WorldWideScience

Sample records for human-induced climate variations

  1. Is climate change human induced?

    African Journals Online (AJOL)

    user

    reports follow exhaustive review process, and are widely accepted. In 2007, IPCC's 4th assessment report- 'Climate Change 2007 – Impacts, Adaptation and Vulnerability' came into ... is disturbing regional eco-balance, but increasing vehicular pollution in climate- ... subcontinent by sheltering it from the cold air mass of.

  2. Can a Human-Induced Climate Disaster be Avoided?

    Science.gov (United States)

    Watson, R.

    2012-12-01

    Emissions of greenhouse gases (GHG) are one of the greatest threats to our future prosperity. World emissions are currently around 50 billion tonnes of carbon dioxide-equivalent per annum and are growing rapidly. Atmospheric concentrations of GHG emissions in the atmosphere have increased, to over 400ppm of CO2e today, even after taking the offsetting radiative effects of aerosols into account, and are increasing at a rate of around 2.5ppm per year. The world's current lack of "adequate" commitments to reduce emissions are consistent with at least a 3oC rise (50-50 chance) in temperature: a temperature not seen on the planet for around 3 million years, with serious risks of 5oC rise: a temperature not seen on the planet for around 30 million years. So what are the implications of a 3-5oC rise in temperature, with associated changes in, rising sea levels, retreating mountain glaciers, melting of the Greenland ice cap, shrinking Arctic Sea ice, especially in summer, increasing frequency of extreme weather events, such as heat waves, floods, and droughts, and intensification of cyclonic events, such as hurricanes in the Atlantic. Even a 2oC increase in mean surface temperatures will adversely affect freshwater, food and fiber, natural ecosystems, coastal systems and low-lying areas, human health and social systems, especially in developing countries. The impacts of 3-5oC will be extensive, predominantly negative, undermine development and poverty alleviation goals and cut across most sectors. To address human-induced climate change requires a transition to a low carbon economy, which will require rapid technological evolution in the efficiency of energy use, environmentally sound low-carbon renewable energy sources and carbon capture and storage. The longer we wait to transition to a low carbon economy the more we are locked into a high carbon energy system with consequent environmental damage to ecological and socio-economic systems. Unfortunately the political will

  3. Emotions about Teaching about Human-Induced Climate Change

    Science.gov (United States)

    Lombardi, Doug; Sinatra, Gale M.

    2013-01-01

    Global climate change is receiving increasing attention as a classroom topic. At the same time, research has shown that individuals have strong emotions about the topic. Emotions about controversial topics and individuals' dispositions toward knowledge have been shown to influence judgments about these topics. This study examined the relationships among preservice elementary and in-service secondary science teachers' emotions about and plausibility perceptions of climate change, background knowledge of weather and climate distinctions (a principle related to understanding climate change), and dispositions toward knowledge. Teachers' topic emotions (anger and hopelessness) were significant predictors of plausibility perceptions, with more anger associated with lesser plausibility and greater hopelessness associated with higher plausibility. Decisiveness-an urgent desire to reach closure-was also significantly related to plausibility perceptions with greater decisiveness associated with reduced plausibility perceptions. In-service secondary teachers who do not currently teach about climate change exhibited greater anger and decisiveness than preservice elementary teachers and in-service secondary teachers who do teach about climate change. Implications for climate literacy education are discussed.

  4. Sea level and climate variations

    NARCIS (Netherlands)

    Oerlemans, J.

    1985-01-01

    Review paper, ESA Symposium on Application of Satellite Data to Climate Modelling. Alpbach (Austria) Sea level is an essential component of the climate system, on which many human activities in the coastal zone depend. Climate variations leading to changes in relative sea level are

  5. Effective Teacher Practice on the Plausibility of Human-Induced Climate Change

    Science.gov (United States)

    Niepold, F.; Sinatra, G. M.; Lombardi, D.

    2013-12-01

    Climate change education programs in the United States seek to promote a deeper understanding of the science of climate change, behavior change and stewardship, and support informed decision making by individuals, organizations, and institutions--all of which are summarized under the term 'climate literacy.' The ultimate goal of climate literacy is to enable actors to address climate change, both in terms of stabilizing and reducing emissions of greenhouse gases, but also an increased capacity to prepare for the consequences and opportunities of climate change. However, the long-term nature of climate change and the required societal response involve the changing students' ideas about controversial scientific issues which presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). This session will explore how the United States educational efforts focus on three distinct, but related, areas: the science of climate change, the human-climate interaction, and using climate education to promote informed decision making. Each of these approaches are represented in the Atlas of Science Literacy (American Association for the Advancement of Science, 2007) and in the conceptual framework for science education developed at the National Research Council (NRC) in 2012. Instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) has been called for by the Next Generation Science Standards (NGSS) (Achieve, 2013), an innovative and research based way to address climate change education within the decentralized U.S. education system. However, the promise of the NGSS is that students will have more time to build mastery on the subjects, but the form of that instructional practice has been show to be critical. Research has show that effective instructional activities that promote evaluation of evidence improve students' understanding and acceptance toward the scientifically accepted model of human-induced

  6. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades

    Science.gov (United States)

    Zhu, Qiuan; Peng, Changhui; Liu, Jinxun; Jiang, Hong; Fang, Xiuqin; Chen, Huai; Niu, Zhenguo; Gong, Peng; Lin, Guanghui; Wang, Meng; Wang, Han; Yang, Yanzheng; Chang, Jie; Ge, Ying; Xiang, Wenhua; Deng, Xiangwen; He, Jin-Sheng

    2016-11-01

    Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH4) emissions in China is important for improving our knowledge on CH4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH4 model to quantify the human and climate change induced contributions to natural wetland CH4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH4 emissions reduction (0.92 TgCH4), and climate change contributed 20.4% to the CH4 emissions increase (0.31 TgCH4), suggesting that decreasing CH4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH4 emissions estimation.

  7. Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells.

    Science.gov (United States)

    Kajiwara, Masatoshi; Aoi, Takashi; Okita, Keisuke; Takahashi, Ryosuke; Inoue, Haruhisa; Takayama, Naoya; Endo, Hiroshi; Eto, Koji; Toguchida, Junya; Uemoto, Shinji; Yamanaka, Shinya

    2012-07-31

    Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, the in vitro directed differentiation of human pluripotent stem cells into mature hepatocytes remains challenging. Little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. In the current study, we developed an improved hepatic differentiation protocol and compared 28 hiPSC lines originated from various somatic cells and derived using retroviruses, Sendai viruses, or episomal plasmids. This comparison indicated that the origins, but not the derivation methods, may be a major determinant of variation in hepatic differentiation. The hiPSC clones derived from peripheral blood cells consistently showed good differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts showed poor differentiation. However, when we compared hiPSCs from peripheral blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. These data underscore the importance of donor differences when comparing the differentiation propensities of hiPSC clones.

  8. Application of Method of Variation to Analyze and Predict Human Induced Modifications of Water Resource Systems

    Science.gov (United States)

    Dessu, S. B.; Melesse, A. M.; Mahadev, B.; McClain, M.

    2010-12-01

    marginal benefit is maximized. Therefore, the variation model can help to predict the possible human induced modification of natural water system in order to gain the maximum productivity and benefit.

  9. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China.

    Science.gov (United States)

    He, Chunyang; Tian, Jie; Gao, Bin; Zhao, Yuanyuan

    2015-01-01

    Quantitatively distinguishing grassland degradation due to climatic variations from that due to human activities is of great significance to effectively governing degraded grassland and realizing sustainable utilization. The objective of this study was to differentiate these two types of drivers in the Liao River Basin during 1999-2009 using the residual trend (RESTREND) method and to evaluate the applicability of the method in semiarid and semihumid regions. The relationship between the normalized difference vegetation index (NDVI) and each climatic factor was first determined. Then, the primary driver of grassland degradation was identified by calculating the change trend of the normalized residuals between the observed and the predicted NDVI assuming that climate change was the only driver. We found that the RESTREND method can be used to quantitatively and effectively differentiate climate and human drivers of grassland degradation. We also found that the grassland degradation in the Liao River Basin was driven by both natural processes and human activities. The driving factors of grassland degradation varied greatly across the study area, which included regions having different precipitation and altitude. The degradation in the Horqin Sandy Land, with lower altitude, was driven mainly by human activities, whereas that in the Kungl Prairie, with higher altitude and lower precipitation, was caused primarily by climate change. Therefore, the drivers of degradation and local conditions should be considered in an appropriate strategy for grassland management to promote the sustainability of grasslands in the Liao River Basin.

  10. Quantifying relative uncertainties in the detection and attribution of human-induced climate change on winter streamflow

    Science.gov (United States)

    Ahn, Kuk-Hyun; Merwade, Venkatesh; Ojha, C. S. P.; Palmer, Richard N.

    2016-11-01

    In spite of recent popularity for investigating human-induced climate change in regional areas, understanding the contributors to the relative uncertainties in the process remains unclear. To remedy this, this study presents a statistical framework to quantify relative uncertainties in a detection and attribution study. Primary uncertainty contributors are categorized into three types: climate data, hydrologic, and detection uncertainties. While an ensemble of climate models is used to define climate data uncertainty, hydrologic uncertainty is defined using a Bayesian approach. Before relative uncertainties in the detection and attribution study are quantified, an optimal fingerprint-based detection and attribution analysis is employed to investigate changes in winter streamflow in the Connecticut River Basin, which is located in the Eastern United States. Results indicate that winter streamflow over a period of 64 years (1950-2013) lies outside the range expected from natural variability of climate alone with a 90% confidence interval in the climate models. Investigation of relative uncertainties shows that the uncertainty linked to the climate data is greater than the uncertainty induced by hydrologic modeling. Detection uncertainty, defined as the uncertainty related to time evolution of the anthropogenic climate change in the historical data (signal) above the natural internal climate variability (noise), shows that uncertainties in natural internal climate variability (piControl) scenarios may be the source of the significant degree of uncertainty in the regional Detection and Attribution study.

  11. Orbital variations, climate and paleoecology.

    Science.gov (United States)

    Bartlein, P J; Prentice, I C

    1989-07-01

    One of the most exciting discoveries in the earth sciences in recent decades has been the proof that ice ages are governed by deterministic variations in the earth's orbit. These variations modify the latitudinal and seasonal distribution of solar radiation at periods ranging from 103 to 10(5) years, and alternately produce conditions for building and melting continental ice. The same solar radiation variations also govern other aspects of world climate, including the temperatures of the midlatitude continental interiors, the intensity of upwelling in the tropical oceans, and the strength and extent of the monsoons. The interplay of solar radiation, seasonality and ice-sheet changes is responsible for the complex ecological history documented in the fossil record of the past 20 000 years. But the orbital variations have occurred throughout earth's history, and have caused periodic environmental changes in both terrestrial and marine environments even during times when there was no ice. Species have responded to these changes by range migration, an evolved ability that may maintain their genetic coherence in the face of a continually changing environment.

  12. College Students' Perceptions about the Plausibility of Human-Induced Climate Change

    Science.gov (United States)

    Lombardi, Doug; Sinatra, Gale M.

    2012-01-01

    Overcoming students' misconceptions may be a challenge when teaching about phenomena such as climate change. Students tend to cite short-term weather effects as evidence to support or refute long-term climate transformations, which displays a fundamental misunderstanding about weather and climate distinctions. Confusion about weather and climate…

  13. Is Forest Restoration in the Southwest China Karst Promoted Mainly by Climate Change or Human-Induced Factors?

    Directory of Open Access Journals (Sweden)

    Hongyan Cai

    2014-10-01

    Full Text Available The Southwest China Karst, the largest continuous karst zone in the world, has suffered serious rock desertification due to the large population pressure in the area. Recent trend analyses have indicated general greening trends in this region. The region has experienced mild climate change, and yet significant land use changes, such as afforestation and reforestation. In addition, out-migration has occurred. Whether climate change or human-induced factors, i.e., ecological afforestation projects and out-migration have primarily promoted forest restoration in this region was investigated in this study, using Guizhou Province as the study area. Based on Moderate-Resolution Imaging Spectroradiometer (MODIS Normalized Difference Vegetation Index (NDVI data, we found general greening trends of the forest from 2000 to 2010. About 89% of the forests have experienced an increase in the annual NDVI, and among which, about 41% is statistically significant. For the summer season, more than 65% of the forests have increases in summer NDVI, and about 16% of the increases are significant. The strongest greening trends mainly occurred in the karst areas. Meanwhile, annual average and summer average temperature in this region have increased and the precipitation in most of the region has decreased, although most of these changes were not statistically significant (p > 0.1. A site-based regression analysis using 19 climate stations with minimum land use changes showed that a warming climate coupled with a decrease in precipitation explained some of the changes in the forest NDVI, but the results were not conclusive. The major changes were attributed to human-induced factors, especially in the karst areas. The implications of an ecological afforestation project and out-migration for forest restoration were also discussed, and the need for further investigations at the household level to better understand the out-migration–environment relationship was identified.

  14. Developing a methodology of bioindication of human-induced effects using seagrass morphological variation in Spermonde Archipelago, South Sulawesi, Indonesia.

    Science.gov (United States)

    Ambo-Rappe, Rohani

    2014-09-15

    Seagrass is particularly susceptible to environmental degradation. The objective of the study is to develop an effective bioindicator to assess human-induced effects using morphological variation and fluctuating asymmetry (FA) of seagrass. Samples were collected from eight islands situated at different distance from mainland with different human population density and therefore expected to experience different level of anthropogenic pressure. Cd, Pb, Cu, Zn, nitrate, and phosphate were measured. Metals were also measured in tissues of seagrass. Metal concentrations in sediment, water, and seagrass did not exceed the quality standards required for marine life. Heterogeneity of FA was found among sites suggesting that there are some factors changing developmental instability of seagrass which is not associated to particular toxicants. This baseline study indicates that the water condition is still natural and shows no signs of metal contamination, therefore it does not cause a detectable stress on morphological variation and FA of seagrass.

  15. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  16. Modeling human-induced climatic change: A summary for environmental managers

    Energy Technology Data Exchange (ETDEWEB)

    Sulzman, E.W. [National Biological Survey, Washington, DC (United States)]|[University Corporation for Atmospheric Research, Boulder, CO (United States); Poiani, K.A. [Cornell Univ., Ithaca, NY (United States); Kittel, T.G.F. [University Corporation for Atmospheric Research, Boulder, CO (United States)]|[Colorado State Univ., Fort Collins, CO (United States)

    1995-03-01

    The rapid increase in atmospheric concentrations of greenhouse gases has caused concern because of their potential to alter the earth`s radiation budget and disrupt current climate patterns. While there are many uncertainties associated with use of general circulation models (GCMs), GCMs are currently the best available technology to project changes in climate associated with elevated gas concentrations. Results indicate increases in global temperature and changes in global precipitation patterns are likely as a result of doubled CO{sub 2}. GCMs are not reliable for use at the regional scale because local scale processes and geography are not taken into account. Comparison of results from five GCMs in three regions of the United States indicate high variability across regions and among models depending on season and climate variable. Statistical methods of scaling model output and nesting finer resolution models in global models are two techniques that may improve projections. Despite the many limitations in GCMs, they are useful tools to explore climate-earth system dynamics when used in conjunction with water resource and ecosystem models. A variety of water resource models showed significant alteration of region hydrology when run with both GCM-generated and hypothetical climate scenarios, regardless of region or model complexity. Similarly, ecological models demonstrate the sensitivity of ecosystem production, nutrient dynamics, and distribution to changes in climate and CO{sub 2} levels. We recommend the use of GCM-based scenarios in conjunction with water resource and ecosystem models to guide environmental management and policy in a {open_quotes}no-regrets{close_quotes} framework or as part of a precautionary approach to natural resource protection. 174 refs., 4 figs., 5 tabs.

  17. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop...... production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion...

  18. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?

    Science.gov (United States)

    Doughty, Christopher E.; Wolf, Adam; Field, Christopher B.

    2010-08-01

    A large increase in Betula during a narrow 1000 year window, ˜13,800 years before present (YBP) in Alaska and Yukon corresponded in time with the extinction of mammoths and the arrival of humans. Pollen data indicate the increase in Betula during this time was widespread across Siberia and Beringia. We hypothesize that Betula increased due to a combination of a warming climate and reduced herbivory following the extinction of the Pleistocene mega herbivores. The rapid increase in Betula modified land surface albedo which climate-model simulations indicate would cause an average net warming of ˜0.021°C per percent increase in high latitude (53-73°N) Betula cover. We hypothesize that the extinction of mammoths increased Betula cover, which would have warmed Siberia and Beringia by on average 0.2°C, but regionally by up to 1°C. If humans were partially responsible for the extinction of the mammoths, then human influences on global climate predate the origin of agriculture.

  19. Crop responses to climatic variation

    DEFF Research Database (Denmark)

    Porter, John R.; Semenov, Mikhail A.

    2005-01-01

    production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important...... of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency....

  20. Climate variation drives dengue dynamics

    Science.gov (United States)

    Xu, Lei; Stige, Leif C.; Chan, Kung-Sik; Zhou, Jie; Yang, Jun; Sang, Shaowei; Wang, Ming; Yang, Zhicong; Yan, Ziqiang; Jiang, Tong; Lu, Liang; Yue, Yujuan; Liu, Xiaobo; Lin, Hualiang; Xu, Jianguo; Liu, Qiyong; Stenseth, Nils Chr.

    2017-01-01

    Dengue, a viral infection transmitted between people by mosquitoes, is one of the most rapidly spreading diseases in the world. Here, we report the analyses covering 11 y (2005–2015) from the city of Guangzhou in southern China. Using the first 8 y of data to develop an ecologically based model for the dengue system, we reliably predict the following 3 y of dengue dynamics—years with exceptionally extensive dengue outbreaks. We demonstrate that climate conditions, through the effects of rainfall and temperature on mosquito abundance and dengue transmission rate, play key roles in explaining the temporal dynamics of dengue incidence in the human population. Our study thus contributes to a better understanding of dengue dynamics and provides a predictive tool for preventive dengue reduction strategies. PMID:27940911

  1. Climate variations and the enhanced greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-06-01

    Changes in the size of glaciers, in the altitude of the alpine tree-limit, and variation in the width of tree-rings during the Holocene clearly indicate that the average Scandinavian summer temperature has fluctuated. During warm periods it has been about 2 deg C warmer than at present; during cold periods it has been almost as cold as it was during the coldest decades of the previous centuries. Superimposed on these long-term variations, which have lasted from 100 to 200 years, are short fluctuations in temperature. The Scandinavian chronology, which is based on glacier and alpine tree-limit fluctuations as well as on dendrochronology, is well correlated with the changes in climate, which studies of ice cores from central Greenland have revealed. It is therefore believed that the Scandinavian climate chronology depicts conditions typical of a large area. The Scandinavian record is compared with data concerning solar irradiation variations estimated as {sup 14}C anomalies obtained from tree-rings. A correlation between major changes in climate and variations in solar irradiation points to a solar forcing of the climate. This means that there is no evidence of a human influence on climate so far Special issue. Research for mountain area development: Europe. 64 refs, 3 figs

  2. Influence of land evapotranspiration on climate variations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A coupled numerical model of the global atmosphere with a qualified biosphere(GOALS/LASG) has been used to assess the nature of the physical mechanisms for land-atmos-phere interactions, and the impacts of the Asian/North American land-surface evapotranspirationon the regional and global climate. This sensitivity study suggests that the simulated climate wouldbe relatively sensitive to land surface evapotranspiration, especially over the Asian regions. Theremoval of evapotranspiration in Asia would create a warmer and drier climate to a certain degree.Furthermore, the surface evapotranspiration anomalies would make a substantial contribution tothe formation and variation of subtropical anticyclones through the changes in monsoon precipita-tion and the β-effect, but also make a large contribution to the variations of the atmosphericcirculation in the Northern Hemisphere and even the globe. Therefore, besides the traditionalperception that we have generally emphasized on the influence of subtropical anticyclonesactivities on the boreal summer precipitation over the regions of eastern China, the surfaceevapotranspiration anomalies, however, also have substantial impacts on the subtropicalanticyclones through the changes in monsoon precipitation. For this reason, the variation in theinternal heating sources of the atmosphere caused by the land surface evapotranspiration and thevapor phase change during the boreal summer is an important external factor forcing the weatherand climate

  3. Characterization of climate- and human-induced slope, soil and grassland dynamics in Bavarian landscapes under climate change

    Science.gov (United States)

    Waltl, Peter; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    Since the Neolithic Revolution the intensification of agriculture has been causing increased erosion in Bavarian landscapes. The correlated sediments often induce the formation of new colluvial and alluvial soils (WRB: Regic Anthrosol and Fluvisol i.a.). The soils themselves are able to absorb, bind, and store considerable amounts of C- and N-compounds. Therefore, they are important reactors regarding climate-relevant greenhouse-gas balances in the atmosphere. Learning about the exact spatial extent and thickness of these soils in representative landscapes, but also about their geneses and processes is essential. It allows for a detailed quantification and understanding of the current and potential properties and characteristics of these soils in their role of greenhouse-gas reactors. Two research locations were elected as representative Bavarian landscapes composed of different lithology and pedo-chemical environments (limestone versus crystalline setting): Rottenbuch is situated at the Ammer River in the Upper Bavarian pre-alpine forelands (Lkr. Weilheim-Schongau). The Otterbach Creek lies at the southwestern foothills of the Bavarian Forest at the Donaurandbruch tectonic line next to Donaustauf (Lkr. Regensburg). Detailed information on the soil horizons and layers within these research areas are accumulated by sounding or burrowing soil profiles and subsequently analyzing the soil samples in the lab. Geophysical methods, such as electrical resistivity tomography (ERT), seismic refraction tomography (SRT), and ground penetrating radar (GPR), allow for the extension of this point-source information into three dimensions. By repeatedly and regularly applying these methods, also temporal changes such as soil hydrology or freeze and thaw cycles can be monitored and their influence on fluxes and exchanges can be taken into account.

  4. Modeling the climatic response to orbital variations.

    Science.gov (United States)

    Imbrie, J; Imbrie, J Z

    1980-02-29

    According to the astronomical theory of climate, variations in the earth's orbit are the fundamental cause of the succession of Pleistocene ice ages. This article summarizes how the theory has evolved since the pioneer studies of James Croll and Milutin Milankovitch, reviews recent evidence that supports the theory, and argues that a major opportunity is at hand to investigate the physical mechanisms by which the climate system responds to orbital forcing. After a survey of the kinds of models that have been applied to this problem, a strategy is suggested for building simple, physically motivated models, and a time-dependent model is developed that simulates the history of planetary glaciation for the past 500,000 years. Ignoring anthropogenic and other possible sources of variation acting at frequencies higher than one cycle per 19,000 years, this model predicts that the long-term cooling trend which began some 6000 years ago will continue for the next 23,000 years.

  5. Climatic variations and benign paroxysmal positional vertigo

    Institute of Scientific and Technical Information of China (English)

    Basil M.N. Saeed; Alyaa Farouk Omari

    2016-01-01

    Benign paroxysmal positional vertigo (BPPV) is probably the most common diagnosis at vertigo clinics. Seasonal cycles of several human illnesses could be attributed variously to changes in atmospheric or weather conditions. In this retrospective study, patients with BPPV from January 2010 to December 2012 were studied, and their charts were reviewed. Statistical analysis revealed a statistically significant difference in patients' numbers among different months of the year. Also there is a significant statistical correlation between the numbers of patients with climatic variations especially the temperature. The present paper discusses the possible explanations for these results which confirms the seasonal variations in BPPV, together with a review of literature to view the possible associations with other disorders that causes such sea-sonality.

  6. Contagious yawning and seasonal climate variation

    Directory of Open Access Journals (Sweden)

    Andrew C Gallup

    2011-09-01

    Full Text Available Recent evidence suggests that yawning is a thermoregulatory behavior. To explore this possibility further, the frequency of contagious yawning in humans was measured while outdoors in a desert climate in the United States during two distinct temperature ranges and seasons (winter: 22oC; early summer: 37oC. As predicted, the proportion of pedestrians who yawned in response to seeing pictures of people yawning differed significantly between the two conditions (winter: 45%; summer: 24%. Across conditions yawning occurred at lower ambient temperatures, and the tendency to yawn during each season was associated with the length of time spent outside prior to being tested. Participants were more likely to yawn in the milder climate after spending long periods of time outside, while prolonged exposure to ambient temperatures at or above body temperature was associated with reduced yawning. This is the first report to show that the incidence of yawning in humans is associated with seasonal climate variation, further demonstrating that yawn-induced contagion effects can be mediated by factors unrelated to individual social characteristics or cognitive development.

  7. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    Climate variation based on temperature and solar radiation data over a 29 year period in ... are to a large extent being negatively impacted by climate change. ... In addition, the concentration of carbon dioxide over Malawi within the same ...

