifically reviewed with brief discussion of SPIONs administration routes. Commonly used drug release models for describing release mechanisms and the nanotoxicity aspects are also discussed. This review focus on superparamagnetic nanoparticles coated with different types of polymers starting with the key physiochemical features that dominate their behavior. The importance of surface modification is addressed. Subsequently, the major classes of polymer modified iron oxide nanoparticles is demonstrated according to their clinical use and application. Clinically approved nanoparticles are then addressed and the different routes of administration are mentioned. Lastly, mathematical models of drug release profile of the common used nanoparticles are addressed. MNPs emerging in recent medicine are remarkable for both imaging and therapeutics, particularly, as drug carriers for their great potential in targeted delivery and cancer treatment. Targeting ability and biocompatibility can be improved though surface coating which provides a mean to alter the surface features including physical characteristics and

  5. Measurement and Analysis of Power in Hybrid System

    Directory of Open Access Journals (Sweden)

    Vartika Keshri

    2016-12-01

    Full Text Available Application with renewable energy  sources  such   as solar cell array, wind turbines, or fuel cells have increased significantly during the past decade. To obtain the clean energy, we are using the hybrid solar-wind power generation. Consumers prefer quality power from suppliers. The quality of power can be measured by using parameters such as voltage sag, harmonic and power factor.   To   obtain   quality   power   we   have different topologies. In our paper we present a new possible topology which improves power quality. This paper presents modeling analysis and design of a pulse width modulation voltage source inverter (PWM-VSI to be connected between sources, which supplies energy from a hybrid solar wind energy system to the ac grid. The objective of this paper is to show that, with an adequate control, the converter not only can transfer the dc from hybrid solar wind energy system, but also can improve the power factor and quality power of electrical system. Whenever a disturbance occurs on load side, this disturbance can be minimized using open loop and closed loop control systems.

  6. Automated Controller Synthesis for non-Deterministic Piecewise-Affine Hybrid Systems

    DEFF Research Database (Denmark)

    Grunnet, Jacob Deleuran

    formations. This thesis uses a hybrid systems model of a satellite formation with possible actuator faults as a motivating example for developing an automated control synthesis method for non-deterministic piecewise-affine hybrid systems (PAHS). The method does not only open an avenue for further research...... in fault tolerant satellite formation control, but can be used to synthesise controllers for a wide range of systems where external events can alter the system dynamics. The synthesis method relies on abstracting the hybrid system into a discrete game, finding a winning strategy for the game meeting...... game and linear optimisation solvers for controller refinement. To illustrate the efficacy of the method a reoccurring satellite formation example including actuator faults has been used. The end result is the application of PAHSCTRL on the example showing synthesis and simulation of a fault tolerant...

  7. Hybrid Intrusion Forecasting Framework for Early Warning System

    Science.gov (United States)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  8. Analysis of fixed tilt and sun tracking photovoltaic–micro wind based hybrid power systems

    International Nuclear Information System (INIS)

    Sinha, Sunanda; Chandel, S.S.

    2016-01-01

    Graphical abstract: 6 kW_p photovoltaic–micro wind based hybrid power system analysis in a Indian Western Himalayan location. - Highlights: • Power generation by a roof mounted photovoltaic–micro wind hybrid system is explored. • Optimum hybrid configurations using fixed and sun tracking photovoltaic systems are determined. • Analysis of hybrid systems with optimally tilted and different sun tracking systems is presented. • Two axis sun tracking systems are found to generate 4.88–26.29% more energy than fixed tilt system. • Hybrid system installed at optimum tilt angle is found to be cost effective than a sun tracking system. - Abstract: In this study fixed tilt and sun tracking photovoltaic based micro wind hybrid power systems are analyzed along with determining the optimum configurations for a 6 kW_p roof mounted micro wind based hybrid system using fixed and tracking photovoltaic systems to enhance the power generation potential in a low windy Indian hilly terrain with good solar resource. The main objective of the study is to enhance power generation by focusing on photovoltaic component of the hybrid system. A comparative power generation analysis of different configurations of hybrid systems with fixed tilt, monthly optimum tilt, yearly optimum tilt and 6 different sun tracking photovoltaic systems is carried out using Hybrid Optimization Model for Electric Renewables. Monthly and seasonal optimum tilt angles determined for the location vary between 0° and 60° with annual optimum tilt angle as 29.25°. The optimum configurations for all sun tracking systems except for the two axis tracking system is found to be 7 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The optimum configuration for two axis tracking system and two types of fixed tilt systems, is found to be a 8 kW_p photovoltaic system, one 5 kW_p wind turbine, 10 batteries and a 2 kW_p inverter. The results show that horizontal axis with

  9. Theory of strong hybridization-induced relaxation in uranium systems

    International Nuclear Information System (INIS)

    Hu, G.; Cooper, B.R.

