WorldWideScience

Sample records for hvac heating ventilating

  1. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  2. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    Science.gov (United States)

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  3. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  4. Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency

    International Nuclear Information System (INIS)

    Yang, Zheng; Ghahramani, Ali; Becerik-Gerber, Burcin

    2016-01-01

    Approximately forty percent of total building energy consumption is attributed to HVAC (heating, ventilation, and air conditioning) systems that aim to maintain healthy and comfortable indoor environments. An HVAC system is a network with several subsystems, and there exist heat transfer and balance among the zones of a building, as well as heat gains and losses through a building's envelope. Diverse occupancy (diversity in terms of when and how occupants occupy a building) in spaces could result in increase of loads that are not actual demands for an HVAC system, leading into inefficiencies. This paper introduces a framework to quantitatively evaluate the energy implications of occupancy diversity at the building level, where building information modeling is integrated to provide building geometries, HVAC system layouts, and spatial information as inputs for computing potential energy implications if occupancy diversity were to be eliminated. An agglomerate hierarchical clustering-based iterative evaluation algorithm is designed for iteratively eliminating occupancy diversity. Whole building energy simulations for a real-world building, as well as virtual reference buildings demonstrate that the proposed framework could effectively quantify the HVAC system energy efficiency affected by occupancy diversity and the framework is generalizable to different building geometries, layouts, and occupancy diversities. - Highlights: • Analyze relationships between occupancy diversity and HVAC energy efficiency. • Integrate BIM for quantifying energy implications of occupancy diversity. • Demonstrate the effectiveness and generalizability of iterative evaluation algorithm. • Improve agglomerative hierarchical clustering process using heap data structure.

  5. Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R), AFSC 3E1X1. OSSN 2368

    National Research Council Canada - National Science Library

    1999-01-01

    Survey Coverage: The Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R) career ladder, AFSC 3E1X1, was surveyed to gather data needed to guide the development and evaluation of training...

  6. HVAC; Heating, Ventilation, Air Conditioning - Aerosol Duct Sealant

    Science.gov (United States)

    2016-09-01

    material was applied. Annual energy and cost savings were predicted based on a typical weather year for each site. The installation of the duct...Balance reports; Visible dust streaks on duct work, ceilings near supply diffusers, or electrical boxes; Comfort complaints Specific Leakage...energy consumption , depending on the HVAC system type and the location of the ducts that were sealed. The cost effectiveness of the technology is

  7. Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems

    International Nuclear Information System (INIS)

    Rana, Rajib; Kusy, Brano; Wall, Josh; Hu, Wen

    2015-01-01

    Reductions in HVAC (heating, ventilation and air conditioning) energy consumption can be achieved by limiting heating in the winter or cooling in the summer. However, the resulting low thermal comfort of building occupants may lead to an override of the HVAC control, which revokes its original purpose. This has led to an increased interest in modeling and real-time tracking of location, activity, and thermal comfort of building occupants for HVAC energy management. While thermal comfort is well understood, it is difficult to measure in real-time environments where user context changes dynamically. Encouragingly, plethora of sensors available on smartphone unleashes the opportunity to measure user contexts in real-time. An important contextual information for measuring thermal comfort is Metabolism rate, which changes based on current physical activities. To measure physical activity, we develop an activity classifier, which achieves 10% higher accuracy compared to Support Vector Machine and k-Nearest Neighbor. Office occupancy is another contextual information for energy-efficient HVAC control. Most of the phone based occupancy estimation techniques will fail to determine occupancy when phones are left at desk while sitting or attending meetings. We propose a novel sensor fusion method to detect if a user is near the phone, which achieves more than 90% accuracy. Determining activity and occupancy our proposed algorithms can help maintaining thermal comfort while reducing HVAC energy consumptions. - Highlights: • We propose activity and occupancy detection for efficient HVAC control. • Activity classifier achieves 10% higher accuracy than SVM and kNN. • For occupancy detection we propose a novel sensor fusion method. • Using Weighted Majority Voting we fuse microphone and accelerometer data on phone. • We achieve more than 90% accuracy in detecting occupancy.

  8. Evaluation of Heating, Ventilation, and Air conditioning (HVAC System Performance in an Administrative Building in Tehran (Iran

    Directory of Open Access Journals (Sweden)

    H. Mari Oriyad

    2014-09-01

    Full Text Available Introduction: One of the factors influencing on indoor air quality of the buildings is performance of HVAC (heating, ventilation, and air conditioning systems. These systems supply clean and odorless air, with temperature, humidity, and air velocity within comfort ranges for the residents. The aim of this study was to evaluate performance HVAC system in an administrative building in Tehran. .Material and Method: A questionnaire, developed in their research was used to assess the building occupants’ perception about the performance of HVAC system. To evaluate the performance of HVAC systems, air velocities were measured in the diffusers using a thermal anemometer. Moreover, CO2 concentration, air temperature and relative humidity were measured in the whole floors of the building. Air distribution inside the building was evaluated using smoke test. .Results: Most of the studied people complained about the direction of airflow, thermal conditions and cigarette odor. The highest level of carbon dioxide was measured at 930 ppm inside the restaurant. The maximum and minimum air temperatures and relative humidity were measured 28.3-13.8° C and 28.4-23% respectively. Smoke test showed that the air distribution/direction wasn’t suitable in one third of air diffusers. .Conclusion: Improper air distribution / direction was the main problem with the studied HVAC system which could be corrected by adjusting and balancing of the system.

  9. Comparison of methods to evaluate the fungal biomass in heating, ventilation, and air-conditioning (HVAC) dust.

    Science.gov (United States)

    Biyeyeme Bi Mve, Marie-Jeanne; Cloutier, Yves; Lacombe, Nancy; Lavoie, Jacques; Debia, Maximilien; Marchand, Geneviève

    2016-12-01

    Heating, ventilation, and air-conditioning (HVAC) systems contain dust that can be contaminated with fungal spores (molds), which may have harmful effects on the respiratory health of the occupants of a building. HVAC cleaning is often based on visual inspection of the quantity of dust, without taking the mold content into account. The purpose of this study is to propose a method to estimate fungal contamination of dust in HVAC systems. Comparisons of different analytical methods were carried out on dust deposited in a controlled-atmosphere exposure chamber. Sixty samples were analyzed using four methods: culture, direct microscopic spore count (DMSC), β-N-acetylhexosaminidase (NAHA) dosing and qPCR. For each method, the limit of detection, replicability, and repeatability were assessed. The Pearson correlation coefficients between the methods were also evaluated. Depending on the analytical method, mean spore concentrations per 100 cm 2 of dust ranged from 10,000 to 682,000. Limits of detection varied from 120 to 217,000 spores/100 cm 2 . Replicability and repeatability were between 1 and 15%. Pearson correlation coefficients varied from -0.217 to 0.83. The 18S qPCR showed the best sensitivity and precision, as well as the best correlation with the culture method. PCR targets only molds, and a total count of fungal DNA is obtained. Among the methods, mold DNA amplification by qPCR is the method suggested for estimating the fungal content found in dust of HVAC systems.

  10. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  11. DISAIN SISTEM KENDALI MESIN AIR LEAK TEST MENGGUNAKAN SISTEM KENDALI PLC OMRON CJ2M DI HVAC (HEATING, VENTILATING, AND AIR CONDITIONING LINE 6

    Directory of Open Access Journals (Sweden)

    Syahril Ardi

    2015-03-01

    Full Text Available Pada proses produksi pembuatan komponen HVAC (Heating, Ventilating, and Air Conditioning dari perusahaan manufaktur di Indonesia, memerlukan proses pengecekan kebocoran pada bagian HVAC. Proses pengecekan ini dilakukan untuk memastikan tidak ada komponen HVAC yang bocor sebelum dikirim ke pihak pelanggan. Penelitian ini dilakukan untuk membuat system dan alat air leak test. Mesin air leak test ini menggunakan prinsip kerja differential pressure air leak test, yaitu metode yang membandingkan antara tekanan udara yang diberikan ke produk dan master produk. Pada penelitian ini, kami membuat disain mesin air leak test menggunakan sistem kendali berupa air leak tester, PLC, dan HMI. Berdasarkan kondisi dengan kapasitas produksi yang meningkat karena bertambahnya permintaan dari customer, dapat ditanggulangi dengan adanya share loading produksi dari HVAC line 4 ke line baru, yaitu HVAC line 6. Hasil yang didapat dari pengujian deteksi kebocoran produk,didapat nilai parameter kebocoran produk sebesar 2.23 ml/min.

  12. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  13. Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

    CERN Document Server

    2012-01-01

    Proposal for the award of a contract for the design, supply, installation and commissioning of a Heating, Ventilation and Air-Conditioning (HVAC) system for the computer room of the CERN Control Centre

  14. Validation of the criteria for initiating the cleaning of heating, ventilation, and air-conditioning (HVAC) ductwork under real conditions.

    Science.gov (United States)

    Lavoie, Jacques; Marchand, Geneviève; Cloutier, Yves; Lavoué, Jérôme

    2011-08-01

    Dust accumulation in the components of heating, ventilation, and air-conditioning (HVAC) systems is a potential source of contaminants. To date, very little information is available on recognized methods for assessing dust buildup in these systems. The few existing methods are either objective in nature, involving numerical values, or subjective in nature, based on experts' judgments. An earlier project aimed at assessing different methods of sampling dust in ducts was carried out in the laboratories of the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). This laboratory study showed that all the sampling methods were practicable, provided that a specific surface-dust cleaning initiation criterion was used for each method. However, these conclusions were reached on the basis of ideal conditions in a laboratory using a reference dust. The objective of this present study was to validate these laboratory results in the field. To this end, the laboratory sampling templates were replicated in real ducts and the three sampling methods (the IRSST method, the method of the U.S. organization National Air Duct Cleaner Association [NADCA] and that of the French organization Association pour la Prévention et l'Étude de la Contamination [ASPEC]) were used simultaneously in a statistically representative number of systems. The air return and supply ducts were also compared. Cleaning initiation criteria under real conditions were found to be 6.0 mg/100 cm(2) using the IRSST method, 2.0 mg/100 cm(2) using the NADCA method, and 23 mg/100 cm(2) using the ASPEC method. In the laboratory study, the criteria using the same methods were 6.0 for the IRSST method, 2.0 for the NADCA method, and 3.0 for the ASPEC method. The laboratory criteria for the IRSST and NADCA methods were therefore validated in the field. The ASPEC criterion was the only one to change. The ASPEC method therefore allows for the most accurate evaluation of dust accumulation in HVAC

  15. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  16. An HVAC [heating, ventilation, and air-conditioning] fault-tree analysis for WIPP [Waste Isolation Pilot Plant] integrated risk assessment

    International Nuclear Information System (INIS)

    Kirby, P.N.; Iacovino, J.M.

    1990-01-01

    In order to evaluate the public health risk of potential radioactive releases from operation of the Waste Isolation Pilot Plant (WIPP), a probabilistic risk assessment of waste-handling operations was conducted. One major aspect of this risk assessment involved fault-tree analysis of the plant heating, ventilation, and air-conditioning (HVAC) systems, which constitute the final barrier between waste-handling operations and the environment. The WIPP site is designed to receive and store two types of waste: contact-handled transuranic (CH TRU) wastes to be shipped in 208-ell drums and remote-handled (RH) TRU wastes to be shipped in shielded casks. The identification of accident sequences for CH waste operations revealed no identified accidents that could release significant radioactive particulates to the environment without a failure in the HVAC systems. When the HVAC fault-tree results were combined with other critical system fault trees and the analysis of waste-handling accident sequences, the approximation of the overall WIPP plant risk due to airborne releases was determined to be 2.6 x 10 -7 fatalities per year for the population within a 50-mile radius of the WIPP site. This risk was demonstrated to be well below the risk of fatality from other voluntary and involuntary activities for the population within the vicinity of the WIPP

  17. Draft PRN 2006-A: Use of Antimicrobial Pesticide Products in Heating, Ventilation, Air Conditioning and Refrigeration Systems (HVAC&R)

    Science.gov (United States)

    This draft notice provides guidance to registrants of EPA-registered antimicrobial products whose labels bear general directions related to hard, non-porous or porous surfaces, but which are not but which are not specifically registered for HVAC uses.

  18. Heat recovery unit operation of HVAC system in IMEF

    International Nuclear Information System (INIS)

    Paek, S. R.; Oh, Y. W.; Song, E. S.; Park, D. K.; Joo, Y. S.; Hong, K. P.

    2003-01-01

    HVAC system including a supply and exhaust air system in IMEF(Irradiated Materials Examination Facility) is an essential facility for preventing a leakage of radioactive materials and for a preservation of a working environment. It costs a lot to operate the HVAC system in IMEF because our ventilation type is once-through system, and an air flow is maintained from low level contamination area to high level and maintained high turns of ventilation air under certain conditions. As HRU(Heat Recovery Unit) at HVAC system based on PIEF(Post Irradiation Examination Facility) operation experiences is designed and adopted, it prevents from a heating coil freezing destruction in winter and makes much energy saving etc.. Heat pipe type HRU is adopted in IMEF, and a construction and operation result of HRU is examined

  19. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  20. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    International Nuclear Information System (INIS)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ''Availability of HVAC and Chilled Water Systems.'' The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ''generic'' insights on potential design-related and configuration-related vulnerabilities and potential high-frequency (∼1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations

  1. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters.

    Science.gov (United States)

    Farnsworth, James E; Goyal, Sagar M; Kim, Seung Won; Kuehn, Thomas H; Raynor, Peter C; Ramakrishnan, M A; Anantharaman, Senthilvelan; Tang, Weihua

    2006-10-01

    The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.

  2. Classroom HVAC: Improving ventilation and saving energy -- field study plan

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G.; Faulkner, David; Hodgson, Alfred T.; Sullivan, Douglas P.

    2004-10-14

    The primary goals of this research effort are to develop, evaluate, and demonstrate a very practical HVAC system for classrooms that consistently provides classrooms (CRs) with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research is motivated by the public benefits of energy efficiency, evidence that many CRs are under-ventilated, and public concerns about indoor environmental quality in CRs. This document provides a summary of the detailed plans developed for the field study that will take place in 2005 to evaluate the energy and IAQ performance of a new classroom HVAC technology. The field study will include measurements of HVAC energy use, ventilation rates, and IEQ conditions in 10 classrooms with the new HVAC technology and in six control classrooms with a standard HVAC system. Energy use and many IEQ parameters will be monitored continuously, while other IEQ measurements will be will be performed seasonally. Continuously monitored data will be remotely accessed via a LonWorks network. Instrument calibration plans that vary with the type of instrumentation used are established. Statistical tests will be employed to compare energy use and IEQ conditions with the new and standard HVAC systems. Strengths of this study plan include the collection of real time data for a full school year, the use of high quality instrumentation, the incorporation of many quality control measures, and the extensive collaborations with industry that limit costs to the sponsors.

  3. Stage 1 performance qualification of heat-ventilation air-conditioning (HVAC) system for the manufacturing of Tc-99m Generator at Nuclear Malaysia

    International Nuclear Information System (INIS)

    Yen Ng; Noriah Jamal; Rehir Dahalan; Wan Anuar Wan Awang; Noraisyah Yusof; Shaharum Ramli; Jusnan Hashim; Ariff Hamzah; Wan Firdaus Wan Ishak; Yahaya Talib; Othman Mahmud; Asmah Mohibat; Shafii Khamis; Zulkifli Mohamed Hashim; Zakaria Ibrahim; Shaaban Kasim

    2007-01-01

    Manufacturing of Tc-99m generator is carried out in clean room Block 21 of Malaysian Nuclear Agency, which need to comply current Good Manufacturing Practice requirement. High-ventilation air conditioning (HVAC) is a new renovated system. It is a critical system for maintaining suitable temperature, relative humidity and pressure differential in the clean room. The objective of this paper is to present results on Stage 1 Performance Qualification (PQ) for HVAC. This PQ stage 1 was done from 7 February 2007 till 16 March 2007. Temperature, Relative Humidity and Pressure Differential for each compartment in the clean room was monitored twice daily. The Measurement of air-born particle count was done weekly. Settle plate for microbial test was also done weekly. The results were then analyzed and compared with the pre-determined specification. We found that temperature was within the specs, namely 24 +20 degree C. Relative humidity was less than 65%. Pressure differential shows variation, some compartments are below the specs namely 1-3 mm H 2 O. Air-born particle and microbial test also meet the requirement. The results show that all parameters meeting the specs excepts for the pressure differential for certain compartments are a bit low, but is sufficient to create proper air flow and not cause any risk of cross contamination. The existing HVAC system in the clean room is in compliance to the pre-determined specification. However, further improvement can be made by increasing the pressure differential between compartments. (Author)

  4. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST): Volume 2: Cases E300-E545.

    Energy Technology Data Exchange (ETDEWEB)

    Neymark J.; Judkoff, R.

    2004-12-01

    This report documents an additional set of mechanical system test cases that are planned for inclusion in ANSI/ASHRAE STANDARD 140. The cases test a program's modeling capabilities on the working-fluid side of the coil, but in an hourly dynamic context over an expanded range of performance conditions. These cases help to scale the significance of disagreements that are less obvious in the steady-state cases. The report is Vol. 2 of HVAC BESTEST Volume 1. Volume 1 was limited to steady-state test cases that could be solved with analytical solutions. Volume 2 includes hourly dynamic effects, and other cases that cannot be solved analytically. NREL conducted this work in collaboration with the Tool Evaluation and Improvement Experts Group under the International Energy Agency (IEA) Solar Heating and Cooling Programme Task 22.

  5. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    Science.gov (United States)

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  6. HVAC-DYNAMICS - a tool for quality assurance in relation to delivery of air-conditioning systems. [Heating, ventilating and air conditioning]. HVAC-DYNAMICS - et redskap for kvalitetsikring av sluttleveransen i klima-anlegg

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, V [SINTEF Varmeteknikk, Seksjon VVS (NO)

    1990-07-01

    HVAC-DYNAMICS is a computerized tool for quality assurance of the functioning of an air-conditioning system at the time of delivery. The system's efficiency in the case of fluctuating and critical operation is evaluated. The HVAC-DYNAMICS gives an optimal choice for air-conditioning systems regarding indoor climate, efficiency demands and energy consumption. The program can also be use for calibration of regulators, fault-finding, and training purposes. (CLS).

  7. An integrated control-oriented modelling for HVAC performance benchmarking

    NARCIS (Netherlands)

    Satyavada, Harish; Baldi, S.

    2016-01-01

    Energy efficiency in building heating, ventilating and air conditioning (HVAC) equipment requires the development of accurate models for testing HVAC control strategies and corresponding energy consumption. In order to make the HVAC control synthesis computationally affordable, such

  8. Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California.

    Science.gov (United States)

    Bennett, D H; Fisk, W; Apte, M G; Wu, X; Trout, A; Faulkner, D; Sullivan, D

    2012-08-01

    This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale. © 2012 John Wiley & Sons A/S.

  9. Heating, ventilating, and air-conditioning applications

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Comfort air conditioning and heating of residences: Space HVAC systems; Industrial and special air conditioning and ventilation for nuclear facilities, and for mines; Energy sources, such as Geothermal energy, solar utilization, and energy resources; Building operation and maintenance; energy management, and Thermal storage

  10. D-Zero HVAC Heat Pump Controls

    International Nuclear Information System (INIS)

    Markley, Dan

    2004-01-01

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  11. HVAC system operation manual of IMEF

    International Nuclear Information System (INIS)

    Baek, Sang Yeol; Park, Dae Kyu; Ahn, Sang Bok; Ju, Yong Sun.

    1997-06-01

    This manual is operation procedures of the IMEF(Irradiated Material Examination Facility) HVAC(Heating, Ventilation and Air Conditioning) System. General operation procedures and test method of the IMEF HVAC system are described. The manual is as follows; 1. HVAC system operation manual 2. HVAC system management guide 3. HVAC system maintenance manual 4. HVAC system air velocity and flowrate measurement manual 5. HVAC system HEPA filter leak test manual 6. HVAC system charcoal filter leak test manual 7. HVAC system HEPA and charcoal filter exchange manual. (author). 8 tabs

  12. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  13. Potential of HVAC and solar technologies for hospital retrofit to reduce heating energy consumption

    Science.gov (United States)

    Pop, Octavian G.; Abrudan, Ancuta C.; Adace, Dan S.; Pocola, Adrian G.; Balan, Mugur C.

    2018-02-01

    The study presents a combination of several energy efficient technologies together with their potential to reduce the energy consumption and to increase the comfort through the retrofit of a hospital building. The existing situation is characterized by an old and inefficient heating system, by the complete missing of any ventilation and by no cooling. The retrofit proposal includes thermal insulation and a distributed HVAC system consisting of several units that includes air to air heat exchangers and air to air heat pumps. A condensing boiler was also considered for heating. A solar thermal system for preparing domestic hot water and a solar photovoltaic system to assist the HVAC units are also proposed. Heat transfer principles are used for modelling the thermal response of the building to the environmental parameters and thermodynamic principles are used for modelling the behaviour of HVAC, solar thermal system and photovoltaic system. All the components of the heating loads were determined for one year period. The study reveals the capacity of the proposed systems to provide ventilation and thermal comfort with a global reduction of energy consumption of 71.6 %.

  14. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  15. Overview of HVAC system simulation

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.

    2010-01-01

    The paper gives an overview of heating, ventilation and air-conditioning (HVAC) system modeling and simulation. The categorization of tools for HVAC system design and analysis with respect to which problems they are meant to deal with is introduced. Each categorization is explained and example tools

  16. 8th International Symposium on Heating, Ventilation and Air Conditioning

    CERN Document Server

    Zhu, Yingxin; Li, Yuguo; Vol.1 Indoor and Outdoor Environment; Vol.2 HVAC&R Component and Energy System; Vol.3 Building Simulation and Information Management

    2014-01-01

    Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning is based on the 8th International Symposium of the same name (ISHVAC2013), which took place in Xi’an on October 19-21, 2013. The conference series was initiated at Tsinghua University in 1991 and has since become the premier international HVAC conference initiated in China, playing a significant part in the development of HVAC and indoor environmental research and industry around the world. This international conference provided an exclusive opportunity for policy-makers, designers, researchers, engineers and managers to share their experience. Considering the recent attention on building energy consumption and indoor environments, ISHVAC2013 provided a global platform for discussing recent research on and developments in different aspects of HVAC systems and components, with a focus on building energy consumption, energy efficiency and indoor environments. These categories span a broad range of topics, and the proce...

  17. 77 FR 72763 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Science.gov (United States)

    2012-12-06

    ... Commercial and Industrial HVAC, Refrigeration and Water Heating Equipment AGENCY: Office of Energy Efficiency...; commercial heating, ventilating, air-conditioning (HVAC) equipment; and commercial water heating equipment... refrigeration equipment; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers...

  18. Breathing Easier: HVAC Specifications for Schools.

    Science.gov (United States)

    Trent, C. Curtis; Trent, Warren C.

    1996-01-01

    A major source of indoor air contamination in schools originates within the heating, ventilating, and air-conditioning systems (HVAC), with draw-through systems being the worst offenders. Lists provisions for designing an HVAC system and a set of criteria to adhere to when planning new construction or renovations. (nine references) (MLF)

  19. Workplace Trends In HVAC/R

    Science.gov (United States)

    Strang, Lynn; Todd, CeCe

    2013-01-01

    This article presents trends in the heating, ventilation, air conditioning and refrigeration (HVAC/R) industry, with an emphasis on the importance of technician training programs as exemplified at the East Valley Institute of Technology (EVIT) in Mesa, Arizona. The article states that HVAC workers are increasingly helping their consumers "go…

  20. Study on HVAC system in nuclear facility

    International Nuclear Information System (INIS)

    Baeg, S. Y.; Song, W. S.; Oh, Y. O.; Ju, Y. S.; Hong, K. P.

    2003-01-01

    Heating, Ventilation and Air Conditioning (HVAC) system in nuclear facility should be equipped and constructed more stable and allowable than that in common facility. The purpose of HVAC system is the maintenance of optimum working environment, the protection of worker against a contaminated air and the prevention of atmospheric contamination due to an outward ventilation, etc.. The basic scheme of a safety operation of nuclear facility is to prevent the atmospheric contamination even in low level. The adaptability of HVAC system which is in operation. In this study, the design requirements of HVAC system in nuclear facility and the HVAC systems in foreign countries are reviewed, and the results can be utilized in the design of HVAC system in nuclear facility

  1. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D [ORNL

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further

  2. HVAC retrofit for healthy schools

    International Nuclear Information System (INIS)

    Thompson, R.C.; Fisher, G.; Brennan, T.; Turner, W.A.; McKnight, F.

    1991-01-01

    The Environmental Protection Agency has evaluated the impacts of HVAC systems and building dynamics on radon concentrations in 26 schools across the United States. Diagnostic data indicated that radon was not the only indoor air pollutant in these schools. As a result, an essential step in the School Evaluation Program is determination of the feasibility of using HVAC technology for radon remediation in addition to general indoor air improvement. In 1990, the EPA sponsored the HVAC retrofit of two schools in Maine. This paper presents the information gained by these case studies. First, the extensive pre-retrofit diagnostics and characterizations of the two schools are reviewed. Then follows a discussion of why and how the HVAC systems, including unit ventilators, central air-handling units, and heat recovery ventilation, were retrofitted. Finally, an appraisal of the post-retrofit radon and CO 2 levels is made, along with presentation of related data such as retrofit costs and energy and comfort impacts

  3. A Study on Heat-up Phenomena of the RHR Pump Room in KORI Unit 2 for the Loss of HVAC Accidents

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Jin Hee; Lim, Ho Gon; Han, Sang Hoon

    2009-01-01

    In PSA(Probabilistic Safety Analysis) Models, the HVAC(Heating, Ventilation, and Air Condition) system is essential for the various vital mitigation safety systems operating during a mission time. So far, the unavailability of a safety system when the HVAC system fails has been applied conservatively or optimistically based on operating experience and expert judgment, so the total core damage frequency could be unrealistic. When the HVAC system of a nuclear power plant fails, it is one of the main issues in a PSA FT (Fault Tree) model to estimate the transient temperature variations of some component rooms. The purpose of this study is to establish a heat-up prediction model by using direct measuring and CFD(Computational Fluid Dynamics) analyses

  4. Design Concepts for Optimum Energy Use in HVAC Systems.

    Science.gov (United States)

    Electric Energy Association, New York, NY.

    Much of the innovative work in the design and application of heating, ventilating, and air conditioning (HVAC) systems is concentrated on improving the cost effectiveness of such systems through optimizing energy use. One approach to the problem is to reduce a building's HVAC energy demands by designing it for lower heat gains and losses in the…

  5. 77 FR 76825 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Science.gov (United States)

    2012-12-31

    ... Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and Water... provisions for commercial refrigeration equipment; commercial heating, ventilating, air-conditioning (HVAC...; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers (June 30 Final Rule). 76...

  6. 78 FR 15653 - Notice of Intent To Form the Commercial HVAC, WH, and Refrigeration Certification Working Group...

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 429 Notice of Intent To Form the Commercial HVAC, WH, and... Requirements for Commercial HVAC, WH, and Refrigeration Equipment AGENCY: Office of Energy Efficiency and... commercial heating, ventilation, and air-conditioning (HVAC), water heating (WH), and refrigeration equipment...

  7. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D [ORNL

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further

  8. Building Assessment Survey and Evaluation (BASE) Study: Summarized Data - Test Space HVAC Characteristics

    Science.gov (United States)

    Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues

  9. Applications of heat pipes for HVAC dehumidification at Walt Disney World

    International Nuclear Information System (INIS)

    Allen, P.J.; Dinh, K.

    1993-01-01

    This paper presents the theory and application of heat pipes for HVAC dehumidification purposes. In HVAC applications, a heat pipe is used as a heat exchanger that transfers heat from the return air directly to the supply air. The air is pre-cooled entering the cooling coil and reheated using the same heat removed from the return air. While consuming no energy, the heat pipe lets the evaporator coil operate at a lower temperature, increasing the moisture removal capabilities of the HVAC system by 50% to 100%. WALT DISNEY WORLD is currently testing several heat pipe applications ranging from 1 to 240 tons. The applications include (1) water attractions (2) museums/artifacts areas (3) resort guest rooms and (4) locker rooms. Actual energy usage and relative humidity reductions are shown to determine the effectiveness of the heat pipe as an energy efficient method of humidity control

  10. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    Science.gov (United States)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  11. HVAC-DYNAMIC; A training simulator for dynamic analysis of HVAC plants

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, M; Novakovic, V [SINTEF Division of Applied Thermodynamic, HVAC Group, Trondheim (Norway); Oegaard, O [SINTEF Division of Automatic Control, Trondheim (Norway); Brustad, G [Computer Aided Modelling, CAMO A/S, Trondheim (Norway)

    1989-01-01

    HVAC-DYNAMIC is a software tool for the dynamic simulation of Heating, Ventilation and Air Conditioning (HVAC) plants. The program is designed to be used by HVAC engineers during design or troubleshooting of plants and by plant operators in their training. The program is based on a set of the most-used HVAC plant configurations and requires only a minimum of knowledge in numeric methods and programming. A brief presentation of the program structure and examples showing some of the application of the program are given. 4 figs., 4 refs.

  12. HVAC-DYNAMIC: a training simulator for dynamic analysis of HVAC plants

    Directory of Open Access Journals (Sweden)

    Morten Heintz

    1989-07-01

    Full Text Available HVAC-DYNAMIC is a software tool for the dynamic simulation of Heating, Ventilation and Air Conditioning (HVAC plants. The program is designed to be used by HVAC engineers during design or troubleshooting of plants and by plant operators in their training. The program is based on a set of the most-used HVAC plant configurations and requires only a minimum of knowledge in numeric methods and programming. A brief presentation of the program structure and examples showing some of the application of the program are given.

  13. Strategy Guideline: Transitioning HVAC Companies to Whole House Performance Contractors

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  14. Strategy Guideline. Transitioning HVAC Companies to Whole House Performance Contractors

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-05-01

    This report describes the findings from research IBACOS conducted related to heating, ventilation, and air conditioning (HVAC) companies who have made the decision to transition to whole house performance contracting (WHPC).

  15. System-Level Monitoring and Diagnosis of Building HVAC System

    OpenAIRE

    Wu, Siyu

    2013-01-01

    Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC system dominates the energy consumption and accounts for 57% of the energy used in U.S. commercial and residential buildings. Unfortunately, the HVAC system may fail to meet the performance expectations due to various faults, including not only complete hardware failures, but also non-optimal operations....

  16. Modeling and Control of AHUs in Building HVAC Systems

    OpenAIRE

    Liang, Wei

    2014-01-01

    Heating, ventilation and air conditioning (HVAC) is a mechanical system that provides thermal comfort and accepted indoor air quality often instrumented for large-scale buildings. The HVAC system takes a dominant portion of overall building energy consumption and accounts for 50% of the energy used in the U.S. commercial and residential buildings in 2012. The performance and energy saving of building HVAC systems can be significantly improved by the implementation of better and smarter contro...

  17. Integrated dynamic modelling and multivariable control of HVAC components

    NARCIS (Netherlands)

    Satyavada, H.; Babuska, R.; Baldi, S.; Stoustrup, Jakob; Rantzer, Anders; Jørgensen, John Bagterp

    2016-01-01

    The field of energy efficiency in buildings offers challenging opportunities from a control point of view. Heating, Ventilation and Air-Conditioning (HVAC) units in buildings must be accurately controlled so as to ensure the occupants' comfort and reduced energy consumption. While the existing HVAC

  18. RECOMMENDED HVAC STANDARD OF THE FLORIDA RADON RESEARCH PROGRAM

    Science.gov (United States)

    The report contains the recommended language for the heating, ventilation, and air conditioning (HVAC) section of the "Florida Code for Radon-resistant Construction and Mitigation." t deals with elements of construction that relate to the HVAC of houses. ts primary intent is to p...

  19. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  20. Experimental investigation of cooling performance of a novel HVAC system combining natural ventilation with diffuse ceiling inlet and TABS

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo

    2015-01-01

    Highlights •An experimental investigation of cooling performance of a combined HVAC system is carried out. •Cooling performance of TABS with and without the influence of diffuse ceiling is analyzed. •Radiant and convective heat transfer coefficients of TABS cooling are studied. •Cooling components...

  1. HVAC systems and nuclear plant safety. Final report, May 1992

    International Nuclear Information System (INIS)

    1992-05-01

    The primary objective of this study was to provide perspective on the overall risk impact of heating, ventilating, and air conditioning (HVAC) system problems. Industry experience with HVAC system problems is documented and analyzed. In addition, the results of 10 plant-specific probabilistic risk assessments (PRA) were reviewed to determine the contribution of HVAC systems to the risk of core damage. The PRAs included in this review cover a broad range of plant types and operating conditions. The review found that the impact of HVAC systems on risk is plant specific. These results exhibit a broad range of frequencies for HVAC contribution to risk, and the percentage of total core damage due to HVAC problems also had a wide variability. Plant-specific differences in design, environment, operation, and maintenance are the primary factors in determining the risk contribution of HVAC systems. (author)

  2. The map of energy flow in HVAC systems

    International Nuclear Information System (INIS)

    Perez-Lombard, Luis; Ortiz, Jose; Maestre, Ismael R.

    2011-01-01

    Highlights: → Discussion of the four stages in the 'HVAC systems energy chain'. → Examination of HVAC systems as energy conversion devices. → Analysis of HVAC Sankey diagrams. → Discussion of HVAC loads and HVAC energy losses. -- Abstract: Heating, ventilation and air conditioning (HVAC) systems are the most energy consuming building services representing approximately half of the final energy use in the building sector and between one tenth and one fifth of the energy consumption in developed countries. Despite their significant energy use, there is a lack of a consistent and homogeneous framework to efficiently guide research and energy policies, mainly due to the complexity and variety of HVAC systems but also to insufficient rigour in their energy analysis. This paper reviews energy related aspects of HVAC systems with the aim of establishing a common ground for the analysis of their energy efficiency. The paper focuses on the map of energy flow to deliver thermal comfort: the HVAC energy chain. Our approach deals first with thermal comfort as the final service delivered to building occupants. Secondly, conditioned spaces are examined as the systems where useful heat (or coolth) is degraded to provide comfort. This is followed by the analysis of HVAC systems as complex energy conversion devices where energy carriers are transformed into useful heat and coolth, and finally, the impact of HVAC energy consumption on energy resources is discussed.

  3. Optimal Set-Point Synthesis in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2007-01-01

    This paper presents optimal set-point synthesis for a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger and a water-to-air heat exchanger. The objective function is composed of the electrical power for different...... components, encompassing fans, primary/secondary pump, tertiary pump, and air-to-air heat exchanger wheel; and a fraction of thermal power used by the HVAC system. The goals that have to be achieved by the HVAC system appear as constraints in the optimization problem. To solve the optimization problem......, a steady state model of the HVAC system is derived while different supplying hydronic circuits are studied for the water-to-air heat exchanger. Finally, the optimal set-points and the optimal supplying hydronic circuit are resulted....

  4. Vocal Ergonomics in the Workplace: Heating, Ventilation, and Air-Conditioning Method Influences on Vocal Comfort and Function

    Science.gov (United States)

    Sandage, Mary J.; Rahn, Keith A.; Smith, Audrey G.

    2017-01-01

    Purpose: The purpose of this study was to examine the influence of the heating, ventilation, and air-conditioning method on voice function following a voicing task using ecologically valid offices, one with radiant HVAC and one with forced air. Method: A total of 12 consented participants (6 women, 6 men) narrated a video in each of 4…

  5. Intelligent control of HVAC systems. Part I: Modeling and synthesis

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2013-03-01

    Full Text Available This is the first part of a work on intelligent type control of Heating, Ventilating and Air-Conditioning (HVAC systems. The study is performed from the perspective of giving a unitary control method to ensure high energy efficiency and air quality improving. To illustrate the proposed HVAC control technique, in this first part it is considered as benchmark problem a single thermal space HVAC system. The construction of the mathematical model is performed only with a view to obtain a framework of HVAC intelligent control validation by numerical simulations. The latter will be reported in a second part of the study.

  6. Development of a computer design system for HVAC

    International Nuclear Information System (INIS)

    Miyazaki, Y.; Yotsuya, M.; Hasegawa, M.

    1993-01-01

    The development of a computer design system for HVAC (Heating, Ventilating and Air Conditioning) system is presented in this paper. It supports the air conditioning design for a nuclear power plant and a reprocessing plant. This system integrates various computer design systems which were developed separately for the various design phases of HVAC. the purposes include centralizing the HVAC data, optimizing design, and reducing the designing time. The centralized HVAC data are managed by a DBMS (Data Base Management System). The DBMS separates the computer design system into a calculation module and the data. The design system can thus be expanded easily in the future. 2 figs

  7. Optimal Model-Based Control in HVAC Systems

    DEFF Research Database (Denmark)

    Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik

    2008-01-01

    is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....

  8. Effect of enhanced ultraviolet germicidal irradiation in the heating ventilation and air conditioning system on ventilator-associated pneumonia in a neonatal intensive care unit.

    Science.gov (United States)

    Ryan, R M; Wilding, G E; Wynn, R J; Welliver, R C; Holm, B A; Leach, C L

    2011-09-01

    The objective of this study was to test the hypothesis that enhanced ultraviolet germicidal irradiation (eUVGI) installed in our neonatal intensive care unit (NICU) heating ventilation and air conditioning system (HVAC) would decrease HVAC and NICU environment microbes, tracheal colonization and ventilator-associated pneumonia (VAP). The study was designed as a prospective interventional pre- and post-single-center study. University-affiliated Regional Perinatal Center NICU. Intubated patients in the NICU were evaluated for colonization, and a high-risk sub-population of infants <30 weeks gestation ventilated for ≥ 14 days was studied for VAP. eUVGI was installed in the NICU's remote HVACs. The HVACs, NICU environment and intubated patients' tracheas were cultured pre- and post-eUVGI for 12 months. The high-risk patients were studied for VAP (positive bacterial tracheal culture, increased ventilator support, worsening chest radiograph and ≥ 7 days of antibiotics). Pseudomonas, Klebsiella, Serratia, Acinetobacter, Staphylococcus aureus and Coagulase-negative Staphylococcus species were cultured from all sites. eUVGI significantly decreased HVAC organisms (baseline 500,000 CFU cm(-2); P=0.015) and NICU environmental microbes (P<0.0001). Tracheal microbial loads decreased 45% (P=0.004), and fewer patients became colonized. VAP in the high-risk cohort fell from 74% (n=31) to 39% (n=18), P=0.04. VAP episodes per patient decreased (Control: 1.2 to eUVGI: 0.4; P=0.004), and antibiotic usage was 62% less (P=0.013). eUVGI decreased HVAC microbial colonization and was associated with reduced NICU environment and tracheal microbial colonization. Significant reductions in VAP and antibiotic use were also associated with eUVGI in this single-center study. Large randomized multicenter trials are needed.

  9. A complete geothermal energy cycle with heat pumps and hybrid HVAC systems for the city of Denizli, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Eltez, M. [Ege Univ., Izmir (Turkey). Mechanical Engineering Dept.; Kilkis, I.B. [Heatway Radiant Floors and Snowmelting, Springfield, MO (United States)]|[Middle East Technical Univ., Ankara (Turkey)

    1995-12-31

    This paper discusses general aspects of maximizing geofluid effectiveness by employing hybrid cycle plants coupled to district HVAC systems. Alternative and new techniques in space heating and cooling are also discussed. A case study is presented for the district HVAC system for the city of Denizli in Turkey. Results are compared with an open-cycle, open-loop system.

  10. Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning).

    Science.gov (United States)

    1985-01-01

    controller func- tions such as time-of-day, economizer cycles, reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop...control system such as that illustrated in Fig- urc 4. Data on setpoints , reset schedules, and event timing, such as that presented in Figure 6, are...program code (Figure 7). In addition to the control logic, setpoint and other data are readily available. Program logi:, setpoint and schedule data, and

  11. Characterization and control of the microbial community affiliated with copper or aluminum heat exchangers of HVAC systems.