  8. Influence of land evapotranspiration on climate variations

    Institute of Scientific and Technical Information of China (English)

    SUN; Lan

    2001-01-01

    [1]Peixoto, J. , Oort, A. H., Physics of Climate, Am. Inst. of Phys., New York: Woodbury, 1992, 520.[2]Shukla. J., Mintz, Y., The influence of land surface evapotranspiration on Earth's climate, Science, 1982, 215: 1498-1501.[3]Dickinson. R. E, Henderson-Sellers, A., Kennedy, P. J. et al., Biosphere-atmosphere transfer scheme (BATS) for the NCAR community climate model, Boulder, Colorado, NCAR/TN-275+STR, 1986, 69.[4]Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., Biosphere-atmosphere transfer scheme (BATSle) version le as coupled to the NCAR community climate model, NCAR Tech. Note NCAR/TN-387+STR, 1993, 72.[5]Sellers, P. J., Mintz, Y., Sud, Y. C. et al., A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 1986, 43 (6): 505-531.[6]Xue, Y. K.. Sellers, P. J., Kinter, J. L. et al., A simplified biosphere model for global climate studies, J. Clim., 1991, 4:345-364.[7]Sun Lan, Wu Guoxiong , Sun Shufen, Numerical simulations of effects of land surface processes on climate—Implementing of SSiB in IAP/LASG AGCM and its Performance, Acta Meteorologica Sinica (in Chinese), 2000, 58 (2):179-193.[8]Wu Guoxiong, Zhang Huehong, Liu Hui et al., Global ocean-atmosphere-land system model of LASG (GOALS/LASG)and its performance in simulation study, Quarterly Journal of Applied Meteorology (in Chinese), 1997, 8 (Suppl.): 15-28.[9]Wu Guoxiong, Liu Hui, Zhao Y. C. et al, A nine-layer atmospheric general circulation model and its performance, Advanced in Atmospheric Sciences, 1996, 13 (1): 1-18.[10]Wu Guoxiong, Liu Yimin, Liu Ping, The effect of spatially nonuniform heating on the formation and variation of subtropical high I. scale analysis, Acta Meteorologica Sinica (in Chinese), 1999, 57(3): 257-263.

  9. Climate-driven or human-induced: Indicating severe water scarcity in the Moulouya river basin (Morocco)

    OpenAIRE

    Vera Tekken; Jürgen P. Kropp

    2012-01-01

    Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. O...

  10. Climate-Driven or Human-Induced: Indicating Severe Water Scarcity in the Moulouya River Basin (Morocco 

    Directory of Open Access Journals (Sweden)

    Vera Tekken

    2012-12-01

    Full Text Available Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. On the basis of historical trends taken from CRU TS 2.1, this paper analyses the impact of climate change on the per capita water availability under inclusion of population trends. The Climatic Water Balance (CWB shows a significant decrease for the winter period, causing adverse effects for the main agricultural season. Further, moisture losses due to increasing evapotranspiration rates indicate problems for the annual water budget and groundwater recharge. The per capita blue water availability falls below a minimum threshold of 500 m3 per year, denoting a high regional vulnerability to increasing water scarcity assuming a no-response scenario. Regional development focusing on the water-intense sectors of agriculture and tourism appears to be at risk. Institutional capacities and policies need to address the problem, and the prompt implementation of innovative water production and efficiency measures is recommended.

  11. "It's Not a Political Issue!" The Interaction of Subject and Politics on Professors' Beliefs in Human-Induced Climate Change

    Science.gov (United States)

    Nussbaum, E. Michael; Owens, Marissa C.; Cordova, Jacqueline R.

    2016-01-01

    This study examines the interaction of political orientation with academic discipline on beliefs in anthropogenic climate change (ACC) among higher education faculty. Over 300 faculty members at two research institutions in the United States were surveyed on topics concerning ACC and the results were analyzed with multiple regression. Even among…

  12. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event

    Energy Technology Data Exchange (ETDEWEB)

    Donner, S.D. [Princeton Univ., NJ (United States). Woodrow Wilson School of Public and International Affairs; Knutson, T.R. [National Oceanic and Atmospheric Administration, Princeton, NJ (United States). Geophysical Fluid Dynamics Lab.; Oppenheimer, M. [Princeton Univ., NJ (United States). Dept. of Geosciences

    2007-03-27

    Episodes of mass coral bleaching around the world in recent decades have been attributed to periods of anomalously warm ocean temperatures. In 2005, the sea surface temperature (SST) anomaly in the tropical North Atlantic that may have contributed to the strong hurricane season caused widespread coral bleaching in the Eastern Caribbean. Here, the authors use two global climate models to evaluate the contribution of natural climate variability and anthropogenic forcing to the thermal stress that caused the 2005 coral bleaching event. Historical temperature data and simulations for the 1870-2000 period show that the observed warming in the region is unlikely to be due to unforced climate variability alone. Simulation of background climate variability suggests that anthropogenic warming may have increased the probability of occurrence of significant thermal stress events for corals in this region by an order of magnitude. Under scenarios of future greenhouse gas emissions, mass coral bleaching in the Eastern Caribbean may become a biannual event in 20-30 years. However, if corals and their symbionts can adapt by 1-1.5{sup o}C, such mass bleaching events may not begin to recur at potentially harmful intervals until the latter half of the century. The delay could enable more time to alter the path of greenhouse gas emissions, although long-term 'committed warming' even after stabilization of atmospheric CO{sub 2} levels may still represent an additional long-term threat to corals.

  13. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event.

    Science.gov (United States)

    Donner, Simon D; Knutson, Thomas R; Oppenheimer, Michael

    2007-03-27

    Episodes of mass coral bleaching around the world in recent decades have been attributed to periods of anomalously warm ocean temperatures. In 2005, the sea surface temperature (SST) anomaly in the tropical North Atlantic that may have contributed to the strong hurricane season caused widespread coral bleaching in the Eastern Caribbean. Here, we use two global climate models to evaluate the contribution of natural climate variability and anthropogenic forcing to the thermal stress that caused the 2005 coral bleaching event. Historical temperature data and simulations for the 1870-2000 period show that the observed warming in the region is unlikely to be due to unforced climate variability alone. Simulation of background climate variability suggests that anthropogenic warming may have increased the probability of occurrence of significant thermal stress events for corals in this region by an order of magnitude. Under scenarios of future greenhouse gas emissions, mass coral bleaching in the Eastern Caribbean may become a biannual event in 20-30 years. However, if corals and their symbionts can adapt by 1-1.5 degrees C, such mass bleaching events may not begin to recur at potentially harmful intervals until the latter half of the century. The delay could enable more time to alter the path of greenhouse gas emissions, although long-term "committed warming" even after stabilization of atmospheric CO(2) levels may still represent an additional long-term threat to corals.

  14. Modeling orbital induced variations in circum-Mediterranean climate

    NARCIS (Netherlands)

    Tuenter, Erik

    2004-01-01

    The climate of the Earth varies both irregular and (quasi)periodic over a broad range of time-scales. The variations with periods of some ten-thousands of years are caused by variations in the shape of the orbit of the Earth and the orientation of the rotation axis of the Earth. These variations st

  15. Observed changes of temperature extremes during 1960-2005 in China: natural or human-induced variations?

    Science.gov (United States)

    Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong

    2011-12-01

    The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.

  16. Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and climate

    DEFF Research Database (Denmark)

    Eero, Margit; MacKenzie, Brian; Köster, Fritz

    2011-01-01

    Understanding how human impacts have interacted with natural variability to affect populations and ecosystems is required for sustainable management and conservation. The Baltic Sea is one of the few large marine ecosystems worldwide where the relative contribution of several key forcings...... to changes in fish populations can be analyzed with empirical data. In this study we investigate how climate variability and multiple human impacts (fishing, marine mammal hunting, eutrophication) have affected multi-decadal scale dynamics of cod in the Baltic Sea during the 20th century.We document......-average cod productivity coupled to a temporary reduction in fishing pressure. The Baltic cod example demonstrates how combinations of different forcings can have synergistic effects and consequently dramatic impacts on population dynamics. Our results highlight the potential and limitations of human...

  17. The NPO/ NAO and interdecadal climate variation in China

    Science.gov (United States)

    Li, Chongyin; Li, Guilong

    2000-12-01

    This article discusses the interannual variation of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO), its relationship with the interdecadal climate variation in China which is associated with the climate jump in the Northern Hemisphere in the 1960’s, using the data analyses. It is clearly shown that both the amplitudes of the NAO and NPO increase obviously in the 1960’s and the main period of the oscillations changes from 3-4 years before the 1960’s to 8 15 years after the 1960’s. Therefore, interdecadal climate variation in China or the climate jump in the 1960’s is closely related to the anomalies of the NAO and NPO.

  18. Plague dynamics are driven by climate variation

    DEFF Research Database (Denmark)

    Stenseth, Nils Chr.; Samia, Noelle I.; Viljugrein, Hildegunn

    2006-01-01

    The bacterium Yersinia pestis causes bubonic plague. In Central Asia, where human plague is still reported regularly, the bacterium is common in natural populations of great gerbils. By using field data from 1949-1995 and previously undescribed statistical techniques, we show that Y. pestis...... prevalence in gerbils increases with warmer springs and wetter summers: A 1°C increase in spring is predicted to lead to a >50% increase in prevalence. Climatic conditions favoring plague apparently existed in this region at the onset of the Black Death as well as when the most recent plague pandemic arose...... in the same region, and they are expected to  continue or become more favorable as a result of climate change.  Threats of outbreaks may thus be increasing where humans live in close contact with rodents and fleas (or other wildlife) harboring endemic plague....

  19. Solar UV radiation variations and their stratospheric and climatic effects

    Science.gov (United States)

    Donnelly, R. F.; Heath, D. F.

    1985-01-01

    Nimbus-7 SBUV measurements of the short-term solar UV variations caused by solar rotation and active-region evolution have determined the amplitude and wavelength dependence for the active-region component of solar UV variations. Intermediate-term variations lasting several months are associated with rounds of major new active regions. The UV flux stays near the peak value during the current solar cycle variation for more than two years and peaks about two years later than the sunspot number. Nimbus-7 measurements have observed the concurrent stratospheric ozone variations caused by solar UV variations. There is now no doubt that solar UV variations are an important cause of short- and long-term stratospheric variations, but the strength of the coupling to the troposphere and to climate has not yet been proven.

  20. Exposing variation to aid climate change risk assessment

    Science.gov (United States)

    Smith, M. J.; Purves, D. W.; Joppa, L. N.; Emmott, S.; Lyutsarev, V.; Bishop, C. M.; Palmer, P. I.; Calderhead, B.; Vanderwel, M. C.

    2015-12-01

    Considerable efforts to quantify different sources of variation in climate change projections (some might say uncertainty) have led to a welcome set of additional information on which to base confidence about what and how different futures might unfold and how different types of mediating efforts might affect the future. Quantifying the impacts of these different sources of variation on key climate change projection metrics should be used in part to guide future model development efforts. I will report on several of my team's recent research projects to better quantify and assess the importance of different sources of variation. I will show how we use inference techniques to estimate parameter uncertainty in land and marine carbon components of earth system models by comparing them with observational evidence and show how we propagate such uncertainty to better assess how such systems might respond to climate change and quantify the impact of reducing uncertainty for different applications. I will also show how we use such techniques on simulation models themselves to identify key sources of variation in their predictions: helping to pinpoint important focal areas for model improvement. Lastly, I will show a new software prototype being designed to enable any user to view climate model projections alongside historical and recent observational evidence while, importantly, also exposing some of the variation / uncertainty in the reported information.

  1. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Xiangjin Kang

    Full Text Available Human-induced pluripotent stem cells (iPSCs are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines", 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines", and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV, loss of heterozygosity (LOH and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic

  2. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kang, Xiangjin; Yu, Qian; Huang, Yuling; Song, Bing; Chen, Yaoyong; Gao, Xingcheng; He, Wenyin; Sun, Xiaofang; Fan, Yong

    2015-01-01

    Human-induced pluripotent stem cells (iPSCs) are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC) lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines"), 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines"), and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV), loss of heterozygosity (LOH) and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture) database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP) calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic aberrations

  3. Perceived Effect of Climate Variation on Food Crop Production in ...

    African Journals Online (AJOL)

    Perceived Effect of Climate Variation on Food Crop Production in Oyo State, Nigeria. ... Global Approaches to Extension Practice: A Journal of Agricultural Extension ... biodiversity loss, changes in vegetation type, and consequently; depletion of ... is direct and Oyo State has enormous potentials to make Nigeria food secure.

  4. Periodicity of Holocene climatic variations in the Huguangyan Maar Lake

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There exist five primary periods of 2 930, 1 140, 490, 250 and 220 a in the Holocene climatic variations in the Huguangyan Maar Lake, according to the energy-spectrum and filter analyses of high-resolution time sequences (10-15 a) of the sediment dry density. The peak values of the three temperature-decreasing periods with the 2 930 a cycle occur at about 7 300, 4 250 and 1 200 Cal. aBP. There are 7-8 temperature-decreasing periods with the 1 140 a cycle, and the climate fluctuation range is largest in the early Holocene, and reduces gradually in the middle and late Holocene. The millennial-scale climatic change in the Holocene may adjust the global water cycle and the thermohaline circulation intensity through the harmonic tones of the earth's precession cycle, which in turn influences the global climate change.

  5. Variational formulation of Budyko-Sellers climate models

    Science.gov (United States)

    North, G. R.; Howard, L.; Pollard, D.; Wielicki, B.

    1979-01-01

    A class of simple climate models including those of the Budyko-Sellers type are formulated from a variational principle. A functional is constructed for the zonally averaged mean annual temperature field such that extrema of the functional occur when the climate satisfies the usual energy-balance equation. Local minima of the functional correspond to stable solutions while saddle points correspond to unstable solutions. The technique can be used to construct approximate solutions from trial functions and to carry out finite-amplitude stability analyses. A spectral example is given in explicit detail.

  6. Fitness implications of seasonal climate variation in Columbian ground squirrels.

    Science.gov (United States)

    Dobson, F Stephen; Lane, Jeffrey E; Low, Matthew; Murie, Jan O

    2016-08-01

    The influence of climate change on the fitness of wild populations is often studied in the context of the spring onset of the reproductive season. This focus is relevant for climate influences on reproductive success, but neglects other fitness-relevant periods (e.g., autumn preparation for overwintering). We examined variation in climate variables (temperature, rainfall, snowfall, and snowpack) across the full annual cycle of Columbian ground squirrels (Urocitellus columbianus) for 21 years. We investigated seasonal climate variables that were associated with fitness variables, climate variables that exhibited directional changes across the study period, and finally observed declines in fitness (-0.03 units/year; total decline = 37%) that were associated with directional changes in climate variables. Annual fitness of adult female ground squirrels was positively associated with spring temperature (r = 0.69) and early summer rainfall (r = 0.56) and negatively associated with spring snow conditions (r = -0.44 to -0.66). Across the 21 years, spring snowmelt has become significantly delayed (r = 0.48) and summer rainfall became significantly reduced (r = -0.53). Using a standardized partial regression model, we found that directional changes in the timing of spring snowmelt and early summer rainfall (i.e., progressively drier summers) had moderate influences on annual fitness, with the latter statistically significant (ρ = -0.314 and 0.437, respectively). The summer period corresponds to prehibernation fattening of young and adult ground squirrels. Had we focused on a single point in time (viz. the onset of the breeding season), we would have underestimated the influences of climate change on our population. Rather, we obtained a comprehensive understanding of the influences of climate change on individual fitness by investigating the full lifecycle.

  7. Impact of climate variation on mosquito abundance in California.

    Science.gov (United States)

    Reisen, William K; Cayan, Daniel; Tyree, Mary; Barker, Christopher M; Eldridge, Bruce; Dettinger, Michael

    2008-06-01

    Temporal variation in the abundance of the encephalitis virus vector mosquito, Culex tarsalis Coquillet, was linked significantly with coincident and antecedent measures of regional climate, including temperature, precipitation, snow pack, and the El Niño/Southern Oscillation anomaly. Although variable among traps, historical records that spanned two to five decades revealed climate influences on spring and summer mosquito abundance as early as the previous fall through early summer. Correlations between winter and spring precipitation and snow pack and spring Cx. tarsalis abundance were stronger than correlations with summer abundance. Spring abundance was also correlated positively with winter and spring temperature, whereas summer abundance correlated negatively with spring temperature and not significantly with summer temperature. Correlations with antecedent climate provide the opportunity to forecast vector abundance and therefore encephalitis virus risk, a capability useful in intervention decision support systems at local and state levels.

  8. Simulating sub-Milankovitch climate variations associated with vegetation dynamics

    OpenAIRE

    E. Tuenter; Weber, S.L.; F. J. Hilgen; Lourens, L. J.

    2006-01-01

    International audience; Climate variability at sub-Milankovitch periods (between 2 and 15 kyr) is studied in a set of transient simulations with a coupled atmosphere/ocean/vegetation model of intermediate complexity (Climber-2). Focus is on the region influenced by the African and Asian summer monsoon. Pronounced variations at sub-Milankovitch periods of about 10 kyr (Asia and Africa) and about 5 kyr (Asia) are found in the monsoonal runoff in response to the precessional forcing. This is cau...

  9. Climate variations of Central Asia on orbital to millennial timescales.

    Science.gov (United States)

    Cheng, Hai; Spötl, Christoph; Breitenbach, Sebastian F M; Sinha, Ashish; Wassenburg, Jasper A; Jochum, Klaus Peter; Scholz, Denis; Li, Xianglei; Yi, Liang; Peng, Youbing; Lv, Yanbin; Zhang, Pingzhong; Votintseva, Antonina; Loginov, Vadim; Ning, Youfeng; Kathayat, Gayatri; Edwards, R Lawrence

    2016-11-11

    The extent to which climate variability in Central Asia is causally linked to large-scale changes in the Asian monsoon on varying timescales remains a longstanding question. Here we present precisely dated high-resolution speleothem oxygen-carbon isotope and trace element records of Central Asia's hydroclimate variability from Tonnel'naya cave, Uzbekistan, and Kesang cave, western China. On orbital timescales, the supra-regional climate variance, inferred from our oxygen isotope records, exhibits a precessional rhythm, punctuated by millennial-scale abrupt climate events, suggesting a close coupling with the Asian monsoon. However, the local hydroclimatic variability at both cave sites, inferred from carbon isotope and trace element records, shows climate variations that are distinctly different from their supra-regional modes. Particularly, hydroclimatic changes in both Tonnel'naya and Kesang areas during the Holocene lag behind the supra-regional climate variability by several thousand years. These observations may reconcile the apparent out-of-phase hydroclimatic variability, inferred from the Holocene lake proxy records, between Westerly Central Asia and Monsoon Asia.

  10. Climate variations of Central Asia on orbital to millennial timescales

    Science.gov (United States)

    Cheng, Hai; Spötl, Christoph; Breitenbach, Sebastian F. M.; Sinha, Ashish; Wassenburg, Jasper A.; Jochum, Klaus Peter; Scholz, Denis; Li, Xianglei; Yi, Liang; Peng, Youbing; Lv, Yanbin; Zhang, Pingzhong; Votintseva, Antonina; Loginov, Vadim; Ning, Youfeng; Kathayat, Gayatri; Edwards, R. Lawrence

    2016-11-01

    The extent to which climate variability in Central Asia is causally linked to large-scale changes in the Asian monsoon on varying timescales remains a longstanding question. Here we present precisely dated high-resolution speleothem oxygen-carbon isotope and trace element records of Central Asia’s hydroclimate variability from Tonnel’naya cave, Uzbekistan, and Kesang cave, western China. On orbital timescales, the supra-regional climate variance, inferred from our oxygen isotope records, exhibits a precessional rhythm, punctuated by millennial-scale abrupt climate events, suggesting a close coupling with the Asian monsoon. However, the local hydroclimatic variability at both cave sites, inferred from carbon isotope and trace element records, shows climate variations that are distinctly different from their supra-regional modes. Particularly, hydroclimatic changes in both Tonnel’naya and Kesang areas during the Holocene lag behind the supra-regional climate variability by several thousand years. These observations may reconcile the apparent out-of-phase hydroclimatic variability, inferred from the Holocene lake proxy records, between Westerly Central Asia and Monsoon Asia.

  11. Climate Variation at Flagstaff, Arizona - 1950 to 2007

    Science.gov (United States)

    Hereford, Richard

    2007-01-01

    INTRODUCTION Much scientific research demonstrates the existence of recent climate variation, particularly global warming. Climate prediction models forecast that climate will change; it will become warmer, droughts will increase in number and severity, and extreme climate events will recur often?desiccating aridity, extremely wet, unusually warm, or even frigid at times. However, the global models apply to average conditions in large grids approximately 150 miles on an edge (Thorpe, 2005), and how or whether specific areas within a grid are affected is unclear. Flagstaff's climate is mentioned in the context of global change, but information is lacking on the amount and trend of changes in precipitation, snowfall, and temperature. The purpose of this report is to understand what may be happening to Flagstaff's climate by reviewing local climate history. Flagstaff is in north-central Arizona south of San Francisco Mountain, which reaches 12,633 feet, the highest in Arizona (fig. 1). At 6,900 feet, surrounded by ponderosa pine forest, Flagstaff enjoys a four-season climate; winter-daytime temperatures are cool, averaging 45 degrees (Fahrenheit). Summer-daytime temperatures are comfortable, averaging 80 degrees, which is pleasant compared with nearby low-elevation deserts. Flagstaff?s precipitation averages 22-inches per year with a range of 9 to 39 inches. Snowfall occurs each season, averaging 97 inches annually. This report, written for the non-technical reader, interprets climate variation at Flagstaff as observed at the National Weather Service (NWS) station at Pulliam Field (or Airport), a first-order weather station staffed by meteorologists (Staudenmaier and others, 2007). The station is on a flat-topped ridge surrounded by forest 5-miles south of Flagstaff at an elevation of 7,003 feet. Data used in this analysis are daily measurements of precipitation (including snowfall) and temperature (maximum and minimum) covering the period from 1950, when the station

  12. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  13. The regional variation in climate elasticity and climate contribution to runoff across China

    Science.gov (United States)

    Yang, Hanbo; Qi, Jia; Xu, Xiangyu; Yang, Dawen; Lv, Huafang

    2014-09-01

    The climate elasticity of runoff is an important indicator that is used to quantify the relationship between changes in runoff and changes in climate variables. It is a function of both climate and catchment characteristics. Recently, Yang and Yang (2011) proposed an analytical derivation of climate elasticity (YY2011), in which a parameter n was used to represent the impact of the catchment characteristics. In China, both climate and catchment characteristics have large spatial variations. To understand the spatial variation of hydrologic response to climate change, this paper divided China into 210 catchments, further calculated the parameter n, and then estimated the climate elasticity and evaluated the contribution of climate change to runoff for each catchment. The results show that n ranges from 0.4 to 3.8 (with a mean of 1.3 and a standard deviation of 0.6), which has a logarithmic relationship with catchment slope; the precipitation elasticity ranges from 1.1 to 4.8 (with a mean of 1.9 and a standard deviation of 0.6), which shows a large regional variation, smaller values (1.1-2.0) mainly appearing in Southern China, the Songhua River basin and the Northwest, and larger values (2.1-4.8) mainly appearing in the Hai River basin, the Liao River basin and the Yellow River basin. In addition, climate contribution to runoff exhibits a large regional variation, the largest positive values (1.1-3.1%/a) occurring in the Northwest, the largest negative values (-1.0 to -0.5%/a) occurring in the Hai River basin and the middle reach of the Yellow River basin. In theory, the YY2011 method is a first-order approximation. The approximation underestimates the precipitation (P) contribution to runoff when P increases and overestimates that when P decreases, and the relative error has a median of ∼3% and a maximum of ∼20% when 10% precipitations change in those catchments of China.

  14. Biomarker records of Holocene climate variations in Asian interior

    Science.gov (United States)

    Song, M.; Liu, Z.; Liu, W.; Zhao, C.; Li, S.; He, Y.

    2012-12-01

    Understanding Holocene climate fluctuation may provide clues to projection of future climate change. Lake sediments in the arid central Asia (ACA), as an archive of past climate information, keep attracting considerable interest. We have retrieved several sediment cores from Lake Manas, an endorheic lake in Zunggar desert, Xinjiang Province, China. Biomarker proxies including alkenone Uk'37, %C37:4 and C37 concentration (C37 Conc), and physical proxies including density and magnetic susceptibility (MS) have been analyzed. We have found substantial climatic and environmental changes during the late Holocene. Density, MS and Uk'37 values are high during Medieval Warm Period (MWP) and C37 Conc is very low. During the Little Ice Age, density and MS decrease, Uk'37 values drop to near 0.1, C37 Conc is increased by 2 to 3 magnitude. Thus, warm and dry conditions dominated MWP while cold and wet conditions dominated LIA, a typical "Westerly" pattern which is opposite to the hydrological variation in Asian monsoonal regions. Biomarker records' correlation with solar irradiance (SI), the North Atlantic Oscillation (NAO), the 1000year ACA Moisture Index (ACAM), and the North Hemisphere Temperature (NHT) suggests SI as one of the forcing factor on temperature fluctuation and cold and wet LIA possibly resulting from westerly-jet shift, negative NAO oscillation and the lower evaporation induced by the decrease of temperature. Biomarker records for the whole Holocene will be also presented.

  15. Simulating sub-Milankovitch climate variations associated with vegetation dynamics

    Directory of Open Access Journals (Sweden)

    E. Tuenter

    2007-01-01

    Full Text Available Climate variability at sub-Milankovitch periods (between 2 and 15 kyr is studied in a set of transient simulations with a coupled atmosphere/ocean/vegetation model of intermediate complexity (CLIMBER-2. Focus is on the region influenced by the African and Asian summer monsoon. Pronounced variations at periods of about 10 kyr (Asia and Africa and about 5 kyr (Asia are found in the monsoonal runoff in response to the precessional forcing. In the model this is due to the following mechanism. For low summer insolation (precession maximum precipitation is low and desert expands at the expense of grass, while for high insolation (precession minimum precipitation is high and the tree fraction increases also reducing the grass fraction. This induces sub-Milankovitch variations in the grass fraction and associated variations in the water holding capacity of the soil. The runoff does not exhibit sub-Milankovitch variability when vegetation is kept fixed. High-latitude vegetation also exhibits sub-Milankovitch variability under both obliquity and precessional forcing. We thus hypothesize that sub-Milankovitch variability can occur due to the dynamic response of the vegetation. However, this mechanism should be further tested with more sophisticated climate/vegetation models.