    1988-01-01

    Commonly, for metallic uranium systems, sharp magnetic excitations are not observed in neutron inelastic scattering experiments, but rather there is a continuous spectrum of magnetic response. By extending our earlier theory for partially delocalized cerium systems, we can understand this behavior. The band-f hybridization is transformed to resonant scattering in our theory, where the exchange part of the scattering gives both a two-ion interaction (physically corresponding to cooperative hybridization, giving anisotropic magnetic ordering with unusual excitation dispersion for cerium systems) and a hybridization coupling of each ion to the band sea (giving relaxation and strong energy renormalization of the excitations for cerium systems). For uranium the f delocalization (and hence the hybridization) is much stronger than for cerium. The two-ion interaction (giving quasi-ionic energy level splitting) grows by an order of magnitude or more, as evidenced by greatly increased magnetic ordering temperatures. On the other hand, the single-site hybridization strength parameter J-script characterizing the f-to-band-bath coupling grows more moderately as the f levels move toward the Fermi energy, because of the renormalizing effect of the direct scattering which broadens the f levels. The increased energy scale of the quasi-ionic level splitting for uranium as compared to cerium or plutonium is the major contributor to the greatly increased width of magnetic scattering distributions, while the moderate increase in coupling of each uranium quasi-ion to the band sea gives a lesser contribution. We apply this theory to UP and UAs and compare our results with experiment

  10. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    Science.gov (United States)

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.

  11. Software Build and Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-10

    This presentation deals with the hierarchy of software build and delivery systems. One of the goals is to maximize the success rate of new users and developers when first trying your software. First impressions are important. Early successes are important. This also reduces critical documentation costs. This is a presentation focused on computer science and goes into detail about code documentation.

  12. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  13. Efficient systemic DNA delivery to the tumor by self-assembled nanoparticle

    Science.gov (United States)

    Tang, Hailin; Xie, Xinhua; Guo, Jiaoli; Wei, Weidong; Wu, Minqing; Liu, Peng; Kong, Yanan; Yang, Lu; Hung, Mien-Chie; Xie, Xiaoming

    2014-01-01

    There are few delivery agents that could deliver gene with high efficiency and low toxicity, especially for animal experiments. Therefore, creating vectors with good delivery efficiency and safety profile is a meaningful work. We have developed a self-assembled gene delivery system (XM001), which can more efficiently deliver DNA to multiple cell lines and breast tumor, as compared to commercial delivery agents. In addition, systemically administrated XM001-BikDD (BikDD is a mutant form of proapoptotic gene Bik) significantly inhibited the growth of human breast cancer cells and prolonged the life span in implanted nude mice. This study demonstrates that XM001 is an efficient and widespread transfection agent, which could be a promising tumor delivery vector for cancer targeted therapy.

  14. Hybrid intelligent monironing systems for thermal power plant trips

    Science.gov (United States)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  15. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  16. Vibration control of bridges and buildings hybrid system. Kyoryoter dot tatemono no shindo seigyo hybrid hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Tanida, K. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-11-15

    Multistory buildings, suspension bridges, and cable stayed bridges tend to become huge, and technology of controlling their vibration caused by strong winds and earthquakes is becoming an important subject for study. A description is made on a hybrid system which is a combination of the conventional passive system and active system, having merits of both of the systems. Verification test made using a model and an example of application to an actual bridge are introduced. This hybrid control system has been applied to the main tower of the cable stayed bridge on Route 12 of the Tokyo expressway. It is installed and in operation on the top of the tower to improve the workability, and can decrease the vibration of the tower caused by vortical excitation produced during the construction of the main tower. With the hybrid system, the actuator capacity can be reduced to about 1/5 for the similar damping performance to that of the active system with the same mass ratio. In addition, the weight of the equipment can be nearly halved in comparison with the passive system. Moreover, it has such a high safety characteristic as being used as a passive system when power supply is cut off because the controlling force of the system is smaller as compared with the active system. 2 refs., 11 figs.

  17. Hybrid algorithm for rotor angle security assessment in power systems

    Directory of Open Access Journals (Sweden)

    D. Prasad Wadduwage

    2015-08-01

    Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

  18. Performance and energy management of a novel full hybrid electric powertrain system

    International Nuclear Information System (INIS)

    Chung, Cheng-Ta; Hung, Yi-Hsuan

    2015-01-01

    This study compared the performance and energy management between a novel full hybrid electric powertrain and a traditional power-split hybrid system. The developed planetary gearset and dual clutch configuration provides five operation modes. Equations for the torque and speed of power sources for the planetary gearset and dual clutch system and the Toyota Hybrid System are firstly derived. By giving vehicle performance of gradability, maximal speeds in hybrid and pure electric modes, the power sources of the 210 kg target vehicle are: a 125 cc engine and two 1.8 kW motor and generator. The optimal tank-to-wheel efficiencies, ratios of circulating power, and operation points at specific vehicle speeds and out loads are calculated. Simulation results show that the dual-motor electric vehicle mode offers superior performance regarding electric drive; the low capacity of the battery is conducive to reducing manufacturing and maintenance costs; the tank-to-wheel efficiency is mainly operated above 20% while the power split electronic-continuously-variable-transmission mode is the major operation mode, and a maximum of 17% fuel economy improvement is achieved compared with the Toyota Hybrid System in most of the vehicle speed ranges. The outstanding performance warrants further real-system development, especially regarding the implementation in plug-in and sport hybrid powertrain designs. - Highlights: • An innovative power split hybrid powertrain was designed. • Dual-motor electric-vehicle mode highlighted for plug-in function. • Power circulation ratios and five driving modes were analyzed. • Global search method utilized for optimal energy management. • Maximal 17+% fuel improvement compared to Toyota Hybrid System