    Science.gov (United States)

    Schmidt, Michael G; Attaway, Hubert H; Terzieva, Silva; Marshall, Anna; Steed, Lisa L; Salzberg, Deborah; Hamoodi, Hameed A; Khan, Jamil A; Feigley, Charles E; Michels, Harold T

    2012-08-01

    Microbial growth in heating ventilation and air-conditioning (HVAC) systems with the subsequent contamination of indoor air is of increasing concern. Microbes and the subsequent biofilms grow easily within heat exchangers. A comparative study where heat exchangers fabricated from antimicrobial copper were evaluated for their ability to limit microbial growth was conducted using a full-scale HVAC system under conditions of normal flow rates using single-pass outside air. Resident bacterial and fungal populations were quantitatively assessed by removing triplicate sets of coupons from each exchanger commencing the fourth week after their installation for the next 30 weeks. The intrinsic biofilm associated with each coupon was extracted and characterized using selective and differential media. The predominant organisms isolated from aluminum exchangers were species of Methylobacterium of which at least three colony morphologies and 11 distinct PFGE patterns we found; of the few bacteria isolated from the copper exchangers, the majority were species of Bacillus. The concentrations and type of bacteria recovered from the control, aluminum, exchangers were found to be dependent on the type of plating media used and were 11,411-47,257 CFU cm(-2) per coupon surface. The concentration of fungi was found to average 378 CFU cm(-2). Significantly lower concentrations of bacteria, 3 CFU cm(-2), and fungi, 1 CFU cm(-2), were recovered from copper exchangers regardless of the plating media used. Commonly used aluminum heat exchangers developed stable, mixed, bacterial/fungal biofilms in excess of 47,000 organisms per cm(2) within 4 weeks of operation, whereas the antimicrobial properties of metallic copper were able to limit the microbial load affiliated with the copper heat exchangers to levels 99.97 % lower during the same time period.

  12. Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Sv Aa Højgaard

    1999-01-01

    The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger.......The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger....

  13. Residential and Light Commercial HVAC. Teacher Edition.

    Science.gov (United States)

    Stephenson, David; Fulkerson, Dan, Ed.

    This curriculum guide contains 18 units of instruction for a competency-based course in residential and light commercial heating, ventilating, and air conditioning (HVAC). Introductory materials include a competency profile and an instructional/task analysis that correlates job training with related information for this course. Each instructional…

  14. Building Assessment Survey and Evaluation Study Summarized Data - HVAC Characteristics

    Science.gov (United States)

    In the Building Assessment Survey and Evaluation (BASE) Study Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues was acquired by examining the building plans, conducting a building walk-through, and speaking with the building owner, manager, and/or operator.

  15. Reducing Building HVAC Costs with Site-Recovery Energy

    Science.gov (United States)

    Pargeter, Stephen J.

    2012-01-01

    Building owners are caught between two powerful forces--the need to lower energy costs and the need to meet or exceed outdoor air ventilation regulations for occupant health and comfort. Large amounts of energy are wasted each day from commercial, institutional, and government building sites as heating, ventilation, and air conditioning (HVAC)…

  16. Small Business Voucher CRADA Report: Natural Gas Powered HVAC System for Commercial and Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Daniel [Be Power Tech, Deerfield Beach, FL (United States); Ally, Moonis Raza [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mudiraj, Shyam [Be Power Tech, Deerfield Beach, FL (United States); Tilghman, Matthew [Be Power Tech, Deerfield Beach, FL (United States); Graham, Matthew [Be Power Tech, Deerfield Beach, FL (United States)

    2017-04-30

    Be Power Tech is commercializing BeCool, the first integrated electricity-producing heating, ventilation, and air conditioning (HVAC) system using a non-vapor compression cycle (VCC), packaged rooftop HVAC unit that also produces base-load electricity, heating, ventilation, and air conditioning. BeCool is a distributed energy resource with energy storage that eliminates the tremendous peak electricity demand associated with commonly used electricity-powered vapor compression air conditioning systems.

  17. A comfort-based, energy-aware HVAC agent and its applications in the smart grid

    OpenAIRE

    Auffenberg, Frederik

    2017-01-01

    In this thesis, we introduce a novel heating, ventilation and air conditioning (HVAC) agent that maintains a comfortable thermal environmant for its users while minimising energy consumption of the HVAC system and incorporating demand side management (DSM) signals to shift HVAC loads towards achieving more desirable overall load profiles. To do so, the agent needs to be able to accurately predict user comfort, for example by using a thermal comfort model. Existing thermal comfort models are u...

  18. Weather data around the world for design of field hospital HVAC

    NARCIS (Netherlands)

    Forejt, L.; Hensen, J.L.M.; Drkal, F.; Barankova, P.

    2006-01-01

    Field hospital (FH) is a military mobile complex to be deployed in almost any climate around the world. Heating, ventilation and air-conditioning (HVAC) system for the Czech Republic FH units is being redesigned. Computer simulation software will be used for the design of HVAC under variety of

  19. Considerations to Prevent Growth and Spread of Legionella in HVAC Systems.

    Science.gov (United States)

    Coleman, Jeff

    1998-01-01

    Discusses the threat posed by the Legionnaire's Disease bacterium and the germ's ability to thrive in heating, ventilating, and air conditioning (HVAC) systems, especially in standing water. Describes ways to minimize disease risk through HVAC system design (such as locating cooling towers away from air intakes) and ways to maintain a clean…

  20. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    Science.gov (United States)

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  1. HVAC System Automatic Controls and Indoor Air Quality in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Fans, motors, coils, and other control components enable a heating, ventilating, and air-conditioning (HVAC) system to function smoothly. An explanation of these control components and how they make school HVAC systems work is provided. Different systems may be compared by counting the number of controlled devices that are required. Control…

  2. HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW

    Science.gov (United States)

    The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...

  3. HVAC SYSTEMS IN THE CURRENT STOCK OF US K-12 SCHOOLS

    Science.gov (United States)

    The report summarizes information on heating, ventilating, an air- conditioning (HVAC) systems commonly found in U. S. school buildings and the effect that operating these systems has on indoor radon levels. The report describes the ability of various HVAC systems to pressurize a...

  4. Energy-Smart Choices for Schools. An HVAC Comparison Tool. [CD-ROM].

    Science.gov (United States)

    Geothermal Heat Pump Consortium, Inc., Washington, DC.

    A CD ROM program provides comparison construction cost capabilities for heating, ventilation, and air conditioning (HVAC) systems in educational facilities. The program combines multiple types of systems with square footage data on low and high construction cost and school size to automatically calculate HVAC comparative construction costs. (GR)

  5. Preoperational test report, vent building ventilation system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  6. Energy and exergy performance of residential heating systems with separate mechanical ventilation

    International Nuclear Information System (INIS)

    Zmeureanu, Radu; Yu Wu, Xin

    2007-01-01

    The paper brings new evidence on the impact of separate mechanical ventilation system on the annual energy and exergy performance of several design alternatives of residential heating systems, when they are designed for a house in Montreal. Mathematical models of residential heating, ventilation and domestic hot water (HVAC-DHW) systems, which are needed for this purpose, are developed and furthermore implemented in the Engineering Equation Solver (EES) environment. The Coefficient of Performance and the exergy efficiency are estimated as well as the entropy generation and exergy destruction of the overall system. The equivalent greenhouse gas emissions due to the on-site and off-site use of primary energy sources are also estimated. The addition of a mechanical ventilation system with heat recovery to any HVAC-DHW system discussed in the paper increases the energy efficiency; however, it decreases the exergy efficiency, which indicates a potential long-term damaging impact on the natural environment. Therefore, the use of a separate mechanical ventilation system in a house should be considered with caution, and recommended only when other means for controlling the indoor air quality cannot be applied

  7. D0 HVAC System Heat Pump Controller Programming, Networking, and Operating Information

    International Nuclear Information System (INIS)

    Anderson, B.

    1999-01-01

    The purpose of this engineering note is to provide the necessary information to setup, program, and network the Electronic Systems USA Heat Pump Controller with the LON network card and Intellution Fix32 to operate properly within the HVAC system at D-Zero. The heat pump controllers are used for local temperature control of the office environments on the fifth and six floors of D-Zero. Heat pump units 1-6 are located in the ceiling of the sixth floor. Heat pump units 7-12 are found in the fifth floor ceiling. Heat pump unit 13 is in the Southeast corner of the fifth floor. Prior to installation the heat pump controller must be properly prepared to operate correctly in the HVAC system. Each heat pump unit must contain firmware (software) version 1.31 to operate properly on the network. Controllers with version 1.30 will not be able to communicate over the LON network. The manufacturer can only update the firmware version. Before installation a series of heat pump setpoints must be manually set using the Intelligent Stat. Connect the Intelligent Stat via the serial cable or wired connection.

  8. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, M. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Opus International Consultants (New Zealand); AL-Waked, R. [Mechanical Engineering Department, Prince Mohammad Bin Fahd University (PMU), P.O. Box 1614, AlKhobar 31952 (Saudi Arabia); Morrison, G. [School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052 (Australia); Behnia, M. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2010-10-15

    The thermal performance of an enthalpy/membrane heat exchanger is experimentally investigated. The heat exchanger utilizes a 60gsm Kraft paper as the heat and moisture transfer surface for HVAC energy recovery. The heat exchanger sensible, latent and total effectiveness have been determined through temperature and moisture content measurements. The annual energy consumption of an air conditioner coupled with an enthalpy/membrane heat exchanger is also studied and compared with a conventional air conditioning cycle using in-house modified HPRate software. The heat exchanger effectiveness are used as thermal performance indicators and incorporated in the modified software. Energy analysis showed that an air conditioning system coupled with a membrane heat exchanger consumes less energy than a conventional air conditioning system in hot and humid climates where the latent load is high. It has been shown that in humid climate a saving of up to 8% in annual energy consumption can be achieved when membrane heat exchanger is used instead of a conventional HVAC system. (author)

  9. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  10. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  11. Simultaneousness of room heating and ventilation air heating

    International Nuclear Information System (INIS)

    Mathisen, Hans Martin

    2006-01-01

    The report is part of NTNU-SINTEF's Smart Buildings program, Smart Energy Efficient Buildings (2002-2006), subprogram 3.1 Heating, ventilation and cooling systems. An important part of this subprogram is the development and implementation of heating distribution systems with low return temperature. A comparison has been made of the simultaneousness of room heating and ventilation air heating in six buildings. Existing measuring data with hourly measurements of effect requirements for the different purposes have been employed. Based on the measuring data the relation between the requirements for room heating and ventilation is estimated. A 'fictitious' return temperature has also been estimated. The result shows a significant variation between the buildings. For all there are short periods where the efficiency need for room heating and ventilation is equal (ml)

  12. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  13. Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation

    Directory of Open Access Journals (Sweden)

    Govinda Mahajan

    2017-11-01

    Full Text Available The feasibility of using finned oscillating heat pipes (OHPs for heat exchange between counter-flowing air streams in HVAC air systems (i.e., outdoor and exhaust air flows, along with the associated cost savings in typical North American climates, is investigated. For a prescribed temperature difference and volumetric flow rate of air, rudimentary design parameters for a viable OHP Heat Recovery Ventilator (OHP-HRV were determined using the ε-NTU (effectiveness-Number of Transfer Unit method. The two-phase heat transfer within the OHP-HRV is modeled via effective evaporation/condensation heat transfer coefficients, while the latent heat transfer required to initiate OHP operation via boiling and evaporation is also considered. Results suggest that an OHP-HRV can possess a reasonable pressure drop (5 kW. The proposed OHP-HRV can possess an effectiveness near 0.5 and can pre-cool/heat HVAC air by >5°C. Potential energy and cost savings associated with using an OHP-HRV were estimated for commercial building envelopes in various regions of the United States. It is found that the proposed OHP-HRV can save more than $2500 annually in cities that have continental climatic conditions, such as Chicago and Denver, and for the selected locations the average yearly cost savings per building is found to be on-the-order of $700. Overall, the OHP-HRV shows potential in effectively reducing energy consumption and the operational cost of air handling units in buildings.

  14. HVAC systems in a field laboratory for indoor climate study

    DEFF Research Database (Denmark)

    Fang, Lei; Melikov, Arsen Krikor; Olesen, Bjarne W.

    2012-01-01

    This paper presents the design of a HVAC system for a field lab. The design integrated mixing ventilation, displacement ventilation, low impulse vertical ventilation, personalized ventilation, natural ventilation, hybrid ventilation, active chilled beams, radiant ceiling and floor, and heat...... with the controlled room temperature in the range from 10 to 35 °C and relative humidity in the range from 15 to 80 %. The field lab can be used to test the performance of each system included in the field lab as well as the combined performance of two or more systems....

  15. Design and simulation of a hybrid ventilation system with earth-air heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Athienitis, A.K.; Zhao, M. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Roy, M. [Martin Roy and Associes Group Conseil Inc., Montreal, PQ (Canada)

    2005-07-01

    A simulation study was conducted during the design phase of a new circus building in Montreal which includes a hybrid ventilation system through which fresh air is supplied from an earth-air heat exchanger (EAHE). The EAHE has the potential to satisfy the cooling needs of the building and can also be used to preheat fresh air, thereby satisfying one-third or more of the building's heating needs. Another feature of the building is that it uses displacement ventilation by which the air is supplied at low velocities through large diffusers behind the top level seats or under the seats. In this study, computational fluid dynamics (CFD) simulations were carried out to help size the supply and return units of the heating, ventilating and air conditioning (HVAC) system, as well as the exhaust chimney. The primary objective of the CFD simulation was to determine the maximum velocity and temperature in the seated area to ensure thermal comfort. CFD simulation predictions were found to be in good agreement with preliminary measurements taken in the building. In order to monitor the operation of the system over the next year, the underground ducts were equipped with temperature sensors at several depths into the soil. The energy efficiency of the hybrid HVAC system will be assessed and the velocity and temperature distribution in the theatre will be examined under various operating and energy load conditions. 8 refs., 6 figs.

  16. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  17. Selecting HVAC Systems for Schools To Balance the Needs for Indoor Air Quality, Energy Conservation and Maintenance. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.; Kunz, Walter S., Jr.

    Although poor air quality in a school can have multiple causes, the heating, ventilating, and air-conditioning (HVAC) system plays a major role. Suggestions that architects, facilities managers, school board members, and administrators can use in selecting HVAC systems are discussed. Focus is on the performance criteria for classroom systems, and…

  18. Study on Heat Utilization in an Attached Sunspace in a House with a Central Heating, Ventilation, and Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Qingsong Ma

    2018-05-01

    Full Text Available Based on numerical simulations, the heating load reduction effect of an attached sunspace in winter was determined, and the effective heat utilization method and sunspace design were explored. In this paper, we studied the heating load reduction effect using heat from the sunspace and temperature fluctuation of each room at the time of heat use from the sunspace (sending air from the sunspace to the heating, ventilation, and air conditioning (HVAC machine room and taking the air to the adjacent rooms. In the case of the all-day HVAC system, it was confirmed that a larger capacity of sunspace and not sending air from the sunspace to the adjacent room demonstrated a better heating-load reduction effect. Compared with Model Iw (a house with a window on the exterior of the sunspace opened to external air, Model I (a house with an attached sunspace on the second floor could save approximately 41% of the total energy. Model II (a house with the attached sunspace both on the first and second floors could save approximately 84% of the total energy. Sending heat from the sunspace to the adjacent room led to temperature increases in the adjacent rooms. However, if the construction plan is to have the sunspace only on the second floor, the house should be carefully designed, for example, by placing a living room on the second floor.

  19. New regulatory requirements of HVAC ventilation systems in nuclear installations Spanish

    International Nuclear Information System (INIS)

    Sierra, J. J.

    2011-01-01

    Ventilation systems serve a number of functions vital to the safe operation of nuclear facilities: the renewal of air, cooling components, prevent the release of contaminated air into the environment under both normal operating and accident, or ensure habitability of the control rooms in all situations.

  20. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  1. An evaluation of damping ratios for HVAC duct systems using vibration test data

    International Nuclear Information System (INIS)

    Gunyasu, K.; Horimizu, Y.; Kawakami, A.; Iokibe, H.; Yamazaki, T.

    1988-01-01

    The function of Heating Ventilating Air Conditioning (HVAC) systems must be maintained including HVAC duct systems to keep the operation of safety-related equipment in nuclear power plants during earthquake excitations. Therefore, it is important to carry out seismic design for HVAC duct systems. In the previous aseismic design for HVAC duct systems, the 0.5% damping ratio has been used in Japan. In recent years, vibration tests, held on actual duct systems in nuclear power plants and mockup duct systems were performed in order to investigate damping ratios for HVAC duct systems. Based on the results, it was confirmed that the damping ratio for HVAC duct systems, evaluated from these tests, were much greater than the 0.5% damping ratio used in the previous aseismic design of Japan. The new damping ratio in aseismic design was proposed to be 2.5%. The present paper describes the results of the above mentioned investigation

  2. Illinois Occupational Skill Standards: HVAC/R Technician Cluster.

    Science.gov (United States)

    Illinois Occupational Skill Standards and Credentialing Council, Carbondale.

    This document, which is intended to serve as a guide for work force preparation program providers, details the Illinois occupational skill standards for programs preparing students for employment in jobs in the heating, ventilation, air conditioning, and refrigeration (HVAC/R) industry. Agency partners involved in this project include: the…

  3. Maximize Benefits, Minimize Risk: Selecting the Right HVAC Firm.

    Science.gov (United States)

    Golden, James T.

    1993-01-01

    An informal survey of 20 major urban school districts found that 40% were currently operating in a "break down" maintenance mode. A majority, 57.9%, also indicated they saw considerable benefits in contracting for heating, ventilating, and air conditioning (HVAC) maintenance services with outside firms. Offers guidelines in selecting…

  4. Application of modeling and simulation to HVAC systems

    NARCIS (Netherlands)

    Hensen, J.L.M.

    1996-01-01

    This paper attempts to describe the advantages and disadvantages of different modelling approaches for design and performance evaluation of heating, ventilating, and air-conditioning (HVAC) systems for buildings. Merits and drawbacks of the various modelling methods are illustrated by case study

  5. HVAC system simulation: overview, issues and some solutions

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.

    2011-01-01

    Integrated performance simulation of buildings’ heating, ventilation and air-conditioning (HVAC) systems can help in reducing energy consumption and increasing occupant comfort. Recognizing this fact, in the last forty years many tools have been developed to help achieving this goal. In this paper

  6. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  7. HVAC Trials.

    Science.gov (United States)

    Greim, Clifton W.; D'Angelo, David

    1999-01-01

    Explains how commissioning can help to ensure that all components in a new heating, ventilation, and air conditioning system will work together as designed. Bowdoin College's experience with commissioning is highlighted. (GR)

  8. Experimental and modelling analysis of an office building HVAC system based in a ground-coupled heat pump and radiant floor

    International Nuclear Information System (INIS)

    Villarino, José Ignacio; Villarino, Alberto; Fernández, Francisco Ángel

    2017-01-01

    Highlights: • A case study of a geothermal heat pump in an office building. • A numerical model in EnergyPlus is validated by experimental results. • An energy, economic and environmental analysis is presented. • A comparison with other technologies demonstrates the potential of the system. - Abstract: This paper shows the evaluation of the performance of a ground-coupled heat pump system monitored building providing heating, ventilating and air conditioning to an office building located in Madrid, in Spain. The system consists of one borehole exchanger, heat pump unit, radiant floor system, mechanical ventilation and data control system. A simulation model was performed with EnergyPlus software and validated. The analyzed period corresponds to the most unfavorable weather conditions in heating and cooling mode. The coefficient of performance obtained in heating and cooling mode was 3.86/5.29, considering all the energy consumption elements of the building and the thermal demand corresponding to an office operation. The CO_2 emissions obtained with a value of 34.68 kg corresponding to the period analyzed represents a low CO_2 emission system. The monitored temperatures reached set point values of 22 °C/25 °C, considered as acceptable comfort temperatures. The values obtained in the validated simulation model presented a deviation of 2% respected experimental results in heating and cooling mode. A comparative of COP_s_y_s and CO_2 emissions with other technologies is performed in order to analyze GCHP compared to other available technologies. The GCHP system is presented as a technology that can fully supply the HVAC conditions for a building and environmentally friendly.

  9. Review of Control Techniques for HVAC Systems—Nonlinearity Approaches Based on Fuzzy Cognitive Maps

    Directory of Open Access Journals (Sweden)

    Farinaz Behrooz

    2018-02-01

    Full Text Available Heating, Ventilating, and Air Conditioning (HVAC systems are the major energy-consuming devices in buildings. Nowadays, due to the high demand for HVAC system installation in buildings, designing an effective controller in order to decrease the energy consumption of the devices while meeting the thermal comfort demands in buildings are the most important goals of control designers. The purpose of this article is to investigate the different control methods for Heating, Ventilating, and Air Conditioning and Refrigeration (HVAC & R systems. The advantages and disadvantages of each control method are discussed and finally the Fuzzy Cognitive Map (FCM method is introduced as a new strategy for HVAC systems. The FCM method is an intelligent and advanced control technique to address the nonlinearity, Multiple-Input and Multiple-Output (MIMO, complexity and coupling effect features of the systems. The significance of this method and improvements by this method are compared with other methods.

  10. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters

    OpenAIRE

    Calfee, M. Worth; Rose, Laura J.; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2013-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37 mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50...

  11. HVAC Modeling for Cost of Ownership Assessment in Biotechnology & Drugs Manufacturing

    OpenAIRE

    Broomes, Peter; Dornfeld, David A

    2003-01-01

    Heating, ventilation, and air conditioning (HVAC) systems used in the clean room environment of biotechnology and drug development and manufacturing, are extremely energy and water intensive and represent a significant operating cost for these facilities [1]. HVAC systems are also the primary source of environmental emissions for the majority of companies operating within the biotechnology and drugs sector. While the processes used in drug manufacture have negligible environmental impact...

  12. The SAN-HVAC trades in Baden-Wuerttemberg. A structural and market analysis for the gas and water installer, central heating and ventilation, air-conditioning and plumber trade commissioned by the Trade Association Sanitary-Heating-Air-Conditioning Baden-Wuerttemberg. 2. rev. ed. Die Sanitaer-Heizung-Klima-Handwerke in Baden-Wuerttemberg. Eine Struktur- und Marktanalyse fuer das Gas- und Wasserinstallateur-, Zentralheizungs- und Lueftungsbauer- und Klempner-Handwerk im Auftrag des Fachverbandes Sanitaer-Heizung-Klima Baden Wuerttemberg

    Energy Technology Data Exchange (ETDEWEB)

    Hantsch, G; Heinen, E; Schulte, A

    1989-01-01

    This structural and market analysis of the sanitary-heating trades in Baden-Wuerttemberg first gives structural data about businesses, employees and turnover as well as business indicators and shows the staff structure. Then the market situation is discussed (construction activity, consumer behaviour, market estimation). Then details about business management follow. Here forms of enterprise, service sector, material management, time management and calculation, EDP-systems, cooperations, sources of information, investment, publicity, support by the trade association, and evaluation of the own situation are gone into. Then recommendations for a program of action of the trade association are given. They apply to market information, public relations work, cultivation of the image and joint advertising as well as to further education, management consultancy, interfactory comparative studies, and financing of professional work. Finally measures are recommended to the businesses (offered services, marketing, intercompany organisation, cost accounting/calculation, EDP-support, personnel management, special market, cooperation). In order to guarantee their future existance the SAN-HVAC trade has to intensify its effort to train up suitable qualified employees. (HWJ).

  13. Comparison of indoor air distribution and thermal environment for different combinations of radiant heating systems with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2018-01-01

    A hybrid system with a radiant heating system and a mechanical ventilation system, which is regarded as an advanced heating, ventilation and air-conditioning (HVAC) system, has been applied in many modern buildings worldwide. To date, almost no studies focused on comparative analysis of the indoor...... air distribution and the thermal environment for all combinations of radiant heating systems with mechanical ventilation systems. Therefore, in this article, the indoor air distribution and the thermal environment were comparatively analyzed in a room with floor heating (FH) or ceiling heating (CH......) and mixing ventilation (MV) or displacement ventilation (DV) when the supply air temperature ranged from 15.0°C to 19.0°C. The results showed that the temperature effectiveness values were 1.05–1.16 and 0.95–1.02 for MV+ FH and MV+ CH, respectively, and they were 0.78–0.91 and 0.51–0.67 for DV + FH and DV...

  14. Analysis of energy efficiency retrofit schemes for heating, ventilating and air-conditioning systems in existing office buildings based on the modified bin method

    International Nuclear Information System (INIS)

    Wang, Zhaoxia; Ding, Yan; Geng, Geng; Zhu, Neng

    2014-01-01

    Highlights: • A modified bin method is adopted to propose and optimize the EER schemes. • A case study is presented to demonstrate the analysis procedures of EER schemes. • Pertinent EER schemes for HVAC systems are proposed for the object building. - Abstract: Poor thermal performance of building envelop and low efficiencies of heating, ventilating and air-conditioning (HVAC) systems can always be found in the existing office buildings with large energy consumption. This paper adopted a modified bin method to propose and optimize the energy efficiency retrofit (EER) schemes. An existing office building in Tianjin was selected as an example to demonstrate the procedures of formulating the design scheme. Pertinent retrofit schemes for HVAC system were proposed after the retrofit of building envelop. With comprehensive consideration of energy efficiency and economic benefits, the recommended scheme that could improve the overall energy efficiency by 71.20% was determined

  15. Temperature ranges of the application of air-to-air heat recovery ventilator in supermarkets in winter, China

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yanming; Wang, Youjun; Zhong, Ke [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Jiaping [School of Architecture, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2010-12-15

    Energy consumption is an important issue in China. In heating, ventilation and air conditioning (HVAC) systems, more and more commercial buildings use air-to-air heat recovery ventilators as energy saving units for recovering heat from the exhaust air in ventilation systems in current years. In the present paper, critical temperatures of air-to-air heat recovery systems for supermarkets in winter are recommended and discussed for the four cities in different climate zones of China. The analysis shows that the temperature of fresh air in winter can be categorized into three regions, i.e., recovery region, transition region and impermissible recovery region. The results also indicate that the latent heat recovery is not suitable for ventilation energy savings in supermarkets in winter. Meanwhile, the applicability of sensible heat recovery in supermarkets depends on outdoor climate and fresh air flow rate. If a variable rotational speed fan is used to introduce fresh air into the building, heat recovery does always function as planned in winter for all the selected cities except Guangzhou, and most values of the COP are much higher than 2.5. Otherwise, there is the risk of negative impact on building energy savings in all cities except Harbin. (author)

  16. Screening analysis for EPACT-covered commercial HVAC and water-heating equipment

    Energy Technology Data Exchange (ETDEWEB)

    S Somasundaram; PR Armstrong; DB Belzer; SC Gaines; DL Hadley; S Katipumula; DL Smith; DW Winiarski

    2000-05-25

    EPCA requirements state that if the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE) amends efficiency levels prescribed in Standard 90.1-1989, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in amended Standard 90.1. However, DOE can establish higher efficiency levels if it can show through clear and convincing evidence that a higher efficiency level, that is technologically feasible and economically justified, would produce significant additional energy savings. On October 29, 1999, ASHRAE approved the amended Standard 90.1, which increases the minimum efficiency levels for some of the commercial heating, cooling, and water-heating equipment covered by EPCA 92. DOE asked Pacific Northwest National Laboratory (PNNL) to conduct a screening analysis to determine the energy-savings potential of the efficiency levels listed in Standard 90.1-1999. The analysis estimates the annual national energy consumption and the potential for energy savings that would result if the EPACT-covered products were required to meet these efficiency levels. The analysis also estimates additional energy-savings potential for the EPACT-covered products if they were to exceed the efficiency levels prescribed in Standard 90-1-1999. In addition, a simple life-cycle cost (LCC) analysis was performed for some alternative efficiency levels. This paper will describe the methodology, data assumptions, and results of the analysis. The magnitude of HVAC and SWH loads imposed on equipment depends on the building's physical and operational characteristics and prevailing climatic conditions. To address this variation in energy use, coil loads for 7 representative building types at 11 climate locations were estimated based on a whole-building simulation.

  17. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-02-17

    "Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.

  18. Mechanical ventilation with heat recovery in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Svendsen, Svend

    2005-01-01

    Building ventilation is necessary to achieve a healthy and comfortable indoor environment, but as energy prices continue to rise it is necessary to reduce the energy consumption. Using mechanical ventilation with heat recovery reduces the ventilation heat loss significantly, but in cold climates...... freezes to ice. The analysis of measurements from existing ventilation systems with heat recovery used in single-family houses in Denmark and a test of a standard heat recovery unit in the laboratory have clearly shown that this problem occurs when the outdoor temperature gets below approximately –5º......C. Due to the ice problem mechanical ventilation systems with heat recovery are often installed with an extra preheating system reducing the energy saving potential significantly. New designs of high efficient heat recovery units capable of continuously defrosting the ice without using extra energy...

  19. Hybrid Ventilation with Innovative Heat Recovery—A System Analysis

    Directory of Open Access Journals (Sweden)

    Bengt Hellström

    2013-02-01

    Full Text Available One of the most important factors when low energy houses are built is to have good heat recovery on the ventilation system. However, standard ventilation units use a considerable amount of electricity. This article discusses the consequences on a system level of using hybrid ventilation with heat recovery. The simulation program TRNSYS was used in order to investigate a ventilation system with heat recovery. The system also includes a ground source storage and waste water heat recovery system. The result of the analysis shows that the annual energy gain from ground source storage is limited. However, this is partly a consequence of the fact that the well functioning hybrid ventilation system leaves little room for improvements. The analysis shows that the hybrid ventilation system has potential to be an attractive solution for low energy buildings with a very low need for electrical energy.

  20. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Petritchenko, Oxana [Navigant Consulting, Burlington, MA (United States); Ringo, Decker [Navigant Consulting, Burlington, MA (United States); McClive, Sam [Navigant Consulting, Burlington, MA (United States)

    2017-12-01

    The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promising technology options.

  1. Recommended HVAC standard of the Florida Radon Research Program. Final report, Mar-Sep 90

    International Nuclear Information System (INIS)

    Cummings, J.B.

    1992-01-01

    The report contains the recommended language for the heating, ventilation, and air-conditioning (HVAC) section of the 'Florida Code for Radon-resistant Construction and Mitigation.' It deals with elements of construction that relate to the HVAC of houses. Its primary intent is to prevent pressure differentials in houses that can increase the transport of radon into houses. Three pathways of compliance are available to meet the requirements of the HVAC portion of the standards. The first is purely prescriptive. The second is a performance and prescriptive approach. The third is a marketplace approach

  2. A review of different strategies for HVAC energy saving

    International Nuclear Information System (INIS)

    Vakiloroaya, Vahid; Samali, Bijan; Fakhar, Ahmad; Pishghadam, Kambiz

    2014-01-01

    Highlights: • Various strategies for HVAC energy saving are described and reviewed. • The influence of each strategy on the HVAC energy saving is investigated. • Combination of existing air conditioning technologies appears to be effective for the energy conservation and comfort. • A comparison study between these approaches is carried out. • Changing the HVAC configuration has the potential to increase or reduce energy savings, depending on several factors. - Abstract: Decreasing the energy consumption of heating, ventilation and air conditioning (HVAC) systems is becoming increasingly important due to rising cost of fossil fuels and environmental concerns. Therefore, finding novel ways to reduce energy consumption in buildings without compromising comfort and indoor air quality is an ongoing research challenge. One proven way of achieving energy efficiency in HVAC systems is to design systems that use novel configurations of existing system components. Each HVAC discipline has specific design requirements and each presents opportunities for energy savings. Energy efficient HVAC systems can be created by re-configuring traditional systems to make more strategic use of existing system parts. Recent research has demonstrated that a combination of existing air conditioning technologies can offer effective solutions for energy conservation and thermal comfort. This paper investigates and reviews the different technologies and approaches, and demonstrates their ability to improve the performance of HVAC systems in order to reduce energy consumption. For each strategy, a brief description is first presented and then by reviewing the previous studies, the influence of that method on the HVAC energy saving is investigated. Finally, a comparison study between these approaches is carried out

  3. Design Optimization of Heat Wheels for Energy Recovery in HVAC Systems

    Directory of Open Access Journals (Sweden)

    Stefano De Antonellis

    2014-11-01

    Full Text Available Air to air heat exchangers play a crucial role in mechanical ventilation equipment, due to the potential primary energy savings both in case of refurbishment of existing buildings or in case of new ones. In particular, interest in heat wheels is increasing due to their low pressure drop and high effectiveness. In this paper a detailed optimization of design parameters of heat wheels is performed in order to maximize sensible effectiveness and to minimize pressure drop. The analysis is carried out through a one dimensional lumped parameters heat wheel model, which solves heat and mass transfer equations, and through appropriate correlations to estimate pressure drop. Simulation results have been compared with experimental data of a heat wheel tested in specific facilities, and good agreement is attained. The device optimization is performed through the variation of main design parameters, such as heat wheel length, channel base, height and thickness and for different operating conditions, namely the air face velocity and the revolution speed. It is shown that the best configurations are achieved with small channel thickness and, depending on the required sensible effectiveness, with appropriate values of wheel length and channel base and height.

  4. Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Romberger, Jeff [SBW Consulting, Inc., Bellevue, WA (United States)

    2017-10-09

    The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions.

  5. Plutonium Finishing Plant (PFP) HVAC System Component Index; FINAL

    International Nuclear Information System (INIS)

    DICK, J.D.

    1999-01-01

    This document identities the components, design media, procedures and defines the critical characteristics of Commercial Grade Items necessary to ensure the HVAC system provides these functions. This document lists safety class (SC) and safety significant (SS) components for the Heating Ventilation Air Conditioning (HVAC) and specifies the critical characteristics for Commercial Grade Items (CGI), as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item

  6. Market assessment for active solar heating and cooling products. Category B: a survey of decision-makers in the HVAC marketplace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    A comprehensive evaluation of the market for solar heating and cooling products for new and retrofit markets is reported. The emphasis is on the analysis of solar knowledge among HVAC decision makers and a comprehensive evaluation of their solar attitudes and behavior. The data from each of the following sectors are described and analyzed: residential consumers, organizational and manufacturing buildings, HVAC engineers and architects, builders/developers, and commercial/institutional segments. (MHR)

  7. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    Science.gov (United States)

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  8. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings

    DEFF Research Database (Denmark)

    Maccarini, Alessandro; Hultmark, Göran; Bergsøe, Niels Christian

    2018-01-01

    . In particular, a model of a PCM-based heat exchanger was developed in this work by using the programming language Modelica. This device was designed to store cold energy during night-time and release it during daytime through the water circuit. Results for a typical office building model showed...... that the integration of free cooling devices can significantly reduce the primary energy use of the novel HVAC system. In particular, the thermal plant configuration including the PCM-based heat exchanger made it possible to almost completely avoid the use of mechanical cooling, leading to annual primary energy......This article presents a simulation-based study that estimates the primary energy use of a novel HVAC system for different configurations of a thermal plant. The main characteristic of the system is its ability to provide simultaneous heating and cooling to buildings by using a single hydronic...

  9. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night......-time ventilation in case of mixing and displacement ventilation has been investigated in a full scale test room. The results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher air flow rates the air jet flowing along the ceiling has a significant effect...

  10. Airside HVAC BESTEST. Adaptation of ASHRAE RP 865 Airside HVAC Equipment Modeling Test Cases for ASHRAE Standard 140. Volume 1, Cases AE101-AE445

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J. [J. Neymark & Associates, Golden, CO (United States); Kennedy, M. [Mike D. Kennedy, Inc., Townsend, WA (United States); Judkoff, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gall, J. [AAON, Inc., Tulsa, OK (United States); Knebel, D. [AAON, Inc., Tulsa, OK (United States); Henninger, R. [GARD Analytics, Inc., Arlington Heights, IL (United States); Witte, M. [GARD Analytics, Inc., Arlington Heights, IL (United States); Hong, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McDowell, T. [Thermal Energy System Specialists, Madison, WI (United States); Yan, D. [Tsinghua Univ., Beijing (China); Zhou, X. [Tsinghua Univ., Beijing (China)

    2016-03-01

    This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.

  11. RADON MITIGATION IN SCHOOLS: HVAC SYTEMS IN SCHOOLS TEND TO HAVE A GREATER IMPACT ON RADON LEVELS THAN HVAC SYSTEMS IN HOMES

    Science.gov (United States)

    The first part of this two-part paper discusses radon entry into schools, radon mitigation approaches for schools, and school characteristics (e.g., heating, ventilation, and air conditioing -- HVAC-- system design and operationg) that influence radon entry and mitigation system ...

  12. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  13. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  14. Control strategy optimization of HVAC plants

    Energy Technology Data Exchange (ETDEWEB)

    Facci, Andrea Luigi; Zanfardino, Antonella [Department of Engineering, University of Napoli “Parthenope” (Italy); Martini, Fabrizio [Green Energy Plus srl (Italy); Pirozzi, Salvatore [SIAT Installazioni spa (Italy); Ubertini, Stefano [School of Engineering (DEIM) University of Tuscia (Italy)

    2015-03-10

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting.

  15. Control strategy optimization of HVAC plants

    International Nuclear Information System (INIS)

    Facci, Andrea Luigi; Zanfardino, Antonella; Martini, Fabrizio; Pirozzi, Salvatore; Ubertini, Stefano

    2015-01-01

    In this paper we present a methodology to optimize the operating conditions of heating, ventilation and air conditioning (HVAC) plants to achieve a higher energy efficiency in use. Semi-empiric numerical models of the plant components are used to predict their performances as a function of their set-point and the environmental and occupied space conditions. The optimization is performed through a graph-based algorithm that finds the set-points of the system components that minimize energy consumption and/or energy costs, while matching the user energy demands. The resulting model can be used with systems of almost any complexity, featuring both HVAC components and energy systems, and is sufficiently fast to make it applicable to real-time setting

  16. Air Distribution and Ventilation Effectiveness in a room with Floor/Ceiling Heating and Mixing/Displacement Ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    vertical air temperature differences and air velocities for different hybrid systems are less than 3 C and 0.2 m/s when supply air temperature is 19 C, air change rate is 4.2 h-1, and heated surface temperature of floor/ceiling heating system is 25 C. Ventilation effectiveness of mixing ventilation system...... combined with floor/ceiling heating systems is approximately equal to 1.0, and ventilation effectiveness of displacement ventilation system combined with floor/ceiling heating systems ranges from 1.0 to 1.2. The floor/ceiling heating systems combined with mixing ventilation system have more uniform indoor...... air distribution but smaller ventilation effectiveness compared with the floor/ceiling heating systems combined with displacement ventilation system. With regard to the building heat loss increased by non-uniform indoor air distribution and small ventilation effectiveness, there should be an optimal...

  17. Building America Best Practices Series Volume 14 - HVAC. A Guide for Contractors to Share with Homeowners

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, Theresa L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, Marye G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hand, James R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, Pat M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-08-01

    This guide, which is part of a series of Best Practices guides produced by DOE’s Building America program, describes ways homeowners can reduce their energy costs and improve the comfort, health, and safety of their homes by upgrading their heating, ventilation, and air conditioning (HVAC) equipment.

  18. Integrated Simulation for HVAC Performance Prediction: State-of-the-Art Illustration

    NARCIS (Netherlands)

    Hensen, J.L.M.; Clarke, J.A.

    2000-01-01

    This paper aims to outline the current state-of-the-art in integrated building simulation for performance prediction of heating, ventilating and air-conditioning (HVAC) systems. The ESP-r system is used as an example where integrated simulation is a core philosophy behind the development. The

  19. Residential and Light Commercial HVAC. Teacher Edition and Student Edition. Second Edition.

    Science.gov (United States)

    Stephenson, David

    This package contains teacher and student editions of a residential and light commercial heating, ventilation, and air conditioning (HVAC) course of study. The teacher edition contains information on the following: using the publication; national competencies; competency profile; related academic and workplace skills list; tools, equipment, and…

  20. Comparison of co-simulation approaches for building and HVAC/R system simulation

    NARCIS (Netherlands)

    Trcka, M.; Wetter, M.; Hensen, J.L.M.; Jiang, Yi

    2007-01-01

    Appraisal of modern performance-based energy codes, as well as heating, ventilation, airconditioning and refrigeration (HVAC/R) system design require use of an integrated building and system performance simulation program. However, the required scope of the modeling library of such integrated tools

  1. Integrated high efficiency blower apparatus for HVAC systems

    Science.gov (United States)

    Liu, Xiaoyue; Weigman, Herman; Wang, Shixiao

    2007-07-24

    An integrated centrifugal blower wheel for a heating, ventilation and air conditioning (HVAC) blower unit includes a first blade support, a second blade support, and a plurality of S-shaped blades disposed between the first and second blade supports, wherein each of the S-shaped blades has a trailing edge bent in a forward direction with respect to a defined direction of rotation of the wheel.