  16. Study on the Influence of Abrupt Climate Variation on the Vegetation Based on NDVI

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the influence of abrupt climate variation on the vegetation based on NDVI. [Method] Based on NDVI and climate data in China during 1982-2000, by using Mann-kendall (MK) abrupt change detection method, the abrupt variations of climate and NDVI were detected. Then, the relationship between two kinds of abrupt variations was discussed. [Result] The large-area abrupt variations of monthly average temperature and rainfall happened in 1983, and the occurrence range in 1999 ...

  17. IMPACT OF CLIMATE VARIATION AND CHANGE ON MID-ATLANTIC REGION HYDROLOGY AND WATER RESOURCES

    Science.gov (United States)

    The sensitivity of hydrology and water resources to climate variation and climate change is assessed for the Mid-Atlantic Region (MAR) of the United States. Observed streamflow, groundwater, and water-quality data are shown to vary in association with climate variation. Projectio...

  18. Variations in pollen counts largely explained by climate and weather

    Science.gov (United States)

    Jung, Stephan; Damialis, Athanasios; Estrella, Nicole; Jochner, Susanne; Menzel, Annette

    2017-04-01

    The interaction between climate and vegetation is well studied within phenology. Climatic / weather conditions affect e.g. flowering date, length of vegetation period, start and end of the season and the plant growth. Besides phenological stages also pollen counts can be used to investigate the interaction between climate and vegetation. Pollen emission and distribution is directly influenced by temperature, wind speed, wind direction and humidity/precipitation. The objective of this project is to study daily/sub daily variations in pollen counts of woody and herbaceous plant species along an altitudinal gradient with different climatic conditions during the vegetation period. Measurements of pollen were carried out with three volumetric pollen traps installed at the altitudes 450 m a.s.l (Freising), 700 m a.s.l (Garmisch-Partenkirchen), and 2700 m a.s.l (Schneefernerhaus near Zugspitze) representing gradient from north of Munich towards the highest mountain of Germany. Airborne pollen concentrations were recorded during the years 2014-2015. The altitudinal range of these three stations accompanied by different microclimates ("space for time approach") can be used as proxy for climate change and to assess its impact on pollen counts and thus allergenic risk for human health. For example the pollen season is shortened and pollen amount is reduced at higher sites. For detailed investigations pollen of the species Plantago, Quercus, Poaceae, Cupressaceae, Cyperacea, Betula and Platanus were chosen, because those are found in appropriate quantities. In general, pollen captured in the pollen traps to a certain extent has its origin from the immediate surrounding. Thus, it mirrors local species distribution. But furthermore the distance of pollen transport is also based on (micro-) climatic conditions, land cover and topography. The pollen trap shortly below the summit of Zugspitze (Schneefernerhaus) has an alpine environment without vegetation nearby. Therefore, this

  19. CLIMATIC VARIATIONS IN CHINA OVER THE LAST 2000 YEARS

    Institute of Scientific and Technical Information of China (English)

    YANG; Bao

    2001-01-01

    [1]BRADLEY R S, JONES P D, 1993. ‘Little Ice Age' summer temperature variations: their nature and relevance to recent global warming trends [J]. The Holocene, 3:367-376.[2]BRAEUNING A, 1999. Zur Dendroklimatologie Hochtibets wahrend des letzten Jahrtausends [C] . Dissertationes Botanicae.[3]BRIFFA K R, 2000. Annual climate variability in the Holocene:interpreting the message of ancient trees [J]. Quaternary Science Reviews, 19:87-105.[4]CROWLEY T J, LOWERY T S, 2000. How warm was the Medieval Warm Period [J]. Ambio, 29(1): 51-54.[5]FUKUSAWA H, 1995. High-resolution reconstruction of environmental changes from the last 2000 years varied sediments in Lake Suigetsu central Japan [A] . In: Paleoclimate and Environmental Variability in Austral-AsianTransect during the Past 2000 Years[C], (Proceedings of the 1995 Nagoya IGBP-PAGES/PEP-Ⅱ Symposium) Nagoya University.Nagoya, Japan , 84-89.[6]HONG Ye-tang, JIANG Hong-bo et al., 2000. Response of climate to solar forcing recorded in a 6000-year δ18O time-series of Chinese peat cellulose [J]. The Holocene, 10(1): 1 -7.[7]HUGHES M K, DIAZ H F, 1994. Was there a ‘Medieval Warm Period', and if so, where and when [J]. Climatic Change,26(2): 109-142.[8]INOUCHI Y, YOKOTA S, TERASHIMA S, 1995. Climatic changes around Lake Biwa during the past 300 000 years and 2000 years [A] . In: Paleoclimate and Environmental variability in Austral-Asian Transect during the Past 2000 Years [C] (Proceedings of the 1995 Nagoya IGBP-PAGES/PEP-ⅡSymposium). Nagoya University, Nagoya, Japan, 109-114.[9]JONES P D, BRADLEY R S, 1992. Climatic variations over the last 500 years [A]. In: BRADLEY R S, JONES P D(eds.). Climate since A. D. 1500 [C]. London: Routledge, 649-665.[10]JONES P D, BRIFFA K R, Barnett T P et al., 1998.High-resolution palaeoclimatic records for the last millennium:Interpretation, integration and comparison with General Circulation Model control-mn temperatures [J] . The Holocene, 8

  20. Geographic variation for climatic stress resistance traits in the sprintail Orchesella cincta

    DEFF Research Database (Denmark)

    Bahrndorff, Simon; Holmstrup, Martin; Petersen, H.

    2006-01-01

    . Desiccation resistance increased towards the most southern and northern population, suggesting that both low and high temperature extremes affect desiccation resistance. Body mass, water pool and WLR showed interpopulation as well as sex specific variation. This provides evidence for geographical variation...... in stress resistance of springtails related to climatic conditions. Keywords: Geographic variation; Climatic change; Adaptation; Orchesella cincta; Soil ecosystems...

  1. Intraseasonal Variations in Tropical Energy Balance: Relevance to Climate Sensitivity?

    Science.gov (United States)

    Robertson, Franklin R.; Ramey, Holly S.; Roberts, Jason B.

    2011-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of organization for tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, here we examine the projection of ISOs on the tropically-averaged heat and moisture budget. One unresolved question concerns the degree to which observable variations in the "fast" processes (e.g. convection, radiative / turbulent fluxes) can inform our understanding of feedback mechanisms operable in the context of climate change. Our analysis use daily data from satellite observations, the Modern Era analysis for Research and Applications (MERRA), and other model integrations to address these questions: (i) How are tropospheric temperature variations related to that tropical deep convection and the associated ice cloud fractional amount (ICF), ice water path (IWP), and properties of warmer liquid clouds? (ii) What role does moisture transport play vis-a-vis ocean latent heat flux in enabling the evolution of deep convection to mediate PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007 GRL ) whereby a composite time series of various quantities over 60+ ISO events is built using tropical mean tropospheric temperature signal as a reference to which the variables are related at various lag times (from -30 to +30 days). The area of interest encompasses the global oceans between 20oN/S. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. The decrease in net TOA radiation that develops after the peak in deep convective rainfall, is part of the response that constitutes a "discharge" / "recharge" mechanism that facilitates tropical heat balance

  2. Climatic variations on Mars. I - Astronomical theory of insolation

    Science.gov (United States)

    Ward, W. R.

    1974-01-01

    Description of variations in the solar insolation on Mars that result from oscillations of the orbital eccentricity and the obliquity of the planet. Changes in the eccentricity and obliquity are produced by gravitation perturbations from the sun and the other planets, and a detailed account of the time evolution of these quantities is given. Particular attention is paid to the obliquity oscillations, which exert a strong influence on the climate of Mars. Changes in the earth's obliquity are also calculated, and its behavior is contrasted with that of Mars. Although the eccentricity produces important north-south seasonal asymmetries, a change in the obliquity causes a strong latitudinal redistribution of the solar insolation. Especially noteworthy is the fact that the yearly insolation at the poles of Mars varies by over 100% between the extremes of the obliquity range.

  3. Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2015-12-01

    While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N M

  4. A review of decadal/interdecadal climate variation studies in China

    Science.gov (United States)

    Li, Chongyin; He, Jinhai; Zhu, Jinhong

    2004-06-01

    Decadal/interdecadal climate variability is an important element in the CLIVAR (Climate Variability and Predictability) and has received much attention in the world. Many studies in relation to interdecadal variation have also been completed by Chinese scientists in recent years. In this paper, an introduction in outline for interdecadal climate variation research in China is presented. The content includes the features of interdecadal climate variability in China, global warming and interdecadal temperature variability, the NAO (the North Atlantic Oscillation)/NPO (the North Pacific Oscillation) and interdecadal climate variation in China, the interdecadal variation of the East Asian monsoon, the interdecadal mode of SSTA (Sea Surface Temperature Anomaly) in the North Pacific and its climate impact, and abrupt change feature of the climate.

  5. A Review of Decadal/Interdecadal Climate Variation Studies in China

    Institute of Scientific and Technical Information of China (English)

    李崇银; 何金海; 朱锦红

    2004-01-01

    Decadal/interdecadal climate variability is an important element in the CLIVAR (Climate Variability and Predictability) and has received much attention in the world. Many studies in relation to interdecadal variation have also been completed by Chinese scientists in recent years. In this paper, an introduction in outline for interdecadal climate variation research in China is presented. The content includes the features of interdecadal climate variability in China, global warming and interdecadal temperature variability,the NAO (the North Atlantic Oscillation)/NPO (the North Pacific Oscillation) and interdecadal climate variation in China, the interdecadal variation of the East Asian monsoon, the interdecadal mode of SSTA (Sea Surface Temperature Anomaly) in the North Pacific and its climate impact, and abrupt change feature of the climate.

  6. Climatic Variation And Runoff From Himalayan Mountain Basins

    Science.gov (United States)

    Bolton, L.; Collins, D. N.; Davenport, J.; Entwistle, N. S.

    2012-12-01

    Both precipitation and runoff usually increase with elevation in high mountain basins but Himalayan tributaries of both Indus and Ganges often rise in relatively dry interior areas, before flow downstream is modified on passing through areas receiving winter snowfall and summer monsoon snow and rain. Through time variations in tributary contributions to the major rivers, the upper Indus, Jhelum, Sutlej and Ganges therefore respond to differing climatic signals. Long term measurements of discharge upstream of large dams are available for the Jhelum and Sutlej since the 1920s, but show differing patterns of variation. Runoff in the Jhelum declined to the 1960s before recovering whereas flow in the Sutlej continued to decline. Highly glacierised areas south-east of Nanga Parbat receive considerable amounts of precipitation distributed throughout the year whereas other Jhelum headwaters and those of the Sutlej are summer monsoon dominated. Precipitation measurements exist for dry areas of the upper Indus basin since the early 1900s, but other measurements in the Kaghan valley and upstream of the Mangla dam only start in the 1960s. Correlation between year-to-year variations in precipitation across these headwater regions and between precipitation and runoff in headwater and main-stem basins suggest that runoff declines with summer snowfall on glaciers in areas of the Upper Indus where valleys at elevations below glaciers are dry, but runoff increases with summer precipitation south of the main Himalaya range in the Jhelum and Sutlej. Considerable differences arise therefore in water resources availability from year to year in the various basins downstream.

  7. Changing patterns in insect pests on trees in The Netherlands since 1946 in relation to human induced habitat changes and climate factors - an analysis of historical data

    NARCIS (Netherlands)

    Moraal, L.G.; Jagers Op Akkerhuis, G.A.J.M.

    2011-01-01

    In The Netherlands, insect pests on trees and shrubs are being monitored continuously since 1946. During these years, almost all insect pest populations showed marked changes, which may be the result of changes in forest management, shifts in forest composition, climate change and the arrival of new

  8. Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; McKay, John K; Richards, James H; Juenger, Thomas E; Keitt, Timothy H

    2012-11-01

    Arabidopsis thaliana inhabits diverse climates and exhibits varied phenology across its range. Although A. thaliana is an extremely well-studied model species, the relationship between geography, growing season climate and its genetic variation is poorly characterized. We used redundancy analysis (RDA) to quantify the association of genomic variation [214 051 single nucleotide polymorphisms (SNPs)] with geography and climate among 1003 accessions collected from 447 locations in Eurasia. We identified climate variables most correlated with genomic variation, which may be important selective gradients related to local adaptation across the species range. Climate variation among sites of origin explained slightly more genomic variation than geographical distance. Large-scale spatial gradients and early spring temperatures explained the most genomic variation, while growing season and summer conditions explained the most after controlling for spatial structure. SNP variation in Scandinavia showed the greatest climate structure among regions, possibly because of relatively consistent phenology and life history of populations in this region. Climate variation explained more variation among nonsynonymous SNPs than expected by chance, suggesting that much of the climatic structure of SNP correlations is due to changes in coding sequence that may underlie local adaptation.

  9. Natural and human-induced changes in summer climate over the East Asian monsoon region in the last half century: A review

    Directory of Open Access Journals (Sweden)

    Ren-He Zhang

    2015-06-01

    The decadal changes in EASM and summer rainfall over eastern China in the last half century are closely related to natural internal forcing factors such as Eurasian snow cover, Arctic sea ice, sea surface temperatures in tropical Pacific and Indian Ocean, ocean–atmospheric coupled systems of the Pacific Decadal Oscillation (PDO and Asian–Pacific Oscillation (APO, and uneven thermal forcing over the Asian continent. Up to now, the roles of anthropogenic factors, such as greenhouse gases, aerosols, and land usage/cover changes, on existing decadal variations of EASM and summer rainfall in this region remain uncertain.

  10. Climatic change controls productivity variation in global grasslands.

    Science.gov (United States)

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A; Li, Yue

    2016-05-31

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2-71.2% during 1982-2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  11. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    ckaonga

    impacts of recent climate change, from polar terrestrial to tropical marine ... METHODOLOGY. The ambient air temperature and solar radiation data was obtained .... carbon dioxide emissions in Malawi from a number of sources. Mean solar .... climate change: A review of 22 years of recommendations. Biol. Conserv.

  12. Natural and human-induced changes in summer climate over the East Asian monsoon region in the last half century: A review

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Ren-He

    2015-01-01

    In the last half century,a significant warming trend occurred in summer over eastern China in the East Asian monsoon region.However,there were no consistent trends with respect to the intensity of the East Asian summer monsoon(EASM) or the amount of summer rainfall averaged over eastern China.Both of the EASM and summer rainfall exhibited clear decadal variations.Obvious decadal shifts of EASM occurred around the mid- and late 1970 s,the late 1980 s and the early 1990 s,and the late 1990 s and early 2000 s,respectively.Summer rainfall over eastern China exhibited a change in spatial distribution in the decadal timescale,in response to the decadal shifts of EASM.From the mid- and late 1970 s to the late 1980 s and the early 1990 s,there was a meridional tri-polar rainfall distribution anomaly with more rainfall over the Yangtze River valley and less rainfall in North and South China; but in the period from the early 1990 s to the late 1990 s and the early 2000 s the tri-polar distribution changed to a dipolar one,with more rainfall appearing over southern China south to the Yangtze River valley and less rainfall in North China.However,from the early 2000 s to the late 2000 s,the Yangtze River valley received less rainfall.The decadal changes in EASM and summer rainfall over eastern China in the last half century are closely related to natural internal forcing factors such as Eurasian snow cover,Arctic sea ice,sea surface temperatures in tropical Pacific and Indian Ocean,oceaneatmospheric coupled systems of the Pacific Decadal Oscillation(PDO) and AsianePacific Oscillation(APO),and uneven thermal forcing over the Asian continent.Up to now,the roles of anthropogenic factors,such as greenhouse gases,aerosols,and land usage/cover changes,on existing decadal variations of EASM and summer rainfall in this region remain uncertain.

  13. Decadal/interdecadal variations of the ocean temperature and its impacts on climate

    Science.gov (United States)

    Li, Chongyin; Zhou, Wen; Jia, Xiaolong; Wang, Xin

    2006-12-01

    Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts, which includes interdecadal climate variability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7 10-years mode and 25 35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a

  14. Regional variation in climate elasticity and climate contribution to runoff across China: estimation according to the Budyko hypothesis

    Science.gov (United States)

    Yang, Hanbo; Yang, Dawen

    2015-04-01

    Climate elasticity of runoff is an important indicator for evaluating the effects of climate change on runoff. It can be analytically derived based on the Mezentve-Choudhury-Yang equation, with a parameter n representing the impact of the catchment characteristics. In China, both climate and catchment characteristics have large spatial variations. To understand the spatial variation of hydrologic response to climate change, we divided China into 210 catchments, further calculated the parameter n, and then estimated the climate elasticity and evaluated the contribution of climate change to runoff for each catchment. The results show that n ranges from 0.4-3.8 (with a mean of 1.3 and a standard deviation of 0.6), which has a logarithmic relationship with catchment slope; the precipitation elasticity ranges from 1.1-4.8 (with a mean of 1.9 and a standard deviation of 0.6), which shows a large regional variation, smaller values (1.1-2.0) mainly appearing in Southern China, the Songhua River basin and the Northwest, and larger values (2.1-4.8) mainly appearing in the Hai River basin, the Liao River basin and the Yellow River basin. In addition, climate contribution to runoff exhibits a large regional variation, the largest positive values (1.1-3.1%/a) occurring in the Northwest, the largest negative values (-1.0--0.5%/a) occurring in the Hai River basin and the middle reach of the Yellow River basin. In theory, the climate elasticity method is a first-order approximation. The approximation underestimates the precipitation (P) contribution to runoff when P increases and overestimates that when P decreases, and the relative error has a median of ~3% and a maximum of ~20% when 10% precipitations change in those catchments of China.

  15. Assessing effects of variation in global climate data sets on spatial predictions from climate envelope models

    Science.gov (United States)

    Romanach, Stephanie; Watling, James I.; Fletcher, Robert J.; Speroterra, Carolina; Bucklin, David N.; Brandt, Laura A.; Pearlstine, Leonard G.; Escribano, Yesenia; Mazzotti, Frank J.

    2014-01-01

    Climate change poses new challenges for natural resource managers. Predictive modeling of species–environment relationships using climate envelope models can enhance our understanding of climate change effects on biodiversity, assist in assessment of invasion risk by exotic organisms, and inform life-history understanding of individual species. While increasing interest has focused on the role of uncertainty in future conditions on model predictions, models also may be sensitive to the initial conditions on which they are trained. Although climate envelope models are usually trained using data on contemporary climate, we lack systematic comparisons of model performance and predictions across alternative climate data sets available for model training. Here, we seek to fill that gap by comparing variability in predictions between two contemporary climate data sets to variability in spatial predictions among three alternative projections of future climate. Overall, correlations between monthly temperature and precipitation variables were very high for both contemporary and future data. Model performance varied across algorithms, but not between two alternative contemporary climate data sets. Spatial predictions varied more among alternative general-circulation models describing future climate conditions than between contemporary climate data sets. However, we did find that climate envelope models with low Cohen's kappa scores made more discrepant spatial predictions between climate data sets for the contemporary period than did models with high Cohen's kappa scores. We suggest conservation planners evaluate multiple performance metrics and be aware of the importance of differences in initial conditions for spatial predictions from climate envelope models.

  16. Analysis on the Climate Variation Characteristics of Frost in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the climate variation characteristics of frost in Shandong Province. [Method] The daily minimum surface temperature ≤ 0 ℃ in autumn or spring was as the frost index. Based on the daily minimum surface temperature data in 67 meteorological observatories of Shandong Province during 1961-2008, the variation characteristics of first, last frost dates and frost-free period in Shandong Province were analyzed by using the climate diagnosis analysis method. [Result] The clima...

  17. Responses of natural runoff to recent climatic variations in the Yellow River basin, China

    OpenAIRE

    Tang, Y.; Tang, Q.; Tian, F.; Zhang, Z.; G. Liu

    2013-01-01

    The zero-flow phenomenon appeared frequently in the lower reaches of the Yellow River in China in the 1990s, whereas it has almost disappeared in recent years. The disappearance of the zero-flow phenomenon should be mainly attributed to the recent water management practices. However, little is known about the effects of recent climatic variations on natural runoff. In this study, we investigated the impacts of climatic variations on natural runoff above the Huayuankou statio...

  18. Variability and Variation Characteristics of Climate in Northern Winter Wheat Zone during 1961-2004

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study the variability and variation characteristics of climate in northern winter wheat zone during 1961-2004.[Method] Based on the meteorological data (temperature,precipitation and sunshine) of 55 meteorological stations in northern winter wheat zone during 1961-2004 and the yield data of winter wheat,by using the linear regression,correlated coefficient and climatic tendency rate,the spatial and temporal evolution characteristics of agricultural climatic resources (sunsh...

  19. Sensitivity of intermittent streams to climate variations in the USA

    Science.gov (United States)

    Eng, Kenny; Wolock, David M.; Dettinger, Mike

    2015-01-01

    There is a great deal of interest in the literature on streamflow changes caused by climate change because of the potential negative effects on aquatic biota and water supplies. Most previous studies have primarily focused on perennial streams, and there have been only a few studies examining the effect of climate variability on intermittent streams. Our objectives in this study were to (1) identify regions of similar zero-flow behavior, and (2) evaluate the sensitivity of intermittent streams to historical variability in climate in the United States. This study was carried out at 265 intermittent streams by evaluating: (1) correlations among time series of flow metrics (number of zero-flow events, the average of the central 50% and largest 10% of flows) with climate (magnitudes, durations and intensity), and (2) decadal changes in the seasonality and long-term trends of these flow metrics. Results identified five distinct seasonality patterns in the zero-flow events. In addition, strong associations between the low-flow metrics and historical changes in climate were found. The decadal analysis suggested no significant seasonal shifts or decade-to-decade trends in the low-flow metrics. The lack of trends or changes in seasonality is likely due to unchanged long-term patterns in precipitation over the time period examined.

  20. Climate variations on Earth-like circumbinary planets

    Science.gov (United States)

    Popp, Max; Eggl, Siegfried

    2017-04-01

    The discovery of planets orbiting double stars at close distances has sparked increasing scientific interest in determining whether Earth-analogues can remain habitable in such environments and how their atmospheric dynamics is influenced by the rapidly changing insolation. In this work we present results of the first three-dimensional numerical experiments of a water-rich planet orbiting a double star. We find that the periodic forcing of the atmosphere has a noticeable impact on the planet's climate. Signatures of the forcing frequencies related to the planet's as well as to the binary's orbital periods are present in a variety of climate indicators such as temperature and precipitation, making the interpretation of potential observables challenging. However, for Earth-like greenhouse gas concentrations, the variable forcing does not change the range of insolation values allowing for habitable climates substantially.

  1. Climate variations on Earth-like circumbinary planets.

    Science.gov (United States)

    Popp, Max; Eggl, Siegfried

    2017-04-06

    The discovery of planets orbiting double stars at close distances has sparked increasing scientific interest in determining whether Earth-analogues can remain habitable in such environments and how their atmospheric dynamics is influenced by the rapidly changing insolation. In this work we present results of the first three-dimensional numerical experiments of a water-rich planet orbiting a double star. We find that the periodic forcing of the atmosphere has a noticeable impact on the planet's climate. Signatures of the forcing frequencies related to the planet's as well as to the binary's orbital periods are present in a variety of climate indicators such as temperature and precipitation, making the interpretation of potential observables challenging. However, for Earth-like greenhouse gas concentrations, the variable forcing does not change the range of insolation values allowing for habitable climates substantially.

  2. Land Use Changes in Northeast China Driven by Human Activities and Climatic Variation

    Institute of Scientific and Technical Information of China (English)

    WANG Zongming; LIU Zhiming; SONG Kaishan; ZHANG Bai; ZHANG Sumei; LIU Dianwei; REN Chunying; YANG Fei

    2009-01-01

    Human-induced land use/cover change (LUCC) forms an important component of global environmental change. Therefore, it is important to study land use/cover and its change at local, regional and global scales. In this pa-per we conducted the study of land use change in Northeast China, one of the most important agricultural zones of the nation. From 1986 to 2000, according to the study results obtained from Landsat images, widespread changes in land use/cover took place in the study area. Grassland, marsh, water body and woodland decreased by 9864, 3973, 1367 and 10,052km2, respectively. By comparison, paddy field, dry farmland, and built-up land expanded by 7339, 17193 and 700km2, respectively. Those changes bore an interactive relationship with the environment, especially climate change.On the one hand, climate warming created a potential environment for grassland and marsh to be changed to farmland as more crops could thrive in the warmer climate, and for dry farmland to paddy field. On the other hand, the changed surface cover modified the local climate. Those changes, in turn, have adversely influenced the local environment by accelerating land degradation. In terms of socio-economie driving forces, population augment, regional economic de-velopment, and national and provincial policies were confirmed as main driving factors for land use change.

  3. Evidence for solar forcing of climate variation from δ18O of peat cellulose

    Institute of Scientific and Technical Information of China (English)

    洪业汤; 刘东生; 姜洪波; 周立平; 洪冰; 朱泳煊; 李汉鼎; 冷雪天; 秦小光; 王羽; 林庆华; 曾毅强

    2000-01-01

    There have been a number of investigations for examining the possible link between long-term climate variability and solar activity. A continuous δ18O record of peat cellulose covering the past 6 000 years and the response of climate variation inferred from the proxy record to solar forcing are reported. Results show that during the past 5 000 years the abrupt climate variations, including 17 warming and 17 cooling, and a serious of periodicities, such as 86, 101, 110,127, 132, 140, 155, 207, 245, 311, 820 and 1 050 years, are strikingly correlative to the changes of solar irradiation and periodicity. These observations are considered as further evidence for a close relationship between solar activity and climate variations on time scales of decades to centuries.

  4. Evidence for solar forcing of climate variation from δ18O of peat cellulose

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There have been a number of investigations for examining the possible link between long-term climate variability and solar activity.A continuous δ18O record of peat cellulose covering the past 6000 years and the response of climate variation inferred from the proxy record to solar forcing are reported.Results show that during the past 5000 years the abrupt climate variations,including 17 warming and 17 cooling,and a serious of periodicities,such as 86,101,110,127,132,140,155,207,245,311,820 and 1050 years,are strikingly correlative to the changes of solar irradiation and periodicity.These observations are considered as further evidence for a close relationship between solar activity and climate variations on time scales of decades to centuries.