  19. Exploring information systems outsourcing in U.S. hospital-based health care delivery systems.

    Science.gov (United States)

    Diana, Mark L

    2009-12-01

    The purpose of this study is to explore the factors associated with outsourcing of information systems (IS) in hospital-based health care delivery systems, and to determine if there is a difference in IS outsourcing activity based on the strategic value of the outsourced functions. IS sourcing behavior is conceptualized as a case of vertical integration. A synthesis of strategic management theory (SMT) and transaction cost economics (TCE) serves as the theoretical framework. The sample consists of 1,365 hospital-based health care delivery systems that own 3,452 hospitals operating in 2004. The findings indicate that neither TCE nor SMT predicted outsourcing better than the other did. The findings also suggest that health care delivery system managers may not be considering significant factors when making sourcing decisions, including the relative strategic value of the functions they are outsourcing. It is consistent with previous literature to suggest that the high cost of IS may be the main factor driving the outsourcing decision.

  20. Universal blind quantum computation for hybrid system

    Science.gov (United States)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  1. Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2012-01-01

    This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...

  2. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Hybrid Mesoporous Silica-Based Drug Carrier Nanostructures with Improved Degradability by Hydroxyapatite.

    Science.gov (United States)

    Hao, Xiaohong; Hu, Xixue; Zhang, Cuimiao; Chen, Shizhu; Li, Zhenhua; Yang, Xinjian; Liu, Huifang; Jia, Guang; Liu, Dandan; Ge, Kun; Liang, Xing-Jie; Zhang, Jinchao

    2015-10-27

    Potential bioaccumulation is one of the biggest limitations for silica nanodrug delivery systems in cancer therapy. In this study, a mesoporous silica nanoparticles/hydroxyapatite (MSNs/HAP) hybrid drug carrier, which enhanced the biodegradability of silica, was developed by a one-step method. The morphology and structure of the nanoparticles were characterized by TEM, DLS, FT-IR, XRD, N2 adsorption-desorption isotherms, and XPS, and the drug loading and release behaviors were tested. TEM and ICP-OES results indicate that the degradability of the nanoparticles has been significantly improved by Ca(2+) escape from the skeleton in an acid environment. The MSNs/HAP sample exhibits a higher drug loading content of about 5 times that of MSNs. The biological experiment results show that the MSNs/HAP not only exhibits good biocompatibility and antitumor effect but also greatly reduces the side effects of free DOX. The as-synthesized hybrid nanoparticles may act as a promising drug delivery system due to their good biocompatibility, high drug loading efficiency, pH sensitivity, and excellent biodegradability.

  4. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.

    Science.gov (United States)

    Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie

    2016-01-01

    Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.

  5. Glucose Outcomes with the In-Home Use of a Hybrid Closed-Loop Insulin Delivery System in Adolescents and Adults with Type 1 Diabetes.

    Science.gov (United States)

    Garg, Satish K; Weinzimer, Stuart A; Tamborlane, William V; Buckingham, Bruce A; Bode, Bruce W; Bailey, Timothy S; Brazg, Ronald L; Ilany, Jacob; Slover, Robert H; Anderson, Stacey M; Bergenstal, Richard M; Grosman, Benyamin; Roy, Anirban; Cordero, Toni L; Shin, John; Lee, Scott W; Kaufman, Francine R

    2017-03-01

    The safety and effectiveness of the in-home use of a hybrid closed-loop (HCL) system that automatically increases, decreases, and suspends insulin delivery in response to continuous glucose monitoring were investigated. Adolescents (n = 30, ages 14-21 years) and adults (n = 94, ages 22-75 years) with type 1 diabetes participated in a multicenter (nine sites in the United States, one site in Israel) pivotal trial. The Medtronic MiniMed ® 670G system was used during a 2-week run-in phase without HCL control, or Auto Mode, enabled (Manual Mode) and, thereafter, with Auto Mode enabled during a 3-month study phase. A supervised hotel stay (6 days/5 nights) that included a 24-h frequent blood sample testing with a reference measurement (i-STAT) occurred during the study phase. Adolescents (mean ± standard deviation [SD] 16.5 ± 2.29 years of age and 7.7 ± 4.15 years of diabetes) used the system for a median 75.8% (interquartile range [IQR] 68.0%-88.4%) of the time (2977 patient-days). Adults (mean ± SD 44.6 ± 12.79 years of age and 26.4 ± 12.43 years of diabetes) used the system for a median 88.0% (IQR 77.6%-92.7%) of the time (9412 patient-days). From baseline run-in to the end of study phase, adolescent and adult HbA 1c levels decreased from 7.7% ± 0.8% to 7.1% ± 0.6% (P hotel stay, the proportion of in-target i-STAT ® blood glucose values was 67.4% ± 27.7% compared to SG values of 72.0% ± 11.6% for adolescents and 74.2% ± 17.5% compared to 76.9% ± 8.3% for adults. There were no severe hypoglycemic or diabetic ketoacidosis events in either cohort. HCL therapy was safe during in-home use by adolescents and adults and the study phase demonstrated increased time in target, and reductions in HbA 1c, hyperglycemia and hypoglycemia, compared to baseline. Clinicaltrials.gov identifier: NCT02463097.

