WorldWideScience

Sample records for huygens missions preparation

  1. The Cassini-Huygens mission

    CERN Document Server

    The joint NASA-ESA Cassini-Huygens mission promises to return four (and possibly more) years of unparalleled scientific data from the solar system’s most exotic planet, the ringed, gas giant, Saturn. Larger than Galileo with a much greater communication bandwidth, Cassini can accomplish in a single flyby what Galileo returned in a series of passes. Cassini explores the Saturn environment in three dimensions, using gravity assists to climb out of the equatorial plane to look down on the rings from above, to image the aurora and to study polar magnetospheric processes such as field-aligned currents. Since the radiation belt particle fluxes are much more benign than those at Jupiter, Cassini can more safely explore the inner regions of the magnetosphere. The spacecraft approaches the planet closer than Galileo could, and explores the inner moons and the rings much more thoroughly than was possible at Jupiter. This book is the second volume, in a three volume set, that describes the Cassini/Huygens mission. Thi...

  2. Analytical pyrolysis experiments of Titan aerosol analogues in preparation for the Cassini Huygens mission

    Science.gov (United States)

    Ehrenfreund, P.; Boon, J. J.; Commandeur, J.; Sagan, C.; Thompson, W. R.; Khare, B.

    1995-01-01

    Comparative pyrolysis mass spectrometric data of Titan aerosol analogs, called 'tholins', are presented. The Titan tholins were produced in the laboratory at Cornell by irradiation of simulated Titan atmospheres with high energy electrons in plasma discharge. Mass-spectrometry measurements were performed at FOM of the solid phase of various tholins by Curie-point pyrolysis Gas-Chromatography/Mass-Spectrometry (GCMS) and by temperature resolved in-source Pyrolysis Mass-Spectrometry to reveal the composition and evolution temperature of the dissociation products. The results presented here are used to further define the ACP (Aerosol Collector Pyrolyser)-GCMS experiment and provide a basis for modelling of aerosol composition on Titan and for the iterpretation of Titan atmosphere data from the Huygens probe in the future.

  3. Twenty Years of Systems Engineering on the Cassini-Huygens Mission

    Science.gov (United States)

    Manor-Chapman, Emily

    2013-01-01

    Over the past twenty years, the Cassini-Huygens Mission has successfully utilized systems engineering to develop and execute a challenging prime mission and two mission extensions. Systems engineering was not only essential in designing the mission, but as knowledge of the system was gained during cruise and science operations, it was critical in evolving operational strategies and processes. This paper discusses systems engineering successes, challenges, and lessons learned on the Cassini-Huygens Mission gathered from a thorough study of mission plans and developed scenarios, and interviews with key project leaders across its twenty-year history.

  4. Framing Space: UK Newspaper Reporting of the Beagle 2 and Cassini-Huygens Space Missions

    Science.gov (United States)

    Jergovic, B.; Miller, S.

    2008-05-01

    Relatively little scholarly work has been done on looking at the portrayal of astronomy and space science in the media. This short article examines the UK press coverage of two space missions: the Beagle 2 mission to Mars and the Cassini-Huygens mission to Saturn and its moon Titan. In both cases, the leading scientists exerted a strong influence on what journalists reported, to the extent that some journalists appeared to be almost "embedded" in the mission. For the most part the coverage is positive in tone and the loss of the Beagle 2 spacecraft does not reflect badly on the (later) Cassini-Huygens coverage. Most journalists only covered the actual mission events and, in the case of Huygens, did not follow up to cover the peer-reviewed scientific articles that appeared later. Off-the-cuff comments made by scientists at the time of the missions were widely reported. There appears to be an appreciation by journalists and (by inference) their readership that this was science in the making, and that allowances should be made if these comments later turned out to be inaccurate.

  5. ESA and NASA agree new mission scenario for Cassini-Huygens

    Science.gov (United States)

    2001-07-01

    After six months of investigations and analysis by a joint ESA/NASA Huygens Recovery Task Force (HRTF), senior management from the two space agencies and members of the Cassini-Huygens scientific community have endorsed several modifications to the mission. These will ensure a return close to 100% of the Huygens science data, with no impact on the nominal prime Cassini tour after the third Titan encounter. The modifications have been introduced because of a design flaw in the Huygens communication system. This problem meant that the Huygens receiver was unable to compensate for the frequency shift between the signal emitted by the Probe and the one received by the Orbiter, due to the Doppler shift (**). This would have resulted in the loss of most of the unique data returned from the Probe during its descent through Titan’s dense atmosphere. To ensure that as much data as possible is returned from the pioneering Probe, the HRTF proposed a new schedule for Cassini’s first orbits around Saturn. The agreed scenario involves shortening Cassini’s first two orbits around the ringed planet and adding a third which provides the required new geometry for the Huygens mission to Titan. In the new scenario, the arrival at Saturn on 1 July 2004 remains unchanged. However, Cassini’s first flyby of Titan will now occur on 26 October, followed by another on 13 December. The Huygens Probe will be released towards Titan on 25 December, for an entry into the moon’s atmosphere 22 days later, on 14 January 2005, seven weeks later than originally planned. To reduce the Doppler shift in the signal from Huygens, the Cassini Orbiter will fly over Titan’s cloud tops at a much higher altitude than originally planned - 65,000 km instead of 1,200 km. This higher orbit has the added advantage that Cassini will be able to preserve the four-year baseline tour through the Saturn system, by resuming its original orbital plan in mid-February 2005. “In any complex space mission problems

  6. The Cassini-Huygens visit to Saturn an historic mission to the ringed planet

    CERN Document Server

    Meltzer, Michael

    2015-01-01

    Cassini-Huygens was the most ambitious and successful space journey ever launched to the outer Solar System. This book examines all aspects of the journey: its conception and planning; the lengthy political processes needed to make it a reality; the engineering and development required to build the spacecraft; its 2.2-billion mile journey from Earth to the Ringed Planet; and the amazing discoveries from the mission. The author traces how the visions of a few brilliant scientists matured, gained popularity, and eventually became a reality. Innovative technical leaps were necessary to assemble such a multifaceted spacecraft and reliably operate it while it orbited a planet so far from our own. The Cassini-Huygens spacecraft design evolved from other deep space efforts, most notably the Galileo mission to Jupiter, enabling the voluminous, paradigm-shifting scientific data collected by the spacecraft.  Some of these discoveries are absolute gems. A small satellite that scientists once thought of as a dead pi...

  7. Titan from Cassini-Huygens

    CERN Document Server

    Brown, Robert H; Waite, J. Hunter

    2010-01-01

    This book reviews our current knowledge of Saturn's largest moon Titan featuring the latest results obtained by the Cassini-Huygens mission. A global author team addresses Titan’s origin and evolution, internal structure, surface geology, the atmosphere and ionosphere as well as magnetospheric interactions. The book closes with an outlook beyond the Cassini-Huygens mission. Colorfully illustrated, this book will serve as a reference to researchers as well as an introduction for students.

  8. Saturn from Cassini-Huygens

    CERN Document Server

    Dougherty, Michele K; Krimigis, Stamatios M

    2009-01-01

    This book reviews our current knowledge of Saturn featuring the latest results obtained by the Cassini-Huygens mission. A global author team addresses the planet’s origin and evolution, internal structure, composition and chemistry, the atmosphere and ionosphere, the magnetosphere, as well as its ring system. Furthermore, Saturn's icy satellites are discussed. The book closes with an outlook beyond the Cassini-Huygens mission. Colorfully illustrated, this book will serve as a reference to researchers as well as an introduction for students.

  9. Cassini at Saturn Huygens results

    CERN Document Server

    Harland, David M

    2007-01-01

    "Cassini At Saturn - Huygens Results" will bring the story of the Cassini-Huygens mission and their joint exploration of the Saturnian system right up to date. Cassini is due to enter orbit around Saturn on the 1 July 2004 and the author will have 8 months of scientific data available for review, including the most spectacular images of Saturn, its rings and satellites ever obtained by a space mission. As the Cassini spacecraft approached its destination in spring 2004, the quality of the images already being returned by the spacecraft clearly demonstrate the spectacular nature of the close-range views that will be obtained. The book will contain a 16-page colour section, comprising a carefully chosen selection of the most stunning images to be released during the spacecraft's initial period of operation. The Huygens craft will be released by Cassini in December 2004 and is due to parachute through the clouds of Saturn's largest moon, Titan, in January 2005.

  10. Watch Cassini-Huygens setting off for Saturn and Titan

    Science.gov (United States)

    1997-10-01

    NASA's Cassini spacecraft, to which the Italian Space Agency ASI has made an important contribution, is crammed with instruments prepared by American and European scientists. It will spend four busy years in orbit around Saturn, and explore its famous rings and eighteen known moons. On its arrival at Saturn in 2004, the Cassini orbiter will release the European Space Agency's probe Huygens towards the largest moon, Titan.Also equipped by multinational scientific teams, Huygens will parachute through Titan's atmosphere to accomplish the most distant landing ever made, on the surface of another world. Television coverage of the launch for viewers in Europe On Monday 13 October the launch window for Cassini-Huygens opens at 4.55 a.m. Florida time (EDT). Starting at 4.00 a.m. Florida time (10.00 a.m. in most of western Europe and 9.00 a.m. in Great Britain and Ireland) ESA will provide a live TV transmission via satellite for European news organizations and other organizations wishing to receive it. Views of the launch will be accompanied by interviews with scientists and engineers of the Cassini-Huygens joint mission. A short news package will be transmitted near the end of transmission, and details will be announced on air. If the launch occurs promptly, ESA's TV operation will last until about 60 minutes after launch (i.e. about noon, European time). Technical details for TV reception Two satellites links are available, both carrying English on audio channel 1 and French on audio channel 2. Broadcasters and others with digital receivers will favour Intelsat K, while those with analogue receivers can use Eutelsat 2. Full information on transponders etc. is contained in an appendix to this press release. Paris press centre At ESA Headquarters in Paris, journalists will be able to view the TV transmission and to obtain news and background information about the Cassini-Huygens mission. The press centre will open at 10.00 a.m. on 13 October. If you wish to attend, please

  11. Second space Christmas for ESA: Huygens to begin its final journey to Titan/ Media activities.

    Science.gov (United States)

    2004-12-01

    the morning of 25 December at about 05:08 CET. Since the Cassini orbiter will have to achieve precise pointing for the release, there will be no real-time telemetry available until it turns back its main antenna toward Earth and beams the recorded data of the release. It will take over an hour (67 min) for the signals to reach us on Earth. The final data confirming the separation will be available later on Christmas Day. After release, Huygens will move away from Cassini at a speed of about 35 cm per second and, to keep on track, will spin on its axis, making about 7 revolutions a minute. Huygens will not communicate with Cassini for the whole period until after deployment of the main parachute following entry into Titan’s atmosphere. On 28 December Cassini will then manoeuvre off collision course to resume its mission and prepare itself to receive Huygens data, which it will record for later playback to Earth. Huygens will remain dormant until a few hours before its arrival at Titan on 14 January. The entry into the atmosphere is set for 11:15 CET. Huygens is planned to complete its descent in about two hours and 15 minutes, beaming back its science data to the Cassini orbiter for replay to Earth later in the afternoon. If Huygens, which is designed as an atmospheric probe rather than a lander, survives touchdown on the surface, it could deliver up to 2 hours of bonus data before the link with Cassini is lost. Direct radio signals from Huygens will reach Earth after 67 minutes of interplanetary travel at the speed of light. An experiment has been set up by radio scientists that will use an array of radio telescopes around the Pacific to attempt to detect a faint tone from Huygens. If successful, early detection is not expected before around 11:30 CET. The European Space Agency owns and manages the Huygens probe and is in charge of operations of the probe from its control centre in Darmstadt, Germany. NASA's Jet Propulsion Laboratory in Pasadena, California

  12. Cassini-Huygens results on Titan's surface

    Institute of Scientific and Technical Information of China (English)

    Athena Coustenis; Mathieu Hirtzig

    2009-01-01

    Our understanding of Titan, Saturn's largest satellite, has recently been consid-erably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In par-ticular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface.

  13. NASA's Preparations for ESA's L3 Gravitational Wave Mission

    Science.gov (United States)

    Stebbins, Robin T.

    2016-01-01

    In November 2013, the European Space Agency (ESA) selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as 'L3,' under its Cosmic Vision Programme. The planned launch date is 2034. NASA is seeking a role as an international partner in L3. NASA is supporting: (1) US participation in early mission studies, (2) US technology development, (3) pre-decadal preparations, (4) ESA's LISA Pathfinder mission and (5) the ST7 Disturbance Reduction System project. This talk summarizes NASA's preparations for a future gravitational-wave mission.

  14. SMART-1 technology preparation for future planetary missions

    Science.gov (United States)

    Marini, A. E.; Racca, G. D.; Foing, B. H.

    SMART-1 is the first ESA Small Mission for Advanced Research in Technology, with the prime objective of demonstrating the use of Solar Electric Primary Propulsion in a planetary mission. Further to this, SMART-1 will test novel spacecraft technologies and will host six instruments carrying out nine technology and science experiments, all aimed at preparing future ESA Cornerstones, including the ESA Mercury Cornerstone (now named BepiColombo) and other future planetary missions under study, as well as solar and fundamental physics missions.

  15. The Huygens Atmospheric Structure Instrument (HASI): Expected Results at Titan and Performance Verification in Terrestrial Atmosphere

    Science.gov (United States)

    Ferri, F.; Fulchignoni, M.; Colombatti, G.; Stoppato, P. F. Lion; Zarnecki, J. C.; Harri, A. M.; Schwingenschuh, K.; Hamelin, M.; Flamini, E.; Bianchini, G.; Angrilli, F.

    2005-01-01

    The Huygens ASI is a multi-sensor package resulting from an international cooperation, it has been designed to measure the physical quantities characterizing Titan's atmosphere during the Huygens probe mission. On 14th January, 2005, HASI will measure acceleration, pressure, temperature and electrical properties all along the Huygens probe descent on Titan in order to study Titan s atmospheric structure, dynamics and electric properties. Monitoring axial and normal accelerations and providing direct pressure and temperature measurements during the descent, HASI will mainly contribute to the Huygens probe entry and trajectory reconstruction. In order to simulate the Huygens probe descent and verify HASI sensors performance in terrestrial environment, stratospheric balloon flight experiment campaigns have been performed, in collaboration with the Italian Space Agency (ASI). The results of flight experiments have allowed to determine the atmospheric vertical profiles and to obtain a set of data for the analysis of probe trajectory and attitude reconstruction.

  16. Europe reaches new frontier - Huygens lands on Titan

    Science.gov (United States)

    2005-01-01

    is a fascinating world and we are now eagerly awaiting the scientific results,” says Professor David Southwood, Director of ESA’s scientific programmme. “The Huygens scientists are all delighted. This was worth the long wait,” says Dr Jean-Pierre Lebreton, ESA Huygens Mission Manager. Huygens is expected to provide the first direct and detailed sampling of Titan’s atmospheric chemistry and the first photographs of its hidden surface, and will supply a detailed ‘weather report’. One of the main reasons for sending Huygens to Titan is that its nitrogen atmosphere, rich in methane, and its surface may contain many chemicals of the kind that existed on the young Earth. Combined with the Cassini observations, Huygens will afford an unprecedented view of Saturn’s mysterious moon. “Descending through Titan was a once-in-a-lifetime opportunity and today’s achievement proves that our partnership with ESA was an excellent one,” says Alphonso Diaz, NASA Associate Administrator of Science. The Cassini-Huygens mission is a cooperation between NASA, the European Space Agency and ASI, the Italian space agency. The Jet Propulsion Laboratory (JPL), a division of the California Institute of Technology in Pasadena, is managing the mission for NASA’s Office of Space Science, Washington. JPL designed, developed and assembled the Cassini orbiter. “The teamwork in Europe and the USA, between scientists, industry and agencies has been extraordinary and has set the foundations for today’s enormous success,” concludes Jean-Jacques Dordain.

  17. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    Science.gov (United States)

    Lebeuf, Martin

    Human exploration of the Moon is a target by 2020 with an initial lunar outpost planned in polar regions. Current architectures maintain a capability for sorties to other latitudes for science activities. In the early stages of design of lunar outpost infrastructure and science activity planning, it has been recognized that analogue missions could play a major role in Moon mission design. Analogue missions, as high fidelity simulations of human and robotic surface operations, can help field scientists and engineers develop and test strategies as well as user requirements, as they provide opportunities to groundtruth measurements, and for the team to share understanding of key science needs and key engineering trades. These types of missions also provide direct training in planning science operations, and in team building and communication. The Canadian Space Agency's Exploration Core Program targets the development of technology infrastructure elements in key areas of science, technology and robotics in preparation for its role in the future exploration of the Moon and Mars. Within this Program, Analogue Missions specifically target the operations requirements and lessons learned that will reduce costs and lower the risk of planetary surface missions. Analogue missions are simulations of planetary surface operations that take place at analogue sites on Earth. A terrestrial analogue site resembles in some key way: eg. geomorphologically or geochemically, a surface environment of another planet. An analogue mission can, therefore, be defined as an integrated set of activities that represent (or simulate) entire mission designs or narrowly focus on specific aspects of planned or potential future planetary exploration missions. Within the CSA's Exploration Core Program, Analogue Missions facilitate the maturation of science instruments and mission concepts by integrating ongoing space instrument and technology development programs with science and analogue elements. As

  18. The Huygens Doppler Wind Experiment: Results from Titan

    Science.gov (United States)

    Folkner, W. M.; Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, L. H.; Preston, R. A.; Gurvits, L.

    2005-05-01

    The ESA Huygens Probe entered and descended for nearly 2.5 hours through the atmosphere of Titan on 14 January 2005. Huygens survived impact on the surface and continued its telemetry broadcast to the NASA Cassini spacecraft on two separate radio links, denoted Channels A and B, respectively, for an additional 1.2 hours. The instrumentation for the Huygens Doppler Wind Experiment (DWE) consisting of two Ultra-Stable Oscillators in the transmitter (TUSO) and receiver (RUSO), were implemented only in Channel A. Whereas Channel B functioned flawlessly during the entire mission, the receiver for Channel A was never able to lock onto the Huygens signal because the DWE-RUSO had not been properly programmed into the critical probe radio relay sequence. All data on Channel A, including the DWE measurements and probe telemetry, were thus lost. In spite of this setback, the Channel A signal was successfully received at many radio telescopes on Earth. The precision of these Doppler measurements, considered as an aggregate, is roughly equivalent to that which had been foreseen from the measurements on board Cassini. We present an overview of the DWE ground-based observations and the Titan wind profile derived from them.

  19. Saturn's Exploration Beyond Cassini-Huygens

    CERN Document Server

    Guillot, Tristan; Charnoz, Sébastien; Dougherty, Michele K; Read, Peter

    2009-01-01

    For its beautiful rings, active atmosphere and mysterious magnetic field, Saturn is a fascinating planet. It also holds some of the keys to understanding the formation of our Solar System and the evolution of giant planets in general. While the exploration by the Cassini-Huygens mission has led to great advances in our understanding of the planet and its moons, it has left us with puzzling questions: What is the bulk composition of the planet? Does it have a helium core? Is it enriched in noble gases like Jupiter? What powers and controls its gigantic storms? We have learned that we can measure an outer magnetic field that is filtered from its non-axisymmetric components, but what is Saturn's inner magnetic field? What are the rings made of and when were they formed? These questions are crucial in several ways: a detailed comparison of the compositions of Jupiter and Saturn is necessary to understand processes at work during the formation of these two planets and of the Solar System. This calls for the contin...

  20. Big data en handschriften van Christiaan Huygens

    NARCIS (Netherlands)

    Damen, J.C.M.

    2013-01-01

    In de achtste aflevering van een serie combinatiebesprekingen (digitaalandspeciaal) schenkt Jos Damen aandacht aan een onderzoek naar big data van bibliotheekcatalogi en een catalogus van het werk van het Nederlandse genie Christiaan Huygens.

  1. Huygens file service and storage architecture

    NARCIS (Netherlands)

    Bosch, Peter; Mullender, Sape; Stabell-Kulo, Tage

    1993-01-01

    The Huygens file server is a high-performance file server which is able to deliver multi-media data in a timely manner while also providing clients with ordinary “Unix” like file I/O. The file server integrates client machines, file servers and tertiary storage servers in the same storage architectu

  2. Huygens file server and storage architecture

    NARCIS (Netherlands)

    Bosch, Peter; Mullender, Sape; Stabell-Kulo, Tage

    1993-01-01

    The Huygens file server is a high-performance file server which is able to deliver multi-media data in a timely manner while also providing clients with ordinary “Unix” like file I/O. The file server integrates client machines, file servers and tertiary storage servers in the same storage architectu

  3. Updating the Reference Trajectory for the Cassini Solstice Mission

    Science.gov (United States)

    Valerino, Powtawche N.

    2014-01-01

    The Cassini-Huygens deep-space probe has successfully completed a four-year prime tour and a two-year extended tour of the Saturnian system. Now in a second extended phase called the Solstice Mission, the Cassini spacecraft will continue to gather data as directed by the reference trajectory until 2017. This paper will describe the process of how a reference trajectory update is prepared and delivered to the project by the navigation team during Solstice Mission flight operations. This paper will also document the timeline of products released and utilized, as well as the study to include an Enceladus occultation observation that occurs in 2016.

  4. Radio Telescopes Will Add to Cassini-Huygens Discoveries

    Science.gov (United States)

    2004-12-01

    When the European Space Agency's Huygens spacecraft makes its plunge into the atmosphere of Saturn's moon Titan on January 14, radio telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) will help international teams of scientists extract the maximum possible amount of irreplaceable information from an experiment unique in human history. Huygens is the 700-pound probe that has accompanied the larger Cassini spacecraft on a mission to thoroughly explore Saturn, its rings and its numerous moons. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) The Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten telescopes of the continent-wide Very Long Baseline Array (VLBA), located at Pie Town and Los Alamos, NM, Fort Davis, TX, North Liberty, IA, Kitt Peak, AZ, Brewster, WA, Owens Valley, CA, and Mauna Kea, HI, will directly receive the faint signal from Huygens during its descent. Along with other radio telescopes in Australia, Japan, and China, the NRAO facilities will add significantly to the information about Titan and its atmosphere that will be gained from the Huygens mission. A European-led team will use the radio telescopes to make extremely precise measurements of the probe's position during its descent, while a U.S.-led team will concentrate on gathering measurements of the probe's descent speed and the direction of its motion. The radio-telescope measurements will provide data vital to gaining a full understanding of the winds that Huygens encounters in Titan's atmosphere. Currently, scientists know little about Titan's winds. Data from the Voyager I spacecraft's 1980 flyby indicated that east-west winds may reach 225 mph or more. North-south winds and possible vertical winds, while probably much weaker, may still be significant. There are competing theoretical models of Titan's winds, and the overall picture is best summarized as

  5. Preface: The Environmental Mapping and Analysis Program (EnMAP Mission: Preparing for Its Scientific Exploitation

    Directory of Open Access Journals (Sweden)

    Saskia Foerster

    2016-11-01

    Full Text Available The imaging spectroscopy mission EnMAP aims to assess the state and evolution of terrestrial and aquatic ecosystems, examine the multifaceted impacts of human activities, and support a sustainable use of natural resources. Once in operation (scheduled to launch in 2019, EnMAP will provide high-quality observations in the visible to near-infrared and shortwave-infrared spectral range. The scientific preparation of the mission comprises an extensive science program. This special issue presents a collection of research articles, demonstrating the potential of EnMAP for various applications along with overview articles on the mission and software tools developed within its scientific preparation.

  6. Wind shear and turbulence on Titan: Huygens analysis

    Science.gov (United States)

    Lorenz, Ralph D.

    2017-10-01

    Wind shear measured by Doppler tracking of the Huygens probe is evaluated, and found to be within the range anticipated by pre-flight assessments (namely less than two times the Brunt-Väisälä frequency). The strongest large-scale shear encountered was ∼5 m/s/km, a level associated with 'Light' turbulence in terrestrial aviation. Near-surface winds (below 4 km) have small-scale fluctuations of ∼0.1 m/s on 1 s timescales, indicated both by probe tilt and Doppler tracking, and the characteristics of the fluctuation, of interest for future missions to Titan, can be reproduced with a simple autoregressive (AR(1)) model. The turbulent dissipation rate at an altitude of ∼500 m is found to be ∼0.2 cm2/s3, which may be a useful benchmark for atmospheric circulation models.

  7. Huygens Atmospheric Structure Instrument (HASI) test by a stratospheric balloon experiment

    Science.gov (United States)

    Fulchignoni, M.; Gaborit, V.; Aboudam, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Lion Stoppato, P.

    2002-09-01

    We developped a series of balloon experiments parachuting a 1:1 scale mock up of the Huygens probe from an altitude larger than 30 km in order to simulate at planetary scale the final part of the descent of the probe in the Titan atmosphere. The Earth atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, with the exception of temperature. A first balloon experiment has been carried out in June 2001 and the results have been reported at the last DPS (V. Gaborit et al., BAAS 33, 38.03) The mock up of the probe descending in the Titan atmosphere for the Huygens Cassini Mission has been successfully launched with stratospheric balloon from Italian Space Agency Base "Luigi Broglio" in Sicily and recovered on May 30th 2002. The probe has been lifted at 32 km altitude and then released to perform a 45 minutes descent decelerated by parachute, to simulate Huygens mission at Titan. Preliminary aerodynamics study of the probe has focused on the achievement of a descent velocity profile and a spin rate profile, satisfying the Huygens mission to Titan requirements. The descent velocity and spin rate have been calculated by solving a system of ODE describing the translational and rotational motion of the probe trough the earth atmosphere during parachute aided descent Results of these calculations have driven the choice of an appropriate angle of attack of the blades in the bottom of the probe and ballast weight during flight. The probe is hosting spares of HASI sensors, housekeeping sensors and other dedicated sensors, Beagle II UV Sensors and Huygens SSP Tilt Sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. Main goals are i) to verify sensor performance and perform a realistic functional test in dynamical and environmental conditions similar to those during the descent in Titan atmosphere; ii) to investigate impact at ground to check the

  8. Titan's interior from Cassini-Huygens

    Science.gov (United States)

    Tobie, G.; Baland, R.-M.; Lefevre, A.; Monteux, J.; Cadek, O.; Choblet, G.; Mitri, G.

    2013-09-01

    The Cassini-Huygens mission has brought many informations about Titan that can be used to infer its interior structure: the gravity field coefficients (up to degree 3, [1]), the surface shape (up to degree 6, [2]), the tidal Love number [1], the electric field [3], and the orientation of its rotation axis [4]. The measured obliquity and gravity perturbation due to tides, as well as the electric field, are lines of evidence for the presence of an internal global ocean beneath the ice surface of Titan [5,1,3]. The observed surface shape and gravity can be used to further constrain the structure of the ice shell above the internal ocean. The presence of a significant topography associated with weak gravity anomalies indicates that deflections of internal interface or lateral density variations may exist to compensate the topography. To assess the sources of compensation, we consider interior models including interface deflections and/or density variations, which reproduces simultaneously the surface gravity and long-wavelength topography data [6]. Furthermore, in order to test the long-term mechanical stability of the internal mass anomalies, we compute the relaxation rate of each internal interface in response to surface mass load. We show that the topography can be explained either by defections of the ocean/ice interface or by density variations in an upper crust [6]. For non-perfectly compensated models of the outer ice shell, the present-day structure is stable only for a conductive layer above a relatively cold ocean (for bottom viscosity > 1016 Pa.s, T Love number and the obliquity. To derive the possible density profile, the obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field [7]. We show that, once the observed surface flattening is taken into account, the measured obliquity can be reproduced only for internal models

  9. First Results From the Gas Chromatograph Mass Spectrometer (GCMS) Experiment on the Cassini-Huygens Probe

    Science.gov (United States)

    Niemann, Hasso B.; Demick, J.; Haberman, J.; Harpold, D.; Kasprzak, W.; Raaen, E.; Way, S.; Atreya, S.; Carignan, G.; Bauer, S.

    2005-01-01

    The Huygens Probe of the Cassini Huygens Mission entered the atmosphere of the moon Titan on January 14,2005. The GCMS was part of the instrument complement on the Probe to measure in situ the chemical composition of the atmosphere during the probe descent and to support the Aerosol Collector Pyrolyser (ACP) experiment by serving as detector for the pyrolization products. The GCMS employed a quadrupole mass filter with a secondary electron multiplier detection system and a gas sampling system providing continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns. The mass spectrometer employed five electron impact ion sources with available electron energies of either 70 or 25 eV. Three ion sources served as detectors for the GC columns and two were dedicated to direct atmosphere sampling and ACP gas sampling, respectively. The GCMS gas inlet was heated to prevent condensation, and served to evaporate surface constituents after impact.

  10. ICES ON TITAN: LABORATORY MEASUREMENTS THAT COMPLEMENT THE HUYGENS PROBE

    Energy Technology Data Exchange (ETDEWEB)

    J. ROBINSON; ET AL

    2000-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The composition of the cold bodies in the outer solar system may hold some of the key molecular clues concerning the composition of the prestellax molecular cloud that gave rise to the solar system. We studied the physical chemistry and heterogeneous (gas/surface) reactivity of extraterrestrial ice analogs of the surfaces of Saturn's moon Titan. This program coupled our surface spectroscopic techniques with physical adsorption measurements. We addressed several of the pressing questions regarding Titan such as: Is storage of hydrocarbons in Titan's water ice crust feasible? Do heterogeneous processes influence the atmospheric chemical composition of Titan? Are phase transitions to be expected? These data can be incorporated into photochemical models with the goal of improved modeling of the chemical composition and meteorology of Titan's atmosphere. Titan will be probed by the Cassini-Huygens Mission. Our results on Titan ice analogs can be used to help interpret the mission data.

  11. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    Science.gov (United States)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  12. Christiaan Huygens and the Problem of the Hanging Chain

    Science.gov (United States)

    Bukowski, John F.

    2008-01-01

    The seventeen-year-old Christiaan Huygens was the first to prove that a hanging chain did not take the form of the parabola, as was commonly thought in the early seventeenth century. We will examine Huygen's geometrical proof, and we will investigate the later history of the catenary.

  13. Christiaan Huygens and the Problem of the Hanging Chain

    Science.gov (United States)

    Bukowski, John F.

    2008-01-01

    The seventeen-year-old Christiaan Huygens was the first to prove that a hanging chain did not take the form of the parabola, as was commonly thought in the early seventeenth century. We will examine Huygen's geometrical proof, and we will investigate the later history of the catenary.

  14. Communications During Critical Mission Operations: Preparing for InSight's Landing on Mars

    Science.gov (United States)

    Asmar, Sami; Oudrhiri, Kamal; Kurtik, Susan; Weinstein-Weiss, Stacy

    2014-01-01

    Radio communications with deep space missions are often taken for granted due to the impressively successful records since, for decades, the technology and infrastructure have been developed for ground and flight systems to optimize telemetry and commanding. During mission-critical events such as the entry, descent, and landing of a spacecraft on the surface of Mars, the signal's level and frequency dynamics vary significantly and typically exceed the threshold of the budgeted links. The challenge is increased when spacecraft shed antennas with heat shields and other hardware during those risky few minutes. We have in the past successfully received signals on Earth during critical events even ones not intended for ground reception. These included the UHF signal transmitted by Curiosity to Marsorbiting assets. Since NASA's Deep Space Network does not operate in the UHF band, large radio telescopes around the world are utilized. The Australian CSIRO Parkes Radio Telescope supported the Curiosity UHF signal reception and DSN receivers, tools, and expertise were used in the process. In preparation for the InSight mission's landing on Mars in 2016, preparations are underway to support the UHF communications. This paper presents communication scenarios with radio telescopes, and the DSN receiver and tools. It also discusses the usefulness of the real-time information content for better response time by the mission team towards successful mission operations.

  15. The U.S. Rosetta Project: Preparations for Prime Mission, 2014

    Science.gov (United States)

    Alexander, C.; Chmielewski, A.; Aguinaldo, A. M.; Ko, A.; Accomazzo, A.; Taylor, M. G. G.

    2014-01-01

    In 2014, the International Rosetta mission will place a spacecraft in orbit around comet 67P/Churyumov-Gerasimenko and deliver a lander to the comet's surface. The National Aeronautics and Space Administration's (NASA) contribution to the International Rosetta mission, designated the U.S. Rosetta Project, includes several instruments, tracking support, and science support for some non-US payloads. In July 2011 the spacecraft was placed in a long-duration hibernation mode planned to last approximately 37 months to conserve electrical power. Rosetta will rendezvous with 67P/Churyumov-Gerasimenko in 2014. On the eve of the mission's arrival at its target, this paper highlights three issues related to Rosetta's looming prime mission: (A) measures taken in 2009 to prepare the US Rosetta Project for the long-duration hibernation mode; (B) risk reviews conducted in 2013 to prepare the US Rosetta Project for exit from hibernation; (C) ESA and NASA preparations for use of NASA Deep Space Network (DSN) assets related to keyword files.

  16. Huygens-Fresnel Principle in Superspace

    CERN Document Server

    de Gomes, H A

    2006-01-01

    We first roughly present a summary of the optico-mechanical analogy, which has always been so profitable in physics. Then we put forward a geometrodynamical formulation of gravity suitable to our intentions, both formally and conceptually. We present difficulties in some approaches to canonically quantize gravity which can be ammended by the idea put forward in this paper, which we introduce in the last section. It consists basically in trying to find an intermediary between the quantization step going from the classical superhamiltonian constraint to the Wheeler-DeWitt equation. This is accomplished by inputing interference beyond the WKB approximation, through a sort of Huygens-Fresnel Principle (HFP) in superspace. It turns out that we can derive wave-like character for both domains from this principle by allowing backward angles of diffraction, and what is more, approximate to a high degree of accuracy Feynman's path integral method in any domain.

  17. CIRS-lite: A Fourier Transform Spectrometer for a Future Mission to Titan

    Science.gov (United States)

    Brasunas, John C.; Flasar, F. Michael; Jennings, Donald E.

    2009-01-01

    The CIRS FTS, aboard the NASA/ESA Cassini-Huygens mission to Saturn, has been returning exciting science since 2004. CIRS-lire, a lightweight CIRS successor, is being designed for a follow-up Titan mission.

  18. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  19. Titan Saturn System Mission

    Science.gov (United States)

    Reh, Kim R.

    2009-01-01

    Titan is a high priority for exploration, as recommended by NASA's 2006 Solar System Exploration (SSE) Roadmap. NASA's 2003 National Research Council (NRC) Decadal Survey and ESA's Cosmic Vision Program Themes. Recent revolutionary Cassini-Huygens discoveries have dramatically escalated interest in Titan as the next scientific target in the outer solar system. This study demonstrates that an exciting Titan Saturn System Mission (TSSM) that explores two worlds of intense astrobiological interest can be initiated now as a single NASA/ESA collaboration.

  20. How to handle a Huygens' box inside an enclosure

    DEFF Research Database (Denmark)

    Sørensen, Morten; Bonev, Ivan Bonev; Franek, Ondrej;

    2013-01-01

    It has been suggested that it is possible to replace printed circuit boards with a Huygens' box (HB) representation obtained from a near-field scan in simulation of far-fields from an apparatus. However, the surface equivalence theorem requires that the environment outside HB is the same in the n......It has been suggested that it is possible to replace printed circuit boards with a Huygens' box (HB) representation obtained from a near-field scan in simulation of far-fields from an apparatus. However, the surface equivalence theorem requires that the environment outside HB is the same...

  1. Development of the high sensitivity GRADIO accelerometers - The Aristoteles gradiometer mission preparation

    Science.gov (United States)

    Bernard, A.; Touboul, P.

    ESA and NASA are preparing the cooperative geopotential mission ARISTOTELES that will combine, for the global and fine recovery of the earth's gravity field, gradiometric measurements on board a dedicated satellite at 200-km altitude and satellite-to-satellite tracking using GPS network. The gradiometer required accuracy is 0.01 Eotvos, leading for the GRADIO ultrasensitive accelerometers composing this instrument to a resolution of 5 x 10 exp -12 per sq ms in the bandwidth (5 x 10 exp -3 Hz, 0.125 Hz) in microgravity conditions. Two laboratory models and a specific test bench have been realized. In spite of the presence of gravity and of the seismic noise, differential tests at a level of better than one nanoG are achieved on ground.

  2. Cusp observations with Cluster and THEMIS in preparation for the SMILE mission

    Science.gov (United States)

    Escoubet, C.-Philippe

    2017-04-01

    Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a novel self-standing mission, being designed in collaboration between ESA and the Chinese Academy of Science. Its objective is to observe solar wind-magnetosphere coupling via simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements, soft X-Ray images of the magnetosheath and polar cusps, and UV images of global auroral distributions. The observations of the cusps and magnetosheath with the X-ray imager are possible thanks to the relatively recent discovery of solar wind charge exchange (SWCX) X-ray emissions, first at comets and subsequently in the vicinity of the Earth's magnetosphere. To prepare for the mission, we must determine the cusp's expected morphology, motion, and in situ properties (density, velocity, temperature). We have selected a series of Cluster cusp crossings that define these properties and can therefore be used to estimate X-ray emissions across the width of the cusp for different IMF orientations. We will show that the peak soft X-ray emissions occur near the centre of the cusp where ion densities maximize. We then show that the integral lines of sight emissions through the cusp are a factor of 2.4 times larger for IMF-Bz northward than for IMF-Bz southward. The mid-altitude cusp is a factor of 7 brighter than the exterior cusp.

  3. Huygens landing site to be named after Hubert Curien

    Science.gov (United States)

    2007-03-01

    The naming ceremony for the Huygens landing site, which will be known as the "Hubert Curien Memorial Station", will be held at ESA’s Headquarters on 14 March, in the presence of ESA Council delegates and of Professor Curien’s wife, Mrs Perrine Curien, and one of their sons. Media interested in attending are invited to submit the reply form below. Huygens' landing on Saturn’s largest moon in January 2005 represented one of the greatest successes achieved by humankind in the history of space exploration. The part played by ESA, in cooperation with NASA and the Italian Space Agency (ASI), was made possible thanks to the commitment of a man who, for several decades, worked to promote and strengthen the role of scientific research in his home country - France - and in Europe. Among his numerous responsibilities, Hubert Curien was French Minister of Research and Space under four Prime Ministers. As Chairman of the ESA Council from 1981 to 1984, Professor Curien played a crucial part in setting up ESA's former long-term science programme, "Horizon 2000", which included the Huygens mission among its projects. Professor Roger Bonnet, current President of COSPAR, and former ESA Director of Science (1983-2001), commented: "Curien’s diplomatic skills were hugely influential in bringing about the birth of European space science. In 1985, his support was pivotal when the European ministers had to decide how to build a solid space science programme and ensure that it would be financially sustainable in the long term." "ESA's present science programme, Cosmic Vision, draws on the heritage left by Hubert Curien", said Professor David Southwood, ESA's current Director of Science. "He encouraged cooperation between nations in the belief that space research is fundamental to the progress and welfare of a knowledge-based society like ours. He also promoted the concept of long-term planning", he continued. "It would seem almost inconceivable today to initiate any space venture

  4. Titan en Christiaan. Huygens in werk en leven

    NARCIS (Netherlands)

    Dijksterhuis, Fokko J.

    2000-01-01

    In three respects Christiaan Huygens (1629-1695) poses a biographical problem. Unlike contemporaries he hardly ever reflected upon what he thought he was doing; his versatility makes it hard to gain a balanced view of what he was doing; his personality seems almost absent from his writings. In the

  5. Huygens probe entry dynamic model and accelerometer data analysis

    Science.gov (United States)

    Colombatti, Giacomo; Aboudan, Alessio; Ferri, Francesca; Angrilli, Francesco

    2008-04-01

    During the first phase of Huygens arrival into Titan's atmosphere the probe is subjected to gravitational and aerodynamic forces in aerodynamic hypersonic regime. Atmospheric drag exerts a strong deceleration on the capsule measured by Huygens atmospheric structure instrument (HASI) servo accelerometer. A 6 DOF (Degree of Freedom) model of the Huygens probe entry dynamics has been developed and used for data analysis. The accelerometer data are analysed and the model allows the retrieval of dynamics information of Huygens probe from 1545 km altitude down to end of the entry phase. Probe's initial conditions (velocity and position) were refined to match the measured deceleration profile resulting in a different altitude at interface epoch with respect to those of the Cassini Navigation Team. Velocity and position of probe at interface epoch are compatible with those used by Descent Trajectory Working Group (DTWG). Measurements acquired before atmosphere detection are used to estimate probe's angular rate, bound attitude and characterise the angle of attack profile which results to be lower than 4∘ during the whole entry. Probe's spin calculated (6.98 RPM) is slightly different with respect to DTWG of 7.28 RPM but considering a 2% error in the Inertia matrix these results are inside the 1-σ error band.

  6. Teaching Huygens in the Rue Huygens: Introducing the History of 17th-Century Mathematics in a Junior Secondary School.

    Science.gov (United States)

    Hallez, Maryvonne

    1992-01-01

    Recounts teaching mathematics to junior high school students in France in the context of seventeenth-century mathematics history. Examines extracts of original works by Leibniz on the origin of calculus and of Huygens on continued fractions. Investigates historical puzzles and a variety of mathematical problems arising out of the texts. (MDH)

  7. Huygens Crater: Insights into Noachian Volcanism, Stratigraphy, and Aqueous Processes

    Science.gov (United States)

    Ackiss, S. E.; Wray, J. J.; Seelos, K. D.; Niles, P. B.

    2015-01-01

    Huygens crater is a well preserved peak ring structure on Mars centered at 13.5 deg S, 55.5 deg E in the Noachian highlands between Terras Tyrrhena and Sabaea near the NW rim of Hellas basin. With a diameter of approximately 470 km, it uplifted and exhumed pre-Noachian crustal materials from depths greater than 25 km, penetrating below the thick, ubiquitous layer of Hellas ejecta. In addition, Huygens served as a basin for subsequent aqueous activity, including erosion/deposition by fluvial valley networks and subsurface alteration that is now exposed by smaller impacts. Younger mafic-bearing plains that partially cover the basin floor and surrounding intercrater areas were likely emplaced by later volcanism.

  8. On Huygens' principle for Dirac operators associated to electromagnetic fields

    Directory of Open Access Journals (Sweden)

    CHALUB FABIO A.C.C.

    2001-01-01

    Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.

  9. Generalized Huygens principle with pulsed-beam wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Thorkild [Seknion Inc., Boston, MA (United States); Kaiser, Gerald [Signals and Waves, Austin, TX (United States)], E-mail: thorkild.hansen@att.net, E-mail: kaiser@wavelets.com

    2009-11-27

    Huygens' geometric construction explaining wave motion has a well-known problem with unphysical back-propagation due to the spherical nature of the secondary wavelets. We solve this by analytically continuing the surface of integration. If the surface is a sphere S{sub R} of radius R, this is done by complexifying R to {alpha} = R + ia. The resulting complex sphere S{sub {alpha}} is shown to be equivalent to the real tangent disk bundle with base S{sub R} consisting of all disks with radius a tangent to S{sub R}. Huygens' secondary source points are thus replaced by disks, and his secondary wavelets by well-focused pulsed beams propagating outward. This solves the back-propagation problem. The generalized Huygens principle is a completeness relation for these pulsed-beam wavelets enabling a pulsed-beam representation of all radiation fields. Furthermore, this yields a natural and extremely efficient way to compute radiation fields numerically because all pulsed beams missing a given observer can be ignored with minimal error. Increasing the disk radius a sharpens the focus of the pulsed beams, which in turn raises the compression ratio of the representation.

  10. Lenses and waves Christiaan Huygens and the mathematical science of optics in the seventeenth century

    CERN Document Server

    Dijksterhuis, Fokko Jan

    2004-01-01

    In 1690, Christiaan Huygens (1629-1695) published Traité de la Lumière, containing his renowned wave theory of light. It is considered a landmark in seventeenth-century science, for the way Huygens mathematized the corpuscular nature of light and his probabilistic conception of natural knowledge. This book discusses the development of Huygens' wave theory, reconstructing the winding road that eventually led to Traité de la Lumière. For the first time, the full range of manuscript sources is taken into account. In addition, the development of Huygens' thinking on the nature of light is put in t

  11. Cassini-Huygens Ion Neutral Mass Spectrometer and the Future

    Science.gov (United States)

    Waite, J. Hunter

    2014-05-01

    The Cassini-Huygens Ion Neutral Mass Spectrometer (Cassini INMS) designed and built by Hasso Niemann has revolutionized our understanding of the Saturn system and demonstrated the importance of mass spectrometry as a tool for understanding formation, evolution, and chemical processes. In this talk that honors the accomplishments of Hasso I will discuss: 1) the major discoveries of INMS at Titan, Enceladus, and the other icy moons of Saturn, 2) the new perspective this has given us on understanding the formation and evolution of the outer solar system, and 3) the implications for future studies in the outer solar system using mass spectrometry.

  12. Lenses and Waves - Christiaan Huygens and the Mathematical Science of Optics in the Seventeenth Century

    NARCIS (Netherlands)

    Dijksterhuis, Fokko J.

    2004-01-01

    In 1690, Christiaan Huygens (1629-1695) published Traité de la Lumière, containing his renowned wave theory of light. It is considered a landmark in seventeenth-century science, for the way Huygens mathematized the corpuscular nature of light and his probabilistic conception of nature knowledge.

  13. Estimation of Radiation Limit from a Huygens' Box under Non-Free-Space Conditions

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Bonev, Ivan Bonev

    2013-01-01

    The recently studied Huygens' box method has difficulties when radiation of an electronic module is to be determined under non-free-space conditions, i.e. with an enclosure. We propose an estimate on radiation limit under such conditions based only on the Huygens' box data from free...

  14. Exact Finite-Difference Time-Domain Modelling of Broadband Huygens' Metasurfaces with Lorentz Dispersions

    CERN Document Server

    Smy, Tom J

    2016-01-01

    An explicit time-domain finite-difference technique for modelling zero-thickness Huygens' metasurfaces based on Generalized Sheet Transition Conditions (GSTCs), is proposed and demonstrated using full-wave simulations. The Huygens' metasurface is modelled using electric and magnetic surface susceptibilities, which are found to follow a double-Lorentz dispersion profile. To solve zero-thickness Huygens' metasurface problems for general broadband excitations, the double-Lorentz dispersion profile is combined with GSTCs, leading to a set of first-order differential fields equations in time-domain. Identifying the exact equivalence between Huygens' metasurfaces and coupled RLC oscillator circuits, the field equations are then subsequently solved using standard circuit modelling techniques based on a finite-difference formulation. Several examples including generalized refraction are shown to illustrate the temporal evolution of scattered fields from the Huygens' metasurface under plane-wave normal incidence, in b...