  2. HVAC fault tree analysis for WIPP integrated risk assessment

    International Nuclear Information System (INIS)

    Kirby, P.; Iacovino, J.

    1990-01-01

    In order to evaluate the public health risk from operation of the Waste Isolation Pilot Plant (WIPP) due to potential radioactive releases, a probabilistic risk assessment of waste handling operations was conducted. One major aspect of this risk assessment involved fault tree analysis of the plant heating, ventilation, and air conditioning (HVAC) systems, which comprise the final barrier between waste handling operations and the environment. 1 refs., 1 tab

  3. The effects of HVAC system design and operation on radon entry into school buildings

    International Nuclear Information System (INIS)

    Turner, W.A.; Leovic, K.W.; Craig, A.B.

    1990-01-01

    Heating, ventilating, and air conditioning (HVAC) systems in schools vary considerably and tend to have a greater impact on pressure differentials--and consequently radon levels--than do heating and air-conditioning systems in houses. If the HVAC system induces a negative pressure relative to the subslab area, radon can be pulled into the building. If the HVAC system pressurizes the building, it can prevent radon entry as long as the fan is running. However, school HVAC systems are normally set back or turned off on evenings and weekends and, even if the HVAC system pressurizes the school during operation, indoor radon levels may build up during setback periods. In this paper many of the historical methods utilized to deliver ventilation air (outdoor air) over the past 40 years are summarized. In addition, for each type of system presented, the possible impact the ventilation system might be expected to have (positive or negative) on the pressure of the building envelope (and subsequent radon levels in the building) is discussed

  4. Review of the Operability for the Components Under the Loss of the HVAC System of the Pump Room

    International Nuclear Information System (INIS)

    Hwang Mee Jeong; Yoon, Churl; Yang, Joon Eon; Park, Joo Hwan

    2005-01-01

    In this paper, we estimated the temperature of the pump rooms and reviewed the operability of the components under the loss of the HVAC (Heating, Ventilation, and Air Condition) system. The issues relevant to the HVAC system in the PSA (Probabilistic Safety Assessment) FT (Fault Tree) model are as follows: does the loss of the HVAC system bring about a function failure of other components?. Can the operator take action to reduce the temperature of the room in case of a HVAC function failure?. At present we do not know whether a component will lose its function or not under the loss of the HVAC. ASME Standard describes that a recovery action can be credited if the related recovery action is included in the procedure or there are similar recovery experiences in the plant. However, there is no description about the recovery action of the HVAC in the EOP (Emergency Operation Procedure) of the UCN3, 4 under the situation of a loss of the HVAC. Even though we consider this assumption positively, it would be limited to the rooms such as the Switchgear Room, Inverter Room, and Main Control Room etc. where a real recovery action can be performed easily. However, if we consider the HVAC failure in the PSA FT model according to the above background, the problem is that the unavailability induced from the loss of a HVAC is highly unrealistically. From a viewpoint of the PSA, it is not true that the related system always fails even though the HVAC system fails. Therefore, we reviewed the necessity of the HVAC model through the identification of the operable temperature of the components' within the pump room and the change of the temperature of the pump room under the situation of a loss of the HVAC system

  5. Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Xu, Guanglin; Zhang, Zijun

    2014-01-01

    Highlights: • We study the energy saving of HVAC systems with a data-driven approach. • We conduct an in-depth analysis of the topology of developed Neural Network based HVAC model. • We apply interior-point method to solving a Neural Network based HVAC optimization model. • The uncertain building occupancy is incorporated in the minimization of HVAC energy consumption. • A significant potential of saving HVAC energy is discovered. - Abstract: In this paper, a data-driven approach is applied to minimize energy consumption of a heating, ventilating, and air conditioning (HVAC) system while maintaining the thermal comfort of a building with uncertain occupancy level. The uncertainty of arrival and departure rate of occupants is modeled by the Poisson and uniform distributions, respectively. The internal heating gain is calculated from the stochastic process of the building occupancy. Based on the observed and simulated data, a multilayer perceptron algorithm is employed to model and simulate the HVAC system. The data-driven models accurately predict future performance of the HVAC system based on the control settings and the observed historical information. An optimization model is formulated and solved with the interior-point method. The optimization results are compared with the results produced by the simulation models

  6. Heat stress reduction of helicopter crew wearing a ventilated vest

    NARCIS (Netherlands)

    Reffeltrath, P.A.

    2006-01-01

    Background: Helicopter pilots are often exposed to periods of high heat strain, especially when wearing survival suits. Therefore, a prototype of a ventilated vest was evaluated on its capability to reduce the heat strain of helicopter pilots during a 2-h simulated flight. Hypothesis: It was

  7. Global optimization for overall HVAC systems - Part I problem formulation and analysis

    International Nuclear Information System (INIS)

    Lu Lu; Cai Wenjian; Chai, Y.S.; Xie Lihua

    2005-01-01

    This paper presents the global optimization technologies for overall heating, ventilating and air conditioning (HVAC) systems. The objective function of global optimization and constraints are formulated based on mathematical models of the major components. All these models are associated with power consumption components and heat exchangers for transferring cooling load. The characteristics of all the major components are briefly introduced by models, and the interactions between them are analyzed and discussed to show the complications of the problem. According to the characteristics of the operating components, the complicated original optimization problem for overall HVAC systems is transformed and simplified into a compact form ready for optimization

  8. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  9. Higher Efficiency HVAC Motors

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)

    2018-02-13

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all

  10. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    Science.gov (United States)

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  11. FFTF primary heat transport system heating, ventilating and air conditioning system experience

    International Nuclear Information System (INIS)

    Umek, A.M.; Hicks, D.F.; Schweiger, D.L.

    1981-01-01

    FFTF cools its primary/in-containment sodium equipment cells by means of a forced nitrogen cooling system which exchanges heat with a water-glycol system. The nitrogen cooling system is also used to maintain an inert gas atmosphere in the cells containing sodium equipment. Sodium Piping and Components have installed electrical resistance heaters to maintain a minimum sodium temperature and stainless steel jacketed mineral insulation to reduce heat loss. Design features and test results of a comprehensive redesign of the HVAC and insulation system required to support long-term nuclear operations are discussed

  12. Adaptive heating, ventilation and solar shading for dwellings

    NARCIS (Netherlands)

    Alders, E.E.

    2017-01-01

    Calculation of various strategies for the heating of, and the prevention of overheating in, a Dutch standard dwelling that includes (automated) adaptive ventilation systems and solar shading to maintain indoor temperatures at acceptably comfortable temperatures informs this analysis of the costs,

  13. Floor Heating with Displacement Ventilation: An Experimental and Numerical Analysis

    DEFF Research Database (Denmark)

    Causone, Francesco; Olesen, Bjarne W.; Corgnati, S.P.

    2010-01-01

    The effect of floor heating combined with displacement ventilation (DV) on thermal indoor environments and indoor air quality (IAQ) was studied by means of CFD. The numerical model was validated with experimental data. A typical office room was simulated, and one of the occupants was considered...... to simulate different kinds of contaminant sources, under the same boundary conditions. It was found that DV does not guarantee a better IAQ than full mixing when contaminant sources are not linked to heat sources, even when floor heating is used. Contaminants produced by powerful heat sources require high...

  14. Natural Ventilation with Heat Recovery: A Biomimetic Concept

    Directory of Open Access Journals (Sweden)

    Zulfikar A. Adamu

    2015-05-01

    Full Text Available In temperate countries, heat recovery is often desirable through mechanical ventilation with heat recovery (MVHR. Drawbacks of MVHR include use of electric power and complex ducting, while alternative passive heat recovery systems in the form of roof or chimney-based solutions are limited to low rise buildings. This paper describes a biomimetic concept for natural ventilation with heat recovery (NVHR. The NVHR system mimics the process of water/mineral extraction from urine in the Loop of Henle (part of human kidney. Simulations on a facade-integrated Chamber successfully imitated the geometry and behaviour of the Loop of Henle (LoH. Using a space measuring 12 m2 in area and assuming two heat densities of 18.75 W/m2 (single occupancy or 30 W/m2 (double occupancy, the maximum indoor temperatures achievable are up to 19.3 °C and 22.3 °C respectively. These come with mean relative ventilation rates of 0.92 air changes per hour (ACH or 10.7 L·s−1 and 0.92 ACH (11.55 L·s−1, respectively, for the month of January. With active heating and single occupant, the LoH Chamber consumes between 65.7% and 72.1% of the annual heating energy required by a similar naturally ventilated space without heat recovery. The LoH Chamber could operate as stand-alone indoor cabinet, benefitting refurbishment of buildings and evading constraints of complicated ducting, external aesthetic or building age.

  15. Direct Digital Control of HVAC (Heating, Ventilating, and Air Conditioning Equipment (User’s Guide)

    Science.gov (United States)

    1985-01-01

    reset, load shedding, chiller optimization , VAV fan synchronization, and optimum start/stop. The prospective buyer of a DDC system should investigate...current and accurate drawings for a conventional, built-up control system such as that illustrated in Fig- ure 4. Data on setpoints , reset schedules, and...are always available in the form of the computer program code (Figure 7). In addition to the control logic, setpoint and other data are readily

  16. Vocal Ergonomics in the Workplace: Heating, Ventilation, and Air-Conditioning Method Influences on Vocal Comfort and Function.

    Science.gov (United States)

    Sandage, Mary J; Rahn, Keith A; Smith, Audrey G

    2017-02-01

    The purpose of this study was to examine the influence of the heating, ventilation, and air-conditioning method on voice function following a voicing task using ecologically valid offices, one with radiant HVAC and one with forced air. A total of 12 consented participants (6 women, 6 men) narrated a video in each of 4 environmental conditions in a within-between repeated-measures design. Acoustic data were collected with an ambulatory phonation monitor and perceived phonatory effort was determined following the voicing task. Data were analyzed using a within-between repeated-measures analysis of variance with significance set at α spaces despite significant acoustic findings. Future research should address longer exposure to environmental differences combined with a longer voicing task within ecologically valid work spaces as well as the recruitment of participants who have particular vulnerability to environmental perturbations.

  17. Research and Development Opportunities for Joining Technologies in HVAC&R

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States)

    2015-10-01

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reduction goals.

  18. Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs

    Science.gov (United States)

    2009-03-26

    of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this

  19. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Science.gov (United States)

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  20. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  1. Experimental analysis of energy performance of a ventilated window for heat recovery under controlled conditions

    DEFF Research Database (Denmark)

    Appelfeld, David; Svendsen, Svend

    2011-01-01

    balance of the ventilated window and clarified the methodology for thermal performance evaluation. Comparison between windows with and without ventilation using the window-room-ventilation heat balance revealed that a ventilated window can potentially contribute to energy savings. In addition...... transmittance introduced by the ventilation was higher than the effect of heat recovery. Accordingly, the use of the ventilated windows might be most suitable for window unit with low ventilation rates. The results correlated with theoretical calculations in standards and software. However, the concept...

  2. Warming impact on energy use of HVAC system in buildings of different thermal qualities and in different climates

    International Nuclear Information System (INIS)

    Kharseh, Mohamad; Altorkmany, Lobna; Al-Khawaj, Mohammed; Hassani, Ferri

    2014-01-01

    Highlights: • Improving TQBE reduces heating load, while it might increase cooling load. • Warming impact on energy use of HVAC varies from one climate to another. • Warming impact on energy use of HVAC depends on building’s thermal quality. • In mild climate, warming does not have a significant impact on energy use of HVAC. - Abstract: In order to combat climate change, energy use in the building must be further reduced. Heating ventilation and air conditioning (HVAC) systems in residential buildings account for considerable fraction of global energy consumption. The potential contribution the domestic sector can make in reducing energy consumption is recognized worldwide. The driving energy of HVACs depends on the thermal quality of the building envelope (TQBE) and outside temperature. Definitely, building regulations are changing with the time toward reduce the thermal loads of buildings. However, most of the existing residential buildings were built to lower TQBE. For instant, 72% of residential dwellings in the 15-EU were built before 1972. To investigate the impact of warming on driving energy of HVACs of a residential building a computer model was developed. Three climate categories/cities were considered, i.e. Stockholm (cold), Istanbul (mild), and Doha (hot). In each city, two buildings were modeled: one was assumed to be built according to the current local buildings regulations (standard TQBE), while the anther was built to lower TQBE. The simulations were run for present and future (in 2050) outdoor designing conditions. The calculations show that the impact of the warming on annual driving energy of HVACs (reduction or increase) depends very much on the climate category and on the TQBE. Based on the climate and TQBE, the change in annual HVACs energy varies from −7.4% (in cold climate) to 12.7% (in hot climate). In mild climate, it was shown that the warming does not have significant impact on annual HVACs energy. Improving the TQBE can

  3. Development of the Aging Management Program for HVAC Systems

    International Nuclear Information System (INIS)

    Cho, Hong Seok; Lee, Dong Min; Lee, Jang Wook; Cho, Ki Hyun; Cho, Sang Bum; Choi, Sang Hoon

    2008-01-01

    The HVAC(heating, ventilation and air conditioning) systems in nuclear power plants are consisted of fan, damper, duct, filter and cooling coil, which is equipped in the safety-related building such as main control room, auxiliary building and containment building. These systems are designed to maintain the required ambient air temperature in all plant areas for the comfort and safety of personnel and for environmental requirement of equipment and to ensure that the gaseous radioactivity emission to the environment is kept below permissible discharge limits. The purpose of this study is to establish the inspection plan to ensure that touch up parts of the duct are sound and to develop the aging management program for maintaining effectively HVAC systems

  4. Decentralized Optimization for a Novel Control Structure of HVAC System

    Directory of Open Access Journals (Sweden)

    Shiqiang Wang

    2016-01-01

    Full Text Available A decentralized control structure is introduced into the heating, ventilation, and air conditioning (HVAC system to solve the high maintenance and labor cost problem in actual engineering. Based on this new control system, a decentralized optimization method is presented for sensor fault repair and optimal group control of HVAC equipment. Convergence property of the novel method is theoretically analyzed considering both convex and nonconvex systems with constraints. In this decentralized control system, traditional device is fitted with a control chip such that it becomes a smart device. The smart device can communicate and operate collaboratively with the other devices to accomplish some designated tasks. The effectiveness of the presented method is verified by simulations and hardware tests.

  5. ANFIS -Based Navigation for HVAC Service Robot with Image Processing

    International Nuclear Information System (INIS)

    Salleh, Mohd Zoolfadli Md; Rashid, Nahrul Khair Alang Md; Mustafah, Yasir Mohd

    2013-01-01

    In this paper, we present an ongoing work on the autonomous navigation of a mobile service robot for Heat, Ventilation and Air Condition (HVAC) ducting. CCD camera mounted on the front-end of our robot is used to analyze the ducts openings (blob analysis) in order to differentiate them from other landmarks (blower fan, air outlets and etc). Distance between the robot and duct openings is measured using ultrasonic sensor. Controller chosen is ANFIS where its architecture accepts three inputs; recognition of duct openings, robot positions and distance while the outputs is maneuver direction (left or right).45 membership functions are created from which produces 46 training epochs. In order to demonstrate the functionality of the system, a working prototype is developed and tested inside HVAC ducting in ROBOCON Lab, IIUM

  6. HVAC system optimisation-in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L.; Cai, W.; Xie, L.; Li, S.; Soh, Y.C. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (Singapore)

    2004-07-01

    This paper presents a practical method to optimise in-building section of centralised Heating, Ventilation and Air-Conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimisation method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  7. HVAC system optimization - in-building section

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lu; Wenjian Cai; Lihua Xie; Shujiang Li; Yeng Chai Soh [Nanyang Technological Univ., Singapore (Singapore). School of Electrical and Electronic Engineering

    2005-01-01

    This paper presents a practical method to optimize in-building section of centralized Heating, Ventilation and Air-conditioning (HVAC) systems which consist of indoor air loops and chilled water loops. First, through component characteristic analysis, mathematical models associated with cooling loads and energy consumption for heat exchangers and energy consuming devices are established. By considering variation of cooling load of each end user, adaptive neuro-fuzzy inference system (ANFIS) is employed to model duct and pipe networks and obtain optimal differential pressure (DP) set points based on limited sensor information. A mix-integer nonlinear constraint optimization of system energy is formulated and solved by a modified genetic algorithm. The main feature of our paper is a systematic approach in optimizing the overall system energy consumption rather than that of individual component. A simulation study for a typical centralized HVAC system is provided to compare the proposed optimization method with traditional ones. The results show that the proposed method indeed improves the system performance significantly. (author)

  8. Energy Renovations: Volume 14: HVAC - A Guide for Contractors to Share with Homeowners

    Energy Technology Data Exchange (ETDEWEB)

    Gilbride, Theresa L.; Baechler, Michael C.; Hefty, Marye G.; Hand, James R.; Love, Pat M.

    2011-08-29

    This report was prepared by PNNL for DOE's Building America program and is intended as a guide that energy performance contractors can share with homeowners to describe various energy-efficient options for heating, cooling, and ventilating existing homes. The report provides descriptions of many common and not-so-common HVAC systems, including their advantages and disadvantages, efficiency ranges and characteristics of high-performance models, typical costs, and climate considerations. The report also provides decision trees and tables of useful information for homeowners who are making decisions about adding, replacing, or upgrading existing HVAC equipment in their homes. Information regarding home energy performance assessments (audits) and combustion safety issues when replacing HVAC equipment are also provided.

  9. Application of optimization techniques on lumped HVAC models for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoff, A.P. [Department of Mechanical Engineering, Villanova University, Villanova, PA 19085 (United States)

    2010-12-15

    Heating, ventilating, and air conditioning (HVAC) systems comprise nearly one third of annual household energy consumption in the United States. HVAC energy use can be reduced by applying controls. This study applies a novel control method on a system with arbitrary steady-state and transient load distributions. The new method uses multi-dimensional interpolation between optimized control configurations for various steady-state load distributions. Demonstration of the new method on a two-room HVAC system predicts power savings for an arbitrary steady load that is nearly equivalent to that using a Variable-Air-Volume (VAV) with chiller modulation. However, the new method provides better energy savings for arbitrary transient loads: 19% energy savings over an uncontrolled system compared to energy savings of 6% for a VAV with chiller modulation. The average transient temperature deviation from setpoint using the new method is slightly better than that using VAV with chiller modulation. (author)

  10. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  11. Assessment of auditory impression of the coolness and warmness of automotive HVAC noise.

    Science.gov (United States)

    Nakagawa, Seiji; Hotehama, Takuya; Kamiya, Masaru

    2017-07-01

    Noise induced by a heating, ventilation and air conditioning (HVAC) system in a vehicle is an important factor that affects the comfort of the interior of a car cabin. Much effort has been devoted to reduce noise levels, however, there is a need for a new sound design that addresses the noise problem from a different point of view. In this study, focusing on the auditory impression of automotive HVAC noise concerning coolness and warmness, psychoacoustical listening tests were performed using a paired comparison technique under various conditions of room temperature. Five stimuli were synthesized by stretching the spectral envelopes of recorded automotive HVAC noise to assess the effect of the spectral centroid, and were presented to normal-hearing subjects. Results show that the spectral centroid significantly affects the auditory impression concerning coolness and warmness; a higher spectral centroid induces a cooler auditory impression regardless of the room temperature.

  12. Mechanical ventilation with heat recovery in arctic climate

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    Mechanical ventilations systems with highly effective heat recovery units in arctic climate have problems with condensing water from the extracted humid indoor air. If the condensing water freezes to ice in the heat recovery unit, the airflow rate will quickly diminish due to the increasing...... pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......-energy house in Sisimiut, which is capable of continuously defrosting itself. The disadvantage of the unit is that it is quite big compared with other units. In this paper the new heat recovery unit is described and laboratory measurements are presented showing that the unit is capable of continuously...

  13. 29 CFR 1915.51 - Ventilation and protection in welding, cutting and heating.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ventilation and protection in welding, cutting and heating... Welding, Cutting and Heating § 1915.51 Ventilation and protection in welding, cutting and heating. (a) The... dust or dirt from clothing, or for cleaning the work area. (c) Welding, cutting and heating in confined...

  14. Monitoring-based HVAC commissioning of an existing office building for energy efficiency

    International Nuclear Information System (INIS)

    Wang, Liping; Greenberg, Steve; Fiegel, John; Rubalcava, Alma; Earni, Shankar; Pang, Xiufeng; Yin, Rongxin; Woodworth, Spencer; Hernandez-Maldonado, Jorge

    2013-01-01

    Highlights: ► Demonstrated monitoring-based HVAC commissioning using an existing office building. ► Diagnosed various types of faulty operation in the HVAC system by trend data analyses. ► Identified a list of energy saving measures for the HVAC system. ► Quantified energy saving potential for each commissioning measure using calibrated energy simulation model. ► Achieved an actual energy saving of 10% after the implementations of cost-effective measures. -- Abstract: The performance of Heating, Ventilation and Air Conditioning (HVAC) systems may fail to satisfy design expectations due to improper equipment installation, equipment degradation, sensor failures, or incorrect control sequences. Commissioning identifies and implements cost-effective operational and maintenance measures in buildings to bring them up to the design intent or optimum operation. An existing office building is used as a case study to demonstrate the process of commissioning. Building energy benchmarking tools are applied to evaluate the energy performance for screening opportunities at the whole building level. A large natural gas saving potential was indicated by the building benchmarking results. Faulty operations in the HVAC systems, such as improper operations of air-side economizers, simultaneous heating and cooling, and ineffective optimal start, were identified through trend data analyses and functional testing. The energy saving potential for each commissioning measure is quantified with a calibrated building simulation model. An actual energy saving of 10% was realized after the implementations of cost-effective measures.

  15. Economic Optimal HVAC Design for Hybrid GEOTABS Buildings and CO2 Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Damien Picard

    2018-02-01

    Full Text Available In the early design phase of a building, the task of the Heating, Ventilation and Air Conditioning (HVAC engineer is to propose an appropriate HVAC system for a given building. This system should provide thermal comfort to the building occupants at all time, meet the building owner’s specific requirements, and have minimal investment, running, maintenance and replacement costs (i.e., the total cost and energy use or environmental impact. Calculating these different aspects is highly time-consuming and the HVAC engineer will therefore only be able to compare a (very limited number of alternatives leading to suboptimal designs. This study presents therefore a Python tool that automates the generation of all possible scenarios for given thermal power profiles and energy load and a given database of HVAC components. The tool sizes each scenario properly, computes its present total cost (PC and the total CO 2 emissions associated with the building energy use. Finally, the different scenarios can be searched and classified to pick the most appropriate scenario. The tool uses static calculations based on standards, manufacturer data and basic assumptions similar to those made by engineers in the early design phase. The current version of the tool is further focused on hybrid GEOTABS building, which combines a GEOthermal heat pump with a Thermally Activated System (TABS. It should further be noted that the tool optimizes the HVAC system but not the building envelope, while, ideally, both should be simultaneously optimized.

  16. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  17. Heat Transfer and Fluid Flow in Naturally Ventilated Greenhouses

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2017-08-01

    Full Text Available In this paper, heat transfer and fluid flow in naturally ventilated greenhouses are studied numerically for tow configuration according to the number and positions of the opening. The equations governing the phenomenon are developed using the stream function-vorticity formalism and solved using the finite volume method. The aim of the study is to investigate how buoyancy forces influence airflow and temperature patterns inside the greenhouse. Rayleigh number is the main parameter which changes from 103 to 106 and Prandtl number is fixed at Pr=0.71. Results are reported in terms of stream function, isotherms and average Nusselt number. It is found that the flow structure is sensitive to the value of Rayleigh number and the number of openings. Also, that using asymmetric opening positions improve the natural ventilation and facilitate the occurrence of buoyancy induced upward cross-airflow inside the greenhouse.

  18. Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope

    Energy Technology Data Exchange (ETDEWEB)

    Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

    1997-03-05

    The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

  19. Experimental research of heat recuperators in ventilation systems on the basis of heat pipes

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available The paper presents the results of experimental studies of heat pipes and their thermo-technical characteristics (heat power, conductivity, heat transfer resistance, heat-transfer coefficient, temperature level and differential, etc.. The theoretical foundations and the experimental methods of the research of ammonia heat pipes made of aluminum section АS – КRА 7.5 – R1 (made of the alloy AD - 31 are explained. The paper includes the analysis of the thermo-technical characteristics of heat pipes as promising highly efficient heat transfer devices, which may be used as the basic elements of heat exchangers - heat recuperators for exhaust ventilation air, capable of providing energy-saving technologies in ventilation systems for housing and public utilities and for various branches of industry. The thermo-technical characteristics of heat pipes (HP as the basic elements of a decentralized supply-extract ventilation system (DSEVS and energy-saving technologies are analyzed. As shown in the test report of the ammonia horizontal HP made of the section АS-КRА 7,5-R1-120, this pipe ensures safe operation under various loads.

  20. Multi-objective optimization of HVAC system with an evolutionary computation algorithm

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Tang, Fan; Xu, Guanglin

    2011-01-01

    A data-mining approach for the optimization of a HVAC (heating, ventilation, and air conditioning) system is presented. A predictive model of the HVAC system is derived by data-mining algorithms, using a dataset collected from an experiment conducted at a research facility. To minimize the energy while maintaining the corresponding IAQ (indoor air quality) within a user-defined range, a multi-objective optimization model is developed. The solutions of this model are set points of the control system derived with an evolutionary computation algorithm. The controllable input variables - supply air temperature and supply air duct static pressure set points - are generated to reduce the energy use. The results produced by the evolutionary computation algorithm show that the control strategy saves energy by optimizing operations of an HVAC system. -- Highlights: → A data-mining approach for the optimization of a heating, ventilation, and air conditioning (HVAC) system is presented. → The data used in the project has been collected from an experiment conducted at an energy research facility. → The approach presented in the paper leads to accomplishing significant energy savings without compromising the indoor air quality. → The energy savings are accomplished by computing set points for the supply air temperature and the supply air duct static pressure.

  1. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  2. SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.M. Ansari

    2005-04-05

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

  3. Transactive Control of Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-30

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus for validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.

  4. Thermoeconomic Optimization of a Combined Heating and Humidification Coil for HVAC Systems

    Science.gov (United States)

    Teodoros, Liliana; Andresen, Bjarne

    2016-07-01

    The total cost of ownership is calculated for a combined heating and humidification coil of an air-handling unit taking into account investment and operation costs simultaneously. This total cost represents the optimization function for which the minimum is sought. The parameters for the cost dependencies are the physical dimensions of the coil: length, width and height. The term "coil" is used generically since in this setup it generates heating as well as humidification in a single unit. The first part of the paper deals with the constructive optimization and finds the relationship between the dimensions for a minimum cost. The second part of the paper takes the results of the constructive optimization further and, based on the data derived in our previous papers, analyzes the minimum total cost for the humidification coil while balancing the amount of water used to humidify the air and modify its temperature.

  5. Inspection and maintenance of HVAC systems : what you need to know; L'inspection et l'entretien des systemes de CVCA : ce qu'il faut savoir

    Energy Technology Data Exchange (ETDEWEB)

    Tapp, D. [Groupe Gesfor Poirier, Pinchin Inc., Montreal, PQ (Canada)

    2010-01-01

    This article described an inspection and maintenance program (IMP) that ensures the cleanliness of building's heating, ventilating and air conditioning (HVAC) system. Air quality can be compromised over time as dust accumulates in filters and on internal surfaces of an HVAC. Since mould spores and bacteria are significant components of dust, an excessive accumulation of dust in an HVAC system can lead to microbiological growth issues, particularly in humid conditions. Damaged dampers, missing screens and clogged or inefficient drains can generate indoor air quality issues. As such, preventive inspection of ventilation systems can identify deficiencies as well as future problems. This article also highlighted the integrated services provided by the Gesfor Poirier, Pinchin Group regarding industrial hygiene, health and safety inspection and remediation of HVAC systems and management of asbestos and other hazardous materials in buildings. 4 figs.

  6. Subjective evaluation of different ventilation concepts combined with radiant heating and cooling

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2012-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation and radiant heating/cooling systems. Two test setups simulated a room in a low energy building with a single occupant during winter. The room was equipped either by a ventilation system...... supplying warm air space heating or by a combination of radiant floor heating and mixing ventilation system. Next two test setups simulated an office room with two occupants during summer, ventilated and cooled by a single displacement ventilation system or by a radiant floor cooling combined...

  7. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Sriram; Armstrong, Peter R.; Belzer, David B.; Gaines, Suzanne C.; Hadley, Donald L.; Katipumula, S.; Smith, David L.; Winiarski, David W.

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equip-ment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  8. State of the Art of HVAC Technology in Europe and America

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; Kazanci, Ongun Berk

    2015-01-01

    of energy sources and energy generators are very much similar. This paper will present state-of the art-off energy efficient systems that will provide a good indoor environmental quality at a decreased energy use. Low Temperature Heating and High Temperature Cooling systems are an important requirement...... mechanisms and media to emit and remove heat or moisture from indoor spaces (e.g. hydronic radiant heating and cooling systems, fan-coil units, and active beams). The main differences between HVAC systems in Europe, North America and other parts of the world are often the indoor terminal units. Type...... for increasing the energy efficiency of HVAC (heating, ventilation and air-conditioning) systems and for increasing the amount of renewable energy used. Especially these types of systems are getting increasing attention in Europe and North-America. In the present study, operation characteristics, possibilities...

  9. 29 CFR 1926.353 - Ventilation and protection in welding, cutting, and heating.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ventilation and protection in welding, cutting, and heating... Welding and Cutting § 1926.353 Ventilation and protection in welding, cutting, and heating. (a) Mechanical... the work area. (b) Welding, cutting, and heating in confined spaces. (1) Except as provided in...

  10. Review on the HVAC System Modeling Types and the Shortcomings of Their Application

    Directory of Open Access Journals (Sweden)

    Raad Z. Homod

    2013-01-01

    Full Text Available The modeling of the heating, ventilation, and air conditioning (HVAC system is a prominent topic because of its relationship with energy savings and environmental, economical, and technological issues. The modeling of the HVAC system is concerned with the indoor thermal sensation, which is related to the modeling of building, air handling unit (AHU equipments, and indoor thermal processes. Until now, many HVAC system modeling approaches are made available, and the techniques have become quite mature. But there are some shortcomings in application and integration methods for the different types of the HVAC model. The application and integration processes will act to accumulate the defective characteristics for both AHU equipments and building models such as nonlinear, pure lag time, high thermal inertia, uncertain disturbance factors, large-scale systems, and constraints. This paper shows types of the HVAC model and the advantages and disadvantages for each application of them, and it finds out that the gray-box type is the best one to represent the indoor thermal comfort. But its application fails at the integration method where its response deviated to unreal behavior.

  11. Design and Implementation of Energy Efficiency in HVAC Systems Based on Robust PID Control for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-01-01

    Full Text Available Energy efficiency in heating, ventilating, and air-conditioning (HVAC systems is a primary concern in process projects, since the energy consumption has the highest percentage in HVAC for all processes. Without sacrifice of thermal comfort, to reset the suitable operating parameters, such as the humidity and air temperature, would have energy saving with immediate effect. In this paper, the simulation-optimization approach described the effective energy efficiency for HVAC systems which are used in industrial process. Due to the complex relationship of the HVAC system parameters, it is necessary to suggest optimum settings for different operations in response to the dynamic cooling loads and changing weather conditions during a year. Proportional-integral-derivative (PID programming was developed which can effectively handle the discrete, nonlinear and highly constrained optimization problems. Energy efficiency process has been made by controlling of alternative current (AC drivers for ventilation and exhaust fans, according to supplied air flow capacity and differential air pressure between supplied and exhaust air. Supervisory controller software was developed by using programmable controllers and human machine interface (HMI units. The new designed HVAC control system would have a saving potential of about 40% as compared to the existing operational settings, without any extra cost.

  12. Development and Design of a User Interface for a Computer Automated Heating, Ventilation, and Air Conditioning System

    International Nuclear Information System (INIS)

    Anderson, B.

    1999-01-01

    A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics. Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface

  13. RELIABILITY ANALYSIS OF THE ELECTRICAL POWER DISTRIBUTION SYSTEM TO SELECTED PORTIONS OF THE NUCLEAR HVAC SYSTEM

    International Nuclear Information System (INIS)

    Ramirez, N.

    2004-01-01

    A design requirement probability of 0.01 or less in a 4-hour period ensures that the nuclear heating, ventilation, and air-conditioning (HVAC) system in the primary confinement areas of the Dry Transfer Facilities (DTFs) and Fuel Handling Facility (FHF) is working during a Category 1 drop event involving commercial spent nuclear fuel (CSNF) assemblies (BSC 2004a , Section 5.1.1.48). This corresponds to an hourly HVAC failure rate of 2.5E-3 per hour or less, which is contributed to by two dominant causes: equipment failure and loss of electrical power. Meeting this minimum threshold ensures that a Category 1 initiating event followed by the failure of HVAC is a Category 2 event sequence. The two causes for the loss of electrical power include the loss of offsite power and the loss of onsite power distribution. Thus, in order to meet the threshold requirement aforementioned, the failure rate of mechanical equipment, loss of offsite power, and loss of onsite power distribution must be less than or equal to 2.5E-3 per hour for the nuclear HVAC system in the primary confinement areas of the DTFs and FHF. The loss of offsite power occurs at a frequency of 1.1E-5 per hour (BSC 2004a, Section 5.1.1.48). The purpose of this analysis is to determine the probability of occurrence of the unavailability of the nuclear HVAC system in the primary confinement areas of the DTFs and FHF due to loss of electrical power. In addition, this analysis provides insights on the contribution to the unavailability of the HVAC system due to equipment failure. The scope of this analysis is limited to finding the frequency of loss of electrical power to the nuclear HVAC system in the primary confinement areas of the DTFs and FHF

  14. Exergy optimization of cooling tower for HGSHP and HVAC applications

    International Nuclear Information System (INIS)

    Singh, Kuljeet; Das, Ranjan

    2017-01-01

    Highlights: • Development of new correlations for outlet parameters with all inlet parameters. • Simultaneous achievement of required heat load and minimum exergy destruction. • Multiple combinations of parameters found for same heat load at minimized exergy. • Study useful for optimum control of cooling tower under varying ambient conditions. • Generalized optimization study can be implemented for any mechanical cooling tower. - Abstract: In the present work, a constrained inverse optimization method for building cooling applications is proposed to control the mechanical draft wet cooling tower by minimizing the exergy destruction and satisfying an imposed heat load under varying environmental conditions. The optimization problem is formulated considering the cooling dominated heating, ventilation and air conditioning (HVAC) and hybrid ground source heat pump (HGSHP). As per the requirement, new second degree correlations for the tower outlet parameters (water temperature, air dry and wet-bulb temperatures) with five inlet parameters (dry-bulb temperature, relative humidity, water inlet temperature, water and air mass flow rates) are developed. The Box–Behnken design response surface method is implemented for developing the correlations. Subsequently, the constrained optimization problem is solved using augmented Lagrangian genetic algorithm. This work further developed optimum inlet parameters operating curves for the HGSHP and the HVAC systems under varying environmental conditions aimed at minimizing the exergy destruction along with the fulfillment of the required heat load.

  15. Energy Analysis of Selected Air Distribution System of Heating, Ventilation and Air Conditioning System: A Case Study of a Pharmaceutical Company

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR

    2017-07-01

    Full Text Available The higher energy consumption causes environmental degradation along with depletion of conventional energy resources. The share of energy consumption in buildings is increasing with urbanization and that ultimately requires effective measures for energy conservation. In buildings, HVAC (Heating Ventilation and Air Conditioning systems require huge amount of energy. This paper estimates the effects of compression of duct insulation of an HVAC system onthe auxiliary power consumption and temperature of supplied air. A mathematical model is developed in EES (Engineering Equation Solver to ascertain these effects. The simulation results show that the cooling loss due to the insulation compression is about 14%. By increasing the insulation thickness from 10-40mm at selected points, the heat gain is estimated to decrease from 4.29-2.46kW. In addition to that effects of compression of thermal insulation on GHG (Greenhouse Gas emission are investigated to reduce from 4.2-2.3kg/ kW. Subsequently, the AC (Auxiliary Consumption and temperature of the supplied air decrease by 5% and 0.4oC, respectively

  16. Ventilation and air heating systems. 5. rev. and enlarged ed. Lueftung und Luftheizung

    Energy Technology Data Exchange (ETDEWEB)

    Ihle, C. (Bundesfachschule fuer Sanitaer-, Heizungs- und Klimatechnik, Karlsruhe (Germany))

    1991-01-01

    Higher demands on the air quality of flats, offices and assembly rooms make ventilation and air heating the subjects of increasing interest. Taking into account the ever more urgent need for energy conservation the book deals with all aspects of ventilation on the basis of the recent DIN standards, VDI sheets and regulations. It may be used as an instruction manual, professional reference book or as a guide to practice-oriented subject selection with a minimum of theoretical fundamentals. The book deals with ventilation and air heating systems, free ventilation, design fundamentals, exercised for ventilation and air heating systems, central and decentralized ventilation systems, practical examples, ducts and calculation of ducts, air distribution, fans, noise formation, noise pollution abatement and heat recovery. (BWI) With 472 figs., 91 tabs., 1 separate map.

  17. Best practices guide for residential HVAC Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.

    2003-08-11

    energy saving systems (e.g., a Heat Recovery Ventilator) and/or materials. This is just like a doctor referring a patient for blood tests or x-rays before actually performing surgery. This way the doctor can be sure that he does the right thing. To take this analogy further--we can borrow from the medical profession and say that the first thought when retrofitting a house is to do no harm, i.e., do not make changes that could make the house worse to live in.

  18. Personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfill the above requirements. This paper reviews...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analyzed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  19. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  20. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated

  1. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate...

  2. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  3. HVAC systems and equipment

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S.T. (Linford Air and Refrigeration Company, Oakland, CA (US))

    1990-02-01

    The author discusses the section of the ASHRAE Standard 90.1-1989 which addresses HVAC systems and equipment. New features of HVAC systems mandatory general requirements are described. New prescriptive requirements are detailed.

  4. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment...... floor heating system was simulated, the cooler ventilation air introduced to the room mixed well and created uniform conditions with a ventilation effectiveness of about 1.......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices...

  5. In-the-loop simulation of electronic automatic temperature control systems: HVAC modeling

    Energy Technology Data Exchange (ETDEWEB)

    Domschke, R.; Matthes, M. [Visteon Deutschland GmbH, Kerpen (Germany)

    2006-07-01

    The Electronic Automatic Temperature Control (EATC) ensures the occupant comfort and provides safety features like rapid defrost and demist protection. Doing this, the EATC controller provides a direct interface to the end consumer and has a considerable impact on customer satisfaction. The In-the-loop (IL) simulation process is an integral part of Visteons model-based development process. It helps to design and calibrate the EATC controller. It consists of several IL simulation techniques like Model-in-the-loop (MIL), Software-in-the-loop (SIL) and Hardware-in-the-loop (HIL). In this article, we will focus on MIL/SIL Simulations. MIL/SIL allows simulation of the EATC controller in a virtual vehicle environment from the early states of and throughout the development process. This ensures a rapid, high quality and robust development process. The MIL/SIL model contains a thermal vehicle model, a heating, ventilation and air conditioning (HVAC) unit model and a model of the EATC controller itself. The thermal vehicle model simulates transient temperature and humidity conditions in the passenger compartment of a vehicle, settings from the controller, heat fluxes through the vehicle shell and windows, solar load and several further boundary conditions. Whereas the thermal vehicle model of a specific vehicle can be adapted from a default data base, one has to pay special attention to the HVAC unit model. Visteon has developed a special, physically based HVAC unit model to be adapted and implemented into the MIL/SIL simulation. This HVAC model enables a straightforward implementation of different HVAC architectures into the MIL/SIL simulation. Moreover, changes in the HVAC settings (i.e. different blower/scroll assemblies) can be assessed and the influence on passenger comfort can be quantified. Examples of the MIL/SIL simulation demonstrate the benefits of this approach. Results are discussed and a further outlook provided. (orig.)