  5. Climate contributions to vegetation variations in Central Asian drylands

    DEFF Research Database (Denmark)

    Zhou, Yu; Zhang, Li; Fensholt, Rasmus

    2015-01-01

    (NDVI) data. In our study, most areas showed an increasing trend during 1982-1991, but experienced a significantly decreasing trend for 1992-2011. Vegetation changes were closely coupled to climate variables (precipitation and temperature) during 1982-1991 and 1992-2011, but the response trajectories...

  6. Rapid plant invasion in distinct climates involves different sources of phenotypic variation.

    Directory of Open Access Journals (Sweden)

    Arnaud Monty

    Full Text Available When exotic species spread over novel environments, their phenotype will depend on a combination of different processes, including phenotypic plasticity (PP, local adaptation (LA, environmental maternal effects (EME and genetic drift (GD. Few attempts have been made to simultaneously address the importance of those processes in plant invasion. The present study uses the well-documented invasion history of Senecio inaequidens (Asteraceae in southern France, where it was introduced at a single wool-processing site. It gradually invaded the Mediterranean coast and the Pyrenean Mountains, which have noticeably different climates. We used seeds from Pyrenean and Mediterranean populations, as well as populations from the first introduction area, to explore the phenotypic variation related to climatic variation. A reciprocal sowing experiment was performed with gardens under Mediterranean and Pyrenean climates. We analyzed climatic phenotypic variation in germination, growth, reproduction, leaf physiology and survival. Genetic structure in the studied invasion area was characterized using AFLP. We found consistent genetic differentiation in growth traits but no home-site advantage, so weak support for LA to climate. In contrast, genetic differentiation showed a relationship with colonization history. PP in response to climate was observed for most traits, and it played an important role in leaf trait variation. EME mediated by seed mass influenced all but leaf traits in a Pyrenean climate. Heavier, earlier-germinating seeds produced larger individuals that produced more flower heads throughout the growing season. However, in the Mediterranean garden, seed mass only influenced the germination rate. The results show that phenotypic variation in response to climate depends on various ecological and evolutionary processes associated with geographical zone and life history traits. Seeing the relative importance of EME and GD, we argue that a "local

  7. Plant responses to climatic extremes: within-species variation equals among-species variation

    DEFF Research Database (Denmark)

    Malyshev, Andrey; Arfin Kahn, Mohammed A.S.; Beierkuhnlein, Carl

    2016-01-01

    , root 15N uptake, and live and dead tissue mass. Using coefficients of variation (CVs) for each experiment and response parameter, a total of 156 within- vs. among-species comparisons were conducted, comparing within-species variation in each of four species with among- species variation for each seed......) and for practical applications (e.g., biodiversity conservation)....

  8. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    Science.gov (United States)

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.

  9. Impact of climate variations on Managed Aquifer Recharge infiltration basins.

    Science.gov (United States)

    Barquero, Felix; Stefan, Catalin

    2017-04-01

    KEYWORDS: Managed Aquifer Recharge, field scale infiltration unit, climatic conditions, numerical model Managed Aquifer Recharge (MAR) is a technique that is gaining more attention as a sustainable alternative for areas where water scarcity is increasing. Main concept relies on facilitating the vertical infiltration of a source of fresh water (river water, rainwater, reclaimed water, etc). The groundwater acts as storage of water for further use in the future, for example in times of water scarcity. In some MAR types the soil itself can be used even as a filter for the removal of specific organic and inorganic compounds. In order to promote the benefits of MAR in different zones of the globe with variable climate conditions, including the effects of climate change, a numerical model (HYDRUS 2D/3D) is being set up. Coupled with the model a field-scale rapid infiltration unit (4m x 5m x 1.5m) was constructed with the capacity to log different MAR key parameters in the soil (tension, water content, temperature and electrical conductivity) in space and time. These data will feed the model for its calibration using specific hydrogeological characteristics of the packing material and hydraulic characteristics of the infiltrated fluid. The unit is located in the city of Pirna (German), 200 m north from the Elbe River where the groundwater level varies seasonally between 6 and 9 m below the ground surface. Together with the field scale rapid infiltration unit, a set of multi-parametric sensors (measuring in time: water stage, electrical conductivity, dissolved oxygen and temperature) in six monitoring wells, located on the basin surroundings, were installed. The purpose of these sensors is to estimate, via tracer experiments, the time that the infiltrated water needed to reach the groundwater and the flow speed in which it travelled once it reached the saturated zone. Once calibrated, the model will be able to estimate the flow behaviour under variable climate conditions

  10. Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter?

    Directory of Open Access Journals (Sweden)

    Andrew Siefert

    Full Text Available Despite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields across a 1200-km latitudinal extent in eastern North America, focusing on four traits: vegetative height, leaf area, specific leaf area (SLA, and leaf dry matter content (LDMC. We determined the contributions of species turnover and intraspecific variation to between-site functional dissimilarity at multiple spatial scales and community trait responses to edaphic and climatic factors. Among-site variation in community mean trait values and community trait responses to the environment were generated by a combination of species turnover and intraspecific variation, with species turnover making a greater contribution for all traits. The relative importance of intraspecific variation decreased with increasing geographic and environmental distance between sites for SLA and leaf area. Intraspecific variation was most important for responses of vegetative height and responses to edaphic compared to climatic factors. Individual species displayed strong trait responses to environmental factors in many cases, but these responses were highly variable among species and did not usually scale up to the community level. These findings provide new insights into the role of intraspecific trait variation in plant communities and the factors controlling its relative importance. The contribution of intraspecific variation to community trait responses was greatest at fine spatial scales and along edaphic gradients, while species turnover dominated at broad spatial scales and along climatic gradients.

  11. Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter?

    Science.gov (United States)

    Siefert, Andrew; Fridley, Jason D; Ritchie, Mark E

    2014-01-01

    Despite increasing evidence of the importance of intraspecific trait variation in plant communities, its role in community trait responses to environmental variation, particularly along broad-scale climatic gradients, is poorly understood. We analyzed functional trait variation among early-successional herbaceous plant communities (old fields) across a 1200-km latitudinal extent in eastern North America, focusing on four traits: vegetative height, leaf area, specific leaf area (SLA), and leaf dry matter content (LDMC). We determined the contributions of species turnover and intraspecific variation to between-site functional dissimilarity at multiple spatial scales and community trait responses to edaphic and climatic factors. Among-site variation in community mean trait values and community trait responses to the environment were generated by a combination of species turnover and intraspecific variation, with species turnover making a greater contribution for all traits. The relative importance of intraspecific variation decreased with increasing geographic and environmental distance between sites for SLA and leaf area. Intraspecific variation was most important for responses of vegetative height and responses to edaphic compared to climatic factors. Individual species displayed strong trait responses to environmental factors in many cases, but these responses were highly variable among species and did not usually scale up to the community level. These findings provide new insights into the role of intraspecific trait variation in plant communities and the factors controlling its relative importance. The contribution of intraspecific variation to community trait responses was greatest at fine spatial scales and along edaphic gradients, while species turnover dominated at broad spatial scales and along climatic gradients.

  12. Decadal/Interdecadal Variations of the Ocean Temperature and its Impacts on Climate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Decadal/interdecadal climate variability is an important research focus of the CLIVAR Program and has been paid more attention. Over recent years, a lot of studies in relation to interdecadal climate variations have been also completed by Chinese scientists. This paper presents an overview of some advances in the study of decadal/interdecadal variations of the ocean temperature and its climate impacts,which includes interdecadal climate wariability in China, the interdecadal modes of sea surface temperature (SST) anomalies in the North Pacific, and in particular, the impacts of interdecadal SST variations on the Asian monsoon rainfall. As summarized in this paper, some results have been achieved by using climate diagnostic studies of historical climatic datasets. Two fundamental interdecadal SST variability modes (7-10-years mode and 25-35-years mode) have been identified over the North Pacific associated with different anomalous patterns of atmospheric circulation. The southern Indian Ocean dipole (SIOD) shows a major feature of interdecadal variation, with a positive (negative) phase favoring a weakened (enhanced) Asian summer monsoon in the following summer. It is also found that the China monsoon rainfall exhibits interdecadal variations with more wet (dry) monsoon years in the Yangtze River (South China and North China) before 1976, but vice versa after 1976. The weakened relationship between the Indian summer rainfall and ENSO is a feature of interdecadal variations, suggesting an important role of the interdecadal variation of the SIOD in the climate over the south Asia and southeast Asia. In addition, evidence indicates that the climate shift in the 1960s may be related to the anomalies of the North Atlantic Oscillation (NAO)and North Pacific Oscillation (NPO). Overall, the present research has improved our understanding of the decadal/interdecadal variations of SST and their impacts on the Asian monsoon rainfall. However, the research also highlights a

  13. Climate Change Liability – Variations on Themes Across the Atlantic

    Directory of Open Access Journals (Sweden)

    Utter, Robert

    2012-06-01

    Full Text Available In recent years the United States Supreme Court has delivered two significant rulings, Massachusetts v. EPA and AEP v. Connecticut, concerning regulating and limiting greenhouse gas emissions. Since federal climate change legislation has stalled in Congress, these two rulings are all the more significant in setting the stage for how greenhouse gas emissions are regulated in the United States. According to the rulings, greenhouse gas emissions are coveredby the Clean Air Act and thus fall under the regulatory jurisdiction of the Environmental Protection Agency. This in effect cancels the possibility for private enforcement of emission limits on greenhousegases under federal nuisance law. No similar groundbreaking recedents have been issued by the high courts in Finland. But in contrast with U.S law, it seems that greenhouse gas emissions wouldnot be covered by the Finnish Environmental Protection Act and thus a plaintiff could under Finnish nuisance law pursue an injunction case against an emitter of greenhouse gases. Likewise, a plaintiffcould file a claim for damages under the Finnish Act on Compensation for Environmental Damage. In practice, however, a plaintiff’s injunction case as well as tort liability case seems to be doomed forfailure under Finnish law. Requirements set by the burden of proof and causality, among others, mean that Finnish nuisance and tort law are far from being effective means of enforcement or redress in thecontext of climate change liability.

  14. Morphological variation in salamanders and their potential response to climate change.

    Science.gov (United States)

    Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried

    2016-06-01

    Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species' persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring

  15. Assessing the impact of climate variability and human activities on streamflow variation

    OpenAIRE

    Chang, Jianxia; Zhang, Hongxue; Wang, Yimin; Zhu, Yuelu

    2016-01-01

    Water resources in river systems have been changing under the impact of both climate variability and human activities. Assessing the respective impact on decadal streamflow variation is important for water resource management. By using an elasticity-based method and calibrated TOPMODEL and VIC hydrological models, we quantitatively isolated the relative contributions that human activities and climate variability made to decadal streamflow changes in the Jinghe basin, located...

  16. Assessing the impact of climate variability and human activity to streamflow variation

    OpenAIRE

    Chang, J.; Zhang, H.; Y. Wang; Zhu, Y.

    2015-01-01

    Water resources in river systems have been changing under the impacts of both climate variability and human activities. Assessing the respective impacts on decadal streamflow variation is important for water resources management. By using an elasticity-based method, calibrated TOPMODEL and VIC hydrologic models, we have quantitatively isolated the relative contributions that human activity and climate variability made to decadal streamflow changes in Jinhe b...

  17. Assessing the impact of climate variability and human activities on streamflow variation

    OpenAIRE

    Chang, J.; Zhang, H.; Y. Wang; Zhu, Y.

    2015-01-01

    Water resources in river systems have been changing under the impact of both climate variability and human activities. Assessing the respective impact on decadal streamflow variation is important for water resource management. By using an elasticity-based method and calibrated TOPMODEL and VIC hydrological models, we quantitatively isolated the relative contributions that human activities and climate variability made to decadal streamflow changes in Jinghe basin, located in ...

  18. Morphological variation in salamanders and their potential response to climate change

    Science.gov (United States)

    Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried

    2016-01-01

    Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically-based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change, and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species’ persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes, and should also be considered when planning management actions

  19. Climate and Floristic Variation in Great Basin Mountain Ranges (Invited)

    Science.gov (United States)

    Charlet, D. A.; Leary, P.

    2010-12-01

    Exponential human population growth in Clark County, Nevada, in the last few decades raised concern regarding the impact this growth would have on the biota of the surrounding Mojave Desert. The situation demanded that studies be conducted to understand the relationship between the biota and its environment. These studies required detailed vegetation information, with greater accuracy than provided by earlier efforts. We became involved in several projects concerning the vegetation of Clark County that had similar missions, but covered different areas. We coordinated data collection so that a single, cohesive data set was prepared to meet everyone’s needs. To add value to all of the projects, we ensured that data would be collected in the same way so all projects benefitted by being tied into all the other projects. After these projects were underway, the Nevada System of Higher Education was awarded an NSF EPSCoR grant (Nevada Infrastructure for Climate Change Science, Education, and Outreach). The grant funds two series of meteorological stations along long elevation gradients crossing several life zones. One set of five monitoring stations is in the Sheep Range, about 40 miles north of Las Vegas. The other set of seven stations are in the Snake Range about 260 miles north of Las Vegas. Meteorological sites were selected to be near the middle of currently recognized vegetation zones that correspond to Merriam’s Life Zones. The meteorological stations occur in typical communities in each of the zones, from 2930 ft in the Las Vegas Valley to more than 11,000 ft in the Snake Range. The stations are outfitted to monitor local meteorological conditions, soil moisture, and other physical parameters important to plants. We are using the data we are collecting to provide a baseline survey of biodiversity for the group. To date, more than 2300 vegetation samples were taken in the vicinities of these climate monitoring transects. Directly associated with the stations

  20. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G.; Gavin, J. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Geological Observatory

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  1. Habitat area and climate stability determine geographical variation in plant species range sizes.

    Science.gov (United States)

    Morueta-Holme, Naia; Enquist, Brian J; McGill, Brian J; Boyle, Brad; Jørgensen, Peter M; Ott, Jeffrey E; Peet, Robert K; Símová, Irena; Sloat, Lindsey L; Thiers, Barbara; Violle, Cyrille; Wiser, Susan K; Dolins, Steven; Donoghue, John C; Kraft, Nathan J B; Regetz, Jim; Schildhauer, Mark; Spencer, Nick; Svenning, Jens-Christian

    2013-12-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~ 85 000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen concerns over the potential effects of future climate change and habitat loss on biodiversity.

  2. Habitat area and climate stability determine geographical variation in plant species range sizes

    DEFF Research Database (Denmark)

    Morueta-Holme, Naia; Enquist, Brian J.; McGill, Brian J.

    2013-01-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~85,000 ...... concerns over the potential effects of future climate change and habitat loss on biodiversity.......,000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past...... glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen...

  3. Global variation in thermal tolerances and vulnerability of endotherms to climate change.

    Science.gov (United States)

    Khaliq, Imran; Hof, Christian; Prinzinger, Roland; Böhning-Gaese, Katrin; Pfenninger, Markus

    2014-08-22

    The relationships among species' physiological capacities and the geographical variation of ambient climate are of key importance to understanding the distribution of life on the Earth. Furthermore, predictions of how species will respond to climate change will profit from the explicit consideration of their physiological tolerances. The climatic variability hypothesis, which predicts that climatic tolerances are broader in more variable climates, provides an analytical framework for studying these relationships between physiology and biogeography. However, direct empirical support for the hypothesis is mostly lacking for endotherms, and few studies have tried to integrate physiological data into assessments of species' climatic vulnerability at the global scale. Here, we test the climatic variability hypothesis for endotherms, with a comprehensive dataset on thermal tolerances derived from physiological experiments, and use these data to assess the vulnerability of species to projected climate change. We find the expected relationship between thermal tolerance and ambient climatic variability in birds, but not in mammals-a contrast possibly resulting from different adaptation strategies to ambient climate via behaviour, morphology or physiology. We show that currently most of the species are experiencing ambient temperatures well within their tolerance limits and that in the future many species may be able to tolerate projected temperature increases across significant proportions of their distributions. However, our findings also underline the high vulnerability of tropical regions to changes in temperature and other threats of anthropogenic global changes. Our study demonstrates that a better understanding of the interplay among species' physiology and the geography of climate change will advance assessments of species' vulnerability to climate change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties

    Science.gov (United States)

    Roderick, Michael L.; Farquhar, Graham D.

    2011-12-01

    We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

  5. Variation of a Lightning NOx Indicator for National Climate Assessment

    Science.gov (United States)

    Koshak, W. J.; Vant-Hull, B.; McCaul, E. W.; Peterson, H. S.

    2014-01-01

    In support of the National Climate Assessment (NCA) program, satellite Lightning Imaging Sensor (LIS) data is used to estimate lightning nitrogen oxides (LNOx) production over the southern portion of the conterminous US. The total energy of each flash is estimated by analyzing the LIS optical event data associated with each flash (i.e., event radiance, event footprint area, and derivable event range). The LIS detects an extremely small fraction of the total flash energy; this fraction is assumed to be constant apart from the variability associated with the flash optical energy detected across the narrow (0.909 nm) LIS band. The estimate of total energy from each flash is converted to moles of LNOx production by assuming a chemical yield of 10(17) molecules Joule(-1). The LIS-inferred variable LNOx production from each flash is summed to obtain total LNOx production, and then appropriately enhanced to account for LIS detection efficiency and LIS view time. Annual geographical plots and time series of LNOx production are provided for a 16 year period (1998-2013).

  6. Satellite Remote Sensing Missions for Monitoring Water, Carbon, and global Climate Change

    Science.gov (United States)

    In recent years, the subjects of water, carbon, and global climate change have attracted worldwide attention by scientists and the media. Climate change, whether associated with human- induced or natural variations, has and will continue to be important to policy makers and the public. It is clear t...

  7. Seed predation and climate impacts on reproductive variation in temperate forests of the southeastern USA.

    Science.gov (United States)

    Bell, David M; Clark, James S

    2016-04-01

    Climatic effects on tree recruitment will be determined by the interactive effects of fecundity and seed predation. Evaluating how insect and vertebrate seed predators mediate tree reproductive responses to climate depends on long-term studies of seed production, development, and predation. In this study, our objectives were to (1) assess the effects of interannual climate variation on seed abortion rates, (2) assess the impact of seed density on predation rates, and (3) examine the degree to which density-dependent seed predation would amplify or dampen interannual variation in fecundity associated with seed abortion. We used a 19-year study of seed abortion and pre-dispersal predation rates by insects and vertebrates (birds and rodents) for five temperate tree species across forest plots from the North Carolina Piedmont to the Southern Appalachian Mountains in the southeastern USA. We found that rates of seed abortion and predation increased reproductive variation for oaks (Quercus species). Probability of seed abortion was greatest during years with cool, dry springs. Responses of seed predation on Quercus species to current year's seed density varied by species, but exhibited positive density-dependence to previous year's seed density consistent with numerical responses of seed predators. Seed abortion and predation rates for two drupe species responded little to variation in climate or seed density, respectively. Given that predation increased interannual variation in seed availability and the negative density-dependence to previous year's seed density, our results indicate that consistent numerical responses of oak seed predators may amplify interannual variation due to climate-mediated processes like seed abortion.

  8. Assessing the relative importance of climate variables to rice yield variation using support vector machines

    Science.gov (United States)

    Chen, Hui; Wu, Wei; Liu, Hong-Bin

    2016-10-01

    Climate factors have distinct impacts on crop yields. Understanding the relative importance of these factors to crop yield variation could provide valuable information about crop planting and management under climate change condition for policymakers and farmers. The current study investigated the applicability of support vector machines (SVMs) in determining the relative importance of climate factors (mean temperature, rainfall, relative humidity, sunshine hours, daily temperature range, and rainy days) to yield variation of paddy rice in southwestern China. The SVM models were compared with traditional artificial neural networks and multiple linear regression. The performance accuracy was evaluated by mean absolute error (MAE), mean relative absolute error (MRAE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2). Comparative results showed that SVMs outperformed artificial neural networks and multiple linear regression. The SVM with radial basis function performed best with MAE of 0.06 t ha-1, MRAE of 0.9 %, RMSE of 0.15 t ha-1, RRMSE of 2.23 %, and R 2 of 0.94. The results showed that SVMs are suitable for determining the effects of climate on crop yield variability. The relative importance of the studied climate factors to rice yield variation was in order of sunshine hours > daily temperature range > rainfall > relative humidity > mean temperature > rainy days in the current study area.

  9. The Use of Oceanic Indices Variations Due to Climate Change to Predict Annual Discharge Variations in Northeastern United States

    Science.gov (United States)

    Berton, R.; Shaw, S. B.; Chandler, D. G.; Driscoll, C. T.

    2014-12-01

    Climatic change affects streamflow in watersheds with winter snowpack and an annual snowmelt hydrograph. In the northeastern US, changes in streamflow are driven by both the advanced timing of snowmelt and increasing summer precipitation. Projections of climate for the region in the 21st century is for warmer winters and wetter summers. Water planners need to understand future changes in flow metrics to determine if the current water resources are capable of fulfilling future demands or adapting to future changes in climate. The study of teleconnection patterns between oceanic indices variations and hydrologic variables may help improve the understanding of future water resources conditions in a watershed. The purpose of this study is to evaluate the correlation between oceanic indices and discharge variations in the Merrimack Watershed. The Merrimack Watershed is the fourth largest basin in New England which drains much of New Hampshire and northeastern portions of Massachusetts, USA. Variations in sea surface temperature (SST) and sea level pressure (SLP) are defined by the Atlantic Multi-decadal Oscillation (AMO) and the North Atlantic Oscillation (NAO), respectively. We hypothesize that temporal changes in discharge are related to AMO and NAO variations since precipitation and discharge are highly correlated in the Merrimack. The Merrimack Watershed consists of undisturbed (reference) catchments and disturbed (developed) basins with long stream gauge records (> 100 years). Developed basins provide an opportunity to evaluate the impacts of river regulation and land development on teleconnection patterns as well as changing climate. Time series of AMO and NAO indices over the past 150 years along with Merrimack annual precipitation and discharge time series have shown a 1 to 2-year watershed hydrologic memory; higher correlation between Merrimack‎ annual precipitation and discharge with AMO and NAO are observed when a 1 to 2-year lag is given to AMO and NAO

  10. État des connaissances et incertitudes sur le changement climatique induit par les activités humainesScientific basis and uncertainties of human induced climate change

    Science.gov (United States)

    Duplessy, Jean-Claude

    2001-12-01

    During the 20th century, the mean temperature of the air at the ground level has increased by 0.6±0.2 °C and the warmest air temperatures occurred after 1980. These were significantly warmer than those of the last millennium. Simultaneously, rain and drought, cold and heat wave frequencies have changed, mountain glaciers retreated and the sea-level increased by ˜10 cm. This warming was at least in part induced by human activities and will continue during the next decades. Its amplitude will depend on the rate of greenhouse gas and sulphate aerosols emissions, i.e. on energetic scenarios. Pending scientific uncertainties include cloud variations and interactions between the physical parts of the climate system and the biogeochemical cycles and the biosphere.

  11. Body temperature variation of South African antelopes in two climatically contrasting environments

    NARCIS (Netherlands)

    Shrestha, A.K.; Wieren, van S.E.; Langevelde, van F.; Fuller, A.; Hetem, R.S.; Meyer, L.C.R.; Bie, de S.; Prins, H.H.T.

    2012-01-01

    To understand the adaptive capacity of a species in response to rapid habitat destruction and climate change, we investigated variation in body temperature (Tb) of three species of antelope, namely eland, blue wildebeest and impala, using abdominally-implanted temperature data loggers. The study was

  12. Magnetic susceptibility application : A window onto ancient environments and climatic variations: Foreword

    NARCIS (Netherlands)

    Da Silva, Anne Christine; Whalen, M. T.; Hladil, J.; Chadimova, L.; Chen, D.; Spassov, S.; Boulvain, F.; Devleeschouwer, X.

    2015-01-01

    Magnetic susceptibility (MS) is a powerful tool, which is being applied increasingly on sedimentary rocks to constrain stratigraphic correlations, or as a palaeo-environmental or palaeo-climatic tool. The origin of the magnetic minerals responsible for the variations in MS can be linked to various

  13. Responses of natural runoff to recent climatic variations in the Yellow River basin, China

    Science.gov (United States)

    Tang, Y.; Tang, Q.; Tian, F.; Zhang, Z.; Liu, G.

    2013-11-01

    The zero-flow phenomenon appeared frequently in the lower reaches of the Yellow River in China in the 1990s, whereas it has almost disappeared in recent years. The disappearance of the zero-flow phenomenon should be mainly attributed to the recent water management practices. However, little is known about the effects of recent climatic variations on natural runoff. In this study, we investigated the impacts of climatic variations on natural runoff above the Huayuankou station. The results indicate that there was little increase in precipitation, but substantial recovery of natural runoff in the recent period (2003-2011) compared with the low-flow period (1991-2002). The recent precipitation was slightly greater (∼2% of the baseline precipitation in 1960-1990) than precipitation in the low-flow period. However, the recent natural runoff was much larger (∼14% baseline runoff) than runoff in the low-flow period. The runoff reduction in the low-flow period was mainly caused by precipitation decrease. In the recent period, precipitation accounted for a runoff reduction (∼21% baseline runoff), whereas net radiation, wind speed, air temperature, and relative humidity accounted for a runoff increase (∼7.5% baseline runoff). The spatial pattern of the climatic variation is a factor influencing the response of runoff to climatic variations. The reduction in runoff induced by precipitation change was offset up to half by the impacts of changes in net radiation and wind speed at most sub-basins in the recent period.

  14. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change.