  15. Cassini Solstice Mission Maneuver Experience: Year One

    Science.gov (United States)

    Wagner, Sean V.; Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun; Stumpf, Paul W.; Valerino, Powtawche N.

    2011-01-01

    The Cassini-Huygens spacecraft began its four-year Prime Mission to study Saturn's system in July 2004. Two tour extensions followed: a two-year Equinox Mission beginning in July 2008 and a seven-year Solstice Mission starting in September 2010. This paper highlights Cassini maneuver activities from June 2010 through June 2011, covering the transition from the Equinox to Solstice Mission. This interval included 38 scheduled maneuvers, nine targeted Titan flybys, three targeted Enceladus flybys, and one close Rhea flyby. In addition, beyond the demanding nominal navigation schedule, numerous unforeseen challenges further complicated maneuver operations. These challenges will be discussed in detail.

  16. Discontinuous Electromagnetic Fields Using Huygens Sources For Wavefront Manipulation

    CERN Document Server

    Selvanayagam, Michael

    2013-01-01

    We introduce the idea of discontinuous electric and magnetic fields at a boundary to design and shape wavefronts in an arbitrary manner. To create this discontinuity in the field we use electric and magnetic currents which act like a Huygens source to radiate the desired wavefront. These currents can be synthesized either by an array of electric and magnetic dipoles or by a combined impedance and admittance surface. A dipole array is an active implementation to impose discontinuous fields while the impedance/admittance surface acts as a passive one. We then expand on our previous work showing how electric and magnetic dipole arrays can be used to cloak an object demonstrating two novel cloaking schemes. We also show how to arbitrarily refract a beam using a set of impedance and admittance surfaces. Refraction using the idea of discontinuous fields is shown to be a more general case of refraction using phase discontinuities.

  17. Strong terahertz absorption in all-dielectric Huygens' metasurfaces.

    Science.gov (United States)

    Cole, Michael A; Powell, David A; Shadrivov, Ilya V

    2016-09-19

    We propose an all dielectric metamaterial that acts as a perfect terahertz absorber without a ground plane. The unit cell consists of a dielectric cylinder embedded in a low index material. In order to achieve near-perfect terahertz absorption (99.5%) we employ impedance matching of the electric and magnetic resonances within the cylinders of the Huygens' metasurface. The impedance matching is controlled by changing the aspect ratio between the height and diameter of the cylinder. We show that the absorption resonance can be tuned to particular frequencies from 0.3 to 1.9 THz via changing the geometry of the structure while keeping a nearly constant aspect ratio of the cylinders.

  18. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    Science.gov (United States)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  19. An Optical Lightning Simulator in an Electrified Cloud-Resolving Model to Prepare the Future Space Lightning Missions

    Science.gov (United States)

    Bovalo, Christophe; Defer, Eric; Pinty, Jean-Pierre

    2016-04-01

    The future decade will see the launch of several space missions designed to monitor the total lightning activity. Among these missions, the American (Geostationary Lightning Mapper - GLM) and European (Lightning Imager - LI) optical detectors will be onboard geostationary satellites (GOES-R and MTG, respectively). For the first time, the total lightning activity will be monitored over the full Earth disk and at a very high temporal resolution (2 and 1 ms, respectively). Missions like the French Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) and ISS-LIS will bring complementary information in order to better understand the lightning physics and to improve the weather prediction (nowcasting and forecasting). Such missions will generate a huge volume of new and original observations for the scientific community and weather prediction centers that have to be prepared. Moreover, before the launch of these missions, fundamental questions regarding the interpretation of the optical signal property and its relation to cloud optical thickness and lightning discharge processes need to be further investigated. An innovative approach proposed here is to use the synergy existing in the French MesoNH Cloud-Resolving Model (CRM). Indeed, MesoNH is one of the only CRM able to simulate the lifecycle of electrical charges generated within clouds through non-inductive charging process (dependent of the 1-moment microphysical scheme). The lightning flash geometry is based on a fractal law while the electrical field is diagnosed thanks to the Gauss' law. The lightning optical simulator is linked to the electrical scheme as the lightning radiance at 777.4 nm is a function of the lightning current, approximated by the charges neutralized along the lightning path. Another important part is the scattering of this signal by the hydrometeors (mainly ice particles) that is taken into account. Simulations at 1-km resolution are done over the Langmuir Laboratory (New

  20. Chiral Huygens metasurfaces for nonlinear structuring of linearly polarized light

    CERN Document Server

    Lesina, A Calà; Ramunno, L

    2016-01-01

    We report on a chiral nanostructure, which we term a "butterfly nanoantenna," that, when used in a metasurface, allows the direct conversion of a linearly polarized beam into a nonlinear optical far-field of arbitrary complexity. The butterfly nanoantenna exhibits field enhancement in its gap for every incident linear polarization, which can be exploited to drive nonlinear optical emitters within the gap, for the structuring of light within a frequency range not accessible by linear plasmonics. As the polarization, phase and amplitude of the field in the gap are highly controlled, nonlinear emitters within the gap behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged on a surface to produce a highly structured far-field nonlinear optical beam with high purity. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance comp...

  1. TandEM: Titan and Enceladus mission

    Science.gov (United States)

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C.D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa,

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfi??re) and possibly several landing probes to be delivered through the atmosphere. ?? Springer Science + Business Media B.V. 2008.

  2. Efficient polarization insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms

    CERN Document Server

    Chong, Katie E; Staude, Isabelle; James, Anthony; Dominguez, Jason; Liu, Sheng; Subramania, Ganapathi S; Decker, Manuel; Neshev, Dragomir N; Brener, Igal; Kivshar, Yuri S

    2016-01-01

    Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens' metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a polarization insensitive holographic Huygens' metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecom wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens' metasurfaces based on resonant dielectric meta-atoms are a big step towards practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultra-thin optics, security and data storage devices.

  3. On the Huygens principle for bianisotropic mediums with symmetric permittivity and permeability dyadics

    Science.gov (United States)

    Faryad, Muhammad; Lakhtakia, Akhlesh

    2017-02-01

    Mathematical statements of the Huygens principle relate the electric and magnetic field phasors at an arbitrary location in a source-free region enclosed by a surface to the tangential components of the electric and magnetic field phasors over that surface, via the dyadic Green functions applicable to the linear homogeneous medium occupying that region. We have mathematically formulated the Huygens principle for the electric and magnetic field phasors when the permittivity and permeability dyadics of the medium are symmetric, the symmetric parts of the two magnetoelectric dyadics of the medium are negative of each other, and both magnetoelectric dyadics also contain anti-symmetric terms. We have also formulated the Huygens principle for the electric (resp. magnetic) field phasor in a medium whose permittivity (resp. permeability) is scalar, the permeability (resp. permittivity) is symmetric, the symmetric parts of the two magnetoelectric dyadics reduce to dissimilar scalars, and anti-symmetric parts of the two magnetoelectric dyadics are identical.

  4. High-efficiency light-wave control with all-dielectric optical Huygens' metasurfaces

    CERN Document Server

    Decker, Manuel; Falkner, Matthias; Dominguez, Jason; Neshev, Dragomir N; Brener, Igal; Pertsch, Thomas; Kivshar, Yuri S

    2014-01-01

    Optical metasurfaces have developed as a breakthrough concept for advanced wave-front engineering enabled by subwavelength resonant nanostructures. However, reflection and/or absorption losses as well as low polarisation-conversion efficiencies pose a fundamental obstacle for achieving high transmission efficiencies that are required for practical applications. Here we demonstrate, for the first time to our knowledge, highly efficient all-dielectric metasurfaces for near-infrared frequencies using arrays of silicon nanodisks as meta-atoms. We employ the main features of Huygens' sources, namely spectrally overlapping electric and magnetic dipole resonances of equal strength, to demonstrate Huygens' metasurfaces with a full transmission-phase coverage of 360 degrees and near-unity transmission, and we confirm experimentally full phase coverage combined with high efficiency in transmission. Based on these key properties, we show that all-dielectric Huygens' metasurfaces could become a new paradigm for flat opti...

  5. Huygens' principle, the free Schrodinger particle and the quantum anti-centrifugal force

    DEFF Research Database (Denmark)

    Cirone, M.A.; Dahl, Jens Peder; Fedorov, M.

    2002-01-01

    Huygens' principle following from the d'Alembert wave equation is not valid in two-dimensional space. A Schrodinger particle of vanishing angular momentum moving freely in two dimensions experiences an attractive force-the quantum anti-centrifugal force-towards its centre. We connect these two...

  6. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    Science.gov (United States)

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  7. Influence of nearby obstacles on the feasibility of a Huygens box as a field source

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans;

    2012-01-01

    A method of substituting an electronic module with its Huygens box representation for the purpose of calculating the emitted field is discussed. It is pointed out that nearby obstacles may have harmful effect on the accuracy of such method. This is subsequently proven by performing finite-differe...

  8. Violation of the strong Huygen's principle and timelike signals from the early universe.

    Science.gov (United States)

    Blasco, Ana; Garay, Luis J; Martín-Benito, Mercedes; Martín-Martínez, Eduardo

    2015-04-10

    We analyze the implications of the violations of the strong Huygen's principle in the transmission of information from the early Universe to the current era via massless fields. We show that much more information reaches us through timelike channels (not mediated by real photons) than is carried by rays of light, which are usually regarded as the only carriers of information.

  9. Huygens' principle, the free Schrodinger particle and the quantum anti-centrifugal force

    DEFF Research Database (Denmark)

    Cirone, M.A.; Dahl, Jens Peder; Fedorov, M.

    2002-01-01

    Huygens' principle following from the d'Alembert wave equation is not valid in two-dimensional space. A Schrodinger particle of vanishing angular momentum moving freely in two dimensions experiences an attractive force-the quantum anti-centrifugal force-towards its centre. We connect these two ph...

  10. Implications of internal processes in the interpretation of Titan's volatile inventory measured by Cassini-Huygens

    Science.gov (United States)

    Tobie, Gabriel; Gautier, D.; Hersant, F.; Lunine, J. I.

    2010-04-01

    Based on a series of data collected by Cassini-Huygens, we constrain the composition of the primordial bricks that formed Titan and quantify the chemical exchanges that occurred on Titan between the interior and the atmosphere since its accretion. Assuming that the bricks that formed Titan had a composition close to that of Enceladus and that of the planetesimals in the feeding zone of Saturn, we show that accretional melting generate an CH4-CO2-H2S - dominated atmosphere of more than 10 bars in equilibrium with a water ocean. The partial atmospheric pressure of ammonia remains low (ammonia into nitrogen is possible just after accretion but requires the water ocean remains in contact with the atmosphere during at least 10-50 millions of years. We show that most of the gas species, except N2 and 36Ar, released during accretion are likely to be re-incorporated in the interior during the post-accretional cooling phase, owing to efficient clathration at the water/ocean interface. During this process, xenon is predicted to be almost entirely removed from the primitive atmosphere and to be stored in the form of clathrate hydrate in the interior. The composition of gases released during the rest of the evolution is determined by the stability of each gas species relative to the clathrate phase and is expected to be dominated by CH4 and CO2, and to contain small amounts of argon and CO. It can be anticipated from our analysis that flows and deposits of CO2-rich materials would be associated to cryovolcanic events. Although the detection of 40Ar clearly support that interaction with the silicate phase has occurred during Titan's history, it is still unclear if significant chemical exchanges has occurred with the rocky core. Only detection of 38Ar and of the other noble gas isotopes by a future mission will permit to determine how the silicate phase has contributed to the volatile budget of Titan. Isotopic ratios in the surface materials (H2O, CO2 ice, organic matters, gas

  11. Preparing to return to the Moon: Lessons from science-driven analogue missions to the Mistastin Lake impact structure, Canada, a unique lunar analogue site

    Science.gov (United States)

    Osinski, G. R.; Barfoot, T.; Chanou, A.; Daly, M. G.; Francis, R.; Hodges, K. V.; Jolliff, B. L.; Mader, M. M.; McCullough, E. M.; Moores, J. E.; Pickersgill, A.; Pontefract, A.; Preston, L.; Shankar, B.; Singleton, A.; Sylvester, P.; Tornabene, L. L.; Young, K. E.

    2013-12-01

    Impact cratering is the dominant geological process on the Moon, Near Earth Asteroids (NEAs) and the moons of Mars - the objectives for the new Solar System Exploration Research Virtual Institute (SSERVI). Led by members of the Canadian Lunar Research Network (CLRN), funded by the Canadian Space Agency, and with participants from the U.S., we carried out a series of analogue missions on Earth in order to prepare and train for future potential robotic and human sample return missions. Critically, these analogue missions were driven by the paradigm that operational and technical objectives are conducted while conducting new science and addressing real overarching scientific objectives. An overarching operational goal was to assess the utility of a robotic field reconnaissance mission as a precursor to a human sortie sample return mission. Here, we focus on the results and lessons learned from a robotic precursor mission and follow on human-robotic mission to the Mistastin Lake impact structure in Labrador, northern Canada (55°53'N; 63°18'W). The Mistastin structure was chosen because it represents an exceptional analogue for lunar craters. This site includes both an anorthositic target, a central uplift, well-preserved impact melt rocks - mostly derived from melting anorthosite - and is (or was) relatively unexplored. This crater formed ~36 million years ago and has a diameter of ~28 km. The scientific goals for these analogue missions were to further our understanding of impact chronology, shock processes, impact ejecta and potential resources within impact craters. By combining these goals in an analogue mission campaign key scientific requirements for a robotic precursor were determined. From the outset, these analogue missions were formulated and executed like an actual space mission. Sites of interest were chosen using remote sensing imagery without a priori knowledge of the site through a rigorous site selection process. The first deployment occurred in

  12. Possible Niches For Extant Life On Titan In Light Of The First Six Years Of Cassini/Huygens Results

    Science.gov (United States)

    Grinspoon, David H.; Schulze-Makuch, D.

    2010-10-01

    At the 2005 DPS meeting we presented an assessment of the possibility of extant life on Titan after the first year of the Cassini mission at Saturn. We suggested then that hydrogenation of photochemically produced acetylene could provide metabolic energy for near-surface organisms and also replenish atmospheric methane (Schulze-Makuch and Grinspoon, 2005). In this talk we will offer a brief reassessment of the possibility of extant life in light of five more years of the Cassini/Huygens results, including the recent reports suggesting a lack of acetylene on the surface (Clark et al., 2010) and a possible sink of H2 at the surface (Strobel, 2010). Both results are consistent with earlier predictions for the existence of an acetylene-powered biosphere on Titan (Schulze-Makuch and Grinspoon, 2005; McKay and Smith, 2005), but can potentially be explained by more prosaic phenomena. D. Schulze-Makuch and D. H. Grinspoon(2005), Biologically Enhanced Energy and Carbon Cycling on Titan? Astrobiology 5, 560-567; Clarke, R.N. et al. (2020), Detection and Mapping of Hydrocarbon Deposits on Titan, JGR-Planets; Strobel, D.F(2010) Molecular hydrogen in Titan's atmosphere: Implications of the measured tropospheric and thermospheric mole fractions. Icarus; McKay, C.P., Smith, H.D.( 2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178, 274-276.

  13. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

    NARCIS (Netherlands)

    Ehrenfreund, P.; Röling, W.F.M.; Thiel, C.S.; Quinn, R.; Sephton, M.A.; Stoker, C.; Kotler, J.M.; Direito, S.O.L.; Martins, Z.; Orzechowska, G.E.; Kidd, R.D.; Van Sluis, C.A.; Foing, B.H.

    2011-01-01

    Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expec

  14. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

    NARCIS (Netherlands)

    Ehrenfreund, P.; Röling, W.F.M.; Thiel, C.S.; Quinn, R.; Sephton, M.A.; Stoker, C.; Kotler, J.M.; Direito, S.O.L.; Martins, Z.; Orzechowska, G.E.; Kidd, R.D.; Van Sluis, C.A.; Foing, B.H.

    2011-01-01

    Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and

  15. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

    NARCIS (Netherlands)

    Ehrenfreund, P.; Röling, W.F.M.; Thiel, C.S.; Quinn, R.; Sephton, M.A.; Stoker, C.; Kotler, J.M.; Direito, S.O.L.; Martins, Z.; Orzechowska, G.E.; Kidd, R.D.; Van Sluis, C.A.; Foing, B.H.

    2011-01-01

    Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expec

  16. Titan's meridional wind profile and Huygens' orientation and swing inferred from the geometry of DISR imaging

    Science.gov (United States)

    Karkoschka, Erich

    2016-05-01

    The altitude and zonal motion of the Huygens probe descending through Titan's atmosphere was determined early under the assumption of no meridional motion (Bird et al. [2005]. Nature 438, 800-802). By comparing images taken during the descent, Karkoschka et al. (Karkoschka et al. [2007]. Planet. Space Sci. 55, 1895-1935) determined the meridional motion of Huygens, which was generally much smaller than its zonal motion. Here, we present a comprehensive geometrical analysis of all images taken during the descent that is four times more accurate than the previous study. The result is a meridional wind profile across Titan's troposphere with northward winds by up to 0.4 m/s with an average of 0.1 m/s above 1 km altitude, and southward winds below, peaking at 0.9 m/s near 0.4 km altitude. The imaging data extend down to 0.22 km altitude, although additional information came from the horizontal impact speed near 0.8 m/s southward (Schröder et al. [2012]. Planet. Space Sci. 73, 327-340). There is a region between 5 and 8 km altitude with no significant meridional wind. In the stratosphere, the average meridional wind was 1.2 ± 1.5 m/s northward, and zero meridional motion is possible down to 15 km altitude. We present the difference between the zonal speeds of Huygens and the wind that was ignored in previous publications and amounts to up to 7 m/s. We determined the three rotational angles of Huygens for the times of each exposure that showed surface features. During 26 exposures, the swing speed of Huygens was fast enough to smear images. Inferred swing speeds were up to 20°/s during the calm phase of the descent, consistent with up to 40°/s swings reported before during the rough phase. The improved geometric calibration of images allowed identification of many features also seen in Cassini radar images. This comparison yields the location of the Huygens LandingSite as 192.34 ± 02° West and 10.47 ± 0.02° South.

  17. O tratado sobre a luz de Huygens: comentários

    OpenAIRE

    Krapas, Sonia; Departamento de Física – UFF Niterói – RJ; Queiroz, Glória Regina Pessôa Campello; Instituto de Física - UERJ Rio de Janeiro – RJ; Uzêda, Diego; Instituto de Ciências e Tecnologia Maria Thereza – FAMATh Niterói – RJ

    2011-01-01

    http://dx.doi.org/10.5007/2175-7941.2011v28n1p123Huygens é conhecido no ensino introdutório de Física por dar conta da refração segundo um modelo ondulatório. Livros didáticos lhe rendem homenagens atribuindo seu nome a um princípio, mas em sua obra máxima, Tratado sobre a luz, é possível se ver muito mais: sua inventividade na defesa de um modelo ondulatório para a luz como alternativo ao modelo corpuscular. Neste trabalho, tenta-se evidenciar o raciocínio de Huygens, mostrando que, apesar d...

  18. Highly-efficient all-dielectric Huygens' surface holograms (Conference Presentation)

    Science.gov (United States)

    Chong, Katie; Wang, Lei; Staude, Isabelle; James, Anthony; Dominguez, Jason; Subramania, Ganapathi; Liu, Sheng; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal; Kivshar, Yuri S.

    2016-04-01

    Optical metasurfaces have developed as a breakthrough concept for advanced wave-front. Key to these "designer metasurfaces"[1] is that they provide full 360 degree phase coverage and that their local phase can be precisely controlled. The local control of phase, amplitude and polarization on an optically thin plane will lead to a new class of flat optical components in the areas of integrated optics, flat displays, energy harvesting and mid-infrared photonics, with increased performance and functionality. However, reflection and/or absorption losses as well as low polarization-conversion efficiencies pose a fundamental obstacle for achieving high transmission efficiencies that are required for practical applications. A promising way to overcome these limitations is the use of metamaterial Huygens' surfaces [2-4], i.e., reflection-less surfaces that can also provide full 360 degree phase coverage in transmission. Plasmonic implementations of Huygens' surfaces for microwave [2] and the mid-infrared spectral range [3], where the intrinsic losses of the metals are negligible, have been suggested, however, these designs cannot be transferred to near-infrared or even visible frequencies because of the high dissipative losses of plasmonic structures at optical frequencies. Here, we demonstrate the first holographic metasurface utilizing the concept of all-dielectric Huygens' surfaces thereby achieving record transmission efficiencies of approximately 82% at 1477nm wavelength. Our low-loss Huygens' surface is realized by two-dimensional subwavelength arrays of loss-less silicon nanodisks with both electric and magnetic dipole resonances [4]. By controlling the intrinsic properties of the resonances, i.e. their relative electric and magnetic polarizabilities, quality factors and spectral position, we can design silicon nanodisks to behave as near-ideal Huygens' particles. This allows us to realize all-dielectric Huygens' surfaces providing full 360 degree phase coverage

  19. A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations

    Science.gov (United States)

    2015-08-01

    critical geometrical details; re- casting the FDTD update equations on a grid conformal to a curvilinear coordinate system (e.g., cylindrical); and...Imaging System Simulations by Traian Dogaru and DaHan Liao Approved for public release; distribution unlimited...A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations by Traian Dogaru and DaHan Liao Sensors

  20. Huygens-Fresnel principle for N-photon states of light

    OpenAIRE

    2010-01-01

    We show that the propagation of a N-photon field in space and time can be described by a generalized Huygens-Fresnel integral. Using two examples, we then demonstrate how familiar Fourier optics techniques applied to a N-photon wave function can be used to engineer the propagation of entanglement and to design the way the detection of one photon shapes the state of the others.

  1. Learning from concurrent Lightning Imaging Sensor and Lightning Mapping Array observations in preparation for the MTG-LI mission

    Science.gov (United States)

    Defer, Eric; Bovalo, Christophe; Coquillat, Sylvain; Pinty, Jean-Pierre; Farges, Thomas; Krehbiel, Paul; Rison, William

    2016-04-01

    The upcoming decade will see the deployment and the operation of French, European and American space-based missions dedicated to the detection and the characterization of the lightning activity on Earth. For instance the Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) mission, with an expected launch in 2018, is a CNES mission dedicated to the study of impulsive energy transfers between the atmosphere of the Earth and the space environment. It will carry a package of Micro Cameras and Photometers (MCP) to detect and locate lightning flashes and triggered Transient Luminous Events (TLEs). At the European level, the Meteosat Third Generation Imager (MTG-I) satellites will carry in 2019 the Lightning Imager (LI) aimed at detecting and locating the lightning activity over almost the full disk of Earth as usually observed with Meteosat geostationary infrared/visible imagers. The American community plans to operate a similar instrument on the GOES-R mission for an effective operation in early 2016. In addition NASA will install in 2016 on the International Space Station the spare version of the Lightning Imaging Sensor (LIS) that has proved its capability to optically detect the tropical lightning activity from the Tropical Rainfall Measuring Mission (TRMM) spacecraft. We will present concurrent observations recorded by the optical space-borne Lightning Imaging Sensor (LIS) and the ground-based Very High Frequency (VHF) Lightning Mapping Array (LMA) for different types of lightning flashes. The properties of the cloud environment will also be considered in the analysis thanks to coincident observations of the different TRMM cloud sensors. The characteristics of the optical signal will be discussed according to the nature of the parent flash components and the cloud properties. This study should provide some insights not only on the expected optical signal that will be recorded by LI, but also on the definition of the validation strategy of LI, and

  2. Optical properties of Titan's aerosols: comparison between DISR/Huygens observations and VIMS/Cassini solar occultation observations

    Science.gov (United States)

    Marmuse, Florian; Sotin, Christophe; Lawrence, Kenneth J.; Brown, Robert H.; Baines, Kevin; Buratti, Bonnie; Clark, Roger Nelson; Nicholson, Philip D.

    2016-10-01

    Titan, the only satellite with a dense atmosphere, presents a hydrocarbon cycle that includes the formation and sedimentation of organic aerosols. The optical properties of Titan's haze inferred from measurement of the Huygens probe were recently revisited by Doose et al. (Icarus, 2016). The present study uses the solar occultation observations in equatorial regions of Titan that have been acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft to infer similar information in a broader wavelength range. Preliminary studies have proven the interest of those solar occultation data in the seven atmospheric windows to constrain the aerosol number density, but could not directly compare with the Descent Imager and Spectral Radiometer (DISR) data because models predict that the density profile vary with latitude. The present study compares the DISR measurements of aerosol extinction coefficients and the solar occultation data acquired by the VIMS instrument onboard Cassini. These sets of data differ in their acquisition method and time, spectral range, and altitude: the DISR measurements have been taken in 2005, along a vertical line of sight, in the visible spectral range (490-950nm) and under 140km of altitude. The relevant solar occultation data at equator have been acquired in 2009, along a horizontal line of sight, in the IR range (0.9-5.1µm), with sun light scanning all altitudes for a long enough wavelength, namely in the five-micron atmospheric window. These sets of data have been analyzed previously, separately and using different models. Here, we present a cross analysis of these sets of data, that allows us to test the different models describing the density profile of aerosols. In addition to providing wavelength dependence of the extinction coefficient, the comparison allows us to assess the impact of refraction in Titan's atmosphere. It also provides optical depth and scattering properties that are crucial information

  3. Low cost test bed tool development for validation of mission control events

    Science.gov (United States)

    Montanez, L.; Cervantes, D.; Tatge, L.

    2003-01-01

    The Cassini Program is one of the last large interplanetary spacecraft missions. It is a joint effort between the European Space Agency, the Italian Space Agency and NASA.The U.S. portion of the mission is managed for NASA by the Jet Propulsion Laboratory (JPL). The primary mission is to survey the complex Saturnian system and release the ESA-Huygens probe at Titan. The success of the Cassini Mission has been largely due its many simulation test beds and its rigorous test program.

  4. Preparation

    Directory of Open Access Journals (Sweden)

    M.M. Dardir

    2014-03-01

    Full Text Available Some hexanamide-mono and di-linoleniate esters were prepared by the reaction of linolenic acid and hexanamide (derived from the reaction of hexanoic acid and diethanolamine. The chemical structure for the newly prepared hexanamide-mono and di-linoleniate esters were elucidated using elemental analysis, (FTIR, H 1NMR and chemical ionization mass spectra (CI/Ms spectroscopic techniques. The results of the spectroscopic analysis indicated that they were prepared through the right method and they have high purity. The new prepared esters have high biodegradability and lower toxicity (environmentally friendly so they were evaluated as a synthetic-based mud (ester-based mud for oil-well drilling fluids. The evaluation included study of the rheological properties, filtration and thermal properties of the ester based-muds formulated with the newly prepared esters compared to the reference commercial synthetic-based mud.

  5. Optical Properties of (162173) 1999 JU3: In Preparation for the JAXA Hayabusa 2 Sample Return Mission

    CERN Document Server

    Ishiguro, Masateru; Hasegawa, Sunao; Kim, Myung-Jin; Choi, Young-Jun; Moskovitz, Nicholas; Abe, Shinsuke; Pan, Kang-Sian; Takahashi, Jun; Takagi, Yuhei; Arai, Akira; Tokimasa, Noritaka; Hsieh, Henry H; Thomas-Osip, Joanna E; Osip, David J; Abe, Masanao; Yoshikawa, Makoto; Urakawa, Seitaro; Hanayama, Hidekazu; Sekiguchi, Tomohiko; Wada, Kohei; Sumi, Takahiro; Tristram, Paul J; Furusawa, Kei; Abe, Fumio; Fukui, Akihiko; Nagayama, Takahiro; Warjurkar, Dhanraj S; Rau, Arne; Greiner, Jochen; Schady, Patricia; Knust, Fabian; Usui, Fumihiko; Mueller, Thomas G

    2014-01-01

    We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the international Astronomical Union's H-G formalism but found that it fits less well using a single set of parameters. To improve the inadequate fit, we employed two photometric functions, the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (alpha = 5-75 deg) and shows weak nonlinear opposition brightening at alpha< 5 deg, providing a more reliable absolute magnitude of Hv = 19.25 +- 0.03. The phase slope (0.039 +- 0.001 mag/deg) and opposition effect amplitude (parameterized by the ratio of intensity at alpha=0.3 deg to that at alpha=5 deg, I(0.3)/I(5)=1.31+-0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance ...

  6. Evaluation of regional-scale water level simulations using various river routing schemes within a hydrometeorological modelling framework for the preparation of the SWOT mission

    Science.gov (United States)

    Häfliger, V.; Martin, E.; Boone, A. A.; Habets, F.; David, C. H.; Garambois, P. A.; Roux, H.; Ricci, S. M.; Thévenin, A.; Berthon, L.; Biancamaria, S.

    2014-12-01

    The ability of a regional hydrometeorological model to simulate water depth is assessed in order to prepare for the SWOT (Surface Water and Ocean Topography) mission that will observe free surface water elevations for rivers having a width larger than 50/100 m. The Garonne river (56 000 km2, in south-western France) has been selected owing to the availability of operational gauges, and the fact that different modeling platforms, the hydrometeorological model SAFRAN-ISBA-MODCOU and several fine scale hydraulic models, have been extensively evaluated over two reaches of the river. Several routing schemes, ranging from the simple Muskingum method to time-variable parameter kinematic and diffusive waves schemes with time varying parameters, are tested using predetermined hydraulic parameters. The results show that the variable flow velocity scheme is advantageous for discharge computations when compared to the original Muskingum routing method. Additionally, comparisons between water level computations and in situ observations led to root mean square errors of 50-60 cm for the improved Muskingum method and 40-50 cm for the kinematic-diffusive wave method, in the downstream Garonne river. The error is larger than the anticipated SWOT resolution, showing the potential of the mission to improve knowledge of the continental water cycle. Discharge computations are also shown to be comparable to those obtained with high-resolution hydraulic models over two reaches. However, due to the high variability of river parameters (e.g. slope and river width), a robust averaging method is needed to compare the hydraulic model outputs and the regional model. Sensitivity tests are finally performed in order to have a better understanding of the mechanisms which control the key hydrological processes. The results give valuable information about the linearity, Gaussianity and symetry of the model, in order to prepare the assimilation of river heights in the model.

  7. Reflection formulae for ray tracing in uniaxial anisotropic media using Huygens's principle.

    Science.gov (United States)

    Alemán-Castañeda, Luis A; Rosete-Aguilar, Martha

    2016-11-01

    Ray tracing in uniaxial anisotropic materials is important because they are widely used for instrumentation, liquid-crystal displays, laser cavities, and quantum experiments. There are previous works regarding ray tracing refraction and reflection formulae using the common electromagnetic theory approach, but only the refraction formulae have been deduced using Huygens's principle. In this paper we obtain the reflection expressions using this unconventional approach with a specific coordinate system in which both refraction and reflection formulae are simplified as well as their deduction. We compute some numerical examples to compare them with the common expressions obtained using electromagnetic theory.

  8. Huygens' principle and radiation tails in a weak Schwarzschild fields

    Energy Technology Data Exchange (ETDEWEB)

    Piir, I. (Tartuskij Gosudarstvennyj Univ. (USSR))

    1983-01-01

    In approximation of a weak gravitational field the formula generalized Poisson formula for the wave equation is derived and the mechanism of tail aprearance of radial waves is discussed. It is shown that if the initial data of the Cauchy problem differ from zero in the two-connnected region of the initial hypersurface embracing by its internal boundary the Schwarzchild singularity there always arises the radiation tail through a linear approximation of the Huygens principle realized everywhere in a flat space-time.

  9. Gravitational waves in Friedman-Lemaitre-Robertson-Walker cosmology, material perturbations and the Huygens principle

    CERN Document Server

    Kulczycki, Wojciech

    2016-01-01

    We analyze propagation equations for the polar modes of gravitational waves in cosmological space-times. We prove that polar gravitational waves must perturb --- unlike axial modes --- the material content of the Friedman-Lemaitre-Robertson-Walker spacetimes. The whole gravitational dynamics reduces to the single "master equation" that has the same form as for axial modes. That allows us to conclude that the status of the Huygens principle is the same for axial and gravitational waves. In particular, this principle is valid exactly in radiation spacetimes with the vanishing cosmological constant, and it is broken otherwise.

  10. Optical properties of (162173) 1999 JU3: in preparation for the JAXA Hayabusa 2 sample return mission

    Energy Technology Data Exchange (ETDEWEB)

    Ishiguro, Masateru [Department of Physics and Astronomy, Seoul National University, Gwanak, Seoul 151-742 (Korea, Republic of); Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Asakuchi, Okayama 719-0232 (Japan); Hasegawa, Sunao; Abe, Masanao; Yoshikawa, Makoto [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Kim, Myung-Jin [Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Choi, Young-Jun [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Moskovitz, Nicholas [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Abe, Shinsuke [Department of Aerospace Engineering, Nihon University, 7-24-1 Narashinodai Funabashi, Chiba 274-8501 (Japan); Pan, Kang-Sian [Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 32001, Taiwan (China); Takahashi, Jun; Takagi, Yuhei; Arai, Akira [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, Sayo, Hyogo 679-5313 (Japan); Tokimasa, Noritaka [Sayo Town Office, 2611-1 Sayo, Sayo-cho, Sayo, Hyogo 679-5380 (Japan); Hsieh, Henry H. [Academia Sinica Institute of Astronomy and Astrophysics, Roosevelt Road, Taipei 10617, Taiwan (China); Thomas-Osip, Joanna E.; Osip, David J. [The Observatories of the Carnegie Institute of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601, La Serena (Chile); Urakawa, Seitaro [Bisei Spaceguard Center, Japan Spaceguard Association, 1716-3 Okura, Bisei-cho, Ibara, Okayama 714-1411 (Japan); Hanayama, Hidekazu [Ishigakijima Astronomical Observatory, National Astronomical Observatory of Japan, 1024-1 Arakawa, Ishigaki, Okinawa 907-0024 (Japan); Sekiguchi, Tomohiko [Department of Teacher Training, Hokkaido University of Education, 9 Hokumon, Asahikawa 070-8621 (Japan); and others

    2014-09-01

    We investigated the magnitude-phase relation of (162173) 1999 JU3, a target asteroid for the JAXA Hayabusa 2 sample return mission. We initially employed the International Astronomical Union's H-G formalism but found that it fits less well using a single set of parameters. To improve the inadequate fit, we employed two photometric functions: the Shevchenko and Hapke functions. With the Shevchenko function, we found that the magnitude-phase relation exhibits linear behavior in a wide phase angle range (α = 5°-75°) and shows weak nonlinear opposition brightening at α < 5°, providing a more reliable absolute magnitude of H {sub V} = 19.25 ± 0.03. The phase slope (0.039 ± 0.001 mag deg{sup –1}) and opposition effect amplitude (parameterized by the ratio of intensity at α = 0.°3 to that at α = 5°, I(0.°3)/I(5°) = 1.31 ± 0.05) are consistent with those of typical C-type asteroids. We also attempted to determine the parameters for the Hapke model, which are applicable for constructing the surface reflectance map with the Hayabusa 2 onboard cameras. Although we could not constrain the full set of Hapke parameters, we obtained possible values, w = 0.041, g = –0.38, B {sub 0} = 1.43, and h = 0.050, assuming a surface roughness parameter θ-bar = 20°. By combining our photometric study with a thermal model of the asteroid, we obtained a geometric albedo of p {sub v} = 0.047 ± 0.003, phase integral q = 0.32 ± 0.03, and Bond albedo A {sub B} = 0.014 ± 0.002, which are commensurate with the values for common C-type asteroids.

  11. Photochemical enrichment of deuterium in Titan's atmosphere: new insights from Cassini-Huygens

    CERN Document Server

    Cordier, D; Lunine, I J; Moudens, A; Vuitton, V

    2008-01-01

    Cassini-Huygens data are used to re-examine the potential sources of the D/H enhancement over solar, measured in methane, in Titan's atmosphere. Assuming that the system is closed with respect to carbon, the use of constraints from the Huygens probe for the determination of the current mass of atmospheric methane and the most up-to-date determination of D/H from Cassini/CIRS infrared spectra allow us to show that photochemical enrichment of deuterium is not sufficient to be the sole mechanism yielding the measured D/H value. A possible fractionation between CH3D and CH4 during the escape process may slightly enhance the deuterium enrichment, but is not sufficient to explain the observed D/H value over the range of escape values proposed in the literature. Hence, alternative mechanisms such as a primordial deuterium enrichment must be combined with the photochemical enrichment in Titan's atmosphere in order to explain its current D/H value.

  12. Astronaut Judith Resnik in the Shuttle mission simulator

    Science.gov (United States)

    1984-01-01

    Astronaut Judith A. Resnik, 41-D mission specialist, prepares to climb some steps leading to the flight deck portion of JSC's Shuttle mission simulator (SMS) in preparation for training for her 41-D mission.

  13. VLBI experiment with the Huygens Probe during its descent in the atmosphere of Titan : An evidence for meridional wind

    NARCIS (Netherlands)

    Pogrebenko, Sergei; Gurvits, Leonid; Avruch, Ian; Cimo, Giuseppe; Team, Huygens VLBI Tracking

    Phase-referencing VLBI observations of the Huygens Probe were performed during its descent in the atmosphere of Titan on 14 January 2005 using a global network of 17 radio telescopes. The Probe's position in the Titanographic frame was determined with the accuracy of about 1 km relative to a priori

  14. A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data.

    Science.gov (United States)

    Petculescu, Andi; Achi, Peter

    2012-05-01

    Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.

  15. Sizes of the Smallest Particles at the Outer B Ring Edge, Huygens Ringlet, and Strange Ringlet

    Science.gov (United States)

    Eckert, Stephanie; Colwell, Josh E.; Becker, Tracy M.; Esposito, Larry W.

    2016-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS)'s High Speed Photometer (HSP) has observed stellar occultations of Saturn's rings that reveal ring structure at high resolution. We observe diffraction spikes at the sharp edges of some rings and ringlets where the observed signal exceeds the unocculted star signal, indicating that small particles are diffracting light into the detector. Becker et al. (2015 Icarus doi:10.1016/j.icarus.2015.11.001) analyzed data at the A ring edge and edges of the Encke gap. The smallest particle sizes were a few mm. We use the same technique to analyze the diffraction signal at the outer edge of the B ring and the edges of the so-called Strange ringlet near the outer edge of the Huygens Gap. While we see diffraction from sub-cm particles in the Strange Ringlet, detections from the wider Huygens Ringlet which resides in between the Strange Ringlet and the outer edge of the B ring are weaker and narrower, indicating a cutoff of the size distribution above 1 cm. At the outer edge of the B ring we find strong diffraction signals in 7 of 19 occultations for which the signal and geometry make the detection possible. The typical value of the smallest particle size (amin) is 4 mm and the derived slope of the power-law size distribution (q) is 2.9. The average amin is similar to the 4.5 mm average observed at the A ring outer edge while the q value is lower than the A ring outer edge value of 3.2. In the Strange Ringlet we find strong diffraction signals in 2 of 19 possible occultations for the outer edge and 1 of 17 possible occultations for the inner edge. The smallest particle size is ~5 mm and the derived slope of the power-law size distribution is 3.3. These values are similar to the average values at the A ring outer edge. The absence of a broad diffraction signal at the Huygens Ringlet suggests a different size distribution for that ring than for the Strange Ringlet and the outer several km of the B ring or perhaps less vigorous

  16. Cavity-excited Huygens' metasurface antennas: near-unity aperture efficiency from arbitrarily-large apertures

    CERN Document Server

    Epstein, Ariel; Eleftheriades, George V

    2015-01-01

    One of the long-standing problems in antenna engineering is the realization of highly-directive beams using low-profile devices. In this paper we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source cavity excitation is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectrum typical to standard partially-reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern. As shown, a single semianalytical formalism can be followed to achieve control of a variety of radiation features, such as the d...

  17. Passive Lossless Huygens Metasurfaces for Conversion of Arbitrary Source Field to Directive Radiation

    CERN Document Server

    Epstein, Ariel

    2014-01-01

    We present a semi-analytical formulation of the interaction between a given source field and a scalar Huygens metasurface (HMS), a recently introduced promising concept for wavefront manipulation based on a sheet of orthogonal electric and magnetic dipoles. Utilizing the equivalent surface impedance representation of these metasurfaces, we establish that an arbitrary source field can be converted into directive radiation via a passive lossless HMS if two physical conditions are met: local power conservation and local impedance equalization. Expressing the fields via their plane-wave spectrum and harnessing the slowly-varying envelope approximation we obtain semi-analytical formulae for the scattered fields, and prescribe the surface reactance required for the metasurface implementation. The resultant design procedure indicates that the local impedance equalization induces a Fresnel-like reflection, while local power conservation forms a radiating virtual aperture which follows the total excitation field magni...

  18. Dielectric Huygens' Metasurface for High-Efficiency Hologram Operating in Transmission Mode.

    Science.gov (United States)

    Zhao, Wenyu; Jiang, Huan; Liu, Bingyi; Song, Jie; Jiang, Yongyuan; Tang, Chengchun; Li, Junjie

    2016-01-01

    Conventional metasurface holograms relying on metal antennas for phase manipulation suffer from strong Ohmic loss and incomplete polarization conversion. The efficiency is limited to rather small values when operating in transmission mode. Here, we implement a high-efficiency transmissive metasurface hologram by leveraging the recently developed Huygens' metasurface to construct an electric and magnetic sheet with a transmission efficiency up to 86% and optical efficiency of 23.6%. The high-efficiency originates from the simultaneous excitations of the Mie-type electric and magnetic dipole resonances in the meta-atoms composed of silicon nanodisks. Our hologram shows high fidelity over a wide spectral range and promises to be an outstanding alternative for display applications.

  19. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  20. Structure and physical conditions in the Huygens region of the Orion nebula

    Science.gov (United States)

    O'Dell, C. R.; Ferland, G. J.; Peimbert, M.

    2017-02-01

    Hubble Space Telescope images, MUSE maps of emission lines, and an atlas of high velocity resolution emission-line spectra have been used to establish for the first time correlations of the electron temperature, electron density, radial velocity, turbulence, and orientation within the main ionization front of the nebula. From the study of the combined properties of multiple features, it is established that variations in the radial velocity are primarily caused by the photoevaporating ionization front being viewed at different angles. There is a progressive increase of the electron temperature and density with decreasing distance from the dominant ionizing star θ1 Ori C. The product of these characteristics (ne × Te) is the most relevant parameter in modelling a blister-type nebula like the Huygens region, where this quantity should vary with the surface brightness in Hα. Several lines of evidence indicate that small-scale structure and turbulence exist down to the level of our resolution of a few arcseconds. Although photoevaporative flow must contribute at some level to the well-known non-thermal broadening of the emission lines, comparison of quantitative predictions with the observed optical line widths indicates that it is not the major additive broadening component. Derivation of Te values for H+ from radio+optical and optical-only ionized hydrogen emission showed that this temperature is close to that derived from [N II] and that the transition from the well-known flat extinction curve which applies in the Huygens region to a more normal steep extinction curve occurs immediately outside of the Bright Bar feature of the nebula.

  1. New Results on Titan’s Atmosphere and Surface from Huygens Probe Measurements

    Science.gov (United States)

    Lorenz, Ralph

    2013-10-01

    The global Titan perspective afforded by ongoing Cassini observations, and prospects for future in-situ exploration, have prompted a re-examination of Huygens data, yielding new results in several areas. Gravity waves have been detected (Lorenz, Ferri and Young, submitted) in the HASI descent temperature data, with 2K amplitude. These waves are seen above about 60km, and analysis suggests they may therefore be controlled by interaction of upward-propagating waves with the zonal wind field. A curious cessation of detection of sound pulses by a Surface Science Package ultrasound instrument about 15 minutes after the probe landed appears to be best explained (Lorenz et al., submitted) by an accumulation of polyatomic vapors such as ethane, sweated out of the ground by the warm probe. Such gases have high acoustic attenuation, and were independently measured by the probe GCMS. A new integrated timeline product, which arranges second-by-second measurements from several Huygens sensors on a convenient, common tabulation, has been archived on the PDS Atmospheres node. Also archived is an independent retrieval of Doppler information from VLBI receivers that has a higher time resolution than the DWE archive product, and an expanded event summary product that documents when key observations, system events and anomalies occurred. Finally, a troubling discrepancy exists between radio occultation and infrared soundings from Cassini, and the lower stratospheric temperature retrieved from the HASI accelerometer record. Two factors may contribute to this discrepancy - the assumed probe mass history, and the assumed zonal wind profile. The sensitivity of the recovered temperature profile to these factors is examined : in particular it is noted that the speed relative to the atmosphere in the late part of entry, when the hypersonic entry speed has been largely bled away by drag, is particularly sensitive to assumed winds, and it is in this altitude region where the recovered density

  2. Gas mission; Mission gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This preliminary report analyses the desirable evolutions of gas transport tariffing and examines some questions relative to the opening of competition on the French gas market. The report is made of two documents: a synthesis of the previous report with some recommendations about the tariffing of gas transport, about the modalities of network access to third parties, and about the dissociation between transport and trade book-keeping activities. The second document is the progress report about the opening of the French gas market. The first part presents the European problem of competition in the gas supply and its consequences on the opening and operation of the French gas market. The second part presents some partial syntheses about each topic of the mission letter of the Ministry of Economics, Finances and Industry: future evolution of network access tariffs, critical analysis of contractual documents for gas transport and delivery, examination of auxiliary services linked with the access to the network (modulation, balancing, conversion), consideration about the processing of network congestions and denied accesses, analysis of the metering dissociation between the integrated activities of gas operators. Some documents are attached in appendixes: the mission letter from July 9, 2001, the detailed analysis of the new temporary tariffs of GdF and CFM, the offer of methane terminals access to third parties, the compatibility of a nodal tariffing with the presence of three transport operators (GdF, CFM and GSO), the contract-type for GdF supply, and the contract-type for GdF connection. (J.S.)

  3. Modelling and calibration of the mutual impedance experiments - Application to ESA's Rosetta Mission and preparation of BepiColombo and JUICE

    Science.gov (United States)

    Gilet, Nicolas; Henri, Pierre; Wattieaux, Gaëtan; Randriamboarison, Orélien; Rauch, Jean-Louis

    2017-04-01

    The RPC-MIP experiment onboard the ESA's ROSETTA orbiter have monitored the plasma activity around the comet 67P/Churyumov-Gerasimenko from Summer 2014 to the end of September 2016. In order to finalize the calibration of more than 2 years of mutual impedance spectra in the ionized environment of comet 67P/CG and to prepare the calibration of mutual impedance experiments onboard futures exploratory planetary missions (PWI/AM2P on-board BepiColombo and RPWI/MIME on-board JUICE), a modelisation of the electric potential generated by a pulsating charge is needed, that possibly takes into account the fact that space plasmas are out of local thermodynamic equilibrium, and therefore non-Maxwellian. The physical model of interest is the linearized Vlasov-Poisson coupled equations. In previous works, these coupled equations are Fourier transformed both in time and space and treated in the cold are Maxwellian plasma. This work extends these previous approaches and relaxes the constraint on the cold or Maxwellian character of electron velocity distribution function, in order to account for departures from local thermodynamic equilibrium. We consider both (i) a two-electron temperature plasma and (ii) electrons described by a Kappa distribution function. The electric potential is computed using a numerical integration over all wavenumbers. The main numerical difficulty is to take into account singularities of the dielectric function in the vicinity of the resonant modes. A method of grid refinement is therefore used. To tackle the large number of parameters to be explored (namely (i) density ratio, temperature ratio or (ii) kappa value), a parallel computation is implemented. Mutual impedance simulations are compared to RPC-MIP measurements in the ionized environment of comet 67P/CG.