  6. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components.

    Science.gov (United States)

    McClements, David Julian; Li, Yan

    2010-09-15

    There is a need for edible delivery systems to encapsulate, protect and release bioactive and functional lipophilic constituents within the food and pharmaceutical industries. These delivery systems could be used for a number of purposes: controlling lipid bioavailability; targeting the delivery of bioactive components within the gastrointestinal tract; and designing food matrices that delay lipid digestion and induce satiety. Emulsion technology is particularly suited for the design and fabrication of delivery systems for lipids. In this article we provide an overview of a number of emulsion-based technologies that can be used as edible delivery systems by the food and other industries, including conventional emulsions, nanoemulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. Each of these delivery systems can be produced from food-grade (GRAS) ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals) using relatively simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, preparation, and utilization of each type of delivery system for controlling lipid digestion are discussed. This knowledge can be used to select the most appropriate emulsion-based delivery system for specific applications, such as encapsulation, controlled digestion, and targeted release. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems

    DEFF Research Database (Denmark)

    Becker, Bernd; Behle, Markus; Eisenbrand, Fritz

    2004-01-01

    We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit veri...

  8. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  9. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  10. Waste Feed Delivery Transfer System Analysis

    International Nuclear Information System (INIS)

    JULYK, L.J.

    2000-01-01

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms

  11. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  12. Nanoscale Nutrient Delivery Systems for Food Applications: Improving Bioactive Dispersibility, Stability, and Bioavailability.

    Science.gov (United States)

    McClements, David Julian

    2015-07-01

    There has been a surge of interest in the development of nanoscale systems for the encapsulation, protection, and delivery of lipophilic nutrients, vitamins, and nutraceuticals. This review article highlights the challenges associated with incorporating these lipophilic bioactive components into foods, and then discusses potential nanoscale delivery systems that can be used to overcome these challenges. In particular, the desirable characteristics required for any nanoscale delivery system are presented, as well as methods of fabricating them and of characterizing them. An overview of different delivery systems is given, such as microemulsions, nanoemulsions, emulsions, microgels, and biopolymer nanoparticles, and their potential applications are discussed. Nanoscale delivery systems have considerable potential within the food industry, but they must be carefully formulated to ensure that they are safe, economically viable, and effective. Nanoscale delivery systems have numerous potential applications in the food industry for encapsulating, protecting, and releasing bioactive agents, such as nutraceuticals and vitamins. This review article highlights methods for designing, fabricating, characterizing, and utilizing edible nanoparticles from a variety of different food-grade ingredients. © 2015 Institute of Food Technologists®

  13. Buccal mucosa as a route for systemic drug delivery: a review.

    Science.gov (United States)

    Shojaei, A H

    1998-01-01

    Within the oral mucosal cavity, the buccal region offers an attractive route of administration for systemic drug delivery. The mucosa has a rich blood supply and it is relatively permeable. It is the objective of this article to review buccal drug delivery by discussing the structure and environment of the oral mucosa and the experimental methods used in assessing buccal drug permeation/absorption. Buccal dosage forms will also be reviewed with an emphasis on bioadhesive polymeric based delivery systems

  14. A Sample Delivery System for Planetary Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will develop, test and characterize the performance of a prototype /sample delivery system (SDS) implemented as an end effector on a robotic arm capable...

  15. Evaluation of hybrid power system alternatives: a case study

    International Nuclear Information System (INIS)

    Rosenthal, Andrew L.

    1999-01-01

    Pursuant to executive and statutory policies, the National Park Service (NPS) has been evaluating the use of photovoltaic (PV) hybrid power systems, for many of its remote, off-grid areas. This paper reports the results of a detailed technical and economic evaluation for one such area: the Needles District of Canyonlands National Park. The study evaluates the presented power systems and five alternative power generation configurations, four of which utilise PV. Projections are provided for the generator run-time and fuel use associated with each configuration as well as all initial and future costs. Included in the study are specific recommendations for energy efficiency improvements at the site. Results show that the generation systems presently in use, two full-time diesel generators, has the lowest conventional 20-year life cycle costs (LCC) of the six systems evaluated. However, when emissions costs are included (per NPS guidelines), several of the PV hybrid alternatives attain a lower LCC than the diesel-only systems. General discussion of the effects of initial versus future costs of PV hybrids as they compare with engine generator system is presented. (Author)

  16. Harmonic analysis and suppression in hybrid wind & PV solar system

    Science.gov (United States)