    Science.gov (United States)

    Aspinwall, Michael J; Loik, Michael E; Resco de Dios, Victor; Tjoelker, Mark G; Payton, Paxton R; Tissue, David T

    2015-09-01

    Climate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype-by-environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity-productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity-productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions.

  15. Magnetic susceptibility application : A window onto ancient environments and climatic variations: Foreword

    NARCIS (Netherlands)

    Da Silva, Anne Christine; Whalen, M. T.; Hladil, J.; Chadimova, L.; Chen, D.; Spassov, S.; Boulvain, F.; Devleeschouwer, X.

    2015-01-01

    Magnetic susceptibility (MS) is a powerful tool, which is being applied increasingly on sedimentary rocks to constrain stratigraphic correlations, or as a palaeo-environmental or palaeo-climatic tool. The origin of the magnetic minerals responsible for the variations in MS can be linked to various p

  16. Regional variation of climatic influences on West Nile virus outbreaks in the United States.

    Science.gov (United States)

    Wimberly, Michael C; Lamsal, Aashis; Giacomo, Paolla; Chuang, Ting-Wu

    2014-10-01

    The national resurgence of human West Nile virus (WNV) disease in 2012 raised questions about the factors responsible for WNV outbreaks. Interannual climatic variations may influence WNV amplification and transmission to humans through multiple pathways, including mosquito breeding habitats, gonotrophic cycles, extrinsic incubation, avian communities, and human behavior. We examined the influences of temperature and precipitation anomalies on interannual variation in human WNV cases in three regions of the United States. There were consistent positive influences of winter temperatures, weaker and more variable positive effects of spring and summer temperatures, and highly variable precipitation effects that ranged from positive to negative. The overwintering period may be a particularly important climatic constraint on the dynamics of WNV in cold-temperate regions of North America. Geographic differences in the seasonal timing and relative importance of climatic drivers of WNV risk likely reflect underlying variability in key ecological and social characteristics.

  17. VARIATIONAL ITERATION SOLVING METHOD FOR SEA-AIR OSCILLATOR MODEL OF INTERDECADAL CLIMATE FLUCTUATIONS

    Institute of Scientific and Technical Information of China (English)

    MO Jia-qi; LIN Yi-hua; WANG Hui

    2005-01-01

    Atmospheric physics is a very complicated natural phenomenon and needs to simplify its basic models for the sea-air oscillator. And it is solved by using the approximate method. The variational iteration method is a simple and valid method. In this paper the coupled system for a sea-air oscillator model of interdecadal climate fluctuations is considered. Firstly, through introducing a set of functions, and computing the variations, the Lagrange multipliers are obtained. And then, the generalized expressions of variational iteration are constructed. Finally, through selecting appropriate initial iteration from the iteration expressions, the approximations of solution for the sea-air oscillator model are solved successively.

  18. Climatic variations in the past 140 ka recorded in core RM, east Qinghai-Xizang Plateau

    Institute of Scientific and Technical Information of China (English)

    吴敬禄; 王苏民; 潘红玺; 夏威岚

    1997-01-01

    The sequences of climatic evolution are reconstructed by the analyses of δ13C and δ18O of carbonate from core RM in the Zoige Basin since 140 kaB. P. During the Last Glaciation there existed at least seven warm climatic fluctuations and five cold events correlated with the records of ice core and deep sea, and during the preceding last in-terglacial period there were two cold climatic variations coinciding with the record of ice core GRIP. These results depict climatic instability in east Qinghai-Xizang Plateau over the last interglacial period. In addition, the environmental proxies of the carbonate content and pigments indicate the similar results to the stable isotope record from core RM.

  19. Influence of altered low cloud parameterizations for seasonal variation of Arctic cloud amount on climate feedbacks

    Science.gov (United States)

    Kim, Yoojin; Choi, Yong-Sang; Kim, Baek-Min; Kim, Hyerim

    2016-09-01

    This study investigates the alteration of climate feedbacks due to overestimated wintertime low-level cloud amount bias over the Arctic region (60°N-90°N) in a climate model. The climate feedback was quantitatively examined through radiative kernels that are pre-calculated radiative responses of climate variables to doubling of carbon dioxide concentration in NCAR Community Atmosphere Model version 3 (CAM3). Climate models have various annual cycle of the Arctic cloud amount at the low-level particularly with large uncertainty in winter and CAM3 may tend to overestimate the Arctic low-level cloud. In this study, the seasonal variation of low-level cloud amount was modified by reducing the wintertime cloud amount by up to 35 %, and then compared with the original without seasonal variation. Thus, we investigate how that bias may affect climate feedbacks and the projections of future Arctic warming. The results show that the decrease in low-level cloud amount slightly affected the radiation budgets because of a small amount of incident solar insolation in winter, but considerably changed water vapor and temperature profiles. Consequently, the most distinctive was decreases in water vapor feedback and contribution of heat transport (by -0.20 and -0.55 W m-2 K-1, respectively) and increases in the lapse rate feedback and cloud feedback (by 0.13 and 0.58 W m-2 K-1, respectively) during winter in this model experiment. This study suggests that the change in Arctic cloud amount effectively reforms the contributions of individual climate feedbacks to Arctic climate system and leads to opposing effects on different feedbacks, which cancel out in the model.

  20. Impacts of land use change and climate variations on annual inflow into Miyun Reservoir, Beijing, China

    Science.gov (United States)

    Zheng, J. K.; Sun, G.; Li, W. H.; Yu, X. X.; Zhang, C.; Gong, Y. B.; Tu, L. H.

    2015-08-01

    Miyun reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contributes the changes of water supply in this critical watershed. However, the specific causes of the decline in Miyun reservoir are debatable in a non-stationary climate in the past four decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into Miyun reservoir during 1961-2008. Different from previous studies, this work objectively identified breakpoints by analyzing the long-term historical hydrometeorology and land cover records. To effectively study the different impacts of the climate variation and land cover change during different sub-periods, annual water balance model (AWB), climate elasticity model (CEM), and rainfall-runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant decrease in annual streamflow (p 0.1) during 1961-2008. Combined with historical records, we identified two breakpoints as in 1983 and 1999 for the period 1961-2008 by the sequential Mann-Kendall Test and Double Mass Curve. Climate variability alone did not explain the decrease in inflow to Miyun reservoir. Reduction of water yield was closely related to increase in evapotranspiration rates due to the expansion of forestlands and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. Our study found that the contribution to the observed streamflow decline from land use change fell from 64-92 % during 1984-1999 to 36-58 % during 2000-2008, whereas the contribution from climate variation climbed from 8-36 % during the 1984-1999 to 42-64 % during 2000-2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in

  1. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models

    Science.gov (United States)

    Zhang, Ying; Bi, Peng; Hiller, Janet

    2008-01-01

    This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.

  2. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts

    Science.gov (United States)

    Meng, T.-T.; Wang, H.; Harrison, S. P.; Prentice, I. C.; Ni, J.; Wang, G.

    2015-09-01

    Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature

  3. Spatial Climate Patterns Explain Negligible Variation in Strength of Compensatory Density Feedbacks in Birds and Mammals

    Science.gov (United States)

    Herrando-Pérez, Salvador; Delean, Steven; Brook, Barry W.; Cassey, Phillip; Bradshaw, Corey J. A.

    2014-01-01

    The use of long-term population data to separate the demographic role of climate from density-modified demographic processes has become a major topic of ecological investigation over the last two decades. Although the ecological and evolutionary mechanisms that determine the strength of density feedbacks are now well understood, the degree to which climate gradients shape those processes across taxa and broad spatial scales remains unclear. Intuitively, harsh or highly variable environmental conditions should weaken compensatory density feedbacks because populations are hypothetically unable to achieve or maintain densities at which social and trophic interactions (e.g., competition, parasitism, predation, disease) might systematically reduce population growth. Here we investigate variation in the strength of compensatory density feedback, from long-term time series of abundance over 146 species of birds and mammals, in response to spatial gradients of broad-scale temperature precipitation variables covering 97 localities in 28 countries. We use information-theoretic metrics to rank phylogenetic generalized least-squares regression models that control for sample size (time-series length) and phylogenetic non-independence. Climatic factors explained < 1% of the remaining variation in density-feedback strength across species, with the highest non-control, model-averaged effect sizes related to extreme precipitation variables. We could not link our results directly to other published studies, because ecologists use contrasting responses, predictors and statistical approaches to correlate density feedback and climate – at the expense of comparability in a macroecological context. Censuses of multiple populations within a given species, and a priori knowledge of the spatial scales at which density feedbacks interact with climate, seem to be necessary to determine cross-taxa variation in this phenomenon. Despite the availability of robust modelling tools, the

  4. Using SEBAL to Investigate How Variations in Climate Impact on Crop Evapotranspiration

    Directory of Open Access Journals (Sweden)

    Giorgos Papadavid

    2017-07-01

    Full Text Available Water allocation to crops, and especially to the most water intensive ones, has always been of great importance in agricultural processes. Deficit or excessive irrigation could create either crop health-related problems or water over-consumption, respectively. The latter could lead to groundwater depletion and deterioration of its quality through deep percolation of agrichemical residuals. In this context, and under the current conditions where Cyprus is facing effects of possible climate changes, the purpose of this study seeks to estimate the needed crop water requirements of the past (1995–2004 and the corresponding ones of the present (2005–2015 in order to test if there were any significant changes regarding the crop water requirements of the most water-intensive trees in Cyprus. The Mediterranean region has been identified as the region that will suffer the most from variations of climate. Thus the paper refers to effects of these variations on crop evapotranspiration (ETc using remotely-sensed data from Landsat TM/ETM+/OLI employing a sound methodology used worldwide, the Surface Energy Balance Algorithm for Land (SEBAL. Though the general feeling is that of changes on climate will consequently affect ETc, our results indicate that there is no significant effect of climate variation on crop evapotranspiration, despite the fact that some climatic factors have changed. Applying Student’s t-test, the mean values for the most water-intensive trees in Cyprus of the 1994–2004 decade have shown no statistical difference from the mean values of 2005–2015 for all the cases, concluding that the climate change taking place in the past decades in Cyprus have either not affected the crop evapotranspiration or the crops have managed to adapt to the new environmental conditions through time.

  5. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    Science.gov (United States)

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  6. Roles of climate, vegetation and soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the Northern Hemisphere.

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    Full Text Available Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP, annual ecosystem respiration (ARE, and annual net ecosystem production (ANEP. Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P 0.05 in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances is necessary.

  7. Responses of leaf traits to climatic gradients: adaptive variation vs. compositional shifts

    Directory of Open Access Journals (Sweden)

    T.-T. Meng

    2015-05-01

    Full Text Available Dynamic global vegetation models (DGVMs typically rely on plant functional types (PFTs, which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities; and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA, specific leaf area (SLA, leaf dry matter content (LDMC and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with

  8. Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude.

    Science.gov (United States)

    Montesinos-Navarro, Alicia; Wig, Jennifer; Pico, F Xavier; Tonsor, Stephen J

    2011-01-01

    • Understanding the adaptive basis of life history variation is a central goal in evolutionary ecology. The use of model species enables the combination of molecular mechanistic knowledge with ecological and evolutionary questions, but the study of life history variation in natural environments is required to merge these disciplines. • Here, we tested for clinal variation in life history and associated traits along an environmental and altitudinal gradient in the model species Arabidopsis thaliana. Seventeen natural populations of A. thaliana were geo-referenced in north-eastern Spain on a gradient in which precipitation increases but maximum spring temperature and minimum winter temperature decrease with altitude. • One hundred and eighty-nine genotypes from the 17 populations were grown under uniform controlled conditions. Variations in traits related to biomass allocation, fecundity, phenology and vegetative growth were tested for relationships with the altitude and climatic variables associated with the home sites. Above-ground mass, number of rosette leaves at bolting, developmental time and seed weight increased with the home site's altitude. Root allocation, vegetative growth during winter and number of seeds decreased with altitude. • We suggest that the differences among home sites provide clues to the variation in adaptive strategies associated with the climatic gradient. We compared these results with adaptations and clinal relationships reported for other species and with molecular mechanisms described in Arabidopsis.

  9. Climate variation since the Last Interglaciation recorded in the Guliya ice core

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; L.G.Thompson; 施雅风; 秦大河; 焦克勤; 杨志红; 田立德; E.M.Thompson

    1997-01-01

    The climatic and environmental variations since the Last Interglaciation are reconstructed based on the study of the upper 268 m of the 309-m-long Guliya ice core. Five stages can be distinguished since the Last Interglaciation from the δ18O record in the Guliya ice core: Stage 1 (Deglaciation), Stage 2 (the Last Glacial Maximum), Stage 3 (interstadial), Stage 4 (interstadial in the early glacial maximum) and Stage 5 (the Last Interglaciation). Stage 5 can be divided further into 5 substages; a, b, c, d, e. The δ18O record in the Guliya ice core indicates clearly the close correlation between the temperature variation on the Tibetan Plateau and the solar activities. The study indicates that the solar activity is a main forcing to the climatic variation on the Tibetan Plateau. Through a comparison of the ice core record in Guliya with that in the Greenland and the Antarctic, it can be found that the variation of large temperature variation events in different parts of the world is generally the same, b

  10. [Responses of vegetation changes to climatic variations in Panxi area based on the MODIS multispectral data].

    Science.gov (United States)

    Shao, Huai-Yong; Wu, Jin-Hui; Liu, Meng; Yang, Wu-Nian

    2014-01-01

    It is an important research area to quantitatively studying the relationship between global climatic change and vegetation change based on the remote sensing technology. Panxi area is the ecological barrier of the upper reaches of the Yangtze River, and it is essential for the stability of the ecological environment of Sichuan as well as that of the whole China. The present article analyzes the vegetation change in 2001-2008 and the relationship between vegetation change and climatic variations of Panxi area, based on MODIS multispectral data and meteorological data. The results indicate that NDVI is positively correlated with temperature and precipitation. The precipitation is the major factor that affects the change of vegetation in the Panxi region and the trend of NDVI is similar with autumn precipitation; while at the same time the influence of climate has a one-month-time-lag.

  11. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth.

    Science.gov (United States)

    Davy, Richard; Esau, Igor

    2016-05-25

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.

  12. Body Size Adaptations to Altitudinal Climatic Variation in Neotropical Grasshoppers of the Genus Sphenarium (Orthoptera: Pyrgomorphidae)

    Science.gov (United States)

    2015-01-01

    Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD) in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group. PMID:26684616

  13. Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns?

    Science.gov (United States)

    Forrest, Jessica; Inouye, David W; Thomson, James D

    2010-02-01

    Climate change is expected to alter patterns of species co-occurrence, in both space and time. Species-specific shifts in reproductive phenology may alter the assemblages of plant species in flower at any given time during the growing season. Temporal overlap in the flowering periods (co-flowering) of animal-pollinated species may influence reproductive success if competitive or facilitative interactions between plant species affect pollinator services. We used a 33-year data set on flowering phenology in subalpine meadows in Colorado, USA, to determine whether interannual variation in snowmelt date, which marks the start of the growing season, affected co-flowering patterns. For two of four species considered, we found a significant relationship between snowmelt timing and composition of the assemblage of co-flowering plants. In years of early snowmelt, Lathyrus lanszwertii var. leucanthus (Fabaceae), the species we investigated in most detail, tended to overlap with earlier-flowering species and with fewer species overall. In particular, overlap with the flowering period of Lupinus polyphyllus var. prunophilus, with which Lathyrus leucanthus shares pollinators, was significantly reduced in early-snowmelt years. The observed association between timing of snowmelt and patterns of flowering overlap could not have been predicted simply by examining temporal trends in the dates of peak flowering of the dominant species in the community, as peak flowering dates have largely shifted in parallel with respect to snowmelt date. However, subtle interspecific differences in responsiveness of flowering time, duration, and intensity to interannual climate variation have likely contributed to the observed relationship. Although much of the year-to-year variation in flowering overlap remains unexplained by snowmelt date, our finding of a measurable signal of climate variation suggests that future climate change may lead to altered competitive environments for these wildflower

  14. Body Size Adaptations to Altitudinal Climatic Variation in Neotropical Grasshoppers of the Genus Sphenarium (Orthoptera: Pyrgomorphidae.

    Directory of Open Access Journals (Sweden)

    Salomón Sanabria-Urbán

    Full Text Available Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group.

  15. Impacts of climatic variation on trout: A global synthesis and path forward

    Science.gov (United States)

    Kovach, Ryan; Muhlfeld, Clint C.; Al-Chokhachy, Robert K.; Dunham, Jason; Letcher, Benjamin; Kershner, Jeffrey L.

    2016-01-01

    Despite increasing concern that climate change may negatively impact trout—a globally distributed group of fish with major economic, ecological, and cultural value—a synthetic assessment of empirical data quantifying relationships between climatic variation and trout ecology does not exist. We conducted a systematic review to describe how temporal variation in temperature and streamflow influences trout ecology in freshwater ecosystems. Few studies (n = 42) have quantified relationships between temperature or streamflow and trout demography, growth, or phenology, and nearly all estimates (96 %) were for Salvelinus fontinalis and Salmo trutta. Only seven studies used temporal data to quantify climate-driven changes in trout ecology. Results from these studies were beset with limitations that prohibited quantitatively rigorous meta-analysis, a concerning inadequacy given major investment in trout conservation and management worldwide. Nevertheless, consistent patterns emerged from our synthesis, particularly a positive effect of summer streamflow on trout demography and growth; 64 % of estimates were positive and significant across studies, age classes, species, and locations, highlighting that climate-induced changes in hydrology may have numerous consequences for trout. To a lesser degree, summer and fall temperatures were negatively related to population demography (51 and 53 % of estimates, respectively), but temperature was rarely related to growth. To address limitations and uncertainties, we recommend: (1) systematically improving data collection, description, and sharing; (2) appropriately integrating climate impacts with other intrinsic and extrinsic drivers over the entire lifecycle; (3) describing indirect consequences of climate change; and (4) acknowledging and describing intrinsic resiliency.

  16. On periodicities in long term climatic variations near 68° N, 30° E

    Directory of Open Access Journals (Sweden)

    M. Krapiec

    2007-08-01

    Full Text Available It is generally believed that the low-frequency variability of climatic parameters seems to be connected to solar cycles. The principal periodicities are: 11-year (Schwabe, 22-year (Hale, 33-year (Bruckner and 80–100-year (Gleissberg cycles. The main heliophysical factors acting on climate, the biosphere and the atmosphere are solar irradiance, the intensity of solar and galactic cosmic rays (relativistic charged particles with energies >500 MeV changing the cloud cover of the atmosphere, and UV-B-radiation. The 11-year and 80–90-year solar cycles are apparent in solar radiation and galactic cosmic ray trends. At the same time the bidecadal Hale cycle, related to a reversal of the main solar magnetic field direction is practically absent in either solar radiation or galactic cosmic ray variations. Besides, nobody can identify any physical mechanisms by which a reversal in the solar magnetic field direction could influence climate. However, the 22-year cycle has been identified in rather many regional climatic (droughts, rainfall, tree growth near 68° N, 30° E and temperature records all over the world. We discuss here three possible cause of the bidecadal periodicity in climatic records, one of which is associated with a variation of stardust flux inside the Solar System. The most recent observations by the DUST experiment on board the Ulysses spacecraft have shown that the solar magnetic field lost its protective power during the last change of its polarity (the most recent solar maximum, so that the stardust level inside of the Solar System has been enhanced by a factor of three. It is possible that the periodic increases of stardust in the Solar System may influence the amount of extraterrestrial material that falls to the Earth and consequently act on the Earth's atmosphere and climate through alteration of atmospheric transparency and albedo. This material (interstellar dust and/or cometary matter may also provide nucleation sites and

  17. Variations of leaf N, P concentrations in shrubland biomes across northern China: phylogeny, climate and soil

    Directory of Open Access Journals (Sweden)

    X. Yang

    2015-11-01

    Full Text Available Concentrations of leaf nitrogen (N and phosphorus (P are key leaf traits in ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on trees and grasses, leaving the knowledge gap for the stoichiometric patterns of shrubs. In this study, we explored the intra- and interspecific variations of leaf N and P concentration in relation to climate, soil property and evolutionary history based on 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China expanding 46.1° (86.7–132.8° E in longitude and 19.8° (32.6–52.4° N in latitude. The results showed that leaf N concentration decreased with precipitation, leaf P concentration decreased with temperature and increased with precipitation and soil P concentration. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentration was less conserved than leaf N concentration. At community level, climates explained more interspecific, while soil nutrient explained more intraspecific, variation of leaf nutrient concentrations. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits.

  18. Intraspecific N and P stoichiometry of Phragmites australis: geographic patterns and variation among climatic regions.

    Science.gov (United States)

    Hu, Yu-Kun; Zhang, Ya-Lin; Liu, Guo-Fang; Pan, Xu; Yang, Xuejun; Li, Wen-Bing; Dai, Wen-Hong; Tang, Shuang-Li; Xiao, Tao; Chen, Ling-Yun; Xiong, Wei; Song, Yao-Bin; Dong, Ming

    2017-02-24

    Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australis, and environmental (geographic, climate and soil) variables from literature and field investigation in natural wetlands distributed in three climatic regions (subtropical, temperate and highland) across China. We found no clear geographic patterns in leaf nutrients of P. australis across China, except for leaf N:P ratio increasing with altitude. Leaf N and N:P decreased with mean annual temperature (MAT), and leaf N and P were closely related to soil pH, C:N ratio and available P. Redundancy analysis showed that climate and soil variables explained 62.1% of total variation in leaf N, P and N:P. Furthermore, leaf N in temperate region and leaf P in subtropical region increased with soil available P, while leaf N:P in subtropical region decreased with soil pH. These patterns in P. australis different from terrestrial plants might imply that changes in climate and soil properties can exert divergent effects on wetland and terrestrial ecosystems.

  19. Variations of leaf N, P concentrations in shrubland biomes across northern China: phylogeny, climate and soil

    Science.gov (United States)

    Yang, X.; Chi, X.; Ji, C.; Liu, H.; Ma, W.; Mohhammat, A.; Shi, Z.; Wang, X.; Yu, S.; Yue, M.; Tang, Z.

    2015-11-01

    Concentrations of leaf nitrogen (N) and phosphorus (P) are key leaf traits in ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on trees and grasses, leaving the knowledge gap for the stoichiometric patterns of shrubs. In this study, we explored the intra- and interspecific variations of leaf N and P concentration in relation to climate, soil property and evolutionary history based on 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China expanding 46.1° (86.7-132.8° E) in longitude and 19.8° (32.6-52.4° N) in latitude. The results showed that leaf N concentration decreased with precipitation, leaf P concentration decreased with temperature and increased with precipitation and soil P concentration. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentration was less conserved than leaf N concentration. At community level, climates explained more interspecific, while soil nutrient explained more intraspecific, variation of leaf nutrient concentrations. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits.

  20. Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change

    DEFF Research Database (Denmark)

    Bevis, Michael; Wahr, John; Khan, Shfaqat Abbas

    2012-01-01

    The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Crustal displacement is largely accounted...... for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth’s elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR......), implying that uplift is usually dominated by the solid earth’s instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous ‘pulse’ of uplift accumulated at many GNET stations during an approximate six-month period in 2010...

  1. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.

    Science.gov (United States)

    Klockmann, Michael; Wallmeyer, Leonard; Fischer, Klaus

    2017-03-15

    Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species' vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population-rather than species-specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  2. The occurrence of floods and the role of climate variations from 1880 in Calabria (Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Polemio

    2012-01-01

    Full Text Available In this paper, we present a methodological approach based on a comparative analysis of floods that occurred in a wide region over a long period and the climatic data characterising the same period, focusing on the climate trend. The method simplifies the comparative analysis of several time series by defining some indexes (e.g. the monthly, bi-monthly, and ... m-monthly indexes of precipitation, temperature, wet days and precipitation intensity and the monthly flood number that can be used to study phenomena such as floods that are characterised by spatial and temporal variability. The analysis was used to investigate the potential effect of climate variation on the damaging floods trend.

    The approach was tested for the Calabria region (Italy using historical flood and climatic data from 1880 to 2007. The results showed that the number of floods was correlated with the monthly indexes of precipitation, wet days, and daily precipitation intensity. The following trends were recognised: decreasing precipitation and wet days, almost constant precipitation intensity, increasing temperature, and linearly increasing floods. A second-order polynomial trend analysis showed a slight decrease in floods since the seventies, which might be explained by the favourable climatic conditions during the period and/or the effect of increasing awareness of flood vulnerability.

  3. Allergenic pollen season variations in the past two decades under changing climate in the United States.

    Science.gov (United States)

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2015-04-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here, we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001-2010) across the contiguous United States have been observed to start 3.0 [95% Confidence Interval (CI), 1.1-4.9] days earlier on average than in the 1990s (1994-2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9-62.9%) and 46.0% (95% CI, 21.5-70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States.