  4. Using speed of sound measurements to constrain the Huygens probe descent profile

    Science.gov (United States)

    Svedhem, Håkan; Lebreton, Jean-Pierre; Zarnecki, John; Hathi, Brijen

    2004-02-01

    The Acoustic Properties Investigation (API) is a set of sensors for acoustic measurements in gases or liquids, making a part of the Surface Science Package (SSP) on the Huygens probe. It consists of two units, API-V (Velocity of sound) and API-S (Sounding). The API-V has two ultrasonic transducers sending and receiving acoustic pulses over an unobstructed path of 15 cm. An accurate timing circuit is measuring the time it takes to propagate over the distance. Measurements are made in both directions to eliminate the effect of a constant drift of the medium. The transducers have been optimised to operate at low pressure (high altitude) and will operate from about 60 km down to the surface. They will also perform well in case of landing in a liquid. The API-S unit is an acoustic sounder, sending short pulses at 15 kHz every second and listening for echoes in between. It will detect droplets in the atmosphere and for the last 100 m it will characterise the acoustic scattering properties of the surface below. It will also give an accurate value for the descend velocity during the last 100 m. In case of landing in a (liquid) lake/ocean it will measure the depth of the late-ocean down to a maximum of about 1000 m. Accurate measurements of the velocity of sound will, together with knowledge on the temperature, enable the mean molecular weight to be calculated along the descent trajectory. The temperature will be measured by complementary sensors inside the SSP Top Hat, near the API-V, and to a high accuracy by the HASI instrument at the periphery of the Huygens probe. The API units and associated electronics has been designed and build at the Research and Scientific Support Department at ESTEC, where also the testing and initial calibration has been done. Detailed calibration has been performed with different gas mixtures and at different temperatures in the Titan simulation chamber at the University of Kent, Canterbury, UK. Further supporting studies are planned in the

  5. What can High Resolution Inertial Rotation Sensing do for the Geosciences? (Christiaan Huygens Medal Lecture)

    Science.gov (United States)

    Schreiber, Karl Ulrich

    2016-04-01

    Strap-Down inertial gyroscopes are essential for the attitude control of aircrafts - they keep helicopters and planes in the sky. What if the same technology is strapped to the Earth? It will allow the observation and understanding of the geophysical processes behind minute changes of the rate of rotation as well as variations of the orientation of the instantaneous axis of rotation of the Earth. Unlike the highly dynamic aircraft motion geophysical signals are very small and act on much longer timescales. Therefore we have to make a suitable gyro for the application in the Geosciences significantly more sensitive and stable than aircraft gyros, improving them by many orders of magnitude. Large scale optical interferometers suggest themselves for this purpose, but the requirements are demanding. We have built and explored a variety of monolithic and heterolithic ring lasers, spanning areas between 1 and more than 800 m2. On this road of applying a locally installed high resolution active optical interferometer to a global measurement quantity (earth rotation), we have encountered a number of serious challenges some of which already puzzled Christiaan Huygens some 300 years ago.

  6. Structure and Physical Conditions in the Huygens Region of the Orion Nebula

    CERN Document Server

    O'Dell, C R; Peimbert, M

    2016-01-01

    HST images, MUSE maps of emission-lines, and an atlas of high velocity resolution emission-line spectra have been used to establish for the firrst time correlations of the electron temperature, electron density, radial velocity, turbulence, and orientation within the main ionization front of the nebula. From the study of the combined properties of multiple features, it is established that variations in the radial velocity are primarily caused by the photo-evaporating ionization front being viewed at different angles. There is a progressive increase of the electron temperature and density with decreasing distance from the dominant ionizing star Theta1 Ori C. The product of these characteristics (NexTe) is the most relevant parameter in modeling a blister-type nebula like the Huygens Region, where this quantity should vary with the surface brightness in Halpha. Several lines of evidence indicate that small-scale structure and turbulence exists down to the level of our resolution of a few arcseconds. Although ph...

  7. Titan Ground Complex Permittivity at the HUYGENS Landing Site; the PWA-HASI and Other Instruments Data Revisited

    Science.gov (United States)

    Hamelin, M.; Lethuillier, A.; Le Gall, A. A.; Grard, R.; Ciarletti, V.; Béghin, C.; Schwingenschuh, K.; Lorenz, R. D.; Lopez-Moreno, J. J.; Jernej, I.; Brown, V.; Ferri, F.

    2014-12-01

    Ten years after the successful landing of the HUYGENS probe on the surface of Titan, we reassess the complex permittivity measurements of the surface materials performed by the PWA-HASI experiment (Permittivity, Waves and Altimetry - Huygens Atmospheric Structure Instrument). The complex permittivity is inferred from the mutual impedance of a classical quadrupolar probe, ie. the ratio of the voltage measured by a receiving dipole over the current emitted by another dipole. Using a simple model of the quadrupole configuration, the dielectric constant of the material at the landing site was first estimated to be of the order of 1.8. A more realistic numerical model that took into account the influence of the HUYGENS gondola yielded a dielectric constant in the range 2-3 and a conductivity in the range 0.4 - 0.8 nS/m. due to uncertainties about the system geometry ( Grard et al., 2006). However, a puzzling experimental fact remains to be explained, namely a sudden variation of the amplitude and phase of the received voltage 11 mn after landing that cannot be associated with any lander mechanical disturbance. Permittivity estimations were based on the first 11 mn sequence. The present analysis takes advantage of a recent analysis of the landing process that provided more realistic final position and attitude for the HUYGENS lander (Schroder et al., 2012). The new results lie within former estimated ranges and attention is paid to their sensitivity to geometry and to the reference measurements collected immediately before landing. This point is particularly critical for the estimation of the conductivity. The complete data set has been analysed, including the sequence collected after the first 11 mn. We consider various scenarios that may explain the observed phase and amplitude discontinuity. We tested two layers ground models in order to investigate the possibility that the upper layer may have experienced a fast physical change due to deliquescence or outgasing

  8. Galileo Mission Science Briefing

    Science.gov (United States)

    1989-07-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  9. Built But Not Used, Needed But Not Built: Ground System Guidance Based On Cassini-Huygens Experience

    Science.gov (United States)

    Larsen, Barbara S.

    2006-01-01

    These reflections share insight gleaned from Cassini-Huygens experience in supporting uplink operations tasks with software. Of particular interest are developed applications that were not widely adopted and tasks for which the appropriate application was not planned. After several years of operations, tasks are better understood providing a clearer picture of the mapping of requirements to applications. The impact on system design of the changing user profile due to distributed operations and greater participation of scientists in operations is also explored. Suggestions are made for improving the architecture, requirements, and design of future systems for uplink operations.

  10. An Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation of the ICESat-2 Mission

    Science.gov (United States)

    Herzfeld, Ute C.; McDonald, Brian W.; Wallins, Bruce F.; Markus, Thorsten; Neumann, Thomas A.; Brenner, Anita

    2012-01-01

    The Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission has been selected by NASA as a Decadal Survey mission, to be launched in 2016. Mission objectives are to measure land ice elevation, sea ice freeboard/ thickness and changes in these variables and to collect measurements over vegetation that will facilitate determination of canopy height, with an accuracy that will allow prediction of future environmental changes and estimation of sea-level rise. The importance of the ICESat-2 project in estimation of biomass and carbon levels has increased substantially, following the recent cancellation of all other planned NASA missions with vegetation-surveying lidars. Two innovative components will characterize the ICESat-2 lidar: (1) Collection of elevation data by a multi-beam system and (2) application of micropulse lidar (photon counting) technology. A micropulse photon-counting altimeter yields clouds of discrete points, which result from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of returned points to reflectors of interest including canopy and ground in forested areas. The objective of this paper is to derive and validate an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2-type data. Data are based on airborne observations with a Sigma Space micropulse lidar and vary with respect to signal strength, noise levels, photon sampling options and other properties. A mathematical algorithm is developed, using spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors and geostatistical classification parameters and hyperparameters. Validation shows that the algorithm works very well and that ground and canopy elevation, and hence canopy height, can be expected to be observable with a high accuracy during the ICESat

  11. Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission

    Science.gov (United States)

    Herzfeld, Ute Christina; McDonald, Brian W.; Neumann, Thomas Allen; Wallin, Bruce F.; Neumann, Thomas A.; Markus, Thorsten; Brenner, Anita; Field, Christopher

    2014-01-01

    NASA's Ice, Cloud and Land Elevation Satellite-II (ICESat-2) mission is a decadal survey mission (2016 launch). The mission objectives are to measure land ice elevation, sea ice freeboard, and changes in these variables, as well as to collect measurements over vegetation to facilitate canopy height determination. Two innovative components will characterize the ICESat-2 lidar: 1) collection of elevation data by a multibeam system and 2) application of micropulse lidar (photon-counting) technology. A photon-counting altimeter yields clouds of discrete points, resulting from returns of individual photons, and hence new data analysis techniques are required for elevation determination and association of the returned points to reflectors of interest. The objective of this paper is to derive an algorithm that allows detection of ground under dense canopy and identification of ground and canopy levels in simulated ICESat-2 data, based on airborne observations with a Sigma Space micropulse lidar. The mathematical algorithm uses spatial statistical and discrete mathematical concepts, including radial basis functions, density measures, geometrical anisotropy, eigenvectors, and geostatistical classification parameters and hyperparameters. Validation shows that ground and canopy elevation, and hence canopy height, can be expected to be observable with high accuracy by ICESat-2 for all expected beam energies considered for instrument design (93.01%-99.57% correctly selected points for a beam with expected return of 0.93 mean signals per shot (msp), and 72.85%-98.68% for 0.48 msp). The algorithm derived here is generally applicable for elevation determination from photoncounting lidar altimeter data collected over forested areas, land ice, sea ice, and land surfaces, as well as for cloud detection.

  12. Music in Spain in the 1670s through the eyes of Sébastien Chièze and Constantijn Huygens

    Directory of Open Access Journals (Sweden)

    Rasch, Rudolf A.

    2007-12-01

    Full Text Available In this contribution the various remarks about music in Spain that can be found in the correspondence between Sébastien Chièze (envoy on behalf of the Prince of Orange in Madrid and Constantijn Huygens (The Hague from 1672 to 1679 are discussed. Huygens asked Chièze to find for him a copy of Salinas’s De musica (1577, as well as Spanish airs and pieces for guitar. It took Chièze two years to find a copy of De musica in Spain and have it sent safely to Holland. Huygens did not like the Spanish airs sent by Chièze, by composers such as Juan del Vado, José Marín, Cristóbal Galán, and Juan Hidalgo. He found them too “African”. Nor did he like the guitar tablature, which turned the notation as he was used to seeing it upside down. Chièze also had a guitar made for Huygens in Madrid, but this instrument also met with disapproval. In the end, Chièze asked two Bolognese acquaintances, Giulio and Guido Bovio, to search for a suitable lute for Huygens in Bologna. They found two, but it is unknown whether these ever arrived in Holland. The contribution shows the importance of foreign (diplomatic contacts in the acquisition of musical articles, such as books about music, musical compositions and musical instruments.

    Este artículo trata de las diversas observaciones a propósito de la música en España, que se encuentran en la correspondencia entre Sébastien Chièze (embajador del Príncipe de Orange en Madrid y Constantijn Huygens (La Haya, entre 1672 y 1679. Huygens pidió a Chièze que le encontrara un ejemplar del De musica de Salinas (1577, así como tonadas españolas y piezas para guitarra. A Chièze le llevó dos años hallar una copia del De musica en territorio español y hacer que el libro llegara a Holanda sano y salvo. Las tonadas remitidas por Chièze (de compositores tales como Juan del Vado, José Marín, Cristóbal Galán y Juan Hidalgo, no gustaron nada a Huygens, que las halló demasiado “africanas”. Como

  13. The electrical properties of Titan's surface at the Huygens landing site measured with the PWA-HASI Mutual Impedance Probe. New approach and new findings

    Science.gov (United States)

    Hamelin, Michel; Lethuillier, Anthony; Le Gall, Alice; Grard, Réjean; Béghin, Christian; Schwingenschuh, Konrad; Jernej, Irmgard; López-Moreno, José-Juan; Brown, Vic; Lorenz, Ralph D.; Ferri, Francesca; Ciarletti, Valérie

    2016-05-01

    Ten years after the successful landing of the Huygens Probe on the surface of Titan, we reassess the derivation of ground complex permittivity using the PWA-MIP/HASI measurements (Permittivity, Waves and Altimetry-Mutual Impedance Probe/Huygens Atmospheric Structure Instrument) at the frequencies 45, 90 and 360 Hz. For this purpose, we have developed a numerical method, namely "the capacity-influence matrix method", able to account for new insights on the Huygens Probe attitude at its final resting position. We find that the surface of Titan at the landing site has a dielectric constant of 2.5 ± 0.3 and a conductivity of 1.2 ± 0.6 nS/m, in agreement with previously published results but with much more reliable error estimates. These values speak in favour of a photochemical origin of the material in the first meter of the subsurface. We also propose, for the first time, a plausible explanation for the sudden change observed by PWA-MIP ∼11 min after landing: this change corresponds to a drop in the ground conductivity, probably due to the removal of a superficial conductive layer in association with the release of volatile materials warmed by the Huygens Probe.

  14. Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens-Fresnel theorem.

    Science.gov (United States)

    Avanaki, Mohammad R N; Podoleanu, Adrian Gh; Schofield, John B; Jones, Carole; Sira, Manu; Liu, Yan; Hojjat, Ali

    2013-03-10

    An optical properties extraction algorithm is developed based on enhanced Huygens-Fresnel light propagation theorem, to extract the scattering coefficient of a specific region in an optical coherence tomography (OCT) image. The aim is to quantitatively analyze the OCT images. The algorithm is evaluated using a set of phantoms with different concentrations of scatterers, designed based on Mie theory. The algorithm is then used to analyze basal cell carcinoma and healthy eyelid tissues, demonstrating distinguishable differences in the scattering coefficient between these tissues. In this study, we have taken advantage of the simplification introduced by the utilization of a dynamic focus OCT system. This eliminates the need to deconvolve the reflectivity profile with the confocal gate profile, as the sensitivity of the OCT system is constant throughout the axial range.

  15. Simulated Mission

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A Chinese astronaut trainer is selected for an endurance trial to prepare humans for a real landing on the Red Planet on June 3, 27-year-old Chinese astronaut trainer Wang Yue walked into a mock spaceship at a Moscow research institute with

  16. The Cassini Solstice Mission: Streamlining Operations by Sequencing with PIEs

    Science.gov (United States)

    Vandermey, Nancy; Alonge, Eleanor K.; Magee, Kari; Heventhal, William

    2014-01-01

    The Cassini Solstice Mission (CSM) is the second extended mission phase of the highly successful Cassini/Huygens mission to Saturn. Conducted at a much-reduced funding level, operations for the CSM have been streamlined and simplified significantly. Integration of the science timeline, which involves allocating observation time in a balanced manner to each of the five different science disciplines (with representatives from the twelve different science instruments), has long been a labor-intensive endeavor. Lessons learned from the prime mission (2004-2008) and first extended mission (Equinox mission, 2008-2010) were utilized to design a new process involving PIEs (Pre-Integrated Events) to ensure the highest priority observations for each discipline could be accomplished despite reduced work force and overall simplification of processes. Discipline-level PIE lists were managed by the Science Planning team and graphically mapped to aid timeline deconfliction meetings prior to assigning discrete segments of time to the various disciplines. Periapse segments are generally discipline-focused, with the exception of a handful of PIEs. In addition to all PIEs being documented in a spreadsheet, allocated out-of-discipline PIEs were entered into the Cassini Information Management System (CIMS) well in advance of timeline integration. The disciplines were then free to work the rest of the timeline internally, without the need for frequent interaction, debate, and negotiation with representatives from other disciplines. As a result, the number of integration meetings has been cut back extensively, freeing up workforce. The sequence implementation process was streamlined as well, combining two previous processes (and teams) into one. The new Sequence Implementation Process (SIP) schedules 22 weeks to build each 10-week-long sequence, and only 3 sequence processes overlap. This differs significantly from prime mission during which 5-week-long sequences were built in 24 weeks

  17. The Cassini Solstice Mission: Streamlining Operations by Sequencing with PIEs

    Science.gov (United States)

    Vandermey, Nancy; Alonge, Eleanor K.; Magee, Kari; Heventhal, William

    2014-01-01

    The Cassini Solstice Mission (CSM) is the second extended mission phase of the highly successful Cassini/Huygens mission to Saturn. Conducted at a much-reduced funding level, operations for the CSM have been streamlined and simplified significantly. Integration of the science timeline, which involves allocating observation time in a balanced manner to each of the five different science disciplines (with representatives from the twelve different science instruments), has long been a labor-intensive endeavor. Lessons learned from the prime mission (2004-2008) and first extended mission (Equinox mission, 2008-2010) were utilized to design a new process involving PIEs (Pre-Integrated Events) to ensure the highest priority observations for each discipline could be accomplished despite reduced work force and overall simplification of processes. Discipline-level PIE lists were managed by the Science Planning team and graphically mapped to aid timeline deconfliction meetings prior to assigning discrete segments of time to the various disciplines. Periapse segments are generally discipline-focused, with the exception of a handful of PIEs. In addition to all PIEs being documented in a spreadsheet, allocated out-of-discipline PIEs were entered into the Cassini Information Management System (CIMS) well in advance of timeline integration. The disciplines were then free to work the rest of the timeline internally, without the need for frequent interaction, debate, and negotiation with representatives from other disciplines. As a result, the number of integration meetings has been cut back extensively, freeing up workforce. The sequence implementation process was streamlined as well, combining two previous processes (and teams) into one. The new Sequence Implementation Process (SIP) schedules 22 weeks to build each 10-week-long sequence, and only 3 sequence processes overlap. This differs significantly from prime mission during which 5-week-long sequences were built in 24 weeks

  18. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  19. Constellation Program Mission Operations Project Office Status and Support Philosophy

    Science.gov (United States)

    Smith, Ernest; Webb, Dennis

    2007-01-01

    The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.

  20. Cavity-excited Huygens' metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures.

    Science.gov (United States)

    Epstein, Ariel; Wong, Joseph P S; Eleftheriades, George V

    2016-01-21

    One of the long-standing problems in antenna engineering is the realization of highly directive beams using low-profile devices. In this paper, we provide a solution to this problem by means of Huygens' metasurfaces (HMSs), based on the equivalence principle. This principle states that a given excitation can be transformed to a desirable aperture field by inducing suitable electric and (equivalent) magnetic surface currents. Building on this concept, we propose and demonstrate cavity-excited HMS antennas, where the single-source-fed cavity is designed to optimize aperture illumination, while the HMS facilitates the current distribution that ensures phase purity of aperture fields. The HMS breaks the coupling between the excitation and radiation spectra typical to standard partially reflecting surfaces, allowing tailoring of the aperture properties to produce a desirable radiation pattern, without incurring edge-taper losses. The proposed low-profile design yields near-unity aperture illumination efficiencies from arbitrarily large apertures, offering new capabilities for microwave, terahertz and optical radiators.

  1. Huygens and Barrow, Newton and Hooke. Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals.

    Science.gov (United States)

    Arnol'D, V. I.

    This book is an English translation of the Russian original of 1989. It is based on a college lecture commemorating the tercentenary of Newton's book Philosophiae Naturalis Principia Mathematica. The author retraces the beginnings of mathematical analysis and theoretical physics in the works of the great scientists of the 17th century, and recounts the history of the discovery of the law of gravitation, discussions Newton had with Hooke and Leibniz, and much more. Some of Huygens' and Newton's ideas, several centuries ahead of their time, were developed only recently. The author follows the link between their inception and the break-throughs in contemporary mathematics and physics. The book provides present-day generalizations of Newton's theorems on the elliptical shape of orbits, attraction of spheres, and on the transcendence of Abelian integrals; it offers a brief review of the theory of regular and chaotic movement in celestial mechanics, including, for example, the problem of ports in the distribution of smaller planets and a discussion of the structure of planetary rings.

  2. Timestamp Test Report - Preparred for Proba Mission

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    This test is performed in order to assess the time relation between the GPS real time timestamping of attitude TCs from the Advanced Stellar Compass (ASC) and the integration periods of the CCD cameras.......This test is performed in order to assess the time relation between the GPS real time timestamping of attitude TCs from the Advanced Stellar Compass (ASC) and the integration periods of the CCD cameras....

  3. Timestamp Test Report - Preparred for Champ Mission

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    This test is performed in order to assess the time relation between the GPS real time timestamping of attitude TCs from the Advanced Stellar Compass (ASC) and the integration periods of the CCD cameras.......This test is performed in order to assess the time relation between the GPS real time timestamping of attitude TCs from the Advanced Stellar Compass (ASC) and the integration periods of the CCD cameras....

  4. Rosetta mission operations for landing

    Science.gov (United States)

    Accomazzo, Andrea; Lodiot, Sylvain; Companys, Vicente

    2016-08-01

    The International Rosetta Mission of the European Space Agency (ESA) was launched on 2nd March 2004 on its 10 year journey to comet Churyumov-Gerasimenko and has reached it early August 2014. The main mission objectives were to perform close observations of the comet nucleus throughout its orbit around the Sun and deliver the lander Philae to its surface. This paper describers the activities at mission operations level that allowed the landing of Philae. The landing preparation phase was mainly characterised by the definition of the landing selection process, to which several parties contributed, and by the definition of the strategy for comet characterisation, the orbital strategy for lander delivery, and the definition and validation of the operations timeline. The definition of the landing site selection process involved almost all components of the mission team; Rosetta has been the first, and so far only mission, that could not rely on data collected by previous missions for the landing site selection. This forced the teams to include an intensive observation campaign as a mandatory part of the process; several science teams actively contributed to this campaign thus making results from science observations part of the mandatory operational products. The time allocated to the comet characterisation phase was in the order of a few weeks and all the processes, tools, and interfaces required an extensive planning an validation. Being the descent of Philae purely ballistic, the main driver for the orbital strategy was the capability to accurately control the position and velocity of Rosetta at Philae's separation. The resulting operations timeline had to merge this need of frequent orbit determination and control with the complexity of the ground segment and the inherent risk of problems when doing critical activities in short times. This paper describes the contribution of the Mission Control Centre (MOC) at the European Space Operations Centre (ESOC) to this

  5. Possible Niches for Extant Life on Titan in Light of Cassini/Huygens Results

    Science.gov (United States)

    Grinspoon, D. H.; Bullock, M. A.; Spencer, J. R.; Schulze-Makuch, D.

    2005-08-01

    Results from the first year of the Cassini mission show that Titan has an active surface with few impact craters and abundant hints of cryovolcanism, tectonism, aeolian and fluvial activity (Porco et al., 2005; Elachi et al., 2005). Methane clouds and surface characteristics strongly imply the presence of an active global methane cycle analogous to Earth's hydrological cycle. Astrobiological interest in Titan has previously focused on possible prebiological chemical evolution on a moon with a thick nitrogen atmosphere and rich organic chemistry (Raulin and Owen, 2002). Yet the emerging new picture of Titan has raised prospects for the possibility of extant life. Several key requirements for life appear to be present, including liquid reservoirs, organic molecules and ample energy sources. One promising location may be hot springs in contact with hydrocarbon reservoirs. Hydrogenation of photochemically produced acetylene could provide metabolic energy for near-surface organisms and also replenish atmospheric methane (Schulze-Makuch and Grinspoon, 2005). The energy released could be used by organisms to drive endothermic reactions, or go into heating their surroundings, helping to create their own liquid microenvironments. In environments which are energy-rich but liquid-poor, like the near-surface of Titan, natural selection may favor organisms that use their ``waste heat" to melt their own watering holes. Downward transport of high energy photochemical compounds could provide an energy supply for near-surface organisms which could be used, in part, to maintain the liquid environments conducive to life. We will present the results of thermal modeling designed to test the feasibility of biothermal melting on Titan. C. Porco and the Cassini Imaging Team (2005) Nature 434, 159-168; C. Elachi et al, Science, 308, 970-974; F. Raulin and T. Owen (2002) Space Sci. Rev. 104, 377 - 394.; D. Schulze-Makuch and D. H. Grinspoon (2005) Astrobiology, in press.

  6. Entry Descent and Landing Systems for small planetary missions: parametric comparison of parachutes and inflatable systems for the proposed Vanguard Mars mission

    Science.gov (United States)

    Allouis, E.; Ellery, A.; Welch, C. S.

    2003-11-01

    Here the feasibility of a post-Beagle2 robotic Mars mission of modest size, mass and cost with a high scientific return is assessed. Based on a triad of robotics comprising a lander, a rover and three penetrating moles, the mission is astrobiology focussed, but also provides a platform for technology demonstration. The study is investigating two Entry, Descent and Landing Systems (EDLS) for the 120kg - mission based on the conventional heatshield/parachute duo and on the use of inflatable technologies as demonstrated by the IRDT/IRDT2 projects. Moreover, to make use of existing aerodynamic databases, both EDLS are considered with two geometries: the Mars Pathfinder (MPF) and Huygens/Beagle2 (B2) configurations. A versatile EDL model has been developed to provide a preliminary sizing for the different EDL systems such as heatshield, parachute, and inflatables for small to medium planetary missions. With a landed mass of 65 kg, a preliminary mass is derived for each system of the mission to provide a terminal velocity compatible with the use of airbags. On both conventional and inflatable options, the MPF configuration performs slightly better mass-wise since its cone half-angle is flatter at 70 degrees. Overall, the Inflatable Braking Device (IBD) option performs better than the conventional one and would provide in this particular case a decrease in mass of the EDLS of about 15-18% that can be redistributed to the payload.

  7. Outreach for Cassini Huyghens mission and future Saturn and Titan exploration: From the Antikythera Mechanism to the TSSM mission

    Science.gov (United States)

    Moussas, Xenophon; Bampasidis, Georgios; Coustenis, Athena; Solomonidou, Anezina

    2010-05-01

    These days Outreach is an activity tightly related to success in science. The public with its great interest to space and astronomy in general, the solar system exploration and Saturn and Titan in particular, loves the scientific outcome of Cassini and Huygens. This love of the public gives a lot, as its known interest to space, persuades politicians and policy makers to support space and future Saturn and Titan explorations. We use the scientific results from Cassini and Huyghens together with a mosaic from ancient science concerning the history of solar system exploration, such as the oldest known complex astronomical device, the Antikyhtera Mechanism, in outreach activities to ensure future missions and continuous support to present ones. A future mission to the Saturnian System focusing on exotic Titan will broaden people's interest not only to Physics and Astronomy, but to Mechanics, Technology and even Philosophy as well, since, obviously, the roots of the vast contribution of Space Science and Astronomy to the contemporary society can be traced back to the first astronomers of Antiquity. As an example we use the Antikythera Mechanism, a favourite astronomical device for the public, which is the first geared astronomical device ever, constructed that combines the spirit of the ancient Astronomy and scientific accuracy. It is common belief that Astronomy and Astrophysics is a perfect tool to easily involve people in Science, as the public is always interested in space subjects, captivated by the beauty and the mystery of the Universe. Years after the successful entry, descent and landing of the Huygens probe on Titan's surface, the outstanding achievements of the Cassini-Huygens mission enhance the outreach potential of Space Science. Titan is an earth-like world, embedded in a dense nitrogen atmospheric envelop and a surface carved by rivers, mountains, dunes and lakes, its exploration will certainly empower the perspective of the society for space activities

  8. Missions and Moral Judgement.

    Science.gov (United States)

    Bushnell, Amy Turner

    2000-01-01

    Addresses the history of Spanish-American missions, discussing the view of missions in church history, their role in the Spanish conquest, and the role and ideas of Herbert E. Bolton. Focuses on differences among Spanish borderlands missions, paying particular attention to the Florida missions. (CMK)

  9. Mission design options for human Mars missions

    Science.gov (United States)

    Wooster, Paul D.; Braun, Robert D.; Ahn, Jaemyung; Putnam, Zachary R.

    Trajectory options for conjunction-class human Mars missions are examined, including crewed Earth-Mars trajectories with the option for abort to Earth, with the intent of serving as a resource for mission designers. An analysis of the impact of Earth and Mars entry velocities on aeroassist systems is included, and constraints are suggested for interplanetary trajectories based upon aeroassist system capabilities.

  10. Cubesat Gravity Field Mission

    Science.gov (United States)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  11. Methodology and Politics in Science: The Fate of Huygens' 1673 Proposal of the Seconds Pendulum as an International Standard of Length and Some Educational Suggestions

    Science.gov (United States)

    Matthews, Michael R.

    This paper is part of a larger work on the history, philosophy and utilisation of pendulum motion studies (Matthews 2000). The paper deals with the fate of Christiaan Huygens 1673 proposal to use the length of a seconds pendulum (effectively one metre) as a universal, natural and objective standard of length. This is something which, if it had been adopted, would have been of inestimable scientific, commercial and cultural benefit. Why it was not originally adopted in the late seventeenth century, and why it was again rejected in the late eighteenth century (1795) when the Revolutionary Assembly in France adopted the metric system with the metre being defined as one ten-millionth of the quarter meridan distance - raise interesting questions about the methodology and politics of science. Given that pendulum motion is a standard component of all science courses throughout the world, and given that most science education reforms, including the US National Science Education Standards and recent Australian state reforms, require that something of the big picture of science be conveyed to students (the relationship of science to culture, commerce, history and philosophy) - it is suggested that these educational goals can be advanced by teaching about the fate of Huygens' proposal.

  12. The third mission

    OpenAIRE

    Francisco José GARCÍA-PEÑALVO

    2016-01-01

    The editorial of this first issue of volume 17, corresponding to 2016, is devoted to the university-business-society relationships that is usually known as Third Mission of the University or the knowledge transfer mission.

  13. Mission of Librarian

    Directory of Open Access Journals (Sweden)

    Reşit Sarıgül

    2013-11-01

    Full Text Available This article is a review of the book titled “Mission of Librarian” authored by Jose Ortega y Gasset and translated into Turkish by M. Turker Acaroğlu. The book, which is published by  İstanbul Branch of Turkish Librarians’ Association, explains mission, professional mission and mission of librarian in the future. The book also includes an interview with M. Turker Acaroğlu.

  14. Threads of Mission Success

    Science.gov (United States)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  15. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  16. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  17. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  18. Exploration of the Saturn System by the Cassini Mission: Observations with the Cassini Infrared Spectrometer

    Science.gov (United States)

    Abbas, Mian M.

    2014-01-01

    The Cassini mission is a joint NASA-ESA international mission, launched on October 17, 1997 with 12 instruments on board, for exploration of the Saturn system. A composite Infrared Spectrometers is one of the major instruments. Successful insertion of the spacecraft in Saturn's orbit for an extended orbital tour occurred on July 1, 2004. The French Huygens-Probe on board, with six instruments was programmed for a soft landing on Titan's surface occurred in January 2005. The broad range scientific objectives of the mission are: Exploration of the Saturn system for investigations of the origin, formation, & evolution of the solar system, with an extensive range of measurements and the analysis of the data for scientific interpretations. The focus of research dealing with the Cassini mission at NASA/MSFC in collaboration with the NASA/Goddard Space Flight Center, JPL, as well as the research teams at Oxford/UK and Meudon Observatory/France, involves the Infrared observations of Saturn and its satellites, for measurements of the thermal structure and global distributions of the atmospheric constituents. A brief description of the Cassini spacecraft, the instruments, the objectives, in particular with the infrared observations of the Saturn system will be given. The analytical techniques for infrared radiative transfer and spectral inversion programs, with some selected results for gas constituent distributions will be presented.

  19. Draft Mission Plan Amendment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-01

    The Department of Energy`s Office Civilian Radioactive Waste Management has prepared this document to report plans for the Civilian Radioactive Waste Management Program, whose mission is to manage and dispose of the nation`s spent fuel and high-level radioactive waste in a manner that protects the health and safety of the public and of workers and the quality of the environment. The Congress established this program through the Nuclear Waste Policy Act of 1982. Specifically, the Congress directed us to isolate these wastes in geologic repositories constructed in suitable rock formations deep beneath the surface of the earth. In the Nuclear Waste Policy Amendments Act of 1987, the Congress mandated that only one repository was to be developed at present and that only the Yucca Mountain candidate site in Nevada was to be characterized at this time. The Amendments Act also authorized the construction of a facility for monitored retrievable storage (MRS) and established the Office of the Nuclear Waste Negotiator and the Nuclear Waste Technical Review Board. After a reassessment in 1989, the Secretary of Energy restructured the program, focusing the repository effort scientific evaluations of the Yucca Mountain candidate site, deciding to proceed with the development of an MRS facility, and strengthening the management of the program. 48 refs., 32 figs.

  20. ESA's atmospheric composition and dynamics mission

    Science.gov (United States)

    Fehr, Thorsten; Laur, Henri; Hoersch, Bianca; Ingmann, Paul; Wehr, Tobias; Langen, Joerg; Veihelmann, Ben

    For almost 15 years, ESA is providing atmospheric chemistry and composition information to the user community. In 1995, this commitment started with the GOME instrument on-board ERS-2. This mission was continued and extended with the GOMOS, MIPAS and SCIAMACHY instruments on-board of ENVISAT launched in 2002. ESA is prepared to continue Envisat through 2013 in the frame of the mission extension. To respond to GMES requirements, ESA develops the Sentinel 5 Precursor mission to be launched in 2014, to continue and improve the European measurement capabilities initiated with GOME and SCIAMACHY, and continued with EUMETSAT's GOME-2 and the Dutch OMI instrument on the NASA Aura platform. In addition the Sentinel 4 and 5 missions are prepared, further improving the monitoring capabilities with geostationary observation capabilities and continuing the Low Earth Orbit Sentinel 5 Precursor well beyond 2025. At the same time, ESA is preparing two atmospheric Earth Explorer Missions. With ADM-Aeolus, a novel lidar system for the retrieval of wind speed vectors from space is being developed and planned to be launched in 2012. EarthCARE will investigate the Clouds-Aerosol-radiation-interaction with a lidar, cloud radar (provided by JAXA), multi-spectral imager and broad band radiometric instruments collocated on one platform. A major goal is the development of synergistic retrievals exploiting information from different sensors in one algorithm. The mission is planned to start in 2014. In parallel the Phase A studies for the ESA Earth Explorer 7 are ongoing. One of the three candidate missions is PREMIER, an infrared limb-imaging spectrometer and millimetre-wave limb-sounder planned to be launched in 2016. In addition the call of ideas for the Earth Explorer 8 has been published and the corresponding Letters of Intend have been received, including a number of proposals for mission in the atmospheric composition and dynamics domain. At the same time, the access to ESA Third

  1. Ongoing Mars Missions: Extended Mission Plans

    Science.gov (United States)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  2. STS 41-D mission specialist Judith Resnik trains on the RMS

    Science.gov (United States)

    1983-01-01

    STS 41-D mission specialist Judith Resnik prepares for training on the remote manipulator system (RSM) on board the shuttle mission simulator (SMS). She is on the SMS aft deck facing the RMS translation hand control and overhead starboard window.

  3. JPL Mission Bibliometrics

    Science.gov (United States)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  4. The STEREO Mission

    CERN Document Server

    2008-01-01

    The STEREO mission uses twin heliospheric orbiters to track solar disturbances from their initiation to 1 AU. This book documents the mission, its objectives, the spacecraft that execute it and the instruments that provide the measurements, both remote sensing and in situ. This mission promises to unlock many of the mysteries of how the Sun produces what has become to be known as space weather.

  5. Flight Software for the LADEE Mission

    Science.gov (United States)

    Cannon, Howard N.

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft was launched on September 6, 2013, and completed its mission on April 17, 2014 with a directed impact to the Lunar Surface. Its primary goals were to examine the lunar atmosphere, measure lunar dust, and to demonstrate high rate laser communications. The LADEE mission was a resounding success, achieving all mission objectives, much of which can be attributed to careful planning and preparation. This paper discusses some of the highlights from the mission, and then discusses the techniques used for developing the onboard Flight Software. A large emphasis for the Flight Software was to develop it within tight schedule and cost constraints. To accomplish this, the Flight Software team leveraged heritage software, used model based development techniques, and utilized an automated test infrastructure. This resulted in the software being delivered on time and within budget. The resulting software was able to meet all system requirements, and had very problems in flight.

  6. U.S. rainfall satellite missions in flux

    Science.gov (United States)

    Zielinski, Sarah

    NASA's Tropical Rainfall Measuring Mission (TRMM) received a reprieve in September when the agency decided to continue the mission until at least fiscal year 2009 and possibly until 2012. Earlier agency plans had called for discontinuing TRMM this year while the satellite still had enough fuel for a controlled re-entry.Despite the TRMM reprieve, however, the U.S. National Oceanic and Atmospheric Administration (NOAA) is already preparing for TRMM's replacement, the Global Precipitation Measurement (GPM) mission.

  7. A Defense of Higher Education and Its Civic Mission

    Science.gov (United States)

    Levine, Peter

    2014-01-01

    The liberal arts and the civic mission of higher education are under attack in this time of economic crisis and political polarization. But we can proudly and forthrightly make the case for the civic mission of higher education. The purpose of the liberal arts is to prepare people for responsible citizenship, and the best forms of civic engagement…

  8. The Rosetta mission

    Science.gov (United States)

    Taylor, Matt; Altobelli, Nicolas; Martin, Patrick; Buratti, Bonnie J.; Choukroun, Mathieu

    2016-10-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Following its launch in March 2004, Rosetta underwent 3 Earth and 1 Mars flybys to achieve the correct trajectory to capture the comet, including flybys of asteroid on 2867 Steins and 21 Lutetia. For June 2011- January 2014 the spacecraft passed through a period of hibernation, due to lack of available power for full payload operation and following successful instrument commissioning, successfully rendezvoused with the comet in August 2014. Following an intense period of mapping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was successfully deployed. Rosetta then embarked on the main phase of the mission, observing the comet on its way into and away from perihelion in August 2015. At the time of writing the mission is planned to terminate with the Rosetta orbiter impacting the comet surface on 30 September 2016. This presentation will provide a brief overview of the mission and its science. The first author is honoured to give this talk on behalf of all Rosetta mission science, instrument and operations teams, for it is they who have worked tirelessly to make this mission the success it is.

  9. Mission Medical Information System

    Science.gov (United States)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  10. The SPICA mission

    NARCIS (Netherlands)

    Sibthorpe, B.; Helmich, F.; Roelfsema, P.; Kaneda, H.; Shibai, H.; Simon, R.; Schaaf, R.; Stutzki, J,

    2016-01-01

    SPICA is a mid and far-infrared space mission to be submitted as a candidate to ESA's fifth medium class mission call, due in early 2016. This will be a joint project between ESA and JAXA, with ESA taking the lead role. If selected, SPICA will launch in ˜2029 and operate for a goal lifetime of 5 yea

  11. KEEL for Mission Planning

    Science.gov (United States)

    2016-10-06

    cognitive technology for application in automotive , industrial automation, medical, military, governmental, enterprise software and electronic gaming...evaluate risks or develop and test new tactics and strategies. This paper separates Mission Planning Software into two domains: 1. Rendering of the...simplest form, Mission Planning is the process of evaluating information in the form of risks (threats) and rewards (opportunities) to most appropriately

  12. Bering Mission Navigation Method

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2003-01-01

    "Bering", after the name of the famous Danish explorer, is a near Earth object (NEO) and main belt asteroids mapping mission envisaged by a consortium of Danish universities and research institutes. To achieve the ambitious goals set forth by this mission, while containing the costs and risks...

  13. The Pioneer Venus Missions.

    Science.gov (United States)

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  14. Recce mission planning

    Science.gov (United States)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  15. The LISA Pathfinder mission

    Science.gov (United States)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Caleno, M.; Cañizares, P.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Ferrone, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hernández, V.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Racca, G. D.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H.-B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Ziegler, T.; Zweifel, P.

    2012-06-01

    In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.

  16. Uganda Mission PRS

    Data.gov (United States)

    US Agency for International Development — A web-based performance reporting system that is managed by IBI that interfaces with the Mission's GIS database that supports USAID/Uganda and its implementing...

  17. STS-83 Mission Insignia

    Science.gov (United States)

    1997-01-01

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  18. The Prisma Hyperspectra Mission

    Science.gov (United States)

    Loizzo, R.; Ananasso, C.; Guarini, R.; Lopinto, E.; Candela, L.; Pisani, A. R.

    2016-08-01

    PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an Italian Space Agency (ASI) hyperspectral mission currently scheduled for the lunch in 2018. PRISMA is a single satellite placed on a sun- synchronous Low Earth Orbit (620 km altitude) with an expected operational lifetime of 5 years. The hyperspectral payload consists of a high spectral resolution (VNIR-SWIR) imaging spectrometer, optically integrated with a medium resolution Panchromatic camera. PRISMA will acquire data on areas of 30 km Swath width and with a Ground Sampling Distance (GSD) of 30 m (hyperspectral) and of 5 m Panchromatic (PAN). The PRISMA Ground Segment will be geographically distributed between Fucino station and ASI Matera Space Geodesy Centre and will include the Mission Control Centre, the Satellite Control Centre and the Instrument Data Handling System. The science community supports the overall lifecycle of the mission, being involved in algorithms definition, calibration and validation activities, research and applications development.

  19. Athena Mission Performance

    Science.gov (United States)

    den Herder, Jan-Willem; Piro, Luigi; Rau, Arne

    2015-09-01

    The optimization of the Athena mission, the ESA's large X-ray observatory for 2028, is a key challenge. Critical elements for achieving the scientific performances are obviously the two instruments and the optics. However, additional aspects related to the overall mission performances are crucial as well, including the particle background environment (separate presentation), the calibration, the response time to Target of Opportunity requests, the functionality of the science ground segment, and the available high-quality data analysis tools. In addition, the full performance of the satellite will be modeled by an end-to-end simulator. In this presentation we will give an overview of the various systems and also present the Mock Observing Plan that is used to optimize the mission. The work presented in this contribution is based on a collective effort of the Athena science community and is coordinated by the Athena Mission Performance Working Group.

  20. Doing mission inclusively

    African Journals Online (AJOL)

    2016-06-24

    Jun 24, 2016 ... language, rituals, rules, values, and other religious and cultural settings. ... This article posits that Christians, while being in the world, are not of this world. ..... is at the heart of all Christian missions, a core competence of.

  1. Autonomous Mission Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future human spaceflight missions will occur with crews and spacecraft at large distances, with long communication delays, to the Earth. The one-way light-time delay...

  2. NEEMO 7 undersea mission

    Science.gov (United States)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  3. Bering Mission Navigation Method

    OpenAIRE

    2003-01-01

    "Bering", after the name of the famous Danish explorer, is a near Earth object (NEO) and main belt asteroids mapping mission envisaged by a consortium of Danish universities and research institutes. To achieve the ambitious goals set forth by this mission, while containing the costs and risks, "Bering" sports several new technological enhancements and advanced instruments under development at the Technical University of Denmark (DTU). The autonomous on-board orbit determination method is part...

  4. The LISA Pathfinder Mission

    Science.gov (United States)

    McNamara, Paul

    2013-04-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future interferometric spaceborne gravitational wave observatories, for example the proposed eLISA mission. The technologies required for eLISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical eLISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the eLISA constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the eLISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  5. Robotic Mission Simulation Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes a software tool to predict robotic mission performance and support supervision of robotic missions even when environments and...

  6. The europa initiative for esa's cosmic vision: a potential european contribution to nasa's Europa mission

    Science.gov (United States)

    Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.

    2016-04-01

    The assessment of the habitability of Jupiter's icy moons is considered of high priority in the roadmaps of the main space agencies, including the decadal survey and esa's cosmic vision plan. the voyager and galileo missions indicated that europa and ganymede may meet the requirements of habitability, including deep liquid aqueous reservoirs in their interiors. indeed, they constitute different end-terms of ocean worlds, which deserve further characterization in the next decade. esa and nasa are now both planning to explore these ice moons through exciting and ambitious missions. esa selected in 2012 the juice mission mainly focused on ganymede and the jupiter system, while nasa is currently studying and implementing the europa mission. in 2015, nasa invited esa to provide a junior spacecraft to be carried on board its europa mission, opening a collaboration scheme similar to the very successful cassini-huygens approach. in order to define the best contribution that can be made to nasa's europa mission, a europa initiative has emerged in europe. its objective is to elaborate a community-based strategy for the proposition of the best possible esa contribution(s) to nasa's europa mission, as a candidate for the upcoming selection of esa's 5th medium-class mission . the science returns of the different potential contributions are analysed by six international working groups covering complementary science themes: a) magnetospheric interactions; b) exosphere, including neutrals, dust and plumes; c) geochemistry; d) geology, including expressions of exchanges between layers; e) geophysics, including characterization of liquid water distribution; f) astrobiology. each group is considering different spacecraft options in the contexts of their main scientific merits and limitations, their technical feasibility, and of their interest for the development of esa-nasa collaborations. there are five options under consideration: (1) an augmented payload to the europa mission main

  7. A Virtual Mission Operations Center: Collaborative Environment

    Science.gov (United States)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    /product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.

  8. STS-26 MS Hilmers on fixed based (FB) shuttle mission simulator (SMS) middeck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers prepares to ascend a ladder representing the interdeck access hatch from the shuttle middeck to the flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  9. 31 CFR 560.537 - Authorization of certain survey or assessment missions in Iran.

    Science.gov (United States)

    2010-07-01

    ... assessment missions in Iran. 560.537 Section 560.537 Money and Finance: Treasury Regulations Relating to... certain survey or assessment missions in Iran. (a) Subject to the conditions of paragraphs (b), (c), and... missions in Iran related to the planning or preparation for the provision of humanitarian support to...

  10. KuaFu Mission

    Institute of Scientific and Technical Information of China (English)

    XIA Lidong; TU Chuanyi; Schwenn Rainer; Donovan Eric; Marsch Eckart; WANG Jingsong; ZHANG Yongwei; XIAO Zuo

    2006-01-01

    The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.