    Gupta, Tripti; Namekar, Swapnil

    2018-04-01

    The growing demand of electricity has led to produce power through non-conventional source of energy such as solar energy, wind energy, hydro power, energy through biogas and biomass etc. Hybrid system is taken to complement the shortcoming of either sources of energy. The proposed system is grid connected hybrid wind and solar system. A 2.1 MW Doubly fed Induction Generator (DFIG) has been taken for analysis of wind farm whose rotor part is connected to two back-to-back converters. A 250 KW Photovoltaic (PV) array taken to analyze solar farm where inverter is required to convert power from DC to AC since electricity generated through solar PV is in the form of DC. Stability and reliability of the system is very important when the system is grid connected. Harmonics is the major Power quality issue which degrades the quality of power at load side. Harmonics in hybrid system arise through the use of power conversion unit. The other causes of harmonics are fluctuation in wind speed and solar irradiance. The power delivered to grid must be free from harmonics and within the limits specified by Indian grid codes. In proposed work, harmonic analysis of the hybrid system is performed in Electrical Transient Analysis program (ETAP) and single tuned harmonic filter is designed to maintain the utility grid harmonics within limits.

  17. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  18. Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance.

    Science.gov (United States)

    Ly, Trang T; Weinzimer, Stuart A; Maahs, David M; Sherr, Jennifer L; Roy, Anirban; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; Carria, Lori; Messer, Laurel; von Eyben, Rie; Buckingham, Bruce A

    2017-08-01

    Automated insulin delivery systems, utilizing a control algorithm to dose insulin based upon subcutaneous continuous glucose sensor values and insulin pump therapy, will soon be available for commercial use. The objective of this study was to determine the preliminary safety and efficacy of initialization parameters with the Medtronic hybrid closed-loop controller by comparing percentage of time in range, 70-180 mg/dL (3.9-10 mmol/L), mean glucose values, as well as percentage of time above and below target range between sensor-augmented pump therapy and hybrid closed-loop, in adults and adolescents with type 1 diabetes. We studied an initial cohort of 9 adults followed by a second cohort of 15 adolescents, using the Medtronic hybrid closed-loop system with the proportional-integral-derivative with insulin feed-back (PID-IFB) algorithm. Hybrid closed-loop was tested in supervised hotel-based studies over 4-5 days. The overall mean percentage of time in range (70-180 mg/dL, 3.9-10 mmol/L) during hybrid closed-loop was 71.8% in the adult cohort and 69.8% in the adolescent cohort. The overall percentage of time spent under 70 mg/dL (3.9 mmol/L) was 2.0% in the adult cohort and 2.5% in the adolescent cohort. Mean glucose values were 152 mg/dL (8.4 mmol/L) in the adult cohort and 153 mg/dL (8.5 mmol/L) in the adolescent cohort. Closed-loop control using the Medtronic hybrid closed-loop system enables adaptive, real-time basal rate modulation. Initializing hybrid closed-loop in clinical practice will involve individualizing initiation parameters to optimize overall glucose control. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Nursing Services Delivery Theory: an open system approach

    Science.gov (United States)

    Meyer, Raquel M; O’Brien-Pallas, Linda L

    2010-01-01

    meyer r.m. & o’brien-pallas l.l. (2010)Nursing services delivery theory: an open system approach. Journal of Advanced Nursing66(12), 2828–2838. Aim This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. Background The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a ‘black box’ that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. Data sources A search of CINAHL and Business Source Premier for the years 1980–2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. Discussion The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. Implications for nursing The Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. Conclusion The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. PMID:20831573

  20. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  1. Multiphysics of bio-hybrid systems: shape control and electro-induced motion

    Science.gov (United States)

    Lucantonio, Alessandro; Nardinocchi, Paola; Pezzulla, Matteo; Teresi, Luciano

    2014-04-01

    We discuss the control of the bending pattern of a bio-hybrid system made using the muscular thin film technique. We study the medusoid presented in Nawroth et al (2012 Nature Biotechnol. 30 792-7) as a prototypical bio-hybrid system. Specifically, we evaluate the contraction field within the biological layer that is necessary to produce a target curvature of the system, and determine an admissible range of the design parameters that correspond to the same bending solution. We also propose an electromechanical model of the bio-hybrid system and study the propagation of the action potential. Our results compare well with the experimental data reported in Nawroth et al (2012 Nature Biotechnol. 30 792-7).

  2. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.; Manwell, J.F.; Avelar, C. [Univ. of Massachusetts, Amherst, MA (United States); Taylor, R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  3. Nature engineered diatom biosilica as drug delivery systems.