  6. Sustainable Heating, Cooling and Ventilation of a Plus-Energy House via Photovoltaic/Thermal Panels

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Sevela, Pavel

    2014-01-01

    Present work addresses the HVAC and energy concerns of the Technical University of Denmark's house, Fold, for the competition Solar Decathlon Europe 2012. Various innovative solutions are investigated; photovoltaic/thermal (PV/T) panels, utilization of ground as a heat source/sink and phase change...... two separate systems. PV/T panels enable the house to perform as a plus-energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively. The ground heat exchanger acts as the heat sink/source of the house. Free cooling enables the same cooling effect...

  7. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    Science.gov (United States)

    2016-11-21

    through water evaporation , although some cooling also occurs due to sensible heat transfer . Cooling towers are very effective heat transfer devices... evaporator coil connected to the building heating , ventilation, and air conditioning (HVAC) system. The refrigerant evaporates in the coil, removing...vapor is directed to a condensing coil, where the refrigerant vapor condenses back into a liquid, releasing its heat of vaporization. During

  8. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system

    International Nuclear Information System (INIS)

    Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina

    2016-01-01

    Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.

  9. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    Science.gov (United States)

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.

  10. Designing the controllability of a HVAC-plant by dynamic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, V; Grindal, A

    1994-05-01

    This paper was presented at CLIMA 2000 - The international conference on energy and environmental matters in built environment, London, 1.-3. November 1993. Nowadays, HVAC engineers can use dynamic simulation programs in their everyday work. Such tools provide the ability to analyze different system configurations and to check the obtained states even before the building and plant are constructed. To encourage its wider use, the authors present in this paper the experiences obtained with the simulation program HVAC-DYNAMICS. The program was used to simulate the retrofitting of a heat recovery wheel to a conventional ventilation plant with a hot water heating coil. The effects of different design parameters on the controllability of the plant were investigated. Interestingly, some commonly recommended ``clever`` configurations can lead to unexpected control scenarios. 4 refs., 3 figs., 2 tabs.

  11. ISH. HVAC engineering yearbook 1999; ISH. Jahrbuch fuer Gebaeudetechnik 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The 1999 HVAC engineering yearbook contains contributions on energy conservation and optimization in the fields of ventilation and air conditioning: inter alia, solar cooling and air conditioning, optimum rating of ventilator units, and cooling ceilings with ventilation function. In the field of heating, the following topics are addressed, equally under the aspect of energy conservation: condensing boiler technology, hydraulic balancing of heating pipe systems and sequential boiler switching using fuzzy control. Further works deal with rational use of electricity in buildings, and building automation. 17 papers are individually listed in the Energy database. [Deutsch] Das Jahrbuch fuer Gebaeudetechnik 1999 enthaelt Beitraege zur Energieeinsparung und Optimierung auf den Gebieten Lueftung und Klimatisierung, u. a. solare Kuehlung und Klimatisierung, optimale Auslegung von Ventilator-Aggregaten und Kuehldecken mit Lueftungsfunktion. Auf dem Gebiet der Heizung werden ebenfalls unter dem Gesichtspunkt Energieeinsparung die Brennwerttechnologie, der hydraulische Abgleich von Heizungsrohrnetzen sowie Kesselfolgeschaltungen mit Fuzzy Control angesprochen. Weitere Arbeiten befassen sich mit der rationellen Elektrizitaetsverwendung in Geb auden sowie der Gebaeudeautomation. Fuer die Datenbank Energy wurden 17 Arbeiten separat aufgenommen.

  12. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...... levels so that the estimated ventilation rate was the lowest compared with the classrooms ventilated with other systems. Temperatures were slightly lower in classroom ventilated by manually operable windows with exhaust fan. Windows were opened seldom even in the classroom ventilated by manually operable...

  13. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  14. Assessing ventilation system performance in isolation rooms

    Energy Technology Data Exchange (ETDEWEB)

    Balocco, Carla [Department of Energy Engineering ' ' Sergio Stecco' ' , via S. Marta 3, Firenze (Italy); Lio, Pietro [Computer Laboratory, University of Cambridge, 15 JJ Thompson Avenue, CB03FD Cambridge (United Kingdom)

    2011-01-15

    In this paper numerical transient simulations were used to investigate the air flow patterns, distribution and velocity, and the particulate dispersion inside an existing typical hospitalization room equipped with an advanced Heating Ventilation Air Conditioning (HVAC), with Variable Air Volume (VAV) primary air system designed for immune-suppressed patients never modelled before. The three-dimensional models of the room consider different, most typical, positions of the patients. Results indicate the best conditions for the high induction air inlet diffuser and the scheme of pressures imposed in the room to provide the effective means of controlling flows containing virus droplets. We believe that our work exemplifies the usefulness of numerical investigations of HVAC performances in real situations and provides important recommendations towards disease control and careful design and optimization of ventilation in hospital settings. (author)

  15. The effect of location of a convective heat source on displacement ventilation: CFD study

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.J.; Holland, D. [Dunham Associates, Inc., Minneapolis, MN (United States). Advanced Technologies Group

    2001-08-01

    Two-dimensional computational simulations are performed to examine the effect of vertical location of a convective heat source on thermal displacement ventilation systems. In this study, a heat source is modeled with seven different heights from the floor (0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 m) in a displacement ventilation environment. The flow and temperature fields in thermal displacement ventilation systems vary depending on the location of the heat source. As the heat source rises, the convective heat gain from the heat source to an occupied zone becomes less significant. This effect changes the temperature field and results in the reduction of the cooling load in the occupied zone. The stratification level is also affected by the heat source location at a given flow rate. (author)

  16. Energy Performance and CO2 Emissions of HVAC Systems in Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Rafat Al-Waked

    2017-10-01

    Full Text Available Energy performance of buildings has attracted much attention among building physicists and engineers worldwide. The effects of building heating; ventilation; and air conditioning (HVAC systems’ design upgrade on the building energy performance are the focus of the current study. The adopted HVAC system consisted of chilled ceiling and chilled beam systems served by a centrifugal water chiller. An energy simulation study was undertaken in accordance with the national Australian built environment rating system-rules for collecting and using data. A three-dimensional simulation study was carried out utilizing the virtual environment-integrated environmental solutions software. Results from the current study have shown the importance of utilizing energy-efficient HVAC systems and HVAC strategies for achieving a high building energy star rating. Recommended strategies in order to achieve the nominated star rating; as predicted by the simulation analysis; were presented. Moreover; the effects of solar radiation inside the building atrium were significant; which cannot be overcome by simply installing a low shading coefficient glazing type at the atrium skylight. In addition to providing chilled ceiling technology; a high efficiency chiller and low energy lighting; it is recommended that the building be well tuned during the commissioning period. The current approach could be extended to accommodate higher energy ratings of commercial buildings at different locations worldwide.

  17. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  18. Development of a plastic rotary heat exchanger for room-based ventilation in existing apartments

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Svendsen, Svend

    2015-01-01

    The existing building stock will likely undergo widespread energy renovations to meet future emissions targets. Single-room ventilation may enable the process due to its simple installation, low fan power, and potential for local heat recovery. A short plastic rotary heat exchanger is developed...... for single-room ventilation based on thermal design theory. Performance is predicted from correlations of dimensionless groups for regenerative heat exchangers, and this guides the selection of a polycarbonate honeycomb with small circular channels. Experiments quantify flows and determine temperature...... efficiencies at several ventilation rates while accounting for heat gains from motors and air leakage. The measured and modelled temperature efficiencies show adequate agreement and exceed 80% for a balanced nominal ventilation rate of 28m3/h. This result meets the development criteria but cannot validate...

  19. Use of Disinfectants and Sanitizers in Heating, Ventilation, Air Conditioning, and Refrigeration Systems

    Science.gov (United States)

    This letter is to brings attention several concerns that the Agency has regarding the use of sanitizer and/or disinfectant products, and other types of antimicrobial products, to treat the surfaces of heating, ventilation

  20. Improving comfort and health with personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    The thermal environment and air quality in buildings affects occupants¿ health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analysed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  1. Shivering and rewarming after cardiac surgery: comparison of ventilator circuits with humidifier and heated wires to heat and moisture exchangers.

    Science.gov (United States)

    McEvoy, M T; Carey, T J

    1995-07-01

    Detrimental physiologic effects of shivering in the cardiac surgery patient have been well documented. Rewarming techniques have been compared, with noted differences in the incidence of shivering. Ventilator circuits have not been examined independently from other rewarming variables. To compare heated wire humidification circuits with heat and moisture exchanger circuits on the incidence of shivering and speed and pattern of rewarming in mechanically ventilated patients. A prospective, descriptive, correlational study was done on 140 adult cardiac surgery patients in a university teaching medical center. All subjects underwent cardiac surgical procedures with hypothermic cardiopulmonary bypass. Subjects were randomized to humidified, heated wire circuits (n = 70) or heat and moisture exchanger circuits (n = 70). Heated water blankets were used on all patients. Mean intensive care unit admission temperature was 35.28 degrees C. No statistical differences were found in preoperative, demographic, or operative course data between treatment and control groups. Shivering was more common in the heat and moisture exchanger group than in the heated wire group. In our analysis, the only variable associated with shivering was the type of ventilator circuit. Patients using heated wire systems rewarmed more rapidly and had significantly higher temperatures than did patients using heat and moisture exchangers. These data suggest that use of heated wire humidified ventilator circuits with heated water blankets in adult cardiac surgery patients significantly reduces the incidence of shivering and results in a more rapid return to normothermia.

  2. HVAC systems design handbook

    CERN Document Server

    Haines, Roger W

    2010-01-01

    Thoroughly updated with the latest codes, technologies, and practices, this all-in-one resource provides details, calculations, and specifications for designing efficient and effective residential, commercial, and industrial HVAC systems. HVAC Systems Design Handbook, Fifth Edition, features new information on energy conservation and computer usage for design and control, as well as the most recent International Code Council (ICC) Mechanical Code requirements. Detailed illustrations, tables, and essential HVAC equations are also included. This comprehensive guide contains everything you need to design, operate, and maintain peak-performing HVAC systems.

  3. Flow Conditions in a Mechanically Ventilated Room with a Convective Heat Source

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    The ventilation of a test room (LxWxH = 5.4x3.6x2.4 m) with a wall mounted heat source is investigated for two different air terminal devices.......The ventilation of a test room (LxWxH = 5.4x3.6x2.4 m) with a wall mounted heat source is investigated for two different air terminal devices....

  4. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the

  5. Impact of Air Distribution on Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Artmann, Nikolai; Jensen, Rasmus Lund

    2009-01-01

    Passive cooling by night-time ventilation is seen as a promising approach for energy efficient cooling of buildings. However, uncertainties in prediction of cooling potential and consequenses for thermal comfort restrain architects and engineers from applying this technique. Heat transfer...... at internal room surfaces determines the performance of night-time ventilation. In order to improve predictability, heat transfer mechanism in case of either mixing or displacement ventilation has been investigated in a full scale test room with an exposed ceiling as the dominating thermal mass. The influence...... of air distribution principle, air flow rate and inlet air temperature were investigated. Results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher airflow rates the air jet flowing along the ceiling has a significant effect, and mixing...

  6. Diffuse Ceiling Ventilation and the Influence of Room Height and Heat Load Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Vilsbøll, Rasmus W; Liu, Li

    2015-01-01

    Diffuse ceiling (inlet) ventilation is an air distribution system that supplies air from the entire ceiling surface, giving a low supply velocity. The flow pattern in the room is controlled by the heat sources. The system generates high mixing flow and the air velocities in the room are expected...... to be not much influenced by the flow rate to the room but dependent on the heat load. Previous studies have shown that diffuse ceiling ventilation has an ability to remove large heat loads without compromising the indoor climate. However, recent experiments indicate that the maximum accepted heat load decreases...... with a large room height and it decreases in connection with certain heat load distributions. Room geometries and heat load distributions that are optimal for diffuse ceiling ventilation are discussed. A simplified design procedure is introduced....

  7. Smart HVAC Control in IoT: Energy Consumption Minimization with User Comfort Constraints

    Directory of Open Access Journals (Sweden)

    Jordi Serra

    2014-01-01

    of heating, ventilation, and air conditioning (HVAC systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user’s preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user’s device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  8. Control of Single-room Ventilation with Regenerative Heat Recovery for Indoor Climate and Energy Performance

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Svendsen, Svend

    2016-01-01

    constructions and will soon require 85%. The development of single-room ventilation units may aim for these requirements as a result. The exhaust temperatures in highly efficient heat exchangers may approach outdoor levels. The cold exhaust cannot contain ample moisture, so vapour will condense on the heat...... exchanger. Available literature suggests that uncoated rotary heat exchangers transfer this condensate to the supply air, so the drying capacity of the ventilation system may be severely limited. This could raise indoor relative humidities to unsafe levels, which could promote the growth of dust......-mites and mould. Controls may increase drying capacity by increasing ventilation airflow, but this may not be sufficient to limit moisture-related risks. This research investigated the added demand-control measure of reducing variable heat recovery to increase drying capacity when using an uncoated rotary heat...

  9. Rapid Deployment of Optimal Control for Building HVAC Systems Using Innovative Software Tools and a Hybrid Heuristic/Model Based Control Approach

    Science.gov (United States)

    2017-03-21

    Tutorial. European Journal Of Control. Vol 13/2-3, pp 242–260. Parrish, K., J. Granderson, A. Mercado, P. Mathew. 2013. Improving Energy Efficiency...successfully, the project as a whole was not able to successfully demonstrate the technology. Anecdotal evidence, academic studies, and system simulations...Oceanography Center HVAC heating, ventilating, and air-conditioning NPS Naval Postgraduate School NRL U.S. Naval Research Laboratory NSAM Naval

  10. Heated humidification versus heat and moisture exchangers for ventilated adults and children.

    Science.gov (United States)

    Kelly, Margaret; Gillies, Donna; Todd, David A; Lockwood, Catherine

    2010-10-01

    Humidification by artificial means must be provided when the upper airway is bypassed during mechanical ventilation. Heated humidification (HH) and heat and moisture exchangers (HMEs) are the most commonly used types of artificial humidification in this situation. To determine whether HHs or HMES are more effective in preventing mortality and other complications in people who are mechanically ventilated. We searched the Cochrane Central Register of Controlled Trials (The Cochrane Library 2010, Issue 4) and MEDLINE, EMBASE and CINAHL (January, 2010) to identify relevant randomized controlled trials. We included randomized controlled trials comparing HMEs to HHs in mechanically ventilated adults and children. We included randomized crossover studies. We assessed the quality of each study and extracted the relevant data. Where appropriate, results from relevant studies were meta-analyzed for individual outcomes. We included 33 trials with 2833 participants; 25 studies were parallel group design (n = 2710) and 8 crossover design (n = 123). Only 3 included studies reported data for infants or children. There was no overall effect on artificial airway occlusion, mortality, pneumonia, or respiratory complications; however, the PaCO(2) and minute ventilation were increased when HMEs were compared to HHs and body temperature was lower. The cost of HMEs was lower in all studies that reported this outcome. There was some evidence that hydrophobic HMEs may reduce the risk of pneumonia and that blockages of artificial airways may be increased with the use of HMEs in certain subgroups of patients. There is little evidence of an overall difference between HMEs and HHs. However, hydrophobic HMEs may reduce the risk of pneumonia and the use of an HMEs may increase artificial airway occlusion in certain subgroups of patients. Therefore, HMEs may not be suitable for patients with limited respiratory reserve or prone to airway blockage. Further research is needed relating to

  11. Non-linear HVAC computations using least square support vector machines

    International Nuclear Information System (INIS)

    Kumar, Mahendra; Kar, I.N.

    2009-01-01

    This paper aims to demonstrate application of least square support vector machines (LS-SVM) to model two complex heating, ventilating and air-conditioning (HVAC) relationships. The two applications considered are the estimation of the predicted mean vote (PMV) for thermal comfort and the generation of psychrometric chart. LS-SVM has the potential for quick, exact representations and also possesses a structure that facilitates hardware implementation. The results show very good agreement between function values computed from conventional model and LS-SVM model in real time. The robustness of LS-SVM models against input noises has also been analyzed.

  12. Ontology for Life-Cycle Modeling of Heating, Ventilating, and Air Conditioning (HVAC) Systems: Experimental Applications Using Revit

    Science.gov (United States)

    2012-03-01

    International Alliance for Interoperability (e.g., Wix 2007 and Hietanen 2008). 1 ERDC...pdf Wix J. ed, 2007. Information Delivery Manual: Guide to Components and Development Methods. Available at: http://www.iai.no/idm/idm_resources

  13. VARIABLE SPEED INTEGRATED INTELLIGENT HVAC BLOWER

    Energy Technology Data Exchange (ETDEWEB)

    Shixiao Wang; Herman Wiegman; Wilson Wu; John Down; Luana Iorio; Asha Devarajan; Jing Wang; Ralph Carl; Charlie Stephens; Jeannine Jones; Paul Szczesny

    2001-11-14

    This comprehensive topical report discusses the key findings in the development of a intelligent integrated blower for HVAC applications. The benefits of rearward inclined blades over that of traditional forward inclined blades is well documented and a prototype blower design is presented. A comparison of the proposed blower to that of three typical units from the industry is presented. The design of the blower housing is also addressed and the impact of size limitations on static efficiency is discussed. Issues of air flow controllability in the rearward inclined blower is addressed and a solution to this problem is proposed. Several motor design options are discussed including inside-out radial flux designs and novel axial flux designs, all are focused on the various blower needs. The control of the motor-blower and airflow through the use of a high density inverter stage and modern digital signal processor is presented. The key technical challenges of the approach are discussed. The use of the motor as a sensor in the larger heating/ventilating system is also discussed. Diagnostic results for both the motor itself and the blower system are presented.

  14. Energy efficient heating and ventilation of large halls

    CERN Document Server

    Hojer, Ondrej; Kabele, Karel; Kotrbaty, Miroslav; Sommer, Klaus; Petras, Dusan

    2011-01-01

    This guidebook is focused on modern methods for design, control and operation of energy efficient heating systems in large spaces and industrial halls. The book deals with thermal comfort, light and dark gas radiant heaters, panel radiant heating, floor heating and industrial air heating systems. Various heating systems are illustrated with case studies. Design principles, methods and modeling tools are presented for various systems.

  15. VENTILATION MODEL

    International Nuclear Information System (INIS)

    V. Chipman

    2002-01-01

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses

  16. Filtration effectiveness of HVAC systems at near-roadway schools.

    Science.gov (United States)

    McCarthy, M C; Ludwig, J F; Brown, S G; Vaughn, D L; Roberts, P T

    2013-06-01

    Concern for the exposure of children attending schools located near busy roadways to toxic, traffic-related air pollutants has raised questions regarding the environmental benefits of advanced heating, ventilation, and air-conditioning (HVAC) filtration systems for near-road pollution. Levels of black carbon and gaseous pollutants were measured at three indoor classroom sites and at seven outdoor monitoring sites at Las Vegas schools. Initial HVAC filtration systems effected a 31-66% reduction in black carbon particle concentrations inside three schools compared with ambient air concentrations. After improved filtration systems were installed, black carbon particle concentrations were reduced by 74-97% inside three classrooms relative to ambient air concentrations. Average black carbon particle concentrations inside the schools with improved filtration systems were lower than typical ambient Las Vegas concentrations by 49-96%. Gaseous pollutants were higher indoors than outdoors. The higher indoor concentrations most likely originated at least partially from indoor sources, which were not targeted as part of this intervention. Recent literature has demonstrated adverse health effects in subjects exposed to ambient air near major roadways. Current smart growth planning and infill development often require that buildings such as schools are built near major roadways. Improving the filtration systems of a school's HVAC system was shown to decrease children's exposure to near-roadway diesel particulate matter. However, reducing exposure to the gas-phase air toxics, which primarily originated from indoor sources, may require multiple filter passes on recirculated air. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  17. Intelligent control of HVAC systems. Part II: perceptron performance analysis

    Directory of Open Access Journals (Sweden)

    Ioan URSU

    2013-09-01

    Full Text Available This is the second part of a paper on intelligent type control of Heating, Ventilating, and Air-Conditioning (HVAC systems. The whole study proposes a unified approach in the design of intelligent control for such systems, to ensure high energy efficiency and air quality improving. In the first part of the study it is considered as benchmark system a single thermal space HVAC system, for which it is assigned a mathematical model of the controlled system and a mathematical model(algorithm of intelligent control synthesis. The conception of the intelligent control is of switching type, between a simple neural network, a perceptron, which aims to decrease (optimize a cost index,and a fuzzy logic component, having supervisory antisaturating role for neuro-control. Based on numerical simulations, this Part II focuses on the analysis of system operation in the presence only ofthe neural control component. Working of the entire neuro-fuzzy system will be reported in a third part of the study.

  18. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  19. CLEAN-AIR heat pump. Reduced energy consumption for ventilation in buildings by integrating air cleaning and heat pump. Final Report; CLEAN-AIR heat pump - Reduceret energiforbrug til ventilation af bygninger ved luftrensning integreret med luft varmepumpe. Slut rapport

    Energy Technology Data Exchange (ETDEWEB)

    Fang, L.; Olesen, Bjarne W.; Molinaro, G.; Simmonsen, P.; Skocajic, S. [Danmarks Tekniske Univ. Institut for Byggeri og Anlaeg, Lyngby (Denmark); Hummelshoej, R.M.; Carlassara, L. [COWI A/S, Lyngby, (Denmark); Groenbaek, H.; Hansen, Ole R. [Exhausto A/S, Langeskov (Denmark)

    2011-07-01

    This report summarizes task 1 of the Clean Air Heat Pump project - modelling and simulation on energy savings when using the clean air heat pump for ventilation, air cleaning and energy recovery. The total energy consumption of the proposed ventilation systems using clean air heat pump technology was calculated by a theoretical model and compared with the reference ventilation systems (conventional ventilation systems). The energy compared between the two systems includes energy used for heating, cooling and fan. The simulation and energy saving calculation was made for the application of the clean air heat pump in three typical climate conditions, i.e. mild-cold, mild-hot and hot and wet climates. Real climate data recorded from three cities in 2002 was used for the calculation. The three cities were Copenhagen (Denmark), Milan (Italy) and Colombo (Sir Lanka) which represent the above three typical climate zones. For the Danish climate (the mild cold climate), the calculations show that the ventilation system using clean air heat pump technology can save up to 42% of energy cost in winter compared to the conventional ventilation system. The energy saving in summer can be as high as 66% for the ventilation system with humidity control and 9% for the ventilation system without the requirement of humidity control. Since the Danish summer climate is very mild, over 80% of the yearly energy consumption for ventilation is used during winter season. It is, therefore, estimated that more than 35% annual energy saving for ventilation is expected in Denmark using the clean air heat pump ventilation technology. For the mild hot climate, e.g. the Italian climate, the calculations show that up to 63% of the energy saving can be achieved in summer season. For the winter mode, 17% reduction of the energy cost can be expected for the domestic use. For industrial use, the energy cost of the clean air heat pump may not be favourable due to the industrial price of gas in Italy is

  20. Report on HVAC option selections for a relocatable classroom energy and indoor environmental quality field study; TOPICAL

    International Nuclear Information System (INIS)

    Apte, Michael G.; Delp, Woody W.; Diamond, Richard C.; Hodgson, Alfred T.; Kumar, Satish; Rainer, Leo I.; Shendell, Derek G.; Sullivan, Doug P.; Fisk, William J.

    2001-01-01

    It is commonly assumed that efforts to simultaneously develop energy efficient building technologies and to improve indoor environmental quality (IEQ) are unfeasible. The primary reason for this is that IEQ improvements often require additional ventilation that is costly from an energy standpoint. It is currently thought that health and productivity in work and learning environments requires adequate, if not superior, IEQ. Despite common assumptions, opportunities do exist to design building systems that provide improvements in both energy efficiency and IEQ. This report outlines the selection of a heating, ventilation, and air conditioning (HVAC) system to be used in demonstrating such an opportunity in a field study using relocatable school classrooms. Standard classrooms use a common wall mounted heat pump HVAC system. After reviewing alternative systems, a wall-mounting indirect/direct evaporative cooling system with an integral hydronic gas heating is selected. The anticipated advantages of this system include continuous ventilation of 100 percent outside air at or above minimum standards, projected cooling energy reductions of about 70 percent, inexpensive gas heating, improved airborne particle filtration, and reduced peak load electricity use. Potential disadvantages include restricted climate regions and possible increases in indoor relative humidity levels under some conditions

  1. Cost Efficient Optimization Based Supervisory Controller for Supermarket Subsystems with Heat Recovery

    DEFF Research Database (Denmark)

    Minko, Tomasz; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2015-01-01

    In this paper, we present a simple modelling approach for a thermal system, which consists of heating, ventilation, air conditioning system (HVAC) and a vapor compression cycle (VCC) system, with one loop heat recovery. In addition a simple model for water tank is presented, in which the reclaimed...

  2. The method of UCN "small heating" measurement in the big gravitational spectrometer (BGS) and studies of this effect on Fomblin oil Y-HVAC 18/8

    Science.gov (United States)

    Nesvizhevsky, V. V.; Voronin, A. Yu.; Lambrecht, A.; Reynaud, S.; Lychagin, E. V.; Muzychka, A. Yu.; Nekhaev, G. V.; Strelkov, A. V.

    2018-02-01

    The Big Gravitational Spectrometer (BGS) takes advantage of the strong influence of the Earth's gravity on the motion of ultracold neutrons (UCNs) that makes it possible to shape and measure UCN spectra. We optimized the BGS to investigate the "small heating" of UCNs, that is, the inelastic reflection of UCNs from a surface accompanied by an energy change comparable with the initial UCN energy. UCNs whose energy increases are referred to as "Vaporized UCNs" (VUCNs). The BGS provides the narrowest UCN spectra of a few cm and the broadest "visible" VUCN energy range of up to ˜150 cm (UCN energy is given in units of its maximum height in the Earth's gravitational field, where 1.00 cm ≈ 1.02 neV). The dead-zone between the UCN and VUCN spectra is the narrowest ever achieved (a few cm). We performed measurements with and without samples without breaking vacuum. BGS provides the broadest range of temperatures (77-600 K) and the highest sensitivity to the small heating effect, up to ˜10-8 per bounce, i.e., two orders of magnitude higher than the sensitivity of alternative methods. We describe the method to measure the probability of UCN "small heating" using the BGS and illustrate it with a study of samples of the hydrogen-free oil Fomblin Y-HVAC 18/8. The data obtained are well reproducible, do not depend on sample thickness, and do not evolve over time. The measured model-independent probability P+ of UCN small heating from an energy "mono-line" 30.2 ± 2.5 cm to the energy range 35-140 cm is in the range (1.05 ±0.02s t a t )×1 0-5-(1.31 ±0.24s t a t )×1 0-5 at a temperature of 24 °C. The associated systematic uncertainty would disappear if a VUCN spectrum shape were known, for instance, from a particular model of small heating. This experiment provides the most precise and reliable value of small heating probability on Fomblin measured so far. These results are of importance for studies of UCN small heating as well as for analyzing and designing neutron

  3. The method of UCN "small heating" measurement in the big gravitational spectrometer (BGS) and studies of this effect on Fomblin oil Y-HVAC 18/8.

    Science.gov (United States)

    Nesvizhevsky, V V; Voronin, A Yu; Lambrecht, A; Reynaud, S; Lychagin, E V; Muzychka, A Yu; Nekhaev, G V; Strelkov, A V

    2018-02-01

    The Big Gravitational Spectrometer (BGS) takes advantage of the strong influence of the Earth's gravity on the motion of ultracold neutrons (UCNs) that makes it possible to shape and measure UCN spectra. We optimized the BGS to investigate the "small heating" of UCNs, that is, the inelastic reflection of UCNs from a surface accompanied by an energy change comparable with the initial UCN energy. UCNs whose energy increases are referred to as "Vaporized UCNs" (VUCNs). The BGS provides the narrowest UCN spectra of a few cm and the broadest "visible" VUCN energy range of up to ∼150 cm (UCN energy is given in units of its maximum height in the Earth's gravitational field, where 1.00 cm ≈ 1.02 neV). The dead-zone between the UCN and VUCN spectra is the narrowest ever achieved (a few cm). We performed measurements with and without samples without breaking vacuum. BGS provides the broadest range of temperatures (77-600 K) and the highest sensitivity to the small heating effect, up to ∼10 -8 per bounce, i.e., two orders of magnitude higher than the sensitivity of alternative methods. We describe the method to measure the probability of UCN "small heating" using the BGS and illustrate it with a study of samples of the hydrogen-free oil Fomblin Y-HVAC 18/8. The data obtained are well reproducible, do not depend on sample thickness, and do not evolve over time. The measured model-independent probability P + of UCN small heating from an energy "mono-line" 30.2 ± 2.5 cm to the energy range 35-140 cm is in the range 1.05±0.02 stat ×10 -5 -1.31±0.24 stat ×10 -5 at a temperature of 24 °C. The associated systematic uncertainty would disappear if a VUCN spectrum shape were known, for instance, from a particular model of small heating. This experiment provides the most precise and reliable value of small heating probability on Fomblin measured so far. These results are of importance for studies of UCN small heating as well as for analyzing and designing neutron lifetime

  4. Analytical and experimental analysis of a low-pressure heat exchanger suitable for passive ventilation

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2011-01-01

    AbstractA core element in sustainable ventilation systems is the heat recovery system. Conventional heat recovery systems have a high pressure drop that acts as blockage to naturally driven airflow. The heat recovery system we propose here consists of two separated air-to-liquid heat exchangers...... interconnected by a liquid loop powered by a pump ideal as a component in a heat recovery system for passive ventilation systems. This paper describes the analytical framework and the experimental development of one exchanger in the liquid-loop. The exchanger was constructed from the 8mm plastic tubing...... that is commonly used in water-based floor-heating systems. The pressure loss and temperature exchange efficiency was measured. For a design airflow rate of 560L/s, the pressure loss was 0.37Pa and the efficiency was 75.6%. The experimental results agree well with the literature or numerical fluid calculations...

  5. Solar Sustainable Heating, Cooling and Ventilation of a Net Zero Energy House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Skrupskelis, Martynas; Olesen, Bjarne W.

    Present work addresses the heating, cooling and ventilation concerns of the Technical University of Denmark’s house, Fold, for Solar Decathlon Europe 2012. Various innovative approaches are investigated, namely, utilization of ground, photo-voltaic/thermal (PV/T) panels and phase change materials...... (PCM). The ground heat exchanger acts as the heat sink and heat source for cooling and heating seasons, respectively. Free cooling enables the same cooling effect to be delivered with 8% of the energy consumption of a representative chiller. The heating and cooling needs of the house are addressed...... by the embedded pipes which are coupled with the ground. Ventilation is mainly used to control the humidity and to remove sensory and chemical pollution. PV/T panels enable the house to be a “plus” energy house. PV/T also yields to a solar fraction of 63% and 31% for Madrid and Copenhagen, respectively...

  6. Experimental Investigation of Convective Heat Transfer during Night Cooling with Different Ventilation Systems and Surface Emissivities

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    models for convection. In a full-scale test room, the heat transfer was investigated during 12 h of discharge by night-time ventilation. A total of 34 experiments have been performed, with different ventilation types (mixing and displacement), air change rates, temperature differences between the inlet...... air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations....... For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement...

  7. Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Lionel Druette

    2013-01-01

    Full Text Available This paper presents a new air-heating system concept for energy-efficient dwellings. It is a system designed to heat a low-energy building by coupling a heat-recovery ventilation system with a three-fluid heat exchanger located on the chimney of a wood-pellet stove. The proposed work focuses on the heat transfer that occurs between flue gases, the ventilation air and the combustion air within a triple concentric tube heat exchanger with no insulation at its outer surface. The main objective is to predict outlet temperature for the specific geometry of the heat exchanger studied here. Thus, the governing differential equations are derived for a counter-co-current flow arrangement of the three fluids. Then analytical solutions for the steady-state temperature distribution are obtained as well as the amount of heat transferred to the outside. An expression for the effectiveness of the heat exchanger is also proposed. Based on these results, calculations are performed on a case study to predict the fluid temperature distribution along the heat exchanger. Finally, a parametric study is carried out on this case study to assess the influence of the relevant parameters on the effectiveness of the heat exchanger. In addition, computation of heat losses to the outside justifies whether insulation is needed.

  8. Solar Heat Gain Reduction of Ventilated Double Skin Windows without a Shading Device

    Directory of Open Access Journals (Sweden)

    Bokyoung Koo

    2017-12-01

    Full Text Available With global efforts to strengthen various energy-saving policies for buildings to reduce greenhouse gas emissions, in South Korea, new laws and regulations have been in force since May 2015 to install shading devices in public buildings and to include the solar heat gain coefficient (SHGC reduction performance of shading devices in the evaluation of building performance. By making a ventilated air layer outer glass and inner glass to lower the temperatures of the air layer and glass surface, it is possible to reduce the amount of heat flowing into the building while maintaining the same level of light transmission as plain window systems. This study proposes a double-skin façade window with a 20 mm ventilated air cavity, and assumes that insolation inflow indoors would be reduced through ventilation in the air cavity. The artificial solar lab test results show that the SHGC can be lowered through ventilation by 28% to 52.9%. Additionally, in an outdoor test cell experiment, the results show that the mean temperature was 0.6 K and the peak temperature was 0.9 K lower with ventilation in the air cavity than that without ventilation in the air cavity.

  9. Influence of the ventilation system on thermal comfort of the chilled panel system in heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zhe; Ding, Yan; Wang, Shuo; Yin, Xinglei; Wang, Menglei [Tianjin University, Tianjin 300072 (China)

    2010-12-15

    In heating mode, fresh air is still essential for a chilled panel system in order to ensure the indoor air quality. In this paper, a chilled ceiling panel system was designed and built in a typical office room. The thermal environment and thermal comfort in the room were fully measured and evaluated by using the Fanger's PMV-PPD model and the standard of ISO 7730 respectively, when room was heated in two modes, one of which is the chilled panel heating mode and the other of which is the combined heating mode of chilled panel and supply air. The research results indicate that in the combined mode, ceiling ventilation improves the general thermal comfort and reduces the risk of local discomfort. Under the condition of same general thermal comfort, the heating supply upper limit of chilled panel can be increased by 12.3% because of air mixing effect caused by introduction of air ventilation. (author)

  10. Experimental study including subjective evaluations of mixing and displacement ventilation combined with radiant floor heating/cooling system

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2013-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation systems and radiant heating/cooling systems. In the first two tests, the simulated residential room was equipped either by a mixing ventilation system supplying warm air for space heat...

  11. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  12. Analysis on energy saving potential of integrated supermarket HVAC and refrigeration systems using multiple subcoolers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China); Zhang, Chun-Lu [China R and D Center, Carrier Corporation, No. 3239 Shen Jiang Road, Shanghai 201206 (China)

    2010-02-15

    The paper presents a model-based analysis on the energy saving potential of supermarket HVAC (heating, ventilating, and air-conditioning) and refrigeration systems using multiple subcoolers among the high-temperature HVAC system, the medium-temperature refrigeration system, and the low-temperature refrigeration system. The principle of energy reduction is to have the higher COP (coefficient of performance) system generate more cooling capacity to increase the cooling capacity or reduce the power consumption of the lower COP system. The subcooler could be placed between the medium-temperature and low-temperature systems, between the high-temperature and medium-temperature systems, and between the high-temperature and low-temperature systems. All integration scenarios of adding one, two and three subcoolers have been investigated. The energy saving potential varies with the load ratio between high-, medium- and low-temperature systems, COP of three systems, and the ''on-off'' duty time of HVAC system. The optimal sequence of adding subcoolers is also proposed. (author)

  13. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters.

    Science.gov (United States)

    Calfee, M Worth; Rose, Laura J; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2014-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p≤0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p>0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. Published by Elsevier B.V.

  14. Determining Off-Cycle Fuel Economy Benefits of 2-Layer HVAC Technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moniot, Matthew [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jehlik, Forrest [Argonne National Laboratory; Chevers, Netsanet [Toyota Motor North America R& D; Hirabayshi, Hidekazu [Toyota Motor North America R& D; Song, Yuanpei [DENSO International America Inc.

    2018-04-03

    This work presents a methodology to determine the off-cycle fuel economy benefit of a 2-Layer HVAC system which reduces ventilation and heat rejection losses of the heater core versus a vehicle using a standard system. Experimental dynamometer tests using EPA drive cycles over a broad range of ambient temperatures were conducted on a highly instrumented 2016 Lexus RX350 (3.5L, 8 speed automatic). These tests were conducted to measure differences in engine efficiency caused by changes in engine warmup due to the 2-Layer HVAC technology in use versus the technology being disabled (disabled equals fresh air-considered as the standard technology baseline). These experimental datasets were used to develop simplified response surface and lumped capacitance vehicle thermal models predictive of vehicle efficiency as a function of thermal state. These vehicle models were integrated into a database of measured on road testing and coupled with U.S. typical meteorological data to simulate vehicle efficiency across seasonal thermal and operational conditions for hundreds of thousands of drive cycles. Fuel economy benefits utilizing the 2-Layer HVAC technology are presented in addition to goodness of fit statistics of the modeling approach relative to the experimental test data.

  15. Solutions for Energy Efficient and Sustainable Heating of Ventilation Air: A Review

    Directory of Open Access Journals (Sweden)

    A. Žandeckis

    2015-10-01

    Full Text Available A high energy efficiency and sustainability standards defined by modern society and legislation requires solutions in the form of complex integrated systems. The scope of this work is to provide a review on technologies and methods for the heating of ventilation air as a key aspect for high energy and environmental performance of buildings located in a cold climate. The results of this work are more relevant in the buildings where space heating consumes a significant part of the energy balance of a building, and air exchange is arranged in an organized manner. A proper design and control strategy, heat recovery, the use of renewable energy sources, and waste heat are the main aspects which must be considered for efficient and sustainable ventilation. This work focuses on these aspects. Air conditioning is not in the scope of this study.

  16. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  17. Optimization of air-curtain sealing efficiency with respect to heat transfer in naturally ventilated buildings

    NARCIS (Netherlands)

    Khayrullina, A.; Hooff, van T.A.J.; Blocken, B.J.E.; van Heijst, G.J.F.; Sun, Y.; Pei, J.; Zhao, X

    This study presents results of coupled 3D steady Reynolds-averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations of an isolated naturally-ventilated building with the application of an air curtain to prevent heat transfer across a doorway. The considered parameters include air

  18. Performance of Counter Flow Heat Recovery Ventilation Systems in Dwellings Considering the Influence of Uncertainties

    NARCIS (Netherlands)

    Yang, Z.; Cauberg, J.J.M.; Tenpierik, M.J.

    2012-01-01

    Both critical and optimistic claims have been made regarding the performance of heat recovery ventilation systems (HRVS) in dwellings. Such arguments are raised partly because two key aspects are not fully clarified, i.e. the performance criteria and the influence of uncertainties. In the current

  19. Transient natural ventilation of a room with a distributed heat source

    Science.gov (United States)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

  20. Control and prevention of ice formation and accretion on heat exchangers for ventilation systems

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza

    2015-01-01

    In cold climates, the application of mechanical ventilation systems with heat recovery like are airto-air exchangers is used for reducing energy consumption for heating buildings by transferring heat exhausted air to supply air. However, increase efficiency of heat exchanger results in lower...... exhaust air temperatures and Ice formation on heat exchanger fins, which can cause problem and is not favourable. Therefore, prevention and control of ice formation on heat exchangers is necessary. The existing methods are divided into two different methods: active and passive ice control methods....... The active methods are e.g. bypass, recirculation, preheating. The passive methods relate to the surface characteristics of the heat exchanger fins as they have effect on ice formation in initial phase. All these methods have varying levels of success, cost, and effectiveness, which are depending on the heat...