  11. The Outer Planets and their Moons Comparative Studies of the Outer Planets prior to the Exploration of the Saturn System by Cassini-Huygens

    CERN Document Server

    Encrenaz, T; Owen, T. C; Sotin, C

    2005-01-01

    This volume gives an integrated summary of the science related to the four giant planets in our solar system. It is the result of an ISSI workshop on «A comparative study of the outer planets before the exploration of Saturn by Cassini-Huygens» which was held at ISSI in Bern on January 12-16, 2004. Representatives of several scientific communities, such as planetary scientists, astronomers, space physicists, chemists and astrobiologists have met with the aim to review the knowledge on four major themes: (1) the study of the formation and evolution processes of the outer planets and their satellites, beginning with the formation of compounds and planetesimals in the solar nebula, and the subsequent evolution of the interiors of the outer planets, (2) a comparative study of the atmospheres of the outer planets and Titan, (3) the study of the planetary magnetospheres and their interactions with the solar wind, and (4) the formation and properties of satellites and rings, including their interiors, surfaces, an...

  12. Approach to atmospheric laser-propagation theory based on the extended Huygens-Fresnel principle and a self-consistency concept.

    Science.gov (United States)

    Bochove, Erik J; Rao Gudimetla, V S

    2017-01-01

    We propose a self-consistency condition based on the extended Huygens-Fresnel principle, which we apply to the propagation kernel of the mutual coherence function of a partially coherent laser beam propagating through a turbulent atmosphere. The assumption of statistical independence of turbulence in neighboring propagation segments leads to an integral equation in the propagation kernel. This integral equation is satisfied by a Gaussian function, with dependence on the transverse coordinates that is identical to the previous Gaussian formulation by Yura [Appl. Opt.11, 1399 (1972)APOPAI0003-693510.1364/AO.11.001399], but differs in the transverse coherence length's dependence on propagation distance, so that this established version violates our self-consistency principle. Our formulation has one free parameter, which in the context of Kolmogorov's theory is independent of turbulence strength and propagation distance. We determined its value by numerical fitting to the rigorous beam propagation theory of Yura and Hanson [J. Opt. Soc. Am. A6, 564 (1989)JOAOD60740-323210.1364/JOSAA.6.000564], demonstrating in addition a significant improvement over other Gaussian models.

  13. 用惠更斯面等效原理证明零场定理%Using Huygens' surface equivalence principle to prove the extinction theorem

    Institute of Scientific and Technical Information of China (English)

    侯维娜; 杜惠平

    2006-01-01

    The field equivalence principle, one of the fundamental concepts in electromagnetics, has numerous applications. However, it is not easy for people to understand it thoroughly. Especially,it is even harder to understand the extinction theorem and its realization in practice. In this article the authors use Huygens' surface equivalence principle to prove the extinction theorem, which is the fundamental concepts in electromagnetics. And this method proved to be a simple and good one in practice.%场等效原理是电磁学的基本定理之一,但场等效原理特别是零场定理很难被人理解,人们很难想象在一个区域中的场等效为原问题的场,而在另一个区域中却为零场.用惠更斯面等效原理证明了零场定理,该方法简单明了,易于理解,是一个很好的证明方法.

  14. Incorporation of a spatial source distribution and a spatial sensor sensitivity in a laser ultrasound propagation model using a streamlined Huygens' principle.

    Science.gov (United States)

    Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž

    2016-03-01

    The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution.

  15. Psychological Support Operations and the ISS One-Year Mission

    Science.gov (United States)

    Beven, G.; Vander Ark, S. T.; Holland, A. W.

    2016-01-01

    Since NASA began human presence on the International Space Station (ISS) in November 1998, crews have spent two to seven months onboard. In March 2015 NASA and Russia embarked on a new era of ISS utilization, with two of their crewmembers conducting a one-year mission onboard ISS. The mission has been useful for both research and mission operations to better understand the human, technological, mission management and staffing challenges that may be faced on missions beyond Low Earth Orbit. The work completed during the first 42 ISS missions provided the basis for the pre-flight, in-flight and post-flight work completed by NASA's Space Medicine Operations Division, while our Russian colleagues provided valuable insights from their long-duration mission experiences with missions lasting 10-14 months, which predated the ISS era. Space Medicine's Behavioral Health and Performance Group (BHP) provided pre-flight training, evaluation, and preparation as well as in-flight psychological support for the NASA crewmember. While the BHP team collaboratively planned for this mission with the help of all ISS international partners within the Human Behavior and Performance Working Group to leverage their collective expertise, the US and Russian BHP personnel were responsible for their respective crewmembers. The presentation will summarize the lessons and experience gained within the areas identified by this Working Group as being of primary importance for a one-year mission.

  16. Predicting UV sky for future UV missions

    Science.gov (United States)

    Safonova, M.; Mohan, R.; Sreejith, A. G.; Murthy, Jayant

    2013-02-01

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse Galactic light, depends on different factors. Airglow is dependent on the time of day; zodiacal light depends on the time of year, angle from the Sun and from the ecliptic; diffuse UV emission depends on the line of sight. To provide a full description of the sky along any line of sight, we have also added stars. The UV background light can dominate in many areas of the sky and severely limit viewing directions due to overbrightness. The simulator, available as a downloadable package and as a web-based tool, can be applied to preparation of real space missions and instruments. For demonstration, we present the example use for the two near-future UV missions: UVIT instrument on the Indian Astrosat mission and a new proposed wide-field (∼1000 square degrees) transient explorer satellite.

  17. Nuclear risk analysis of the Ulysses mission

    Energy Technology Data Exchange (ETDEWEB)

    Bartram, B.W.; Vaughan, F.R. (NUS Corporation, 910 Clopper Road, Gaithersburg, Maryland 20877-0962 (USA)); Englehart, D.R.W. (Office of New Production Reactors, U.S. Department of Energy, Washington, D.C. 20585 (USA))

    1991-01-01

    The use of a radioisotope thermoelectric generator fueled with plutonium-238 dioxide on the Space Shuttle-launched Ulysses mission implies some level of risk due to potential accidents. This paper describes the method used to quantify risks in the Ulysses mission Final Safety Analysis Report prepared for the U.S. Department of Energy. The starting point for the analysis described herein is following input of source term probability distributions from the General Electric Company. A Monte Carlo technique is used to develop probability distributions of radiological consequences for a range of accident scenarios thoughout the mission. Factors affecting radiological consequences are identified, the probability distribution of the effect of each factor determined, and the functional relationship among all the factors established. The probability distributions of all the factor effects are then combined using a Monte Carlo technique. The results of the analysis are presented in terms of complementary cumulative distribution functions (CCDF) by mission sub-phase, phase, and the overall mission. The CCDFs show the total probability that consequences (calculated health effects) would be equal to or greater than a given value.

  18. The PROBA-3 Mission

    Science.gov (United States)

    Zhukov, Andrei

    2016-07-01

    PROBA-3 is the next ESA mission in the PROBA line of small technology demonstration satellites. The main goal of PROBA-3 is in-orbit demonstration of formation flying techniques and technologies. The mission will consist of two spacecraft together forming a giant (150 m long) coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). The bigger spacecraft will host the telescope, and the smaller spacecraft will carry the external occulter of the coronagraph. ASPIICS heralds the next generation of solar coronagraphs that will use formation flying to observe the inner corona in eclipse-like conditions for extended periods of time. The occulter spacecraft will also host the secondary payload, DARA (Davos Absolute RAdiometer), that will measure the total solar irradiance. PROBA-3 is planned to be launched in 2019. The scientific objectives of PROBA-3 will be discussed in the context of other future solar and heliospheric space missions.

  19. The Hinode Mission

    CERN Document Server

    Sakurai, Takashi

    2009-01-01

    The Solar-B satellite was launched in 2006 by the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), and was renamed Hinode ('sunrise' in Japanese). Hinode carries three instruments: the X-ray telescope (XRT), the EUV imaging spectrometer (EIS), and the Solar Optical Telescope (SOT). These instruments were developed by ISAS/JAXA in cooperation with the National Astronomical Observatory of Japan as domestic partner, and NASA and the Science and Technology Facilities Council (UK) as international partners. ESA and the Norwegian Space Center have been providing a downlink station. The Hinode (Solar-B) Mission gives a comprehensive description of the Hinode mission and its instruments onboard. This book is most useful for researchers, professionals, and graduate students working in the field of solar physics, astronomy, and space instrumentation. This is the only book that carefully describes the details of the Hinode mission; it is richly illustrated with full-color ima...

  20. Athena Mission Status

    Science.gov (United States)

    Lumb, D.

    2016-07-01

    Athena has been selected by ESA for its second large mission opportunity of the Cosmic Visions programme, to address the theme of the Hot and Energetic Universe. Following the submission of a proposal from the community, the technical and programmatic aspects of the mission design were reviewed in ESA's Concurrent Design Facility. The proposed concept was deemed to betechnically feasible, but with potential constraints from cost and schedule. Two parallel industry study contracts have been conducted to explore these conclusions more thoroughly, with the key aim of providing consolidated inputs to a Mission Consolidation Review that was conducted in April-May 2016. This MCR has recommended a baseline design, which allows the agency to solicit proposals for a community provided payload. Key design aspects arising from the studies are described, and the new reference design is summarised.

  1. The ALEXIS mission recovery

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B. [Los Alamos National Lab., NM (United States); Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R. [AeroAstro, Inc., Herndon, VA (United States)

    1994-03-01

    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  2. MIV Project: Mission scenario

    DEFF Research Database (Denmark)

    Ravazzotti, Mariolina T.; Jørgensen, John Leif; Thuesen, Gøsta

    1997-01-01

    Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions.......Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions....

  3. The Asteroid Impact Mission

    Science.gov (United States)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  4. STS-65 Mission Insignia

    Science.gov (United States)

    1994-01-01

    Designed by the mission crew members, the STS-65 insignia features the International Microgravity Lab (IML)-2 mission and its Spacelab module which flew aboard the Space Shuttle Columbia. IML-2 is reflected in the emblem by two gold stars shooting toward the heavens behind the IML lettering. The Space Shuttle Columbia is depicted orbiting the logo and reaching off into space, with Spacelab on an international quest for a better understanding of the effects of space flight on materials processing and life sciences.

  5. Towards A Shared Mission

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen; Orth Gaarn-Larsen, Carsten

    A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome of the univer......A mission shared by stakeholders, management and employees is a prerequisite for an engaging dialog about the many and substantial changes and challenges currently facing universities. Too often this essen-tial dialog reveals mistrust and misunderstandings about the role and outcome...

  6. Magellan: mission summary.

    Science.gov (United States)

    Saunders, R S; Pettengill, G H

    1991-04-12

    The Magellan radar mapping mission is in the process of producing a global, high-resolution image and altimetry data set of Venus. Despite initial communications problems, few data gaps have occurred. Analysis of Magellan data is in the initial stages. The radar system data are of high quality, and the planned performance is being achieved in terms of spatial resolution and geometric and radiometric accuracy. Image performance exceeds expectations, and the image quality and mosaickability are extremely good. Future plans for the mission include obtaining gravity data, filling gaps in the initial map, and conducting special studies with the radar.

  7. Comprehensive planning of data archive in Japanese planetary missions

    Science.gov (United States)

    Yamamoto, Yukio; Shinohara, Iku; Hoshino, Hirokazu; Tateno, Naoki; Hareyama, Makoto; Okada, Naoki; Ebisawa, Ken

    Comprehensive planning of data archive in Japanese planetary missions Japan Aerospace Exploration Agency (JAXA) provides HAYABUSA and KAGUYA data as planetary data archives. These data archives, however, were prepared independently. Therefore the inconsistency of data format has occurred, and the knowledge of data archiving activity is not inherited. Recently, the discussion of comprehensive planning of data archive has started to prepare up-coming planetary missions, which indicates the comprehensive plan of data archive is required in several steps. The framework of the comprehensive plan is divided into four items: Preparation, Evaluation, Preservation, and Service. 1. PREPARATION FRAMEWORK Data is classified into several types: raw data, level-0, 1, 2 processing data, ancillary data, and etc. The task of mission data preparation is responsible for instrument teams, but preparations beside mission data and support of data management are essential to make unified conventions and formats over instruments in a mission, and over missions. 2. EVALUATION FRAMEWORK There are two meanings of evaluation: format and quality. The format evaluation is often discussed in the preparation framework. The data quality evaluation which is often called quality assurance (QA) or quality control (QC) must be performed by third party apart from preparation teams. An instrument team has the initiative for the preparation itself, and the third-party group is organized to evaluate the instrument team's activity. 3. PRESERVATION FRAMEWORK The main topic of this framework is document management, archiving structure, and simple access method. The mission produces many documents in the process of the development. Instrument de-velopment is no exception. During long-term development of a mission, many documents are obsoleted and updated repeatedly. A smart system will help instrument team to reduce some troubles of document management and archiving task. JAXA attempts to follow PDS manners

  8. Mission Operations Assurance

    Science.gov (United States)

    Faris, Grant

    2012-01-01

    Integrate the mission operations assurance function into the flight team providing: (1) value added support in identifying, mitigating, and communicating the project's risks and, (2) being an essential member of the team during the test activities, training exercises and critical flight operations.

  9. The Gaia mission

    NARCIS (Netherlands)

    Collaboration, Gaia; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I. -C; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by Euro

  10. Inspiration is "Mission Critical"

    Science.gov (United States)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  11. The LISA Pathfinder Mission

    Science.gov (United States)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  12. The Lobster Mission

    Science.gov (United States)

    Barthelmy, Scott

    2011-01-01

    I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.

  13. Mission from Mars

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  14. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissanc

  15. Robust UAV mission planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2011-01-01

    Unmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissance

  16. Robust UAV Mission Planning

    NARCIS (Netherlands)

    L. Evers (Lanah); T.A.B. Dollevoet (Twan); A.I. Barros (Ana); H. Monsuur (Herman)

    2011-01-01

    textabstractUnmanned Areal Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a re

  17. Robust UAV Mission Planning

    NARCIS (Netherlands)

    Evers, L.; Dollevoet, T.; Barros, A.I.; Monsuur, H.

    2014-01-01

    Unmanned Aerial Vehicles (UAVs) can provide significant contributions to information gathering in military missions. UAVs can be used to capture both full motion video and still imagery of specific target locations within the area of interest. In order to improve the effectiveness of a reconnaissanc

  18. EOS Aura Mission Status

    Science.gov (United States)

    Guit, William J.

    2015-01-01

    This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.

  19. The Gaia mission

    NARCIS (Netherlands)

    Collaboration, Gaia; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I. -C; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by

  20. Planetary cubesats - mission architectures

    Science.gov (United States)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  1. Mission from Mars:

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  2. MIV Project: Mission scenario

    DEFF Research Database (Denmark)

    Ravazzotti, Mariolina T.; Jørgensen, John Leif; Thuesen, Gøsta;

    1997-01-01

    Under the ESA contract #11453/95/NL/JG(SC), aiming at assessing the feasibility of Rendez-vous and docking of unmanned spacecrafts, a msiision scenario was defined. This report describes the secquence of manouvres and task allocations for such missions....

  3. The Phoenix Mars Mission

    Science.gov (United States)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  4. The OCO-3 MIssion

    Science.gov (United States)

    Eldering, A.; Kaki, S.; Crisp, D.; Gunson, M. R.

    2013-12-01

    For the OCO-3 mission, NASA has approved a proposal to install the OCO-2 flight spare instrument on the International Space Station (ISS). The OCO-3 mission on ISS will have a key role in delivering sustained, global, scientifically-based, spaceborne measurements of atmospheric CO2 to monitor natural sources and sinks as part of NASA's proposed OCO-2/OCO-3/ASCENDS mission sequence and NASA's Climate Architecture. The OCO-3 mission will contribute to understanding of the terrestrial carbon cycle through enabling flux estimates at smaller spatial scales and through fluorescence measurements that will reduce the uncertainty in terrestrial carbon flux measurements and drive bottom-up land surface models through constraining GPP. The combined nominal missions of both OCO-2 and OCO-3 will likely span a complete El Niño Southern Oscillation (ENSO) cycle, a key indicator of ocean variability. In addition, OCO-3 may allow investigation of the high-frequency and wavenumber structures suggested by eddying ocean circulation and ecosystem dynamics models. Finally, significant growth of urban agglomerations is underway and projected to continue in the coming decades. With the city mode sampling of the OCO-3 instrument on ISS we can evaluate different sampling strategies aimed at studying anthropogenic sources and demonstrate elements of a Greenhouse Gas Information system, as well as providing a gap-filler for tracking trends in the fastest-changing anthropogenic signals during the coming decade. In this presentation, we will describe our science objectives, the overall approach of utilization of the ISS for OCO-3, and the unique features of XCO2 measurements from ISS.

  5. The Mothership Mission Architecture

    Science.gov (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  6. The Double Star mission

    Directory of Open Access Journals (Sweden)

    Liu

    2005-11-01

    Full Text Available The Double Star Programme (DSP was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer", was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC in Beijing and the European Payload Operations Service (EPOS at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  7. NASA's Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2017-01-01

    Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.

  8. Defining Space Mission Architects for the Smaller Missions

    Science.gov (United States)

    Anderson, C.

    1999-01-01

    The definition of the Space Mission Architect (SMA) must be clear in both technical and human terms if we expect to train and/or to find people needed to architect the numbers of smaller missions expected in the future.

  9. Sentinel-2 Mission status

    Science.gov (United States)

    Hoersch, Bianca; Colin, Olivier; Gascon, Ferran; Arino, Olivier; Spoto, Francois; Marchese, Franco; Krassenburg, Mike; Koetz, Benjamin

    2016-04-01

    Copernicus is a joint initiative of the European Commission (EC) and the European Space Agency (ESA), designed to establish a European capacity for the provision and use of operational monitoring information for environment and security applications. Within the Copernicus programme, ESA is responsible for the development of the Space Component, a fully operational space-based capability to supply earth-observation data to sustain environmental information Services in Europe. The Sentinel missions are Copernicus dedicated Earth Observation missions composing the essential elements of the Space Component. In the global Copernicus framework, they are complemented by other satellites made available by third-parties or by ESA and coordinated in the synergistic system through the Copernicus Data-Access system versus the Copernicus Services. The Copernicus Sentinel-2 mission provides continuity to services relying on multi-spectral high-resolution optical observations over global terrestrial surfaces. Sentinel-2 capitalizes on the technology and the vast experience acquired in Europe and the US to sustain the operational supply of data for services such as forest monitoring, land cover changes detection or natural disasters management. The Sentinel-2 mission offers an unprecedented combination of the following capabilities: ○ Systematic global coverage of land surfaces: from 56°South to 84°North, coastal waters and Mediterranean sea; ○ High revisit: every 5 days at equator under the same viewing conditions with 2 satellites; ○ High spatial resolution: 10m, 20m and 60m; ○ Multi-spectral information with 13 bands in the visible, near infra-red and short wave infra-red part of the spectrum; ○ Wide field of view: 290 km. The data from the Sentinel-2 mission are available openly and freely for all users with online easy access since December 2015. The presentation will give a status report on the Sentinel-2 mission, and outlook for the remaining ramp-up Phase, the

  10. Planning for Crew Exercise for Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, E. Cherice; Ryder, Jeff

    2015-01-01

    Exercise which is necessary for maintaining crew health on-orbit and preparing the crew for return to 1G can be challenging to incorporate into spaceflight vehicles. Deep space missions will require further understanding of the physiological response to microgravity, understanding appropriate mitigations, and designing the exercise systems to effectively provide mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  11. Pol(In)SAR Soil Moisture Study by using Pi-SAR 2L and GB-SAR Data in Preparation of the upcoming ALOS-2/PALSAR-2 Mission

    Science.gov (United States)

    Koyama, C.; Sato, M.

    2013-12-01

    Recently Earth Observation by means of active microwave is advancing rapidly. The evolution started from first-generation classical single-channel systems like JERS (JAXA), ERS (ESA) or Radarsat-1 (CSA). With the launch of ALOS-1 (JAXA), the first fully polarimetric SAR measurements became available followed by Radarsat-2 (CSA) and TerraSAR-X (DLR), making polarimetric L-, C-, and X-band data available. In Japanese fiscal year 2013, the third generation of SAR satellites will begin with the launch of ALOS-2. The JAXA cutting-edge follow-on mission to the highly acclaimed ALOS-1 will carry the state-of-the-art PALSAR-2 sensor aboard. Due to its much better orbital revisit cycle of only 14 days and its very high spatial resolution (3 m) the system will be highly suitable for interferometric analysis of polarimetric data obtained from repeat-pass acquisitions. The combination of polarimetry and interferometry is probably the most promising approach for a better estimation of geophysical parameters from SAR data acquired over natural terrain and thus will greatly improve the capabilities to estimate soil moisture under all kinds of vegetation with high accuracy and with high temporal and spatial resolutions. In advent of the 3rd generation of Japanese SAR EO satellites, our group conducts a variety of fundamental research on low-frequency SAR surface scattering/interactions. Here, we present first results from soil moisture experiments based on fully polarimetric GB-SAR (Tohoku University) and Pi-SAR 2L (JAXA) measurements. These experiments comprise investigations of the effective soil moisture measuring depth of L-band SAR. The experimental set-up consists of an array of receiving di-pole antennas installed in different depths to quantify the penetration (and reflection) capabilities of the incoming EM waves. We use a fully polarimetric GB-SAR system based on a high-end VNA capable of coherent measurement of the [S2] scattering matrix. It uses 2 large horn antennas

  12. 3 EXPOSE Missions - overview and lessons learned

    Science.gov (United States)

    Rabbow, E.; Willnekcer, R.; Reitz, G.; Aman, A.; Bman, B.; Cman, C.

    2011-10-01

    The International Space Station ISS provides a variety of external research platforms for experiments aiming at the utilization of space parameters like vacuum, temperature oscillation and in particular extraterrestrial short wavelength UV and ionizing radiation which cannot be simulated accurately in the laboratory. Three Missions, two past and one upcoming, will be presented. A family of astrobiological experimental ESA facilities called "EXPOSE" were and will be accommodated on these outside exposure platforms: on one of the external balconies of the European Columbus Module (EXPOSE-E) and on the URM-D platform on the Russian Zvezda Module (EXPOSE-R and EXPOSE-R2). Exobiological and radiation experiments, exposing chemical, biological and dosimetric samples to the harsh space environment are - and will be - accommodated on these facilities to increase our knowledge on the origin, evolution and distribution of life, on Earth and possibly beyond. The biological experiments investigate resistance and adaptation of organisms like bacteria, Achaea, fungi, lichens, plant seeds and small animals like mosquito larvae to extreme environmental conditions and underlying mechanisms like DNA repair. The organic chemical experiments analyse chemical reactions triggered by the extraterrestrial environment, especially short wavelength UV radiation, to better understand prebiotic chemistry. The facility is optimized to allow exposure of biological specimen and material samples under a variety of conditions, using optical filter systems. Environmental parameters like temperature and radiation are regularly recorded and down linked by telemetry. Two long term missions named according to their facility - EXPOSE-E and EXPOSE-R - are completed and a third mission is planned and currently prepared. Operations of all three missions including sample accommodation are performed by DLR. An overview of the two completed missions will be given including lessons learned as well as an outlook

  13. The Sentinel-3 Mission

    Science.gov (United States)

    Berruti, B.; Mavrocordatos, C.

    2010-12-01

    The Sentinel-3 Operational Mission is part of the Global Monitoring for Environment and Security (GMES) initiative, which was established to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The series of Sentinel-3 satellites will ensure global, frequent and near-realtime ocean, ice and land monitoring, with the provision of observation data in routine, long term (20 years of operations) and continuous fashion, with a consistent quality and a very high level of availability. The first launch is expected in 2013. Currently half way through the development phase of the project, this paper presents the consolidated Sentinel-3 design and expected performances related to the different mission objectives (ocean colour, altimetry, surface temperature, land). The operational concept and key system performances are also addressed, as well as the satellite and instruments design. Finally, the schedule for the remaining development is presented.

  14. The Euclid mission design

    CERN Document Server

    Racca, Giuseppe D; Stagnaro, Luca; Salvignol, Jean Christophe; Alvarez, Jose Lorenzo; Criado, Gonzalo Saavedra; Venancio, Luis Gaspar; Short, Alex; Strada, Paolo; Boenke, Tobias; Colombo, Cyril; Calvi, Adriano; Maiorano, Elena; Piersanti, Osvaldo; Prezelus, Sylvain; Rosato, Pierluigi; Pinel, Jacques; Rozemeijer, Hans; Lesna, Valentina; Musi, Paolo; Sias, Marco; Anselmi, Alberto; Cazaubiel, Vincent; Vaillon, Ludovic; Mellier, Yannick; Amiaux, Jerome; Berthe, Michel; Sauvage, Marc; Azzollini, Ruyman; Cropper, Mark; Pottinger, Sabrina; Jahnke, Knud; Ealet, Anne; Maciaszek, Thierry; Pasian, Fabio; Zacchei, Andrea; Scaramella, Roberto; Hoar, John; Kohley, Ralf; Vavrek, Roland; Rudolph, Andreas; Schmidt, Micha

    2016-01-01

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the sc...

  15. The THEMIS Mission

    CERN Document Server

    Burch, J. L

    2009-01-01

    The THEMIS mission aims to determine the trigger and large-scale evolution of substorms by employing five identical micro-satellites which line up along the Earth's magnetotail to track the motion of particles, plasma, and waves from one point to another and for the first time, resolve space-time ambiguities in key regions of the magnetosphere on a global scale. The primary goal of THEMIS is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map: (i) local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection. The probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives. This volume describes the mission, the instrumentation, and the data derived from them.

  16. Asteroid Kinetic Impactor Missions

    Science.gov (United States)

    Chesley, Steven

    2015-08-01

    Asteroid impact missions can be carried out as a relatively low-cost add-ons to most asteroid rendezvous missions and such impact experiments have tremendous potential, both scientifically and in the arena of planetary defense.The science returns from an impactor demonstration begin with the documentation of the global effects of the impact, such as changes in orbit and rotation state, the creation and dissipation of an ejecta plume and debris disk, and morphological changes across the body due to the transmission of seismic waves, which might induce landslides and toppling of boulders, etc. At a local level, an inspection of the impact crater and ejecta blanket reveals critical material strength information, as well as spectral differences between the surface and subsurface material.From the planetary defense perspective, an impact demonstration will prove humankind’s capacity to alter the orbit of a potentially threatening asteroid. This technological leap comes in two parts. First, terminal guidance systems that can deliver an impactor with small errors relative to the ~100-200 meter size of a likely impactor have yet to be demonstrated in a deep space environment. Second, the response of an asteroid to such an impact is only understood theoretically due to the potentially significant dependence on the momentum carried by escaping ejecta, which would tend to enhance the deflection by tens of percent and perhaps as much as a factor of a few. A lack of validated understanding of momentum enhancement is a significant obstacle in properly sizing a real-world impactor deflection mission.This presentation will describe the drivers for asteroid impact demonstrations and cover the range of such concepts, starting with ESA’s pioneering Don Quijote mission concept and leading to a brief description of concepts under study at the present time, including the OSIRIS-REx/ISIS, BASiX/KIX and AIM/DART (AIDA) concepts.

  17. Deep Blue Mission

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Chinese Navy dispatches ships to the Gulf of Aden on a second escort mission, marking its growing strength in the face of more diverse challenges Elarly in the morning of April 23, crew- imembers from the Chinese Navy’s second escort fleet in the Gulf of Aden Igathered on deck and saluted to the east, paying their respects to the motherland in celebration of the 60th anniversary of the Chinese Navy. This fleet,

  18. Space VLBI Mission: VSOP

    Science.gov (United States)

    Murata, Yasuhiro; Hirabayashi, Hisashi; Kobayashi, Hideyuki; Shibata, Katsunori M.; Umemoto, Tomofumi; Edwards, P. G.

    2001-03-01

    We succeeded in performing space VLBI observations using the VLBI satellite HALCA (VSOP satellite), launched in February, 1997 aboard the first M-V rocket developed by ISAS. The mission is led by ISAS and NAO, with the collaborations from CRL, NASA, NRAO, and other institutes and observatories in Europe, Australia, Canada, South-Africa, and China, We succeeded to make a lot of observations and to get the new features from the active galaxies, the cosmic jets, and other astronomical objects.

  19. A Somalia mission experience.

    Science.gov (United States)

    Mahomed, Zeyn; Moolla, Muhammad; Motara, Feroza; Laher, Abdullah

    2012-06-28

    Reports about The Horn of Africa Famine Crisis in 2011 flooded our news bulletins and newspapers. Yet the nations of the world failed to respond and alleviate the unfolding disaster. In August 2011, the Gift of the Givers Foundation mobilised what was to become the largest humanitarian mission ever conducted by an African organisation. Almost a year later, the effort continues, changing the face of disaster medicine as we know it.

  20. A Mars 1984 mission

    Science.gov (United States)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  1. Cyber Network Mission Dependencies

    Science.gov (United States)

    2015-09-18

    Technology applications 12 5 VMs allow one host to belong to multiple VLANs 14 6 Asset recommendation system mockup 15 7 Perturbative mapping may...extended list of critical assets based on communications patterns and software dependencies. Once vulnerabilities have been assessed, AMMO produces a...status of not just network machines, but also software tools, network connections, server room conditions, and many other mission parameters. From this

  2. Single-shell tank retrieval program mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  3. Aristoteles - An ESA mission to study the earth's gravity field

    Science.gov (United States)

    Lambeck, K.

    In preparing for its first Solid-Earth Program, ESA has studied a satellite concept for a mission dedicated to the precise determination of the earth's geopotential (gravitational and magnetic) fields. Data from such a mission are expected to make substantial contributions to a number of research and applications fields in solid-earth geophysics, oceanography and global-change monitoring. The impact of a high-resolution gravity-field mission on studies of the various earth-science problems is assessed. The current state of our knowledge in this area is discussed and the ability of low-orbit satellite gradiometry to contribute to their solution is demonstrated.

  4. Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES)

    Science.gov (United States)

    Sittler, Edward C.; Cooper, J.; Mahaffy, P.; Fairbrother D.; dePater, I.; Schultze-Makuch, D.; Pitman, J.

    2007-01-01

    Cassini and Huygens have made exciting discoveries at Titan and Enceladus, and at the same time made us aware of how little we understand about these bodies. For example, the source, and/or recycling mechanism, of methane in Titan's atmosphere is still puzzling. Indeed, river beds (mostly dry) and lakes have been spotted, and occasional clouds have been seen, but the physics to explain the observations is still mostly lacking, since our "image" of Titan is still sketchy and quite incomplete. Enceladus, only -500 km in extent, is even more puzzling, with its fiery plumes of vapor, dust and ice emanating from its south polar region, "feeding" Saturn's E ring. Long term variability of magnetospheric plasma, neutral gas, E-ring ice grain density, radio emissions, and corotation of Saturn's planetary magnetic field in response to Enceladus plume activity are of great interest for Saturn system science. Both Titan and Enceladus are bodies of considerable astrobiological interest in view of high organic abundances at Titan and potential subsurface liquid water at Enceladus. We propose to develop a new mission to Titan and Enceladus, the Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES), to address these questions using novel new technologies. TOAMES is a multi-faceted mission that starts with orbit insertion around Saturn using aerobraking with Titan's extended atmosphere. We then have an orbital tour around Saturn (for 1-2 years) and close encounters with Enceladus, before it goes into orbit around Titan (via aerocapture). During the early reconnaissance phase around Titan, perhaps 6 months long, the orbiter will use altimetry, radio science and remote sensing instruments to measure Titan's global topography, subsurface structure and atmospheric winds. This information will be used to determine where and when to release the Aerorover, so that it can navigate safely around Titan and identify prime sites for surface sampling and analysis. In situ instruments

  5. The Gaia mission

    Science.gov (United States)

    Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-11-01

    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gaia

  6. The Juno Mission

    Science.gov (United States)

    Bolton, S. J.

    2015-12-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrives at Jupiter in July 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Jupiter's formation is fundamental to the evolution of our solar system and to the distribution of volatiles early in the solar system's history. Juno's measurements of the abundance of Oxygen and Nitrogen in Jupiter's atmosphere, and the detailed maps of Jupiter's gravity and magnetic field structure will constrain theories of early planetary development. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. The Juno design enables the first detailed investigation of Jupiter's interior structure, and deep atmosphere as well as the first in depth exploration of Jupiter's polar magnetosphere. The Juno mission design, science goals, and measurements related to the origin of Jupiter will be presented.

  7. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  8. Landsat Data Continuity Mission

    Science.gov (United States)

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  9. Multi-Mission SDR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless transceivers used for NASA space missions have traditionally been highly custom and mission specific. Programs such as the GRC Space Transceiver Radio...

  10. Mission Critical Occupation (MCO) Charts

    Data.gov (United States)

    Office of Personnel Management — Agencies report resource data and targets for government-wide mission critical occupations and agency specific mission critical and/or high risk occupations. These...

  11. Operational Lessons Learned from NASA Analog Missions

    Science.gov (United States)

    Arnold, Larissa S.

    2010-01-01

    National Aeronautics and Space Administration s (NASA) efforts in human space flight are currently focused on the Space Shuttle and International Space Station (ISS) programs, with efforts beginning on the future exploration opportunities. Both the Space Shuttle and ISS programs are important to the development of a capability for human exploration beyond Low Earth Orbit (LEO). The ISS provides extensive research capabilities to determine how the human body reacts to long duration stays in space. Also, the ISS and Shuttle can serve as a limited testbed for equipment or entire systems that may be used on missions to the Moon, Mars, or to a near-Earth asteroid. It has been nearly 35 years since the Apollo astronauts visited the Moon. Future space explorers will have to re-learn how to work and live on planetary surfaces, and how to do that for extended periods of time. Exploration crews will perform a wide assortment of scientific tasks, including material sampling and emplacement of automated instruments. Surface mission operations include the activities of the crew living and working, mission support from the Earth, and the operation of robotic and other remotely commanded equipment on the surface and in planetary orbit. Other surface activities will include the following: exploring areas surrounding a habitat; using rovers to collect rock and soil samples; setting up experiments on the surface to monitor the radiation environment and any seismic or thermal activity; and conducting scientific analyses and experiments inside a habitat laboratory. Of course, the astronauts will also have to spend some of their surface time "doing chores" and maintaining their habitat and other systems. In preparation for future planetary exploration, NASA must design the answers to many operational questions. What will the astronauts do on the surface? How will they accomplish this? What tools will they require for their tasks? How will robots and astronauts work together? What

  12. Reverse trade mission on the drilling and completion of geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-09

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. DE-FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  13. Advanced power sources for space missions

    Science.gov (United States)

    Gavin, Joseph G., Jr.; Burkes, Tommy R.; English, Robert E.; Grant, Nicholas J.; Kulcinski, Gerald L.; Mullin, Jerome P.; Peddicord, K. Lee; Purvis, Carolyn K.; Sarjeant, W. James; Vandevender, J. Pace

    1989-01-01

    Approaches to satisfying the power requirements of space-based Strategic Defense Initiative (SDI) missions are studied. The power requirements for non-SDI military space missions and for civil space missions of the National Aeronautics and Space Administration (NASA) are also considered. The more demanding SDI power requirements appear to encompass many, if not all, of the power requirements for those missions. Study results indicate that practical fulfillment of SDI requirements will necessitate substantial advances in the state of the art of power technology. SDI goals include the capability to operate space-based beam weapons, sometimes referred to as directed-energy weapons. Such weapons pose unprecedented power requirements, both during preparation for battle and during battle conditions. The power regimes for these two sets of applications are referred to as alert mode and burst mode, respectively. Alert-mode power requirements are presently stated to range from about 100 kW to a few megawatts for cumulative durations of about a year or more. Burst-mode power requirements are roughly estimated to range from tens to hundreds of megawatts for durations of a few hundred to a few thousand seconds. There are two likely energy sources, chemical and nuclear, for powering SDI directed-energy weapons during the alert and burst modes. The choice between chemical and nuclear space power systems depends in large part on the total duration during which power must be provided. Complete study findings, conclusions, and eight recommendations are reported.

  14. The Cosmic DUNE dust astronomy mission

    Science.gov (United States)

    Grun, E.; Srama, R.; Cosmic Dune Team

    A dust astronomy mission aims at the simultaneous measurement of the origin and the chemical composition of individual dust grains in space. Interstellar dust traversing the solar system constitutes the galactic solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with Cosmic DUNE (Cosmic Dust Near Earth) will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Cosmic DUNE will prepare the way for effective collection in near-Earth space of interstellar and interplanetary dust for subsequent return to Earth and analysis in laboratories. Cosmic DUNE establishes the next logical step beyond NASA's Stardust mission, with four major advancements in cosmic dust research: (1) Analysis of the elemental and isotopic composition of individual cosmic dust grains, (2) determination of the size distribution of interstellar dust, (3) characterization of the interstellar dust flow through the planetary system, and (4) analysis of interplanetary dust of cometary and asteroidal origin. This mission goal will be reached with novel dust instrumentation. A dust telescope trajectory sensor has been developed which is capable of obtaining precision trajectories of sub-micron sized particles in space. A new high mass resolution dust analyzer of 0.1m2 impact area can cope with the low fluxes expected in interplanetary space. Cosmic DUNE will be proposed to ESA in response to its upcoming call for mission ideas.

  15. Exomars Mission Achievements

    Science.gov (United States)

    Lecomte, J.; Juillet, J. J.

    2016-12-01

    ExoMars is the first step of the European Space Agency's Aurora Exploration Programme. Comprising two missions, the first one launched in 2016 and the second one to be launched in 2020, ExoMars is a program developed in a broad ESA and Roscosmos co-operation, with significant contribution from NASA that addresses the scientific question of whether life ever existed on Mars and demonstrate key technologies for entry, descent, landing, drilling and roving on the Martian surface . Thales Alenia Space is the overall prime contractor of the Exomars program leading a large industrial team The Spacecraft Composite (SCC), consisting of a Trace Gas Orbiter (TGO) and an EDL (Entry Descend and Landing) Demonstrator Module (EDM) named Schiaparelli, has been launched on 14 March 2016 from the Baikonur Cosmodrome by a Proton Launcher. The two modules will separate on 16 October 2016 after a 7 months cruise. The TGO will search for evidence of methane and other atmospheric gases that could be signatures of active biological or geological processes on Mars and will provide communications relay for the 2020 surface assets. The Schiaparelli module will prove the technologies required to safely land a payload on the surface of Mars, with a package of sensors aimed to support the reconstruction of the flown trajectory and the assessment of the performance of the EDL subsystems. For the second Exomars mission a space vehicle composed of a Carrier Module (CM) and a Descent Module (DM), whose Landing Platform (LP) will house a Rover, will begin a 7 months long trip to Mars in August 2020. In 2021 the Descent Module will be separated from the Carrier to carry out the entry into the planet's atmosphere and subsequently make the Landing Platform and the Rover land gently on the surface of Mars. While the LP will continue to measure the environmental parameters of the landing site, the Rover will begin exploration of the surface, which is expected to last 218 Martian days (approx. 230 Earth

  16. Solar sail mission design

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, M.

    2000-02-01

    The main subject of this work is the design and detailed orbit transfer analysis of space flight missions with solar sails utilizing solar pressure for primary propulsion. Such a sailcraft requires ultra-light weight, gossamer-like deployable structures and materials in order to effectively utilize the transfer of momentum of solar photons. Different design concepts as well as technological elements for solar sails are considered, and an innovative design of a deployable sail structure including new methods for sail folding and unfolding is presented. The main focus of this report is on trajectory analysis, simulation and optimization of planetocentric as well as heliocentric low-thrust orbit transfers with solar sails. In a parametric analysis, geocentric escape spiral trajectories are simulated and corresponding flight times are determined. In interplanetary space, solar sail missions to all planets in our solar system as well as selected minor bodies are included in the analysis. Comparisons to mission concepts utilizing chemical propulsion as well as ion propulsion are included in order to assess whether solar sailing could possibly enhance or even enable this mission. The emphasis in the interplanetary mission analysis is on novel concepts: a unique method to realize a sun-synchronous Mercury orbiter, fast missions to the outer planets and the outer heliosphere applying a ''solar photonic assist'', rendezvous and sample return missions to asteroids and comets, as well as innovative concepts to reach unique vantage points for solar observation (''Solar Polar Orbiter'' and ''Solar Probe''). Finally, a propellant-less sailcraft attitude control concept using an external torque due to solar pressure is analyzed. Examples for sail navigation and control in circular Earth orbit applying a PD-control algorithm are shown, illustrating the maneuverability of a sailcraft. (orig.) [German] Gegenstand dieser

  17. 75 FR 6178 - Mission Statement

    Science.gov (United States)

    2010-02-08

    ...), thermal coal, and palm oil exports for bio fuel, dominate energy exports. Sound fiscal and monetary.... Mission Statement Secretarial Indonesia Clean Energy Business Development Mission May 23-25, 2010. Mission... to Jakarta, Indonesia May 23-25, 2010 to discuss market development policies and promote U.S. exports...

  18. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  19. Materials trade study for lunar/gateway missions

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.; Anderson, B. M.; Simonsen, L. C.

    2003-01-01

    The National Aeronautics and Space Administration (NASA) administrator has identified protection from radiation hazards as one of the two biggest problems of the agency with respect to human deep space missions. The intensity and strength of cosmic radiation in deep space makes this a 'must solve' problem for space missions. The Moon and two Earth-Moon Lagrange points near Moon are being proposed as hubs for deep space missions. The focus of this study is to identify approaches to protecting astronauts and habitats from adverse effects from space radiation both for single missions and multiple missions for career astronauts to these destinations. As the great cost of added radiation shielding is a potential limiting factor in deep space missions, reduction of mass, without compromising safety, is of paramount importance. The choice of material and selection of the crew profile play major roles in design and mission operations. Material trade studies in shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space mission's to two Earth-Moon co-linear Lagrange points (L1) between Earth and the Moon and (L2) on back side of the moon as seen from Earth, and to the Moon have been studied. It is found that, for single missions, current state-of-the-art knowledge of material provides adequate shielding. On the other hand, the choice of shield material is absolutely critical for career astronauts and revolutionary materials need to be developed for these missions. This study also provides a guide to the effectiveness of multifunctional materials in preparation for more detailed geometry studies in progress. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. The Mars Pathfinder Mission

    Science.gov (United States)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  1. Human Mars Mission Contamination Issues

    Science.gov (United States)

    Lupisella, M. L.

    2001-01-01

    A potential challenge for a human Mars mission is that while humans are by most measures the obvious best way to search for life on Mars, we may also be the most problematic in that we could unduly compromise the search for life by contaminating relevant environments and/or possibly adversely and irreversibly affecting indigenous life. Perhaps more problematic is the fundamental epistemic challenge of the "one data point" limitation which could decrease confidence in applying terrestrially based research to extraterrestrial life issues in general. An informal decision tree is presented as one way to begin thinking about contamination issues. There are many sub-questions and distinctions not shown such as biological vs. nonbiological (but biologically relevant) contamination, viable vs. dead organisms, masking indigenous organisms vs. merely making the search more difficult, and independent origin vs. panspermia distinctions. While it may be unlikely that terrestrial microbes could survive on Mars, let alone reproduce and unduly compromise the search for life, the unpredictable potential for microbial life to survive, grow exponentially, evolve and modify (and sometimes destroy) environments, warrants focusing carefully on biologically relevant contamination as we prepare to send humans to the first planet that may have indigenous life-forms.

  2. Enabling the human mission

    Science.gov (United States)

    Bosley, John

    The duplication of earth conditions aboard a spacecraft or planetary surface habitat requires 60 lb/day/person of food, potable and hygiene water, and oxygen. A 1000-day mission to Mars would therefore require 30 tons of such supplies per crew member in the absence of a closed-cycle, or regenerative, life-support system. An account is given of the development status of regenerative life-support systems, as well as of the requisite radiation protection and EVA systems, the health-maintenance and medical care facilities, zero-gravity deconditioning measures, and planetary surface conditions protection.

  3. The CHEOPS Mission

    Science.gov (United States)

    Broeg, Christopher; benz, willy; fortier, andrea; Ehrenreich, David; beck, Thomas; cessa, Virginie; Alibert, Yann; Heng, Kevin

    2015-12-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry. It is expected to be launch-ready at the end of 2017.CHEOPS will be the first space observatory dedicated to search for transits on bright stars already known to host planets. It will have access to more than 70% of the sky. This will provide the unique capability of determining accurate radii for planets for which the mass has already been estimated from ground-based radial velocity surveys and for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The measurement of the radius of a planet from its transit combined with the determination of its mass through radial velocity techniques gives the bulk density of the planet, which provides direct insights into the structure and/or composition of the body. In order to meet the scientific objectives, a number of requirements have been derived that drive the design of CHEOPS. For the detection of Earth and super-Earth planets orbiting G5 dwarf stars with V-band magnitudes in the range 6 ≤ V ≤ 9 mag, a photometric precision of 20 ppm in 6 hours of integration time must be reached. This time corresponds to the transit duration of a planet with a revolution period of 50 days. In the case of Neptune-size planets orbiting K-type dwarf with magnitudes as faint as V=12 mag, a photometric precision of 85 ppm in 3 hours of integration time must be reached. To achieve this performance, the CHEOPS mission payload consists of only one instrument, a space telescope of 30 cm clear aperture, which has a single CCD focal plane detector. CHEOPS will be inserted in a low Earth orbit and the total duration of the CHEOPS mission is 3.5 years (goal: 5 years).The presentation will describe the current payload and mission design of CHEOPS, give the development status, and show the expected performances.

  4. Climate Benchmark Missions: CLARREO

    Science.gov (United States)

    Wielicki, Bruce A.; Young, David F.

    2010-01-01

    CLARREO (Climate Absolute Radiance and Refractivity Observatory) is one of the four Tier 1 missions recommended by the recent NRC decadal survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to rigorously observe climate change on decade time scales and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO mission accomplishes this critical objective through highly accurate and SI traceable decadal change observations sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. The same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. The CLARREO breakthrough in decadal climate change observations is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. These accuracy levels are determined both by the projected decadal changes as well as by the background natural variability that such signals must be detected against. The accuracy for decadal change traceability to SI standards includes uncertainties of calibration, sampling, and analysis methods. Unlike most other missions, all of the CLARREO requirements are judged not by instantaneous accuracy, but instead by accuracy in large time/space scale average decadal changes. Given the focus on decadal climate change, the NRC Decadal Survey concluded that the single most critical issue for decadal change observations was their lack of accuracy and low confidence in

  5. The ARTEMIS mission

    CERN Document Server

    Angelopoulos, Vassilis

    2014-01-01

    The ARTEMIS mission was initiated by skillfully moving the two outermost Earth-orbiting THEMIS spacecraft into lunar orbit to conduct unprecedented dual spacecraft observations of the lunar environment. ARTEMIS stands for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun. Indeed, this volume discusses initial findings related to the Moon’s magnetic and plasma environments and the electrical conductivity of the lunar interior. This work is aimed at researchers and graduate students in both heliophysics and planetary physics. Originally published in Space Science Reviews, Vol. 165/1-4, 2011.