    Science.gov (United States)

    Uthappa, U T; Brahmkhatri, Varsha; Sriram, G; Jung, Ho-Young; Yu, Jingxian; Kurkuri, Nikita; Aminabhavi, Tejraj M; Altalhi, Tariq; Neelgund, Gururaj M; Kurkuri, Mahaveer D

    2018-05-14

    Diatoms, unicellular photosynthetic algae covered with siliceous cell wall, are also called frustule. These are the most potential naturally available materials for the development of cost-effective drug delivery systems because of their excellent biocompatibility, high surface area, low cost and ease of surface modification. Mesoporous silica materials such as MCM-41 and SBA-15 have been extensively used in drug delivery area. Their synthesis is challenging, time consuming, requires toxic chemicals and are energy intensive, making the entire process expensive and non-viable. Therefore, it is necessary to explore alternative materials. Surprisingly, nature has provided some exciting materials called diatoms; biosilica is one such a material that can be potentially used as a drug delivery vehicle. The present review focuses on different types of diatom species used in drug delivery with respect to their structural properties, morphology, purification process and surface functionalization. In this review, recent advances along with their limitations as well as the future scope to develop them as potential drug delivery vehicles are discussed. Copyright © 2018. Published by Elsevier B.V.

  4. Design and implementation of a hybrid electric motorcycle management system

    International Nuclear Information System (INIS)

    Hsu, Yuan-Yong; Lu, Shao-Yuan

    2010-01-01

    This paper presents a successful design and implement of a shunt-winding hybrid electric motorcycle management system which utilizes an electronic control unit (ECU) to integrate two major subsystems together, one being the traditional system of 125 c.c. internal combustion engine and the other an electric power motor. The hybrid electric motorcycle is assembled together robustly by these two major subsystems and eventually leads to successful road tests. The hybrid power system thus implemented can recharge its own batteries with electricity provided by the electrical recharge system and thus increasing the cruising mileages largely. The testing results obtained by using the proposed experimental platform indicate that lead-acid cells can boost their state of charge (SOC) by approximately 4% when it is operated under the hybrid mode for four driving cycles (about 1600 s) with the recharger on in a standard ECE-40 testing procedure. The results of road tests also clearly show that the pollutant emissions of the engine can be reduced at a lower speed or idling condition, and the problem of insufficient cruising range for electric motorcycles can also be greatly enhanced.

  5. Analysis and Design Information System Logistics Delivery Service in Pt Repex Wahana

    Directory of Open Access Journals (Sweden)

    Stephanie Surja

    2015-12-01

    Full Text Available Analysis and Design of Logistic Delivery System in PT Repex Wahana aims to analyze company’s need in existing business process of logistic delivery service. This will then be used in the development of an integrated system that can address the problems in the running process of sending and tracking the whereaboutsor status of the delivered goods which are the core business processes in the enterprise. The result then will be used as basis in the development of integrated information system in pursuit of corporate solution for process business automation, delivery process, inventory, and logistic delivery tracking, which is the core of the company business process, and it will be documented using Unified Modeling Language. The information system is meant to simplify the delivery and tracking process in the company, besides will minimize lost and error of data which is often happened because of the manual and unorganized transaction data processing.

  6. Renewable energy technology for off-grid power generation solar hybrid system

    International Nuclear Information System (INIS)

    Mohd Azhar Abd Rahman

    2006-01-01

    Off-grid power generation is meant to supply remote or rural area, where grid connection is almost impossible in terms of cost and geography, such as island, aborigine's villages, and areas where nature preservation is concern. Harnessing an abundance renewable energy sources using versatile hybrid power systems can offer the best, least-cost alternative solution for extending modern energy services to remote and isolated communities. The conventional method for off-grid power generation is using diesel generator with a renewable energy (RE) technology utilizing solar photovoltaic, wind, biomass, biogas and/or mini/micro hydro. A hybrid technology is a combination of multiple source of energy; such as RE and diesel generator and may also include energy storage such as battery. In our design, the concept of solar hybrid system is a combination of solar with diesel genset and battery as an energy storage. The main objective of the system are to reduce the cost of operation and maintenance, cost of logistic and carbon dioxide (CO 2 ) emission. The operational concept of solar hybrid system is that solar will be the first choice of supplying load and excess energy produced will be stored in battery. Genset will be a secondary source of energy. The system is controlled by a microprocessor-based controlled to manage the energy supplied and load demand. The solar hybrid system consists of one or two diesel generator with electronic control system, lead-acid battery system, solar PV, inverter module and system controller with remote monitoring capability. The benefits of solar hybrid system are: Improved reliability, Improved energy services, reduced emissions and pollution, provide continuous power supply, increased operational life, reduced cost, and more efficient use of power. Currently, such system has been installed at Middle and Top Station of Langkawi Cable Car, Langkawi and Aborigines Village Kg Denai, Rompin, Pahang. The technology is considered new in Malaysia

  7. Approaches and Challenges of Engineering Implantable Microelectromechanical Systems (MEMS Drug Delivery Systems for in Vitro and in Vivo Applications

    Directory of Open Access Journals (Sweden)

    Ken-Tye Yong

    2012-11-01

    Full Text Available Despite the advancements made in drug delivery systems over the years, many challenges remain in drug delivery systems for treating chronic diseases at the personalized medicine level. The current urgent need is to develop novel strategies for targeted therapy of chronic diseases. Due to their unique properties, microelectromechanical systems (MEMS technology has been recently engineered as implantable drug delivery systems for disease therapy. This review examines the challenges faced in implementing implantable MEMS drug delivery systems in vivo and the solutions available to overcome these challenges.