  1. Floor heating and cooling combined with displacement ventilation: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Causone, Francesco; Corgnati, Stefano P. [TEBE Research Group, Department of Energetics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Baldin, Fabio [Department of Applied Physics, University of Padova, via Venezia 1, 35131 Padova (Italy); Olesen, Bjarne W. [ICIEE, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Alle Building 402, 2800 Kgs. Lyngby (Denmark)

    2010-12-15

    Design guidelines envisage that floor heating can be used together with displacement ventilation (DV), provided that the supply air is not overly heated before it can reach heat and contaminant sources. If this is not controlled a mixing flow pattern could occur in the room. The use of floor cooling with DV is also considered possible, although draught risk at ankle level and vertical air temperature differences must be controlled carefully, because they could increase. Few studies on these topics were found in the literature. An indoor environmental chamber was set up to obtain measurements aimed at analysing the possibilities and limitations of combining floor heating/cooling with DV. Air temperature profiles, air velocity profiles, surface temperatures and ventilation effectiveness were measured under different environmental conditions that may occur in practice. These values were compared to equivalent temperature measurements obtained using a thermal manikin. The measurements show that floor heating can be used with DV, obtaining high ventilation effectiveness values. A correlation between the floor heating capacity and the air temperature profile in the room was found. Measurements showed that floor cooling does not increase draught risk at ankle level, although it does increase vertical air temperature differences. (author)

  2. Milestone Report:3.2.2.26 Appliances, HVAC & Water Heating R&D-Select Sorption Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Moonis Raza [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The purpose of this report is to select a sorption technology based on recent work completed on characterizing working pairs for both absorption and adsorption technologies based on Global Warming Potential (GWP) of less than 100 (relative to carbon dioxide, 100-year atmospheric life span) and zero Ozone Depletion Potential (ODP). From a total of eighty-three potential working pairs (absorption technology), there were only two candidate working pairs for the absorption technology, and 8 potential working pairs for adsorption technology. After screening these ten potential candidates on the basis of sizes of the desorber, absorber/adsorber, evaporator, condenser, and rectifier (where applicable), the ORNL-Georgia Tech study concluded that best working pairs are NH3-H2O for the most compact system in terms of heat transfer equipment surface area, and NH3-LiNO3 and MeOH-[mmin][DMP] where efficiency is most important. Based on a single-stage absorption and adsorption modeling using the Engineering Equation Solver (EES), the performance of both sorption systems was evaluated from known heat transfer correlations, and thermos-physical properties. Based on these results, the technology chosen is absorption technology. The selected technology is absorption for the reasons cited in Section 4.

  3. Nonstationary heat and mass transfer in the multilayer building construction with ventilation channels

    Science.gov (United States)

    Kharkov, N. S.

    2017-11-01

    Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).

  4. Natural ventilation in an enclosure induced by a heat source distributed uniformly over a vertical wall

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.D.; Li, Y.; Mahoney, J. [CSIRO Building, Construction and Engineering, Advanced Thermo-Fluids Technologies Lab., Highett, VIC (Australia)

    2001-05-01

    A simple multi-layer stratification model is suggested for displacement ventilation in a single-zone building driven by a heat source distributed uniformly over a vertical wall. Theoretical expressions are obtained for the stratification interface height and ventilation flow rate and compared with those obtained by an existing model available in the literature. Experiments were also carried out using a recently developed fine-bubble modelling technique. It was shown that the experimental results obtained using the fine-bubble technique are in good agreement with the theoretical predictions. (Author)

  5. Analysis and Choice of Optimal Heating Ventilation Air Conditioning System for a Teaching Unit

    Directory of Open Access Journals (Sweden)

    Marina Verdeş

    2007-01-01

    Full Text Available Under the conditions of present society in which providing an optimum interior comfort is confronted with the necessity of the energy consumption reduction, solving this problem depends on the factors which contribute to the achievements of this comfort. Modern buildings -- implicitly teaching unit -- may be equipped with installations which have low energy consumption, respective a heating, cooling and ventilating integrated system with heat pumps system which can assure all the required comfort conditions. This paper underlines the necessity to use the heat pump in heating system for a teaching unit, energetic and economic guides and the possibility to increase them when using cooling and heating mixed. The solution of heat pumps for heating of the teaching unit and the energetic and economic advantages of the system is made in study.

  6. New counter flow heat exchanger designed for ventilation systems in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Nielsen, Toke Rammer

    2007-01-01

    In cold climates, mechanical ventilation systems with highly efficient heat recovery will experience problems with condensing water from the extracted humid indoor air. If the condensed water changes to ice in the heat exchanger, the airflow rate will quickly fall due to the increasing pressure...... problem is therefore desirable. In this paper, the construction and test measurements of a new counter flow heat exchanger designed for cold climates are presented. The developed heat exchanger is capable of continuously defrosting itself without using supplementary heating. Other advantages...... of the developed beat exchanger are low pressure loss, cheap materials and a simple construction. The disadvantage is that the exchanger is big compared with other heat exchangers. In this paper, the new heat exchanger's efficiency is calculated theoretically and measured experimentally. The experiment shows...

  7. General Motors LLC Final Project Report: Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bozeman, Jeffrey [General Motors LLC, Detroit, MI (United States); Chen, Kuo-Huey [General Motors LLC, Detroit, MI (United States)

    2014-12-09

    On November 3, 2009, General Motors (GM) accepted U.S. Department of Energy (DOE) Cooperative Agreement award number DE-EE0000014 from the National Energy Technology Laboratory (NETL). GM was selected to execute a three-year cost shared research and development project on Solid State Energy Conversion for Vehicular Heating, Ventilation & Air Conditioning (HVAC) and for Waste Heat Recovery.

  8. Cooperation of Horizontal Ground Heat Exchanger with the Ventilation Unit During Summer - Case Study

    Science.gov (United States)

    Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław

    2017-10-01

    Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground air heat exchanger (earth-air heat exchanger - EAHX). This solution, right after heat recovery from exhaust air (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply air. The article presents the results of "in situ" measurements of pipe ground air heat exchanger cooperating with the air handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh air is the air intake wall and two air intakes field cooperating with the tube with ground air heat exchangers. Selection of the source of fresh air is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of air inlets and outlets of the heat exchanger channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh air were performed. Two cases of operation of the system: using EAHX heat exchanger and without it, were analyzed. Potentially the use of ground air heat exchanger in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply air temperature. Considering the results can be concluded that the continuous use of these exchangers is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring

  9. Numerical model describing the heat transfer between combustion products and ventilation-system duct walls

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data

  10. Laboratory study of subjective perceptions to low temperature heating systems with exhaust ventilation in Nordic countries

    DEFF Research Database (Denmark)

    Jin, Quan; Simone, Angela; Olesen, Bjarne W.

    2017-01-01

    Given the global trends of rising energy demand and the increasing utilization of low-grade renewable energy, low-temperature heating systems can play key roles in improving building energy efficiency while providing a comfortable indoor environment. To meet the need to retrofit existing buildings...... in Nordic countries for greater energy efficiency, this study focused on human subjects’ thermal sensation, thermal comfort, thermal acceptability, draft acceptability, and perceived air quality when three low-temperature heating systems were used: conventional radiator, ventilation radiator, or floor...... heating with exhaust ventilation. Human subject tests were carried out in the climate chamber at the Technical University of Denmark. In total, 24 human subjects, 12 females and 12 males, participated in the tests during the winter season. The results show that no significant differences in thermal...

  11. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  12. HVAC modifications and computerized energy analysis for the Operations Support Building at the Mars Deep Space Station at Goldstone

    Science.gov (United States)

    Halperin, A.; Stelzmuller, P.

    1986-01-01

    The key heating, ventilation, and air-conditioning (HVAC) modifications implemented at the Mars Deep Space Station's Operation Support Building at Jet Propulsion Laboratories (JPL) in order to reduce energy consumption and decrease operating costs are described. An energy analysis comparison between the computer simulated model for the building and the actual meter data was presented. The measurement performance data showed that the cumulative energy savings was about 21% for the period 1979 to 1981. The deviation from simulated data to measurement performance data was only about 3%.

  13. Advanced simulations of energy demand and indoor climate of passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  14. System optimization for HVAC energy management using the robust evolutionary algorithm

    International Nuclear Information System (INIS)

    Fong, K.F.; Hanby, V.I.; Chow, T.T.

    2009-01-01

    For an installed centralized heating, ventilating and air conditioning (HVAC) system, appropriate energy management measures would achieve energy conservation targets through the optimal control and operation. The performance optimization of conventional HVAC systems may be handled by operation experience, but it may not cover different optimization scenarios and parameters in response to a variety of load and weather conditions. In this regard, it is common to apply the suitable simulation-optimization technique to model the system then determine the required operation parameters. The particular plant simulation models can be built up by either using the available simulation programs or a system of mathematical expressions. To handle the simulation models, iterations would be involved in the numerical solution methods. Since the gradient information is not easily available due to the complex nature of equations, the traditional gradient-based optimization methods are not applicable for this kind of system models. For the heuristic optimization methods, the continual search is commonly necessary, and the system function call is required for each search. The frequency of simulation function calls would then be a time-determining step, and an efficient optimization method is crucial, in order to find the solution through a number of function calls in a reasonable computational period. In this paper, the robust evolutionary algorithm (REA) is presented to tackle this nature of the HVAC simulation models. REA is based on one of the paradigms of evolutionary algorithm, evolution strategy, which is a stochastic population-based searching technique emphasized on mutation. The REA, which incorporates the Cauchy deterministic mutation, tournament selection and arithmetic recombination, would provide a synergetic effect for optimal search. The REA is effective to cope with the complex simulation models, as well as those represented by explicit mathematical expressions of

  15. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  16. HVAC retrofitting and remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.G. [Linford Co., Oakland, CA (United States)

    1996-03-01

    This article describes the pitfalls and problems as well as the benefits of updating a HVAC system. Failures and successes, and the lessons learned working in this dominant portion of the construction market are included as the author describes retrofit projects. The projects have ranged from total replacements in unoccupied buildings to updating systems in occupied buildings.

  17. Evidence of inadequate ventilation in portable classrooms: results of a pilot study in Los Angeles County.

    Science.gov (United States)

    Shendell, D G; Winer, A M; Weker, R; Colome, S D

    2004-06-01

    The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.

  18. Convective heat exposure from large fires to the final filters of ventilation systems

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1979-01-01

    The Fire Science Group of the Hazards Control Department, Lawrence Livermore Laboratory has been asked to design a probable fire scenario for a fuel-pellet fabrication facility. This model was used to estimate the potential for thermal damage to the final HEPA filters. These filters would not experience direct fire exposure because they are the last component of the ventilation system before the exhaust air pumps. However, they would be exposed to hot air and fire gases that are drawn into the ventilation system. Because fire is one of the few occurrences that can defeat the containment integrity of facilities where radioactive materials are stored and processed, the fire scenarios must be defined to ensure that containment systems are adequate to meet the threat of such events. Fire-growth calculations are based on the measured fuel load of materials within the fabrication enclosure and on semi-empirical fire-spread models. It is assumed that the fire never becomes ventilation controlled. The temperature rise of ceiling gases and heat transfer from ventilation ducting are calculated using accepted empirical relationships, and the analysis shows that even under the most severe exposure conditions, heat transfer from the duct reduces the fire gas temperatures to levels that would not hamper filter function

  19. The use of mechanical ventilation with heat recovery for controlling radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Hollowell, C.D.; Roseme, G.D.

    1980-01-01

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for two weeks under varying ventilation conditions (0.07 to 0.8 air changes per hour (ach)) and radon daughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher radon and radon daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective, and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in houses designed or retrofitted to achieve low infiltration

  20. Towards Autonomous Control of HVAC Systems

    DEFF Research Database (Denmark)

    Brath, P.

    autonomous control. Together with better tuned controllers and more dedicated control it would be possible to decrease the energy consumption, save money and increase the indoor air climate. A flexible HVAC test system was designed and implemented. Standard components and sensors were used in the design...... temperature controller, based on airflow control, was designed. Feedback linearisation is used together with an auto-tuning procedure, based on relay feedback. Design of a new CO2 controller was made to achieve a demand controlled ventilation system, in order to save energy. Feedback linearisation was used...

  1. Real-time supervision of building HVAC system performance

    Energy Technology Data Exchange (ETDEWEB)

    Djuric, Natasa

    2008-07-01

    building maintenance structure and the real hydronic heating system faults. Coupled simulation and optimization programs (EnergyPlus and GenOpt) were utilized for improving the building performances. These tools were used for improving the design and the control strategies in the HVAC systems. Buildings with a hydronic heating system were analyzed for the purpose of improving the design. Since there are issues in using the optimization tool, GenOpt, a few procedures for different practical problems have been suggested. The optimization results show that the choice of the optimization functions influences significantly the design parameters for the hydronic heating system. Since building construction and equipment characteristics are changing over time, there is a need to find new control strategies which can meet the actual building demand. This problem has been also elaborated on by using EnergyPlus and GenOpt. The control strategies in two different HVAC systems were analyzed, including the hydronic heating system and the ventilation system with the recovery wheel. The developed approach for the strategy optimization includes: involving the optimization variables and the objective function and developing information flow for handling the optimization process. The real data obtained from BEMS and the additional measurements have been utilized to explain faults in the hydronic heating system. To couple real data and the simple heat balance model, the procedure for the model calibration by use of an optimization algorithm has been developed. Using this model, three operating faults in the hydronic heating system have been elaborated. Using the simulation tools EnergyPlus and TRNSYS, several fault detection and diagnosis (FDD) rules have been generated. The FDD rules were established in three steps: testing different faults, calculating the performance indices (PI), and classifying the observed PIs. These rules have been established for the air cooling system and the

  2. Wind- and stack-assisted mechanical ventilation with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    presented the outline of a heat recovery concept suitable for stack and wind-assisted mechanical ventilation systems with total system pressure losses of 74Pa. The heat recovery concept is based on two air-to-water exchangers connected by a liquid loop powered by a pump. The core element of the concept......, a prototype of a heat exchanger, was developed based on design criteria about pressure drop, eciency and production concerns. The exchanger is based on banks of plastic tubing cris-crossing the air flow, thus creating approximate counter flow between air and water. Round PE plastic tubing is used. The tubing...... is commonly used for water-based floor-heating systems. Oval or even wing shaped tubes may have better heat transfer and lower drag coecient, but round tubes require less meticulous production procedures. The tubing used here is mass-produced, cheap, and flexible but the current design does require many...

  3. Modelling the heat dynamics of building integrated and ventilated photovoltaic modules

    DEFF Research Database (Denmark)

    Friling, N.; Jimenez, M.J.; Bloem, H.

    2009-01-01

    the heat transfer from the PV module. The experiment and data originate from a test reference module the EC-JRC Ispra. The set-up provides the opportunity of changing physical parameters, the ventilation speed and the type of air flow, and this makes it possible to determine the preferable set......, are applied in the set-up combined with high level of air flow. The improved description by the model is mainly seen in periods with high solar radiation....

  4. Contribution of natural ventilation in a double skin envelope to heating load reduction in winter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu-Min; Sohn, Jang-Yeul [Department of Architectural Engineering, Hanyang University, Seoul (Korea); Kim, Soo-Young [Department of Housing and Interior Design, Yonsei University, Seoul (Korea); Shin, Sung-Woo [Department of Architectural Engineering, Hanyang University, Ansan (Korea)

    2009-11-15

    This study examined the contribution of a double skin envelope (DSE) to the heating energy savings brought about by natural ventilation in office buildings. A DSE was applied to the east- and west-facing walls on an actual three-floor building. Field measurements and computer simulations were performed in winter. The results implied that the DSE on the west-facing wall contributed to energy savings when natural ventilation was supplied from the cavity to the indoor space. The DSE facing east was not recommended for energy savings by natural ventilation because of its smaller exposure to solar irradiance. Multiple linear regression models were developed based on field measurements to predict the temperature variation in the cavities, and effective control logics will be discussed in a future study. Of all variables, the outdoor air temperature was the most significant factor influencing the air temperature in the cavity. Computer simulation indicated that the air in the cavity was heated to the required temperature without consuming additional energy when the ratio of the diffused irradiance to global irradiance was smaller than 0.69. The cavity in the DSE worked as a thermal buffer zone and contributed to reducing heating energy consumption by 14.71% in January. (author)

  5. Filter forensics: microbiota recovery from residential HVAC filters.

    Science.gov (United States)

    Maestre, Juan P; Jennings, Wiley; Wylie, Dennis; Horner, Sharon D; Siegel, Jeffrey; Kinney, Kerry A

    2018-01-30

    Establishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health. High-throughput DNA sequencing of dust samples provides valuable insights into the microbiome present in human-occupied spaces. However, the effect that different sampling methods have on the microbial community recovered from dust samples is not well understood across sample types. Heating, ventilation, and air conditioning (HVAC) filters hold promise as long-term, spatially integrated, high volume samplers to characterize the airborne microbiome in homes and other climate-controlled spaces. In this study, the effect that dust recovery method (i.e., cut and elution, swabbing, or vacuuming) has on the microbial community structure, membership, and repeatability inferred by Illumina sequencing was evaluated. The results indicate that vacuum samples captured higher quantities of total, bacterial, and fungal DNA than swab or cut samples. Repeated swab and vacuum samples collected from the same filter were less variable than cut samples with respect to both quantitative DNA recovery and bacterial community structure. Vacuum samples captured substantially greater bacterial diversity than the other methods, whereas fungal diversity was similar across all three methods. Vacuum and swab samples of HVAC filter dust were repeatable and generally superior to cut samples. Nevertheless, the contribution of environmental and human sources to the bacterial and fungal communities recovered via each sampling method was generally consistent across the methods investigated. Dust recovery methodologies have been shown to affect the recovery, repeatability, structure, and membership of microbial communities recovered from dust samples in the built environment. The results of this study are directly applicable to indoor microbiota studies utilizing the filter forensics approach. More broadly, this study provides a

  6. Assessment of organic compound exposures, thermal comfort parameters, and HVAC system-driven air exchange rates in public school portable classrooms in California

    Energy Technology Data Exchange (ETDEWEB)

    Shendell, Derek Garth [Univ. of California, Los Angeles, CA (United States)

    2003-01-01

    The prevalence of prefabricated, portable classrooms (portables, relocatables, RCs) has increased due to class size reduction initiatives and limited resources. Classroom mechanical wall-mount heating, ventilation, and air conditioning (HVAC) systems may function improperly or not be maintained; lower ventilation rates may impact indoor air and environmental quality (IEQ). Materials in portables may off-gas volatile organic compounds (VOCs), including formaldehyde, as a function of age, temperature, and humidity. For a pilot study, public K-12 schools located in or serving target areas within five Los Angeles County communities were identified. In two communities where school districts (SD) consented, 1-3 randomly selected portables, one newer and one older, and one main building control classroom from each participating school were included. Sampling was conducted over a five-day school week in the cooling and heating seasons, or repeated twice in the cooling season. Measurements included passive samplers for VOCs, formaldehyde and acetaldehyde, and air exchange rate (AER) calculation; indoor air temperature and humidity; technician walk-through surveys; an interview questionnaire above HVAC system operation and maintenance (O and M). For an intervention study evaluating advanced HVAC technologies in comparison to the common conventional technology, and materials for source reduction of VOCs, four RC were manufactured and located in pairs at two schools in two recruited Northern California SD in different climate zones. RCs were built with the two HVAC systems, cabinetry and conduit for monitoring equipment, and standard or advanced interior finish materials. Each RC was its own control in a case-crossover design--HVAC systems alternately operated for 1-2 week intervals in the 2001-02 school year, with IEQ monitoring including aldehyde and indoor air temperature and humidity data. Measured classroom AER were low, formaldehyde concentrations were below the state

  7. On buoyancy-driven natural ventilation of a room with a heated floor

    Science.gov (United States)

    Gladstone, Charlotte; Woods, Andrew W.

    2001-08-01

    The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.

  8. Efficient HVAC. New products

    International Nuclear Information System (INIS)

    2016-01-01

    Jung is responding to the challenge of energy efficiency, ease of operation and economic profitability in all of its solutions for the tertiary sector, whether for newly constructed buildings or refurbishments, for full management of the electrical system or the partial control of lighting, HVAC, mood settings, access control, etc., for the bedrooms or specific areas of the building. In the specific case of hotels, Jung offers each a custom-made solution in line with its possibilities and objectives. (Author)

  9. Comparison between design and actual energy performance of a HVAC-ground coupled heat pump system in cooling and heating operation

    Energy Technology Data Exchange (ETDEWEB)

    Magraner, T.; Quilis, S. [Energesis Ingenieria S.L., Ciudad Politecnica de la Innovacion, Camino de Vera s/n, 46022 Valencia (Spain); Montero, A. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Urchueguia, J.F. [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2010-09-15

    This work compares the experimental results obtained for the energy performance study of a ground coupled heat pump system with the design values predicted by means of standard methodology. The system energy performance of a monitored ground coupled heat pump system is calculated using the instantaneous measurements of temperature, flow and power consumption and these values are compared with the numerical predictions. These predictions are performed with the TRNSYS software tool following standard procedures taking the experimental thermal loads as input values. The main result of this work is that simulation results solely based on nominal heat pump capacities and performances overestimate the measured overall energy performance by a percentage between 15% and 20%. A sensitivity analysis of the simulation results to changes in percentage of its input parameters showed that the heat pump nominal coefficient of performance is the parameter that mostly affects the energy performance predictions. This analysis supports the idea that the discrepancies between experimental results and simulation outputs for this ground coupled system are mainly due to heat pump performance degradation for being used at partial load. An estimation of the impact of this effect in energy performance predictions reduces the discrepancies to values around 5%. (author)

  10. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    Science.gov (United States)

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  11. Modeling of HVAC operational faults in building performance simulation

    International Nuclear Information System (INIS)

    Zhang, Rongpeng; Hong, Tianzhen

    2017-01-01

    Highlights: •Discuss significance of capturing operational faults in existing buildings. •Develop a novel feature in EnergyPlus to model operational faults of HVAC systems. •Compare three approaches to faults modeling using EnergyPlus. •A case study demonstrates the use of the fault-modeling feature. •Future developments of new faults are discussed. -- Abstract: Operational faults are common in the heating, ventilating, and air conditioning (HVAC) systems of existing buildings, leading to a decrease in energy efficiency and occupant comfort. Various fault detection and diagnostic methods have been developed to identify and analyze HVAC operational faults at the component or subsystem level. However, current methods lack a holistic approach to predicting the overall impacts of faults at the building level—an approach that adequately addresses the coupling between various operational components, the synchronized effect between simultaneous faults, and the dynamic nature of fault severity. This study introduces the novel development of a fault-modeling feature in EnergyPlus which fills in the knowledge gap left by previous studies. This paper presents the design and implementation of the new feature in EnergyPlus and discusses in detail the fault-modeling challenges faced. The new fault-modeling feature enables EnergyPlus to quantify the impacts of faults on building energy use and occupant comfort, thus supporting the decision making of timely fault corrections. Including actual building operational faults in energy models also improves the accuracy of the baseline model, which is critical in the measurement and verification of retrofit or commissioning projects. As an example, EnergyPlus version 8.6 was used to investigate the impacts of a number of typical operational faults in an office building across several U.S. climate zones. The results demonstrate that the faults have significant impacts on building energy performance as well as on occupant

  12. Solar Preheated Ventilation - Innovative Solar Technology

    National Research Council Canada - National Science Library

    Gaberson, Howard

    1999-01-01

    .... This innovative technology applies to both new construction or rehabilitation projects. This TDS introduces this low maintenance solar technology for consideration in all future industrial ventilation or HVAC projects...

  13. Analysis of energy management for heating, ventilating and air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Mohamed Elhelw

    2016-06-01

    Full Text Available In the office buildings, large energy is consumed due to poor thermal performance and low efficiencies of HVAC systems. A cooling load calculation is a basis for the design of building cooling systems. The current design methods are usually based on deterministic cooling loads, which are obtained by using design parameters. However, these parameters contain uncertainties, and they will be different from that used in the design calculation when the cooling system is put in use. The actual cooling load profile will deviate from that predicted in design. A modified bin method was used in this paper to optimize the energy efficiency ratio (EER. A design optimization method is proposed by considering uncertainties related to the cooling load calculation. Impacts caused by the uncertainties of seven factors are considered, including the outdoor weather conditions and internal heat sources. The cooling load distribution is analyzed. Comparison between the modified bin method and CLTD/SCL/CLF method is also conducted. With the distributions of their energy consumption, decision makers can select the optimal configuration based on quantified confidence. According to the economic benefits and energy efficiency ratio, using modified bin method will increase the overall energy efficiency ratio by 45.57%.

  14. Controlled ventilation in gas-heated low-energy houses. Primary energy savings in regard to the users behaviour

    International Nuclear Information System (INIS)

    Luedemann, B.; Schmitz, G.

    1999-01-01

    With the introduction of the energy savings regulation in Germany (ESVO) low-energy buildings will be the standard for new buildings at the turn of the millennium. The heating energy demand will sink around 30 % facing the actual standard. Systems for controlled Ventilation with heat-recovery are often regarded as an essential component to achieve the low-energy standard for buildings. The quota of the ventilation losses in high insulated buildings is up to far over 50 % of the heating energy demand. However, in practice ventilation systems often do not achieve the calculated energy-savings on the heat requirement. Until now, both technical defects of ventilation systems and the tightness of buildings are at the centre of discussion dealing with this problem. Therefore, in a common research project of three gas supply companies, an electricity distribution company and the Department of Technical Thermodynamics at the TUHH, the bandwidth of the possible energy-savings by ventilation systems with heat recovery was investigated by dynamic simulation of the thermal behaviour of buildings and ventilation systems. Above all, the question of the influence of the user behaviour was at the centre of attention. (author)

  15. Improving safety margins for control room habitability, through heating/ventilation/air conditioning modifications

    International Nuclear Information System (INIS)

    Beach, D.R.; Fillingim, W.; Bell, G.; Eurich, R.G.

    1989-01-01

    The Fort Calhoun power station began operation in September 1973. Since that time, modifications to the plant have required the addition of a substantial number of electrical and control components in the control room, which has resulted in an increased heat load in this area. Additionally, NUREG-0737, Item III.D.3.4, imposed requirements on the ventilating system related to protection of personnel from the effects of toxic and radioactive gas releases, which were not considered in the original design. Omaha Public Power District (OPPD) has recently undertaken a major modification to the Fort Calhoun station control room ventilating system to improve the safety margins for control room habitability. The goals of the modification were to achieve adequate cooling capacity with fully redundant equipment, improve habitability under accident conditions, and eliminate several potential problems related to steam line break and equipment qualification. Additionally, the scope of the project grew as design problems emerged

  16. Preliminary CFD Analysis for HVAC System Design of a Containment Building

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sung Man; Choi, Choengryul [ELSOLTEC, Yongin (Korea, Republic of); Choo, Jae Ho; Hong, Moonpyo; Kim, Hyungseok [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2016-10-15

    HVAC (Heating, Ventilation, Air Conditioning) system has been mainly designed based on overall heat balance and averaging concepts, which is simple and useful for designing overall system. However, such a method has the disadvantage that cannot predict the local flow and temperature distributions in a containment building. In this study, a CFD (Computational Fluid Dynamics) preliminary analysis is carried out to obtain detailed flow and temperature distributions in a containment building and to ensure that such information can be obtained via CFD analysis. This approach can be useful for hydrogen analysis in an accident related to hydrogen released into a containment building. In this study, CFD preliminary analysis has been performed to obtain the detailed information of the reactor containment building by using the CFD analysis techniques and to ensure that such information can be obtained via CFD analysis. We confirmed that CFD analysis can offer enough detailed information about flow patterns and temperature field and that CFD technique is a useful tool for HVAC design of nuclear power plants.

  17. Coupling fast fluid dynamics and multizone airflow models in Modelica Buildings library to simulate the dynamics of HVAC systems

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wei [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Sevilla, Thomas Alonso [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Zuo, Wangda [Univ. of Miami, FL (United States). Dept. of Civil, Architectural and Environmental Engineering; Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.

    2017-06-08

    Historically, multizone models are widely used in building airflow and energy performance simulations due to their fast computing speed. However, multizone models assume that the air in a room is well mixed, consequently limiting their application. In specific rooms where this assumption fails, the use of computational fluid dynamics (CFD) models may be an alternative option. Previous research has mainly focused on coupling CFD models and multizone models to study airflow in large spaces. While significant, most of these analyses did not consider the coupled simulation of the building airflow with the building's Heating, Ventilation, and Air-Conditioning (HVAC) systems. This paper tries to fill the gap by integrating the models for HVAC systems with coupled multizone and CFD simulations for airflows, using the Modelica simul ation platform. To improve the computational efficiency, we incorporated a simplified CFD model named fast fluid dynamics (FFD). We first introduce the data synchronization strategy and implementation in Modelica. Then, we verify the implementation using two case studies involving an isothermal and a non-isothermal flow by comparing model simulations to experiment data. Afterward, we study another three cases that are deemed more realistic. This is done by attaching a variable air volume (VAV) terminal box and a VAV system to previous flows to assess the capability of the models in studying the dynamic control of HVAC systems. Finally, we discuss further research needs on the coupled simulation using the models.

  18. Value-impact assessment for resolution of generic safety issue 143 - availability of HVAC and chilled water systems

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Marler, J.E.; Vo, T.V. [Pacific Northwest Laboratory, Richland, WA (United States)] [and others

    1995-02-01

    The Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission (NRC), has conducted an assessment of the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, {open_quotes}Availability of Heating, Ventilation, and Air Conditioning (HVAC) and Chilled Water Systems.{close_quotes} This assessment was conducted to identify vulnerabilities related to failure of HVAC, chilled water and room cooling systems and develop estimates of the core damage frequencies and public risks associated with failures of these systems. This information was used to develop proposed resolution strategies to this generic issue and perform a value/impact assessment to determine their cost-effectiveness. Probabilistic risk assessments (PRAs) for four representative plants from the basis for the core damage frequency and public risk calculations. Internally-initiated core damage sequences as well as external events were considered. Three proposed resolution strategies were developed for this safety issue and it was determined that all three were not cost-effective. Additional evaluations were performed to develop {open_quotes}generic{close_quotes} insights on potential design-related vulnerabilities and potential high-frequency accident sequences that involve failures of HVAC/room cooling functions.

  19. Value-impact assessment for resolution of generic safety issue 143 - availability of HVAC and chilled water systems

    International Nuclear Information System (INIS)

    Daling, P.M.; Marler, J.E.; Vo, T.V.

    1995-01-01

    The Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission (NRC), has conducted an assessment of the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, open-quotes Availability of Heating, Ventilation, and Air Conditioning (HVAC) and Chilled Water Systems.close quotes This assessment was conducted to identify vulnerabilities related to failure of HVAC, chilled water and room cooling systems and develop estimates of the core damage frequencies and public risks associated with failures of these systems. This information was used to develop proposed resolution strategies to this generic issue and perform a value/impact assessment to determine their cost-effectiveness. Probabilistic risk assessments (PRAs) for four representative plants from the basis for the core damage frequency and public risk calculations. Internally-initiated core damage sequences as well as external events were considered. Three proposed resolution strategies were developed for this safety issue and it was determined that all three were not cost-effective. Additional evaluations were performed to develop open-quotes genericclose quotes insights on potential design-related vulnerabilities and potential high-frequency accident sequences that involve failures of HVAC/room cooling functions

  20. Study of natural convection heat transfer characteristics. (1) Influence of ventilation duct height

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo; Iwaki, Chikako; Ikeda, Tatsumi; Morooka, Shinichi; Ikeda, Hiroshi; Nakada, Kotaro; Masaki, Yoshikazu

    2008-01-01

    Natural cooling system has been investigated in waste storage. It is important to evaluate the flow by natural draft enough to removal the decay heat from the waste. In this study, we carried out the fundamental experiment of ventilation duct height effect for natural convection on vertical cylindrical heater in atmospheric air. The scale of test facility is about 4m height with single heater. The heating value is varied in the range of 33-110W, where Rayleigh number is over 10 10 . Natural convection flow rate were calculated by measured velocity with thermo anemometer in the inlet duct. The temperature of the cylindrical heater wall and fluid were measured with thermocouples. It was found that the heat transfer coefficient difference between long duct and short duct is small in this experiment. (author)

  1. Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test

    Directory of Open Access Journals (Sweden)

    Ludovico Danza

    2016-01-01

    Full Text Available The aim of the article is to describe the results of an experimental campaign based on the assessment of a heat recovery unit coupled with a dynamic window. Two fully monitored and calibrated outdoor test cells are used, in order to evaluate the energy performance and the related thermal comfort. The former presents a traditional window with double-glazing, aluminum frame and indoor blind and a centrifugal extractor for the air circulation. The latter is equipped with a dynamic window with ventilated and blinded double-glazing provided with a heat exchanger. The connection of the dynamic window and heat recovery unit provides different actions: heat recovery; heat transfer reduction; pre-heating before the exchanger. Different operating configurations allowed the trends of the dynamic system to be assessed in different seasons in terms of energy saving, thermal comfort behavior and energy efficiency. The results showed an overall lower consumption of the innovative system, both in winter and summer, with 20% and 15% energy saving, respectively. In general, the dynamic system provided the best comfort conditions, even if it involves a worse behavior than expected, in the summer season.

  2. Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J.

    1994-11-01

    Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

  3. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Montan, D.N.

    1980-01-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation and ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation

  4. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    A physical model for analyzing the radiative and convective heat transfer in a fog cooled, naturally ventilated greenhouse was developed for estimating the overall heat transmission coefficient based on the conduction, convection and thermal radiation heat transfer coefficients and for predicting the soil heat flux. The contribution of the water vapor of the inside air to the emission and absorption of thermal radiation was determined. Measurements of the outside and inside greenhouse environments to be used in the analysis were conducted around solar noon (12:19-13:00) on a hot sunny day to provide the maximum solar radiation transmission into the greenhouse. The net solar radiation flux measured at the greenhouse floor showed a reasonable agreement with the predicted value. The net fluxes were estimated around noon. The average net radiation (solar and thermal) at the soil surface was 220.0 W m -2 , the average soil heat flux was 155.0 W m -2 and the average contribution of the water vapor of the inside air to the thermal radiation was 22.0 W m -2 . The average overall heat transmission coefficient was 4.0 W m -2 C -1 and was in the range between 3.0 W m -2 C -1 and 6.0 W m -2 C -1 under the different hot summer conditions between the inside and outside of the naturally ventilated, fog cooled greenhouse

  5. Effects of Recent Climate Change on Hourly Weather Data for HVAC Design: A Case Study of Osaka

    Directory of Open Access Journals (Sweden)

    Jihui Yuan

    2018-03-01

    Full Text Available The current design weather data used for heating, ventilation, and air conditioning (HVAC design in Japan was created using an old data period. New design weather data should be created to reflect recent local climate change. Based on our previous proposal of creating design weather data with two weather indices (dry-bulb temperature and enthalpy for HVAC design, design weather data for Osaka was created using more recently-measured weather data (period: 2001~2015 from the Japan Meteorological Agency (JMA in this study. The effect of recent climate change on the design weather data created with eight proposed methods was found. It showed the change in weather elements for cooling design clearly trends to warmer and drier weather, with more solar radiation and lower enthalpy, while the trends in heating design are less clear, mainly showing higher enthalpy. Furthermore, the difference in the peak load for the heating and cooling designs using the new and old design weather data was compared. The comparison showed that the minimum difference in peak load for the heating design was found using the mean daily dry-bulb temperature as the first and second indices; for the cooling design, the minimum difference in peak load was found using mean daily enthalpy as both the first and second indices.

  6. The integrated engineering system for the HVAC branch. Annex; Das integrierte Ingenieursystem fuer die Haustechnikbranche; Anhang

    Energy Technology Data Exchange (ETDEWEB)

    Allenspach, J.; Duppenthaler, A.; Helbling, R.; Kohler, T.; Mantel, R.; Meineke, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-01-01

    In 1987, the intention of the former Swiss Federal Institute for Reactor Research was to initiate a transfer of know-how into practice by launching this project. The increasing need for software engineering tools by heating, ventilation and air conditioning (HVAC) companies demanded a new tool; to realise it, a joint venture project with private industry should concentrate the individual capabilities of each partner toward this goal. The present report describes the concept of the integrated engineering system, its user interface, the models, graphics, tools, multiuser operation and the system boundary. Results of field tests are presented together with information of the availability of the system. The annex contains the agreement for the usage of the public-domain-version of the system, experience reports of pilot clients and the end user`s and developer`s documentation. (author) figs., tabs., refs.

  7. Building HVAC control knowledge data schema – Towards a unified representation of control system knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Treado, Stephen J.; Messner, John I.

    2016-12-01

    Building control systems for Heating, Ventilation, and Air Conditioning (HVAC) play a key role in realizing the functionality and operation of building systems and components. Building Control Knowledge (BCK) is the logic and algorithms embedded throughout building control system. There are different methods to represent the BCK. These methods differ in the selection of BCK representing elements and the format of those elements. There is a lack of standard data schema, for storing, retrieving, and reusing structured BCK. In this study, a modular data schema is created for BCK representation. The data schema contains eleven representing elements, i.e., control module name, operation mode, system schematic, control flow diagram, data point, alarm, parameter, control sequence, function, and programming code. Each element is defined with specific attributes. This data schema is evaluated through a case study demonstration. The demonstration shows a new way to represent the BCK with standard formats.

  8. Industrial ventilation

    Science.gov (United States)

    Goodfellow, H. D.

    Industrial ventilation design methodology, using computers and using fluid dynamic models, is considered. It is noted that the design of a ventilation system must be incorporated into the plant design and layout at the earliest conceptual stage of the project. A checklist of activities concerning the methodology for the design of a ventilation system for a new facility is given. A flow diagram of the computer ventilation model shows a typical input, the initialization and iteration loop, and the output. The application of the fluid dynamic modeling techniques include external and internal flow fields, and individual sources of heat and contaminants. Major activities for a ventilation field test program are also addressed.

  9. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements......In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer...

  10. Numerical investigation of the energy performance of an Opaque Ventilated Façade system employing a smart modular heat recovery unit and a latent heat thermal energy system

    International Nuclear Information System (INIS)

    Diallo, Thierno M.O.; Zhao, Xudong; Dugue, Antoine; Bonnamy, Paul; Javier Miguel, Francisco; Martinez, Asier; Theodosiou, Theodoros; Liu, Jing-Sheng; Brown, Nathan

    2017-01-01

    Highlights: •An innovative E2VENT ventilated façade system is presented and modelled with TRNSYS. •The energy efficiency of the system is assessed for five climates in Europe. •The E2VENT retrofitting system is compared with a traditional retrofit method. •The E2VENT system achieves 16.5–23.5% primary energy saving. •The E2VENT system saves twice as much primary energy as the traditional retrofit. -- Abstract: The building sector is responsible for more than 40% of the EU’s total energy consumption. To reduce the energy consumption in buildings and to achieve the EU’s fossil fuel saving targets for 2020 and beyond 2050, the energy efficient retrofitting strategies are critically important and need to be implemented effectively. This paper presents a dynamic numerical investigation of the energy performance of an innovative façade integrate-able energy efficient ventilation system (E2VENT) that incorporates a smart modular heat recovery unit (SMHRU) and a latent heat thermal energy system (LHTES). A number of component simulation models, including SMHRU, LHTES, Cladding and Building Energy Management System (BEMS), were developed and then integrated using the TRNSYS software which is an advanced building energy performance simulation tool. On this basis, sizing, optimisation and characterisation of the system elements including the HVAC system and insulation layer thickness were carried out. The overall energy efficiency of the E2VENT system and its impact on the energy performance of a post-retrofit building were then investigated. In particular, the heating and cooling energy performance of the E2VENT façade module was numerically studied at five different climatic conditions in Europe. Furthermore, the innovative E2VENT retrofitting was compared with traditional retrofittings in terms of the energy efficiency and primary energy savings. It was found that the innovative E2VENT solution can achieve 16.5–23.5% building primary energy saving and

  11. Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.

    Science.gov (United States)

    Schena, E; De Paolis, E; Silvestri, S

    2011-01-01

    Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.