  6. NEAR Shoemaker spacecraft mission operations

    Science.gov (United States)

    Holdridge, Mark E.

    2002-01-01

    On 12 February 2001, Near Earth Asteroid Rendezvous (NEAR) Shoemaker became the first spacecraft to land on a small body, 433 Eros. Prior to that historic event, NEAR was the first-ever orbital mission about an asteroid. The mission presented general challenges associated with other planetary space missions as well as challenges unique to an inaugural mission around a small body. The NEAR team performed this operations feat with processes and tools developed during the 4-year-long cruise to Eros. Adding to the success of this historic mission was the cooperation among the NEAR science, navigation, guidance and control, mission design, and software teams. With clearly defined team roles, overlaps in responsibilities were minimized, as were the associated costs. This article discusses the processes and systems developed at APL that enabled the success of NEAR mission operations.

  7. OSIRIS-REx Asterod Sample Return Mission

    Science.gov (United States)

    Nakamura-Messinger, Keiki; Connolly, Harold C. Jr.; Messenger, Scott; Lauretta, Dante S.

    2017-01-01

    OSIRIS-REx is NASA's third New Frontiers Program mission, following New Horizons that completed a flyby of Pluto in 2015 and the Juno mission to Jupiter that has just begun science operations. The OSIRIS-REx mission's primary objective is to collect pristine surface samples of a carbonaceous asteroid and return to Earth for analysis. Carbonaceous asteroids and comets are 'primitive' bodies that preserved remnants of the Solar System starting materials and through their study scientists can learn about the origin and the earliest evolution of the Solar System. The OSIRIS-REx spacecraft was successfully launched on September 8, 2016, beginning its seven year journey to asteroid 101955 Bennu. The robotic arm will collect 60-2000 grams of material from the surface of Bennu and will return to Earth in 2023 for worldwide distribution by the Astromaterials Curation Facility at NASA Johnson Space Center. The name OSIRIS-REx embodies the mission objectives (1) Origins: Return and analyze a sample of a carbonaceous asteroid, (2) Spectral Interpretation: Provide ground-truth for remote observation of asteroids, (3) Resource Identification: Determine the mineral and chemical makeup of a near-Earth asteroid (4) Security: Measure the non-gravitational that changes asteroidal orbits and (5) Regolith Explorer: Determine the properties of the material covering an asteroid surface. Asteroid Bennu may preserve remnants of stardust, interstellar materials and the first solids to form in the Solar System and the molecular precursors to the origin of life and the Earth's oceans. Bennu is a potentially hazardous asteroid, with an approximately 1 in 2700 chance of impacting the Earth late in the 22nd century. OSIRIS-REx collects from Bennu will help formulate the types of operations and identify mission activities that astronauts will perform during their expeditions. Such information is crucial in preparing for humanity's next steps beyond low Earthy orbit and on to deep space

  8. The SPICA mission

    Science.gov (United States)

    Sibthorpe, B.; Helmich, F.; Roelfsema, P.; Kaneda, H.; Shibai, H.

    2016-05-01

    SPICA is a mid and far-infrared space mission to be submitted as a candidate to ESA's fifth medium class mission call, due in early 2016. This will be a joint project between ESA and JAXA, with ESA taking the lead role. If selected, SPICA will launch in ˜2029 and operate for a goal lifetime of 5 years. The spacecraft will house a 2.5 m telescope actively cooled to 8 K, providing unprecedented sensitivity at mid-far infrared wavelengths. The low background environment and wavelength coverage provided by SPICA will make it possible to conduct detailed spectroscopic surveys of sources in both the local and distant Universe, deep into the most obscured regions. Using these data the evolution of galaxies over a broad and continuous range of cosmic time can be studied, spanning the era of peak star forming activity. SPICA will also provide unique access to, among others, the deep-lying water-ice spectral features and HD lines within planet forming discs. SPICA will conduct an extensive survey of both planet forming discs and evolved planetary systems, with the aim of providing the missing link between planet formation models and the large number of extrasolar planetary systems now being discovered.

  9. Calvin and mission

    Directory of Open Access Journals (Sweden)

    Jacobus (Kobus P. Labuschagne

    2009-11-01

    Full Text Available It has often been stated or implied that John Calvin and the Reformers in general were indifferent to or even against mission. The aim of this study is to point out that this understanding is not a true version of the facts. A thorough examination of the theology and actions of John Calvin, evaluated against the background of his times and world, reveals that he was firmly committed to spreading the Gospel of Jesus Christ, the Lord. Also the theological insights of Calvin and the Reformers not only provided the crucial theological basis to support the future massive missionary expansion of Protestant churches, but necessitate for all times Church mission as a sure consequence of their theology. Calvin’s theology can indeed be described as an ‘essentially missionary theology’. In the heart of Calvin’s theological thinking clearly features the doctrine of justifi cation – because medieval man’s concern for salvation needed to be answered.

  10. Apollo 11 Mission Commemorated

    Science.gov (United States)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  11. EU Universities’ Mission Statements

    Directory of Open Access Journals (Sweden)

    Liudmila Arcimaviciene

    2015-04-01

    Full Text Available In the last 10 years, a highly productive space of metaphor analysis has been established in the discourse studies of media, politics, business, and education. In the theoretical framework of Conceptual Metaphor Theory and Critical Discourse Analysis, the restored metaphorical patterns are especially valued for their implied ideological value as realized both conceptually and linguistically. By using the analytical framework of Critical Metaphor Analysis and procedurally employing Pragglejaz Group’s Metaphor Identification Procedure, this study aims at analyzing the implied value of the evoked metaphors in the mission statements of the first 20 European Universities, according to the Webometrics ranking. In this article, it is proposed that Universities’ mission statements are based on the positive evaluation of the COMMERCE metaphor, which does not fully correlate with the ideological framework of sustainability education but is rather oriented toward consumerism in both education and society. Despite this overall trend, there are some traceable features of the conceptualization reflecting the sustainability approach to higher education, as related to freedom of speech, tolerance, and environmental concerns. Nonetheless, these are suppressed by the metaphoric usages evoking traditional dogmas of the conservative ideology grounded in the concepts of the transactional approach to relationship, competitiveness for superiority, the importance of self-interest and strength, and quantifiable quality.

  12. The Gaia mission

    CERN Document Server

    ,

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We...

  13. OMV mission simulator

    Science.gov (United States)

    Cok, Keith E.

    1989-01-01

    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers.

  14. STS-78 Mission Insignia

    Science.gov (United States)

    1996-01-01

    The STS-78 patch links past with present to tell the story of its mission and science through a design imbued with the strength and vitality of the 2-dimensional art of North America's northwest coast Indians. Central to the design is the space Shuttle whose bold lines and curves evoke the Indian image for the eagle, a native American symbol of power and prestige as well as the national symbol of the United States. The wings of the Shuttle suggest the wings of the eagle whose feathers, indicative of peace and friendship in Indian tradition, are captured by the U forms, a characteristic feature of Northwest coast Indian art. The nose of the Shuttle is the strong downward curve of the eagle's beak, and the Shuttle's forward windows, the eagle's eyes, represented through the tapered S forms again typical of this Indian art form. The basic black and red atoms orbiting the mission number recall the original NASA emblem while beneath, utilizing Indian ovoid forms, the major mission scientific experiment package LMS (Life and Materials Sciences) housed in the Shuttle's cargo bay is depicted in a manner reminiscent of totem-pole art. This image of a bird poised for flight, so common to Indian art, is counterpointed by an equally familiar Tsimshian Indian symbol, a pulsating sun with long hyperbolic rays, the symbol of life. Within each of these rays are now encased crystals, the products of this mission's 3 major, high-temperature materials processing furnaces. And as the sky in Indian lore is a lovely open country, home of the Sun Chief and accessible to travelers through a hole in the western horizon, so too, space is a vast and beckoning landscape for explorers launched beyond the horizon. Beneath the Tsimshian sun, the colors of the earth limb are appropriately enclosed by a red border representing life to the Northwest coast Indians. The Indian colors of red, navy blue, white, and black pervade the STS-78 path. To the right of the Shuttle-eagle, the constellation

  15. General Mission Analysis Tool (GMAT): Mission, Vision, and Business Case

    Science.gov (United States)

    Hughes, Steven P.

    2007-01-01

    The Goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities businesses and other government organizations; and to share that technology in an open and unhindered way. GMAT's a free and open source software system; free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or future technology development.

  16. Planetary protection issues linked to human missions to Mars

    Science.gov (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  17. Production of 238PuO2 heat sources for the Cassini mission

    Science.gov (United States)

    George, Timothy G.; Foltyn, Elizabeth M.

    1998-01-01

    NASA's Cassini mission to Saturn, scheduled to launch in October, 1997, is perhaps the most ambitious interplanetary explorer ever constructed. Electric power for the spacecraft's science instruments and on-board computers will be provided by three radioisotope thermoelectric generators (RTGs) powered by 216 238PuO2-fueled General-Purpose Heat Source (GPHS) capsules. In addition, critical equipment and instruments on the spacecraft and Huygens probe will be warmed by 128 Light-Weight Radioisotope Heater Units (LWRHUs). Fabrication and assembly of the GPHS capsules and LWRHU heat sources was performed at Los Alamos National Laboratory (LANL) between January 1994 and September 1996. During this production campaign, LANL pressed and sintered 315 GPHS fuel pellets and 181 LWRHU pellets. By October 1996, NMT-9 had delivered a total of 235 GPHS capsules to EG&G Mound Applied Technologies (EG&G MAT) in Miamisburg, Ohio. EG&G MAT conditioned the capsules for use, loaded the capsules into the Cassini RTGs, tested the RTGs, and coordinated transportation to Kennedy Space Center (KSC). LANL also fabricated and assembled a total of 180 LWRHUs. The LWRHUs required for the Cassini spacecraft were shipped to KSC in mid-1997.

  18. Phobos Sample Return mission

    Science.gov (United States)

    Zelenyi, Lev; Zakharov, A.; Martynov, M.; Polischuk, G.

    Very mysterious objects of the Solar system are the Martian satellites, Phobos and Deimos. Attempt to study Phobos in situ from an orbiter and from landers have been done by the Russian mission FOBOS in 1988. However, due to a malfunction of the onboard control system the landers have not been delivered to the Phobos surface. A new robotics mission to Phobos is under development now in Russia. Its main goal is the delivery of samples of the Phobos surface material to the Earth for laboratory studies of its chemical, isotopic, mineral composition, age etc. Other goals are in situ studies of Phobos (regolith, internal structure, peculiarities in orbital and proper rotation), studies of Martian environment (dust, plasma, fields). The payload includes a number of scientific instruments: gamma and neutron spectrometers, gaschromatograph, mass spectrometers, IR spectrometer, seismometer, panoramic camera, dust sensor, plasma package. To implement the tasks of this mission a cruise-transfer spacecraft after the launch and the Earth-Mars interplanetary flight will be inserted into the first elliptical orbit around Mars, then after several corrections the spacecraft orbit will be formed very close to the Phobos orbit to keep the synchronous orbiting with Phobos. Then the spacecraft will encounter with Phobos and will land at the surface. After the landing the sampling device of the spacecraft will collect several samples of the Phobos regolith and will load these samples into the return capsule mounted at the returned vehicle. This returned vehicle will be launched from the mother spacecraft and after the Mars-Earth interplanetary flight after 11 monthes with reach the terrestrial atmosphere. Before entering into the atmosphere the returned capsule will be separated from the returned vehicle and will hopefully land at the Earth surface. The mother spacecraft at the Phobos surface carrying onboard scientific instruments will implement the "in situ" experiments during an year

  19. New trade tree for manned mars missions

    Science.gov (United States)

    Salotti, Jean-Marc

    2014-11-01

    driving parameter for the design of mission architecture because this part is one of the riskiest (clearly established in the NASA report), one of the most expensive in terms of development and tests costs and there are obvious impacts on other parameters of the mission. The fourth parameter should be the strategy for the return and the preparation of the Earth return vehicle. According to our study, this vehicle is the heaviest of the mission. Critical choices can be made here and can make a scenario simple or very complex. Interestingly, a small crew size facilitates the reduction of the mass for the landing vehicles, which in turn suggests simple solutions for the aerocapture of all vehicles and the preparation of the Earth return vehicle without requiring the development of nuclear propulsion systems. All in all, this study shows that the choices made for the NASA reference mission are systematically suboptimal and that new options deserve to be explored.

  20. SOHO Mission Science Briefing

    Science.gov (United States)

    1995-01-01

    Footage shows the SOHO Mission Pre-Launch Science Briefing. The moderator of the conference is Fred Brown, NASA/GSFC Public Affairs, introduces the panel members. Included are Professor Roger Bonnet, Director ESA Science Program, Dr. Wesley Huntress, Jr., NASA Associate Administrator for Space Science and Dr. Vicente Domingo, ESA SOHO Project Scientist. Also present are several members from the SOHO Team: Dr. Richard Harrison, Art Poland, and Phillip Scherrer. The discussions include understanding the phenomena of the sun, eruption of gas clouds into the atmosphere, the polishing of the mirrors for the SOHO satellite, artificial intelligence in the telescopes, and the launch and operating costs. The panel members are also seen answering questions from various NASA Centers and Paris.

  1. The Planck mission

    CERN Document Server

    Bouchet, François R

    2014-01-01

    These lecture from the 100th Les Houches summer school on "Post-planck cosmology" of July 2013 discuss some aspects of the Planck mission, whose prime objective was a very accurate measurement of the temperature anisotropies of the Cosmic Microwave Background (CMB). We announced our findings a few months ago, on March 21$^{st}$, 2013. I describe some of the relevant steps we took to obtain these results, sketching the measurement process, how we processed the data to obtain full sky maps at 9 different frequencies, and how we extracted the CMB temperature anisotropies map and angular power spectrum. I conclude by describing some of the main cosmological implications of the statistical characteristics of the CMB we found. Of course, this is a very much shortened and somewhat biased view of the \\Planck\\ 2013 results, written with the hope that it may lead some of the students to consult the original papers.

  2. The INTEGRAL mission

    DEFF Research Database (Denmark)

    Winkler, C.; Courvoisier, T.J.L.; Di Cocco, G.

    2003-01-01

    The ESA observatory INTEGRAL (International Gamma-Ray Astrophysics Laboratory) is dedicated to the fine spectroscopy (2.5 keV FWHM @ 1 MeV) and fine imaging (angular resolution: 12 arcmin FWHM) of celestial gamma-ray sources in the energy range 15 keV to 10 MeV with concurrent source monitoring......-angular resolution imaging (15 keV-10 MeV). Two monitors, JEM-X (Lund et al. 2003) in the (3-35) keV X-ray band, and OMC (Mas-Hesse et al. 2003) in optical Johnson V-band complement the payload. The ground segment includes the Mission Operations Centre at ESOC, ESA and NASA ground stations, the Science Operations...

  3. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  4. Descope of the ALIA mission

    CERN Document Server

    Gong, Xuefei; Xu, Shengnian; Amaro-Seoane, Pau; Bai, Shan; Bian, Xing; Cao, Zhoujian; Chen, Gerui; Chen, Xian; Ding, Yanwei; Dong, Peng; Gao, Wei; Heinzel, Gerhard; Li, Ming; Li, Shuo; Liu, Fukun; Luo, Ziren; Shao, Mingxue; Spurzem, Rainer; Sun, Baosan; Tang, Wenlin; Wang, Yan; Xu, Peng; Yu, Pin; Yuan, Yefei; Zhang, Xiaomin; Zhou, Zebing

    2014-01-01

    The present work reports on a feasibility study commissioned by the Chinese Academy of Sciences of China to explore various possible mission options to detect gravitational waves in space alternative to that of the eLISA/LISA mission concept. Based on the relative merits assigned to science and technological viability, a few representative mission options descoped from the ALIA mission are considered. A semi-analytic Monte Carlo simulation is carried out to understand the cosmic black hole merger histories starting from intermediate mass black holes at high redshift as well as the possible scientific merits of the mission options considered in probing the light seed black holes and their coevolution with galaxies in early Universe. The study indicates that, by choosing the armlength of the interferometer to be three million kilometers and shifting the sensitivity floor to around one-hundredth Hz, together with a very moderate improvement on the position noise budget, there are certain mission options capable ...

  5. STS-40 Mission Insignia

    Science.gov (United States)

    1990-01-01

    The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.

  6. Hayabusa2 Mission Overview

    Science.gov (United States)

    Watanabe, Sei-ichiro; Tsuda, Yuichi; Yoshikawa, Makoto; Tanaka, Satoshi; Saiki, Takanao; Nakazawa, Satoru

    2017-07-01

    The Hayabusa2 mission journeys to C-type near-Earth asteroid (162173) Ryugu (1999 JU3) to observe and explore the 900 m-sized object, as well as return samples collected from the surface layer. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on December 3, 2014 by an H-IIA launch vehicle and performed an Earth swing-by on December 3, 2015 to set it on a course toward its target Ryugu. Hayabusa2 aims at increasing our knowledge of the early history and transfer processes of the solar system through deciphering memories recorded on Ryugu, especially about the origin of water and organic materials transferred to the Earth's region. Hayabusa2 carries four remote-sensing instruments, a telescopic optical camera with seven colors (ONC-T), a laser altimeter (LIDAR), a near-infrared spectrometer covering the 3-μm absorption band (NIRS3), and a thermal infrared imager (TIR). It also has three small rovers of MINERVA-II and a small lander MASCOT (Mobile Asteroid Surface Scout) developed by German Aerospace Center (DLR) in cooperation with French space agency CNES. MASCOT has a wide angle imager (MasCam), a 6-band thermal radiator (MARA), a 3-axis magnetometer (MasMag), and a hyperspectral infrared microscope (MicrOmega). Further, Hayabusa2 has a sampling device (SMP), and impact experiment devices which consist of a small carry-on impactor (SCI) and a deployable camera (DCAM3). The interdisciplinary research using the data from these onboard and lander's instruments and the analyses of returned samples are the key to success of the mission.

  7. Trace Gas Assimilation in Preparation for Future Satellite Missions

    Science.gov (United States)

    Holmes, J. A.; Lewis, S. R.; Patel, M. R.; Clancy, R. T.

    2014-07-01

    This work aims to set up a framework for assimilation of trace gas species into a Martian Global Circulation Model. Presented here is total column ozone observations combined with the LMD/UK MGCM by data assimilation to study the annual ozone cycle.

  8. Mission Command: Preparing the Fields for the Seed to Grow

    Science.gov (United States)

    2013-03-01

    organizational scholar, Peter Senge . In his book, The Fifth Discipline; The Art and Practice of a Learning Organization, Senge discusses systems thinking and...22 Bungay, The Art of Action; How Leaders Close the Gaps Between Plans, Actions, and Results, 20. 23 Ibid. 24 Peter M. Senge , The Fifth Discipline...magnitude must be iterative in order to succeed. To address this anticipated frustration surrounding changes in a learning organization, Senge provides

  9. Swarming UAVs mission design strategy

    Science.gov (United States)

    Lin, Kuo-Chi

    2007-04-01

    This paper uses a behavioral hierarchy approach to reduce the mission solution space and make the mission design easier. A UAV behavioral hierarchy is suggested, which is derived from three levels of behaviors: basic, individual and group. The individual UAV behavior is a combination of basic, lower level swarming behaviors with priorities. Mission design can be simplified by picking the right combination of individual swarming behaviors, which will emerge the needed group behaviors. Genetic Algorithm is used in both lower-level basic behavior design and mission design.

  10. Guidance Trade-off for Aerocapture Missions

    Science.gov (United States)

    Vernis, P.; Gelly, G.; Ferreira, E.; da Costa, R.; Ortega, G.

    In the very late 90's, EADS-ST began home funded studies on aerocapture problems. The objectives of these studies were at that time to prepare a possible cooperation within the NASA/Cnes MSR-Orbiter program by investigating this new orbital insertion technique studying different algorithmic solutions from a guidance point of view. According to these preliminary studies, EADS-ST was retained in 2002 by ESA to study insertion techniques such as aerocapture, aero-gravity assist or aerobraking techniques within the frame of Technological Research Program able to bring solutions to Aurora program. In the frame of the ATPE (Aeroassist Technologies for Planetary Exploration) TRP program, EADS-ST, led by Astrium-Gmbh (now part of EADS-ST), developed and implemented an efficient and simple guidance scheme able to cope with mission requirements for aerocapture on Mars, Venus or the Earth: the Feedback Trajectory Control, or FTC. The development of this guidance scheme was made according to a preliminary trade-off analysis using different guidance schemes. Among those ones was an original predictor-corrector guidance scheme, already analyzed within the frame of the MSR-O mission. But, the FTC algoritm was prefered because of its good results and high simplicity. This paper presents an upgrade of the original Apoapsis Predictor, or AP, with the improvement of its robustness woth respect to off-nomonal flight conditions and its process simplification. A new trade-off analysis is then detailed on a Mars Sample return mission.

  11. Emirates Mars Mission Planetary Protection Plan

    Science.gov (United States)

    Awadhi, Mohsen Al

    2016-07-01

    The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars

  12. Simulation of Mission Phases

    Science.gov (United States)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  13. Water Cycle Missions for the Next Decade

    Science.gov (United States)

    Houser, P. R.

    2013-12-01

    The global water cycle describes the circulation of water as a vital and dynamic substance in its liquid, solid, and vapor phases as it moves through the atmosphere, oceans and land. Life in its many forms exists because of water, and modern civilization depends on learning how to live within the constraints imposed by the availability of water. The scientific challenge posed by the need to observe the global water cycle is to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The vision to address that challenge is a series of Earth observation missions that will measure the states, stocks, flows, and residence times of water on regional to global scales followed by a series of coordinated missions that will address the processes, on a global scale, that underlie variability and changes in water in all its three phases. The accompanying societal challenge is to foster the improved use of water data and information as a basis for enlightened management of water resources, to protect life and property from effects of extremes in the water cycle. A major change in thinking about water science that goes beyond its physics to include its role in ecosystems and society is also required. Better water-cycle observations, especially on the continental and global scales, will be essential. Water-cycle predictions need to be readily available globally to reduce loss of life and property caused by water-related natural hazards. Building on the 2007 Earth Science Decadal Survey, NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space , and the 2012 Chapman Conference on Remote Sensing of the Terrestrial Water Cycle, a workshop was held in April 2013 to gather wisdom and determine how to prepare for the next generation of water cycle missions in support of the second Earth Science Decadal Survey. This talk will present the outcomes of the workshop including the intersection between

  14. ERIC: Mission, Structure, and Resources.

    Science.gov (United States)

    Robbins, Jane B.

    2001-01-01

    Provides an overview of the mission, structure, and resource base of the Educational Resources Information Center (ERIC). Highlights include problems in meeting the information needs of a wide variety of educational practitioners as part of the mission; structure, based on organizational decentralization; and resources that are limited by…

  15. Mission Assurance: Issues and Challenges

    Science.gov (United States)

    2010-07-15

    JFQ), Summer 1995. [9] Alberts , C.J. & Dorofee, A.J., “Mission Assurance Analysis Protocol (MAAP): Assessing Risk in Complex Environments... CAMUS : Automatically Mapping Cyber Assets to Missions and Users,” Proc. of the 2010 Military Communications Conference (MILCOM 2009), 2009. [23

  16. Second generation Mars landed missions

    Science.gov (United States)

    Graf, J.; Rivellini, T.; Sabahi, D.; Thurman, S.; Eisen, H.

    2000-01-01

    This paper addresses some of the candidate missions being considered for the next generation projects, discusses the new approaches being developed to implement safe and accurate entry, descent and landing to the Martian surface, and describes the rover technology that enables the long distance and duration surface mission.

  17. Mission Dolores and Jim Corbin.

    Science.gov (United States)

    Heaton, Moss, Ed.

    1985-01-01

    Written by history students at Gary High School, Gary, Texas, this issue includes two articles relevant to East Texas history. "Mission Dolores and Jim Corbin," (Moss Heaton and others) is a summary of material presented by Professor James Corbin about the early Spanish presence in East Texas. The first attempt at setting up a mission was in 1690…

  18. ESA CHEOPS mission: development status

    Science.gov (United States)

    Rando, N.; Asquier, J.; Corral Van Damme, C.; Isaak, K.; Ratti, F.; Safa, F.; Southworth, R.; Broeg, C.; Benz, W.

    2016-07-01

    The European Space Agency (ESA) Science Programme Committee (SPC) selected CHEOPS (Characterizing Exoplanets Satellite) in October 2012 as the first S-class mission (S1) within the Agency's Scientific Programme, targeting launch readiness by the end of 2017. The CHEOPS mission is devoted to the first-step characterization of known exoplanets orbiting bright stars, to be achieved through the precise measurement of exo-planet radii using the technique of transit photometry. It is implemented as a partnership between ESA and a consortium of Member States led by Switzerland. CHEOPS is considered as a pilot case for implementing "small science missions" in ESA with the following requirements: science driven missions selected through an open Call for missions (bottom-up process); spacecraft development schedule much shorter than for M and L missions, in the range of 4 years; and cost-capped missions to ESA with possibly higher Member States involvement than for M or L missions. The paper describes the CHEOPS development status, focusing on the performed hardware manufacturing and test activities.

  19. Disruptive Propulsive Technologies for European Space Missions

    OpenAIRE

    2013-01-01

    Advanced space technologies have been reviewed and analysed in view of heavy interplanetary missions of interest for Europe and European industry capabilities. Among the missions of interest: o Heavy robotic missions to outer planets, o Asteroid deflection missions, o Interplanetary manned mission (at longer term). These missions involve high speed increments, generally beyond the capability of chemical propulsion (except if gravitational swing-by can be used). For missions bey...

  20. UNAIDS: mission and roles.

    Science.gov (United States)

    1995-01-01

    The UN has responded to the ongoing AIDS crisis by creating a new Joint UN Programme on HIV/AIDS (UNAIDS). UNAIDS is the AIDS program of six UN agencies (UNICEF; the Development Programme; the Population Fund; the Educational, Scientific and Cultural Organization; the World Health Organization, and the World Bank). The mission of UNAIDS is to lead a multisectoral effort to prevent HIV transmission, provide care and support, alleviate the impact of the epidemic, and reduce vulnerability to HIV/AIDS. Thus, UNAIDS will operate in the areas of policy development and research, technical support, and advocacy. UNAIDS has had an executive director since January 1995, and a formal review of its strategic plan was scheduled for November 1995. At the country level, country representatives of the various agencies that make up UNAIDS will meet regularly to plan, program, and evaluate their HIV/AIDS activities. UNAIDS staff will be available to aid the country efforts. While UNAIDS will assume most of the global-level activities of its six cosponsor agencies, each agency will integrate HIV/AIDS considerations into their ongoing efforts.

  1. COSMOS 2044 Mission: Overview

    Science.gov (United States)

    Grindeland, R. E.; Ballard, R. W.; Connol, J. P.; Vasques, M. F.

    1992-01-01

    The COSMOS 2044 spaceflight was the ninth Soviet-International joint mission dedicated to space biomedicine and the seventh in which the United States has participated. The unmanned Vostok vehicle carried 10 rats and two rhesus monkeys on its 14-day voyage. This spaceflight yielded an unprecedented bounty of data on physiological responses to the microgravity environment. The tissues studied and the numbers and types of studies performed by members of the international science community constituted a new record. Many of the results obtained by the approximately 80 American scientists who participated are reported in the series of COSMOS 2044 papers in this issue. Descriptions of the spaceflight and animal procedures are detailed elsewhere. The broad goals of the space biomedical program are threefold. The first is to characterize qualitatively and quantitatively the biological responses to the microgravity environment, be they adaptive or pathological. The second goal is to clarify the physiological-biochemical mechanisms mediating the responses to microgravity. The third goal of this program is to use the space environment as a tool to better understand adaptive and disease processes in terrestrial organisms.

  2. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth- Moon system, which will require weeks, months, or even years of transit time.

  3. Asteroid Redirect Crewed Mission Nominal Design and Performance

    Science.gov (United States)

    Condon, Gerald; williams, Jacob

    2014-01-01

    In 2010, the President announced that, in 2025, the U.S. intended to launch a human mission to an asteroid [1]. This announcement was followed by the idea of a Capability Driven Framework (CDF) [2], which is based on the idea of evolving capabilities from less demanding to more demanding missions to multiple possible destinations and with increased flexibility, cost effectiveness and sustainability. Focused missions, such as a NASA inter-Center study that examined the viability and implications of sending a crew to a Near Earth Asteroid (NEA) [3], provided a way to better understand and evaluate the utility of these CDF capabilities when applied to an actual mission. The long duration of the NEA missions were contrasted with a concept described in a study prepared for the Keck Institute of Space Studies (KISS) [4] where a robotic spacecraft would redirect an asteroid to the Earth-Moon vicinity, where a relatively short duration crewed mission could be conducted to the captured asteroid. This mission concept was included in the National Aeronautics and Space Administration (NASA) fiscal year 2014 budget request, as submitted by the NASA Administrator [5]. NASA studies continued to examine the idea of a crewed mission to a captured asteroid in the Earth-Moon vicinity. During this time was an announcement of NASA's Asteroid Grand Challenge [6]. Key goals for the Asteroid Grand Challenge are to locate, redirect, and explore an asteroid, as well as find and plan for asteroid threats. An Asteroid Redirect Mission (ARM) study was being conducted, which supports this Grand Challenge by providing understanding in how to execute an asteroid rendezvous, capture it, and redirect it to Earth-Moon space, and, in particular, to a distant retrograde orbit (DRO). Subsequent to the returning of the asteroid to a DRO, would be the launch of a crewed mission to rendezvous with the redirected asteroid. This report examines that crewed mission by assessing the Asteroid Redirect Crewed

  4. Sentinel-3 Mission Overview

    Science.gov (United States)

    Klein, U.; Berruti, B.; Donlon, C.; Frerick, J.; Mavrocordatos, C.; Nieke, J.; Seitz, B.; Stroede, J.; Rebhan, H.

    2009-04-01

    The series of Sentinel-3 satellites will provide global, frequent and near-realtime ocean, ice and land monitoring. Sentinel-3 will be particularly devoted to the provision of observation data in routine, long term (20 years of operations) and continuous fashion with a consistent quality and a very high level of availability. It will continue the successful observations of similar predecessor instruments onboard Envisat from 2012 onwards. The Ocean and Land Colour Instrument (OLCI) is based on the Envisat MEdium Resolution Imaging Spectrometer Instrument (MERIS) instrument. It fulfils ocean-colour and land-cover objectives with a larger swath and additional spectral bands. The Sea and Land Surface Temperature radiometer (SLSTR) is based on Envisat's Advanced Along Track Scanning Radiometer (AATSR). SLSTR has a double-scanning mechanism, yielding a wider swath and a complete overlap with OLCI. This enables the generation of a synergy product with a total of 30 spectral bands, fully co-registered for new and innovative ocean and land products. The topography mission has the primary objective of providing accurate, closely spaced altimetry measurements from a high-inclination orbit with a long repeat cycle. It will complement the Jason ocean altimeter series monitoring mid-scale circulation and sea levels. The altimeter will be operated in two different modes, a classical low resolution mode and a synthetic aperture mode similar to CryoSat for increased along-track resolution and improved performance. Accompanying the altimeter will be a Precise Orbit Determination system and microwave radiometer (MWR) for removing the errors related to the altimeter signals being delayed by water vapour in the atmosphere. The altimeter will track over a variety of surfaces: Open ocean, coastal zones, sea ice and inland waters. The conceptual designs of the major instruments and their basic performance parameters will be introduced together with the expected accuracies of the main

  5. Objectives and Model Payload Definition for NEO Human Mission Studies

    Science.gov (United States)

    Carnelli, I.; Galvez, A.; Carpenter, J.

    2011-10-01

    ESA has supported studies on NEO threat assessment systems and deflection concepts in the context of the General Studies Programme and in close cooperation with the directorates of Technical and Quality Management and of the Scientific Programme. This work has made it possible to identify a project for Europe to make a significant - yet realistic - contribution to the international efforts in this field: the Don Quijote NEO technology demonstration mission. This paper describes what such a small mission can do to prepare future human exploration and what is the in-situ data that can be obtained through such a project.

  6. The Ulysses mission: An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Marsden, R.G. [Space Science Dept. of ESA, Estec, Noordwijk (Netherlands)

    1996-11-01

    On 30 September 1995, Ulysses completed its initial, highly successful, survey of the polar regions of the heliosphere in both southern and northern hemispheres, thereby fulfilling its prime mission. The results obtained to date are leading to a revision of many earlier ideas concerning the solar wind and the heliosphere. Now embarking on the second phase of the mission, Ulysses will continue along its out-of-ecliptic flight path for another complete orbit of the Sun. In contrast to the high-latitude phase of the prime mission, which occurred near solar minimum, the next polar passes (in 2000 and 2001) will take place when the Sun is at its most active.

  7. The Advanced Compton Telescope Mission

    CERN Document Server

    Boggs, S E; Ryan, J; Aprile, E; Gehrels, N; Kippen, M; Leising, M; Oberlack, U; Wunderer, C; Zych, A; Bloser, P; Harris, M; Hoover, A; Klimenk, A; Kocevski, D; McConnell, M; Milne, P; Novikova, E I; Phlips, B; Polsen, M; Sturner, S; Tournear, D; Weidenspointner, G; Wulf, E; Zoglauer, A; Baring, M; Beacom, J; Bildsten, L; Dermer, C; Hartmann, D; Hernanz, M; Smith, D; Starrfield, S; Boggs, Steven E.; Kurfess, James; Ryan, James; Aprile, Elena; Gehrels, Neil; Kippen, Marc; Leising, Mark; Oberlack, Uwe; Wunderer, Cornelia; Zych, Allen; Bloser, Peter; Harris, Michael; Hoover, Andrew; Klimenk, Alexei; Kocevski, Dan; Connell, Mark Mc; Milne, Peter; Novikova, Elena I.; Phlips, Bernard; Polsen, Mark; Sturner, Steven; Tournear, Derek; Weidenspointner, Georg; Wulf, Eric; Zoglauer, Andreas; Baring, Matthew; Beacom, John; Bildsten, Lars; Dermer, Charles; Hartmann, Dieter; Hernanz, Margarita; Smith, David; Starrfield, Sumner

    2006-01-01

    The Advanced Compton Telescope (ACT), the next major step in gamma-ray astronomy, will probe the fires where chemical elements are formed by enabling high-resolution spectroscopy of nuclear emission from supernova explosions. During the past two years, our collaboration has been undertaking a NASA mission concept study for ACT. This study was designed to (1) transform the key scientific objectives into specific instrument requirements, (2) to identify the most promising technologies to meet those requirements, and (3) to design a viable mission concept for this instrument. We present the results of this study, including scientific goals and expected performance, mission design, and technology recommendations.

  8. Theory and Modeling for the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Hesse, M.; Aunai, N.; Birn, J.; Cassak, P.; Denton, R. E.; Drake, J. F.; Gombosi, T.; Hoshino, M.; Matthaeus, W.; Sibeck, D.; Zenitani, S.

    2016-03-01

    The Magnetospheric Multiscale (MMS) mission will provide measurement capabilities, which will exceed those of earlier and even contemporary missions by orders of magnitude. MMS will, for the first time, be able to measure directly and with sufficient resolution key features of the magnetic reconnection process, down to the critical electron scales, which need to be resolved to understand how reconnection works. Owing to the complexity and extremely high spatial resolution required, no prior measurements exist, which could be employed to guide the definition of measurement requirements, and consequently set essential parameters for mission planning and execution. Insight into expected details of the reconnection process could hence only been obtained from theory and modern kinetic modeling. This situation was recognized early on by MMS leadership, which supported the formation of a fully integrated Theory and Modeling Team (TMT). The TMT participated in all aspects of mission planning, from the proposal stage to individual aspects of instrument performance characteristics. It provided and continues to provide to the mission the latest insights regarding the kinetic physics of magnetic reconnection, as well as associated particle acceleration and turbulence, assuring that, to the best of modern knowledge, the mission is prepared to resolve the inner workings of the magnetic reconnection process. The present paper provides a summary of key recent results or reconnection research by TMT members.

  9. The OSIRIS-Rex Asteroid Sample Return: Mission Operations Design

    Science.gov (United States)

    Gal-Edd, Jonathan; Cheuvront, Allan

    2014-01-01

    The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the missions science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the SRC lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis.Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together space craft, instrument and operations scenarios. The project implemented lessons learned from other small body missions: APLNEAR, JPLDAWN and ESARosetta. The key lesson learned was expected the unexpected and implement planning tools early in the lifecycle. In preparation to PDR, the project changed the asteroid arrival date, to arrive one year earlier and provided additional time margin. STK is used for Mission Design and STKScheduler for instrument coverage analysis.

  10. SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission

    Science.gov (United States)

    Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph

    2015-01-01

    This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.

  11. SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission

    Science.gov (United States)

    Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph

    2015-01-01

    This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.

  12. Virtual Exploitation Environment Demonstration for Atmospheric Missions

    Science.gov (United States)

    Natali, Stefano; Mantovani, Simone; Hirtl, Marcus; Santillan, Daniel; Triebnig, Gerhard; Fehr, Thorsten; Lopes, Cristiano

    2017-04-01

    The scientific and industrial communities are being confronted with a strong increase of Earth Observation (EO) satellite missions and related data. This is in particular the case for the Atmospheric Sciences communities, with the upcoming Copernicus Sentinel-5 Precursor, Sentinel-4, -5 and -3, and ESA's Earth Explorers scientific satellites ADM-Aeolus and EarthCARE. The challenge is not only to manage the large volume of data generated by each mission / sensor, but to process and analyze the data streams. Creating synergies among the different datasets will be key to exploit the full potential of the available information. As a preparation activity supporting scientific data exploitation for Earth Explorer and Sentinel atmospheric missions, ESA funded the "Technology and Atmospheric Mission Platform" (TAMP) [1] [2] project; a scientific and technological forum (STF) has been set-up involving relevant European entities from different scientific and operational fields to define the platforḿs requirements. Data access, visualization, processing and download services have been developed to satisfy useŕs needs; use cases defined with the STF, such as study of the SO2 emissions for the Holuhraun eruption (2014) by means of two numerical models, two satellite platforms and ground measurements, global Aerosol analyses from long time series of satellite data, and local Aerosol analysis using satellite and LIDAR, have been implemented to ensure acceptance of TAMP by the atmospheric sciences community. The platform pursues the "virtual workspace" concept: all resources (data, processing, visualization, collaboration tools) are provided as "remote services", accessible through a standard web browser, to avoid the download of big data volumes and for allowing utilization of provided infrastructure for computation, analysis and sharing of results. Data access and processing are achieved through standardized protocols (WCS, WPS). As evolution toward a pre

  13. General Mission Analysis Tool (GMAT) Mathematical Specifications

    Science.gov (United States)

    Hughes, Steve

    2007-01-01

    The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development.

  14. General Mission Analysis Tool (GMAT)

    Science.gov (United States)

    Hughes, Steven P. (Compiler)

    2016-01-01

    This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT) to the critical design phase of NASA missions. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. Other examples include OSIRIS-Rex. This talk is a combination of existing presentations; a GMAT basics and overview, and technical presentations from the TESS and OSIRIS-REx projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The OSIRIS-REx slides are from a previous conference presentation. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project.

  15. Mission Critical: Preventing Antibiotic Resistance

    Science.gov (United States)

    ... file Error processing SSI file Mission Critical: Preventing Antibiotic Resistance Recommend on Facebook Tweet Share Compartir Can you ... spp. So, what can we do to prevent antibiotic resistance in healthcare settings? Patients, healthcare providers, healthcare facility ...

  16. Mission Level Autonomy for USSV

    Science.gov (United States)

    Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert

    2011-01-01

    On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010

  17. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  18. Urinary albumin in space missions

    DEFF Research Database (Denmark)

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina

    2002-01-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody...... radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity)....

  19. KEPLER Mission: development and overview.

    Science.gov (United States)

    Borucki, William J

    2016-03-01

    The Kepler Mission is a space observatory launched in 2009 by NASA to monitor 170,000 stars over a period of four years to determine the frequency of Earth-size and larger planets in and near the habitable zone of Sun-like stars, the size and orbital distributions of these planets, and the types of stars they orbit. Kepler is the tenth in the series of NASA Discovery Program missions that are competitively-selected, PI-directed, medium-cost missions. The Mission concept and various instrument prototypes were developed at the Ames Research Center over a period of 18 years starting in 1983. The development of techniques to do the 10 ppm photometry required for Mission success took years of experimentation, several workshops, and the exploration of many 'blind alleys' before the construction of the flight instrument. Beginning in 1992 at the start of the NASA Discovery Program, the Kepler Mission concept was proposed five times before its acceptance for mission development in 2001. During that period, the concept evolved from a photometer in an L2 orbit that monitored 6000 stars in a 50 sq deg field-of-view (FOV) to one that was in a heliocentric orbit that simultaneously monitored 170,000 stars with a 105 sq deg FOV. Analysis of the data to date has detected over 4600 planetary candidates which include several hundred Earth-size planetary candidates, over a thousand confirmed planets, and Earth-size planets in the habitable zone (HZ). These discoveries provide the information required for estimates of the frequency of planets in our galaxy. The Mission results show that most stars have planets, many of these planets are similar in size to the Earth, and that systems with several planets are common. Although planets in the HZ are common, many are substantially larger than Earth.

  20. Social Tagging of Mission Data

    Science.gov (United States)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; Pyrzak, Guy; Vaughn, Michael B.

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  1. A review of Spacelab mission management approach

    Science.gov (United States)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  2. RTGs Options for Pluto Fast Flyby Mission

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1993-10-01

    A small spacecraft design for the Pluto Fast Flyby (PFF) Mission is under study by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk. There are four duplicate copies

  3. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  4. Astronaut Robert Gibson prepares to use motion picture camera

    Science.gov (United States)

    1986-01-01

    Astronaut Robert L. Gibson, STS 61-C mission commander, partially floats on the aft flight deck of the Shuttle Columbia while preparing to use a motion picture camera. The windows overlooking the cargo bay are visible in the background.

  5. Enhancing Team Performance for Long-Duration Space Missions

    Science.gov (United States)

    Orasanu, Judith M.

    2009-01-01

    Success of exploration missions will depend on skilled performance by a distributed team that includes both the astronauts in space and Mission Control personnel. Coordinated and collaborative teamwork will be required to cope with challenging complex problems in a hostile environment. While thorough preflight training and procedures will equip creW'S to address technical problems that can be anticipated, preparing them to solve novel problems is much more challenging. This presentation will review components of effective team performance, challenges to effective teamwork, and strategies for ensuring effective team performance. Teamwork skills essential for successful team performance include the behaviors involved in developing shared mental models, team situation awareness, collaborative decision making, adaptive coordination behaviors, effective team communication, and team cohesion. Challenges to teamwork include both chronic and acute stressors. Chronic stressors are associated with the isolated and confined environment and include monotony, noise, temperatures, weightlessness, poor sleep and circadian disruptions. Acute stressors include high workload, time pressure, imminent danger, and specific task-related stressors. Of particular concern are social and organizational stressors that can disrupt individual resilience and effective mission performance. Effective team performance can be developed by training teamwork skills, techniques for coping with team conflict, intracrew and intercrew communication, and working in a multicultural team; leadership and teamwork skills can be fostered through outdoor survival training exercises. The presentation will conclude with an evaluation of the special requirements associated with preparing crews to function autonomously in long-duration missions.

  6. ETF Mission Statement document. ETF Design Center team

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    The Mission Statement document describes the results, activities, and processes used in preparing the Mission Statement, facility characteristics, and operating goals for the Engineering Test Facility (ETF). Approximately 100 engineers and scientists from throughout the US fusion program spent three days at the Knoxville Mission Workshop defining the requirements that should be met by the ETF during its operating life. Seven groups were selected to consider one major category each of design and operation concerns. Each group prepared the findings of the assigned area as described in the major sections of this document. The results of the operations discussed must provide the data, knowledge, experience, and confidence to continue to the next steps beyond the ETF in making fusion power a viable energy option. The results from the ETF mission (operations are assumed to start early in the 1990's) are to bridge the gap between the base of magnetic fusion knowledge at the start of operations and that required to design the EPR/DEMO devices.

  7. Solution preparation

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results.

  8. SELENE: The Moon-Orbiting Observatory Mission

    Science.gov (United States)

    Mizutani, H.; Kato, M.; Sasaki, S.; Iijima, Y.; Tanaka, K.; Takizawa, Y.

    The Moon-orbiting SELENE (Selenological and Engineering Explorer) mission is prepared in Japan for lunar science and technology development. The launch target has been changed from 2005 to 2006 because of the launch failure of H2A rocket in 2003. The spacecraft consists of a main orbiting satellite at about 100 km altitude in the polar orbit and two sub-satellites in the elliptical orbits. The scientific objectives of the mission are; 1) study of the origin and evolution of the Moon, 2) in-situ measurement of the lunar environment, and 3) observation of the solar-terrestrial plasma environment. SELENE carries the instruments for scientific investigation, including mapping of lunar topography and surface composition, measurement of the gravity and magnetic fields, and observation of lunar and solar-terrestrial plasma environment. The total mass of scientific payload is about 300 kg. The mission period will be 1 year. If extra fuel is available, the mission will be extended in a lower orbit around 50 km. The elemental abundances are measured by x-ray and gamma-ray spectrometers. Alpha particles from the radon gas and polonium are detected by an alpha particle spectrometer. The mineralogical abundance is characterized by a multi-band imager. The mineralogical composition is identified by a spectral profiler which is a continuous spectral analyzer. The surface topographic data are obtained by a high resolution terrain camera and a laser altimeter. The inside structure up to 5 km below the lunar surface is observed by the radar sounder experiment using a 5 MHz radio wave. A magnetometer and an electron reflectometer provides data on the lunar surface magnetic field. Doppler tracking of the orbiter via the sub-satellite when the orbiter is in the far side is used to determine the gravity field of the far side. Radio sources on the two sub-satellites are used to conduct differential VLBI observation from the ground stations. The lunar environment of high energy particles

  9. The Europa Jupiter System Mission

    Science.gov (United States)

    Hendrix, A. R.; Clark, K.; Erd, C.; Pappalardo, R.; Greeley, R. R.; Blanc, M.; Lebreton, J.; van Houten, T.