  8. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  9. Strategy and gaps for modeling, simulation, and control of hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, Rob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled

  10. ON THE STABILIZATION OF THE LINEAR HYBRID SYSTEM STRUCTURE

    Directory of Open Access Journals (Sweden)

    Kirillov

    2014-11-01

    Full Text Available The linear control hybrid system, consisting of a fi- nite set of subsystems (modes having different dimensions, is considered. The moments of reset time are determined by some complementary function – evolutionary time. This function satisfies the special complementary ordinary differential equation. The mode stabilization problem is solved for some class of piecewise linear controls. The method of stabilization relies on the set of invariant planes, the existence of which is due to the special form of the hybrid system.

  11. Oral heparin delivery: design and in vivo evaluation of a stomach-targeted mucoadhesive delivery system.

    Science.gov (United States)

    Schmitz, Thierry; Leitner, Verena M; Bernkop-Schnürch, Andreas

    2005-05-01

    Low molecular weight heparin (LMWH) is an agent of choice in the anti-coagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, the therapeutic use is partially limited due to a poor oral bioavailability. It was therefore the aim of this study to design and evaluate a highly efficient stomach-targeted oral delivery system for LMWH. In order to appraise the influence of the molecular weight on the oral bioavailability, mini-tablets comprising 3 kDa (279 IU) and 6 kDa (300 IU) LMWH, respectively, were generated and tested in vivo in rats. The potential of the test formulations based on thiolated polycarbophil, was evaluated in comparison to hydroxyethylcellulose (HEC) as control carrier matrix. The plasma levels of LMWH after oral versus subcutaneous administration were determined in order to calculate the relative bioavailability. With the delivery system containing 3 kDa LMWH (279 IU) a relative bioavailability of 19.1% was achieved, offering a significantly (p thiolated polymers are a promising tool for the non-invasive stomach-targeted systemic delivery of LMWH as model for a hydrophilic macromolecular polysaccharide. Copyright 2005 Wiley-Liss, Inc

  12. Evaluating the impact of adding energy storage on the performance of a hybrid power system

    International Nuclear Information System (INIS)

    Jacobus, Headley; Lin, Baochuan; Jimmy, David Henry; Ansumana, Rashid; Malanoski, Anthony P.; Stenger, David

    2011-01-01

    Research highlights: → A photovoltaic-diesel hybrid power system is compared to a diesel-only system. → The efficiency, cost, generator runtime, and fuel consumption are calculated. → Overall efficiency of two systems is very similar. → Reduced operation and maintenance costs for hybrid system gave bigger cost savings. → The hybrid system is more advantageous in serving the same load. -- Abstract: Hybrid power systems have the capability to incorporate significant renewable energy penetration for a small autonomous system while still maintaining reliable grid stability. While there are many papers covering the optimization of component size and dispatch strategy, far fewer papers contain experimental performance data from hybrid systems. Mercy Hospital in Bo, Sierra Leone is converting their power system into a photovoltaic (PV)-diesel hybrid system, thus providing an opportunity to examine the change in system performance before, during, and after the conversion. Due to the seasonal availability of electric power in Sierra Leone, two datasets representing two distinct load profiles are analyzed: Wet Season and Dry Season. The difference in generation efficiency, cost per kW h, generator runtime, and fuel consumption are calculated between a diesel-only generation baseline and the recorded hybrid system performance. The results indicated that the hybrid system significantly reduces operation costs; approximately 37% less during Dry Season and 64% reduction in the Wet Season than a diesel-only generator serving the same load.

  13. Control-relevant modeling and simulation of a SOFC-GT hybrid system

    OpenAIRE

    Rambabu Kandepu; Lars Imsland; Christoph Stiller; Bjarne A. Foss; Vinay Kariwala

    2006-01-01

    In this paper, control-relevant models of the most important components in a SOFC-GT hybrid system are described. Dynamic simulations are performed on the overall hybrid system. The model is used to develop a simple control structure, but the simulations show that more elaborate control is needed.

  14. Colon-targeted oral drug delivery systems: design trends and approaches.

    Science.gov (United States)

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  15. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    Directory of Open Access Journals (Sweden)

    Reshmy Rajan

    2011-01-01

    Full Text Available Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era.