  12. A simple model of the effect of ocean ventilation on ocean heat uptake

    Science.gov (United States)

    Nadiga, Balu; Urban, Nathan

    2017-11-01

    Transport of water from the surface mixed layer into the ocean interior is achieved, in large part, by the process of ventilation-a process associated with outcropping isopycnals. Starting from such a configuration of outcropping isopycnals, we derive a simple model of the effect of ventilation on ocean uptake of anomalous radiative forcing. This model can be seen as an improvement of the popular anomaly-diffusing class of energy balance models (AD-EBM) that are routinely employed to analyze and emulate the warming response of both observed and simulated Earth system. We demonstrate that neither multi-layer, nor continuous-diffusion AD-EBM variants can properly represent both surface-warming and the vertical distribution of ocean heat uptake. The new model overcomes this deficiency. The simplicity of the models notwithstanding, the analysis presented and the necessity of the modification is indicative of the role played by processes related to the down-welling branch of global ocean circulation in shaping the vertical distribution of ocean heat uptake.

  13. Experimental study of air distribution and ventilation effectiveness in a room heated by warm air and/or floor heating

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.; Krajčík, Michal

    2010-01-01

    The levels of required ventilation depend on the criteria for indoor air quality in existing standards and guidelines. On top of that, the resulting ventilation in air changes per hour is depending on the ventilation effectiveness. In the standard CR 1752 the recommended values for ventilation ef...

  14. Experimental Investigation of the Heat Transfer in a Room using Night-Time Coling by Mixing Ventilation

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Nørgaard, Jesper; Daniels, Ole

    2011-01-01

    of full-scale measurements. The efficiency of night-time ventilation depends on the outdoor temperature and the heat transfer between the room air and the building constructions. In a full-scale test room the heat transfer was investigated during 12 hour of discharging by night-time ventilation. Three...... areas and the convective heat transfer coefficient ranged between 5 and 30 W/m2. The ratio of convective to total heat flow from the ceiling depends on the air change rate, ranging from approximately 40% at the low air change rates to approximately 70% at the high air change rate. Even though radiation......For many years focus has been on reducing the energy need for heating in buildings. This has lead to buildings with low energy demands for heating but often at the expense of the need for cooling of the building. In order to design buildings with low or zero energy need energy efficient strategies...

  15. Experimental study on air cleaning effect of clean air heat pump and its impact on ventilation requirement

    DEFF Research Database (Denmark)

    Fang, Lei; Sheng, Ying; Nie, Jinzhe

    2017-01-01

    This study investigated air purification effect of a Clean-Air Heat Pump (CAHP) which combined a desiccant wheel with a heat pump for both air cleaning and HVAC of buildings. The experiment was conducted in a field lab at four different outdoor air supply rates with and without air cleaning by CAHP....... Both sensory assessments of perceived air quality and chemical measurements of TVOC concentrations were conducted for evaluating the air cleaning performance of the CAHP. The results of experiment showed that running the CAHP improved significantly perceived air quality. At 2 L/s per person of outdoor...... air supply rate with operating the CAHP, the air quality was equivalent to the value at the higher outdoor air supply rate of 10 L/s per person without running CAHP. The TVOC measurements observed over 92% of efficiency on removal of indoor air VOCs and no VOCs accumulation on the desiccant wheel...

  16. Energy consumption reduction in existing HVAC-R systems via a power law controlling kit

    International Nuclear Information System (INIS)

    Pinnola, C.F.; Vargas, J.V.C.; Buiar, C.L.; Ordonez, J.C.

    2015-01-01

    This paper presents an alternative solution for reducing energy consumption in heating, ventilation, air conditioning and refrigeration (HVAC-R) systems. For that, an existing typical commercial refrigeration system was equipped with a novel control system based on a power law, using a frequency inverter and a programmable logic controller (PLC). Hence, it was possible to compare the operation and energy consumption of the system with the power law control and with the on-off system, quantifying the obtained gains. The experimental unit consisted of a cooling chamber, an enclosing chamber (antechamber), and a vapor compression refrigeration system, i.e., an example of a practical commercial cooling system. A set of graphs shows the experimental measurements performed with the two systems. In this way, the measured temperatures in some selected points of the two systems, as well as the consumption in kWh for a period of 6 h and 10 min were compared in the tests. The main conclusions of this work are: i) The system operating with the power law control with respect to the conventional on-off control, showed energy consumption savings of up to 31% in a test period of 6 h and 10 min, and ii) The system compressor cycling frequency in the system operating with the power law control is smaller than with the traditional on-off system. Therefore, the study shows that the developed power law control kit has potential to be installed in any existing system with immediate significant energy savings with no need for HVAC-R hardware changes. - Highlights: • An energy consumption reduction strategy for HVAC-R systems is presented. • Power law and on-off control actions are experimentally compared. • Energy savings of 31% were obtained with power law control. • Compressor cycling frequency is smaller with power law control. • Power law control kit has potential to be installed in any existing system

  17. Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.

    Science.gov (United States)

    Ahmad, I; Tansel, B; Mitrani, J D

    2001-12-01

    Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.

  18. Analysis of an HVAC system for the molten cuprous chloride pouring operation in an industrial hydrogen production facility

    Energy Technology Data Exchange (ETDEWEB)

    Ghandehariun, S.; Talimi, M.; Rosen, M.A.; Naterer, G.F. [University of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    Hydrogen can be produced by thermochemical water decomposition from various heat sources. The copper-chlorine (Cu-Cl) cycle is a potential future cycle that could be linked with nuclear reactors to thermally decompose water into oxygen and hydrogen, through intermediate copper and chlorine compounds. Heat is transferred between various processes. Effective heat recovery from the molten CuCl within the cycle is important for achieving high efficiency. This paper described the fundamentals of a preliminary HVAC system design for the molten CuCl pouring operation in an industrial facility, and the use of air cleaning devices to remove contaminants before discharge to the outdoor air. Heat recovery from molten CuCl involves calculating duct diameters to provide the desired duct air velocity through the system. The fan size is determined by evaluating the static pressure. An adequate supply of make-up air must be provided to replace the air exhausted through the ventilation system. This paper described the economics of the ventilation system as well as ways to protect employee health and minimize the costs associated with exhaust ventilation. 20 refs., 1 tab., 5 figs.

  19. New-construction techniques and HVAC overpressurization for radon reduction in schools

    International Nuclear Information System (INIS)

    Saum, D.; Witter, K.A.; Craig, A.B.

    1988-01-01

    Construction of a school in Fairfax County, Virginia, is being carefully monitored since elevated indoor radon levels have been identified in many existing houses near the site. Soil gas radon concentrations measured prior to pouring of the slabs were also indicative of a potential radon problem should the soil gas enter the school; however, subslab radon measurements collected thus far are lower than anticipated. Radon-resistant features have been incorporated into construction of the school and include the placing of at least 100 mm of clean coarse aggregate under the slab and a plastic film barrier between the aggregate and the slab, the sealing of all expansion joints, the sealing or plugging of all utility penetrations where possible, and the painting of interior block walls. In addition, the school's heating, ventilating, and air-conditioning (HVAC) system has been designed to operate continuously in overpressurization to help reduce pressure-driven entry of radon-containing soil gas into the building. Following completion, indoor radon levels in the school will be monitored to determine the effectiveness of these radon-resistant new-construction techniques and HVAC overpressurization in limiting radon entry into the school

  20. Smart HVAC control in IoT: energy consumption minimization with user comfort constraints.

    Science.gov (United States)

    Serra, Jordi; Pubill, David; Antonopoulos, Angelos; Verikoukis, Christos

    2014-01-01

    Smart grid is one of the main applications of the Internet of Things (IoT) paradigm. Within this context, this paper addresses the efficient energy consumption management of heating, ventilation, and air conditioning (HVAC) systems in smart grids with variable energy price. To that end, first, we propose an energy scheduling method that minimizes the energy consumption cost for a particular time interval, taking into account the energy price and a set of comfort constraints, that is, a range of temperatures according to user's preferences for a given room. Then, we propose an energy scheduler where the user may select to relax the temperature constraints to save more energy. Moreover, thanks to the IoT paradigm, the user may interact remotely with the HVAC control system. In particular, the user may decide remotely the temperature of comfort, while the temperature and energy consumption information is sent through Internet and displayed at the end user's device. The proposed algorithms have been implemented in a real testbed, highlighting the potential gains that can be achieved in terms of both energy and cost.

  1. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    Science.gov (United States)

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  2. Energy efficient model based algorithm for control of building HVAC systems.

    Science.gov (United States)

    Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N

    2015-11-01

    Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Neuro-optimal operation of a variable air volume HVAC and R system

    International Nuclear Information System (INIS)

    Ning Min; Zaheeruddin, M.

    2010-01-01

    Low operational efficiency especially under partial load conditions and poor control are some reasons for high energy consumption of heating, ventilation, air conditioning and refrigeration (HVAC and R) systems. To improve energy efficiency, HVAC and R systems should be efficiently operated to maintain a desired indoor environment under dynamic ambient and indoor conditions. This study proposes a neural network based optimal supervisory operation strategy to find the optimal set points for chilled water supply temperature, discharge air temperature and VAV system fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. Simulation results show that compared to the conventional night reset operation scheme, the optimal operation scheme saves around 10% energy under full load condition and 19% energy under partial load conditions.

  4. Influence of staircase ventilation state on the airflow and heat transfer of the heated room on the middle floor of high rise building

    International Nuclear Information System (INIS)

    Shi, W.X.; Ji, J.; Sun, J.H.; Lo, S.M.; Li, L.J.; Yuan, X.Y.

    2014-01-01

    Highlights: • Experiments are conducted in a scaled building model. • The flow and heat transfer in the heated room are investigated. • The staircase ventilation state influence on the heated room. • The results are useful to understand the safety and energy efficiency of building. - Abstract: Safety and energy efficiency of high rise buildings have attracted public attention in recent decades. In this paper, a set of experiments was conducted in a scaled building model with 12 floors to study the influence of the staircase ventilation state on the flow and heat transfer of the heated room on the middle floor. The airflow, room temperature and fuel burning rate were investigated. It is found that when the window above the heated room is opened, the vents state below the heated room has a significant effect on the airflow and heat transfer in the heated room. When the vents below the heated room are closed, the single-directional air flows into the heated room owing to the stronger stack effect. And the flame tilt angle is larger and the upper hot smoke temperature in the heated room is low. However, when the windows above the heated room are closed, the vents state below the heated room has little influence on the airflow and heat transfer in the heated room. And, there is two-directional air flowing through the door of the heated room The burning rate of heat source is also affected by the staircase ventilation state, and the variation trend varies with the opened window position and pool size

  5. Ventilation Model

    International Nuclear Information System (INIS)

    Yang, H.

    1999-01-01

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future

  6. An analysis of heating, ventilation and air conditioning system for nuclear facilities

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Kim, Byung Tae; Park, Seong Won; Cho, Soo Haeng; Lee, Yong Rae; Lee, Kyung Ku; Park, Seung Hyub; Hwang, Jeong Ki; Kim, Jeong Mook; Oh, Haeng Yoeb

    1988-12-01

    An analysis of HVAC system was made on various nuclear facilities such as the existing nuclear power plants in Korea, Post Irradiation Examination Facility at KAERI and Midwest Fuel Recovery Plant in USA, to get basic data and information for the design of the spent fuel interim storage facility to be implemented as one of the radwaste management projects. With the results of this study, the HVAC system to be applied to the spent fuel interim storage facility was selected and the major design considerations of the facility were suggested. (Author)

  7. The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?

    CERN Document Server

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

  8. Flexible HVAC System for Lab or Classroom.

    Science.gov (United States)

    Friedan, Jonathan

    2001-01-01

    Discusses an effort to design a heating, ventilation, and air conditioning system flexible enough to accommodate an easy conversion of classrooms to laboratories and dry labs to wet labs. The design's energy efficiency and operations and maintenance are examined. (GR)

  9. An innovation wall model based on interlayer ventilation

    International Nuclear Information System (INIS)

    Feng Jinmei; Lian Zhiwei; Hou Zhijian

    2008-01-01

    The thermal characteristics of the external wall are important to the energy consumption of the air conditioning system. Great attention should also be paid to the energy loss of the air exhaust. An innovation wall model based on interlayer ventilation is presented in this paper. The interlayer ventilation wall combines the wall and air exhaust of heating, ventilating and air conditioning (HVAC). The results of the experiment show that the energy loss of the exhaust air can be fully recovered by the interlayer ventilation wall. The cooling load can be reduced greatly because the temperature difference between the internal surface of the interlayer ventilation wall and the indoor air is very small. Clearly, the small temperature difference can enhance thermal comfort. In order to popularize the interlayer ventilation wall, technical and economical analysis is presented in this paper. Based on the buildings in the Shanghai area and a standard air conditioning system, a 4 years payback period for interlayer ventilation wall implementation was found according to the analysis

  10. Particle deposition from turbulent flow: Review of published research and its applicability to ventilation ducts in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark R.; Nazaroff, William W.

    2002-06-01

    This report reviews published experimental and theoretical investigations of particle deposition from turbulent flows and considers the applicability of this body of work to the specific case of particle deposition from flows in the ducts of heating, ventilating and air conditioning (HVAC) systems. Particle deposition can detrimentally affect the performance of HVAC systems and it influences the exposure of building occupants to a variety of air pollutants. The first section of this report describes the types of HVAC systems under consideration and discusses the components, materials and operating parameters commonly found in these systems. The second section reviews published experimental investigations of particle deposition rates from turbulent flows and considers the ramifications of the experimental evidence with respect to HVAC ducts. The third section considers the structure of turbulent airflows in ventilation ducts with a particular emphasis on turbulence investigations that have been used as a basis for particle deposition models. The final section reviews published literature on predicting particle deposition rates from turbulent flows.

  11. Nasal high-frequency oscillatory ventilation impairs heated humidification: A neonatal bench study.

    Science.gov (United States)

    Ullrich, Tim L; Czernik, Christoph; Bührer, Christoph; Schmalisch, Gerd; Fischer, Hendrik S

    2017-11-01

    Nasal high-frequency oscillatory ventilation (nHFOV) is a novel mode of non-invasive ventilation used in neonates. However, upper airway obstructions due to viscous secretions have been described as specific adverse effects. We hypothesized that high-frequency oscillations reduce air humidity in the oropharynx, resulting in upper airway desiccation. Therefore, we aimed to investigate the effects of nHFOV ventilatory settings on oropharyngeal gas conditions. NHFOV or nasal continuous positive airway pressure (nCPAP) was applied, along with heated humidification, to a previously established neonatal bench model that simulates oropharyngeal gas conditions during spontaneous breathing through an open mouth. A digital thermo-hygro sensor measured oropharyngeal temperature (T) and humidity at various nHFOV frequencies (7, 10, 13 Hz), amplitudes (10, 20, 30 cmH 2 O), and inspiratory-to-expiratory (I:E) ratios (25:75, 33:66, 50:50), and also during nCPAP. Relative humidity was always >99%, but nHFOV resulted in lower mean T and absolute humidity (AH) in comparison to nCPAP (P humidification during nHFOV. © 2017 Wiley Periodicals, Inc.

  12. Applying power electronics to residential HVAC

    International Nuclear Information System (INIS)

    Sulfstede, L.

    1991-01-01

    This paper outlines several of the market and application issues bearing on the economics residential variable speed air conditioners and heat pumps. Technical details of capacity modulized systems have been avoided, along with design issues and tradeoffs involving power semiconductors, motor torque and speed control strategies- and silicon integration for these applications. The intention is to provoke new creative technical solutions but perhaps more importantly, to involve new marketing strategies that will develop the mature potential of air conditioning products containing power electronics to enable them to generate the tough HVAC market, competing successfully against conventional systems

  13. Thermal analysis of both ventilated and full disc brake rotors with frictional heat generation

    Directory of Open Access Journals (Sweden)

    Belhocine A.

    2014-06-01

    Full Text Available In automotive engineering, the safety aspect has been considered as a number one priority in development of a new vehicle. Each single system has been studied and developed in order to meet safety requirements. Instead of having air bags, good suspension systems, good handling and safe cornering, one of the most critical systems in a vehicle is the brake system. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake discs and to identify the critical temperature of the rotor. The analysis also gives us the heat flux distribution for the two discs.

  14. INFLUENCE OF RESIDENTIAL HVAC DUTY CYCLE ON INDOOR AIR QUALITY

    Science.gov (United States)

    Measurements of duty cycle, the fraction of time the heating and cooling (HVAC) system was operating, were made in homes during the spring season of the RTP Particulate Matter Panel Study and the Tampa Asthmatic Children's Study. A temperature sensor/logger placed on an outlet...

  15. Simulation of coal low-temperature oxidation heating process in gob with “U+L” ventilation

    Directory of Open Access Journals (Sweden)

    Zhou Pei Ling

    2016-01-01

    Full Text Available In a gob with U + L ventilation, a tail roadway exists, which has important effects on the oxidation heating process and gas concentration in gob areas. Research on the heating process and gas concentration in the “U+L” ventilation can provide the basis for the prevention of spontaneous combustion, thus, the regularities of the oxidation heating process and gas concentration in gob areas were researched by simulation. Results showed that compared with U ventilation, U + L ventilation caused the high temperature zone and high temperature points in the gob areas to increase in depth and width and to be influenced by the distance between the crossheading of the tail roadway and workface. The heating rate of the high-temperature point in the gob with tail roadway was 1.5 times of that in gob without tail roadway, but was unaffected by the location of the tail roadway. Tail roadway had diversion effects on the airflow, especially near return side and the maximum reduction of gas concentration can be 0.36%.

  16. A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2013-01-01

    In this paper, the development of a nodal model that predicts vertical temperature distribution in a typical office room with floor heating and displacement ventilation (FHDV) is described. The vertical air flow distribution is first determined according to the principle of displacement ventilati...

  17. Mathematical model and minimal measurement system for optimal control of heated humidifiers in neonatal ventilation.

    Science.gov (United States)

    Verta, Antonella; Schena, Emiliano; Silvestri, Sergio

    2010-06-01

    The control of thermo-hygrometric conditions of gas delivered in neonatal mechanical ventilation appears to be a particularly difficult task, mainly due to the vast number of parameters to be monitored and the control strategies of heated humidifiers to be adopted. In the present paper, we describe the heat and fluid exchange occurring in a heated humidifier in mathematical terms; we analyze the sensitivity of the relative humidity of outlet gas as a function of thermo-hygrometric and fluid-dynamic parameters of delivered gas; we propose a control strategy that will enable the stability of outlet gas thermo-hygrometric conditions. The mathematical model is represented by a hyper-surface containing the functional relations between the input variables, which must be measured, and the output variables, which have to remain constant. Model sensitivity analysis shows that heated humidifier efficacy and stability of outlet gas thermo-hygrometric conditions are principally influenced by four parameters: liquid surface temperature, gas flow rate, inlet gas temperature and inlet gas relative humidity. The theoretical model has been experimentally validated in typical working conditions of neonatal applications. The control strategy has been implemented by a minimal measurement system composed of three thermometers, a humidity sensor, and a flow rate sensor, and based on the theoretical model. Outlet relative humidity, contained in the range 90+/-4% and 94+/-4%, corresponding with temperature variations in the range 28+/-2 degrees C and 38+/-2 degrees C respectively, has been obtained in the whole flow rate range typical of neonatal ventilation from 1 to 10 L/min. We conclude that in order to obtain the stability of the thermo-hygrometric conditions of the delivered gas mixture: (a) a control strategy with a more complex measurement system must be implemented (i.e. providing more input variables); (b) and the gas may also need to be pre-warmed before entering the humidifying

  18. An Investigation of the Effect of Ventilation Inlet and Outlet Arrangement on Heat Concentration in a Ship Engine Room

    Directory of Open Access Journals (Sweden)

    E. Alizadeh

    2017-10-01

    Full Text Available Τhe ventilation in the ship engine rooms is an essential issue concerning finest performance of engines and diesel generators as well as electric motors. The present study has aimed at the analysis of temperature distribution inside the ship main engine room. In the same way, attempts have been made to identify those points with considerable thermal concentration in main engine room space, so that proper ventilation systems could be engineered and utilized and favorable thermal conditions could be realized. The CFD approach has been utilized in order to analyze impact of the designed ventilation system on the temperature distribution pattern. The Inlet layout and area have been analyzed under a variety of scenarios in order to decrease the average temperature and eliminate the heat concentrations in various points of the engine room. The temperature distribution and location and area of ventilation air inlet have been studied in different modes resulted in temperature distribution pattern, heat concentration outline and average volumetric temperature level in each mode. The results indicated that considerable circulating air volume is required compared to those levels suggested by common practices, calculations and standards in order to eliminate the heat concentration.

  19. Numerical Studies on Heat Release Rate in Room Fire on Liquid Fuel under Different Ventilation Factors

    Directory of Open Access Journals (Sweden)

    N. Cai

    2012-01-01

    Full Text Available Heat release rate (HRR of the design fire is the most important parameter in assessing building fire hazards. However, HRR in room fire was only studied by computational fluid dynamics (CFD in most of the projects determining fire safety provisions by performance-based design. In contrast to ten years ago, officers in the Far East are now having better knowledge of CFD. Two common questions are raised on CFD-predicted results on describing free boundaries; and on computing grid size. In this work, predicting HRR by the CFD model was justified with experimental room pool fire data reported earlier. The software fire dynamics simulator (FDS version 5 was selected as the CFD simulation tool. Prescribed input heating rate based on the experimental results was used with the liquid fuel model in FDS. Five different free boundary conditions were investigated to predict HRR. Grid sensitivity study was carried out using one stretched mesh and multiple uniform meshes with different grid sizes. As it is difficult to have the entire set of CFD predicted results agreed with experiments, macroscopic flow parameters on the mass flow rate through door opening predicted by CFD were also justified by another four conditions with different ventilation factors.

  20. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  1. Natural Ventilation: A Mitigation Strategy to Reduce Overheating In Buildings under Urban Heat Island Effect in South American Cities

    Science.gov (United States)

    Palme, Massimo; Carrasco, Claudio; Ángel Gálvez, Miguel; Inostroza, Luis

    2017-10-01

    Urban heat island effect often produces an increase of overheating sensation inside of buildings. To evacuate this heat, the current use of air conditioning increases the energy consumption of buildings. As a good alternative, natural ventilation is one of the best strategies to obtain indoor comfort conditions, even in summer season, if buildings and urban designs are appropriated. In this work, the overheating risk of a small house is evaluated in four South American cities: Guayaquil, Lima, Antofagasta and Valparaíso, with and without considering the UHI effect. Then, natural ventilation is assessed in order to understand the capability of this passive strategy to assure comfort inside the house. Results show that an important portion of the indoor heat can be evacuated, however the temperature rising (especially during the night) due to UHI can generate a saturation effect if appropriate technical solutions, like the increase in the air speed that can be obtained with good urban design, are not considered.

  2. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  3. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  4. Development of energy economic ventilation system with heat recovery in dwellings; Udvikling af energioekonomisk ventilationsloesning med varmegenvinding til boliger

    Energy Technology Data Exchange (ETDEWEB)

    Drivsholm, C.; Olsen, Hans; Groenborg Larsen, C.; Jensen, John Steen; Rammer Nielsen, T.; Kragh, J.; Svendsen, Svend

    2005-07-01

    This report describes and documents the development of a counter flow heat exchanger with efficiency of approximately 90% and a highly efficient axial fan both developed for small mechanical ventilation systems for use in single family houses. The report also treats problems concerning condensation and ice formation in efficient counter flow heat exchangers. The influence of condensate and ice is investigated by measurements on an efficient heat exchanger and different strategies for de-icing are tested. A computer program is developed to calculate how condensation and frost influence the heat exchange under stationary conditions. In the project a counter flow heat exchanger of aluminium is developed with a calculated efficiency of approximately 90%. The heat exchanger is hereby legal for ventilation of more than one fire section. CAD drawings of the exchanger are coded to a CNC milling machine and two cylinders (a positive and a negative mould) are produced. The joints of the heat exchanger are glued and placed in a protecting aluminium frame. (BA)

  5. Dry Transfer Facility No.1 - Ventilation Confinement Zoning Analysis

    International Nuclear Information System (INIS)

    K.D. Draper

    2005-01-01

    The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department

  6. Technical Assessment: WRAP 1 HVAC Passive Shutdown

    International Nuclear Information System (INIS)

    Ball, D.E.; Nash, C.R.; Stroup, J.L.

    1993-01-01

    As the result of careful interpretation of DOE Order 6430.lA and other DOE Orders, the HVAC system for WRAP 1 has been greatly simplified. The HVAC system is now designed to safely shut down to Passive State if power fails for any reason. The fans cease functioning, allowing the Zone 1 and Zone 2 HVAC Confinement Systems to breathe with respect to atmospheric pressure changes. Simplifying the HVAC system avoided overdesign. Construction costs were reduced by eliminating unnecessary equipment. This report summarizes work that was done to define the criteria, physical concepts, and operational experiences that lead to the passive shutdown design for WRAP 1 confinement HVAC systems

  7. Transient effects of sudden changes of heat load in a naturally ventilated room

    Science.gov (United States)

    Caulfield, C. P.; Bower, D. J.; Fitzgerald, S.; Woods, A. W.

    2006-11-01

    Using reduced numerical models and small-scale laboratory experiments, we investigate the transient effects of changing isolated heat loads discontinuously within a large, ventilated space. We consider the emptying filling box (with high and low openings) driven by a single isolated source of buoyancy. The original steady state consists of a buoyant layer, whose depth (for the simplest case of a point source plume) is determined by the geometric properties of the room alone. When the buoyancy flux of the source is increased, a new layer `fills' the room from the top with a more buoyant layer. The original layer disappears due to entrainment by the rising plume. The behaviour is qualitatively different when the source buoyancy flux is decreased. In this case, the rising plume fluid is now relatively dense, and so it inevitably collapses back to `intrude' below the original layer. In this case, the original layer disappears due to both draining through the upper opening, and penetrative entrainment by the dense plume. We compare the predictions of three numerical models using different penetrative entrainment parametrizations to a sequence of laboratory experiments. This entrainment reduces the density of the intruding layer, and so the rising plume eventually stalls, and no longer reaches the (draining) original layer. We demonstrate that it is necessary to consider the transient effects of penetrative entrainment when the reduction in source buoyancy flux is sufficiently small.

  8. A novel control strategy to improve the performances of heated wire humidifiers in artificial neonatal ventilation

    International Nuclear Information System (INIS)

    Schena, E; Saccomandi, P; Ramandi, C; Silvestri, S

    2012-01-01

    Controlling thermo-hygrometric conditions of gas delivered in neonatal mechanical ventilation shows some unresolved issues due to the design and control strategies implemented in heated wire humidifiers. We perform an in vitro evaluation of humidifier performances, which use a control strategy based on a single-point temperature as feedback, and propose a novel design of the control which consists in pre-warming the gas upwards in the humidification chamber. The ad hoc developed control approach based on a theoretical model is implemented in vitro with and without pre-warming for comparative purposes. Without pre-warming, gas at the chamber outlet needs further post-warming and, depending on the flow rate, the vapour content condensates along the breathing circuit. Whereas, with pre-warming, the proposed control strategy allows us to considerably improve steady-state thermo-hygrometric conditions (T = 37 ± 1 °C, RH = 96% ± 4%) of gas, reaching the Y-piece near to ideal ones in the whole flow rate range, even though a high inlet chamber temperature is required at low flow rate values. The proposed solution, as theoretically predicted, also allows us to limit the vapour condensation along the circuit. (paper)

  9. Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy

    OpenAIRE

    Özyoğurtçu, Gamze; Mobedi, Moghtada; Özerdem, Barış

    2014-01-01

    The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period an...

  10. Fumigation of a laboratory-scale HVAC system with hydrogen peroxide for decontamination following a biological contamination incident.

    Science.gov (United States)

    Meyer, K M; Calfee, M W; Wood, J P; Mickelsen, L; Attwood, B; Clayton, M; Touati, A; Delafield, R

    2014-03-01

    To evaluate hydrogen peroxide vapour (H2 O2 ) for its ability to inactivate Bacillus spores within a laboratory-scale heating, ventilation and air-conditioning (HVAC) duct system. Experiments were conducted in a closed-loop duct system, constructed of either internally lined or unlined galvanized metal. Bacterial spores were aerosol-deposited onto 18-mm-diameter test material coupons and strategically placed at several locations within the duct environment. Various concentrations of H2 O2 and exposure times were evaluated to determine the sporicidal efficacy and minimum exposure needed for decontamination. For the unlined duct, high variability was observed in the recovery of spores between sample locations, likely due to complex, unpredictable flow patterns within the ducts. In comparison, the lined duct exhibited a significant desorption of the H2 O2 following the fumigant dwell period and thus resulted in complete decontamination at all sampling locations. These findings suggest that decontamination of Bacillus spore-contaminated unlined HVAC ducts by hydrogen peroxide fumigation may require more stringent conditions (higher concentrations, longer dwell duration) than internally insulated ductwork. These data may help emergency responders when developing remediation plans during building decontamination. © 2013 The Society for Applied Microbiology This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  11. Design architecture for multi-zone HVAC control systems from existing single-zone systems using wireless sensor networks

    Science.gov (United States)

    Redfern, Andrew; Koplow, Michael; Wright, Paul

    2007-01-01

    Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.

  12. Solar Air Heating Metal Roofing for Reroofing, New Construction, and Retrofit

    Science.gov (United States)

    2013-06-01

    Fahrenheit ft2 square foot FY fiscal year GHG greenhouse gas HGL HydroGeoLogic, Inc. HVAC heating, ventilation and air-conditioning LPG Liquefied...Petroleum Gas O&M operations and maintenance PV photovaltaic TMY Typical Meteorological Year USACE U.S. Army Corps of Engineers USDA U.S...the greenhouse gas emission reductions; and 6. Document the performance of the solar roof as it compares to a reflective “Cool Roof.” Among the

  13. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  14. Low order modelling and closed-loop thermal control of a ventilated plate subject to a heat source disturbance

    International Nuclear Information System (INIS)

    Videcoq, E; Girault, M; Petit, D

    2012-01-01

    A multi-input multi-output (MIMO) thermal control problem in real-time is investigated. An aluminum slab is heated on one side by a radiative heat source and cooled on the other side by a fan panel. Starting from a nominal steady state configuration of heat source power and ventilation level, the objective is to control temperature at 4 chosen locations on the rear side when the thermal system is subject to a perturbation: the heat source power. The 4 actuators are the ventilation levels of 4 fans. The hypothesis of small inputs and temperature responses deviations is made, resulting in the assumption of a linear control problem. The originality of this work is twofold: (i) instead of a (large-sized) classical heat transfer model built from spatial discretization of local partial differential equations governing physics over the system domain, a low order model is identified from experimental data using the Modal Identification Method, (ii) this low order model is used to perform state feedback control in real time through a Linear Quadratic Gaussian (LQG) compensator.

  15. Heat performance resulting from combined effects of radiation and mixed convection in a rectangular cavity ventilated by injection or suction

    Science.gov (United States)

    Ezzaraa, K.; Bahlaoui, A.; Arroub, I.; Raji, A.; Hasnaoui, M.; Naïmi, M.

    2018-05-01

    In this work, we investigated numerically heat transfer by mixed convection coupled to thermal radiation in a vented rectangular enclosure uniformly heated from below with a constant heat flux. The fresh fluid is admitted into the cavity by injection or suction, by means of two openings located on the lower part of both right and left vertical sides. Another opening is placed on the middle of the top wall to ensure the ventilation. Air, a radiatively transparent medium, is considered to be the cooling fluid. The inner surfaces, in contact with the fluid, are assumed to be gray, diffuse emitters and reflectors of radiation with identical emissivities. The effects of some pertinent parameters such as the Reynolds number, 300 ≤ Re ≤ 5000, and the emissivity of the walls, 0 ≤ ɛ ≤ 0.85, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes (injection and suction). The results indicate that the flow and thermal structures are affected by the thermal radiation for the two modes of imposed flow. However, the suction mode is found to be more favorable to the heat transfer in comparison with the injection one.

  16. When HVAC design becomes reality: investigating the impact of floor heating on the indoor climate risks in a contemporary art museum

    NARCIS (Netherlands)

    Verberne, F.; Neuhaus, E.; Ankersmit, H.A.; Schellen, H.L.

    2014-01-01

    The consequences of installing underfloor heating in a contemporary art museum for the presentation and conservation of artworks are addressed in this paper. The subsequent relative humidity (RH) and temperature gradients are identified and analyzed. The research results show that above floor level,

  17. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    Science.gov (United States)

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  18. Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.

    Science.gov (United States)

    Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa

    2018-02-27

    The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.

  19. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.

    Science.gov (United States)

    MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph

    2015-11-18

    Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8

  20. Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings

    Directory of Open Access Journals (Sweden)

    Piers MacNaughton

    2015-11-01

    Full Text Available Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person, 30% enhanced ventilation, and 40 cfm/person and four different heating, ventilation and air conditioning (HVAC system strategies (Variable Air Volume (VAV with reheat and a Fan Coil Unit (FCU, both with and without an energy recovery ventilator. We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities. The same change in ventilation

  1. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, P. [Building Science Corporation, Somerville, MA (United States)

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  2. Achieving sustainable buildings: the role of heating, ventilation and air-conditioning

    Directory of Open Access Journals (Sweden)

    Chaudhry Hassam Nasarullah

    2016-01-01

    Full Text Available With the ever-increasing population and global economy, the dependency on usage of non-renewable resources of energy is cumulating in direct proportion. Nevertheless, the non-renewable potential of these resources is certainly a leading worldwide issue, and one, which has gained substantial international interest over the past decades. Large and attractive opportunities exist to reduce building's energy use at lower costs and higher returns than other sectors. At the same time, substantial investments will be required to achieve this target as outlined by the Paris Agreement. These will require the combination of social, economic and environmental actions, including building energy codes, investment subsidies, labelling and reporting mechanisms, increased and trained workforce capacity, and evolving energy-efficient designs and HVAC technologies.

  3. A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems

    International Nuclear Information System (INIS)

    Jin, Guang-Yu; Cai, Wen-Jian; Lu Lu; Lee, Eng Lock; Chiang, Andrew

    2007-01-01

    This paper proposes a new, simple, yet accurate mechanical cooling tower model for the purpose of energy conservation and management. On the basis of Merkel's theory and effectiveness-NTU method, the model is developed by energy balance and heat, mass transfer analysis. Commissioning information is then used to identified, only three model parameters by Levenberg-Marquardt method. Compared with the existing models, the proposed model has simple characteristic parameters to be determined and without requiring iterative computation when the operating point changes. The model is validated by real operating data from the cooling towers of a heating, ventilating and air conditioning (HVAC) system of a commercial hotel. The testing results show that the performance of the cooling tower varies from time to time due to different operating conditions and the proposed model is able to reflect these changes by tuning its parameters. With this feature, the proposed model can be simply used and accurately predict the performance of the real-time operating cooling tower

  4. Ventilation control for an efficient heating of the interior of vehicles; Belueftungsregelung zur effizienten Aufheizung des Fahrzeuginnenraums

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Markus [Ford-Werke GmbH, Koeln (Germany)

    2012-11-01

    Warming up the passenger compartment of a motor vehicle in winter, in the context of efficient engines and new powertrains with significantly reduced heat output, requires careful optimisation to facilitate the best usage of the remaining potentials. Part of this optimisation task is related to the ventilation controls, i.e. the airside warm-up strategy. Using recirculated air for cabin heating can increase the efficiency of the warm-up process. However, a moisture management has to be established in order to avoid window misting. For this reason, a humidity sensor is utilised. A few interesting aspects related to this approach shall be presented and discussed in this article: potential of heating performance improvement by using recirculated cabin air, effects on the cabin air distribution, limitations to the fraction of recirculated air, humidity assessment and control, verification of the improvement potential in the climatic windtunnel and on the road. (orig.)

  5. A novel algorithm for demand-control of a single-room ventilation unit with a rotary heat exchanger

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Jansen, Anders Lund; Svendsen, Svend

    in the indoor environment. Based on these values, a demand-control algorithm varies fan speeds to change airflow rates and varies the rotational speed of the heat exchanger to modulate heat and moisture recovery. The algorithm varies airflow rates to provide free cooling and limit CO2 concentrations and varies...... moisture recovery by varying the rotational speed and then safely unbalances airflows in a worst-case scenario. In the algorithm, frost protection and minimum supply temperature take the highest priority and override other controls. This paper documents the proposed demand control algorithm and analyses...... its impacts on compliance of building regulations in Denmark. The paper presents an algorithm that manufacturers can program into their controls. The commercially available single-room ventilation unit with a rotary heat exchanger uses this algorithm coded in the C language. Future work will document...

  6. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  7. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, A.

    2011-10-01

    This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational

  8. Techno-economic analysis of energy renovation measures for a district heated multi-family house

    International Nuclear Information System (INIS)

    Gustafsson, Marcus; Gustafsson, Moa Swing; Myhren, Jonn Are; Bales, Chris; Holmberg, Sture

    2016-01-01

    Highlights: • Energy saving measures can be cost-effective as part of a planned renovation. • Primary energy consumption, non-renewable energy consumption and CO_2 emissions are assessed for different electricity mixes. • EAHP can be a cost-effective and environmentally beneficial complement to district heating. • EAHP has lower LCC and significantly shorter payback time than ventilation with heat recovery. • Low-temperature ventilation radiators improve the COP of the heat pump. - Abstract: Renovation of existing buildings is important in the work toward increased energy efficiency and reduced environmental impact. The present paper treats energy renovation measures for a Swedish district heated multi-family house, evaluated through dynamic simulation. Insulation of roof and façade, better insulating windows and flow-reducing water taps, in combination with different HVAC systems for recovery of heat from exhaust air, were assessed in terms of life cycle cost, discounted payback period, primary energy consumption, CO_2 emissions and non-renewable energy consumption. The HVAC systems were based on the existing district heating substation and included mechanical ventilation with heat recovery and different configurations of exhaust air heat pump. Compared to a renovation without energy saving measures, the combination of new windows, insulation, flow-reducing taps and an exhaust air a heat pump gave up to 24% lower life cycle cost. Adding insulation on roof and façade, the primary energy consumption was reduced by up to 58%, CO_2 emissions up to 65% and non-renewable energy consumption up to 56%. Ventilation with heat recovery also reduced the environmental impact but was not economically profitable in the studied cases. With a margin perspective on electricity consumption, the environmental impact of installing heat pumps or air heat recovery in district heated houses is increased. Low-temperature heating improved the seasonal performance factor of the

  9. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    Science.gov (United States)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  10. Heating, cooling and ventilation. Market shifts from products to systems; Verwarmen, koelen en ventileren. Markt verschuift van producten naar systemen

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, J. [Jaga Konvektco Nederland, Den Bosch (Netherlands)

    2011-07-15

    Local authorities, project developers and inhabitants have increasingly high demands with regard to dwellings or building and the installations. Comfort and energy saving are key words. Nowadays, solutions need to come with guarantees that link up to specific desires and demands. Clients increasingly opt for complete systems for heating, cooling and ventilation. [Dutch] Gemeenten, projectontwikkelaars en bewoners stellen steeds hogere eisen aan woningen of gebouwen en de installaties. Comfort en energievriendelijkheid zijn daarbij sleutelwoorden. Tegenwoordig wordt een oplossing met garanties gevraagd die aansluit op specifieke wensen en eisen. Opdrachtgevers kiezen daarom steeds vaker voor complete systemen voor verwarming, koeling en ventilatie.

  11. Augmenting natural ventilation using solar heat and free cool energy for residential buildings

    Directory of Open Access Journals (Sweden)

    N. B. Geetha

    2014-03-01

    Full Text Available In many urban buildings ventilation is not sufficient that will increase the temperature and also create unhealthy atmosphere inside the room. In such buildings artificially induced ventilation through freely available energy promote comfort conditions by reducing the temperature by 2 to 3°C and also creating good circulation of fresh air inside the room. In the present work the concept of improving the ventilation by excess hot energy available during summer days from the solar flat plate collector and by storing cool energy available during the early morning hour in the Phase Change Material (PCM based storage system is attempted. An experimental setup is made to study the effect of improvement in natural ventilation and the results are reported. A visible reduction in temperature is observed through circulation of air from the bottom side of the room to the roof of the house using the stored hot and cool energy. A CFD analysis is also carried out using ANSYS-CFX software to simulate and evaluate the mass flow of air at the inlet and at the selected RTD location by matching the transient temperature profile of the simulated result with the experimental results at the selected RTD location.