    2009-05-01

    Europa Jupiter System Mission (EJSM) will be an international mission that will achieve Decadal Survey and Cosmic Vision goals. NASA and ESA have concluded a joint study of a mission to Europa, Ganymede and the Jupiter system with orbiters developed by NASA and ESA; contributions by JAXA are also possible. The baseline EJSM architecture consists of two primary elements operating in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). The JEO mission has been selected by NASA as the next Flagship mission to the out solar system. JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. JEO and JGO would carry eleven and ten complementary instruments, respectively, to monitor dynamic phenomena (such as Io's volcanoes and Jupiter's atmosphere), map the Jovian magnetosphere and its interactions with the Galilean satellites, and characterize water oceans beneath the ice shells of Europa and Ganymede. EJSM will fully addresses high priority science objectives identified by the National Research Council's (NRC's) Decadal Survey and ESA's Cosmic Vision for exploration of the outer solar system. The Decadal Survey recommended a Europa Orbiter as the highest priority outer planet flagship mission and also identified Ganymede as a highly desirable mission target. EJSM would uniquely address several of the central themes of ESA's Cosmic Vision Programme, through its in-depth exploration of the Jupiter system and its evolution from origin to habitability. EJSM will investigate the potential habitability of the active ocean-bearing moons Europa and Ganymede, detailing the geophysical, compositional, geological and external processes that affect these icy worlds. EJSM would also explore Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the

  10. STS-84 Mission Specialist Carlos I. Noriega in white room

    Science.gov (United States)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-84 Mission Specialist Carlos I. Noriega prepares to enter the Space Shuttle Atlantis at Launch Pad 39A with help from white room closeout crew members. The fourth Shuttle mission of 1997 will be the sixth docking of the Space Shuttle with the Russian Space Station Mir. The commander is Charles J. Precourt. The pilot is Eileen Marie Collins. The five mission specialists are C. Michael Foale, Carlos I. Noriega, Edward Tsang Lu, Jean-Francois Clervoy of the European Space Agency and Elena V. Kondakova of the Russian Space Agency. The planned nine-day mission will include the exchange of Foale for U.S. astronaut and Mir 23 crew member Jerry M. Linenger, who has been on Mir since Jan. 15. Linenger transferred to Mir during the last docking mission, STS-81; he will return to Earth on Atlantis. Foale is slated to remain on Mir for about four months until he is replaced in September by STS-86 Mission Specialist Wendy B. Lawrence. During the five days Atlantis is scheduled to be docked with the Mir, the STS-84 crew and the Mir 23 crew, including two Russian cosmonauts, Commander Vasily Tsibliev and Flight Engineer Alexander Lazutkin, will participate in joint experiments. The STS-84 mission also will involve the transfer of more than 7,300 pounds of water, logistics and science equipment to and from the Mir. Atlantis is carrying a nearly 300-pound oxygen generator to replace one of two Mir units which have experienced malfunctions. The oxygen it generates is used for breathing by the Mir crew.

  11. The Value of Participating Scientists on NASA Planetary Missions

    Science.gov (United States)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  12. No Mission, No Money: No Money, No Mission

    Science.gov (United States)

    Durel, John W.

    2010-01-01

    Museum leaders around the country are in the midst of examining and changing their business models in response to new economic realities. Museum educators have an opportunity to play a leading role in this endeavor. To do so educators must understand the relationship between money and mission. For too long there has been a belief that the…

  13. The ASTRO-H Mission

    OpenAIRE

    高橋, 忠幸; Takahashi, Tadayuki; 満田, 和久; Mitsuda, Kazuhisa; Kelley, Richard; ASTRO-H team

    2010-01-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS) The planned launch date is 2014. ASTRO-H will investigate the physics of the high-energy universe by performing high-resolution, highthroughput spectroscopy with moderate spatial resolution over the 0.3 - 600 keV energy range. ASTRO-H is a combination of wide band X-ray spectroscopy (3 - 80 keV) provided by multi-layer coating, f...

  14. The NeXT Mission

    OpenAIRE

    Takahashi, T.; Kelley, R; Mitsuda, K.; Kunieda, H.; Petre, R.; White, N; Dotani, T.; Fujimoto, R.; Fukazawa, Y.; Hayashida, K.; Ishida, M.; Ishisaki, Y; Kokubun, M.; Makishima, K.; K. Koyama

    2008-01-01

    The NeXT (New exploration X-ray Telescope), the new Japanese X-ray Astronomy Satellite following Suzaku, is an international X-ray mission which is currently planed for launch in 2013. NeXT is a combination of wide band X-ray spectroscopy (3 - 80 keV) provided by multi-layer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3 - 10 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will a...

  15. The WAXS/WFXT Mission

    CERN Document Server

    Chincarini, G L

    1999-01-01

    I present the science goals and give a brief summary of the Wide Angle X-ray survey with a Wide Field X-ray Telescope (WAXS/WFXT) mission proposal (Phase A) which will be submitted to the Italian Space Agency (ASI) following the call for proposal under the Small Satellite program. The text points out the uniqueness of the mission for the study of the evolution of clusters of galaxies and of the Large-Scale Structure at large redshifts and for the study of the Milky Way. I present, furthermore, the successful result of the metrology of the first wide field X-ray optics ever made.

  16. SpinSat Mission Ground Truth Characterization

    Science.gov (United States)

    2014-09-01

    SpinSat Mission Ground Truth Characterization Andrew Nicholas, Ted Finne, Ivan Galysh, Anthony Mai, Jim Yen Naval Research Laboratory, Washington...mission overview, ground truth characterization and unique SSA observation opportunities of the mission. 1. MISSION CONCEPT The Naval Research...2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE SpinSat Mission Ground Truth Characterization 5a. CONTRACT

  17. Gas Cromatography In Solar System Exploration:decoding Complex Chromatograms Recovered From Space Missions

    Science.gov (United States)

    Pietrogrande, M. C.; Tellini, I.; Dondi, F.; Felinger, A.; Sternberg, R.; Szopa, C.; Vidal-Madjar, C.

    GC plays a predominant role in solar system explorations: it has been applied to space research related to exobiology: i.e., Cassini-Huygens mission devoted to characterize chemical composition of TitanSs atmosphere [2], Rosetta mission to investigate the nucleus of comet p/Wirtamen (COSAC experiments) [1]. GC analysis of planetary atmosphere is a difficult analytical task because of the unknown and low level of an- alytes present in the sample, the high degree of automatization required, the strong constraints due to the flight (short analysis time, low power consumption, high accu- racy and reliability under extreme space conditions). In these circumstances the use of a signal processing procedure is practically mandatory to efficiently extract useful in- formation from the raw chromatogram ­ i.e. to decode the complex chromatogram to determine the number of components, the separation efficiency and the retention pat- tern. In this work a chemometric approach based on the Fourier analysis is applied to complex chromatograms related to space research: from the autocovariance function (ACVF) computed on the digitized chromatogram, the chromatographic parameters ­ number of components, peak shape parameters, retention pattern ­ can be estimated [3-7]. The procedure, originally developed for constant peak width [3], was extended to variable peak width [4], in order to describe chromatograms obtained in isother- mal conditions, i.e., analysis condition compatible with space flight constraints. The chemometric procedure was applied to chromatograms of standard mixtures repre- sentative of planetary atmospheres ­ hydrocarbons and oxygenated compounds with carbon atom number ranging from 2 to 8 ­ obtained in flight simulating conditions ­ isothermal or pseudo-isothermal conditions. Both the simplified graphic procedure, based on the assumption of constant peak width [3], and the complete approach de- veloped for variable peak width [4], were applied and the results

  18. Indexing, screening, coding and cataloging of earth resources aircraft mission data

    Science.gov (United States)

    1977-01-01

    Tasks completed are as follows: (1) preparation of large Area Crop Inventory experiment for data base entry;(2) preparation of Earth Observations Aircraft Flight summary reports for publication; (3) updating of the aircraft mission index coverage map and Ames aircraft flight map; (4) Prepared of Earth Observation Helicopter Flight reports for publication; and (5) indexing of LANDSAT imagery. (6) formulation of phase 3 biowindows 1, 2, 3, and 4 listings by country, footprint, and acqusition dates; (7) preparation of flight summary reports; and (8) preparation of an Alaska state index coverage map.

  19. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...

  20. Gravitational-wave Mission Study

    Science.gov (United States)

    Mcnamara, Paul; Jennrich, Oliver; Stebbins, Robin T.

    2014-01-01

    In November 2013, ESA selected the science theme, the "Gravitational Universe," for its third large mission opportunity, known as L3, under its Cosmic Vision Programme. The planned launch date is 2034. ESA is considering a 20% participation by an international partner, and NASA's Astrophysics Division has indicated an interest in participating. We have studied the design consequences of a NASA contribution, evaluated the science benefits and identified the technology requirements for hardware that could be delivered by NASA. The European community proposed a strawman mission concept, called eLISA, having two measurement arms, derived from the well studied LISA (Laser Interferometer Space Antenna) concept. The US community is promoting a mission concept known as SGO Mid (Space-based Gravitational-wave Observatory Mid-sized), a three arm LISA-like concept. If NASA were to partner with ESA, the eLISA concept could be transformed to SGO Mid by the addition of a third arm, augmenting science, reducing risk and reducing non-recurring engineering costs. The characteristics of the mission concepts and the relative science performance of eLISA, SGO Mid and LISA are described. Note that all results are based on models, methods and assumptions used in NASA studies

  1. New Horizons Mission to Pluto

    Science.gov (United States)

    Delgado, Luis G.

    2011-01-01

    This slide presentation reviews the trajectory that will take the New Horizons Mission to Pluto. Included are photographs of the spacecraft, the launch vehicle, the assembled vehicle as it is being moved to the launch pad and the launch. Also shown are diagrams of the assembled parts with identifying part names.

  2. The Europa Ocean Discovery mission

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.C. [Los Alamos National Lab., NM (United States); Chyba, C.F. [Univ. of Arizona, Tucson, AZ (United States); Abshire, J.B. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center] [and others

    1997-06-01

    Since it was first proposed that tidal heating of Europa by Jupiter might lead to liquid water oceans below Europa`s ice cover, there has been speculation over the possible exobiological implications of such an ocean. Liquid water is the essential ingredient for life as it is known, and the existence of a second water ocean in the Solar System would be of paramount importance for seeking the origin and existence of life beyond Earth. The authors present here a Discovery-class mission concept (Europa Ocean Discovery) to determine the existence of a liquid water ocean on Europa and to characterize Europa`s surface structure. The technical goal of the Europa Ocean Discovery mission is to study Europa with an orbiting spacecraft. This goal is challenging but entirely feasible within the Discovery envelope. There are four key challenges: entering Europan orbit, generating power, surviving long enough in the radiation environment to return valuable science, and complete the mission within the Discovery program`s launch vehicle and budget constraints. The authors will present here a viable mission that meets these challenges.

  3. LISA Pathfinder: mission and status

    Science.gov (United States)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Boatella, C.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Caleno, M.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Ciani, G.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Fertin, D.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jeannin, O.; Jennrich, O.; Jetzer, P.; Johlander, B.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Perreca, A.; Plagnol, E.; Prat, P.; Racca, G. D.; Rais, B.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tombolato, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Zweifel, P.

    2011-05-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  4. The Europa Clipper Mission Concept

    Science.gov (United States)

    Pappalardo, Robert; Goldstein, Barry; Magner, Thomas; Prockter, Louise; Senske, David; Paczkowski, Brian; Cooke, Brian; Vance, Steve; Wes Patterson, G.; Craft, Kate

    2014-05-01

    A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon's surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite's ice and ocean, composition, and geology. The set of investigations derived from the Europa Clipper science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces within and beneath the ice shell), Topographical Imager (for stereo imaging of the surface), ShortWave Infrared Spectrometer (for surface composition), Neutral Mass Spectrometer (for atmospheric composition), Magnetometer and Langmuir Probes (for inferring the satellite's induction field to characterize an ocean), and Gravity Science (to confirm an ocean).The mission would also include the capability to perform reconnaissance for a future lander

  5. The New Planetary Science Archive (PSA): Exploration and Discovery of Scientific Datasets from ESA's Planetary Missions

    Science.gov (United States)

    Heather, David; Besse, Sebastien; Vallat, Claire; Barbarisi, Isa; Arviset, Christophe; De Marchi, Guido; Barthelemy, Maud; Coia, Daniela; Costa, Marc; Docasal, Ruben; Fraga, Diego; Grotheer, Emmanuel; Lim, Tanya; MacFarlane, Alan; Martinez, Santa; Rios, Carlos; Vallejo, Fran; Saiz, Jaime

    2017-04-01

    The Planetary Science Archive (PSA) is the European Space Agency's (ESA) repository of science data from all planetary science and exploration missions. The PSA provides access to scientific datasets through various interfaces at http://psa.esa.int. All datasets are scientifically peer-reviewed by independent scientists, and are compliant with the Planetary Data System (PDS) standards. The PSA is currently implementing a number of significant improvements, mostly driven by the evolution of the PDS standard, and the growing need for better interfaces and advanced applications to support science exploitation. As of the end of 2016, the PSA is hosting data from all of ESA's planetary missions. This includes ESA's first planetary mission Giotto that encountered comet 1P/Halley in 1986 with a flyby at 800km. Science data from Venus Express, Mars Express, Huygens and the SMART-1 mission are also all available at the PSA. The PSA also contains all science data from Rosetta, which explored comet 67P/Churyumov-Gerasimenko and asteroids Steins and Lutetia. The year 2016 has seen the arrival of the ExoMars 2016 data in the archive. In the upcoming years, at least three new projects are foreseen to be fully archived at the PSA. The BepiColombo mission is scheduled for launch in 2018. Following that, the ExoMars Rover Surface Platform (RSP) in 2020, and then the JUpiter ICy moon Explorer (JUICE). All of these will archive their data in the PSA. In addition, a few ground-based support programmes are also available, especially for the Venus Express and Rosetta missions.
 The newly designed PSA will enhance the user experience and will significantly reduce the complexity for users to find their data promoting one-click access to the scientific datasets with more customized views when needed. This includes a better integration with Planetary GIS analysis tools and Planetary interoperability services (search and retrieve data, supporting e.g. PDAP, EPN-TAP). It will also be up

  6. The EXIST Mission Concept Study

    Science.gov (United States)

    Fishman, Gerald J.; Grindlay, J.; Hong, J.

    2008-01-01

    EXIST is a mission designed to find and study black holes (BHs) over a wide range of environments and masses, including: 1) BHs accreting from binary companions or dense molecular clouds throughout our Galaxy and the Local Group, 2) supermassive black holes (SMBHs) lying dormant in galaxies that reveal their existence by disrupting passing stars, and 3) SMBHs that are hidden from our view at lower energies due to obscuration by the gas that they accrete. 4) the birth of stellar mass BHs which is accompanied by long cosmic gamma-ray bursts (GRBs) which are seen several times a day and may be associated with the earliest stars to form in the Universe. EXIST will provide an order of magnitude increase in sensitivity and angular resolution as well as greater spectral resolution and bandwidth compared with earlier hard X-ray survey telescopes. With an onboard optical-infra red (IR) telescope, EXIST will measure the spectra and redshifts of GRBs and their utility as cosmological probes of the highest z universe and epoch of reionization. The mission would retain its primary goal of being the Black Hole Finder Probe in the Beyond Einstein Program. However, the new design for EXIST proposed to be studied here represents a significant advance from its previous incarnation as presented to BEPAC. The mission is now less than half the total mass, would be launched on the smallest EELV available (Atlas V-401) for a Medium Class mission, and most importantly includes a two-telescope complement that is ideally suited for the study of both obscured and very distant BHs. EXIST retains its very wide field hard X-ray imaging High Energy Telescope (HET) as the primary instrument, now with improved angular and spectral resolution, and in a more compact payload that allows occasional rapid slews for immediate optical/IR imaging and spectra of GRBs and AGN as well as enhanced hard X-ray spectra and timing with pointed observations. The mission would conduct a 2 year full sky survey in

  7. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    M. Fehringer

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  8. MIOSAT Mission Scenario and Design

    Science.gov (United States)

    Agostara, C.; Dionisio, C.; Sgroi, G.; di Salvo, A.

    2008-08-01

    MIOSAT ("Mssione Ottica su microSATellite") is a low-cost technological / scientific microsatellite mission for Earth Observation, funded by Italian Space Agency (ASI) and managed by a Group Agreement between Rheinmetall Italia - B.U. Spazio - Contraves as leader and Carlo Gavazzi Space as satellite manufacturer. Several others Italians Companies, SME and Universities are involved in the development team with crucial roles. MIOSAT is a microsatellite weighting around 120 kg and placed in a 525 km altitude sun-synchronuos circular LEO orbit. The microsatellite embarks three innovative optical payloads: Sagnac multi spectral radiometer (IFAC-CNR), Mach Zehender spectrometer (IMM-CNR), high resolution pancromatic camera (Selex Galileo). In addition three technological experiments will be tested in-flight. The first one is an heat pipe based on Marangoni effect with high efficiency. The second is a high accuracy Sun Sensor using COTS components and the last is a GNSS SW receiver that utilizes a Leon2 processor. Finally a new generation of 28% efficiency solar cells will be adopted for the power generation. The platform is highly agile and can tilt along and cross flight direction. The pointing accuracy is in the order of 0,1° for each axe. The pointing determination during images acquisition is definition, highlighting trade-offs for mission implementation. MIOSAT mission design has been constrained from challenging requirements in terms of satellite mass, mission lifetime, instrument performance, that have implied the utilization of satellite agility capability to improve instruments performance in terms of S/N and resolution. The instruments provide complementary measurements that can be combined in effective ways to exploit new applications in the fields of atmosphere composition analysis, Earth emissions, antropic phenomena, etc. The Mission is currently in phase B and the launch is planned for 2011.

  9. Data preparation for asteroseismology with TESS

    CERN Document Server

    Lund, Mikkel N; Kjeldsen, Hans; Chaplin, William J; Christensen-Dalsgaard, Jørgen

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a NASA Astrophysics Explorer mission. Following its scheduled launch in 2017, TESS will focus on detecting exoplanets around the nearest and brightest stars in the sky, for which detailed follow-up observations are possible. TESS will, as the NASA Kepler mission, include a asteroseismic program that will be organized within the TESS Asteroseismic Science Consortium (TASC), building on the success of the Kepler Asteroseismic Science Consortium (KASC). Within TASC data for asteroseismic analysis will be prepared by the TASC Working Group 0 (WG-0), who will facilitate data to the community via the TESS Asteroseismic Science Operations Center (TASOC), again building on the success of the corresponding KASOC platform for Kepler. Here, we give an overview of the steps being taken within WG-0 to prepare for the upcoming TESS mission.

  10. Difluoromethane preparation

    NARCIS (Netherlands)

    Wiersma, A.; Sandt, E.J.A.; Van Bekkum, H.; Makkee, M.; Moulijn, J.A.

    1996-01-01

    Abstract of NL 9401574 (A) The invention relates to a method for preparing difluoromethane, wherein dichlorodifluoromethane or monochlorodifluoromethane is brought into contact with hydrogen in the presence of palladium on activated carbon, wherein the loading of the palladium on the activated c

  11. Multiple Space Debris Collecting Mission -- Optimal Mission Planning

    CERN Document Server

    Cerf, Max

    2014-01-01

    This paper addresses the problem of planning successive Space Debris Collecting missions so that they can be achieved at minimal cost by a generic vehicle. The problem mixes combinatorial optimization to select and order the debris among a list of candidates, and continuous optimization to fix the rendezvous dates and to define the minimum fuel orbital maneuvers. The solution method proposed consists in three stages. Firstly the orbital transfer problem is simplified by considering a generic transfer strategy suited either to a high thrust or a low thrust vehicle. A response surface modelling is built by solving the reduced problem for all pairs of debris and for discretized dates, and storing the results in cost matrices. Secondly a simulated annealing algorithm is applied to find the optimal mission planning. The cost function is assessed by interpolation on the response surface based on the cost matrices. This allows the convergence of the simulated algorithm in a limited computation time, yielding an opti...

  12. Mission Operations Control Room Activities during STS-2 mission

    Science.gov (United States)

    1981-01-01

    Mission Operations Control Room (MOCR) activities during STS-2 mission. Overall view of the MOCR in the Johnson Space Center's Mission Control Center. At far right is Eugene F. Kranz, Deputy Director of Flight Operations. At the flight director console in front of Kranz's FOD console are Flight Directors M.P. Frank, Neil B. Hutchinson and Donald R. Puddy as well as others (39506); Wide-angle view of flight controllers in the MOCR. Clifford E. Charlesworth, JSC Deputy Director, huddles with several flight directors for STS-2 at the flight director console. Kranz, is at far right of frame (39507); Dr. Christopher C. Kraft, Jr., JSC Director, center, celebrates successful flight and landing of STS-2 with a cigar in the MOCR. He is flanked by Dr. Maxime A Faget, left, Director of Engineering and Development, and Thomas L. Moser, of the Structures and Mechanics Division (39508); Flight Director Donald R. Puddy, near right, holds replica of the STS-2 insignia. Insignias on the opposite wall

  13. Trajectory Design Considerations for Exploration Mission 1

    Science.gov (United States)

    Dawn, Timothy F.; Gutkowski, Jeffrey P.; Batcha, Amelia L.

    2017-01-01

    Exploration Mission 1 (EM-1) will be the first mission to send an uncrewed Orion vehicle to cislunar space in 2018, targeted to a Distant Retrograde Orbit (DRO). Analysis of EM-1 DRO mission opportunities in 2018 help characterize mission parameters that are of interest to other subsystems (e.g., power, thermal, communications, flight operations, etc). Subsystems request mission design trades which include: landing lighting, addition of an Orion main engine checkout burn, and use of auxiliary thruster only cases. This paper examines the evolving trade studies that incorporate subsystem feedback and demonstrate the feasibility of these constrained mission trajectory designs and contingencies.

  14. Emirates Mars Mission (EMM) Overview

    Science.gov (United States)

    Sharaf, Omran; Amiri, Sarah; AlMheiri, Suhail; Alrais, Adnan; Wali, Mohammad; AlShamsi, Zakareyya; AlQasim, Ibrahim; AlHarmoodi, Khuloud; AlTeneiji, Nour; Almatroushi, Hessa; AlShamsi, Maryam; AlAwadhi, Mohsen; McGrath, Michael; Withnell, Pete; Ferrington, Nicolas; Reed, Heather; Landin, Brett; Ryan, Sean; Pramann, Brian

    2017-04-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Arab Islamic mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit that has a periapsis altitude of 20,000 km, an apoapsis altitude of 43,000 km, and an inclination of 25 degrees. The mission is designed to (1) characterize the state of the Martian lower atmosphere on global scales and its geographic, diurnal and seasonal variability, (2) correlate rates of thermal and photochemical atmospheric escape with conditions in the collisional Martian atmosphere, and (3) characterize the spatial structure and variability of key constituents in the Martian exosphere. These objectives will be met by four investigations with diurnal variability on sub-seasonal timescales which are (1) determining the three-dimensional thermal state of the lower atmosphere, (2) determining the geographic and diurnal distribution of key constituents in the lower atmosphere, (3) determining the abundance and spatial variability of key neutral species in the thermosphere, and (4) determining the three-dimensional structure and variability of key species in the exosphere. EMM will collect these information about the Mars atmospheric circulation and connections through a combination of three distinct instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths and they are the Emirates eXploration Imager (EXI), the Emirates Mars InfraRed Spectrometer (EMIRS), and the EMM Mars Ultraviolet Spectrometer (EMUS). EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), and Preliminary Design Review (PDR) phases. The mission is led by Emiratis from Mohammed

  15. STS-38 Mission Specialist (MS) Robert C. Springer dons EMU in JSC's WETF

    Science.gov (United States)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer, wearing extravehicular mobility unit (EMU), fastens the strap on his communications carrier assembly (CCA) cap during suit donning in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Positioned on the WETF platform at pool side, Springer is preparing for an underwater extravehicular activity (EVA) simulation. During the training exercise, Springer will rehearse contingency EVA procedures for the STS-38 mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  16. STS-38 Mission Specialist (MS) Robert C. Springer dons EMU in JSC's WETF

    Science.gov (United States)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer dons extravehicular mobility unit (EMU) upper torso with technicians' assistance in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Positioned on the WETF platform at pool side, Springer is preparing for an underwater extravehicular activity (EVA) simulation. During the training session, Springer will rehearse contingency EVA procedures for the STS-38 mission aboard Atlantis, Orbiter Vehicle (OV) 104.

  17. Encouragement from Jupiter for Europe's Titan Probe

    Science.gov (United States)

    1996-04-01

    continue about whether the Probe hit by chance a patch of unusual weather, whether instruments were misreading, or whether ideas about the giant planet need a thorough shake-up. "The Jupiter experience teaches us to be more modest in our predictions about what a new world will be like," says Dr Lebreton. "It shows the limitations of theories made from telescope studies and flybys, and confirms the need for on-the-spot observations. We know far less about Titan than about Jupiter. So a real understanding of Titan must await the arrival of Cassini/ Huygens in eight years' time." Hazy orange clouds obscure Titan and leave scientists guessing about what Huygens will find. As speculation and debate continue, the biggest uncertainty concerns the nature of Titan's surface. Some experts expect to find large lakes of liquid hydrocarbons, while others suspect that the surface is dry. The hypothesis that a global ocean might cover Titan is out of fashion at present, because of radar results and reasoning about the effects of tides in a global ocean. The multinational teams of scientists who have developed the instruments on Huygens are prepared for surprises. For example, the Surface Science Package is designed for a wet or a dry landing, and will give appropriate results in either case. Further tests planned With just eighteen months to go until the launch of the joint Cassini/Huygens mission in October 1997, the spring of 1996 is a busy time for the Huygens teams. The first European flight hardware reached NASA's Jet Propulsion Laboratory (JPL) for incorporation in the Flight Model of the Cassini Orbiter. This is the Probe Support Avionics, which receives and processes the signals from the Probe at Titan. The Engineering Model of Huygens has also gone to JPL, for comprehensive electrical tests of the Cassini spacecraft. ESA is planning to carry out further tests on the Flight Model of Huygens, which is due for delivery in less than a year's time. The aim is to settle questions

  18. STS-74 Space Shuttle Mission Report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1996-01-01

    The STS-74 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventy-third flight of the Space Shuttle Program, the forty-eighth flight since the return-to-flight, and the fifteenth flight of the Orbiter Atlantis (OV-104). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-74; three Phase 11 SSME's that were designated as serial numbers 2012, 2026, and 2032 in positions 1, 2, and 3, respectively; and two SRB's that were designated BI-076. The RSRM's, designated RSRM-51, were installed in each SRB and the individual RSRM's were designated as 360TO51 A for the left SRB, and 360TO51 B for the right SRB. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and perform life sciences investigations. The Russian Docking Module (DM) was berthed onto the Orbiter Docking System (ODS) using the Remote Manipulator System (RMS), and the Orbiter docked to the Mir with the DM. When separating from the Mir, the Orbiter undocked, leaving the DM attached to the Mir. The two solar arrays, mounted on the DM, were delivered for future Russian installation to the Mir. The secondary objectives of the flight were to perform the operations necessary to fulfill the requirements of the GLO experiment (GLO-4)/Photogrammetric Appendage Structural Dynamics Experiment Payload (PASDE) (GPP), the IMAX Cargo Bay Camera (ICBC), and the Shuttle Amateur Radio Experiment-2 (SAREX-2). Appendix A lists the sources of data, both formal and informal, that were used to prepare this report. Appendix B provides the definition of acronyms and abbreviations used throughout the report. All times during the flight are given in Greenwich mean time (GMT)) and mission elapsed time (MET).

  19. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  20. STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2

    Science.gov (United States)

    2002-01-01

    STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.

  1. Flight demonstration of formation flying capabilities for future missions (NEAT Pathfinder)

    DEFF Research Database (Denmark)

    Delpech, M.; Malbet, F.; Karlsson, T.

    2015-01-01

    PRISMA is a demonstration mission for formation-flying and on-orbit-servicing critical technologies that involves two spacecraft launched in low Earth orbit in June 2010 and still in operation. Funded by the Swedish National Space Board, PRISMA mission has been developed by OHB Sweden with import......PRISMA is a demonstration mission for formation-flying and on-orbit-servicing critical technologies that involves two spacecraft launched in low Earth orbit in June 2010 and still in operation. Funded by the Swedish National Space Board, PRISMA mission has been developed by OHB Sweden...... with important contributions from the German Aerospace Centre (DLR/GSOC), the French Space Agency (CNES), and the Technical University of Denmark (DTU). The paper focuses on the last CNES experiment achieved in September 2012 that was devoted to the preparation of future astrometry missions illustrated...

  2. In Vitro Assessment of Optical Properties of Blood by Applying the Extended Huygens-Fresnel Principle to Time-Domain Optical Coherence Tomography Signal at 1300 nm

    Directory of Open Access Journals (Sweden)

    Dan P. Popescu

    2008-01-01

    Full Text Available A direct method for the measurement of the optical attenuation coefficient and the scattering anisotropy parameter based on applying the extended Huygens-Fresnel principle to optical coherence tomography images of blood is demonstrated. The images are acquired with a low-power probing beam at the wavelength of 1300 nm. Values of 12.15 mm−1 and 0.95 are found for the total attenuation coefficient and the scattering anisotropy factor, respectively. Also, as a preliminary step, the optical refraction index is determined with a precision of two decimal numbers directly from optical coherence images. The total attenuation coefficient and the scattering anisotropy factor are determined with precisions within experimental error margins of 5% and 2%, respectively. Readable OCT signal is obtained for a maximum propagation of light into blood of 0.25 mm. At the maximum probed depth, the measured signal is almost 103 smaller than its initial intensity when entering the sample.

  3. Mission Success for Combustion Science

    Science.gov (United States)

    Weiland, Karen J.

    2004-01-01

    This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.

  4. White Label Space GLXP Mission

    Science.gov (United States)

    Barton, A.

    2012-09-01

    This poster presents a lunar surface mission concept and corresponding financing approach developed by the White Label Space team, an official competitor in the Google Lunar X PRIZE. The White Label Space team's origins were in the European Space Agency's ESTEC facility in the Netherlands. Accordingly the team's technical headquarters are located just outside ESTEC in the Space Business Park. The team has active partners in Europe, Japan and Australia. The team's goal is to provide a unique publicity opportunity for global brands to land on the moon and win the prestigious Google Lunar X PRIZE. The poster presents the main steps to achieve this goal, the cost estimates for the mission, describes the benefits to the potential sponsors and supporters, and details the progress achieved to date.

  5. The Solar Spectroscopy Explorer Mission

    CERN Document Server

    Bookbinder, Jay

    2010-01-01

    The Solar Spectroscopy Explorer (SSE) concept is conceived as a scalable mission, with two to four instruments and a strong focus on coronal spectroscopy. In its core configuration it is a small strategic mission ($250-500M) built around a microcalorimeter (an imaging X-ray spectrometer) and a high spatial resolution (0.2 arcsec) EUV imager. SSE puts a strong focus on the plasma spectroscopy, balanced with high resolution imaging - providing for break-through imaging science as well as providing the necessary context for the spectroscopy suite. Even in its smallest configuration SSE provides observatory class science, with significant science contributions ranging from basic plasma and radiative processes to the onset of space weather events. The basic configuration can carry an expanded instrument suite with the addition of a hard X-ray imaging spectrometer and/or a high spectral resolution EUV instrument - significantly expanding the science capabilities. In this configuration, it will fall at the small end...

  6. The GAMMA-400 Space Mission

    CERN Document Server

    Cumani, P; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    GAMMA-400 is a new space mission which will be installed on board the Russian space platform Navigator. It is scheduled to be launched at the beginning of the next decade. GAMMA-400 is designed to study simultaneously gamma rays (up to 3 TeV) and cosmic rays (electrons and positrons from 1 GeV to 20 TeV, nuclei up to 10$^{15}$-10$^{16}$ eV). Being a dual-purpose mission, GAMMA-400 will be able to address some of the most impelling science topics, such as search for signatures of dark matter, cosmic-rays origin and propagation, and the nature of transients. GAMMA-400 will try to solve the unanswered questions on these topics by high-precision measurements of the Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission and the spectra of cosmic-ray electrons + positrons and nuclei, thanks to excellent energy and angular resolutions.

  7. Mission design for LISA Pathfinder

    CERN Document Server

    Landgraf, M; Kemble, S

    2004-01-01

    Here we describe the mission design for SMART-2/LISA Pathfinder. The best trade-off between the requirements of a low-disturbance environment and communications distance is found to be a free-insertion Lissajous orbit around the first co-linear Lagrange point of the Sun-Earth system L1, 1.5x 10^6 km from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth orbit, where it will be placed by a small launcher, the spacecraft carries out a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic escape trajectory towards L1. The challenges of the design of a small mission are met, fulfilling the very demanding technology demonstration requirements without creating excessive requirements on the launch system or the ground segment.

  8. Java Mission Evaluation Workstation System

    Science.gov (United States)

    Pettinger, Ross; Watlington, Tim; Ryley, Richard; Harbour, Jeff

    2006-01-01

    The Java Mission Evaluation Workstation System (JMEWS) is a collection of applications designed to retrieve, display, and analyze both real-time and recorded telemetry data. This software is currently being used by both the Space Shuttle Program (SSP) and the International Space Station (ISS) program. JMEWS was written in the Java programming language to satisfy the requirement of platform independence. An object-oriented design was used to satisfy additional requirements and to make the software easily extendable. By virtue of its platform independence, JMEWS can be used on the UNIX workstations in the Mission Control Center (MCC) and on office computers. JMEWS includes an interactive editor that allows users to easily develop displays that meet their specific needs. The displays can be developed and modified while viewing data. By simply selecting a data source, the user can view real-time, recorded, or test data.

  9. ESA's SMART-1 Mission: Status

    Science.gov (United States)

    Racca, G.; Foing, B. H.; SMART-1 Project Team

    SMART-1 is the first of Small Missions for Advanced Research and Technology as part of ESA science programme ``Cosmic Vision''. Its objective is to demonstrate Solar Electric Primary Propulsion (SEP) for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The spacecraft has been launched on 27 sept. 2003, as an Ariane-5 auxiliary passenger. SMART-1 orbit pericenter is now outside the inner radiation belt. The current status of SMART-1 will be given at the symposium. After a 15 month cruise with primary SEP, the SMART-1 mission is to orbit the Moon for a nominal period of six months, with possible extension. The spacecraft will carry out a complete programme of scientific observations during the cruise and in lunar orbit.

  10. Skylab mission report, third visit

    Science.gov (United States)

    1974-01-01

    An evaluation is presented of the operational and engineering aspects of the third Skylab visit, including information on the performance of the command and service module and the experiment hardware, the crew's evaluation of the visit, and other visit-related areas of interest such as biomedical observations. The specific areas discussed are contained in the following: (1) solar physics and astrophysics investigations; (2) Comet Kohoutek experiments; (3) medical experiments; (4) earth observations, including data for the multispectral photographic facility, the earth terrain camera, and the microwave radiometer/scattermometer and altimeter; (5) engineering and technology experiments; (6) food and medical operational equipment; (7) hardware and experiment anomalies; and (8) mission support, mission objectives, flight planning, and launch phase summary. Conclusions discussed as a result of the third visit to Skylab involve the advancement of the sciences, practical applications, the durability of man and systems in space, and spaceflight effectiveness and economy.

  11. New ESA Earth Explorer Missions

    Science.gov (United States)

    Herland, E.

    2006-12-01

    The European Space Agency has recently selected a set of six mission candidates for its next Earth Explorer Core mission. This mission will be launched in the beginning of the next decade, and will contribute significantly to Earth science in addition to the already approved six missions in the programme. The scientific priorities for the call for proposals were the global water cycle, the global carbon cycle, atmospheric chemistry and the human element in the Earth system. The presentation will outline the scientific objectives of each of the six mission proposals, and in particular address the potential contribution to the water and energy cycle research and CEOP. The six mission proposals are: BIOMASS global measurements of forest biomass. The measurement is accomplished by a space-borne P-band synthetic aperture polarimetric radar. The technique is mainly based on the measurement of the cross- polar backscattering coefficient, from which forest biomass is directly retrieved. Also uses multipolarization measurements and interferometry. The studies for this mission will include comparative studies to measure terrestrial biomass using P- or L-band and consideration of alternative implementations using L-band. TRAQ TRopospheric composition and Air Quality: Monitoring of air quality and long-range transport of air pollutants. A new synergistic sensor concept for process studies, particularly with respect to aerosol-cloud interactions. Focus on the rate of air quality change on regional and global scales, the strength and distribution of sources and sinks of tropospheric trace gases and aerosols influencing air quality, and the role of tropospheric composition in global change. Carries imaging spectrometers in the range from ultraviolet to short-wave infrared. PREMIER PRocess Exploration through Measurements of Infrared and millimetre-wave Emitted Radiation: Aims at understanding processes that link trace gases, radiation, chemistry and climate in the atmosphere

  12. LISA Pathfinder: mission and status

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra, Barcelona (Spain); Cruise, M, E-mail: Paul.McNamara@esa.int [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2011-05-07

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  13. DARWIN mission proposal to ESA

    CERN Document Server

    Leger, Alain

    2007-01-01

    The discovery of extra-solar planets is one of the greatest achievements of modern astronomy. There are now more than 200 such objects known, and the recent detection of planets with masses approximately 5 times that of Earth demonstrates that extra-solar planets of low mass exist. In addition to providing a wealth of scientific information on the formation and structure of planetary systems, these discoveries capture the interest of both scientists and the wider public with the profound prospect of the search for life in the Universe. We propose an L-type mission, called Darwin, whose primary goal is the study of terrestrial extrasolar planets and the search for life on them. By its very nature, Darwin advances the first Grand Theme of ESA Cosmic Vision. Accomplishing the mission objectives will require collaborative science across disciplines ranging from planet formation and atmospheres to chemistry and biology, and these disciplines will reap profound rewards from their contributions to the Darwin mission...

  14. The Van Allen Probes mission

    CERN Document Server

    Burch, James

    2014-01-01

    This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions.
 This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the up...

  15. Tandem-X Mission Status

    Science.gov (United States)

    Zink, M.

    2015-04-01

    TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) is an innovative formation flying radar mission that opens a new era in spaceborne radar remote sensing. Its primary objective is the acquisition of a global Digital Elevation Model (DEM) with unprecedented accuracy (12 m horizontal resolution and 2 m relative height accuracy). This goal is achieved by extending the TerraSAR-X synthetic aperture radar (SAR) mission by a second TerraSAR-X like satellite, TanDEM-X (TDX). Both satellites fly in close orbit formation of a few hundred meters distance, and the resulting large single-pass SAR interferometer features flexible baseline selection enabling the acquisition of highly accurate cross-track interferograms not impacted by temporal decorrelation and atmospheric disturbances. Beyond the global DEM, several secondary mission objectives based on along-track interferometry as well as new bistatic and multistatic SAR techniques have been defined. Since 2010 both satellites have been operated in close formation to map all land surfaces at least twice and difficult terrain even up to four times. While data acquisition for the DEM generation will be concluded by the end of 2014 it is expected to complete the processing of the global DEM in the second half of 2016.

  16. The ASTRO-H Mission

    CERN Document Server

    Takahashi, Tadayuki; Kelley, Richard; Aharonian, Felix; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Awaki, Hisamitsu; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Chernyakova, Maria; Coppi, Paolo; Costantini, Elisa; Cottam, Jean; Crow, John; de Plaa, Jelle; de Vries, Cor; Herder, Jan-Willem den; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hughes, John; Hwang, Una; Iizuka, Ryo; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Isobe, Naoki; Ito, Masayuki; Iwata, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Katagiri, Hideaki; Kataoka, Jun; Katsuda, Satoru; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Kotani, Taro; Koyama, Katsuji; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; Miller, Jon; Mineshige, Shin; Minesugi, Kenji; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Koji; Mori, Hideyuki; Mukai, Koji; Murakami, Hiroshi; Murakami, Toshio; Mushotzky, Richard; Nakagawa, Yujin; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Nomachi, Masaharu; Dell, Steve O'; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Parmer, Arvind; Petre, Robert; Pohl, Martin; Porter, Scott; Ramsey, Brian; Reynolds, Christopher; Sakai, Shin-ichiro; Sambruna, Rita; Sato, Goro; Sato, Yoichi; Serlemitsos, Peter; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugita, Hiroyuki; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tozuka, Miyako; Tsuboi, Yoko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Uno, Shinichiro; Urry, Meg; Watanabe, Shin; White, Nicholas; Yamada, Takahiro; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko; Yamauchi, Makoto; Yamauchi, Shigeo; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa

    2010-01-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral reso...

  17. The ASTRO-H Mission

    Science.gov (United States)

    Dotani, Tadayasu; Takahashi, Tadayuki

    2012-07-01

    ASTRO-H, the new Japanese X-ray Astronomy Satellite following Suzaku, is an international X-ray mission, planed for launch in 2014. ASTRO-H is a combination of wide band X-ray spectroscopy (3 - 80 keV) provided by focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3 - 10 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector based on a narrow-FOV semiconductor Compton Camera. With these instruments, ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. The simultaneous broad band pass, coupled with high spectral resolution of super massive Black Holes in Active Galactic Nuclei; trace the growth history of the largest structures in the Universe; provide insights into the behavior of material in extreme gravitational fields; trace particle acceleration structures in clusters of galaxies and SNRs; and investigate the detailed physics of jets. In this presentation, we will describe the mission, scientific goal and the recent progress of the project.

  18. UAV Mission Planning: From Robust to Agile

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.; Wagelmans, A.

    2015-01-01

    Unmanned Aerial Vehicles (UAVs) are important assets for information gathering in Intelligence Surveillance and Reconnaissance (ISR) missions. Depending on the uncertainty in the planning parameters, the complexity of the mission and its constraints and requirements, different planning methods might

  19. Low Energy Mission Planning Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low Energy Mission Planning Toolbox is designed to significantly reduce the resources and time spent on designing missions in multi-body gravitational...

  20. The infrared all-sky survey mission AKARI

    Science.gov (United States)

    Murakami, Hiroshi

    The AKARI, Japanese infrared astronomical satellite, was launched on 2006 February 21 and started the observation in May of the same year. It has performed the all-sky survey at 6 wavelength bands in the midand far-infrared, as well as more than 5,000 pointing observations, during the main mission period lasted until the liquid helium exhaustion on 2007 August 26. The all-sky survey covered more than 90 % of the entire sky with much higher spatial resolution than the IRAS catalogues. First version of AKARI infrared source catalogue will be released in 2009. In the pointing observation, a wide variety of objects, from the solar-system objects to the cosmologically distant galaxies, were observed systematically in near to far infrared. The early results of the pointing observations has been published recently. We are now preparing the post-helium mission where the pointing observations only in the near-infrared wavelength range are be performed with the cooling by the Stirling-cycle coolers. It has been confirmed that the sensitivity of the near-infrared array is kept high, although its operation temperature is higher than that in the liquid-helium cooling. Here we report the overview of the mission, and highlights of the scientific results as well as the observation plan of the post-helium mission planned to start from April 2008.

  1. [Issues of biomedical support of explorations missions].

    Science.gov (United States)

    Potapov, A N; Sinyak, Yu E; Petrov, V M

    2013-01-01

    Sine qua non for piloted exploration missions is a system of biomedical support. The future system will be considerably different from the analogous systems applied in current orbital missions. The reason is the challenging conditions in expeditions to remote space. In a mission to Mars, specifically, these are high levels of radiation, hypomagnetic environment, alternation of micro- and hypogravity, very long mission duration and autonomy. The paper scrutinizes the major issues of medical support to future explorers of space.

  2. Exploration Missions to Host Small Payloads

    Science.gov (United States)

    Cirtain, Jonathan; Pelfrey, Joseph

    2014-01-01

    The next-generation heavy launch vehicle, the Space Launch System (SLS), will provide the capability to deploy small satellites during the trans-lunar phase of the exploration mission trajectory. We will describe the payload mission concept of operations, the payload capacity for the SLS, and the payload requirements. Exploration Mission 1, currently planned for launch in December 2017, will be the first mission to carry such payloads on the SLS.

  3. The Trojans' Odyssey space mission

    Science.gov (United States)

    Lamy, P.; Vernazza, P.; Groussin, O.; Poncy, J.; Martinot, V.; Hinglais, E.; Bell, J.; Cruikshank, D.; Helbert, J.; Marzari, F.; Morbidelli, A.; Rosenblatt, P.

    2011-10-01

    In our present understanding of the Solar System, small bodies (asteroids, Jupiter Trojans, comets and TNOs) are the most direct remnants of the original building blocks that formed the planets. Jupiter Trojan and Hilda asteroids are small primitive bodies located beyond the "snow line", around respectively the L4 and L5 Lagrange points of Jupiter at 5.2 AU (Trojans) and in the 2:3 mean-motion resonance with Jupiter near 3.9 AU (Hildas). They are at the crux of several outstanding and still conflicting issues regarding the formation and evolution of the Solar System. They hold the potential to unlock the answers to fundamental questions about planetary migration, the late heavy bombardment, the formation of the Jovian system, the origin and evolution of trans-neptunian objects, and the delivery of water and organics to the inner planets. The proposed Trojans' Odyssey mission is envisioned as a reconnaissance, multiple flyby mission aimed at visiting several objects, typically five Trojans and one Hilda. It will attempt exploring both large and small objects and sampling those with any known differences in photometric properties. The orbital strategy consists in a direct trajectory to one of the Trojan swarms. By carefully choosing the aphelion of the orbit (typically 5.3 AU), the trajectory will offer a long arc in the swarm thus maximizing the number of flybys. Initial gravity assists from Venus and Earth will help reducing the cruise to 7 years as well as the ?V needed for injection thus offering enough capacity to navigate among Trojans. This solution further opens the unique possibility to flyby a Hilda asteroid when leaving the Trojan swarm. During the cruise phase, a Main Belt Asteroid could be targeted if requiring a modest ?V. The specific science objectives of the mission will be best achieved with a payload that will perform high-resolution panchromatic and multispectral imaging, thermal-infrared imaging/ radiometry, near- and mid-infrared spectroscopy

  4. The Europa Clipper mission concept

    Science.gov (United States)

    Pappalardo, Robert; Lopes, Rosaly

    Jupiter's moon Europa may be a habitable world. Galileo spacecraft data suggest that an ocean most likely exists beneath Europa’s icy surface and that the “ingredients” necessary for life (liquid water, chemistry, and energy) could be present within this ocean today. Because of the potential for revolutionizing our understanding of life in the solar system, future exploration of Europa has been deemed an extremely high priority for planetary science. A NASA-appointed Science Definition Team (SDT), working closely with a technical team from the Jet Propulsion Laboratory (JPL) and the Applied Physics Laboratory (APL), recently considered options for a future strategic mission to Europa, with the stated science goal: Explore Europa to investigate its habitability. The group considered several mission options, which were fully technically developed, then costed and reviewed by technical review boards and planetary science community groups. There was strong convergence on a favored architecture consisting of a spacecraft in Jupiter orbit making many close flybys of Europa, concentrating on remote sensing to explore the moon. Innovative mission design would use gravitational perturbations of the spacecraft trajectory to permit flybys at a wide variety of latitudes and longitudes, enabling globally distributed regional coverage of the moon’s surface, with nominally 45 close flybys at altitudes from 25 to 100 km. We will present the science and reconnaissance goals and objectives, a mission design overview, and the notional spacecraft for this concept, which has become known as the Europa Clipper. The Europa Clipper concept provides a cost-efficient means to explore Europa and investigate its habitability, through understanding the satellite’s ice and ocean, composition, and geology. The set of investigations derived from these science objectives traces to a notional payload for science, consisting of: Ice Penetrating Radar (for sounding of ice-water interfaces

  5. Mechanical design of the Mars Pathfinder mission

    Science.gov (United States)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  6. COMS normal operation for Earth Observation mission

    Science.gov (United States)

    Cho, Young-Min

    2012-09-01

    Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

  7. The Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  8. CHEOPS: A transit photometry mission for ESA's small mission programme

    Directory of Open Access Journals (Sweden)

    Queloz D.