  4. Climatic variation and age-specific survival in Asian elephants from Myanmar.

    Science.gov (United States)

    Mumby, Hannah S; Courtiol, Alexandre; Mar, Khyne U; Lummaa, Virpi

    2013-05-01

    Concern about climate change has intensified interest in understanding how climatic variability affects animal life histories. Despite such effects being potentially most dramatic in large, long-lived, and slowly reproducing terrestrial mammals, little is known of the effects of climatic variation on survival in those species. Asian elephants (Elephas maximus) are endangered across their distribution, and inhabit regions characterized by high seasonality of temperature and rainfall. We investigated the effects of monthly climatic variation on survival and causes of death in Asian elephants using a unique demographic data set of 1024 semi-captive, longitudinally monitored elephants from four sites in Myanmar between 1965 and 2000. Temperature had a significant effect on survival in both sexes and across all ages. For elephants between 1 month and 17 years of age, maximal survival was reached at -24 degrees C, and any departures from this temperature increased mortality, whereas neonates and mature elephants had maximal survival at even lower temperatures. Although males experienced higher mortality overall, sex differences in these optimal temperatures were small. Because the elephants spent more time during a year in temperatures above 24 degrees C than in temperatures below it, most deaths occurred at hot (temperatures>24 degrees C) rather than cold periods. Decreased survival at higher temperatures resulted partially from increased deaths from infectious disease and heat stroke, whereas the lower survival in the coldest months was associated with an increase in noninfectious diseases and poor health in general. Survival was also related to rainfall, with the highest survival rates during the wettest months for all ages and sexes. Our results show that even the normal-range monsoon variation in climate can exert a large impact on elephant survival in Myanmar, leading to extensive absolute differences in mortality; switching from favorable to unfavorable climatic

  5. Assessing the impact of climate variability and human activity to streamflow variation

    Directory of Open Access Journals (Sweden)

    J. Chang

    2015-06-01

    Full Text Available Water resources in river systems have been changing under the impacts of both climate variability and human activities. Assessing the respective impacts on decadal streamflow variation is important for water resources management. By using an elasticity-based method, calibrated TOPMODEL and VIC hydrologic models, we have quantitatively isolated the relative contributions that human activity and climate variability made to decadal streamflow changes in Jinhe basin located in northwest of China. This is an important watershed of Shaanxi Province that supplies drinking water for a population of over 6 million. The results from the three methods show that both human activity and climatic differences can have major effects on catchment streamflow, and the estimates of climate variability impacts from the hydrological models are similar to those from the elasticity-based method. Compared with the baseline period of 1960–1970, streamflow greatly decreased during 2001–2010. The change impacts of human activity and climate variability in 2001–2010 were about 83.5 and 16.5% of the total reduction respectively when averaged over the three methods. The maximum contribution value of human activity was appeared in 1981–1990 due to the effects of soil and water conservation measures and irrigation water withdrawal, which was 95, 112.5 and 92.4% from TOPMODEL, VIC model and elasticity-based method respectively. The maximum value of the aridity index (E0/P was 1.91 appeared in 1991–2000. Compared with 1960–1970 baseline period, climate variability made the greatest contributions reduction in 1991–2000, which was 47.4, 43.9 and 29.9% from TOPMODEL, VIC model and elasticity-based method respectively. We emphasized various source of errors and uncertainties that may occurre in the hydrological model (parameter and structural uncertainty and elasticity-based method (model parameter in climate change impact studies.

  6. Increased temperature variation poses a greater risk to species than climate warming

    Science.gov (United States)

    Vasseur, David A.; DeLong, John P.; Gilbert, Benjamin; Greig, Hamish S.; Harley, Christopher D. G.; McCann, Kevin S.; Savage, Van; Tunney, Tyler D.; O'Connor, Mary I.

    2014-01-01

    Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance. PMID:24478296

  7. Increased temperature variation poses a greater risk to species than climate warming.

    Science.gov (United States)

    Vasseur, David A; DeLong, John P; Gilbert, Benjamin; Greig, Hamish S; Harley, Christopher D G; McCann, Kevin S; Savage, Van; Tunney, Tyler D; O'Connor, Mary I

    2014-03-22

    Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050-2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.

  8. Cretaceous desert cycles, wind direction and hydrologic cycle variations in Ordos Basin:Evidence for Cretaceous climatic unequability

    Institute of Scientific and Technical Information of China (English)

    JIANG Xinsheng; PAN Zhongxi; XIE Yuan; LI Minghui

    2004-01-01

    Climatic state under greenhouse effect is a currently hot point. Whether greenhouse climate in geological history, especially in Cretaceous, was equable or not has aroused extensive discussion. By analysis on depositional cyclcity, wind direction change and hydrologic cycle variation of Cretaceous desert in the Ordos Basin of China, the unequability of Cretaceous climate is dealt. It is shown that Cretaceous climate was extremely cyclic, not only having long and mid term but also having strong seasonal even instantaneous changes. Therefore, it is suggested that Cretaceous climate was not equable.

  9. Cretaceous desert cycles, wind direction and hydrologic cycle variations in Ordos Basin: Evidence for Cretaceous climatic unequability

    Institute of Scientific and Technical Information of China (English)

    JIANG; Xinsheng; PAN; Zhongxi; XIE; Yuan; LI; Minghui

    2004-01-01

    Climatic state under greenhouse effect is a currently hot point. Whether greenhouse climate in geological history, especially in Cretaceous, was equable or not has aroused extensive discussion. By analysis on depositional cyclcity, wind direction change and hydrologic cycle variation of Cretaceous desert in the Ordos Basin of China, the unequability of Cretaceous climate is dealt. It is shown that Cretaceous climate was extremely cyclic, not only having long and mid term but also having strong seasonal even instantaneous changes. Therefore, it is suggested that Cretaceous climate was not equable.

  10. Quantifying geographic variation in the climatic drivers of midcontinent wetlands with a spatially varying coefficient model.

    Science.gov (United States)

    Roy, Christian

    2015-01-01

    The wetlands in the Prairie Pothole Region and in the Great Plains are notorious for their sensitivity to weather variability. These wetlands have been the focus of considerable attention because of their ecological importance and because of the expected impact of climate change. Few models in the literature, however, take into account spatial variation in the importance of wetland drivers. This is surprising given the importance spatial heterogeneity in geomorphology and climatic conditions have in the region. In this paper, I use spatially-varying coefficients to assess the variation in ecological drivers in a number of ponds observed over a 50-year period (1961-2012). I included the number of ponds observed the year before on a log scale, the log of total precipitation, and mean maximum temperature during the four previous seasons as explanatory variables. I also included a temporal component to capture change in the number of ponds due to anthropogenic disturbance. Overall, fall and spring precipitation were most important in pond abundance in the west, whereas winter and summer precipitation were the most important drivers in the east. The ponds in the east of the survey area were also more dependent on pond abundance during the previous year than those in the west. Spring temperature during the previous season influenced pond abundance; while the temperature during the other seasons had a limited effect. The ponds in the southwestern part of the survey area have been increasing independently of climatic conditions, whereas the ponds in the northeast have been steadily declining. My results underline the importance of accounting the spatial heterogeneity in environmental drivers, when working at large spatial scales. In light of my results, I also argue that assessing the impacts of climate change on wetland abundance in the spring, without more accurate climatic forecasting, will be difficult.

  11. Population-level genetic variation and climate change in a biodiversity hotspot.

    Science.gov (United States)

    Schierenbeck, Kristina A

    2017-01-01

    Estimated future climate scenarios can be used to predict where hotspots of endemism may occur over the next century, but life history, ecological and genetic traits will be important in informing the varying responses within myriad taxa. Essential to predicting the consequences of climate change to individual species will be an understanding of the factors that drive genetic structure within and among populations. Here, I review the factors that influence the genetic structure of plant species in California, but are applicable elsewhere; existing levels of genetic variation, life history and ecological characteristics will affect the ability of an individual taxon to persist in the presence of anthropogenic change. Persistence in the face of climate change is likely determined by life history characteristics: dispersal ability, generation time, reproductive ability, degree of habitat specialization, plant-insect interactions, existing genetic diversity and availability of habitat or migration corridors. Existing levels of genetic diversity in plant populations vary based on a number of evolutionary scenarios that include endemism, expansion since the last glacial maximum, breeding system and current range sizes. A number of well-documented examples are provided from the California Floristic Province. Some predictions can be made for the responses of plant taxa to rapid environmental changes based on geographic position, evolutionary history, existing genetic variation, and ecological amplitude. The prediction of how species will respond to climate change will require a synthesis drawing from population genetics, geography, palaeontology and ecology. The important integration of the historical factors that have shaped the distribution and existing genetic structure of California's plant taxa will enable us to predict and prioritize the conservation of species and areas most likely to be impacted by rapid climate change, human disturbance and invasive species.

  12. Environmental gradients and grassland trait variation: Insight into the effects of climate change

    Science.gov (United States)

    Tardella, Federico M.; Piermarteri, Karina; Malatesta, Luca; Catorci, Andrea

    2016-10-01

    The research aim was to understand how variation of temperature and water availability drives trait assemblage of seminatural grasslands in sub-Mediterranean climate, where climate change is expected to intensify summer aridity. In the central Italy, we recorded species abundance and elevation, slope aspect and angle in 129 plots. The traits we analysed were life span, growth form, clonality, belowground organs, leaf traits, plant height, seed mass, and palatability. We used Ellenberg's indicators as a proxy to assess air temperature and soil moisture gradients. From productive to harsh conditions, we observed a shift from tolerance to avoidance strategies, and a change in resource allocation strategies to face competition and stress or that maximize exploitation of patchily distributed soil resource niches. In addition, we found that the increase of temperature and water scarcity leads to the establishment of regeneration strategies that enable plants to cope with the unpredictability of changes in stress intensity and duration. Since the dry habitats of higher elevations are also constrained by winter cold stress, we argue that, within the sub-Mediterranean bioclimate, climate change will likely lead to a variation in dominance inside plant communities rather than a shift upwards of species ranges. At higher elevations, drought-adaptive traits might become more abundant on south-facing slopes that are less stressed by winter low temperatures; traits related to productive conditions and cold stress would be replaced on north-facing slopes by those adapted to overcome both the drought and the cold stresses.

  13. Contribution of climate and air pollution to variation in coronary heart disease mortality rates in England.

    Directory of Open Access Journals (Sweden)

    Peter Scarborough

    Full Text Available There are substantial geographic variations in coronary heart disease (CHD mortality rates in England that may in part be due to differences in climate and air pollution. An ecological cross-sectional multi-level analysis of male and female CHD mortality rates in all wards in England (1999-2004 was conducted to estimate the relative strength of the association between CHD mortality rates and three aspects of the physical environment--temperature, hours of sunshine and air quality. Models were adjusted for deprivation, an index measuring the healthiness of the lifestyle of populations, and urbanicity. In the fully adjusted model, air quality was not significantly associated with CHD mortality rates, but temperature and sunshine were both significantly negatively associated (p<0.05, suggesting that CHD mortality rates were higher in areas with lower average temperature and hours of sunshine. After adjustment for the unhealthy lifestyle of populations and deprivation, the climate variables explained at least 15% of large scale variation in CHD mortality rates. The results suggest that the climate has a small but significant independent association with CHD mortality rates in England.

  14. Regional climate extremes in Northern Eurasia associated with atmospheric blockings: Interannual variations and tendencies of change

    Science.gov (United States)

    Mokhov, I.; Akperov, M.; Lupo, A. R.; Chernokulsky, A. V.; Timazhev, A.

    2011-12-01

    Large regional climate anomalies associated with atmospheric blockings have been noted during last years in Northern Eurasia. Impact of blockings is exhibited in such extremes as heat and cold waves, droughts, and forest fires. In order to detect changes in the blocking activity characteristics an analysis of different data for the Northern Hemisphere with the use of various methods for blockings detection was carried out. In particular, the data for 500 hPa geopotential from the NCEP/NCAR Reanalysis 1 (1948-2010) and NOAA-CIRES 20th Century Reanalysis v2 (1871-2008) have been used as well as climate model simulations for the 20th and 21st centuries with anthropogenic forcing. Special attention is paid to the analysis of extreme dry conditions in the Northern Eurasia regions and to the 2010 Russian heat wave associated to atmospheric blockings with the use observational data (1891-2010) for surface air temperature, precipitation and different indices for the drought conditions. Tendencies of change and interannual variations are analyzed with an assessment of effects of El-Nino/La-Nina phenomena. Possibility of intensification of blocking-associated climate impacts under global warming is discussed. Changes of blocking characteristics and associated regional climate anomalies in the 21st century based on model simulations with anthropogenic scenarios are analyzed.

  15. Assessment of radiative feedback in climate models using satellite observations of annual flux variation.

    Science.gov (United States)

    Tsushima, Yoko; Manabe, Syukuro

    2013-05-07

    In the climate system, two types of radiative feedback are in operation. The feedback of the first kind involves the radiative damping of the vertically uniform temperature perturbation of the troposphere and Earth's surface that approximately follows the Stefan-Boltzmann law of blackbody radiation. The second kind involves the change in the vertical lapse rate of temperature, water vapor, and clouds in the troposphere and albedo of the Earth's surface. Using satellite observations of the annual variation of the outgoing flux of longwave radiation and that of reflected solar radiation at the top of the atmosphere, this study estimates the so-called "gain factor," which characterizes the strength of radiative feedback of the second kind that operates on the annually varying, global-scale perturbation of temperature at the Earth's surface. The gain factor is computed not only for all sky but also for clear sky. The gain factor of so-called "cloud radiative forcing" is then computed as the difference between the two. The gain factors thus obtained are compared with those obtained from 35 models that were used for the fourth and fifth Intergovernmental Panel on Climate Change assessment. Here, we show that the gain factors obtained from satellite observations of cloud radiative forcing are effective for identifying systematic biases of the feedback processes that control the sensitivity of simulated climate, providing useful information for validating and improving a climate model.

  16. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change.

    Science.gov (United States)

    Hurlbert, Allen H; Liang, Zhongfei

    2012-01-01

    A growing number of studies have documented shifts in avian migratory phenology in response to climate change, and yet there is a large amount of unexplained variation in the magnitude of those responses across species and geographic regions. We use a database of citizen science bird observations to explore spatiotemporal variation in mean arrival dates across an unprecedented geographic extent for 18 common species in North America over the past decade, relating arrival dates to mean minimum spring temperature. Across all species and geographic locations, species shifted arrival dates 0.8 days earlier for every °C of warming of spring temperature, but it was common for some species in some locations to shift as much as 3-6 days earlier per °C. Species that advanced arrival dates the earliest in response to warming were those that migrate more slowly, short distance migrants, and species with broader climatic niches. These three variables explained 63% of the interspecific variation in phenological response. We also identify a latitudinal gradient in the average strength of phenological response, with species shifting arrival earlier at southern latitudes than northern latitudes for the same degree of warming. This observation is consistent with the idea that species must be more phenologically sensitive in less seasonal environments to maintain the same degree of precision in phenological timing.

  17. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change.

    Directory of Open Access Journals (Sweden)

    Allen H Hurlbert

    Full Text Available A growing number of studies have documented shifts in avian migratory phenology in response to climate change, and yet there is a large amount of unexplained variation in the magnitude of those responses across species and geographic regions. We use a database of citizen science bird observations to explore spatiotemporal variation in mean arrival dates across an unprecedented geographic extent for 18 common species in North America over the past decade, relating arrival dates to mean minimum spring temperature. Across all species and geographic locations, species shifted arrival dates 0.8 days earlier for every °C of warming of spring temperature, but it was common for some species in some locations to shift as much as 3-6 days earlier per °C. Species that advanced arrival dates the earliest in response to warming were those that migrate more slowly, short distance migrants, and species with broader climatic niches. These three variables explained 63% of the interspecific variation in phenological response. We also identify a latitudinal gradient in the average strength of phenological response, with species shifting arrival earlier at southern latitudes than northern latitudes for the same degree of warming. This observation is consistent with the idea that species must be more phenologically sensitive in less seasonal environments to maintain the same degree of precision in phenological timing.

  18. Evolution of Chinese Neogene Rhinocerotidae and Its Response to Climatic Variations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chinese Neogene Rhinocerotidae has quite a complete record and its temporal range is the Early Miocene to Late Pliocene. The samples include 25 species in 4 tribes of 2 subfamilies. They are used as a foundation for the study of the evolution of the family and its relation to climatic changes. Taxonomic diversity, new records and extinctions are estimated for each Chinese Neogene mammal faunal unit (NMU). The diversity of Chinese Rhinocerotidae varies noticeably throughout the Neogene and is recognized within five stages: the Middle Miocene and Late Miocene are stages of high diversity and the Early Miocene, early Late Miocene and Pliocene are stages of low diversity. Rhinocerotid diversity and morphology are closely related to environmental factors and particularly sensitive to changes in ambient temperature and humidity. The interpretation of climatic variation reflected in the evolution of Rhinocerotidae corresponds precisely with the conclusions drawn from other workers and provides new evidence for research on the Neogene terrestrial ecosystem in China.

  19. Climatic variations since the Little Ice Age recorded in the Guliya Ice Core

    Institute of Scientific and Technical Information of China (English)

    姚檀栋; 焦克勤; 田立德; 杨志红; 施维林; Lonnie G. Thompson

    1996-01-01

    The climatic variations since the Little Ice Age recorded in the Guliya Ice Core are discussed based on glacial δ18O and accumulation records in the Guliya Ice Core. Several obvious climate fluctuation events since 1570 can be observed according to the records. In the past 400 years, the 17th and 19th centuries are relatively cool periods with less precipitation, and the 18th and 20th centuries are relatively warm periods with high precipitation. The study has also revealed the close relationship between temperature and precipitation on the plateau. Warming corresponds to high precipitation and cooling corresponds to less precipitation, which is related with the influence of monsoon on this region.

  20. Grasshopper community response to climatic change: variation along an elevational gradient.

    Directory of Open Access Journals (Sweden)

    César R Nufio

    Full Text Available BACKGROUND: The impacts of climate change on phenological responses of species and communities are well-documented; however, many such studies are correlational and so less effective at assessing the causal links between changes in climate and changes in phenology. Using grasshopper communities found along an elevational gradient, we present an ideal system along the Front Range of Colorado USA that provides a mechanistic link between climate and phenology. METHODOLOGY/PRINCIPAL FINDINGS: This study utilizes past (1959-1960 and present (2006-2008 surveys of grasshopper communities and daily temperature records to quantify the relationship between amount and timing of warming across years and elevations, and grasshopper timing to adulthood. Grasshopper communities were surveyed at four sites, Chautauqua Mesa (1752 m, A1 (2195 m, B1 (2591 m, and C1 (3048 m, located in prairie, lower montane, upper montane, and subalpine life zones, respectively. Changes to earlier first appearance of adults depended on the degree to which a site warmed. The lowest site showed little warming and little phenological advancement. The next highest site (A1 warmed a small, but significant, amount and grasshopper species there showed inconsistent phenological advancements. The two highest sites warmed the most, and at these sites grasshoppers showed significant phenological advancements. At these sites, late-developing species showed the greatest advancements, a pattern that correlated with an increase in rate of late-season warming. The number of growing degree days (GDDs associated with the time to adulthood for a species was unchanged across the past and present surveys, suggesting that phenological advancement depended on when a set number of GDDs is reached during a season. CONCLUSIONS: Our analyses provide clear evidence that variation in amount and timing of warming over the growing season explains the vast majority of phenological variation in this system. Our

  1. The idiosyncrasies of place: geographic variation in the climate-distribution relationships of the American pika.

    Science.gov (United States)

    Jeffress, Mackenzie R; Rodhouse, Thomas J; Ray, Chris; Wolff, Susan; Epps, Clinton W

    2013-06-01

    Although climate acts as a fundamental constraint on the distribution of organisms, understanding how this relationship between climate and distribution varies over a species' range is critical for addressing the potential impacts of accelerated climate change on biodiversity. Bioclimatic niche models provide compelling evidence that many species will experience range shifts under scenarios of global change, yet these broad, macroecological perspectives lack specificity at local scales, where unique combinations of environment, biota, and history conspire against generalizations. We explored how these idiosyncrasies of place affect the climate-distribution relationship of the American pika (Ochotona princeps) by replicating intensive field surveys across bioclimatic gradients in eight U.S. national parks. At macroecological scales, the importance of climate as a constraint on pika distribution appears unequivocal; forecasts suggest that the species' range will contract sharply in coming decades. However, the species persists outside of its modeled bioclimatic envelope in many locations, fueling uncertainty and debate over its conservation status. Using a Bayesian hierarchical approach, we modeled variation in local patterns of pika distribution along topographic position, vegetation cover, elevation, temperature, and precipitation gradients in each park landscape. We also accounted for annual turnover in site occupancy probabilities. Topographic position and vegetation cover influenced occurrence in all parks. After accounting for these factors, pika occurrence varied widely among parks along bioclimatic gradients. Precipitation by itself was not a particularly influential predictor. However, measures of heat stress appeared most influential in the driest parks, suggesting an interaction between the strength of climate effects and the position of parks along precipitation gradients. The combination of high elevation, cold temperatures, and high precipitation

  2. A chain of processes - from past climate variations to paleoclimate reconstructions

    Science.gov (United States)

    Rehfeld, Kira; Laepple, Thomas

    2014-05-01

    Paleoclimate proxy data cover large sections of the Earth's past dynamics and hold information that is crucial to improve climate models on timescales from decades to millennia. The attribution of proxy variability to different physical climate parameters and seasons, such as, e.g., summer temperature or winter precipitation, is necessary for most model-data intercomparisons. This is, however, complicated by time-scale dependence, underdeterminacy and short overlapping periods in the calibration to modern-day data. Non-climatic and potentially archive-specific and local effects further decrease the signal-to-noise-ratio and increase the uncertainty of a paleoclimate reconstruction. The proxy data have heterogeneous origins, e.g. from marine or terrestrial archives, which grew biologically or resulted from sedimentation processes. This amplifies reconstruction uncertainty due to proxy- and archive- specific technical challenges like record sparsity, age uncertainty and sampling time irregularity. Despite these obstacles, paleoclimate reconstructions are essential to test how adequately climate models simulate long-term climate variability, and to identify potentially lacking mechanisms that propagate internal climate variability on annual to millennial timescales. Improving our understanding of paleoclimate archives and proxies will therefore enable us to obtain better climate reconstructions that are more suitable to be compared to modeled data or modern-day observations. In this contribution we aim to identify and survey the chain of processes that occurred from the moment when past environmental variations were recorded in natural paleoclimate proxies, through the human sampling, calibration and attribution process to the final reconstruction. We distinguish paleoclimate archive classes for example according to their origin, such as terrestrial, marine or biogenic, and geographical occurrence, such as alpine, tropical or polar. We are further interested in the

  3. Stable Isotopic Variations in Columnar Cacti: are Responses to Climate Recorded in Spines?

    Science.gov (United States)

    English, N. B.; Dettman, D. L.; Williams, D. G.

    2004-12-01

    The behavior of the North American monsoon (NAM), particularly with respect to times of continental drought and its relationship to the Pacific-North American (PNA) teleconnection pattern and the El Nino/Southern Oscillation (ENSO) is of great interest to paleoclimatologists and water managers. Long-term instrumental precipitation and tree ring records in the southwestern United States and northwestern Mexico at low elevations are sparse and this has hindered research on NAM variability at interannual timescales. Saguaro cacti (Carnegiea gigantea) and other columnar cacti in North and South America are long-lived and have the potential to record climate variability on land with high temporal and spatial resolution. The vertical sequence of spines on the saguaro's exterior represents a high resolution (4 to 6 per year), and long (over 150 years) record of environmental change. We present results from an experiment where we tracked the oxygen isotopic values in the source waters, stem tissue waters and spine tissue for three treatments over the course of three months. These data are then compared to a previously developed mechanistic model of isotopic variation that reflects the physiological responses of Saguaro to climate variation over seasonal to century long time-scales. We also present the rationale for a new method to determine the growth rate of columnar cacti using the radiocarbon bomb spike. Our measurements reveal that oxygen and hydrogen isotopic variation among the sequentially produced and persistent spines covering the saguaro body record fluctuations in saguaro water balance. The model successfully predicts isotopic variation in spines and constrains controlling variables, yielding a powerful and high-resolution stable isotope index of water stress in the low desert. The development and refinement of an isotopic model for saguaro will serve as the basis for models applied to other species of columnar cacti in North and South America. The role of the

  4. Temporal and spatial variations in wildlife population fluctuations in Greenland; The effect of climate, environment and man

    DEFF Research Database (Denmark)

    Moshøj, Charlotte Margaret; Forchhammer, Mads C.; Forbes, Valery E.

    2009-01-01

    Temporal and spatial variations in wildlife population fluctuations in Greenland; The effect of climate, environment and man Moshøj, C.M, M.C.Forchhammer and V.E. Forbes Temporal and spatial variations in wildlife population fluctuations in Greenland; The effect of climate, environment and man...... and mammals display distinct population fluctuations of varying temporal and spatial scale. In Greenland, historical records, archaeological findings and oral accounts passed on from Inuit elders all document that the presence of wildlife species and their population sizes have undergone pronounced....... The results of this study will model future predictions of wildlife populations under changing climate variables and human hunting pressure....

  5. Assessing the impact of climate variability and human activities on streamflow variation

    Science.gov (United States)

    Chang, Jianxia; Zhang, Hongxue; Wang, Yimin; Zhu, Yuelu

    2016-04-01

    Water resources in river systems have been changing under the impact of both climate variability and human activities. Assessing the respective impact on decadal streamflow variation is important for water resource management. By using an elasticity-based method and calibrated TOPMODEL and VIC hydrological models, we quantitatively isolated the relative contributions that human activities and climate variability made to decadal streamflow changes in the Jinghe basin, located in the northwest of China. This is an important watershed of the Shaanxi province that supplies drinking water for a population of over 6 million people. The results showed that the maximum value of the moisture index (E0/P) was 1.91 and appeared in 1991-2000, and the decreased speed of streamflow was higher since 1990 compared with 1960-1990. The average annual streamflow from 1990 to 2010 was reduced by 26.96 % compared with the multiyear average value (from 1960 to 2010). The estimates of the impacts of climate variability and human activities on streamflow decreases from the hydrological models were similar to those from the elasticity-based method. The maximum contribution value of human activities was 99 % when averaged over the three methods, and appeared in 1981-1990 due to the effects of soil and water conservation measures and irrigation water withdrawal. Climate variability made the greatest contribution to streamflow reduction in 1991-2000, the values of which was 40.4 %. We emphasized various source of errors and uncertainties that may occur in the hydrological model (parameter and structural uncertainty) and elasticity-based method (model parameter) in climate change impact studies.