  12. Estimating occupant satisfaction of HVAC system noise using quality assessment index

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Full Text Available Noise may be defined as any unwanted sound. Sound becomes noise when it is too loud, unexpected, uncontrolled, happens at the wrong time, contains unwanted pure tones or unpleasant. In addition to being annoying, loud noise can cause hearing loss, and, depending on other factors, can affect stress level, sleep patterns and heart rate. The primary object for determining subjective estimations of loudness is to present sounds to a sample of listeners under controlled conditions. In heating, ventilation and air conditioning (HVAC systems only the ventilation fan industry (e.g., bathroom exhaust and sidewall propeller fans uses loudness ratings. In order to find satisfaction, percent of exposure to noise is the valuable issue for the personnel who are working in these areas. The room criterion (RC method has been defined by ANSI standard S12.2, which is based on measured levels of in HVAC systems noise in spaces and is used primarily as a diagnostic tool. The RC method consists of a family of criteria curves and a rating procedure. RC measures background noise in the building over the frequency range of 16-4000 Hz. This rating system requires determination of the mid-frequency average level and determining the perceived balance between high-frequency (HF sound and low-frequency (LF sound. The arithmetic average of the sound levels in the 500, 1000 and 2000 Hz octave bands is 44.6 dB; therefore, the RC 45 curve is selected as the reference for spectrum quality evaluation. The spectral deviation factors in the LF, medium-frequency sound and HF regions are 2.9, 7.5 and -2.3, respectively, giving a Quality Assessment Index (QAI of 9.8. This concludes the QAI is useful in estimating an occupant′s probable reaction when the system design does not produce optimum sound quality. Thus, a QAI between 5 and 10 dB represents a marginal situation in which acceptance by an occupant is questionable. However, when sound pressure levels in the 16 or 31.5 Hz octave

  13. Estimating occupant satisfaction of HVAC system noise using quality assessment index.

    Science.gov (United States)

    Forouharmajd, Farhad; Nassiri, Parvin; Monazzam, Mohammad R; Yazdchi, Mohammadreza

    2012-01-01

    Noise may be defined as any unwanted sound. Sound becomes noise when it is too loud, unexpected, uncontrolled, happens at the wrong time, contains unwanted pure tones or unpleasant. In addition to being annoying, loud noise can cause hearing loss, and, depending on other factors, can affect stress level, sleep patterns and heart rate. The primary object for determining subjective estimations of loudness is to present sounds to a sample of listeners under controlled conditions. In heating, ventilation and air conditioning (HVAC) systems only the ventilation fan industry (e.g., bathroom exhaust and sidewall propeller fans) uses loudness ratings. In order to find satisfaction, percent of exposure to noise is the valuable issue for the personnel who are working in these areas. The room criterion (RC) method has been defined by ANSI standard S12.2, which is based on measured levels of in HVAC systems noise in spaces and is used primarily as a diagnostic tool. The RC method consists of a family of criteria curves and a rating procedure. RC measures background noise in the building over the frequency range of 16-4000 Hz. This rating system requires determination of the mid-frequency average level and determining the perceived balance between high-frequency (HF) sound and low-frequency (LF) sound. The arithmetic average of the sound levels in the 500, 1000 and 2000 Hz octave bands is 44.6 dB; therefore, the RC 45 curve is selected as the reference for spectrum quality evaluation. The spectral deviation factors in the LF, medium-frequency sound and HF regions are 2.9, 7.5 and -2.3, respectively, giving a Quality Assessment Index (QAI) of 9.8. This concludes the QAI is useful in estimating an occupant's probable reaction when the system design does not produce optimum sound quality. Thus, a QAI between 5 and 10 dB represents a marginal situation in which acceptance by an occupant is questionable. However, when sound pressure levels in the 16 or 31.5 Hz octave bands exceed 65

  14. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  15. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  16. Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Sanda Budea

    2014-06-01

    Full Text Available Solar air collectors have various applications: on the one hand, they can be used for air heating in cold seasons; on the other hand they can be used in summer to evacuate the warm and polluted air from residential, offices, industrial, and commercial buildings. The paper presents experimental results of a solar collector air, under the climatic conditions of the Southeastern Europe. The relationships between the direct solar irradiation, the resulting heat flow, the air velocity at the outlet, the air flow rate, the nominal regime of the collector and the efficiency of conversion of solar energy into thermal energy are all highlighted. Thus, it was shown that after a maximum 50 min, solar air collectors, with baffles and double air passage can reach over 50% efficiency for solar irradiation of 900–1000 W/m2. The article also presents a mathematical model and the results of a computational program that allows sizing solar collectors for the transfer of air, with the purpose of improving the natural ventilation of buildings. The article is completed with case studies, sizing the area to be covered with solar collectors, to ensure ventilation of a house with two floors or for an office building. In addition, the ACH (air change per hour coefficient was calculated and compared.

  17. Mechanical ventilation with heated humidifiers: measurements of condensed water mass within the breathing circuit according to ventilatory settings

    International Nuclear Information System (INIS)

    Schena, E; Saccomandi, P; Cappelli, S; Silvestri, S

    2013-01-01

    Heated wire humidifiers (HWHs) are widely used to heat and humidify gases during mechanical ventilation. The control strategy implemented on commercial HWHs, based on maintaining constant gas temperature at the chamber outlet, shows weaknesses: humidifying performances depend on environmental temperature and ventilatory settings, and often condensation occurs. Herein, we analyzed in vitro HWH performances focusing on the condensation amount according to ventilatory settings. We used a physical model to define the parameters which mainly influence the HWH performances. In order to investigate the influence of minute volume (MV) and frequency rate (f r ) on condensation, the other influencing parameters were kept constant during experiments, and we introduced a novel approach to estimate the condensation. The method, based on measuring the condensed vapor mass (Δm), provided more objective information than the visual-based scale used in previous studies. Thanks to both the control of other influencing factors and the accurate Δm measures, the investigation showed the Δm increase with MV and f r . Substantial condensation after 7 h of ventilation and the influence of MV and f r on Δm (i.e., Δm = 3 g at MV = 1.5 L min −1 and f r = 8 bpm and Δm = 9.4 g at MV = 8 L min −1 and f r = 20 bpm) confirm the weaknesses of 'single-point temperature' control strategies. (paper)

  18. Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624

    DEFF Research Database (Denmark)

    Heebøll, Anna; Wargocki, Pawel; Toftum, Jørn

    2018-01-01

    of Copenhagen, Denmark, were retrofitted either with a decentralized, balanced supply and exhaust mechanical ventilation unit with heat recovery; automatically operable windows with an exhaust fan; automatically operable windows with alternating counter-flow heat recovery through slots in the outside wall......; or a visual feedback display unit showing the current classroom carbon dioxide concentration, thus advising when the windows should be opened. For comparison, one classroom retained the original approach for achieving ventilation by manual opening of windows. One year after retrofitting the classrooms carbon...... dioxide concentrations, temperatures, energy use, and window and door opening behavior were recorded during a four week period in the heating season in January. The measured carbon dioxide concentrations were significantly lower in the classrooms with the mechanical ventilation system and the system...

  19. Analysis of the HVAC system's sound quality using the design of experiments

    International Nuclear Information System (INIS)

    Park, Sang Gil; Sim, Hyun Jin; Yoon, Ji Hyun; Jeong, Jae Eun; Choi, Byoung Jae; Oh, Jae Eung

    2009-01-01

    Human hearing is very sensitive to sound, so a subjective index of sound quality is required. Each situation of sound evaluation is composed of Sound Quality (SQ) metrics. When substituting the level of one frequency band, we could not see the tendency of substitution at the whole frequency band during SQ evaluation. In this study, the Design of Experiments (DOE) is used to analyze noise from an automotive Heating, Ventilating, and Air Conditioning (HVAC) system. The frequency domain is divided into 12 equal parts, and each level of the domain is given an increase or decrease due to the change in frequency band based on the 'loud' and 'sharp' sound of the SQ analyzed. By using DOE, the number of tests is effectively reduced by the number of experiments, and the main result is a solution at each band. SQ in terms of the 'loud' and 'sharp' sound at each band, the change in band (increase or decrease in sound pressure) or no change in band will have the most effect on the identifiable characteristics of SQ. This will enable us to select the objective frequency band. Through the results obtained, the physical level changes in arbitrary frequency domain sensitivity can be determined

  20. Switched Control Strategies of Aggregated Commercial HVAC Systems for Demand Response in Smart Grids

    Directory of Open Access Journals (Sweden)

    Kai Ma

    2017-07-01

    Full Text Available This work proposes three switched control strategies for aggregated heating, ventilation, and air conditioning (HVAC systems in commercial buildings to track the automatic generation control (AGC signal in smart grid. The existing control strategies include the direct load control strategy and the setpoint regulation strategy. The direct load control strategy cannot track the AGC signal when the state of charge (SOC of the aggregated thermostatically controlled loads (TCLs exceeds their regulation capacity, while the setpoint regulation strategy provides flexible regulation capacity, but causes larger tracking errors. To improve the tracking performance, we took the advantages of the two control modes and developed three switched control strategies. The control strategies switch between the direct load control mode and the setpoint regulation mode according to different switching indices. Specifically, we design a discrete-time controller and optimize the controller parameter for the setpoint regulation strategy using the Fibonacci optimization algorithm, enabling us to propose two switched control strategies across multiple time steps. Furthermore, we extend the switched control strategies by introducing a two-stage regulation in a single time step. Simulation results demonstrate that the proposed switched control strategies can reduce the tracking errors for frequency regulation.

  1. Human Thermal Comfort and Heat Removal Efficiency for Ventilation Variants in Passenger Cars

    Directory of Open Access Journals (Sweden)

    Saboora Khatoon

    2017-10-01

    Full Text Available The realization of a comfortable thermal environment with low energy consumption and improved ventilation in a car has become the aim of manufacturers in recent decades. Novel ventilation concepts with more flexible cabin usage and layouts are appealing owing to their potential for improving passenger comfort and driving power. In this study, three variant ventilation concepts are investigated and their performance is compared with respect to energy efficiency and human comfort of the driver and passenger in front and a child in the rear compartment. FLUENT 16.0, a commercial three-dimensional (3D software, are used for the simulation. A surface-to-surface radiation model is applied under transient conditions for a car parked in summer conditions with its engine in the running condition. The results for the standard Fanger’s model and modified Fanger’s model are analyzed, discussed, and compared for the driver, passenger, and child. The modified Fanger’s model determines the thermal sensation on the basis of mean arterial pressure.

  2. Evaluating the Sensitivity of the Mass-Based Particle Removal Calculations for HVAC Filters in ISO 16890 to Assumptions for Aerosol Distributions

    Directory of Open Access Journals (Sweden)

    Brent Stephens

    2018-02-01

    Full Text Available High efficiency particle air filters are increasingly being recommended for use in heating, ventilating, and air-conditioning (HVAC systems to improve indoor air quality (IAQ. ISO Standard 16890-2016 provides a methodology for approximating mass-based particle removal efficiencies for PM1, PM2.5, and PM10 using size-resolved removal efficiency measurements for 0.3 µm to 10 µm particles. Two historical volume distribution functions for ambient aerosol distributions are assumed to represent ambient air in urban and rural areas globally. The goals of this work are to: (i review the ambient aerosol distributions used in ISO 16890, (ii evaluate the sensitivity of the mass-based removal efficiency calculation procedures described in ISO 16890 to various assumptions that are related to indoor and outdoor aerosol distributions, and (iii recommend several modifications to the standard that can yield more realistic estimates of mass-based removal efficiencies for HVAC filters, and thus provide a more realistic representation of a greater number of building scenarios. The results demonstrate that knowing the PM mass removal efficiency estimated using ISO 16890 is not sufficient to predict the PM mass removal efficiency in all of the environments in which the filter might be used. The main reason for this insufficiency is that the assumptions for aerosol number and volume distributions can substantially impact the results, albeit with some exceptions.

  3. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  4. The effect of a rotary heat exchanger in room-based ventilation on indoor humidity in existing apartments in temperate climates

    DEFF Research Database (Denmark)

    Smith, Kevin Michael; Svendsen, Svend

    2016-01-01

    The investigation constructed and simulated moisture balance equations for single-room ventilation with a non-hygroscopic rotary heat exchanger. Based on literature, the study assumed that all condensed moisture in the exhaust subsequently evaporated into the supply. Simulations evaluated...... the potential for moisture issues and compared results with recuperative heat recovery and whole-dwelling ventilation systems. To assess the sensitivity of results, the simulations used three moisture production schedules to represent possible conditions based on literature. The study also analyzed...... the sensitivity to influential parameters, such as infiltration rate, heat recovery, and indoor temperature. With a typical moisture production schedule, the rotary heat exchanger recovered excessive moisture from kitchens and bathrooms,which provided a mold risk. The rotary heat exchanger was only suitable...

  5. HVAC--the importance of clean intake section and dry air filter in cold climate.

    Science.gov (United States)

    Hanssen, S O

    2004-01-01

    HVAC systems, if properly designed, installed, operated and maintained, will improve thermal conditions and air quality indoors. However, the success strongly depends on the design of the system and the quality of the components we use in our HVAC installations. Regrettably, several investigations have revealed that many HVAC installations have a lot of operational and maintenance problems, especially related to moisture, rain and snow entrainment. In short, it seems that too little attention is placed on the design of the intake section, despite the fact that there exists a large number of national and international guidelines and recommendations. This is a serious problem because the air intake is the initial component of the ventilation plant and as such the first line of defense against debris and other outdoor air pollutants. Unfortunately, the design is often an argued compromise between the architect, the civil engineer and the HVAC engineer. In the future, the technical, hygienic and microbiological feature of air intakes must be better ensured in order to avoid the air intake becoming a risk component as regards contamination and indoor air quality. Further, it seems that the magnitude of the problem is not well known, or recognized, by the building designers, engineers and professionals involved in the construction and operation of buildings. This fact needs to be addressed more seriously, because obviously there is a big difference between the idealistic architectonic design, engineering intentions and the real life situation. Several practical recommendations for design and operation of HVAC systems are presented. Following the recommendations will result in less pollution from the HVAC-system and increased indoor environmental quality.

  6. Efficiency improvement of variable speed electrical drives for HVAC applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, F.; Blaabjerg, F.; Pedersen, J.K. [Aalborg Univ., Inst. of Energy Technology, Aalborg East (Denmark)

    2000-07-01

    A large part of the produced electrical energy is consumed by ventilators, pumps and compressors, the so-called HVAC applications. A lot of this energy can be saved by speed control, but even with the large saving obtained alone by introduction of variable speed, it is still essential to optimise the control of the variable speed drive and to optimise the electrical machine with respect to efficiency. Experiments are made with energy optimal induction motor control on a 2.2 kW variable speed pump system. It is demonstrated that 10% of the consumed energy can typically be saved by energy optimal motor control compared with constant V/Hz control. In a comparison of induction motors and permanent magnet synchronous motors for a variable speed pump application it is shown that for 2.2 kW motors an investment in high-efficiency or PM motors are typically paid back within 2.5 years and 7 years respectively. For a 90 kW PM motor the pay-back time would be 24 years. It is today not profitable to use PM motors for variable speed HVAC applications above 2 kW rated motor power. A further study is required to determine this limit in power rating more precisely. (orig.)

  7. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  8. Archtechtual Envilomental and Eequipment Laboratory Issues on HVAC System in a Commercial Kitchen(Educational Practice through Research)

    OpenAIRE

    吉野, 一; Hajime, Yoshino

    2017-01-01

    Generally, large amount of heat, oil fume including chemical substances and exhaust gases were generated during cooking in commercial kitchens. Therefore, it is important to keep highly safe and good hygienic condition by HVAC System. In this paper, health effect of oil fume and fire spread were surveyed based on investigation of previous studies. Lastly, current issues and future prospects of commercial kitchens HVAC system in Japan were described.

  9. Reducing Mortality from Terrorist Releases of Chemical and Biological Agents: I. Filtration for Ventilation Systems in Commercial Building

    Energy Technology Data Exchange (ETDEWEB)

    Thatcher, Tracy L.; Daisey, Joan M.

    1999-09-01

    There is growing concern about potential terrorist attacks involving releases of chemical and/or biological (CB) agents, such as sarin or anthrax, in and around buildings. For an external release, the CB agent can enter the building through the air intakes of a building's mechanical ventilation system and by infiltration through the building envelope. For an interior release in a single room, the mechanical ventilation system, which often recirculates some fraction of the air within a building, may distribute the released CB agent throughout the building. For both cases, installing building systems that remove chemical and biological agents may be the most effective way to protect building occupants. Filtration systems installed in the heating, ventilating and air-conditioning (HVAC) systems of buildings can significantly reduce exposures of building occupants in the event of a release, whether the release is outdoors or indoors. Reduced exposures can reduce the number of deaths from a terrorist attack. The purpose of this report is to provide information and examples of the design of filtration systems to help building engineers retrofit HVAC systems. The report also provides background information on the physical nature of CB agents and brief overviews of the basic principles of particle and vapor filtration.

  10. ENERGY STAR Certified Light Commercial HVAC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.1 ENERGY STAR Program Requirements for Light Commercial HVAC that are effective as of...

  11. HVAC design manual for hospitals and clinics

    National Research Council Canada - National Science Library

    2013-01-01

    "Provides in-depth design recommendations and proven, cost effective, and reliable solutions for health care HVAC design that provide low maintenance cost and high reliability based on best practices...

  12. A novel method of evaluation of three heat-moisture exchangers in six different ventilator settings

    NARCIS (Netherlands)

    Unal, N.; Kanhai, J. K.; Buijk, S. L.; Pompe, J. C.; Holland, W. P.; Gültuna, I.; Ince, C.; Saygin, B.; Bruining, H. A.

    1998-01-01

    The purpose of this study was to assess and compare the humidification, heating, and resistance properties of three commercially available heat-moisture exchangers (HMEs). To mimic clinical conditions, a previously validated, new, realistic experimental set-up and measurement protocol was used.

  13. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  14. Metingen aan twee luchtwassystemen in een vleeskuikenstal met conditionering van ingaande ventilatielucht = Measurements on two air scrubbing systems on broiler houses with heat exchanger for inlet ventilation air

    NARCIS (Netherlands)

    Melse, R.W.; Hattum, van T.G.; Huis in 'T Veld, J.W.H.; Gerrits, F.A.

    2012-01-01

    The performance of two experimental air scrubber was investigated during 9 months on two broiler houses. The inlet ventilation air of the houses is led through a subsoil heat exchanger. In this report the removal efficiencies of the scrubber are reported for ammonia, odour and fine dust (PM10 and

  15. HVAC optimization as facility requirements change with corporate restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, R.R.; Sankey, M.S.

    1997-06-01

    The hyper-competitive, dynamic 1990`s forced many corporations to {open_quotes}Right-Size,{close_quotes} relocating resources and equipment -- even consolidating. These changes led to utility reduction if HVAC optimization was thoroughly addressed, and energy conservation opportunities were identified and properly designed. This is true particularly when the facility`s heating and cooling systems are matched to correspond with the load changes attributed to the reduction of staff and computers. Computers have been downsized and processing power per unit of energy input increased, thus, the need for large mainframe computer centers, and their associated high intensity energy usage, have been decreased or eliminated. Cooling, therefore, also has been reduced.

  16. Investigation of the Indoor Environment in a Passive House Apartment Building Heated by Ventilation Air

    DEFF Research Database (Denmark)

    Lysholt Hansen, MathiasYoung Bok; Koulani, Chrysanthi Sofia; Peuhkuri, Ruut Hannele

    2014-01-01

    comfort and the performance of the air heating system and solar shading. Thermal comfort category B according to ISO 7730 was obtained in the building during field measurements, indicating that the air heating system was able to maintain comfort conditions in winter, when the outdoor temperature had been...... building project finished medio 2012. The design challenge was met with a concept of air heating that is individually controlled in every room. It also applies external solar shading. This study used indoor climate measurements and dynamic simulations in one of these apartment buildings to evaluate thermal...... unusual low for a longer period. The dynamic simulations also indicated that air heating during winter can provide a comfortable thermal environment. Dynamic simulations also demonstrated that during summer, apartments with automatic external solar screens had no serious overheating, whereas in apartments...

  17. Improving Ventilation and Saving Energy: Laboratory Study in aModular Classroom Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G.; Buchanan, Ian S.; Faulkner, David; Fisk,William J.; Lai, Chi-Ming; Spears, Michael; Sullivan, Douglas P.

    2005-08-01

    The primary goals of this research effort were to develop, evaluate, and demonstrate a practical HVAC system for classrooms that consistently provides classrooms with the quantity of ventilation in current minimum standards, while saving energy, and reducing HVAC-related noise levels. This research was motivated by several factors, including the public benefits of energy efficiency, evidence that many classrooms are under-ventilated, and public concerns about indoor environmental quality in classrooms. This project involved the installation and verification of the performance of an Improved Heat Pump Air Conditioning (IHPAC) system, and its comparison, a standard HVAC system having an efficiency of 10 SEER. The project included the verification of the physical characteristics suitable for direct replacement of existing 10 SEER systems, quantitative demonstration of improved energy efficiency, reduced acoustic noise levels, quantitative demonstration of improved ventilation control, and verification that the system would meet temperature control demands necessary for the thermal comfort of the occupants. Results showed that the IHPAC met these goals. The IHPAC was found to be a direct bolt-on replacement for the 10 SEER system. Calculated energy efficiency improvements based on many days of classroom cooling or heating showed that the IHPAC system is about 44% more efficient during cooling and 38% more efficient during heating than the 10 SEER system. Noise reduction was dramatic, with measured A-weighed sound level for fan only operation conditions of 34.3 dB(A), a reduction of 19 dB(A) compared to the 10 SEER system. Similarly, the IHPAC stage-1 and stage-2 compressor plus fan sound levels were 40.8 dB(A) and 42.7 dB(A), reductions of 14 and 13 dB(A), respectively. Thus, the IHPAC is 20 to 35 times quieter than the 10 SEER systems depending upon the operation mode. The IHPAC system met the ventilation requirements and was able to provide consistent outside air

  18. A simple model of the effect of ocean ventilation on ocean heat uptake

    Energy Technology Data Exchange (ETDEWEB)

    Nadiga, Balasubramanya T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Urban, Nathan Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-27

    Presentation includes slides on Earth System Models vs. Simple Climate Models; A Popular SCM: Energy Balance Model of Anomalies; On calibrating against one ESM experiment, the SCM correctly captures that ESM's surface warming response with other forcings; Multi-Model Analysis: Multiple ESMs, Single SCM; Posterior Distributions of ECS; However In Excess of 90% of TOA Energy Imbalance is Sequestered in the World Oceans; Heat Storage in the Two Layer Model; Heat Storage in the Two Layer Model; Including TOA Rad. Imbalance and Ocean Heat in Calibration Improves Repr., but Significant Errors Persist; Improved Vertical Resolution Does Not Fix Problem; A Series of Expts. Confirms That Anomaly-Diffusing Models Cannot Properly Represent Ocean Heat Uptake; Physics of the Thermocline; Outcropping Isopycnals and Horizontally-Averaged Layers; Local interactions between outcropping isopycnals leads to non-local interactions between horizontally-averaged layers; Both Surface Warming and Ocean Heat are Well Represented With Just 4 Layers; A Series of Expts. Confirms That When Non-Local Interactions are Allowed, the SCMs Can Represent Both Surface Warming and Ocean Heat Uptake; and Summary and Conclusions.

  19. Forced convection heat transfer in rectangular ducts - general case of wall resistances and peripheral conduction for ventilation cooling of nuclear waste repositories [ heat transfer and nuclear disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lyczkowski, R. W.; Solbrig, C. W.; Gidaspow, D.

    1980-01-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem for the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior.

  20. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    Science.gov (United States)

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  1. Occupancy pattern in office buildings : consequences for HVAC system design and operation

    Energy Technology Data Exchange (ETDEWEB)

    Halvarsson, Johan

    2011-07-01

    The main objectives with the work presented in this thesis have been: (a) to contribute to an increased understanding of the consequences that the occupancy pattern can have on the indoor climate and for Heating, Ventilation and Air Conditioning (HVAC) system design and operation; and (b) to investigate how typical occupancy patterns can look like in office buildings. The occupancy pattern in an office is a function of the floor layout of the building, and the user organisation(s) occupying it and their way of working. The combination of these two, will decide how the users occupy the building, which in turn is an important design prerequisite/constraint for the HVAC system design process. There are many assessments related to indoor climate and HVAC that involve considerations of the occupancy pattern, reaching from estimates of internal heat and pollution loads to deciding on an appropriate control strategy of HVAC systems, or estimating the energy saving potential with demand controlled ventilation. A few numerical measures have been used to describe different aspects of the occupancy pattern. The zone based occupancy factor (OFz) expresses the ratio between the number of occupied sub-zones/rooms in a zone and the total number of sub-zones/rooms in the zone. OFz does not take the number of people into account, only whether a sub-zone/room is occupied or unoccupied. OFz can be used both to express instantaneous occupancy levels and averages over time. Superscript is used to specify the time, or time period, that the measure refers to. For instance, 06 18,wd OFz means the average OFz between 6 a.m. and 6 p.m. on working days, while the 95th percentile of OFz6{sub 1}8,wd , means the 95th percentile of all instantaneous values (one or five minute averages in the case studies) of OFz that have occurred during the same time period. The utilisation rate (UR) expresses the fraction of time that a room is occupied, within a specific time period. It is important to

  2. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  3. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  4. Mechanical Ventilation

    Science.gov (United States)

    ... ventilation is a life support treatment. A mechanical ventilator is a machine that helps people breathe when ... to breathe enough on their own. The mechanical ventilator is also called a ventilator , respirator, or breathing ...

  5. Determination by a CFD code of the heat release rate in a confined and mechanically-ventilated compartment fire

    International Nuclear Information System (INIS)

    Nasr, Ayoub

    2011-01-01

    For several years, many experimental/numerical research programs have been carried out at IRSN in order to provide sufficient data on the burning process and understand the behavior of a pool fire in a confined and mechanically ventilated compartment. Several experimental tests have shown that in some cases, the oxygen concentration in the local decreases then stabilizes until fire extinction. The fuel mass loss rate is instantaneously adjusted according to the ventilation in the local, which may leads to a lower fuel consumption rate as compared to that in free atmosphere. The fire duration is then 2 to 3 times greater than that obtained in free atmosphere, which may damages some specific safety equipment used to reduce the spread of fire between compartments such as fire doors. The objective of this work is to propose a theoretical approach that allows the determination of the burning rate of fuels for pool fires in a closed compartment. Fuel response to vitiated air as well as burning enhancement due to hot gases and confinement should be taken into account. Thus, a theoretical formulation, based on an energy balance equation at the pool fire surface, was developed and compared with the empirical correlation of Peatross and Beyler before being implemented in a CFD code 'ISIS', developed at IRSN and validated against PRISME fire test results. The main advantage of this global approach is that no assumptions were made on the relative importance of each mode of heat transfer from the flame. In fact, the convective and the radiant components of the heat flux from the flame to the fuel surface were determined taking into account the air vitiation effect. In addition to this theoretical approach, an experimental work was conducted at the Institut PPRIME to study heptane pool fires in a reduced-scale fire compartment, in the aim to investigate the effects of vitiated air on fire parameters. These results were used to validate the theoretical formulation developed

  6. Applications and Energy Consumption of Demand Controlled Ventilation Systems. Modelling, Simulation and Implementation of Modular Built Dynamical VAV Systems and Control Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Bjoern R.

    2002-07-01

    This thesis discusses many topics of heating and ventilation. This is because the ventilation system is an integrated part of its host building. The functionality and effectiveness of the ventilation system are very much dependent on the building's architectural design, its internal materials, its occupants, its air tightness characteristics and its placement in the terrain. Although this thesis emphasizes strongly on VAV (Variable Air Volume) systems and, in particular, modelling and simulation of such systems, it touches a range of important HVAC related issues. The scope is however, limited to the field of comfort ventilation. That is because ventilation in industrial environments often is subject to separate regulations, and requires other and specialized methods of design and evaluation of ventilation performance. The main objectives have been to: (1) Develop mathematical models for VAV components and systems. (2) Evaluate existing and develop new strategies for VAV demand controlled ventilation by system simulation. (3) Investigate the potential for saving energy and the impact on indoor climate. The development of mathematical models and simulation of VAV systems are given quite much attention compared to the other topics discussed.

  7. Turnkey Heating, Ventilating, and Air Conditioning and Lighting Retrofit Solution Combining Energy Efficiency and Demand Response Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Doebber, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Deru, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Trenbath, Kim [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-12

    NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured by Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.

  8. The necessity of HVAC system for the registered architectural cultural heritage building

    Science.gov (United States)

    Popovici, Cătălin George; Hudişteanu, Sebastian Valeriu; Cherecheş, Nelu-Cristian

    2018-02-01

    This study is intended to highlight the role of the ventilation and air conditioning system for a theatre. It was chosen as a case study the "Vasile Alecsandri" National Theatre of Jassy. The paper also sought to make a comparison in three distinct scenarios for HVAC Main Hall system - ventilation and air conditioning system of the Main Hall doesn't work; only the ventilation system of the Main Hall works and ventilation and air conditioning system of the Main Hall works. For analysing the comfort parameters, the ANSYS-Fluent software was used to build a 2D model of the building and simulation of HVAC system functionality during winter season, in all three scenarios. For the studied scenarios, the external conditions of Jassy and the indoor conditions of the theatre, when the entire spectacle hall is occupied were considered. The main aspects evaluated for each case were the air temperature, air velocity and relative humidity. The results are presented comparatively as plots and spectra of the interest parameters.

  9. Evaporation of Ventilated Water Droplet: Connection Between Heat and Mass Transfer

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Ondráčková, Lucie; Schwarz, Jaroslav; Kulmala, M.

    2001-01-01

    Roč. 32, č. 6 (2001), s. 739-748 ISSN 0021-8502 Institutional research plan: CEZ:AV0Z4072921 Keywords : droplet evaporation * heat and mass transfer Subject RIV: CC - Organic Chemistry Impact factor: 1.605, year: 2001

  10. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  11. Performance evaluation of ventilation radiators

    International Nuclear Information System (INIS)

    Myhren, Jonn Are; Holmberg, Sture

    2013-01-01

    A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust-ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and identify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20% without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught. -- Highlights: ► Low temperature heat emitters are currently of interest due to their potential for increasing energy efficiency. ► A ventilation radiator is a combined ventilation and heat emission unit which can be adapted to low temperature heating systems. ► We examine how ventilation radiators can be made to be more efficient in terms of energy consumption and thermal comfort. ► Current work focuses on heat transfer mechanisms and convection fin configuration of ventilation radiators

  12. Evaluating the use heat pipe for dedicated ventilation of office buildings in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lian [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom (Hong Kong); Lee, W.L., E-mail: bewll@polyu.edu.h [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom (Hong Kong)

    2011-04-15

    Research highlights: {yields} Heat pipe dedicated for outdoor air treatment (HPDV system) was investigated. {yields} Investigations were based on cooling demand of 10 existing office buildings in HK. {yields} HPDV system could save energy use for 70% of the air-conditioned hours. {yields} HPDV system could save 1.2% to 7.9% of annual energy use for air-conditioning. {yields} Heat pipe of 57% effectiveness is the best in achieving energy saving objectives. -- Abstract: Recent research studies advocates decoupling dehumidification from cooling to improve indoor air quality and reduce energy consumption. The feasible use of heat pipe at the air handler dedicated for outdoor air treatment (HPDV system) in accomplishing this objective is investigated in this study. To evaluate the performance and the energy saving potential of the proposed HPDV system, the design parameters of 75 Grade A office buildings in Hong Kong were collected. Ten representative buildings were subsequently identified for further study to achieve a confidence level of 95%. The annual cooling load profiles of the 10 representative buildings were simulated by the use of HTB2. Based on the realistic cooling load profiles and the heat pipes of effectiveness 0.35-0.6, the proposed HPDV system in achieving the intended objectives were evaluated. It was found that the savings for the 10 representative buildings were comparable. The reduction in cooling and reheating energy was between 23 and 44 kWh/m{sup 2}, which corresponds to 1.2% and 7.9% saving in annual energy use for air-conditioning. The results indicate that HP of different effectiveness can be applied to save energy for over 70% of the air-conditioned hours; of which only 0.03-6.3% of the time the decoupling objective cannot be achieved (abbreviated as NHRS). Based on the results of the study, a simplified model relating NHRS with heat pipe effectiveness has been established. The model can help designers more quickly determine how NHRS can be

  13. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...

  14. Demand Controlled Economizer Cycles: A Direct Digital Control Scheme for Heating, Ventilating, and Air Conditioning Systems,

    Science.gov (United States)

    1984-05-01

    Control Ignored any error of 1/10th degree or less. This was done by setting the error term E and the integral sum PREINT to zero If then absolute value of...signs of two errors jeq tdiff if equal, jump clr @preint else zero integal sum tdiff mov @diff,rl fetch absolute value of OAT-RAT ci rl,25 is...includes a heating coil and thermostatic control to maintain the air in this path at an elevated temperature, typically around 80 degrees Farenheit (80 F

  15. Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, William [National Renewable Energy Lab. (NREL), Golden, CO (United States); Williamson, James [National Renewable Energy Lab. (NREL), Golden, CO (United States); Puttafunta, Srikanth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-30

    One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent

  16. Demand Controlled Ventilation in a Combined Ventilation and Radiator System

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    With growing concerns for efficient and sustainable energy treatment in buildings there is a need for balanced and intelligent ventilation solutions. This paper presents a strategy for demand controlled ventilation with ventilation radiators, a combined heating and ventilation system. The ventilation rate was decreased from normal requirements (per floor area) of 0.375 l·s-1·m-2 to 0.100 l·s-1·m-2 when the residence building was un-occupied. The energy saving potential due to decreased ventil...

  17. Thermal analysis of an HVAC system with TRV controlled hydronic radiator

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2010-01-01

    A model for an HVAC system is derived in this paper. The HVAC system consists of a room and a hydronic radiator with temperature regulating valve (TRV) which has a step motor to adjust the valve opening. The heating system and the room are simulated as a unit entity for thermal analysis and contr......A model for an HVAC system is derived in this paper. The HVAC system consists of a room and a hydronic radiator with temperature regulating valve (TRV) which has a step motor to adjust the valve opening. The heating system and the room are simulated as a unit entity for thermal analysis...... and controller design. A discrete-element model with interconnected small scaled elements is proposed for the radiator. This models the radiator more precisely than that of a lumped model in terms of transfer delay and radiator gain. This precise modeling gives us an intuition into a regular unwanted phenomenon...... which occurs in low demand situations. When flow is very low in radiator and the supply water temperature and the pressure drop across the valve is constant, oscillation in room temperature occurs. One reason could be the large gain of radiator in low demand conditions compared to the high demand...

  18. How to Plan Ventilation Systems.

    Science.gov (United States)

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  19. Research on Heat Recovery Technology for Reducing the Energy Consumption of Dedicated Ventilation Systems: An Application to the Operating Model of a Laboratory

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2016-01-01

    Full Text Available In this research, the application of heat pipes in the air handler dedicated to decoupling dehumidification from cooling to reduce energy consumption was simulated and investigated by simulations and experimental studies. The cooling load profiles and heat pipes with effectiveness of 0.45 and 0.6, respectively, were evaluated in achieving the desired space conditions and calculated hour by hour. The results demonstrated that for all examined cases, a heat pipe heat exchanger (HPHX can be used to save over 80% of the energy during the hours of operation of air conditioning. The overall energy reduction rate was from 3.2% to 4.5% under air conditioning system conditions. It was found that the energy saving potential of a laboratory was higher than for other kinds of buildings. Therefore, the dedicated ventilation system combined with heat recovery technology can be efficiently applied to buildings, especially for laboratories in subtropical areas.

  20. Energy and IAQ Implications of Alternative Minimum Ventilation Rates in California Retail and School Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    For a stand-alone retail building, a primary school, and a secondary school in each of the 16 California climate zones, the EnergyPlus building energy simulation model was used to estimate how minimum mechanical ventilation rates (VRs) affect energy use and indoor air concentrations of an indoor-generated contaminant. The modeling indicates large changes in heating energy use, but only moderate changes in total building energy use, as minimum VRs in the retail building are changed. For example, predicted state-wide heating energy consumption in the retail building decreases by more than 50% and total building energy consumption decreases by approximately 10% as the minimum VR decreases from the Title 24 requirement to no mechanical ventilation. The primary and secondary schools have notably higher internal heat gains than in the retail building models, resulting in significantly reduced demand for heating. The school heating energy use was correspondingly less sensitive to changes in the minimum VR. The modeling indicates that minimum VRs influence HVAC energy and total energy use in schools by only a few percent. For both the retail building and the school buildings, minimum VRs substantially affected the predicted annual-average indoor concentrations of an indoor generated contaminant, with larger effects in schools. The shape of the curves relating contaminant concentrations with VRs illustrate the importance of avoiding particularly low VRs.

  1. Design principles of a nuclear and industrial HVAC of IFMIF

    International Nuclear Information System (INIS)

    Pruneri, Giuseppe; Ibarra, A.; Heidinger, R.; Knaster, J.; Sugimoto, M.

    2016-01-01

    Highlights: • Parameter of Derivate air Contamination (DAC) allows to associate the type of air ventilation. • The construction and operation of IFMIF will be subjected to the regulations of the country in which it will be sited. • Structures, systems and components are assigned a particular safety important components (SIC, 1–2 and Non-SIC) clarification that is based on the consequences of their failure. • Reliability, Availability, Maintainability and Inspectability (RAMI) analysis has given a great contribution of the facility to optimize the configuration, particularly for the HVAC system. - Abstract: In 2013, the IFMIF, the International Fusion Material Irradiation Facility, presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase, framed by the Broader Approach Agreement between Japan and EURATOM, accomplished in 2013 its mandate to provide the engineering design of the plant on schedule [1]. The IFMIF aims to qualify and characterize materials that are capable of withstanding the intense neutron flux originated in D-T reactions of future fusion reactors due to a neutron flux with a broad peak at 14 MeV, which is able to provide >20 dpa/fpy on small specimens in this EVEDA phase. The successful operation of such a challenging plant demands a careful assessment of the Conventional Facilities (CF), which have adequate redundancies to allow for the target plant availability [2]. The present paper addresses the design proposed in the IFMIF Intermediate Engineering Design Report regarding the CF, particularly the IFMIF's Nuclear and Industrial HVAC design. A preliminary feasibility study, including the initial configuration, calculations and reliability/availability analysis, were performed. The nuclear HVAC design was developed progressively; first, by establishing a conceptual design, starting from the system functional description, followed by the identification of the corresponding interfacing systems and their

  2. Design principles of a nuclear and industrial HVAC of IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Pruneri, Giuseppe [IFMIF/EVEDA, Project Team, Rokkasho (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Heidinger, R. [F4E, Garching (Germany); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho (Japan); Sugimoto, M. [JAEA, Rokkasho (Japan)

    2016-02-15

    Highlights: • Parameter of Derivate air Contamination (DAC) allows to associate the type of air ventilation. • The construction and operation of IFMIF will be subjected to the regulations of the country in which it will be sited. • Structures, systems and components are assigned a particular safety important components (SIC, 1–2 and Non-SIC) clarification that is based on the consequences of their failure. • Reliability, Availability, Maintainability and Inspectability (RAMI) analysis has given a great contribution of the facility to optimize the configuration, particularly for the HVAC system. - Abstract: In 2013, the IFMIF, the International Fusion Material Irradiation Facility, presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase, framed by the Broader Approach Agreement between Japan and EURATOM, accomplished in 2013 its mandate to provide the engineering design of the plant on schedule [1]. The IFMIF aims to qualify and characterize materials that are capable of withstanding the intense neutron flux originated in D-T reactions of future fusion reactors due to a neutron flux with a broad peak at 14 MeV, which is able to provide >20 dpa/fpy on small specimens in this EVEDA phase. The successful operation of such a challenging plant demands a careful assessment of the Conventional Facilities (CF), which have adequate redundancies to allow for the target plant availability [2]. The present paper addresses the design proposed in the IFMIF Intermediate Engineering Design Report regarding the CF, particularly the IFMIF's Nuclear and Industrial HVAC design. A preliminary feasibility study, including the initial configuration, calculations and reliability/availability analysis, were performed. The nuclear HVAC design was developed progressively; first, by establishing a conceptual design, starting from the system functional description, followed by the identification of the corresponding interfacing systems and their

  3. Integrated analysis of CFD data with K-means clustering algorithm and extreme learning machine for localized HVAC control

    International Nuclear Information System (INIS)

    Zhou, Hongming; Soh, Yeng Chai; Wu, Xiaoying

    2015-01-01

    Maintaining a desired comfort level while minimizing the total energy consumed is an interesting optimization problem in Heating, ventilating and air conditioning (HVAC) system control. This paper proposes a localized control strategy that uses Computational Fluid Dynamics (CFD) simulation results and K-means clustering algorithm to optimally partition an air-conditioned room into different zones. The temperature and air velocity results from CFD simulation are combined in two ways: 1) based on the relationship indicated in predicted mean vote (PMV) formula; 2) based on the relationship extracted from ASHRAE RP-884 database using extreme learning machine (ELM). Localized control can then be effected in which each of the zones can be treated individually and an optimal control strategy can be developed based on the partitioning result. - Highlights: • The paper provides a visual guideline for thermal comfort analysis. • CFD, K-means, PMV and ELM are used to analyze thermal conditions within a room. • Localized control strategy could be developed based on our clustering results

  4. System solution to improve energy efficiency of HVAC systems

    Science.gov (United States)

    Chretien, L.; Becerra, R.; Salts, N. P.; Groll, E. A.