    2013-04-01

    Full Text Available Ground based radial velocity (RV searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground based transit searches now reach milli-mag photometric precision and can discover Neptune size planets around bright stars. These searches will find exoplanets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHaracterizing ExoPlanet Satellite will fill this gap. It will perform ultra-high precision photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric configuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars' brightness, high precision RV measurements will be possible for all targets. All planets observed in transit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

  9. How Prepared is Prepared Enough?

    Science.gov (United States)

    Porter-Levy; Macleod; Rickert

    1996-10-01

    A 17-year-old female was in the final stage in treatment of right unilateral cleft lip and palate. She had undergone a number of previous surgeries. Hearing and speech were good on evaluation, and her social and family situation were deemed excellent. After preparatory orthodontics she underwent a Lefort I maxillary advancement. Surgery was successful and she was admitted into postoperative recovery. However, the lack of adequate preoperative preparation caused traumatic reaction from the patient and her parents: anxiety over appearance, crying, refusal of oral fluids and oral care, refusal of analgesia, and refusal to mobilize. The patience and persistence of hospital staff slowly overcame all adversities and the patient moved on to full and successful recovery, but this case prompted changes in preoperative procedures and involvement of patients and their families in postoperative meal selection, planing, and preparation.

  10. The Virtual Space Telescope: A New Class of Science Missions

    Science.gov (United States)

    Shah, Neerav; Calhoun, Philip

    2016-01-01

    Many science investigations proposed by GSFC require two spacecraft alignment across a long distance to form a virtual space telescope. Forming a Virtual Space telescope requires advances in Guidance, Navigation, and Control (GNC) enabling the distribution of monolithic telescopes across multiple space platforms. The capability to align multiple spacecraft to an intertial target is at a low maturity state and we present a roadmap to advance the system-level capability to be flight ready in preparation of various science applications. An engineering proof of concept, called the CANYVAL-X CubeSat MIssion is presented. CANYVAL-X's advancement will decrease risk for a potential starshade mission that would fly with WFIRST.

  11. Mission Design of the Dutch-Chinese FAST Micro-Satellite Mission

    NARCIS (Netherlands)

    Maessen, D.C.; Guo, J.; Gill, E.; Laan, E.; Moon, S.; Zheng, G.T.

    2009-01-01

    The paper treats the mission design for the Dutch-Chinese FAST (Formation for Atmospheric Science and Technology demonstration) mission. The space segment of the 2.5 year mission consists out of two formation flying micro-satellites. During the mission, new technologies will be demonstrated and, usi

  12. Mission Design of the Dutch-Chinese FAST Micro-Satellite Mission

    NARCIS (Netherlands)

    Maessen, D.C.; Guo, J.; Gill, E.; Laan, E.; Moon, S.; Zheng, G.T.

    2009-01-01

    The paper treats the mission design for the Dutch-Chinese FAST (Formation for Atmospheric Science and Technology demonstration) mission. The space segment of the 2.5 year mission consists out of two formation flying micro-satellites. During the mission, new technologies will be demonstrated and, usi

  13. Project Prometheus and Future Entry Probe Missions

    Science.gov (United States)

    Spilker, Thomas R.

    2005-01-01

    A viewgraph presentation on project Prometheus and future entry probe missions is shown. The topics include: 1) What Is Project Prometheus?; 2) What Capabilities Can Project Prometheus Offer? What Mission Types Are Being Considered?; 3) Jupiter Icy Moons Orbiter (JIMO); 4) How Are Mission Opportunities Changing?; 5) Missions Of Interest a Year Ago; 6) Missions Now Being Considered For Further Study; 7) Galileo-Style (Conventional) Probe Delivery; 8) Galileo-Style Probe Support; 9) Conventional Delivery and Support of Multiple Probes; 10) How Entry Probe Delivery From an NEP Vehicle Is Different; and 11) Concluding Remarks.

  14. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    Science.gov (United States)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  15. Walking the Walk/Talking the Talk: Mission Planning with Speech-Interactive Agents

    Science.gov (United States)

    Bell, Benjamin; Short, Philip; Webb, Stewart

    2010-01-01

    The application of simulation technology to mission planning and rehearsal has enabled realistic overhead 2-D and immersive 3-D "fly-through" capabilities that can help better prepare tactical teams for conducting missions in unfamiliar locales. For aircrews, detailed terrain data can offer a preview of the relevant landmarks and hazards, and threat models can provide a comprehensive glimpse of potential hot zones and safety corridors. A further extension of the utility of such planning and rehearsal techniques would allow users to perform the radio communications planned for a mission; that is, the air-ground coordination that is critical to the success of missions such as close air support (CAS). Such practice opportunities, while valuable, are limited by the inescapable scarcity of complete mission teams to gather in space and time during planning and rehearsal cycles. Moreoever, using simulated comms with synthetic entities, despite the substantial training and cost benefits, remains an elusive objective. In this paper we report on a solution to this gap that incorporates "synthetic teammates" - intelligent software agents that can role-play entities in a mission scenario and that can communicate in spoken language with users. We employ a fielded mission planning and rehearsal tool so that our focus remains on the experimental objectives of the research rather than on developing a testbed from scratch. Use of this planning tool also helps to validate the approach in an operational system. The result is a demonstration of a mission rehearsal tool that allows aircrew users to not only fly the mission but also practice the verbal communications with air control agencies and tactical controllers on the ground. This work will be presented in a CAS mission planning example but has broad applicability across weapons systems, missions and tactical force compositions.

  16. Return to the Moon: Lunar robotic science missions

    Science.gov (United States)

    Taylor, Lawrence A.

    1992-01-01

    There are two important aspects of the Moon and its materials which must be addressed in preparation for a manned return to the Moon and establishment of a lunar base. These involve its geologic science and resource utilization. Knowledge of the Moon forms the basis for interpretations of the planetary science of the terrestrial planets and their satellites; and there are numerous exciting explorations into the geologic science of the Moon to be conducted using orbiter and lander missions. In addition, the rocks and minerals and soils of the Moon will be the basic raw materials for a lunar outpost; and the In-Situ Resource Utilization (ISRU) of lunar materials must be considered in detail before any manned return to the Moon. Both of these fields -- planetary science and resource assessment -- will necessitate the collection of considerable amounts of new data, only obtainable from lunar-orbit remote sensing and robotic landers. For over fifteen years, there have been a considerable number of workshops, meetings, etc. with their subsequent 'white papers' which have detailed plans for a return to the Moon. The Lunar Observer mission, although grandiose, seems to have been too expensive for the austere budgets of the last several years. However, the tens of thousands of man-hours that have gone into 'brainstorming' and production of plans and reports have provided the precursor material for today's missions. It has been only since last year (1991) that realistic optimism for lunar orbiters and soft landers has come forth. Plans are for 1995 and 1996 'Early Robotic Missions' to the Moon, with the collection of data necessary for answering several of the major problems in lunar science, as well as for resource and site evaluation, in preparation for soft landers and a manned-presence on the Moon.

  17. ESA SMART-1 Mission to the Moon

    Science.gov (United States)

    Foing, Bernard H.; Racca, Giuseppe D.; Marini, Andrea; Grande, Manuel; Huovelin, Juhani; Josset, Jean-Luc; Keller, Horst Uwe; Nathues, Andreas; Koschny, Detlef; Malkki, Ansi

    SMART-1 is the first of ESA’s Small Missions for Advanced Research and Technology. Its objective is to demonstrate Primary Solar Electric Propulsion for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The 370 kg spacecraft is to be launched in summer 2003 as Ariane-5 auxiliary passenger and after a 15 month cruise is to orbit the Moon for 6 months with possible extension. SMART-1 will carry out observations during the cruise and in lunar orbit with a science and technology payload (19 kg total mass): a miniaturised high-resolution camera (AMIE) a near-infrared point-spectrometer (SIR) for lunar mineralogy a very compact X-ray spectrometer (D-CIXS) mapping surface elemental composition a Deep Space Communication experiment (KaTE) a radio-science investigations (RSIS) a Laser-Link Experiment an On Board Autonomous Navigation experiment (OBAN) and plasma sensors (SPEDE). SMART-1 will study accretional and bombardment processes that led to the formation of rocky planets and the origin and evolution of the Earth-Moon system. Its science investigations include studies of the chemical composition of the Moon of geophysical processes (volcanism tectonics cratering erosion deposition of ices and volatiles) for comparative planetology and the preparation for future lunar and planetary exploration.

  18. Robotic Precursor Missions for Mars Habitats

    Science.gov (United States)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-07-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  19. Human Mars Missions: Cost Driven Architecture Assessments

    Science.gov (United States)

    Donahue, Benjamin

    1998-01-01

    This report investigates various methods of reducing the cost in space transportation systems for human Mars missions. The reference mission for this task is a mission currently under study at NASA. called the Mars Design Reference Mission, characterized by In-Situ propellant production at Mars. This study mainly consists of comparative evaluations to the reference mission with a view to selecting strategies that would reduce the cost of the Mars program as a whole. One of the objectives is to understand the implications of certain Mars architectures, mission modes, vehicle configurations, and potentials for vehicle reusability. The evaluations start with year 2011-2014 conjunction missions which were characterized by their abort-to-the-surface mission abort philosophy. Variations within this mission architecture, as well as outside the set to other architectures (not predicated on an abort to surface philosophy) were evaluated. Specific emphasis has been placed on identifying and assessing overall mission risk. Impacts that Mars mission vehicles might place upon the Space Station, if it were to be used as an assembly or operations base, were also discussed. Because of the short duration of this study only on a few propulsion elements were addressed (nuclear thermal, cryogenic oxygen-hydrogen, cryogenic oxygen-methane, and aerocapture). Primary ground rules and assumptions were taken from NASA material used in Marshall Space Flight Center's own assessment done in 1997.

  20. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities...... for exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...... exploration of Earth’s magnetic field with satellites....

  1. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...... is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets....

  2. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  3. Integrated payload and mission planning, phase 3. Volume 1: Integrated payload and mission planning process evaluation

    Science.gov (United States)

    Sapp, T. P.; Davin, D. E.

    1977-01-01

    The integrated payload and mission planning process for STS payloads was defined, and discrete tasks which evaluate performance and support initial implementation of this process were conducted. The scope of activity was limited to NASA and NASA-related payload missions only. The integrated payload and mission planning process was defined in detail, including all related interfaces and scheduling requirements. Related to the payload mission planning process, a methodology for assessing early Spacelab mission manager assignment schedules was defined.

  4. Global Precipitation Mission Visualization Tool

    Science.gov (United States)

    Schwaller, Mathew

    2011-01-01

    The Global Precipitation Mission (GPM) software provides graphic visualization tools that enable easy comparison of ground- and space-based radar observations. It was initially designed to compare ground radar reflectivity from operational, ground-based, S- and C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite's precipitation radar instrument. This design is also applicable to other groundbased and space-based radars, and allows both ground- and space-based radar data to be compared for validation purposes. The tool creates an operational system that routinely performs several steps. It ingests satellite radar data (precipitation radar data from TRMM) and groundbased meteorological radar data from a number of sources. Principally, the ground radar data comes from national networks of weather radars (see figure). The data ingested by the visualization tool must conform to the data formats used in GPM Validation Network Geometry-matched data product generation. The software also performs match-ups of the radar volume data for the ground- and space-based data, as well as statistical and graphical analysis (including two-dimensional graphical displays) on the match-up data. The visualization tool software is written in IDL, and can be operated either in the IDL development environment or as a stand-alone executable function.

  5. Ravens satellite mission concept study

    CERN Document Server

    Donovan, Eric F

    2011-01-01

    The concept for Ravens satellite mission was proposed in response to a CSA AO for potential Canadian mission contributions to the International Living With a Star (ILWS) program. Ravens was conceived of to fill an important gap in the ILWS program: global imaging. Ravens will build on the heritage of world-class global imaging carried out in Canada. It would do much more than provide global observations to complete the system level capabilities of ILWS. Ravens would be comprised of two satellites on elliptical polar orbits, relatively phased on those orbits to provide the first-ever continuous (ie., 24 hours per day 7 days per week) global imaging of the northern hemisphere auroral and polar cap regions. This would provide the first-ever unbroken sequences of global images of the auroral response during long duration geomagnetic processes like storms and steady magnetospheric convection events. Ravens could track the spatio-temporal evolution of the global electron and proton auroral distribution, and would o...

  6. The NeXT Mission

    CERN Document Server

    Takahashi, T; Mitsuda, K; Kunieda, H; Petre, R; White, N; Dotani, T; Fujimoto, R; Fukazawa, Y; Hayashida, K; Ishida, M; Ishisaki, Y; Kokubun, M; Makishima, K; Koyama, K; Madejski, G M; Mori, K; Mushotzky, R; Nakazawa, K; Ogasaka, Y; Ohashi, T; Ozaki, M; Tajima, H; Tashiro, M; Terada, Y; Tsunemi, H; Tsuru, T G; Ueda, Y; Yamasaki, N; Watanabe, S

    2008-01-01

    The NeXT (New exploration X-ray Telescope), the new Japanese X-ray Astronomy Satellite following Suzaku, is an international X-ray mission which is currently planed for launch in 2013. NeXT is a combination of wide band X-ray spectroscopy (3 - 80 keV) provided by multi-layer coating, focusing hard X-ray mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3 - 10 keV) provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector. With these instruments, NeXT covers very wide energy range from 0.3 keV to 600 keV. The micro-calorimeter system will be developed by international collaboration lead by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of Delta E ~ 7 eV by the micro-calorimeter will enable a wide variety of important science themes to be pursued.

  7. DUAL Gamma-Ray Mission

    CERN Document Server

    Boggs, S; von Ballmoos, P; Takahashi, T; Gehrels, N; Tueller, J; Baring, M; Beacom, J; Diehl, R; Greiner, J; Grove, E; Hartmann, D; Hernanz, M; Jean, P; Johnson, N; Kanbach, G; Kippen, M; Knödlseder, J; Leising, M; Madejski, G; McConnell, M; Milne, P; Motohide, K; Nakazawa, K; Oberlack, U; Phlips, B; Ryan, J; Skinner, G; Starrfield, S; Tajima, H; Wulf, E; Zoglauer, A; Zych, A

    2010-01-01

    Gamma-ray astronomy presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. In order to take full advantage of this potential, the next generation of instrumentation for this domain will have to achieve an improvement in sensitivity over present technologies of at least an order of magnitude. The DUAL mission concept takes up this challenge in two complementary ways: a very long observation of the entire sky, combined with a large collection area for simultaneous observations of Type Ia SNe. While the Wide-Field Compton Telescope (WCT) accumulates data from the full gamma-ray sky (0.1-10 MeV) over the entire mission lifetime, the Laue-Lens Telescope (LLT) focuses on 56Co emission from SNe Ia (0.8-0.9 MeV), collecting gamma-rays from its large area crystal lens onto the WCT. Two separated spacecraft flying in formation will maintain the DUAL payloads at the lens' focal distance.

  8. Mission and ethics in Galatians

    Directory of Open Access Journals (Sweden)

    Jacobus Kok

    2011-06-01

    Full Text Available In this article, it is investigated how the concepts identity, ethics and ethos interrelate, and how the ethics of the Pauline communities in Galatians functioned against the background of the missionary context of the early church. The author argued that the missionary dimension originated in the context of the missio Dei, and that God called Paul as a missionary to be taken up in the latter. The missionary process did not end with Paul, but was designed to be carried further by believers who should be, by their very nature, missionary. In the process, the author investigated how the transformation of identity (the understanding of self, God and others leads to the creation of ethical values and how it is particularised in different socioreligious and cultural contexts in the development of the early church. The author argued that there is an implicit missionary dimension in the ethics of Paul in Galatians. In the process, it is argued that those who want to speak of ethics should make something of mission, and those who speak of mission in Galatians, should speak about the role of identity, ethics and ethos in the letter.

  9. The Sentinel-2 Mission Products

    Science.gov (United States)

    Gascon, Ferran

    2012-04-01

    In the framework of the Global Monitoring for Environment and Security (GMES) programme, the European Space Agency (ESA) in partnership with the European Commission (EC) is developing the Sentinel-2 optical imaging mission devoted to the operational monitoring of land and coastal areas. This system will deliver a new generation of optical data products designed to directly feed downstream services acting in several domains such as land management, agricultural industry, forestry, food security, or disaster control management following floods, volcanic eruptions, landslides, etc. The Sentinel-2 mission designed to generate products with accurate radiometric and geometric performances (including multi-temporal imagery co-registration). To maximize the products suitability and readiness to downstream usage for the majority of applications, the Sentinel-2 PDGS will systematically generate and archive Level-1C products, which will provide Top of Atmosphere (TOA) reflectance images, orthorectified using a global DEM and UTM projection. A Level-1B product will also be available for expert users and will provide the radiometrically corrected pixels in sensor geometry with the geometric model appended. Finally, a complementary atmospheric correction and enhanced cloud screening algorithm is being prototyped in parallel with the goal of providing some initial capabilities to the users, by means of a specific software toolbox operated on their platforms, to translate the Level-1C TOA reflectance image into Bottom of Atmosphere (BOA) reflectance.

  10. CMBPol Mission Concept Study: A Mission to Map our Origins

    CERN Document Server

    Baumann, Daniel; Dodelson, Scott; Dunkley, Joanna; Fraisse, Aurélien A; Jackson, Mark G; Kogut, Al; Krauss, Lawrence M; Smith, Kendrick M; Zaldarriaga, Matias

    2008-01-01

    Quantum mechanical metric fluctuations during an early inflationary phase of the universe leave a characteristic imprint in the polarization of the cosmic microwave background (CMB). The amplitude of this signal depends on the energy scale at which inflation occurred. Detailed observations by a dedicated satellite mission (CMBPol) therefore provide information about energy scales as high as $10^{15}$ GeV, twelve orders of magnitude greater than the highest energies accessible to particle accelerators, and probe the earliest moments in the history of the universe. This summary provides an overview of a set of studies exploring the scientific payoff of CMBPol in diverse areas of modern cosmology, such as the physics of inflation, gravitational lensing and cosmic reionization, as well as foreground science and removal .

  11. Mission objectives and scientific rationale for the magnetometer mission.

    Science.gov (United States)

    Langel, R. A.

    1991-12-01

    Based on a review of the characteristics of the geomagnetic field, objectives for the magnetic portion of the ARISTOTELES mission are: (1) To derive a description of the main magnetic field and its secular variation. (2) To investigate the correlation between the geomagnetic field and variations in the length of day. (3) To study properties of the fluid core. (4) To study the conductivity of the mantle. (5) To model the state and evolution of the crust and upper lithosphere. (6) To measure and characterize field aligned currents and ionospheric currents and to understand their generation mechanisms and their role in energy coupling in the interplanetary-magnetospheric-ionospheric systems. Procedures for these investigations are outlined.

  12. ESA SMART-1 mission: results and lessons for future lunar exploration

    Science.gov (United States)

    Foing, Bernard H.

    We review ESA’s SMART-1 highlights and legacy 10 years after launch. We discuss lessons for future lunar exploration and upcoming missions. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang’ E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to application geostationary missions and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of

  13. Case study: using a stereoscopic display for mission planning

    Science.gov (United States)

    Kleiber, Michael; Winkelholz, Carsten

    2009-02-01

    This paper reports on the results of a study investigating the benefits of using an autostereoscopic display in the training targeting process of the Germain Air Force. The study examined how stereoscopic 3D visualizations can help to improve flight path planning and the preparation of a mission in general. An autostereoscopic display was used because it allows the operator to perceive the stereoscopic images without shutter glasses which facilitates the integration into a workplace with conventional 2D monitors and arbitrary lighting conditions.

  14. Environmental Control Systems for Exploration Missions One and Two

    Science.gov (United States)

    Falcone, Mark A.

    2017-01-01

    In preparing for Exploration Missions One and Two (EM-1 & EM-2), the Ground Systems Development and Operations Program has significant updates to be made to nearly all facilities. This is all being done to accommodate the Space Launch System, which will be the world’s largest rocket in history upon fruition. Facilitating the launch of such a rocket requires an updated Vehicle Assembly Building, an upgraded Launchpad, Payload Processing Facility, and more. In this project, Environmental Control Systems across several facilities were involved, though there is a focus around the Mobile Launcher and Launchpad. Parts were ordered, analysis models were updated, design drawings were updated, and more.

  15. How NASA Utilizes Dashboards to Help Ensure Mission Success

    Science.gov (United States)

    Blakeley, Chris

    2013-01-01

    NASA is actively planning to expand human spaceflight and robotic exploration beyond low Earth orbit. To prepare for the challenge of exploring these destinations in space, NASA conducts missions here on Earth in remote locations that have physical similarities to extreme space environments. Program managers for the Advanced Exploration Systems program requested a simple way to track financial information to ensure that each task stayed within their budgetary constraints. Using SAP BusinessObjects Dashboards (Formerly Xcelsius), a dashboard was created to satisfy all of their key requirements. Lessons learned, along with some tips and tricks, will be highlighted during this session.

  16. Comet nucleus and asteroid sample return missions

    Science.gov (United States)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  17. Chandrayaan-1: India's first planetary science mission

    Science.gov (United States)

    Nath Goswami, Jitendra

    A new initiative of the Indian Space Research Organization to have dedicated Space Science Missions led to two major missions that are currently in progress: Astrosat and Chandrayaan-1, the latter being the first planetary science mission of the country. The spadework for this mission started about ten years back and culminated in late 2003 with the official endorsement for the mission. This remote sensing mission, to be launched in early next year, is expected to further our understanding of the origin and evolution of the Moon based on a chemical, mineralogical and topographic study of the lunar surface at spatial and spectral resolutions much better than those for previous and other currently planned lunar missions. The Chandrayaan-1 mission is also international in character and will have an array of Indian instruments as well as several instruments from abroad some of which will have very strong Indian collaboration. This talk will provide a brief overview of our present understanding of the Moon, the science objectives of the Chandrayaan-1 mission and how we hope to achieve these from the data to be obtained by the various instruments on board the mission. A possible road map for Indian planetary exploration programme in the context of the International scenario will be presented at the end.

  18. Space Launch System Mission Flexibility Assessment

    Science.gov (United States)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  19. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions Workshop Booklet - 2015

    Science.gov (United States)

    Fonda, Mark L.

    2015-01-01

    Although NASA's preparations for the Apollo lunar missions had only a limited time to consider issues associated with the protection of the Moon from biological contamination and the quarantine of the astronauts returning to Earth, they learned many valuable lessons (both positive and negative) in the process. As such, those efforts represent the baseline of planetary protection preparations for sending humans to Mars. Neither the post-Apollo experience or the Shuttle and other follow-on missions of either the US or Russian human spaceflight programs could add many additional insights to that baseline. Current mission designers have had the intervening four decades for their consideration, and in that time there has been much learned about human-associated microbes, about Mars, and about humans in space that has helped prepare us for a broad spectrum of considerations regarding potential biological contamination in human Mars missions and how to control it. This paper will review the approaches used in getting this far, and highlight some implications of this history for the future development of planetary protection provisions for human missions to Mars. The role of NASA and ESA's planetary protection offices, and the aegis of COSPAR have been particularly important in the ongoing process.

  20. Bone Metabolism on ISS Missions

    Science.gov (United States)

    Smith, S. M.; Heer, M. A.; Shackelford, L. C.; Zwart, S. R.

    2014-01-01

    Spaceflight-induced bone loss is associated with increased bone resorption (1, 2), and either unchanged or decreased rates of bone formation. Resistive exercise had been proposed as a countermeasure, and data from bed rest supported this concept (3). An interim resistive exercise device (iRED) was flown for early ISS crews. Unfortunately, the iRED provided no greater bone protection than on missions where only aerobic and muscular endurance exercises were available (4, 5). In 2008, the Advanced Resistive Exercise Device (ARED), a more robust device with much greater resistance capability, (6, 7) was launched to the ISS. Astronauts who had access to ARED, coupled with adequate energy intake and vitamin D status, returned from ISS missions with bone mineral densities virtually unchanged from preflight (7). Bone biochemical markers showed that while the resistive exercise and adequate energy consumption did not mitigate the increased bone resorption, bone formation was increased (7, 8). The typical drop in circulating parathyroid hormone did not occur in ARED crewmembers. In 2014, an updated look at the densitometry data was published. This study confirmed the initial findings with a much larger set of data. In 42 astronauts (33 male, 9 female), the bone mineral density response to flight was the same for men and women (9), and those with access to the ARED did not have the typical decrease in bone mineral density that was observed in early ISS crewmembers with access to the iRED (Figure 1) (7). Biochemical markers of bone formation and resorption responded similarly in men and women. These data are encouraging, and represent the first in-flight evidence in the history of human space flight that diet and exercise can maintain bone mineral density on long-duration missions. However, the maintenance of bone mineral density through bone remodeling, that is, increases in both resorption and formation, may yield a bone with strength characteristics different from those

  1. Space Mission : Y3K

    Science.gov (United States)

    2001-01-01

    ESA and the APME are hosting a contest for 10 - 15 year olds in nine European countries (Austria, Belgium, France, Germany, Italy, the Netherlands, Spain, Sweden and the United Kingdom). The contest is based on an interactive CD ROM, called Space Mission: Y3K, which explores space technology and shows some concrete uses of that technology in enhancing the quality of life on Earth. The CD ROM invites kids to join animated character Space Ranger Pete on an action-packed, colourful journey through space. Space Ranger Pete begins on Earth: the user navigates around a 'locker room' to learn about synthetic materials used in rocket boosters, heat shields, space suits and helmets, and how these materials have now become indispensable to everyday life. From Earth he flies into space and the user follows him from the control room in the spacecraft to a planet, satellites and finally to the International Space Station. Along the way, the user jots down clues that he or she discovers in this exploration, designing an imaginary space community and putting together a submission for the contest. The lucky winners will spend a weekend training as "junior astronauts" at the European Space Centre in Belgium (20-22 April 2001). They will be put through their astronaut paces, learning the art of space walking, running their own space mission, piloting a space capsule and re-entering the Earth's atmosphere. The competition features in various youth media channels across Europe. In the UK, popular BBC Saturday morning TV show, Live & Kicking, will be launching the competition and will invite viewers to submit their space community designs to win a weekend at ESC. In Germany, high circulation children's magazine Geolino will feature the competition in the January issue and on their internet site. And youth magazine ZoZitDat will feature the competition in the Netherlands throughout February. Space Mission: Y3K is part of an on-going partnership between the ESA's Technology Transfer

  2. TerraSAR-X mission

    Science.gov (United States)

    Werninghaus, Rolf

    2004-01-01

    The TerraSAR-X is a German national SAR- satellite system for scientific and commercial applications. It is the continuation of the scientifically and technologically successful radar missions X-SAR (1994) and SRTM (2000) and will bring the national technology developments DESA and TOPAS into operational use. The space segment of TerraSAR-X is an advanced high-resolution X-Band radar satellite. The system design is based on a sound market analysis performed by Infoterra. The TerraSAR-X features an advanced high-resolution X-Band Synthetic Aperture Radar based on the active phased array technology which allows the operation in Spotlight-, Stripmap- and ScanSAR Mode with various polarizations. It combines the ability to acquire high resolution images for detailed analysis as well as wide swath images for overview applications. In addition, experimental modes like the Dual Receive Antenna Mode allow for full-polarimetric imaging as well as along track interferometry, i.e. moving target identification. The Ground Segment is optimized for flexible response to (scientific and commercial) User requests and fast image product turn-around times. The TerraSAR-X mission will serve two main goals. The first goal is to provide the strongly supportive scientific community with multi-mode X-Band SAR data. The broad spectrum of scientific application areas include Hydrology, Geology, Climatology, Oceanography, Environmental Monitoring and Disaster Monitoring as well as Cartography (DEM Generation) and Interferometry. The second goal is the establishment of a commercial EO-market in Europe which is driven by Infoterra. The commercial goal is the development of a sustainable EO-business so that the e.g. follow-on systems can be completely financed by industry from the profit. Due to its commercial potential, the TerraSAR-X project will be implemented based on a public-private partnership with the Astrium GmbH. This paper will describe first the mission objectives as well as the

  3. I satelliti della missione EROS

    Directory of Open Access Journals (Sweden)

    Stefano De Corso

    2009-03-01

    Full Text Available EROS mission satellitesThe EROS (Earth Remote Observation Satellite constellation is property of ImageSat International N.V. an international company and a commercial provider of high-resolution, satellite earth-imagery collected by its Earth Remote Observation Satellite. EROS A is equipped with a camera whose focal plane of CCD (Charge Coupled Device detectors produces a standard image resolution of 1.9 meters. EROS B slightly larger and similar in appearance to EROS A, the new satellite has superior capabilities, including a larger camera of CCD/ TDI type (Charge Coupled Device/Time Delay Integration, with standard panchromatic resolution of 0.70 m at an altitude of about 500 km, a larger on-board recorder, improved pointing accuracy and a faster data communication link.

  4. Cassini Mission Sequence Subsystem (MSS)

    Science.gov (United States)

    Alland, Robert

    2011-01-01

    This paper describes my work with the Cassini Mission Sequence Subsystem (MSS) team during the summer of 2011. It gives some background on the motivation for this project and describes the expected benefit to the Cassini program. It then introduces the two tasks that I worked on - an automatic system auditing tool and a series of corrections to the Cassini Sequence Generator (SEQ_GEN) - and the specific objectives these tasks were to accomplish. Next, it details the approach I took to meet these objectives and the results of this approach, followed by a discussion of how the outcome of the project compares with my initial expectations. The paper concludes with a summary of my experience working on this project, lists what the next steps are, and acknowledges the help of my Cassini colleagues.

  5. The SSETI-express Mission

    DEFF Research Database (Denmark)

    Alminde, Lars; Bisgaard, Morten; Melville, N.

    provides a description of the organisation behind the project and the mission of the satellite. Further it provides a technical overview of both the space segment and the ground segment together with key lessons learnt from the process of building a student satellite with widely distributed teams.......In January 2004 a group of students met at the European Space Technology and Research Centre (ESTEC) in Holland to discuss the feasibility of building a micro-satellite, dubbed SSETI-Express, from parts derived from other student satellite projects and launch it within one and a half year....... The project is an initiative under the ESA Education Department and the Student Space Exploration and Technology Initiative (SSETI)[3], an European student organisation. The satellite is currently scheduled for launch on the 30th of June 2005 atop a "Cosmos" launch vehicle from Plesetsk in Russia. This paper...

  6. Solar sail Engineering Development Mission

    Science.gov (United States)

    Price, H. W.

    1981-01-01

    Since photons have momentum, a useful force can be obtained by reflecting sunlight off of a large, low mass surface (most likely a very thin metal-coated plastic film) and robbing the light of some of its momentum. A solar sail Engineering Development Mission (EDM) is currently being planned by the World Space Foundation for the purpose of demonstrating and evaluating solar sailing technology and to gain experience in the design and operation of a spacecraft propelled by sunlight. The present plan is for the EDM spacecraft to be launched (sail stowed) in a spin-stabilized configuration into an initial elliptical orbit with an apogee of 36,000 km and a perigee of a few hundred kilometers. The spacecraft will then use its own chemical propulsion system to raise the perigee to at least 1,200 km. The deployed sail will have an area of 880 sq m and generate a solar force of about 0.007 N.

  7. Job Orders (Ordres de mission)

    CERN Multimedia

    FI Department

    2005-01-01

    Please note that individual job orders and continuous job orders (valid for one calendar year, i.e. from 1st January to 31st December) must henceforth be completed via EDH and approved by the Department Leader concerned (or the person appointed by him via EDHAdmin). Once approved, the form must be printed and kept for the duration of the mission by the driver to whom the job order is issued. You will find the icon for this document on the EDH Desktop, as well as on-line help on how to use it. In emergencies, paper copies of individual job orders (SCEM 54.50.20.168.5) may be issued outside normal working hours by the Fire Brigade (Meyrin Site, Building 65). Organisation & Procedures, FI Department, Tel. 73905 Relations with the Host States Service, Tel. 72848

  8. Aquarius/SAC-D mission

    Science.gov (United States)

    Sen, Amit; Caruso, Daniel; Lagerloef, Gary; Torrusio, Sandra; Durham, David; Falcon, Carlos

    2008-10-01

    Sea Surface Salinity (SSS) is a key parameter in the global water cycle but it is not yet monitored from space. Conventional in situ SSS sampling is too sparse to give the global view of salinity variability that a remote sensing satellite can provide. The Aquarius/SAC-D Mission will make pioneering space-based measurements of global SSS with the precision, resolution, and coverage needed to characterize salinity variations (spatial and temporal), investigate the linkage between ocean circulation, the Earth's water cycle, and climate variability. It is being jointly developed by NASA and the Space Agency of Argentina, the Comision Nacional de Actividades Espaciales (CONAE). The Project is currently in implementation phase with the flight Aquarius Instrument undergoing environmental testing at NASA-JPL/Caltech in California, USA and the SAC-D instruments and spacecraft development undergoing at CONAE/INVAP facilities in Argentina. Aquarius/SAC-D launch is scheduled for May 2010.

  9. The Global Precipitation Measurement Mission

    Science.gov (United States)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  10. The first Spacelab mission. [payload management functions

    Science.gov (United States)

    Pace, R. E., Jr.

    1976-01-01

    The purpose of Spacelab, an Orbiter-mounted NASA/ESA laboratory, is to include in the Space Transportation System (STS) a payload carrier with maximum flexibility to accommodate multidisciplinary scientific payloads. The major Spacelab configurations obtained by combination of two basic elements, the module and pallet, are described along with the anticipated program of experiments and payloads, and mission management general concept. The first Spacelab 7-day mission is scheduled for flight in the second half of 1980, with the primary objective being to verify system performance capabilities. Detailed attention is given to the payload mission management responsibilities for the first flight, including program control, science management, payload interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload integration, launch site integration, payload flight/mission operations, and postmission activities. The Spacelab configuration (including the long module and one pallet) and the overall schedule for this mission are presented.

  11. The first Spacelab mission. [payload management functions

    Science.gov (United States)

    Pace, R. E., Jr.

    1976-01-01

    The purpose of Spacelab, an Orbiter-mounted NASA/ESA laboratory, is to include in the Space Transportation System (STS) a payload carrier with maximum flexibility to accommodate multidisciplinary scientific payloads. The major Spacelab configurations obtained by combination of two basic elements, the module and pallet, are described along with the anticipated program of experiments and payloads, and mission management general concept. The first Spacelab 7-day mission is scheduled for flight in the second half of 1980, with the primary objective being to verify system performance capabilities. Detailed attention is given to the payload mission management responsibilities for the first flight, including program control, science management, payload interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload integration, launch site integration, payload flight/mission operations, and postmission activities. The Spacelab configuration (including the long module and one pallet) and the overall schedule for this mission are presented.

  12. NASA's Missions for Exoplanet Exploration

    Science.gov (United States)

    Unwin, Stephen

    2014-05-01

    Exoplanets are detected and characterized using a range of observational techniques - including direct imaging, astrometry, transits, microlensing, and radial velocities. Each technique illuminates a different aspect of exoplanet properties and statistics. This diversity of approach has contributed to the rapid growth of the field into a major research area in only two decades. In parallel with exoplanet observations, major efforts are now underway to interpret the physical and atmospheric properties of exoplanets for which spectroscopy is now possible. In addition, comparative planetology probes questions of interest to both exoplanets and solar system studies. In this talk I describe NASA's activities in exoplanet research, and discuss plans for near-future missions that have reflected-light spectroscopy as a key goal. The WFIRST-AFTA concept currently under active study includes a major microlensing survey, and now includes a visible light coronagraph for exoplanet spectroscopy and debris disk imaging. Two NASA-selected community-led teams are studying probe-scale (spectroscopy. These concepts complement existing NASA missions that do exoplanet science (such as transit spectroscopy and debris disk imaging with HST and Spitzer) or are under development (survey of nearby transiting exoplanets with TESS, and followup of the most important targets with transit spectroscopy on JWST), and build on the work of ground-based instruments such as LBTI and observing with HIRES on Keck. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2014. California Institute of Technology. Government sponsorship acknowledged.

  13. A Mission to Earth's Center

    Science.gov (United States)

    Olson, P.

    2016-12-01

    The last few decades have witnessed extraordinary progress on Earth's deep interior, particularly for Earth's core. Notable examples include seismic detection of fine structure and heterogeneity from the CMB to the depths of the inner core; improved constraints on the thermal regime and critical physical properties; direct experimental access to core pressures and temperatures; partial resolution of geomagnetic history into the deep past, new cosmochemical constraints on core formation, plus a first-order solution of the dynamo problem. Nevertheless, many fundamental questions about Earth's core remain unanswered, representing significant impediments to further understanding, not just of the Earth system, but also the interiors of other planets. A partial list of unsolved problems includes the composition of the core especially its light element inventory, the nature of heterogeneity in the core and its dynamical significance, quantifying heat and mass exchanges between core and mantle, the record of core evolution exemplified by inner core nucleation and the magnetic superchron cycle, and the role of core formation in governing Earth history. A more concerted and better-focused interdisciplinary effort is needed to resolve these long-standing problems, one that is comparable in its scale and structure to a planetary exploration mission. Such a Mission to Earth's Center would foster technological developments aimed specifically at these questions, such as seismic arrays designed for imaging the core, experimental capability for determining the phase diagram of the core, resolution of geomagnetic history into the deep past, plus next-generation dynamical models for the mantle, the core, and their interaction.

  14. THE JEM-EUSO MISSION

    Directory of Open Access Journals (Sweden)

    Mario Bertaina

    2013-12-01

    Full Text Available The JEM-EUSO mission explores the origin of the extreme energy cosmic rays (EECRs above 50EeV and explores the limits of the fundamental physics, through the observations of their arrival directions and energies. It is designed to open a new particle astronomy channel. This superwide-field (60 degrees telescope with a diameter of about 2.5m looks down from space onto the night sky to detect near UV photons (330 ÷ 400nm, both fluorescent and Cherenkov photons emitted from the giant air showers produced by EECRs. The arrival direction map with more than five hundred events will tell us the origin of the EECRs and allow us to identify the nearest EECR sources with known astronomical objects. It will allow them to be examined in other astronomical channels. This is likely to lead to an  nderstanding of the acceleration mechanisms perhaps producing discoveries in astrophysics and/or fundamental physics. The comparison of the energy spectra among the spatially resolved individual sources will help to clarify the acceleration/emission mechanism, and also finally confirm the Greisen–Zatsepin–Kuz’min process for the validation of Lorentz invariance up to γ ~ 1011. Neutral components (neutrinos and gamma rays can also be detected as well, if their fluxes are high enough. The JEM-EUSO mission is planned to be launched by a H2B rocket about 2017 and transferred to ISS by H2 Transfer Vehicle (HTV. It will be attached to the Exposed Facility external experiment platform of “KIBO”.

  15. Agile: From Software to Mission Systems

    Science.gov (United States)

    Trimble, Jay; Shirley, Mark; Hobart, Sarah

    2017-01-01

    To maximize efficiency and flexibility in Mission Operations System (MOS) design, we are evolving principles from agile and lean methods for software, to the complete mission system. This allows for reduced operational risk at reduced cost, and achieves a more effective design through early integration of operations into mission system engineering and flight system design. The core principles are assessment of capability through demonstration, risk reduction through targeted experiments, early test and deployment, and maturation of processes and tools through use.

  16. The Scots abroad: migration and mission

    OpenAIRE

    Ross, Kenneth R.

    2013-01-01

    Kenneth Ross’s essay begins with an overview of the migration of the Scots round the world in the age of colonialism. He then examines this more closely, exploring the relationship between migration and missions in the diaspora church. Beginning with mission-migrant relations in Malawi, Ross then points to more general, more deeply-rooted tensions arising in the Scottish diaspora, reflected in the conflicting interests of expatriate churches and mission agencies. Publisher PDF

  17. GSFC Safety and Mission Assurance Organization

    Science.gov (United States)

    Kelly, Michael P.

    2010-01-01

    This viewgraph presentation reviews NASA Goddard Space Flight Center's approach to safety and mission assurance. The contents include: 1) NASA GSFC Background; 2) Safety and Mission Assurance Directorate; 3) The Role of SMA-D and the Technical Authority; 4) GSFC Mission assurance Requirements; 5) GSFC Systems Review Office (SRO); 6) GSFC Supply Chain Management Program; and 7) GSFC ISO9001/AS9100 Status Brief.

  18. Component Verification and Certification in NASA Missions

    Science.gov (United States)

    Giannakopoulou, Dimitra; Penix, John; Norvig, Peter (Technical Monitor)

    2001-01-01

    Software development for NASA missions is a particularly challenging task. Missions are extremely ambitious scientifically, have very strict time frames, and must be accomplished with a maximum degree of reliability. Verification technologies must therefore be pushed far beyond their current capabilities. Moreover, reuse and adaptation of software architectures and components must be incorporated in software development within and across missions. This paper discusses NASA applications that we are currently investigating from these perspectives.

  19. Flight demonstration of formation flying capabilities for future missions (NEAT Pathfinder)

    CERN Document Server

    Delpech, M; Karlsson, T; Larsson, R; Léger, A; Jorgensen, J

    2013-01-01

    PRISMA is a demonstration mission for formation-flying and on-orbit-servicing critical technologies that involves two spacecraft launched in low Earth orbit in June 2010 and still in operation. Funded by the Swedish National Space Board, PRISMA mission has been developed by OHB Sweden with important contributions from the German Aerospace Centre (DLR/GSOC), the French Space Agency (CNES), and the Technical University of Denmark (DTU). The paper focuses on the last CNES experiment achieved in September 2012 that was devoted to the preparation of future astrometry missions illustrated by the NEAT and microNEAT mission concepts. The experiment consisted in performing the type of formation maneuvers required to point the two-satellite axis to a celestial target and maintain it fixed during the observation period. Achieving inertial pointing for a LEO formation represented a new challenge given the numerous constraints from propellant usage to star tracker blinding. The paper presents the experiment objectives in ...

  20. Remote Infrared Imaging of the Space Shuttle During Hypersonic Flight: HYTHIRM Mission Operations and Coordination

    Science.gov (United States)

    Schwartz, Richard J.; McCrea, Andrew C.; Gruber, Jennifer R.; Hensley, Doyle W.; Verstynen, Harry A.; Oram, Timothy D.; Berger, Karen T.; Splinter, Scott C.; Horvath, Thomas J.; Kerns, Robert V.

    2011-01-01

    The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project has been responsible for obtaining spatially resolved, scientifically calibrated in-flight thermal imagery of the Space Shuttle Orbiter during reentry. Starting with STS-119 in March of 2009 and continuing through to the majority of final flights of the Space Shuttle, the HYTHIRM team has to date deployed during seven Shuttle missions with a mix of airborne and ground based imaging platforms. Each deployment of the HYTHIRM team has resulted in obtaining imagery suitable for processing and comparison with computational models and wind tunnel data at Mach numbers ranging from over 18 to under Mach 5. This paper will discuss the detailed mission planning and coordination with the NASA Johnson Space Center Mission Control Center that the HYTHIRM team undergoes to prepare for and execute each mission.

  1. High Energy Astrophysics and Fundamental Physics Missions in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tadayuki [Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, Japan, 252-5210 (Japan)

    2013-10-15

    ISAS is the main branch institute of JAXA responsible for space science, conducting academic research by making the maximum use of its own scientific satellites, planetary probes, sounding rockets, and scientific balloons, and of collaborations with, and support from, other divisions/institutions of JAXA. By conducting observations not possible from the ground with the utilization of the space environment, we study the structure of the universe including the large-scale cosmological structure, nearby planetary systems, and the origin of universe. Currently we are concentrating on X-ray and Gamma-ray astronomy, infrared astronomy and radio astronomy. ASTRO-H is the largest international X-ray observatory which is currently under development, with launch scheduled for 2015. SPICA is being prepared as the next generation large and cooled infrared telescope. A number of working groups have been established to prepare missions with a vision towards the future.

  2. STS-34 Mission Specialist (MS) Chang-Diaz dons EMU during WETF exercises

    Science.gov (United States)

    1989-01-01

    STS-34 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz dons extravehicular mobility unit (EMU) in preparation for an extravehicular activity (EVA) contingency exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. This closeup shows Chang-Diaz straightening his EMU sleeve.

  3. Earthbound mission how UK funding fails to match enthusiasm for space exploration

    CERN Multimedia

    Nordling, L

    2004-01-01

    Article discussing the UK governments reluctance to fund space research projects. An example is the ESA Aurora programme which is aiming to put humans on Mars by 2030, with interim visits to the moon and a series of unmanned probes preparing the way for interplanetary manned missions (1 page)

  4. Crew Exploration Vehicle Environmental Control and Life Support Design Reference Missions

    Science.gov (United States)

    Lewis, John F.; Anderson, Molly K.; Ewert, Mike S.; Stephan, Ryan A.; Carrasquillo, Robyn L.

    2007-01-01

    In preparation for the contract award of the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) produced two design reference missions for the vehicle. The design references used teams of engineers across the agency to come up with two configurations. This process helped NASA understand the conflicts and limitations in the CEV design, and investigate options to solve them.

  5. Tank waste remediation system (TWRS) mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  6. Rapid Automated Mission Planning System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an automated UAS mission planning system that will rapidly identify emergency (contingency) landing sites, manage contingency routing, and...

  7. Cassini Solstice Mission Maneuver Experience: Year Two

    Science.gov (United States)

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun

    2012-01-01

    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  8. NASA Laboratory Analysis for Manned Exploration Missions

    Science.gov (United States)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  9. Autolanding for Sample Return Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA and commercial missions will increasingly target destinations with challenging topography and limited communication including unmapped asteroids, comets,...