  16. Hybrid power system (hydro, solar and wind) for rural electricity generation

    International Nuclear Information System (INIS)

    Mahinda Kurukulasuriya

    2000-01-01

    Generation of affordable cheap electric energy for rural development by a hybrid power system (10-50 kW) of hydropower, solar and wind energies on self determining basis and computer application to determine its performance. In this paper the following topics were discussed, design of hybrid power system, its justification and economic analysis, manufacturing and installation of the system. (Author)

  17. A hybrid method for forecasting the energy output of photovoltaic systems

    International Nuclear Information System (INIS)

    Ramsami, Pamela; Oree, Vishwamitra

    2015-01-01

    Highlights: • We propose a novel hybrid technique for predicting the daily PV energy output. • Multiple linear regression, FFNN and GRNN artificial neural networks are used. • Stepwise regression is used to select the most relevant meteorological parameters. • SR-FFNN reduces the average dispersion and overall bias in prediction errors. • Accuracy metrics of hybrid models are better than those of single-stage models. - Abstract: The intermittent nature of solar energy poses many challenges to renewable energy system operators in terms of operational planning and scheduling. Predicting the output of photovoltaic systems is therefore essential for managing the operation and assessing the economic performance of power systems. This paper presents a new technique for forecasting the 24-h ahead stochastic energy output of photovoltaic systems based on the daily weather forecasts. A comparison of the performances of the hybrid technique with conventional linear regression and artificial neural network models has also been reported. Initially, three single-stage models were designed, namely the generalized regression neural network, feedforward neural network and multiple linear regression. Subsequently, a hybrid-modeling approach was adopted by applying stepwise regression to select input variables of greater importance. These variables were then fed to the single-stage models resulting in three hybrid models. They were then validated by comparing the forecasts of the models with measured dataset from an operational photovoltaic system. The accuracy of the each model was evaluated based on the correlation coefficient, mean absolute error, mean bias error and root mean square error values. Simulation results revealed that the hybrid models perform better than their corresponding single-stage models. Stepwise regression-feedforward neural network hybrid model outperformed the other models with root mean square error, mean absolute error, mean bias error and

  18. Leadership Perspectives on Operationalizing the Learning Health Care System in an Integrated Delivery System.

    Science.gov (United States)

    Psek, Wayne; Davis, F Daniel; Gerrity, Gloria; Stametz, Rebecca; Bailey-Davis, Lisa; Henninger, Debra; Sellers, Dorothy; Darer, Jonathan

    2016-01-01

    Healthcare leaders need operational strategies that support organizational learning for continued improvement and value generation. The learning health system (LHS) model may provide leaders with such strategies; however, little is known about leaders' perspectives on the value and application of system-wide operationalization of the LHS model. The objective of this project was to solicit and analyze senior health system leaders' perspectives on the LHS and learning activities in an integrated delivery system. A series of interviews were conducted with 41 system leaders from a broad range of clinical and administrative areas across an integrated delivery system. Leaders' responses were categorized into themes. Ten major themes emerged from our conversations with leaders. While leaders generally expressed support for the concept of the LHS and enhanced system-wide learning, their concerns and suggestions for operationalization where strongly aligned with their functional area and strategic goals. Our findings suggests that leaders tend to adopt a very pragmatic approach to learning. Leaders expressed a dichotomy between the operational imperative to execute operational objectives efficiently and the need for rigorous evaluation. Alignment of learning activities with system-wide strategic and operational priorities is important to gain leadership support and resources. Practical approaches to addressing opportunities and challenges identified in the themes are discussed. Continuous learning is an ongoing, multi-disciplinary function of a health care delivery system. Findings from this and other research may be used to inform and prioritize system-wide learning objectives and strategies which support reliable, high value care delivery.

  19. Novel delivery systems with nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Cvijić Sandra

    2016-01-01

    Full Text Available Chronic use of oral nonsteroidal anti-inflammatory drugs (NSAIDs is associated with increased risk of serious gastrointestinal side effects. Therefore, recent trends in the development of NSAIDs aim to reduce the incidence of side effects, and improve patient compliance. One of the strategies to improve efficacy and safety of oral NSAIDs is the development of combination products that contain gastroprotective agents. Several products containing NSAID in combination with proton pump inhibitors (ketoprofen/omeprazole, naproxen/esomeprazole, H2-receptor antagonists (ibuprofen/famotidine, and prostaglandin analogues (diclofenac/misoprostol are currently available on the market. Another approach refer to the special formulation design to allow dose reduction while preserving drug therapeutic efficacy. An example is SoluMatrix® technology, a manufacturing process that produce submicron-sized drug particles with enhanced dissolution and absorption properties. Patented SoluMatrix® technology has been successfully employed to develop low-dose diclofenac, meloxicam, indomethacin and naproxen products. Topical NSAID formulations enable drug delivery to target tissues, while reducing systemic exposure and concomitant side effects associated with oral NSAIDs. Dermal/transdermal NSAID delivery systems are subject of intensive investigation. So far, several 'advanced' drug delivery systems with diclofenac, ibuprofen and ketoprofen have been designed.

  20. A clinical perspective on mucoadhesive buccal drug delivery systems

    Science.gov (United States)

    Gilhotra, Ritu M; Ikram, Mohd; Srivastava, Sunny; Gilhotra, Neeraj

    2014-01-01

    Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a clinical perspective. Starting with a brief introduction of the mucoadhesive drug delivery systems, oral mucosa, and the theories of mucoadhesion, this article then proceeds to cover the works done so far in the field of MBDDS, categorizing them on the basis of ailments they are meant to cure. Additionally, we focus on the various patents, recent advancements, and challenges as well as the future prospects for mucoadhesive buccal drug delivery systems. PMID:24683406