  6. Extreme Climate Variations from Milankovitch-like Eccentricity Oscillations in Extrasolar Planetary Systems

    CERN Document Server

    Spiegel, David S

    2010-01-01

    Although our solar system features predominantly circular orbits, the exoplanets discovered so far indicate that this is the exception rather than the rule. This could have crucial consequences for exoplanet climates, both because eccentric terrestrial exoplanets could have extreme seasonal variation, and because giant planets on eccentric orbits could excite Milankovitch-like variations of a potentially habitable terrestrial planet,\\"A\\^os eccentricity, on timescales of thousands-to-millions of years. A particularly interesting implication concerns the fact that the Earth is thought to have gone through at least one globally frozen, "snowball" state in the last billion years that it presumably exited after several million years of buildup of greenhouse gases when the ice-cover shut off the carbonate-silicate cycle. Water-rich extrasolar terrestrial planets with the capacity to host life might be at risk of falling into similar snowball states. Here we show that if a terrestrial planet has a giant companion o...

  7. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: a case study

    Science.gov (United States)

    Rainfall and air temperature variations resulting from climate change are important driving forces to alter hydrologic processes in watershed ecosystems. This study investigated impacts of past and potential future rainfall and air temperature variations upon water discharge, water outflow (from th...

  8. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: A case study

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang; Yide Li; Prem Parajuli; Gary Feng

    2015-01-01

    Rainfall and air temperature variations resulting from climate change are important driving forces to change hydrologic processes in watershed ecosystems. This study investigated the impacts of past and future rainfall and air temperature variations upon water discharge, water outflow (from the watershed outlet), and evaporative loss in the Lower Yazoo River Watershed...

  9. Temporal variation of out-of-hospital cardiac arrests in an equatorial climate

    Directory of Open Access Journals (Sweden)

    Marcus EH Ong

    2010-04-01

    Full Text Available Marcus EH Ong1, Faith SP Ng2, Susan Yap1, Kok Leong Yong1, Mary A Peberdy3, Joseph P Ornato41Department of Emergency Medicine, Singapore General Hospital, Singapore; 2Clinical Trials and Epidemiology Research Unit (now known as Singapore Clinical Research Institute, Singapore; 3Division of Cardiology, Virginia Commonwealth University – Medical College of Virginia, Richmond, VA, USA; 4Department of Emergency Medicine, Virginia Commonwealth University – Medical College of Virginia, Richmond, VA, USAObjective: We aimed to determine whether there is a seasonal variation of out-of-hospital cardiac arrests (OHCA in an equatorial climate, which does not experience seasonal environmental change.Methods: We conducted an observational prospective study looking at the occurrence of OHCA in Singapore. Included were all patients with OHCA presented to Emergency Departments across the country. We examined the monthly, daily, and hourly number of cases over a threeyear period. Data was analyzed using analysis of variance (ANOVA.Results: From October, 1st 2001 to October, 14th 2004, 2428 patients were enrolled in the study. Mean age for cardiac arrests was 60.6 years with 68.0% male. Ethnic distribution was 69.5% Chinese, 15.0% Malay, 11.0% Indian, and 4.4% Others. There was no significant seasonal variation (spring/summer/fall/winter of events (ANOVA P = 0.71, monthly variation (P = 0.88 or yearly variation (P = 0.26. We did find weekly peaks on Mondays and a circadian pattern with daily peaks from 9–10 am.Conclusions: We did not find any discernable seasonal pattern of cardiac arrests. This contrasts with findings from temperate countries and suggests a climatic influence on cardiac arrest occurrence. We also found that sudden cardiac arrests follow a circadian pattern.Keywords: cardiopulmonary resuscitation, cardiac arrest, seasonal pattern, circadian pattern

  10. Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics.

    Science.gov (United States)

    Hand, Brian K; Muhlfeld, Clint C; Wade, Alisa A; Kovach, Ryan P; Whited, Diane C; Narum, Shawn R; Matala, Andrew P; Ackerman, Michael W; Garner, Brittany A; Kimball, John S; Stanford, Jack A; Luikart, Gordon

    2016-02-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST ) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  11. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    Science.gov (United States)

    Hand, Brian K; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  12. A variational approach to environmental and climatic problems of urban agglomerations

    Science.gov (United States)

    Penenko, V. V.; Tsvetova, E. A.

    2016-11-01

    We discuss some aspects of the development of a variational approach to study the dynamics of climatic and ecological systems under intensive actions of natural and anthropogenic origin. The variational principle essentially represents a versatile tool to create a consistent modeling technology based on models of processes coupled with available observational data. The basic entities included in the formulation of the variational principle are models of processes; data and models of observations; target criteria for forecasting; a priori information about all the required elements of the system. We develop a set of mathematical models combined within the framework of the variational principle. They describe the dynamics of the atmosphere and water bodies in conjunction with a thermally and dynamically heterogeneous surface of the Earth; the hydrological cycle, moisture in the atmosphere and the soil; radiation transfer in the system of the atmosphere and the underlying surface; and transport and transformation of various substances in gaseous and aerosol states in the atmosphere. As an example, we demonstrate the results of calculations performed with a set of numerical models adapted to the conditions of a Novosibirsk city agglomeration. The results of scenario calculations on the formation of mesoclimates and quality of the atmosphere for the typical conditions of Siberian cities are presented.

  13. Asynchrony of seasons: genetic differentiation associated with geographic variation in climatic seasonality and reproductive phenology.

    Science.gov (United States)

    Quintero, Ignacio; González-Caro, Sebastián; Zalamea, Paul-Camilo; Cadena, Carlos Daniel

    2014-09-01

    Many organisms exhibit distinct breeding seasons tracking food availability. If conspecific populations inhabit areas that experience different temporal cycles in food availability spurred by variation in precipitation regimes, then they should display asynchronous breeding seasons. Thus, such populations might exhibit a temporal barrier to gene flow, which may potentially promote genetic differentiation. We test a central prediction of this hypothesis, namely, that individuals living in areas with more asynchronous precipitation regimes should be more genetically differentiated than individuals living in areas with more similar precipitation regimes. Using mitochondrial DNA sequences, climatic data, and geographical/ecological distances between individuals of 57 New World bird species mostly from the tropics, we examined the effect of asynchronous precipitation (a proxy for asynchronous resource availability) on genetic differentiation. We found evidence for a positive and significant cross-species effect of precipitation asynchrony on genetic distance after accounting for geographical/ecological distances, suggesting that current climatic conditions may play a role in population differentiation. Spatial asynchrony in climate may thus drive evolutionary divergence in the absence of overt geographic barriers to gene flow; this mechanism contrasts with those invoked by most models of biotic diversification emphasizing physical or ecological changes to the landscape as drivers of divergence.

  14. Selection for earlier flowering crop associated with climatic variations in the Sahel.

    Directory of Open Access Journals (Sweden)

    Yves Vigouroux

    Full Text Available Climate changes will have an impact on food production and will require costly adaptive responses. Adapting to a changing environment will be particularly challenging in sub-Saharan Africa where climate change is expected to have a major impact. However, one important phenomenon that is often overlooked and is poorly documented is the ability of agro-systems to rapidly adapt to environmental variations. Such an adaptation could proceed by the adoption of new varieties or by the adaptation of varieties to a changing environment. In this study, we analyzed these two processes in one of the driest agro-ecosystems in Africa, the Sahel. We performed a detailed study in Niger where pearl millet is the main crop and covers 65% of the cultivated area. To assess how the agro-system is responding to recent recurrent drought, we analyzed samples of pearl millet landraces collected in the same villages in 1976 and 2003 throughout the entire cultivated area of Niger. We studied phenological and morphological differences in the 1976 and 2003 collections by comparing them over three cropping seasons in a common garden experiment. We found no major changes in the main cultivated varieties or in their genetic diversity. However, we observed a significant shift in adaptive traits. Compared to the 1976 samples, samples collected in 2003 displayed a shorter lifecycle, and a reduction in plant and spike size. We also found that an early flowering allele at the PHYC locus increased in frequency between 1976 and 2003. The increase exceeded the effect of drift and sampling, suggesting a direct effect of selection for earliness on this gene. We conclude that recurrent drought can lead to selection for earlier flowering in a major Sahelian crop. Surprisingly, these results suggest that diffusion of crop varieties is not the main driver of short term adaptation to climatic variation.

  15. Effects of seasonal and climate variations on calves' thermal comfort and behaviour.

    Science.gov (United States)

    Tripon, Iulian; Cziszter, Ludovic Toma; Bura, Marian; Sossidou, Evangelia N

    2014-09-01

    The aim of this study was to measure the effect of season and climate variations on thermal comfort and behaviour of 6-month-old dairy calves housed in a semi-opened shelter to develop animal-based indicators for assessing animal thermal comfort. The ultimate purpose was to further exploit the use of those indicators to prevent thermal stress by providing appropriate care to the animals. Measurements were taken for winter and summer seasons. Results showed that season significantly influenced (P ≤ 0.01) the lying down behaviour of calves by reducing the time spent lying, from 679.9 min in winter to 554.1 min in summer. Moreover, season had a significant influence (P ≤ 0.01) on feeding behaviour. In detail, the total length of feeding periods was shorter in winter, 442.1 min in comparison to 543.5 min in summer. Time spent drinking increased significantly (P ≤ 0.001), from 11.9 min in winter to 26.9 min in summer. Furthermore, season had a significant influence (P ≤ 0.001) on self grooming behaviour which was 5.5 times longer in duration in winter than in summer (1,336 s vs 244 s). It was concluded that calves' thermal comfort is affected by seasonal and climate variations and that this can be assessed by measuring behaviour with animal-based indicators, such as lying down, resting, standing up, feeding, rumination, drinking and self grooming. The indicators developed may be a useful tool to prevent animal thermal stress by providing appropriate housing and handling to calves under seasonal and climate challenge.

  16. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout

    Science.gov (United States)

    Muhlfeld, Clint C.; Kovach, Ryan P.; Al-Chokhachy, Robert K.; Amish, Stephen J.; Kershner, Jeffrey L.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Matson, Phil; Schmetterling, David A.; Shepard, Bradley B.; Westley, Peter A. H.; Whited, Diane; Whiteley, Andrew R.; Allendorf, Fred W.

    2017-01-01

    Hybridization between invasive and native species, a significant threat to worldwide biodiversity, is predicted to increase due to climate-induced expansions of invasive species. Long-term research and monitoring are crucial for understanding the ecological and evolutionary processes that modulate the effects of invasive species. Using a large, multi-decade genetics dataset (N = 582 sites, 12,878 individuals) with high-resolution climate predictions and extensive stocking records, we evaluate the spatiotemporal dynamics of hybridization between native cutthroat trout and invasive rainbow trout, the world’s most widely introduced invasive fish, across the northern Rocky Mountains of the United States. Historical effects of stocking and contemporary patterns of climatic variation were strongly related to the spread of hybridization across space and time. The probability of occurrence, extent of, and temporal changes in hybridization increased at sites in close proximity to historical stocking locations with greater rainbow trout propagule pressure, warmer water temperatures, and lower spring precipitation. Although locations with warmer water temperatures were more prone to hybridization, cold sites were not protected from invasion; 58% of hybridized sites had cold mean summer water temperatures (<11oC). Despite cessation of stocking over 40 years ago, hybridization increased over time at half (50%) of the locations with long-term data, the vast majority of which (74%) were initially non-hybridized, emphasizing the chronic, negative impacts of human-mediated hybridization. These results show that effects of climate change on biodiversity must be analyzed in the context of historical human impacts that set ecological and evolutionary trajectories.

  17. Geographic Variation of Rice Yield Response to Past Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    YANG Jie; XIONG Wei; YANG Xiao-guang; CAO Yang; FENG Ling-zhi

    2014-01-01

    Previous studies demonstrated climate change had reduced rice yield in China, but the magnitude of the reduction and the spatial variations of the impact have remained in controversy to date. Based on a gridded daily weather dataset, we found there were obvious changes in temperatures, diurnal temperature range, and radiation during the rice-growing season from 1961 to 2010 in China. These changes resulted in a signiifcant decline of simulated national rice yield (simulated with CERES-Rice), with a magnitude of 11.5%. However, changes in growing-season radiation and diurnal temperature range, not growing-season temperatures, contributed most to the simulated yield reduction, which conifrmed previous estimates by empirical studies. Yield responses to changes of the climatic variables varied across different rice production areas. In rice production areas with the mean growing-season temperature at 12-14°C and above 20°C, a 1°C growing-season warming decreased rice yield by roughly 4%. This decrease was partly attributed to increased heat stresses and shorter growth period under the warmer climate. In some rice areas of the southern China and the Yangtze River Basin where the rice growing-season temperature was greater than 20°C, decrease in the growing-season radiation partly interpreted the widespread yield decline of the simulation, suggesting the signiifcant negative contribution of recent global dimming on rice production in China’s main rice areas. Whereas in the northern rice production areas with relatively low growing-season temperature, decrease of the diurnal temperature range was identiifed as the main climatic contributor for the decline of simulated rice yield, with larger decreasing magnitude under cooler areas.

  18. INTERDECADAL VARIATION OF THE RELATIONSHIP BETWEEN ENSO AND SUMMER INTERANNUAL CLIMATE VARIABILITY IN CHINA

    Institute of Scientific and Technical Information of China (English)

    ZHU Yimin; YANG Xiu-qun; CHEN Xiao-ying; ZHAO Shan-shan; SUN Xu-guang

    2007-01-01

    Interdecadal variation of the relationships between ENSO and the summer interannual climate variability in China is investigated by using techniques of sliding correlation analysis with the tropical Pacific SSTA and the observed surface air temperature and precipitation from stations in China. The results indicate that there are stable and robust relations that the Northern China is relatively dry during the developing phase of ENSO while the Yangtze River valley is relatively wet during the decaying phase of ENSO. On the other hand, interdecadal variations of the relations are also found in other regions. Over the time both prior to the Pacific decadal climate shift (before the late 1970s) and after it (after the late 1970s),during the developing phases of ENSO the summer precipitation anomaly in South China changed from below to above normal, whereas that in Northeast China changed from above to below normal; the summer surface air temperature anomaly in North and Northeast China changed fiom cooling to warming, whereas that in South China changed to cooling; during the decaying phases of ENSO the North China changed from wetter to dryer while the Huai River valley changed from dryer to normal; North China, Yangtze River valley and South China tend to be warmer. Based on the composite analysis of the NCAR/NCEP reanalyze datasets, significant differences existing in ENSO-related atmospheric circulation anomaly in East Asia during pre- and post-shift periods may be responsible for the interdecadal variation of relationships between ENSO and surface air temperature and precipitation in China.

  19. Are Sierran Lakes Warming as a Result of Climate Change? The Effects of Climate Warming and Variation in Precipitation on Water Temperature in a Snowmelt-Dominated Lake

    Science.gov (United States)

    Sadro, S.; Melack, J. M.; Sickman, J. O.; Skeen, K.

    2016-12-01

    Water temperature regulates a broad range of fundamental ecosystem processes in lakes. While climate can be an important factor regulating lake temperatures, heterogeneity in the warming response of lakes is large, and variation in precipitation is rarely considered. We analyzed three decades of climate and water temperature data from a high-elevation catchment in the southern Sierra Nevada of California to illustrate the magnitude of warming taking place during different seasons and the role of precipitation in regulating lake temperatures. Significant climate warming trends were evident during all seasons except spring. Nighttime rates of climate warming were approximately 25% higher than daytime rates. Spatial patterns in warming were elevation dependent, with rates of temperature increase higher at sites above 2800 m.a.s.l. than below. Although interannual variation in snow deposition was high, the frequency and severity of recent droughts has contributed to a significant 3.4 mm year -1 decline in snow water equivalent over the last century. Snow accumulation, more than any other climate factor, regulated lake temperature; 94% of variation in summer lake temperature was regulated by precipitation as snow. For every 100 mm decrease in snow water equivalent there was a 0.62 ° increase in lake temperature. Drought years amplify warming in lakes by reducing the role of cold spring meltwaters in lake energy budgets and prolonging the ice-free period during which lakes warm. The combination of declining winter snowpack and warming air temperatures has the capacity to amplify the effect of climate warming on lake temperatures during drought years. Interactions among climatic factors need to be considered when evaluating ecosystem level effects, especially in mountain regions. For mountain lakes already affected by drought, continued climate warming during spring and autumn has the greatest potential to impact mean lake temperatures.

  20. Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models.

    Science.gov (United States)

    Knight, Christopher G; Knight, Sylvia H E; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J; Kettleborough, Jamie A; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A; Allen, Myles R

    2007-07-24

    In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally.

  1. Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE

    Science.gov (United States)

    Felfelani, Farshid; Wada, Yoshihide; Longuevergne, Laurent; Pokhrel, Yadu N.

    2017-10-01

    Hydrological models and the data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have been widely used to study the variations in terrestrial water storage (TWS) over large regions. However, both GRACE products and model results suffer from inherent uncertainties, calling for the need to make a combined use of GRACE and models to examine the variations in total TWS and their individual components, especially in relation to natural and human-induced changes in the terrestrial water cycle. In this study, we use the results from two state-of-the-art hydrological models and different GRACE spherical harmonic products to examine the variations in TWS and its individual components, and to attribute the changes to natural and human-induced factors over large global river basins. Analysis of the spatial patterns of the long-term trend in TWS from the two models and GRACE suggests that both models capture the GRACE-measured direction of change, but differ from GRACE as well as each other in terms of the magnitude over different regions. A detailed analysis of the seasonal cycle of TWS variations over 30 river basins shows notable differences not only between models and GRACE but also among different GRACE products and between the two models. Further, it is found that while one model performs well in highly-managed river basins, it fails to reproduce the GRACE-observed signal in snow-dominated regions, and vice versa. The isolation of natural and human-induced changes in TWS in some of the managed basins reveals a consistently declining TWS trend during 2002-2010, however; significant differences are again obvious both between GRACE and models and among different GRACE products and models. Results from the decomposition of the TWS signal into the general trend and seasonality indicate that both models do not adequately capture both the trend and seasonality in the managed or snow-dominated basins implying that the TWS variations from a

  2. Cosmic Rays and Solar Insolation as the Main Control Parameters of the Catastrophe Theory of Climatic Response to Orbital Variations

    OpenAIRE

    V. D. Rusov; Glushkov, A. V.; Vaschenko, V. N.; Pavlovich, V. N.; Zelentsova, T. N.; Mihalus, O. T.; Tarasov, V. A.; Saranuk, D. N.

    2004-01-01

    The energy-balance model of global climate, which is taking into account a nontrivial role of solar and galactic protons, is presented. The model is described by the equation of fold catastrophe relative to increment of temperature, where the variation of a solar insolation and cosmic rays are control parameters. It is shown that the bifurcation equation of the model describes one of two stable states of the climate system. The solution of this equation exhibits the property of the determined...

  3. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium

    Science.gov (United States)

    Solomina, Olga; Bushueva, Irina; Dolgova, Ekaterina; Jomelli, Vincent; Alexandrin, Mikhail; Mikhalenko, Vladimir; Matskovsky, Vladimir

    2016-05-01

    In the Northern Caucasus, glacier and climatic variations over the past centuries remain insufficiently documented. In this review, we summarized the high-resolution information on glacier and climate fluctuations in the region for the past millennium and provided a synthesis of these two lines of evidence with respect to regional climate change. The key areas considered in the paper are the Elbrus area, the Teberda and Arkhyz valleys in the Western Caucasus and the Cherek Bezengiisky and Tsey valleys in the Eastern Caucasus, where the most paleoclimatic evidence has been retrieved. We focused on the fluctuation records of the ten glaciers that are best documented. To reconstruct changes in glacier length in the past, we used aerial photos, optical space images, repeated photographs and old maps. The ages of moraines were defined with the help of instrumental records, historical images, old maps, and tree-ring dating. Lichenometry was used as a supplementary tool to determine the relative ages of glacial landforms. We reviewed the collection of control points used for the lichenometric curves and determined the time limit of potential use of this method in the Caucasus to be up to one millennium. High-resolution tree-ring-based hydroclimatic reconstructions in the Northern Caucasus are presented based on the reconstruction of June-September temperature (1595-2012 CE), the mass balance reconstruction of the Garabashi Glacier (1800-2008 CE) and the runoff of the Teberda River (low-frequency variations) for May, July and August for 1850-2005 CE. The synthesis of all the available paleoclimatic records revealed several distinct climatic periods. Evidence of a warm interval (traditionally referred to as the "Arkhyz break in glaciation") preceding the Little Ice Age (LIA) in the Caucasus is based on archeological, palynological, geochemical and pedological data. However, the conclusions concerning the duration and magnitude of this warming are still vague due to the low

  4. Effects of climatic variation on field metabolism and water relations of desert tortoises

    Science.gov (United States)

    Henen, B.T.; Peterson, C.C.; Wallis, I.R.; Berry, K.H.; Nagy, K.A.

    1998-01-01

    We used the doubly labeled water method to measure the field metabolic rates (FMRs, in kJ kg-1 day-1) and water flux rates (WIRs, in ml H2O kg-1 day-1) of adult desert tortoises (Gopherus agassizii) in three parts of the Mojave Desert in California over a 3.5-year period, in order to develop insights into the physiological responses of this threatened species to climate variation among sites and years. FMR, WIR, and the water economy index (WEI, in ml H2O kJ-1, an indicator of drinking of free water) differed extensively among seasons, among study sites, between sexes, and among years. In high-rainfall years, males had higher FMRs than females. Average daily rates of energy and water use by desert tortoises were extraordinarily variable: 28-fold differences in FMR and 237-fold differences in WIR were measured. Some of this variation was due to seasonal conditions, with rates being low during cold winter months and higher in the warm seasons. However, much of the variation was due to responses to year-to-year variation in rainfall. Annual spring peaks in FMR and WIR were higher in wet years than in drought years. Site differences in seasonal patterns were apparently due to geographic differences in rainfall patterns (more summer rain at eastern Mojave sites). In spring 1992, during an El Nino (ENSO) event, the WEI was greater than the maximal value obtainable from consuming succulent vegetation, indicating copious drinking of rainwater at that time. The physiological and behavioral flexibility of desert tortoises, evident in individuals living at all three study sites, appears central to their ability to survive droughts and benefit from periods of resource abundance. The strong effects of the El Nino (ENSO) weather pattern on tortoise physiology, reproduction, and survival elucidated in this and other studies suggest that local manifestations of global climate events could have a long-term influence on the tortoise populations in the Mojave Desert.

  5. Sensitivity of the French Alps snow cover to the variation of climatic variables

    Directory of Open Access Journals (Sweden)

    E. Martin

    Full Text Available In order to study the sensitivity of snow cover to changes in meteorological variables at a regional scale, a numerical snow model and an analysis system of the meteorological conditions adapted to relief were used. This approach has been successfully tested by comparing simulated and measured snow depth at 37 sites in the French Alps during a ten year data period. Then, the sensitivity of the snow cover to a variation in climatic conditions was tested by two different methods, which led to very similar results. To assess the impact of a particular "doubled CO2" scenario, coherent perturbations were introduced in the input data of the snow model. It was found that although the impact would be very pronounced, it would also be extremely differentiated, dependent on the internal state of the snow cover. The most sensitive areas are the elevations below 2400 m, especially in the southern part of the French Alps.

  6. From field to region yield predictions in response to pedo-climatic variations in Eastern Canada

    Science.gov (United States)

    JÉGO, G.; Pattey, E.; Liu, J.

    2013-12-01

    The increase in global population coupled with new pressures to produce energy and bioproducts from agricultural land requires an increase in crop productivity. However, the influence of climate and soil variations on crop production and environmental performance is not fully understood and accounted for to define more sustainable and economical management strategies. Regional crop modeling can be a great tool for understanding the impact of climate variations on crop production, for planning grain handling and for assessing the impact of agriculture on the environment, but it is often limited by the availability of input data. The STICS ("Simulateur mulTIdisciplinaire pour les Cultures Standard") crop model, developed by INRA (France) is a functional crop model which has a built-in module to optimize several input parameters by minimizing the difference between calculated and measured output variables, such as Leaf Area Index (LAI). STICS crop model was adapted to the short growing season of the Mixedwood Plains Ecozone using field experiments results, to predict biomass and yield of soybean, spring wheat and corn. To minimize the numbers of inference required for regional applications, 'generic' cultivars rather than specific ones have been calibrated in STICS. After the calibration of several model parameters, the root mean square error (RMSE) of yield and biomass predictions ranged from 10% to 30% for the three crops. A bit more scattering was obtained for LAI (20%climate variations. Using RS data to re-initialize input parameters that are not readily available (e.g. seeding date) is considered an effective way

  7. Study on Catchment Runoff Variations and Possible Responds to Climate Change and Human Activities

    Science.gov (United States)

    Qin, J.; Chen, Y.

    2016-12-01

    Under the influence of global climate change and human activities,the spatial-temporal distribution of precipitation has changed significantly which drives catchment hydrological processes changes.To better understand the characteristic and causes of runoff variations at different periods which would impacts catchment flood disaster risk, the Utaphao catchment is studied whichis a typical catchment in southern Thailand.Based on daily hydrological data from 1971 to 2014,selecting representative raingauges and stream gauging stations from the catchment as research stations. Using the methods of Mann-Kendall test and serial cluster analysis, this paper studied the characteristics and laws of historical hydrological process in Utaphao catchment, detects the impact of changing environment to watershed hydrological processes,the results show that the runoff and precipitation havesome kinds of changes.

  8. Using Stochastically Downscaled Climate Models and Multiproxy Lake Sediment Data to Connect Climatic Variations Over the Past 1000 Years and the History of Prehistoric Maize Farming in Utah

    Science.gov (United States)

    Thomson, M. J.; MacDonald, G. M.