  10. An Imaging X-Ray Polarimetry Mission

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  11. Sustainable, Reliable Mission-Systems Architecture

    Science.gov (United States)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  12. ESPA for Lunar and Science Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA mission planning in the next decade includes small spacecraft and secondary flight opportunities on Evolved Expendable Launch Vehicles (EELVs), specifically...

  13. An Imaging X-Ray Polarimetry Mission

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; hide

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  14. Background and applications of astrodynamics for space missions of the johns hopkins applied physics laboratory.

    Science.gov (United States)

    Dunham, David W; Farquhar, Robert W

    2004-05-01

    This paper describes astrodynamic techniques applied to develop special orbital designs for past and future space missions of the Applied Physics Laboratory (APL) of Johns Hopkins University, and background about those techniques. The paper does not describe the long history of low Earth-orbiting missions at APL, but rather concentrates on the astrodynamically more interesting high-altitude and interplanetary missions that APL has undertaken in recent years. The authors developed many of their techniques in preparation for, and during, the Third International Sun-Earth Explorer (ISEE-3) halo orbit mission while they worked for the Goddard Space Flight Center (GSFC) of NASA during the 1970s and 1980s. Later missions owed much to the ground breaking work of the trajectory designs for ISEE-3 (later known as the International Cometary Explorer, or ICE). This experience, and other new ideas, were applied to the APL near Earth asteroid rendezvous (NEAR) and comet nucleus tour (CONTOUR) discovery missions, as well as to APL's future MESSENGER, STEREO, and New Horizons missions. These will be described in the paper.

  15. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, T.J.

    1998-01-06

    This document is prepared in order to support the US Department of Energy`s evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors.

  16. Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission

    Science.gov (United States)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.

    2015-12-01

    As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.

  17. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    Science.gov (United States)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  18. MEGA - Medium Energy Gamma-ray Astronomy Mission

    Science.gov (United States)

    Ryan, J. M.; Bloser, P. F.; Macri, J. R.; McConnell, M. L.; Ajello, M.; Andritschke, R.; Kanbach, G.; Schoenfelder, V.; Zoglauer, A.; Hunter, S. D.; Kurfess, J. D.; Phlips, B.; Strickman, M.; Wulf, E.; Hartmann, D.; Miller, R.; Paciesas, W.; Zych, A. D.; Kippen, R. M.; Vestrand, W. T.; Cherry, M. L.; Guzik, T. G.; Stacy, J. G.; Wefel, J. P.; Reglero, V.; Di Cocco, G.; Cravens, J.

    2004-12-01

    The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.3 - 50 MeV) and bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL, and the visionary Advanced Compton Telescope (ACT) mission. The scientific goals include, among other things, compiling a much larger catalog of sources in this energy range, performing far deeper searches for supernovae, better measuring the galactic continuum and line emissions, and identifying the components of the cosmic diffuse gamma-ray emission. MEGA will accomplish these goals using a tracker made of Si strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below 30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV) its momentum vector can also be measured. At higher photon energies (above 10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. A prototype instrument has been developed and calibrated, and is currently being prepared for a scientific balloon flight.

  19. Radioisotope Thermoelectric Generator Options for Pluto Fast Flyby Mission

    Science.gov (United States)

    Schock, Alfred

    1994-07-01

    A small spacecraft design for the Pluto Fast Flyby (PFF) mission is under study by the Jet Propulsion Laboratory (PL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 Watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk.

  20. The Non-Standard Mission

    Science.gov (United States)

    2016-06-13

    1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no...mobilization from our state since the Vietnam era. The challenges of deploying a field artillery unit as an ad hoc MP company were many. The challenges were...ad hoc MP company were many. The challenges were overcome through the strength of our NCO Corps. As I write this paper, I am preparing for a

  1. SLS launched missions concept studies for LUVOIR mission

    Science.gov (United States)

    Stahl, H. Philip; Hopkins, Randall C.

    2015-09-01

    NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. The multi-center ATLAST Team is working to meet these needs. The MSFC Team is examining potential concepts that leverage the advantages of the SLS (Space Launch System). A key challenge is how to affordably get a large telescope into space. The JWST design was severely constrained by the mass and volume capacities of its launch vehicle. This problem is solved by using an SLS Block II-B rocket with its 10-m diameter x 30-m tall fairing and estimated 45 mt payload to SE-L2. Previously, two development study cycles produced a detailed concept called ATLAST-8. Using ATLAST-8 as a point of departure, this paper reports on a new ATLAST-12 concept. ATLAST-12 is a 12-m class segmented aperture LUVOIR with an 8-m class center segment. Thus, ATLAST-8 is now a de-scope option.

  2. Composable Mission Framework for Rapid End-to-End Mission Design and Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is the Composable Mission Framework (CMF)?a model-based software framework that shall enable seamless continuity of mission design and...

  3. A university-based distributed satellite mission control network for operating professional space missions

    Science.gov (United States)

    Kitts, Christopher; Rasay, Mike

    2016-03-01

    For more than a decade, Santa Clara University's Robotic Systems Laboratory has operated a unique, distributed, internet-based command and control network for providing professional satellite mission control services for a variety of government and industry space missions. The system has been developed and is operated by students who become critical members of the mission teams throughout the development, test, and on-orbit phases of these missions. The mission control system also supports research in satellite control technology and hands-on student aerospace education. This system serves as a benchmark for its comprehensive nature, its student-centric nature, its ability to support NASA and industry space missions, and its longevity in providing a consistent level of professional services. This paper highlights the unique features of this program, reviews the network's design and the supported spacecraft missions, and describes the critical programmatic features of the program that support the control of professional space missions.

  4. BRRISON Mission Design and Development

    Science.gov (United States)

    O'Malley, Terence; Kremic, T.; Adams, D.; Arnold, S.; Cheng, A.

    2013-10-01

    In September 2012, the comet C/2012 S1 “ISON” was discovered by Russian amateur astronomers. A team consisting of personnel from Glenn Research Center (GRC) Space Science Project Office, the Johns Hopkins University Applied Physics Lab (APL), and the Southwest Research Institute (SWRI) was established to identify the science return on a high altitude balloon mission to observe ISON, and develop a plan based on re-using most of the hardware from the Stratospheric Terahertz Observatory (STO). The team determined that measuring the comet’s H20/CO2 ratio with an infra-red Camera would be a high-value and unique scientific contribution of a balloon borne payload. The BRRISON scientific payload consists of a heritage 80-cm telescope, a near-ultraviolet visible optical bench and instruments, and an infrared optical bench and instruments. The telescope, which has flown on prior balloon missions, consists of a light-weighted f/1.5 hyperboloid 80 cm diameter primary and a secondary mirror to provide an f/17 beam. The near ultra-violet and visible cameras and associated instruments are being integrated to an optics bench by SwRI. These instruments consist of a fine steering mirror (FSM) and a CMOS high rate camera to provide sub-arcsec pointing, and a CCD camera for low noise science operation, and a dichroic for splitting the f/17 beam between the two cameras. The infrared optics bench and instruments consist of an optics bench, re-imaging optics and cold stop, filter wheel and filters, and an infrared camera that is sensitive over the required wavelengths of 2.5 - 5 microns. The IR optics bench and instruments will be enclosed in an aluminum housing, which will be cooled to reduce the thermal background contribution to the IR signal. The BRRISON gondola is composed of a metal frame that carries and protects the science payload and subsystems and is the structural interface with the balloon flight train. They are composed of a Command & Control system, a Pointing

  5. Mission to Very Early Earth

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheon, I D; Weber, P K; Fallon, S J; Smith, J B; Aleon, J; Ryerson, F J; Harrison, T M; Cavosie, A J; Valley, J W

    2007-03-13

    The Hadean Earth is often viewed as an inhospitable and, perhaps, unlikely setting for the rise of primordial life. However, carbonaceous materials supplied by accreting meteorites and sources of chemical energy similar to those fueling life around modern deep-sea volcanic vents would have been present in abundance. More questionable are two other essential ingredients for life - liquid water and clement temperatures. Did the Hadean Earth possess a hydrosphere and temperate climate compatible with the initiation of biologic activity? If so, the popular model of an excessively hot planetary surface characterized by a basaltic crust, devoid of continental material is invalid. Similarly, establishment of an Hadean hydrosphere prior to the cessation of heavy asteroid bombardment may mean that primitive life could have evolved and then been extinguished, only to rise again. The most effective means of determining the environmental conditions on this young planet is through geochemical analysis of samples retrieved from the Early Earth. While rocks older than 4 billion years (4 Ga) have not been found, individual zircon grains, the detritus of rocks long since eroded away, have been identified with ages as old as 4.4 Ga - only {approx}160 million years younger than the Earth itself. If we can use the geochemical information contained in these unique samples to infer the nature of their source rocks and the processes that formed them, we can place constraints on the conditions prevailing at the Earth's surface shortly after formation. This project utilizes a combined analytical and experimental approach to gather the necessary geochemical data to determine the parameters required to relate the zircons to their parent materials. Mission to Early Earth involves dating, isotopic and chemical analyses of mineral and melt inclusions within zircons and of the zircons themselves. The major experimental activity at LLNL focused on the partitioning of trace elements between

  6. Planetary protection issues related to human missions to Mars

    Science.gov (United States)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  7. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    Science.gov (United States)

    Blakeslee, R. J.; Goodman, M.; Hardin, D. M.; Hall, J.; Yubin He, M.; Regner, K.; Conover, H.; Smith, T.; Meyer, P.; Lu, J.; Garrett, M.

    2009-12-01

    efficiently plan, prepare and execute missions, as well as to playback and review past mission data. To paraphrase the old television commercial “RTMM doesn’t make the airborne science, it makes the airborne science easier.”

  8. Examples of Sentinel-2A Mission Exploitation Results

    Science.gov (United States)

    Koetz, Benjamin; Hoersch, Bianca; Gascon, Ferran; Desnos, Yves-Louis; Seifert, Frank Martin; Paganini, Marc; Ramoino, Fabrizio; Arino, Olivier

    2017-04-01

    The Sentinel-2 Copernicus mission will bring significant breakthrough in the exploitation of space borne optical data. Sentinel-2 time series will transform land cover, agriculture, forestry, in-land water and costal EO applications from mapping to monitoring, from snapshot to time series data analysis, from image-based to pixel-based processing. The 5-days temporal revisiting of the Sentinel-2 satellites, when both units will be operated together, will usher us in a new era for time series analysis at high spatial resolutions (HR) of 10-20 meters. The monitoring of seasonal variations and processes in phenology and hydrology are examples of the many R&D areas to be studied. The mission's large swath and systematic acquisitions will further support unprecedented coverage at the national scale addressing information requirements of national to regional policies. Within ESA programs, such as the Data User Element (DUE), Scientific Exploitation of Operational Missions (SEOM) and Climate Change Initiative (CCI), several R&D activities are preparing the exploitation of the Sentinel-2 mission towards reliable measurements and monitoring of e.g. Essential Climate Variables and indicators for the Sustainable Development Goals. Early Sentinel-2 results will be presented related to a range of applications and scientific domains such as agricultural monitoring at national scale (DUE Sen2Agri), wetland extent and condition over African Ramsar sites (DUE GlobWetland-Africa), land cover mapping for climate change (CCI Land Cover), national land monitoring (Cadaster-Env), forest degradation (DUE ForMoSa), urban mapping (DUE EO4Urban), in-land water quality (DUE SPONGE), map of Mediterranean aquaculture (DUE SMART) and coral reef habitat mapping (SEOM S2-4Sci Coral). The above-mentioned activities are only a few examples from the very active international land imaging community building on the long-term Landsat and Spot heritage and knowledge.

  9. Evaluating Mission Drift in Microfinance: Lessons for Programs with Social Mission

    Science.gov (United States)

    Hishigsuren, Gaamaa

    2007-01-01

    The article contributes to a better understanding of implications of scaling up on the social mission of microfinance programs. It proposes a methodology to measure the extent, if any, to which a microfinance program with a poverty alleviation mission drifts away from its mission during rapid scaling up and presents findings from a field research…

  10. Evolution of Orion Mission Design for Exploration Mission 1 and 2

    Science.gov (United States)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.

    2016-01-01

    The evolving mission design and concepts of NASA’s next steps have shaped Orion into the spacecraft that it is today. Since the initial inception of Orion, through the Constellation Program, and now in the Exploration Mission frame-work with the Space Launch System (SLS), each mission design concept and pro-gram goal have left Orion with a set of capabilities that can be utilized in many different mission types. Exploration Missions 1 and 2 (EM-1 and EM-2) have now been at the forefront of the mission design focus for the last several years. During that time, different Design Reference Missions (DRMs) were built, analyzed, and modified to solve or mitigate enterprise level design trades to ensure a viable mission from launch to landing. The resulting DRMs for EM-1 and EM-2 were then expanded into multi-year trajectory scans to characterize vehicle performance as affected by variations in Earth-Moon geometry. This provides Orion’s subsystems with stressing reference trajectories to help design their system. Now that Orion has progressed through the Preliminary and Critical Design Reviews (PDR and CDR), there is a general shift in the focus of mission design from aiding the vehicle design to providing mission specific products needed for pre-flight and real time operations. Some of the mission specific products needed include, large quantities of nominal trajectories for multiple monthly launch periods and abort options at any point in the mission for each valid trajectory in the launch window.

  11. 75 FR 5285 - Mission Statement; Franchise Trade Mission to Mexico; March 3-5, 2010

    Science.gov (United States)

    2010-02-02

    ... trade media, direct mail, notices by industry trade associations and other multiplier groups, and... International Trade Administration Mission Statement; Franchise Trade Mission to Mexico; March 3-5, 2010 AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Mission Description The United...

  12. 75 FR 9578 - Executive-Led Trade Mission to Colombia and Panama; Change to Mission Dates

    Science.gov (United States)

    2010-03-03

    ....html ) and other Internet Web sites, press releases to general and trade media, broadcast fax, notices... International Trade Administration Executive-Led Trade Mission to Colombia and Panama; Change to Mission Dates AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Mission Description...

  13. Tank waste remediation system mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Acree, C.D.

    1998-01-06

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.

  14. The Nexus of Military Missions and Means

    Science.gov (United States)

    2004-06-01

    is being published to formally record the state of the Missions and Means Framework (MMF) circa 2002. However, since that time, the MMF has...continued to evolve and has been presented in updated forms at various conferences. See, for example, the "Military Missions and Means Framework " paper

  15. Coatings for the NuSTAR mission

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Jakobsen, Anders Clemen; Brejnholt, Nicolai;

    2011-01-01

    The NuSTAR mission will be the first mission to carry a hard X-ray(5-80 keV) focusing telescope to orbit. The optics are based on the use of multilayer coated thin slumped glass. Two different material combinations were used for the flight optics, namely W/Si and Pt/C. In this paper we describe...

  16. The Ballerina experiment on the Romer mission

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian

    2001-01-01

    The Romer mission has recently been approved as the next mission within the Danish Small Satellite Program. The scientific payload will consist of two separate experiments, the MONS and the Ballerina payloads. The primary objective of Ballerina is to provide accurate, real-time positions relayed...

  17. Space mission Millimetron for terahertz astronomy

    NARCIS (Netherlands)

    Smirnov, A. V.; Baryshev, A. M.; Pilipenko, S. V.; Myshonkova, N. V.; Bulanov, V. B.; Arkhipov, M. Y.; Vinogradov, I. S.; Likhachev, S. F.; Kardashev, N. S.

    We present an overview of the current status of the space mission Millimetron. Millimetron is a large 10-m cooled space telescope optimized for operation in the submillimeter and far infrared wavelengths. This mission will be able to contribute to the solution of several key problems in

  18. Radiation Hardness Assurance (RHA) for Small Missions

    Science.gov (United States)

    Campola, Michael J.

    2016-01-01

    Varied mission life and complexity is growing for small spacecraft. Small missions benefit from detailed hazard definition and evaluation as done in the past. Requirements need to flow from the system down to the parts level and aid system level radiation tolerance. RHA is highlighted with increasing COTS usage.

  19. Space mission Millimetron for terahertz astronomy

    NARCIS (Netherlands)

    Smirnov, A. V.; Baryshev, A. M.; Pilipenko, S. V.; Myshonkova, N. V.; Bulanov, V. B.; Arkhipov, M. Y.; Vinogradov, I. S.; Likhachev, S. F.; Kardashev, N. S.

    2012-01-01

    We present an overview of the current status of the space mission Millimetron. Millimetron is a large 10-m cooled space telescope optimized for operation in the submillimeter and far infrared wavelengths. This mission will be able to contribute to the solution of several key problems in astrophysics

  20. Optimal parking orbits for manned Mars missions

    Science.gov (United States)

    Cupples, Michael L.; Nordwall, Jill A.

    This paper summarizes a Mars parking orbit optimization effort. This parking orbit study includes the selection of optimal elliptic Mars parking orbits that meet mission constraints and that include pertinent apsidal misalignment losses. Mars missions examined are for the opportunity years of 2014, 2016, and 2018. For these mission opportunities, it is shown that the optimal parking orbits depend on the year that the mission occurs and are coupled with the outbound, Mars stay, and return phases of the mission. Constraints included in the parking orbit optimization process are periapsis lighting angle (related to a daylight landing requirement), periapsis latitude (related to a landing latitude range requirement) and the vehicle Trans-Earth-Injection stage mass. Also, effects of mission abort requirements on optimal parking orbits are investigated. Off-periapsis maneuvers for Mars orbit capture were found to be cost effective in reducing the mission delta-V for the 2016 abort from Mars capture scenario. The total capture and departure delta-V was `split' between the capture maneuver and the departure maneuver to reduce the 2016 Mars departure delta-V to below the level of the corresponding stage of the 2014 baseline mission. Landing results are provided that show Mars landing site access from the optimal elliptic parking orbits for Mars excursion vehicles with low (0.2) and high (1.3 and 1.6) lift to drag ratio.

  1. A mission planner for an autonomous tractor

    DEFF Research Database (Denmark)

    Bochtis, Dionysis; Vougioukas, S.G.; Griepentrog, Hans W.

    2009-01-01

    In this article, a mission planner of field coverage operations for an autonomous agricultural tractor is presented. Missions for a particular autonomous tractor are defined using an XML (extendible markup language) formatted file that can be uploaded to the tractor through the user interface...

  2. Mellem mission og markedsføring

    DEFF Research Database (Denmark)

    Andreasen, Mette Søgaard

    2009-01-01

    Kandidatspeciale om forholdet mellem mission og markedsføring i Den Danske Folkekirke i slutningen af 2010'erne. Specialets hypotese er, at mission i Den Danske Folkekirke på mange områder bevæger sig ind i en markedsføringsdiskurs....

  3. A mission planner for an autonomous tractor

    DEFF Research Database (Denmark)

    Bochtis, Dionysis; Vougioukas, S.G.; Griepentrog, Hans W.

    2009-01-01

    In this article, a mission planner of field coverage operations for an autonomous agricultural tractor is presented. Missions for a particular autonomous tractor are defined using an XML (extendible markup language) formatted file that can be uploaded to the tractor through the user interface...

  4. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Mark J.; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  5. NICER: Mission Overview and Status

    Science.gov (United States)

    Arzoumanian, Zaven; Gendreau, Keith C.

    2016-04-01

    NASA's Neutron star Interior Composition Explorer (NICER) mission will explore the structure, dynamics, and energetics of neutron stars through soft X-ray (0.2-12 keV) timing and spectroscopy. An external attached payload on the International Space Station (ISS), NICER is manifested on the Commercial Resupply Services SpaceX-11 flight, with launch scheduled for late 2016. The NICER payload is currently in final integration and environmental testing. Ground calibration has provided robust performance measures of the optical and detector subsystems, demonstrating that the instrument meets or surpasses its effective area, timing resolution, energy resolution, etc., requirements. We briefly describe the NICER hardware, its continuing testing, operations and environment on ISS, and the objectives of NICER's prime mission—including precise radius measurements for a handful of neutron stars to constrain the equation of state of cold, ultra-dense matter. Other contributions at this meeting address specific scientific investigations that are enabled by NICER, for neutron stars in their diverse manifestations as well as for broader X-ray astrophysics through a brief, approved Guest Observer program beginning in 2018.

  6. The Jem-Euso Mission

    CERN Document Server

    Takahashi, Yoshiyuki

    2009-01-01

    JEM-EUSO is a space science mission to explore extreme energies and physics of the Universe. Its instrument will watch the dark-side of the earth and will detect UV photons emitted from the extensive air shower caused by an Ultra-High Energy Cosmic Rays (UHECRs above 10^18 eV), or Extremely High Energy Cosmic Ray (EHECR) particle (e.g., above about 10^20 eV). Such a high-rigidity particles as the latter arrives almost in a straight-line from its origin through the magnetic fields of our Milky Way Galaxy and is expected to allow us to trace the source location by its arrival direction. This nature can open the door to the new astronomy with charged particles. In its five years operation including the tilted mode, JEM-EUSO will detect at least 1,000 events with E>7x10^19 eV with the GZK cutoff spectrum. It can determine the energy spectrum and source locations of GZK to super-GZK regions with a statistical accuracy of several percent. JEM-EUSO is planned to be deployed by H2 Transfer Vehicle (HTV) and will be a...

  7. The Method of Mission Oriented Maintenance

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In a real application, equipment in good condition sometimes have to be repairedbecause the equipment does not satisfy the requirements of the mission; However, it is notnecessary to repair some equipment with failures because the failures do not affect the mission completion. In these cases, maintenance activity guided by present maintenance methodsmay sometimes affect the mission completion in time or bring about extra maintenance. To overcome the shortage of present maintenance methods, we propose an idea and method of missionoriented maintenance (MOM) to deal with the maintenance policy on these kinds of problems. This method can work out different maintenance policies corresponding to differentmissions with full consideration of missions and mission requirements for the equipment.

  8. The Economics of NASA Mission Cost Reserves

    Science.gov (United States)

    Whitley, Sally; Shinn, Stephen

    2012-01-01

    Increases in NASA mission costs have led to analysis of the causes and magnitude of historical mission overruns as well as mitigation and prevention attempts. This paper hypothesizes that one cause is that the availability of reserves may reduce incentives to control costs. We draw a comparison to the insurance concept of moral hazard, and we use actuarial techniques to better understand the increase in mission costs due to the availability of reserves. NASA's CADRe database provided the data against which we tested our hypothesis and discovered that there is correlation between the amount of available reserves and project overruns, particularly for mission hardware cost increases. We address the question of how to prevent reserves from increasing mission spending without increasing cost risk to projects.

  9. Human missions to Mars: issues and challenges

    Science.gov (United States)

    Race, M.; Kminek, G.

    Recent announcements of the planned future human exploration of Mars by both European and US space agencies have raised a host of questions and challenges that must be addressed in advance of long-duration human missions. While detailed mission planning is a long way off, numerous issues can already be identified in the broad context of planetary protection. In this session, a panel of experts will provide brief overviews of the types of challenges ahead, such as the protection of the martian environment; the integration of human and robotic mission elements and operations; precursor scientific information necessary to plan human missions; development and use of nuclear and other technologies for the protection and support of astronauts during the mission; protection of Earth upon return; and societal and ethical questions about human exploration. The session has been designed to encourage and incorporate audience participation in the discussion about the issues and challenges ahead.

  10. The VSOP-2 Space VLBI Mission

    Science.gov (United States)

    Hirabayashi, Hisashi; Murata, Yasuhiro; Murphy, David W.

    2002-01-01

    Following the success of the VLBI Space Observatory Program (VSOP), a next generation space VLBI mission, VSOP-2, is currently being planned. Higher observing frequencies, cooled receivers, increased bandwidths and larger telescope diameters will result in gains in resolution and interferometer sensitivity by factors of 10 over the VSOP mission. The use of phase-referencing by fast switching between a calibrator source and the target source is now being studied as this technique allows sources 50-150 times weaker to be observed depending on the frequency band. Such a capability would greatly enhance the VSOP-2 mission. Several other enhancements to the VSOP-2 mission are also presently under investigation including the VSOP-2 spacecraft operating at the same time as a US spacecraft to form what has come to be known as the iARISE (international ARISE) mission.

  11. OMV servicing missions from Space Station

    Science.gov (United States)

    Jennings, Jerry L.; Wright, Jerome L.; Deaton, A. Wayne

    1987-01-01

    The Orbital Maneuvering Vehicle (OMV) will provide a means of bringing large observatories to the Space Station for servicing and redeployment to their operating altitudes. However, there are many constraints which must be met in mission planning. The missions must be designed so that propellant consumption is within the usable allowance, but contingency operations can still be accomplished. The vehicle was designed specifically to accommodate such missions, with emphasis upon servicing the Hubble Space Telescope. The OMV has been designed for operations from the Shuttle Orbiter and the Space Station. It will readily accommodate basing at the Space Station and executing observatory retrieval and redeployment missions. Mission profiles have been designed which allow retrieval with contingency hold before descent, and which allow contingency return of the observatory if it fails to reactivate properly. This capability will be a major addition to the Space Transportation System and will increase the utility of the Space Station.

  12. Approach to Spacelab Payload mission management

    Science.gov (United States)

    Craft, H. G.; Lester, R. C.

    1978-01-01

    The nucleus of the approach to Spacelab Payload mission management is the establishment of a single point of authority for the entire payload on a given mission. This single point mission manager will serve as a 'broker' between the individual experiments and the STS, negotiating agreements by two-part interaction. The payload mission manager, along with a small support team, will represent the users in negotiating use of STS accommodations. He will provide the support needed by each individual experimenter to meet the scientific, technological, and applications objectives of the mission with minimum cost and maximum efficiency. The investigator will assume complete responsibility for his experiment hardware definition and development and will take an active role in the integration and operation of his experiment.

  13. Advanced Curation Activities at NASA: Preparing for the Next Waves of Astromaterials Sample Return

    Science.gov (United States)

    Zeigler, R. A.; Allton, J. H.; Evans, C. A.; Fries, M. D.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.; Zolensky, M.; Stansbery, E. K.

    2017-02-01

    We discuss the current curatorial efforts for NASA's astromaterials collections, as well as efforts that are underway (or need to be undertaken) to prepare for the challenging curation conditions required by future sample return missions.

  14. Work measurement for estimating food preparation time of a bioregenerative diet

    Science.gov (United States)

    Olabi, Ammar; Hunter, Jean; Jackson, Peter; Segal, Michele; Spies, Rupert; Wang, Carolyn; Lau, Christina; Ong, Christopher; Alexander, Conor; Raskob, Evan; Plichta, Jennifer; Zeira, Ohad; Rivera, Randy; Wang, Susan; Pottle, Bill; Leung, Calvin; Vicens, Carrie; Tao, Christine; Beers, Craig; Fung, Grace; Levine, Jacob; Yoo, Jaeshin; Jackson, Joanna; Saikkonen, Kelly; Zimmerman, Matthew

    2003-01-01

    During space missions, such as the prospective Mars mission, crew labor time is a strictly limited resource. The diet for such a mission (based on crops grown in a bioregenerative life support system) will require astronauts to prepare their meals essentially from raw ingredients. Time spent on food processing and preparation is time lost for other purposes. Recipe design and diet planning for a space mission should therefore incorporate the time required to prepare the recipes as a critical factor. In this study, videotape analysis of an experienced chef was used to develop a database of recipe preparation time. The measurements were highly consistent among different measurement teams. Data analysis revealed a wide variation between the active times of different recipes, underscoring the need for optimization of diet planning. Potential uses of the database developed in this study are discussed and illustrated in this work.

  15. Work measurement for estimating food preparation time of a bioregenerative diet

    Science.gov (United States)

    Olabi, Ammar; Hunter, Jean; Jackson, Peter; Segal, Michele; Spies, Rupert; Wang, Carolyn; Lau, Christina; Ong, Christopher; Alexander, Conor; Raskob, Evan; hide

    2003-01-01

    During space missions, such as the prospective Mars mission, crew labor time is a strictly limited resource. The diet for such a mission (based on crops grown in a bioregenerative life support system) will require astronauts to prepare their meals essentially from raw ingredients. Time spent on food processing and preparation is time lost for other purposes. Recipe design and diet planning for a space mission should therefore incorporate the time required to prepare the recipes as a critical factor. In this study, videotape analysis of an experienced chef was used to develop a database of recipe preparation time. The measurements were highly consistent among different measurement teams. Data analysis revealed a wide variation between the active times of different recipes, underscoring the need for optimization of diet planning. Potential uses of the database developed in this study are discussed and illustrated in this work.

  16. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  17. Full Mission Astronaut Radiation Exposure Assessments for Long Duration Lunar Surface Missions

    Science.gov (United States)

    Adamczyk, Anne; Clowdsley, Martha; Qualls, Garry; Blattnig, Steve; Lee, Kerry; Fry, Dan; Stoffle, Nicholas; Simonsen, Lisa; Slaba, Tony; Walker, Steven; Zapp, Edward

    2011-01-01

    Risk to astronauts due to ionizing radiation exposure is a primary concern for missions beyond Low Earth Orbit (LEO) and will drive mission architecture requirements, mission timelines, and operational practices. For short missions, radiation risk is dominated by the possibility of a large Solar Particle Event (SPE). Longer duration missions have both SPE and Galactic Cosmic Ray (GCR) risks. SPE exposure can contribute significantly toward cancer induction in combination with GCR. As mission duration increases, mitigation strategies must address the combined risks from SPE and GCR exposure. In this paper, full mission exposure assessments were performed for the proposed long duration lunar surface mission scenarios. In order to accomplish these assessments, previously developed radiation shielding models for a proposed lunar habitat and rover were utilized. End-to-End mission exposure assessments were performed by first calculating exposure rates for locations in the habitat, rover, and during Extra-Vehicular Activities (EVA). Subsequently, total mission exposures were evaluated for the proposed timelines. Mission exposure results, assessed in terms of effective dose, are presented for the proposed timelines and recommendations are made for improved astronaut shielding and safer operational practices.

  18. Astronaut Clothing for Exploration Missions

    Science.gov (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  19. 12 CFR 940.2 - Mission of the Banks.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Mission of the Banks. 940.2 Section 940.2 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MISSION CORE MISSION ACTIVITIES § 940.2 Mission of the Banks. The mission of the Banks is to provide to their members' and...

  20. Next Gen NEAR: Near Earth Asteroid Human Robotic Precursor Mission Concept

    Science.gov (United States)

    Rivkin, Andrew S.; Kirby, Karen; Cheng, Andrew F.; Gold, Robert; Kelly, Daniel; Reed, Cheryl; Abell, Paul; Garvin, James; Landis, Rob

    2012-01-01

    Asteroids have long held the attention of the planetary science community. In particular, asteroids that evolve into orbits near that of Earth, called near-Earth objects (NEO), are of high interest as potential targets for exploration due to the relative ease (in terms of delta V) to reach them. NASA's Flexible Path calls for missions and experiments to be conducted as intermediate steps towards the eventual goal of human exploration of Mars; piloted missions to NEOs are such example. A human NEO mission is a valuable exploratory step beyond the Earth-Moon system enhancing capabilities that surpass our current experience, while also developing infrastructure for future mars exploration capabilities. To prepare for a human rendezvous with an NEO, NASA is interested in pursuing a responsible program of robotic NEO precursor missions. Next Gen NEAR is such a mission, building on the NEAR Shoemaker mission experience at the JHU/APL Space Department, to provide an affordable, low risk solution with quick data return. Next Gen NEAR proposes to make measurements needed for human exploration to asteroids: to demonstrate proximity operations, to quantify hazards for human exploration and to characterize an environment at a near-Earth asteroid representative of those that may be future human destinations. The Johns Hopkins University Applied Physics Laboratory has demonstrated exploration-driven mission feasibility by developing a versatile spacecraft design concept using conventional technologies that satisfies a set of science, exploration and mission objectives defined by a concept development team in the summer of 2010. We will describe the mission concept and spacecraft architecture in detail. Configuration options were compared with the mission goals and objectives in order to select the spacecraft design concept that provides the lowest cost, lowest implementation risk, simplest operation and the most benefit for the mission implementation. The Next Gen NEAR

  1. ESA SMART-1 mission: review of results and legacy 10 years after launch

    Science.gov (United States)

    Foing, Bernard

    2014-05-01

    We review ESA's SMART-1 highlights and legacy 10 years after launch. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang'E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to geostationary satellites and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions and exploration. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) observations and science from the Moon, 5) support to

  2. ACADEMIC MISSION - FROM AUTOCRACY TO BUREAUCRACY

    Directory of Open Access Journals (Sweden)

    LIVIU NEAMŢU

    2015-12-01

    Full Text Available The mission is generic expression of reason for the existence of an organization. Organizational mission ensure continuity of existence beyond the objectives and targets of activities. It is the expression of an organization's responsibilities towards the environment in which it belongs. As the organization grows and its activities or environmental conditions change, managers adapt their strategies, but stated mission will remain valid for a period of time or unchanged throughout the life of the organization. All managerial elements of the organization are aligned with stated mission, starting from the organization structure, management behavior or specific business processes. The focus of the mission of an higher education institution on a need or several integrated needs, on customers who manifest this need and on how they can be met, that really means defining of its strategic domanin, as a sphere of influence of the organization in their environment. In this sphere of influence, three components integrate on three levels of the mission: to establish needs; identify the customer type to which an organization adress and key competencies that differentiate it from the rest competitors. To that context identifies four specific forms of academic institutions starting from their mission and strategic area: autocratic academic institutions, meritocrate academic institutions, democratic academic institutions, bureaucrats academic institutions.

  3. The final year of the Rosetta mission

    Science.gov (United States)

    Accomazzo, Andrea; Ferri, Paolo; Lodiot, Sylvain; Pellon-Bailon, Jose-Luis; Hubault, Armelle; Urbanek, Jakub; Kay, Ritchie; Eiblmaier, Matthias; Francisco, Tiago

    2017-07-01

    The International Rosetta Mission was launched on 2nd March 2004 on its 10 year journey to rendezvous with comet 67P Churyumov-Gerasimenko. Rosetta performed comet orbit insertion on the 6th of August 2014, after which it characterised the nucleus and orbited it at altitudes as low as a few kilometres. In November 2014 Rosetta delivered the lander Philae to perform the first soft landing ever on the surface of a comet. After this critical operation, Rosetta began the escort phase of the comet in its journey in the Solar System heading to the perihelion, reached in August 2015. Originally foreseen till the end of 2015, the mission was extended for another nine months to follow the comet on its outbound arc of the orbit. In view of the acquired experience and of the approaching end of mission the spacecraft was flown at much closer distances from the nucleus so that the scientific instruments had the chance to perform unique measurements. Following this phase of very close orbits, on the 30th of September 2016 Rosetta was set on a collision course trajectory with the comet to terminate the mission with a controlled impact. This paper describes the details of the extended mission phase and the issues encountered during these months. It also includes the changes implemented on the spacecraft and in the operations concept to optimise the remaining mission time. The paper also includes the lessons learned from this unique and complex mission phase.

  4. Count Nicolaus Ludwig Von Zinzendorf’s Theory for Missions Portrayed at Herrnhut and by Selected 18th-20th Century Moravian Missions.

    Science.gov (United States)

    1986-01-01

    when the finances of Mexico were in a desperate condition, these missions were ’secularized’ and their riches confiscated. Since then the stations have...34 practices of "ghost dances". and the habits of drinking and gambling at their " fiestas ." Second, to prepare the Indiana for eventual citizenship, the...annual Indian fiesta at which many would blow all the money they had earned throughout the year. Weinland spent much time in Temperance work and for a

  5. Understanding NEOs: The Role of Characterization Missions

    Science.gov (United States)

    Morrison, David

    2007-10-01

    NEOs are important from multiple perspectives, including science, hazard mitigation, space resources, and as targets for human missions. Much can be learned from ground-based studies, especially with radar, but the unique value of in situ investigation has been shown by missions such as NEAR-Shoemaker and Hayabusa to asteroids Eros and Itokawa, and Deep Impact and Stardust to comets. The next mission targets are likely to be NEAs in the subkilometer size range. Because these smaller objects are much more numerous, they are the objects we most need to understand from a defense perspective, and they are also the most likely targets for early human missions. However, there are unique challenges in sending spacecraft to investigate sub-km asteroids. Reconnaissance flybys are of little use, orbiting requires active control, and landing on such a low-gravity surface is perhaps better described as docking. Yet we need to operate close to the target, and probably to land, to obtain crucial information about interior structure. This paper deals primarily with small landers like the Near Earth Asteroid Trailblazer Mission (NEAT) studied at Ames Research Center. The NEAT objectives are to provide global reconnaissance (shape, mass, density, dynamical state), in situ surface characterization, and long-term precision tracking. Alternative approaches use deep-penetrating radar and electromagnetic sounding to probe interior structure. A third class of missions is ballistic impactors such as the ESA Don Quijote, which test one of the technologies for deflecting small asteroids. If the targets are selected for their accessibility, such missions could be implemented with low-cost launchers such as Pegasus, Falcon, or Minotaur. Such missions will have high science return. But from the perspective of defense, we have not yet developed a consensus strategy for the role of such characterization missions.

  6. Atrial Fibrillation During an Exploration Class Mission

    Science.gov (United States)

    Lipset, Mark A.; Lemery, Jay; Polk, J. D.; Hamilton, Douglas R.

    2010-01-01

    Background: A long-duration exploration class mission is fraught with numerous medical contingency plans. Herein, we explore the challenges of symptomatic atrial fibrillation (AF) occurring during an exploration class mission. The actions and resources required to ameliorate the situation, including the availability of appropriate pharmaceuticals, monitoring devices, treatment modalities, and communication protocols will be investigated. Challenges of Atrial Fibrillation during an Exploration Mission: Numerous etiologies are responsible for the initiation of AF. On Earth, we have the time and medical resources to evaluate and determine the causative situation for most cases of AF and initiate therapy accordingly. During a long-duration exploration class mission resources will be severely restricted. How is one to determine if new onset AF is due to recent myocardial infarction, pulmonary embolism, fluid overload, thyrotoxicosis, cardiac structural abnormalities, or CO poisoning? Which pharmaceutical therapy should be initiated and what potential side effects can be expected? Should anti-coagulation therapy be initiated? How would one monitor the therapeutic treatment of AF in microgravity? What training would medical officers require, and which communication strategies should be developed to enable the best, safest therapeutic options for treatment of AF during a long-duration exploration class mission? Summary: These questions will be investigated with expert opinion on disease elucidation, efficient pharmacology, therapeutic monitoring, telecommunication strategies, and mission cost parameters with emphasis on atrial fibrillation being just one illustration of the tremendous challenges that face a long-duration exploration mission. The limited crew training time, medical hardware, and drugs manifested to deal with such an event predicate that aggressive primary and secondary prevention strategies be developed to protect a multibillion-dollar asset like the

  7. Preparing for Surgery

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preparing for Surgery Home For Patients Search FAQs Preparing for Surgery ... Surgery FAQ080, August 2011 PDF Format Preparing for Surgery Gynecologic Problems What is the difference between outpatient ...

  8. Preparing for Surgery

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preparing for Surgery Home For Patients Search FAQs Preparing for Surgery ... Surgery FAQ080, August 2011 PDF Format Preparing for Surgery Gynecologic Problems What is the difference between outpatient ...

  9. Cassini Solstice Mission Maneuver Experience: Year Three

    Science.gov (United States)

    Wagner, Sean V.; Arrieta, Juan; Hahn, Yungsun; Stumpf, Paul W.; Valerino, Powtawche N.; Wong, Mau C.

    2013-01-01

    The Solstice Mission is the final extension of the Cassini spacecraft s tour of Saturn and its moons. To accommodate an end-of-mission in 2017, the maneuver decision process has been refined. For example, the Cassini Project now prioritizes saving propellant over minimizing maneuver cycles. This paper highlights 30 maneuvers planned from June 2012 through July 2013, targeted to nine Titan flybys and the final Rhea encounter in the mission. Of these maneuvers, 90% were performed to maintain the prescribed trajectory and preserve downstream delta V. Recent operational changes to maneuver executions based on execution-error modeling and analysis are also discussed.

  10. Technology demonstration by the BIRD-mission

    Energy Technology Data Exchange (ETDEWEB)

    Briess, K.; Barwald, W.; Gill, E.; Kayal, H.; Montenbruck, O.; Montenegro, S.; Halle, W.; Skrbek, W.; Studemund, H.; Terzibaschian, T.; Venus, H. [DLR, Berlin (Germany). Inst. of Weltraumsensor & Planetenerkundung

    2005-01-01

    The (BIRD)-mission is dedicated to the remote sensing of hot spot events like vegetation fires, coal seam fires or active volcanoes from space and to the space demonstration of new technologies. For these objectives a lot of new small satellite technologies and a new generation of cooled infrared array sensors suitable for small satellite missions are developed to fulfil the high scientific requirements of the mission. The paper describes the new developed technologies like onboard navigation system, the high-performance failure tolerant spacecraft computer, the precision reaction wheels, the star sensor, the attitude control system, the onboard classification experiment and the results and flight experience up to now.

  11. Autonomy requirements engineering for space missions

    CERN Document Server

    Vassev, Emil

    2014-01-01

    Advanced space exploration is performed by unmanned missions with integrated autonomy in both flight and ground systems. Risk and feasibility are major factors supporting the use of unmanned craft and the use of automation and robotic technologies where possible. Autonomy in space helps to increase the amount of science data returned from missions, perform new science, and reduce mission costs.Elicitation and expression of autonomy requirements is one of the most significant challenges the autonomous spacecraft engineers need to overcome today. This book discusses the Autonomy Requirements Eng

  12. Integrated Network Architecture for NASA's Orion Missions

    Science.gov (United States)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  13. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide crucial scientific data about the Martian atmospheric phenomena.

  14. 2016 Science Mission Directorate Technology Highlights

    Science.gov (United States)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs.

  15. Optical Payload for the STARE Mission

    Energy Technology Data Exchange (ETDEWEB)

    Simms, L; Riot, V; De Vries, W; Olivier, S S; Pertica, A; Bauman, B J; Phillion, D; Nikolaev, S

    2011-03-13

    Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris in orbit around earth. In this paper, we give a brief overview of the mission and its place in the larger context of Space Situational Awareness (SSA). We then describe the details of the central optical payload, touching on the optical design and characterization of the on-board image sensor used in our Cubesat based prototype. Finally, we discuss the on-board star and satellite track detection algorithm central to the success of the mission.

  16. Solar composition from the Genesis Discovery Mission.

    Science.gov (United States)

    Burnett, D S; Team, Genesis Science

    2011-11-29

    Science results from the Genesis Mission illustrate the major advantages of sample return missions. (i) Important results not otherwise obtainable except by analysis in terrestrial laboratories: the isotopic compositions of O, N, and noble gases differ in the Sun from other inner solar system objects. The N isotopic composition is the same as that of Jupiter. Genesis has resolved discrepancies in the noble gas data from solar wind implanted in lunar soils. (ii) The most advanced analytical instruments have been applied to Genesis samples, including some developed specifically for the mission. (iii) The N isotope result has been replicated with four different instruments.

  17. Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.

    2014-01-01

    Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.

  18. Status and path forward for the large ultraviolet/optical/infrared surveyor (LUVOIR) mission concept study

    Science.gov (United States)

    Crooke, Julie A.; Roberge, Aki; Domagal-Goldman, Shawn D.; Mandell, Avi M.; Bolcar, Matthew R.; Rioux, Norman M.; Perez, Mario R.; Smith, Erin C.

    2016-07-01

    In preparation of the 2020 Astrophysics Decadal Survey, National Aeronautics and Space Administration (NASA) has commenced a process for the astronomical community to study several large mission concepts leveraging the lessons learned from past Decadal Surveys. This will enable the Decadal Survey committee to make more informed recommendations to NASA on its astrophysics science and mission priorities with respect to cost and risk. Four astrophysics large mission concepts were identified. Each of them had a Science and Technology Definition Teem (STDT) chartered to produce scientifically compelling, feasible, and executable design reference mission (DRM) concepts to present to the 2020 Decadal Survey. In addition, The Aerospace Corporation will perform an independent cost and technical evaluation (CATE) of each of these mission concept studies in advance of the 2020 Decadal Survey, by interacting with the STDTs to provide detailed technical details on certain areas for which "deep dives" are appropriate. This paper presents the status and path forward for one of the four large mission concepts, namely, the Large UltraViolet, Optical, InfraRed surveyor (LUVOIR).

  19. Group dynamics training for manned spaceflight and the capsuls mission: Prophylactic against incompatibility and its consequences?

    Science.gov (United States)

    Kass, R.; Kass, J.

    On February 7, 1994, four Canadian Astronauts were sealed off in a hyperbaric chamber at the Canadian Government's Defense and Civil Institute for Environmental Medicine in Toronto, Canada. This space lab training mission lasted seven days and was the first to be conducted with astronauts outside of Russia. The objective of this mission was to give Canadian astronauts, space scientists and the staff of the Canadian Space Agency (CSA), the opportunity to gain first hand experience on preparational and operational aspects of a typical space mission. Twenty-one scientific experiments involving six countries from several disciplines were involved in this mission. This paper describes the goals and preliminary results of a psychological experiment/training program that used the CAPSULS mission as a test bed for its application in the manned space flight environment. The objective of this project was to enhance the understanding of small group behaviour with a view to maximizing team effectiveness and task accomplishment in teams living and working in isolation under difficult and confined conditions. The application of this model in the light of future missions is a key thesis in this paper.

  20. The Fukushima Dai-ichi accident: additional lessons from a radiological emergency assistance mission.

    Science.gov (United States)

    Becker, Steven M

    2013-11-01

    In response to the March 2011 earthquake-tsunami disaster and the Fukushima Dai-ichi nuclear accident, a special nongovernmental Radiological Emergency Assistance Mission flew to Japan from the United States. Invited by one of Japan's largest hospital and healthcare groups and facilitated by a New York-based international disaster relief organization, the mission included an emergency physician, a health physicist, and a disaster management specialist. During the 10 d mission, team members conducted fieldwork in areas affected by the earthquake, tsunami, and nuclear accident; went to cities and towns in the 20-30 km Emergency Evacuation Preparation Zone around the damaged nuclear plant; visited other communities affected by the nuclear accident; went to evacuation shelters; met with mayors and other local officials; met with central government officials; exchanged observations, experiences, and information with Japanese medical, emergency response, and disaster management colleagues; and provided radiological information and training to more than 1,100 Japanese hospital and healthcare personnel and first responders. The mission produced many insights with potential relevance for radiological/nuclear emergency preparedness and response. The first "lessons learned" were published in December 2011. Since that time, additional broad insights from the mission and mission followup have been identified. Five of these new lessons, which focus primarily on community impacts and responses and public communication issues, are presented and discussed in this article.