    2017-08-01

    According to recent surveys, heating and air conditioning systems account for over 45% of the total energy usage in US households. Three main types of HVAC systems are available to homeowners: (1) fixed-speed systems, where the compressor cycles on and off to match the cooling load; (2) multi-speed (typically, two-speed) systems, where the compressor can operate at multiple cooling capacities, leading to reduced cycling; and (3) variable-speed systems, where the compressor speed is adjusted to match the cooling load of the household, thereby providing higher efficiency and comfort levels through better temperature and humidity control. While energy consumption could reduce significantly by adopting variable-speed compressor systems, the market penetration has been limited to less than 10% of the total HVAC units and a vast majority of systems installed in new construction remains single speed. A few reasons may explain this phenomenon such as the complexity of the electronic circuitry required to vary compressor speed as well as the associated system cost. This paper outlines a system solution to boost the Seasonal Energy Efficiency Rating (SEER) of a traditional single-speed unit through using a low power electronic converter that allows the compressor to operate at multiple low capacity settings and is disabled at high compressor speeds.

  5. Aerodynamics of Ventilation in Termite Mounds

    Science.gov (United States)

    Bailoor, Shantanu; Yaghoobian, Neda; Turner, Scott; Mittal, Rajat

    2017-11-01

    Fungus-cultivating termites collectively build massive, complex mounds which are much larger than the size of an individual termite and effectively use natural wind and solar energy, as well as the energy generated by the colony's own metabolic activity to maintain the necessary environmental condition for the colony's survival. We seek to understand the aerodynamics of ventilation and thermoregulation of termite mounds through computational modeling. A simplified model accounting for key mound features, such as soil porosity and internal conduit network, is subjected to external draft conditions. The role of surface flow conditions in the generation of internal flow patterns and the ability of the mound to transport gases and heat from the nursery are examined. The understanding gained from our study could be used to guide sustainable bio-inspired passive HVAC system design, which could help optimize energy utilization in commercial and residential buildings. This research is supported by a seed Grant from the Environment, Energy Sustainability and Health Institute of the Johns Hopkins University.

  6. Anaesthesia ventilators

    Directory of Open Access Journals (Sweden)

    Rajnish K Jain

    2013-01-01

    Full Text Available Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV. PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  7. Anaesthesia ventilators.

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  8. Anaesthesia ventilators

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  9. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  10. Anaesthesia ventilators

    OpenAIRE

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bello...

  11. Field tests for the comparative evaluation of heat and enthalpy exchangers in compact ventilation units; Feldvergleich von Waerme- und Enthalpieuebertragern in Kompakt-Lueftungsgeraeten - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B.

    2007-07-01

    In an efficiency review on low energy buildings promoted by the Swiss Federal Office of Energy, low air humidity has been measured during thousands of annual hours. Modern compact ventilation units are being increasingly offered with transmission of heat and moisture. One possibility to raise the air humidity level is an enthalpy exchanger with steam-permeable membranes. With an enthalpy exchanger you can not only recover heat but also a good part of the humidity of the return air. In a comparative field study alternate applications with enthalpy or heat exchangers have been analysed at four different locations. Also calculations have been made to estimate how a rotating heat exchanger with ion-exchange resin would have performed. The comparative field study has shown that the enthalpy exchanger is able to raise the humidity level. Conditions for this are internal humidity loads, balanced air volume rates which correspond to occupancy as well as low leakages of the ventilation unit. Over-moistening due to the system with enthalpy exchanger was not found. The measurements have been affected by a sequence of winter months which have been partially warmer than usual. Otherwise the difference between enthalpy and heat exchangers would have been more significant. (author)

  12. Modeling and optimization of HVAC energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Kusiak, Andrew; Li, Mingyang; Tang, Fan [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 - 1527 (United States)

    2010-10-15

    A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%. (author)

  13. Software Verification and Validation Report for the 244-AR Vault Interim Stabilization Ventilation System

    International Nuclear Information System (INIS)

    YEH, T.

    2002-01-01

    This document reports on the analysis, testing and conclusions of the software verification and validation for the 244-AR Vault Interim Stabilization ventilation system. Automation control system will use the Allen-Bradley software tools for programming and programmable logic controller (PLC) configuration. The 244-AR Interim Stabilization Ventilation System will be used to control the release of radioactive particles to the environment in the containment tent, located inside the canyon of the 244-AR facility, and to assist the waste stabilization efforts. The HVAC equipment, ducts, instruments, PLC hardware, the ladder logic executable software (documented code), and message display terminal are considered part of the temporary ventilation system. The system consists of a supply air skid, temporary ductwork (to distribute airflow), and two skid-mounted, 500-cfm exhausters connected to the east filter building and the vessel vent system. The Interim Stabilization Ventilation System is a temporary, portable ventilation system consisting of supply side and exhaust side. Air is supplied to the containment tent from an air supply skid. This skid contains a constant speed fan, a pre-filter, an electric heating coil, a cooling coil, and a constant flow device (CFD). The CFD uses a passive component that allows a constant flow of air to pass through the device. Air is drawn out of the containment tent, cells, and tanks by two 500-cfm exhauster skids running in parallel. These skids are equipped with fans, filters, stack, stack monitoring instrumentation, and a PLC for control. The 500CFM exhaust skids were fabricated and tested previously for saltwell pumping activities. The objective of the temporary ventilation system is to maintain a higher pressure to the containment tent, relative to the canyon and cell areas, to prevent contaminants from reaching the containment tent

  14. Heating, ventilation and cooling

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available and consequently a healthier, more comfortable working environment should not be underestimated. While difficult to quantify, benefits can include higher productivity, reduced absenteeism, increased employee health and increased employee retention. However...

  15. Displacement ventilation

    DEFF Research Database (Denmark)

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  16. Experimental analysis of indoor air quality improvement achieved by using a Clean-Air Heat Pump (CAHP) air-cleaner in a ventilation system

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Nie, Jinzhe

    2017-01-01

    This study investigated the air purification effect of a Clean-Air Heat Pump (CAHP) air-cleaner which combined a silica gel rotor with a heat pump to achieve air cleaning, heating and ventilation in buildings. The experiments were conducted in a field laboratory and compared a low outdoor air...... supply rate with CAHP air purification of recirculated air with three different outdoor air supply rates without recirculation or air cleaning. Sensory assessments of perceived air quality and chemical measurements of TVOC concentration were used to evaluate the air-cleaning performance of the CAHP....... The results of the experiment showed that the operation of the CAHP significantly improved the perceived air quality in a room polluted by both human bio-effluents and building materials. At the outdoor airflow rate of 2 L/s per person, the indoor air quality with CAHP was equivalent to what was achieved...

  17. Cutting the cost of hospital HVAC.

    Science.gov (United States)

    Ruddell, Steve

    2011-09-01

    Steve Ruddell, head of global marketing, Motors & Generators, at ABB, emphasises the importance of a good motor management and maintenance policy in getting the best performance from, and reducing the energy consumption of, hospitals' HVAC systems, also explaining why investing in energy-efficient, low voltage drives, and high efficiency electric motors, to control such equipment, can pay major dividends for estates and facilities teams.

  18. Case Study for the ARRA-funded Ground Source Heat Pump (GSHP) Demonstration at Wilders Grove Solid Waste Service Center in Raleigh, NC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Malhotra, Mini [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xiong, Zeyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a distributed GSHP system for providing all the space conditioning, outdoor air ventilation, and 100% domestic hot water to the Wilders Grove Solid Waste Service Center of City of Raleigh, North Carolina. This case study is based on the analysis of measured performance data, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning and outdoor air ventilation as the demonstrated GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GSHP system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation and improving the operational efficiency of the demonstrated GSHP system.

  19. Ventilation of nuclear power plants

    International Nuclear Information System (INIS)

    Madoyan, A.A.; Vlasik, V.F.

    1984-01-01

    Foundations and calculation methods of ventilation of rooms with different degree of heat and gas release with the change of operation mode of NPP main equipment, as well as problems of NPP site and adjoining area aerodynamics, have been presented. Systems of air ventilation and conditioning, cooling equipment, are considered. The main points of designing are described and determination of economic efficiency of the ventilation systems are made. Technical characteristics of the ventilators, conditioners, filters and air heaters used, are presented. Organization of adjustment, tests, operation and maintenance of the ventilation systems of NPP with RBMK and WWER-type reactors, is described

  20. Modernisation of space HVAC systems with high energy consumption; Sanierung von RLT-Anlagen mit hohen Energieverbraeuchen

    Energy Technology Data Exchange (ETDEWEB)

    Willan, U. [ROM (Rud. Otto Meyer) - Technik fuer Mensch und Umwelt, Hamburg (Germany). Zentralbereich Ingenieurtechnik

    1997-12-31

    For office buildings and similarly used buildings, concepts are developed for the modernization of space hvac systems. The state of work in the following sectors is discussed: optimum comparison processes for space HVAC systems, measurements to assess the performance of alternative dehumidification and cooling systems, heat-physiological space model. (MSK) [Deutsch] Fuer Buerobauten und Gebaeude aehnlicher Nutzung werden Sanierungskonzepte fuer RLT-Anlagen erarbeitet. Im Folgenden wird der Stand der Arbeiten in den Bereichen: optimale Vergleichsprozesse fuer RLT-Anlagen, messtechnische Beurteilung alternativer Entfeuchtungs- und Kuehlsysteme sowie ein waermetechnisches Raummodell erlaeutert.

  1. Optimization study of using PTC for human body heating dissipation

    Directory of Open Access Journals (Sweden)

    Tiberiu Adrian SALAORU

    2014-06-01

    Full Text Available A better knowledge of the human body heat loses mechanisms is important for both diminishing the number of deaths during the surgical procedures of the patients under effect of full anaesthesia and increasing the efficiency of the Heating, Ventilation and Air Conditioning (HVAC systems. For these studies it is necessary to manufacture a human body mannequin having its surface temperature maintained on a value close to the real human body temperature. A number of PTC (Positive Temperature Coefficient thermistors placed on the entire external surface of the mannequin can be used for this purpose. This paper presents a study of the transient heating regime and the stability of the maintained temperature, performed on these devices.

  2. Visible cost - invisible profit. The heating, ventilation and sanitary sector and the realization of energy conservation. Among politics, knowledge and practice

    International Nuclear Information System (INIS)

    Hubak, Marit

    1998-01-01

    In social research, technology has customarily been considered problem-generating. What is needed to turn new technology into a positive instrument in environmental work? To answer this question one must understand the interaction between politics, knowledge and practice that is important for dealing with the environmental challenges. It is a main objective of this book to contribute to this understanding by analysing how the building industry deals with the energy and environmental challenges that are commonly known as energy conservation. Specifically, the book deals with the heating, ventilation and sanitary sector since this is where most of the companies working with energy conservation are found. The discussion applies to Norway

  3. Predicting the Room Air Temperature of the Containment Spray Pump Room for the Loss of HVAC Accidents

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Jin Hee; Lim, Ho Gon; Han, Sang Hoon

    2007-01-01

    In PSA Models, the HVAC system is essential for the various vital mitigation safety systems operating during a mission time. So far, the unavailability of the safety system when the HVAC system is unavailable, has been applied conservatively or optimistically based on operating experience and expert judgment, so the total core damage frequency could be unrealistic. In this paper, we performed a heat up calculation for the Containment Spray Pump Room at Kori 3 and 4 Units using a CFD code to estimate the operability of the CS pump and its support systems in the pump room under the situation of a loss of the HVAC. The result of this calculation could be applied the PSA Model for Risk Informed Regulation for Kori Units 3 and 4

  4. Natural ventilation systems to enhance sustainability in buildings: a review towards zero energy buildings in schools

    Science.gov (United States)

    Gil-Baez, Maite; Barrios-Padura, Ángela; Molina-Huelva, Marta; Chacartegui, Ricardo

    2017-11-01

    European regulations set the condition of Zero Energy Buildings for new buildings since 2020, with an intermediate milestone in 2018 for public buildings, in order to control greenhouse gases emissions control and climate change mitigation. Given that main fraction of energy consumption in buildings operation is due to HVAC systems, advances in its design and operation conditions are required. One key element for energy demand control is passive design of buildings. On this purpose, different recent studies and publications analyse natural ventilation systems potential to provide indoor air quality and comfort conditions minimizing electric power consumption. In these passive systems are of special relevance their capacities as passive cooling systems as well as air renovation systems, especially in high-density occupied spaces. With adequate designs, in warm/mild climates natural ventilation systems can be used along the whole year, maintaining indoor air quality and comfort conditions with small support of other heating/cooling systems. In this paper is analysed the state of the art of natural ventilation systems applied to high density occupied spaces with special focus on school buildings. The paper shows the potential and applicability of these systems for energy savings and discusses main criteria for their adequate integration in school building designs.

  5. Active space cooling with night-coldness - development of a decentralized ventilation system with latent heat storage; Aktive Raumkuehlung mit Nachkaelte - Entwicklung eines dezentralen Lueftungsgeraetes mit Latentwaermespeicher. Imtech-Haus, Hamburg Referenzanlage

    Energy Technology Data Exchange (ETDEWEB)

    Luedemann, B.; Detzer, R. [Imtech Deutschland, Hamburg (Germany)

    2007-04-15

    Imtech Germany a decentralized ventilation system with a latent heat-storage unit made of Phase Change Material. The equipment was used successfully in a first reference asset in the Imtech house in Hamburg. During the day active space cooling is realized by storage of night-cold. In combination with a night ventilation the attached areas could be held continuous within the comfort range under 26 C under normal summer conditions. The decentralized ventilation system including control is developed to series production readiness and will be introduced now on the market. (orig.)

  6. Experimental study of the heat transfers and passive cooling potential of a ventilated plenum designed for uniform air distribution

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Lessing, Julian

    2016-01-01

    suspended ceiling to uniformly distribute the supply air to the occupied zone. This, in effect, increases the thermal mass of the room because the upper slab of the room no longer is isolated from the occupied zone. In this study, the cooling potential of a diffuse ceiling ventilation system is i...

  7. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Withers, Chuck [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; McIlvaine, Janet [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Chasar, Dave [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Beal, David [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center

    2018-02-07

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. The problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.

  8. [Anesthesia ventilators].

    Science.gov (United States)

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  9. Ventilation models

    Science.gov (United States)

    Skaaret, Eimund

    Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.

  10. Maintenance of HVAC-systems and components: How to prevent pollution from HVAC-systems?

    NARCIS (Netherlands)

    Müller, B.; Björkroth, M.; Plitt, U.; Bluyssen, P.M.

    2000-01-01

    In the beginning of 1998 a three-year European project, AIRLESS, was started to develop strategies, principles and protocols to improve and control the performance of HVAC-systems and its components for incorporation in codes and guidelines. Twelve institutes, universities and companies, from seven

  11. Why, when and how do HVAC-systems pollute? Characterisation of HVAC-systems related pollution

    NARCIS (Netherlands)

    Bluyssen, P.M.; Björkroth, M.; Müller, B.; Oliveira Fernandes, E. de; Roulet, C.A.

    2000-01-01

    In the beginning of 1998 a three-year European project, AIRLESS, was started to develop strategies, principles and protocols to improve and control the performance of HVAC-systems and its components for incorporation in codes and guidelines. Twelve institutes, universities and companies from seven

  12. A Statistical Approach for Selecting Buildings for Experimental Measurement of HVAC Needs

    Directory of Open Access Journals (Sweden)

    Malinowski Paweł

    2017-03-01

    Full Text Available This article presents a statistical methodology for selecting representative buildings for experimentally evaluating the performance of HVAC systems, especially in terms of energy consumption. The proposed approach is based on the k-means method. The algorithm for this method is conceptually simple, allowing it to be easily implemented. The method can be applied to large quantities of data with unknown distributions. The method was tested using numerical experiments to determine the hourly, daily, and yearly heat values and the domestic hot water demands of residential buildings in Poland. Due to its simplicity, the proposed approach is very promising for use in engineering applications and is applicable to testing the performance of many HVAC systems.

  13. Sensory evaluation of heating and air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Evin, F.; Siekierski, E. [Electricite de France, Research and Development Division, Les Renardieres, Moret Sur Loing (France)

    2002-07-01

    Existing standards and models, such as ISO 7730 or the work of Fanger [Thermal Comfort], are not sufficient to characterise the satisfaction and pleasantness of end-users provided by heating or air conditioning systems. For this reason Electricite de France (EDF) has initiated a project with the aim of using sensory evaluation techniques in the design of HVAC systems. Sensory evaluation has been used for more than 30 years in the food industry, and now involves the cosmetics, the phone and the automotive industries. It is based on a dual evaluation: sensation measurements carried out by a small panel of trained expert assessors; preference studies performed by a large panel of representative consumers. A correlation between the data of both studies is then used to explain the preferences in terms of sensations (preference mapping). The first experiments performed in 1999 and 2000 have provided lists of descriptors of thermal sensation and acoustic sensation associated with heating and air conditioning appliances. They show that it is possible to define discriminative descriptors, to train a panel and to reliably quantify these descriptors. It is then possible to draw the sensory profiles of different heating, ventilation and air conditioning (HVAC) systems. The future experimental laboratory that EDF has decided to build is also presented, where the trained panels and end-users will evaluate the sensations and the preferences of real systems in eight 'realistic environmental chambers' designed, furnished and decorated like offices and flats. (author)

  14. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  15. Ventilation in low energy housing retrofits

    NARCIS (Netherlands)

    Mlecnik, E.

    2008-01-01

    According to the definition, passive houses in Europe meet a target energy demand for heating of less than 15 kWh per square meter and per year. This low level for the heating demand is based on heating by a small post-heater in the hygienic ventilation system at 52 °C maximum, while the ventilation

  16. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    Science.gov (United States)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong

  17. Airway humidification with a heated wire humidifier during high-frequency ventilation using Babylog 8000 plus in neonates.

    Science.gov (United States)

    Nagaya, Ken; Okamoto, Toshio; Nakamura, Eiki; Hayashi, Tokitsugi; Fujieda, Kenji

    2009-03-01

    Little data are available on airway humidity during high-frequency ventilation (HFV). Our purpose is to evaluate the airway humidification during HFV. We examined the airway humidification and temperature in a neonatal HFV system using Babylog 8000 plus. The absolute humidity (AH), relative humidity (RH), and temperature at different sites and under different HFV conditions were compared with those during conventional intermittent positive pressure ventilation (IPPV). The mean AH and RH at the patient end of the respiratory circuit under 37 degrees C in the humidification chamber (HC) during HFV were less than 35 mg/L and 65%, respectively, while those during IPPV were 42.3 mg/L and 96.8%, respectively. The humidification at the outlet of the HC was similar results. Moreover, during HFV an increase in the bias-flow of ventilator led to a further decrease in the humidity at the patient end of respiratory circuit and the outlet of HC. It was necessary to set the temperature in the HC at >39 degrees C to maintain adequate humidity at the HC and the patient end of respiratory circuit during HFV. An increase in the incubator temperature led to an increase in the temperature at the patient end of the respiratory circuit. The temperature at the patient end of the respiratory circuit was about 39-40 degrees C when the incubator temperature was 35-37 degrees C. The airway humidification at the patient end of respiratory circuit and the outlet of HC in HFV were poorer than those in IPPV. However, the adequacy of humidification and safety in HFV remain to be demonstrated in clinical practice.

  18. Mine ventilation engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.J.

    1981-01-01

    This book on mine ventilation covers psychometrics, airflow through roadways and ducts, natural ventilation, fans, instruments, ventilation surveys, auxiliary ventilation, air quality, and planning and economics.

  19. Noninvasive ventilation.

    Science.gov (United States)

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  20. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  1. Ventilation effectiveness

    CERN Document Server

    Mathisen, Hans Martin; Nielsen, Peter V; Moser, Alfred

    2004-01-01

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-understand descriptions of the indices used to mesure the performance of a ventilation system and which indices to use in different cases.

  2. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.

  3. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    1997-01-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs

  4. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  5. Demand Controlled Ventilation and Classroom Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  6. Demand controlled ventilation and classroom ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  7. Forced convection heat transfer in rectangular ducts - general case of wall resistances and peripheral conduction for ventilation cooling of nuclear waste repositories

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Solbrig, C.W.; Gidaspow, D.

    1982-01-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem from the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionsless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior. (orig.)

  8. Forced convection heat transfer in rectangular ducts - general case of wall resistances and peripheral conduction for ventilation cooling of nuclear waste repositories

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Solbrig, C.W.; Gidaspow, D.

    1980-01-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem for the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior

  9. Forced convection heat transfer in rectangular ducts - general case of wall resistances and peripheral conduction for ventilation cooling of nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Lyczkowski, R W [Institute of Gas Technology, Chicago, IL (USA); Solbrig, C W [EG and G Idaho, Inc., Idaho Falls (USA); Gidaspow, D [Illinois Inst. of Tech., Chicago (USA). Dept. of Chemical Engineering

    1982-02-01

    A numerical solution for laminar flow heat transfer between a flowing gas and its containing rectangular duct has been obtained for many different boundary conditions which may arise in nuclear waste repository ventilation corridors. The problem has been solved for the cases of insulation on no walls, one wall, two walls, and three walls with various finite resistances on the remaining walls. Simplifications are made to decouple the convective heat transfer problem from the far field conduction problem, but peripheral conduction is retained. Results have been obtained for several duct aspect ratios in the thermal entrance and in the fully developed regions, including the constant temperature cases. When one wall is insulated and the other three are at constant temperature, the maximum temperature occurs in the fluid rather than on the insulated wall. This maximum moves toward the insulated wall with increasing axial distance. Nusselt numbers for the same constant flux on all four walls with peripheral conduction lie in a narrow band bounded by zero and infinite peripheral conduction cases. A dimensionsless wall conduction group of four can be considered infinite for the purpose of estimating fully developed Nusselt numbers to within an accuracy of 3%. A decrease in wall and bulk temperatures by finite wall conduction has been demonstrated for the case of a black body radiation boundary condition. Nusselt numbers for the case of constant temperature on the top and bottom walls and constant heat flux on the side walls exhibited unexpected behavior.

  10. Pretest Predictions for Ventilation Tests

    International Nuclear Information System (INIS)

    Y. Sun; H. Yang; H.N. Kalia

    2007-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that can be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only

  11. A novel system solution for cooling and ventilation in office buildings

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo

    2015-01-01

    solution has the special function of using natural ventilation all the year around without draught risk, even in very cold seasons. A case study of a typical office room using this solution and other traditional HVAC systems is carried out by energy simulation. The results show that there is a large energy...

  12. Possible scenarios for a safety upgrade of the ventilation system

    CERN Document Server

    Inigo-Golfin, J

    2009-01-01

    This paper/presentation describes the existing LHC ventilation (HVAC) system, the design principle followed for the LEP Project and the modifications implemented for the LHC Project. A discussion on possible referential standards to compare the existing system with is presented and possible axes for its improvement, based on these referentials, are discussed. Finally, some recommendations are given based on the system's present capabilities and the estimated investment necessary to achieve compliance to the referentials chosen.

  13. Monitoring results and analysis of thermal comfort conditions in experimental buildings for different heating systems and ventilation regimes during heating and cooling seasons

    Science.gov (United States)

    Gendelis, S.; Jakovičs, A.; Ratnieks, J.; Bandeniece, L.

    2017-10-01

    This paper focuses on the long-term monitoring of thermal comfort and discomfort parameters in five small test buildings equipped with different heating and cooling systems. Calculations of predicted percentage of dissatisfied people (PPD) index and discomfort factors are provided for the room in winter season running three different heating systems - electric heater, air-air heat pump and air-water heat pump, as well as for the summer cooling with split type air conditioning systems. It is shown that the type of heating/cooling system and its working regime has an important impact on thermal comfort conditions in observed room. Recommendations for the optimal operating regimes and choice of the heating system from the thermal comfort point of view are summarized.

  14. Lecture Notes on Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The main task of the ventilation system or the air-conditioning system is to supply· and remove air and airborne materials and to supply or remove heat from a room. The necessary level of fresh air will be supplied to· a room by a ventilation system, and heat from equipment or solar radiation can...... be removed by an air-conditioning system. An industrial ventilation system may both take care of the occupants' comfort and the industrial processes in the area....

  15. Field Demonstration of Ground-Source Integrated Heat Pump - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Reducing energy consumption in buildings is key to reducing or limiting the negative environmental impacts from the building sector. According to the United States (U.S.) Energy Information Administration (EIA), in 2013, commercial buildings consumed 18.1 quads of primary energy, which was 18.6% of the total U.S. primary energy consumption. The primary energy consumption in the commercial sector is projected to increase by 2.8 quads from 2013 to 2040, the second largest increase after the industrial sector. Further space heating, space cooling, and ventilation (HVAC) services accounted for 31% of the energy consumption in commercial buildings. The technical objective of this project is to demonstrate the capability of the new GS-IHP system to reduce overall energy use for space heating, space cooling, and water heating by at least 45% vs. a conventional electric RTU and electric WH in a light commercial building application. This project supports the DOE-Building Technologies Office (BTO) goals of reducing HVAC energy use by 20% and water heating by 60% by 2030.

  16. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  17. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-un...

  18. Behovstyret ventilation

    DEFF Research Database (Denmark)

    Afshari, Alireza; Heiselberg, Per; Reinhold, Claus

    2010-01-01

    I en nylig afsluttet undersøgelse er der udført en række målinger på otte udvalgte børneinstitutioner. Fire af disse med mekanisk ventilation og fire med naturlig ventilation. Formålet er at udvide den erfaringsbaserede viden om funktionen af naturlige og mekaniske ventilationsløsninger i...

  19. Development and analysis of sustainable energy systems for building HVAC applications

    International Nuclear Information System (INIS)

    Khalid, F.; Dincer, I.; Rosen, M.A.

    2015-01-01

    The main HVAC applications considered in this paper are heating and cooling. Three newly developed systems for heating and cooling applications in buildings are proposed and assessed. Energy and exergy analyses are performed to assess the performance of heating, cooling and overall systems for each case, and the effects of various parameters on the energy and exergy efficiencies are examined. Also, the effect of changing the energy input for each system is also found in terms of overall efficiency. The overall system energy efficiency is found to be highest for the natural gas operated system with a vapour absorption chiller (system 1) at 27.5% and lowest for the photovoltaic (PV) and solar thermal operated system with vapour compression chiller (system 3) at 19.9%. The overall system exergy efficiency is found to be highest for the PV and solar thermal operated system with vapour compression chiller (system 3) at 3.9% and lowest for the PV and solar thermal operated system with heat pump (system 2) at 1.2%, respectively. - Highlights: • Three HVAC systems for buildings using renewable energy sources are proposed and assessed. • A performance improvement study is undertaken. • Parametric studies are carried out to determine the effects of various parameters on energy and exergy efficiencies

  20. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  1. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  2. Review of Residential Low-Load HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thornton, Brian A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    In support of the U.S. Department of Energy’s (DOE’s) Building America Program, Pacific Northwest National Laboratory (PNNL) conducted an investigation to inventory commercially available HVAC technologies that are being installed in low-load homes. The first step in this investigation was to conduct a review of published literature to identify low-load HVAC technologies available in the United States and abroad, and document the findings of existing case studies that have evaluated the performance of the identified technologies. This report presents the findings of the literature review, identifies gaps in the literature or technical understanding that must be addressed before low-load HVAC technologies can be fully evaluated, and introduces PNNL’s planned research and analysis for this project to address identified gaps and potential future work on residential low-load HVAC systems.

  3. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory J.; Yeakel, Skip; Adelman, Steven; Luo, Zhiming; Zehme, John

    2016-04-05

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  5. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory; Adelman, Steve; Yeakel, Skip; Luo, Zhiming; Zehme, John

    2016-03-24

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  6. Review and Extension of CO2-Based Methods to Determine Ventilation Rates with Application to School Classrooms

    Directory of Open Access Journals (Sweden)

    Stuart Batterman

    2017-02-01

    Full Text Available The ventilation rate (VR is a key parameter affecting indoor environmental quality (IEQ and the energy consumption of buildings. This paper reviews the use of CO2 as a “natural” tracer gas for estimating VRs, focusing on applications in school classrooms. It provides details and guidance for the steady-state, build-up, decay and transient mass balance methods. An extension to the build-up method and an analysis of the post-exercise recovery period that can increase CO2 generation rates are presented. Measurements in four mechanically-ventilated school buildings demonstrate the methods and highlight issues affecting their applicability. VRs during the school day fell below recommended minimum levels, and VRs during evening and early morning were on the order of 0.1 h−1, reflecting shutdown of the ventilation systems. The transient mass balance method was the most flexible and advantageous method given the low air change rates and dynamic occupancy patterns observed in the classrooms. While the extension to the build-up method improved stability and consistency, the accuracy of this and the steady-state method may be limited. Decay-based methods did not reflect the VR during the school day due to heating, ventilation and air conditioning (HVAC system shutdown. Since the number of occupants in classrooms changes over the day, the VR expressed on a per person basis (e.g., L·s−1·person−1 depends on the occupancy metric. If occupancy measurements can be obtained, then the transient mass balance method likely will provide the most consistent and accurate results among the CO2-based methods. Improved VR measurements can benefit many applications, including research examining the linkage between ventilation and health.

  7. A Comfort-Aware Energy Efficient HVAC System Based on the Subspace Identification Method

    Directory of Open Access Journals (Sweden)

    O. Tsakiridis

    2016-01-01

    Full Text Available A proactive heating method is presented aiming at reducing the energy consumption in a HVAC system while maintaining the thermal comfort of the occupants. The proposed technique fuses time predictions for the zones’ temperatures, based on a deterministic subspace identification method, and zones’ occupancy predictions, based on a mobility model, in a decision scheme that is capable of regulating the balance between the total energy consumed and the total discomfort cost. Simulation results for various occupation-mobility models demonstrate the efficiency of the proposed technique.

  8. The Design of HVAC System in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Choi, B. H.

    2007-01-01

    The HVAC systems for conventional facility of Proton Accelerator Research Center consist of 3 systems : accelerator building HVAC system, beam application building HVAC system and miscellaneous HVAC system. We designed accelerator building HVAC system and beam application research area HVAC system in the conventional facilities of Proton Accelerator research center. Accelerator building HVAC system is divided into accelerator tunnel area, klystron area, klystron gallery area, accelerator assembly area. Also, Beam application research area HVAC system is divided into those of beam experimental hall, accelerator control area, beam application research area and Ion beam application building. In this paper, We described system design requirements and explained system configuration for each systems. We presented operation scenario of HVAC system in the Conventional Facility of Proton Accelerator Research Center

  9. Meta-Analysis of Data from the Submarine Ventilation Doctrine Test Program

    National Research Council Canada - National Science Library

    Hoover, J

    1998-01-01

    .... The Submarine Ventilation Doctrine Test Program was developed to address submarine-specific issues regarding the use of ventilation systems to control smoke and heat movement, maintain habitability...

  10. [Analysis and research on cleaning points of HVAC systems in public places].

    Science.gov (United States)

    Yang, Jiaolan; Han, Xu; Chen, Dongqing; Jin, Xin; Dai, Zizhu

    2010-03-01

    To analyze cleaning points of HVAC systems, and to provides scientific base for regulating the cleaning of HVAC systems. Based on the survey results on the cleaning situation of HVAC systems around China for the past three years, we analyzes the cleaning points of HVAC systems from various aspects, such as the major health risk factors of HVAC systems, the formulation strategy of the cleaning of HVAC systems, cleaning methods and acceptance points of the air ducts and the parts of HVAC systems, the onsite protection and individual protection, the waste treatment and the cleaning of the removed equipment, inspection of the cleaning results, video record, and the final acceptance of the cleaning. The analysis of the major health risk factors of HVAC systems and the formulation strategy of the cleaning of HVAC systems is given. The specific methods for cleaning the air ducts, machine units, air ports, coil pipes and the water cooling towers of HVAC systems, the acceptance points of HVAC systems and the requirements of the report on the final acceptance of the cleaning of HVAC systems are proposed. By the analysis of the points of the cleaning of HVAC systems and proposal of corresponding measures, this study provides the base for the scientific and regular launch of the cleaning of HVAC systems, a novel technology service, and lays a foundation for the revision of the existing cleaning regulations, which may generate technical and social benefits to some extent.

  11. WIPP conceptual design report. Addendum F. HVAC systems energy analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1977-04-01

    This report presents the results of a technical and economic analysis of alternative methods of meeting the heating, ventilating, and air conditioning requirements of the Waste Isolation Pilot Plant (WIPP) facilities proposed to be constructed in southeastern New Mexico. This report analyzes a total of ten WIPP structures to determine the most energy and economic efficient means of providing heating, ventilating, and air conditioning services. Additional analyses were performed to determine the merits of centralized versus dispersed refrigeration and heating facilities, and of performing supplemental domestic hot water heating with solar panels

  12. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Science.gov (United States)

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  13. Technoeconomic analysis of a biomass based district heating system

    International Nuclear Information System (INIS)

    Zhang, H.; Ugursal, V.I.; Fung, A.

    2005-01-01

    This paper discussed a proposed biomass-based district heating system to be built for the Pictou Landing First Nation Community in Nova Scotia. The community centre consists of 6 buildings and a connecting arcade. The methodology used to size and design heating, ventilating and air conditioning (HVAC) systems, as well as biomass district energy systems (DES) were discussed. Annual energy requirements and biomass fuel consumption predictions were presented, along with cost estimates. A comparative assessment of the system with that of a conventional oil fired system was also conducted. It was suggested that the design and analysis methodology could be used for any similar application. The buildings were modelled and simulated using the Hourly Analysis Program (HAP), a detailed 2-in-1 software program which can be used both for HVAC system sizing and building energy consumption estimation. A techno-economics analysis was conducted to justify the viability of the biomass combustion system. Heating load calculations were performed assuming that the thermostat was set constantly at 22 degrees C. Community centre space heating loads due to individual envelope components for 3 different scenarios were summarized, as the design architecture for the buildings was not yet finalized. It was suggested that efforts should be made to ensure air-tightness and insulation levels of the interior arcade glass wall. A hydronic distribution system with baseboard space heating units was selected, comprising of a woodchip boiler, hot water distribution system, convective heating units and control systems. The community has its own logging operation which will provide the wood fuel required by the proposed system. An outline of the annual allowable harvest covered by the Pictou Landing Forestry Management Plan was presented, with details of proposed wood-chippers for the creation of biomass. It was concluded that the woodchip combustion system is economically preferable to the

  14. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

    2008-04-04

    An improved HVAC system for portable classrooms was specified to address key problems in existing units. These included low energy efficiency, poor control of and provision for adequate ventilation, and excessive acoustic noise. Working with industry, a prototype improved heat pump air conditioner was developed to meet the specification. A one-year measurement-intensive field-test of ten of these IHPAC systems was conducted in occupied classrooms in two distinct California climates. These measurements are compared to those made in parallel in side by side portable classrooms equipped with standard 10 SEER heat pump air conditioner equipment. The IHPAC units were found to work as designed, providing predicted annual energy efficiency improvements of about 36 percent to 42 percent across California's climate zones, relative to 10 SEER units. Classroom ventilation was vastly improved as evidenced by far lower indoor minus outdoor CO2 concentrations. TheIHPAC units were found to provide ventilation that meets both California State energy and occupational codes and the ASHRAE minimum ventilation requirements; the classrooms equipped with the 10 SEER equipment universally did not meet these targets. The IHPAC system provided a major improvement in indoor acoustic conditions. HVAC system generated background noise was reduced in fan-only and fan and compressor modes, reducing the nose levels to better than the design objective of 45 dB(A), and acceptable for additional design points by the Collaborative on High Performance Schools. The IHPAC provided superior ventilation, with indoor minus outdoor CO2 concentrations that showed that the Title 24 minimum ventilation requirement of 15 CFM per occupant was nearly always being met. The opposite was found in the classrooms utilizing the 10 SEER system, where the indoor minus outdoor CO2 concentrations frequently exceeded levels that reflect inadequate ventilation. Improved ventilation conditions in the IHPAC lead to

  15. Case study for ARRA-funded ground-source heat pump (GSHP) demonstration at Oakland University

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [ORNL; Liu, Xiaobing [ORNL

    2015-09-01

    High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a ground-source variable refrigerant flow (GS-VRF) system installed at the Human Health Building at Oakland University in Rochester, Michigan. This case study is based on the analysis of measured performance data, maintenance records, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning as the demonstrated GS-VRF system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GS-VRF system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GS-VRF system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation, improving the operational efficiency, and reducing the installed cost of similar GSHP systems in the future.

  16. Ventilation Model and Analysis Report

    International Nuclear Information System (INIS)

    Chipman, V.

    2003-01-01

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity

  17. Hygiene guideline for the planning, installation, and operation of ventilation and air-conditioning systems in health-care settings – Guideline of the German Society for Hospital Hygiene (DGKH

    Directory of Open Access Journals (Sweden)

    Külpmann, Rüdiger

    2016-02-01

    Full Text Available Since the publication of the first “Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems in hospitals” ( in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section “Ventilation and air conditioning technology” attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.

  18. Membrane modules for building ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, K.R.; Cussler, E.L.

    2002-01-01

    Hollow fibre and flat sheet membranes with an interfacially polymerized coating of polyamide have a permeance for water vapour of about 0.16 m sec{sup -1}. These membranes can serve as a basis for building ventilation which provides fresh air while recovering about 70% of the specific heat and 60% of the latent heat. Because these membranes are selective for water vapour, the air is exhausted with internal pollutants like carbon monoxide, formaldehyde, and radon. The expense of the ventilator should be recovered in reduced heating costs in about three years. (Author)

  19. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  20. To Investigate the Influence of Building Envelope and Natural Ventilation on Thermal Heat Balance in Office Buildings in Warm and Humid Climate

    Science.gov (United States)

    Kini, Pradeep G.; Garg, Naresh Kumar; Kamath, Kiran

    2017-07-01

    India’s commercial building sector is witnessing robust growth. India continues to be a key growth market among global corporates and this is reflective in the steady growth in demand for prime office space. A recent trend that has been noted is the increase in demand for office spaces not just in major cities but also in smaller tier II and Tier III cities. Growth in the commercial building sector projects a rising trend of energy intensive mechanical systems in office buildings in India. The air conditioning market in India is growing at 25% annually. This is due to the ever increasing demand to maintain thermal comfort in tropical regions. Air conditioning is one of the most energy intensive technologies which are used in buildings. As a result India is witnessing significant spike in energy demand and further widening the demand supply gap. Challenge in India is to identify passive measures in building envelope design in office buildings to reduce the cooling loads and conserve energy. This paper investigates the overall heat gain through building envelope components and natural ventilation in warm and humid climate region through experimental and simulation methods towards improved thermal environmental performance.