    2015-12-01

    We are investigating the relationship between climatic variations over the past 1000 years and the history of prehistoric maize farming expansion and decline in the American Southwest, with a focus on Utah. We are examining both the downscaled climate models and high resolution analyses of lake cores and dendrochronological data matched with occupation information. We are testing the specific utility of stochastically downscaled general circulation models (viz. ECHO-G) to reconstruct local conditions for sites with documented prehistoric dryland farming through the so-called Medieval Climate Anomaly (MCA) and transition to the Little Ice Age (LIA). We are testing our model-based reconstructions with proxies of temperature and aridity from three subalpine lake sediment cores transecting Utah. We compare the patterns of climate change from the downscaled models and the paleoclimate records to a database of 837 radiocarbon dates over 169 locations of archaeological Native American maize-farmer site occupations in Utah.

  9. Local climate and cultivation, but not ploidy, predict functional trait variation in Bouteloua gracilis (Poaceae)

    Science.gov (United States)

    Butterfield, Bradley J.; Wood, Troy E.

    2015-01-01

    Efforts to improve the diversity of seed 18 resources for important restoration species has become a high priority for land managers in many parts of the world. Relationships between functional trait values and the environment from which seed sources are collected can provide important insights into patterns of local adaptation and guidelines for seed transfer. However, little is known about which functional traits exhibit genetic differentiation across populations of restoration species and thus may contribute to local adaptation. Here, we report the results of a common garden experiment aimed at assessing genetic (including ploidy level) and environmental regulation of several functional traits among populations of Bouteloua gracilis, a dominant C4 grass and the most highly utilized restoration species across much of the Colorado Plateau. We found that leaf size and specific leaf area (SLA) varied significantly among populations, and were strongly correlated with the source population environment from which seeds were collected. However, variation in ploidy level had no significant effect on functional traits. Leaves of plants grown from commercial seed releases were significantly larger and had lower SLA than those from natural populations, a result that is concordant with the overall relation between climate and these two functional traits. We suggest that the patterns of functional trait variation shown here may extend to other grass species in the western USA, and may serve as useful proxies for more extensive genecology research. Furthermore, we argue that care should be taken to develop commercial seed lines with functional trait values that match those of natural populations occupying climates similar to target restoration sites.

  10. Variations in Modeled Dengue Transmission over Puerto Rico Using a Climate Driven Dynamic Model

    Science.gov (United States)

    Morin, Cory; Monaghan, Andrew; Crosson, William; Quattrochi, Dale; Luvall, Jeffrey

    2014-01-01

    Dengue fever is a mosquito-borne viral disease reemerging throughout much of the tropical Americas. Dengue virus transmission is explicitly influenced by climate and the environment through its primary vector, Aedes aegypti. Temperature regulates Ae. aegypti development, survival, and replication rates as well as the incubation period of the virus within the mosquito. Precipitation provides water for many of the preferred breeding habitats of the mosquito, including buckets, old tires, and other places water can collect. Because of variations in topography, ocean influences and atmospheric processes, temperature and rainfall patterns vary across Puerto Rico and so do dengue virus transmission rates. Using NASA's TRMM (Tropical Rainfall Measuring Mission) satellite for precipitation input, ground-based observations for temperature input, and laboratory confirmed dengue cases reported by the Centers for Disease Control and Prevention for parameter calibration, we modeled dengue transmission at the county level across Puerto Rico from 2010-2013 using a dynamic dengue transmission model that includes interacting vector ecology and epidemiological components. Employing a Monte Carlo approach, we performed ensembles of several thousands of model simulations for each county in order to resolve the model uncertainty arising from using different combinations of parameter values that are not well known. The top 1% of model simulations that best reproduced the reported dengue case data were then analyzed to determine the most important parameters for dengue virus transmission in each county, as well as the relative influence of climate variability on transmission. These results can be used by public health workers to implement dengue control methods that are targeted for specific locations and climate conditions.

  11. Patient Safety Climate: Variation in Perceptions by Infection Preventionists and Quality Directors

    Directory of Open Access Journals (Sweden)

    Shanelle Nelson

    2011-01-01

    Full Text Available Background. Healthcare-associated infections (HAIs are an important patient safety issue, and safety climate is an important organizational factor. This study explores perceptions of infection preventionists (IPs and quality directors (QDs regarding two safety microclimates, Senior Management Engagement (SME and Leadership on Patient Safety (LOPS, across California hospitals. Methods. This was an analysis of two cross-sectional surveys. We conducted Wilcoxon signed-rank test, univariate analyses, and a multivariate ordinary least square regression. Results. There were 322 eligible hospitals; 149 hospitals (46.3% responded to both surveys. The IP response rate was 59%, and the QD response rate was 79.5%. We found IPs perceived SME more positively than did QDs (21.4 vs. 20.4, <0.01. No setting characteristics predicted variation in perceptions. Presence of an independent budget predicted more positive perceptions of microclimates across personnel types (<0.01. Conclusions. Differences in perceptions continue to exist between essential leaders in acute health care settings which could have critical effects on outcomes such as HAIs. Having an independent budget for the infection prevention and control department may enhance the overall safety climate and in turn patient care.

  12. Variations of the earth's magnetic field and rapid climatic cooling: A possible link through changes in global ice volume

    Science.gov (United States)

    Rampino, M. R.

    1979-01-01

    A possible relationship between large scale changes in global ice volume, variations in the earth's magnetic field, and short term climatic cooling is investigated through a study of the geomagnetic and climatic records of the past 300,000 years. The calculations suggest that redistribution of the Earth's water mass can cause rotational instabilities which lead to geomagnetic excursions; these magnetic variations in turn may lead to short-term coolings through upper atmosphere effects. Such double coincidences of magnetic excursions and sudden coolings at times of ice volume changes have occurred at 13,500, 30,000, 110,000, and 135,000 YBP.

  13. Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis

    Science.gov (United States)

    King, Richard B.; Adamski, John M.; Anton, Thomas G.; Bailey, Robyn L.; Baker, Sarah J.; Bieser, Nickolas D.; Bell, Thomas A.; Bissell, Kristin M.; Bradke, Danielle R.; Campa, Henry; Casper, Gary S.; Cedar, Karen; Cross, Matthew D.; DeGregorio, Brett A.; Dreslik, Michael J.; Faust, Lisa J.; Harvey, Daniel S.; Hay, Robert W.; Jellen, Benjamin C.; Johnson, Brent D.; Johnson, Glenn; Kiel, Brooke D.; Kingsbury, Bruce A.; Kowalski, Matthew J.; Lee, Yu Man; Lentini, Andrew M.; Marshall, John C.; Mauger, David; Moore, Jennifer A.; Paloski, Rori A.; Phillips, Christopher A.; Pratt, Paul D.; Preney, Thomas; Prior, Kent A.; Promaine, Andrew; Redmer, Michael; Reinert, Howard K.; Rouse, Jeremy D.; Shoemaker, Kevin T.; Sutton, Scott; VanDeWalle, Terry J.; Weatherhead, Patrick J.; Wynn, Doug; Yagi, Anne

    2017-01-01

    Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size–fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size–fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change. PMID:28196149

  14. Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations

    Science.gov (United States)

    Wang, Chunzai; Wang, Xidong; Weisberg, Robert H.; Black, Michael L.

    2017-02-01

    The paper uses observational data from 1950 to 2014 to investigate rapid intensification (RI) variability of tropical cyclones (TCs) in the North Atlantic and its relationships with large-scale climate variations. RI is defined as a TC intensity increase of at least 15.4 m/s (30 knots) in 24 h. The seasonal RI distribution follows the seasonal TC distribution, with the highest number in September. Although an RI event can occur anywhere over the tropical North Atlantic (TNA), there are three regions of maximum RI occurrence: (1) the western TNA of 12°N-18°N and 60°W-45°W, (2) the Gulf of Mexico and the western Caribbean Sea, and (3) the open ocean southeast and east of Florida. RI events also show a minimum value in the eastern Caribbean Sea north of South America—a place called a hurricane graveyard due to atmospheric divergence and subsidence. On longer time scales, RI displays both interannual and multidecadal variability, but RI does not show a long-term trend due to global warming. The top three climate indices showing high correlations with RI are the June-November ENSO and Atlantic warm pool indices, and the January-March North Atlantic oscillation index. It is found that variabilities of vertical wind shear and TC heat potential are important for TC RI in the hurricane main development region, whereas relative humidity at 500 hPa is the main factor responsible for TC RI in the eastern TNA. However, the large-scale oceanic and atmospheric variables analyzed in this study do not show an important role in TC RI in the Gulf of Mexico and the open ocean southeast and east of Florida. This suggests that other factors such as small-scale changes of oceanic and atmospheric variables or TC internal processes may be responsible for TC RI in these two regions. Additionally, the analyses indicate that large-scale atmospheric and oceanic variables are not critical to TC genesis and formation; however, once a tropical depression forms, large-scale climate

  15. Arctic sea ice bordering on the North Atlantic and intera- nnual climate variations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Variations of winter Arctic sea ice bordering on the North Atlantic are closely related to climate variations in the same region. When winter North Atlantic Oscillation (NAO) index is positive (negative) anomaly phase, Icelandic Low is obviously deepened and shifts northwards (southwards). Simultaneously, the Subtropical High over the North Atlantic is also intensified, and moves northwards (south-wards). Those anomalies strengthen (weaken) westerly be-tween Icelandic Low and the Subtropical High, and further result in positive (negative) sea surface temperature (SST) anomalies in the mid-latitude of the North Atlantic, and increase (decrease) the warm water transportation from the mid-latitude to the Barents Sea, which causes positive (nega-tive) mixed-layer water temperature anomalies in the south part of the Barents Sea. Moreover, the distribution of anom-aly air temperature clearly demonstrates warming (cooling) in northern Europe and the subarctic regions (including the Barents Sea) and cooling (warming) in Baffin Bay/ Davis Strait. Both of distributions of SST and air temperature anomalies directly result in sea ice decrease (increase) in the Barents/Kara Seas, and sea ice increase (decrease) in Baffin Bay/Davis Strait.

  16. Land surface phenological responses to land use and climate variation in a changing Central Asia

    Science.gov (United States)

    Kariyeva, Jahan

    During the last few decades Central Asia has experienced widespread changes in land cover and land use following the socio-economic and institutional transformations of the region catalyzed by the USSR collapse in 1991. The decade-long drought events and steadily increasing temperature regimes in the region came on top of these institutional transformations, affecting the long term and landscape scale vegetation responses. This research is based on the need to better understand the potential ecological and policy implications of climate variation and land use practices in the contexts of landscape-scale changes dynamics and variability patterns of land surface phenology responses in Central Asia. The land surface phenology responses -- the spatio-temporal dynamics of terrestrial vegetation derived from the remotely sensed data -- provide measurements linked to the timing of vegetation growth cycles (e.g., start of growing season) and total vegetation productivity over the growing season, which are used as a proxy for the assessment of effects of variations in environmental settings. Local and regional scale assessment of the before and after the USSR collapse vegetation response patterns in the natural and agricultural systems of the Central Asian drylands was conducted to characterize newly emerging links (since 1991) between coupled human and natural systems, e.g., socio-economic and policy drivers of altered land and water use and distribution patterns. Spatio-temporal patterns of bioclimatic responses were examined to determine how phenology is associated with temperature and precipitation in different land use types, including rainfed and irrigated agricultural types. Phenological models were developed to examine relationship between environmental drivers and effect of their altitudinal and latitudinal gradients on the broad-scale vegetation response patterns in non-cropland ecosystems of the desert, steppe, and mountainous regional landscapes of Central Asia

  17. Water Vapor Feedback and Links to Mechanisms of Recent Tropical Climate Variations

    Science.gov (United States)

    Robertson, F. R.; Miller, Tim L.

    2008-01-01

    Recent variations of tropical climate on interannual to near-decadal scales have provided a useful target for studying feedback processes. A strong warm/cold ENSO couplet (e.g. 1997-2000) along with several subsequent weaker events are prominent interannual signals that are part of an apparent longer term strengthening of the Walker circulation during the mid to late1990 s with some weakening thereafter. Decadal scale changes in tropical SST structure during the 1990s are accompanied by focusing of precipitation over the Indo-Pacific warm pool and an increase in tropical ocean evaporation of order 1.0 %/decade. Here we use a number of diverse satellite measurements to explore connections between upper-tropospheric humidity (UTH) variations on these time scales and changes in other water and energy fluxes. Precipitation (GPCP, TRMM), turbulent fluxes (OAFlux), and radiative fluxes (ERBE / CERES, SRB) are use to analyze vertically-integrated divergence of moist static energy, divMSE, and its dry and moist components. Strong signatures of MSE flux transport linking ascending and descending regions of tropical circulations are found. Relative strengths of these transports compared to radiative flux changes are interpreted as a measure of efficiency in the overall process of heat rejection during episodes of warm or cold SST forcing. In conjunction with the diagnosed energy transports we explore frequency distributions of upper-tropospheric humidity as inferred from SSM/T-2 and AMSU-B passive microwave measurements. Relating these variations to SST changes suggests positive water vapor feedback, but at a level reduced from constant relative humidity.

  18. Recent Progresses in studies of variations and Anomalies of EAM Climate System and Formation Mechanism of Severe Climate Disasters in China

    Institute of Scientific and Technical Information of China (English)

    Huang Ronghui

    2009-01-01

    @@ The East Asian monsoon (EAM) system is an important circulation system in the global climate system, which features strong southwesterlies with wet air over East Asia in summer and northwesterlies with dry air over North China, Northeast China, Korea and Japan and northeasterlies along the coast of Southeast China (e.g., Tao and Chen). Influenced by the variations and anomalies of the EAM system, therefore, the climate in China is characterized with the most frequent drought and flood disasters in summer and cold surges in winter (e.g., Huang and Zhou 2002).

  19. Spatiotemporal Impacts of Climate, Land Cover Change and Direct Human Activities on Runoff Variations in the Wei River Basin, China

    Directory of Open Access Journals (Sweden)

    Yunyun Li

    2016-05-01

    Full Text Available Previous studies that quantified variations in runoff have mainly focused on the combined impacts of climate and human activities or climate and land cover change. Few have separated land cover change from human activities, which is critical for effective management of water resources. This study aims to investigate the impact of changing environmental conditions on runoff using the Soil and Water Assessment Tool (SWAT model; we examined three categories: climate, land cover change and direct human activities. The study area was the Wei River Basin, a typical arid to semi-arid basin that was divided into five sub-zones (UZ, MZ, DZ, JZ and BZ. Our results showed the following: (1 the calibrated SWAT model produced satisfactory monthly flow processes over the baseline period from 1978 to 1986; (2 compared to the baseline period, the impact of climatic variations decreased and the impact of direct human activities increased from the 1990s to the 2000s, while the impact of land cover change was generally stable; and (3 climatic variations were the main cause of runoff declines over the entire basin during the 1990s and in the UZ, MZ and JZ areas during the 2000s, while direct human activities were most important in the DZ and BZ areas during the 2000s.

  20. Species-specific growth responses to climate variations in understory trees of a Central African rain forest

    NARCIS (Netherlands)

    Couralet, C.; Sterck, F.J.; Sass-Klaassen, U.; Acker, Van J.; Beekman, H.

    2010-01-01

    Basic knowledge of the relationships between tree growth and environmental variables is crucial for understanding forest dynamics and predicting vegetation responses to climate variations. Trees growing in tropical areas with a clear seasonality in rainfall often form annual growth rings. In the und

  1. Species-specific growth responses to climate variations in understory trees of a Central African rain forest

    NARCIS (Netherlands)

    Couralet, C.; Sterck, F.J.; Sass-Klaassen, U.; Acker, Van J.; Beekman, H.

    2010-01-01

    Basic knowledge of the relationships between tree growth and environmental variables is crucial for understanding forest dynamics and predicting vegetation responses to climate variations. Trees growing in tropical areas with a clear seasonality in rainfall often form annual growth rings. In the

  2. The role of climate and human changes on inter-annual variation in stream nitrate fluxes and concentrations

    Science.gov (United States)

    Philippe, M.; Gascuel, C.; Pierre, A.; Patrick, D.; Laurent, R.; Jérome, M.

    2010-12-01

    In recent decades, temporal variations in nitrate fluxes and concentrations in temperate rivers have resulted from the interaction of anthropogenic and climatic factors. The effect of climatic drivers remains unclear, while the relative importance of the drivers seems to be highly site dependent. This paper focuses on 2-6 years variations called meso-scale variations, and analyses the climatic drivers of these variations in a study site characterized by high N inputs from intensive animal farming systems and shallow aquifers with impervious bedrock in a temperate climate. Three approaches are developed: 1) an analysis of long-term records (30-40 years) of nitrate fluxes and nitrate concentrations in 30 coastal rivers of Western France, which were well-marked by meso-scale cycles in the fluxes and concentration with a slight hysteresis; 2) a test of the climatic control using a lumped two box model, which demonstrates that hydrological assumptions are sufficient to explain these meso-scale cycles; and 3) a model of nitrate fluxes and concentrations in two contrasted catchments subjected to recent mitigation measures, which analyses nitrate fluxes and concentrations in relation to N stored in groundwater. In coastal rivers, hydrological drivers (i.e., effective rainfall), and particularly the dynamics of the water table and rather stable nitrate concentration, explain the meso-scale cyclic patterns. In the headwater catchment, agricultural and hydrological drivers can interact according their settings. The requirements to better distinguish the effect of climate and human changes in integrated water management are addressed: long term monitoring, coupling the analysis and the modelling of large sets of catchments incorporating different sizes, land uses and environmental factors. (Figure : Discharge, nitrate concentrations and fluxes in the Aulne river from 1973 to 2007.)

  3. Shallow water benthic foraminifera as proxy for natural versus human-induced environmental change

    NARCIS (Netherlands)

    Nooijer, L.J. de

    2007-01-01

    Ecosystem composition and functioning is not only subjected to human-induced alterations, ecosystems also subjected to natural (e.g. climate-induced) variability. To quantify human impacts on ecosystems, these natural fluctuations must be accounted for. Since long-term biological monitoring programs

  4. Shallow water benthic foraminifera as proxy for natural versus human-induced environmental change

    NARCIS (Netherlands)

    Nooijer, L.J. de

    2007-01-01

    Ecosystem composition and functioning is not only subjected to human-induced alterations, ecosystems also subjected to natural (e.g. climate-induced) variability. To quantify human impacts on ecosystems, these natural fluctuations must be accounted for. Since long-term biological monitoring programs

  5. The Statistical Significance Test of Regional Climate Change Caused by Land Use and Land Cover Variation in West China

    Institute of Scientific and Technical Information of China (English)

    WANG Hanjie; SHI Weilai; CHEN Xiaohong

    2006-01-01

    The West Development Policy being implemented in China is causing significant land use and land cover (LULC) changes in West China. With the up-to-date satellite database of the Global Land Cover Characteristics Database (GLCCD) that characterizes the lower boundary conditions, the regional climate model RIEMS-TEA is used to simulate possible impacts of the significant LULC variation. The model was run for five continuous three-month periods from 1 June to 1 September of 1993, 1994, 1995, 1996, and 1997, and the results of the five groups are examined by means of a student t-test to identify the statistical significance of regional climate variation. The main results are: (1) The regional climate is affected by the LULC variation because the equilibrium of water and heat transfer in the air-vegetation interface is changed. (2) The integrated impact of the LULC variation on regional climate is not only limited to West China where the LULC varies, but also to some areas in the model domain where the LULC does not vary at all. (3) The East Asian monsoon system and its vertical structure are adjusted by the large scale LULC variation in western China, where the consequences are the enhancement of the westward water vapor transfer from the east oast and the relevant increase of wet-hydrostatic energy in the middle-upper atmospheric layers. (4) The ecological engineering in West China affects significantly the regional climate in Northwest China, North China and the middle-lower reaches of the Yangtze River; there are obvious effects in South, Northeast, and Southwest China, but minor effects in Tibet.

  6. Modern and Paleoclimate Variations over the Tibetan Plateau from Climate Modeling

    Science.gov (United States)

    Li, Jingmin; Ehlers, Todd A.; Mutz, Sebastian; Steger, Christian; Paeth, Heiko; Poulsen, Chris J.; Werner, Martin

    2014-05-01

    The development of mountain topography over geologic time scales can influence regional climate and orographic precipitation (Kutzbach et al., 1993). Climate change associated with mountain building can impact erosion and sedimentation rates, as well as climate sensitive data used for paleoelevation reconstructions (e.g. δ18O in soil carbonates). For example, the changes in low-level winds and onset of convective precipitation during ~ 10 and 6 Ma over the Andes may overestimate the rapid rise of the Andes by up to several kilometres (Ehlers and Poulsen, 2009). These effects are most pronounced for large orogenic plateaus such as the Tibetan Plateau (TP). In this study, the environmental controls on modern δ18Op (δ18O in precipitation) and the response of δ18Op to variable plateau elevations are investigated using an atmospheric general circulation model (Echam5-wiso; Werner et al., 2011). The model predicts the δ18O isotopic fractionation of precipitation for all compartments of the hydrological cycle. Simulations are conducted at a resolution of T63L31 (spatial resolution of 1.9°×1.9°, and 31 vertical levels). The simulations were forced with modern boundary conditions as a function of variable paleo TP elevations (specified at 75%, 50%, 25% of TP modern elevations, and 500m). This approach identifies the sensitivity of regional climate and water isotopes to changes in plateau elevation. Results are as follows. The modern simulation successfully predicts three δ18Op distribution zones on the TP: a 'temperature effect' is dominant in the northwest region, an 'amount effect' is prominent in the southwest region of the TP, and a transitional zone exists in between. These general zones are also suggested by various observations (Tian et al, 2007 and Yao et al, 2013). Spatial and temporal variations in δ18Op - elevation lapse rates are also investigated. A δ18Op - elevation lapse rate of ~-3.1 ‰/km is found in both winter and summer seasons at the

  7. Olive tree phenology and climate variations in the Mediterranean area over the last two decades

    Science.gov (United States)

    Orlandi, Fabio; Garcia-Mozo, H.; Dhiab, A. Ben; Galán, C.; Msallem, M.; Fornaciari, M.

    2014-01-01

    The flowering characteristics of plant species of economic interest and the influence of climate on them are of great importance considering the implications for fruit setting and the final harvest: Olive is one of the typical species of the Mediterranean habitat. We have investigated the timing of olive full flowering during the anthesis period and flowering intensity over a period of 20 years (1990-2009), in three major cultivation areas of the Mediterranean basin: Italy, Spain and Tunisia. The importance of these characteristics from a bioclimatic point of view is considered. The biological behaviour was studied to determine its main relationships with temperature and water availability, considering also the different sub-periods and the bio-climatic variations during the study period. The flowering dates and pollen emissions show different behaviours for the Spanish monitoring area in comparison with the other two olive cultivation areas. In the Italian and Tunisian areas, the flowering period over the last decade has become earlier by about 5 and 7 days, respectively, in comparison to the previous decade. Moreover, pollen emissions have decreased in Perugia (Italy) and Zarzis (Tunisia) over the period of 2000-2009, while in Cordoba (Spain), they showed their highest values from 2005 to 2009. The climate analysis has shown an increase in temperature, which results in an increase in the growing degree days for the growth of the olive flower structures, particularly in the more northern areas monitored. Although the olive tree is a parsimonious water consumer that is well adapted to xeric conditions, the increase in the potential evapotranspiration index over the last decade in the Italian and Tunisian olive areas might create problems for olive groves without irrigation, with a negative influence on the flowering intensity. Overall, in all of these Mediterranean monitoring areas, the summer water deficit is an increasingly more important parameter in comparison

  8. Bioenergetic response by steelhead to variation in diet, thermal habitat, and climate in the north Pacific Ocean

    Science.gov (United States)

    Atcheson, Margaret E.; Myers, Katherine W.; Beauchamp, David A.; Mantua, Nathan J.

    2012-01-01

    Energetic responses of steelhead Oncorhynchus mykiss to climate-driven changes in marine conditions are expected to affect the species’ ocean distribution, feeding, growth, and survival. With a unique 18-year data series (1991–2008) for steelhead sampled in the open ocean, we simulated interannual variation in prey consumption and growth efficiency of steelhead using a bioenergetics model to evaluate the temperature-dependent growth response of steelhead to past climate events and to estimate growth potential of steelhead under future climate scenarios. Our results showed that annual ocean growth of steelhead is highly variable depending on prey quality, consumption rates, total consumption, and thermal experience. At optimal growing temperatures, steelhead can compensate for a low-energy diet by increasing consumption rates and consuming more prey, if available. Our findings suggest that steelhead have a narrow temperature window in which to achieve optimal growth, which is strongly influenced by climate-driven changes in ocean temperature.

  9. A NUMERICAL SIMULATION OF THE EFFECT ON CHINESE REGIONAL CLIMATE DUE TO SEASONAL VARIATION OF LAND SURFACE PARAMETERS (PART I)

    Institute of Scientific and Technical Information of China (English)

    孙健; 李维亮; 周秀骥

    2001-01-01

    Sensitivity experiment is an important method to study the effect on regional climate due to seasonal variation of land surface parameters. Using China Regional Climate Model (CRCM)nested in CCM1, we first simulate Chinese regional climate, then two numerical sensitivity experiments on the effect of vegetation and roughness length are made. The results show that:(1) If the vegetation is replaced with the monthly data of 1997, precipitation and land-surface temperature are both changed clearly, precipitation decreases and land surface temperature increases, but there is no regional correspondence between these changes. And the results are much better than the results when climate average vegetation was used in the CRCM. (2) If the roughness length is replaced with the monthly data of 1997, there is significant change on land surface temperature, and there is very good regional correspondence between these changes. But the effect on precipitation is very small.

  10. Relevance of decadal variations in surface radiative fluxes for climate change

    Science.gov (United States)

    Wild, Martin

    2013-05-01

    Recent evidence suggests that radiative fluxes incident at Earth's surface are not stable over time but undergo significant changes on decadal timescales. This is not only found in the thermal spectral range, where an increase in the downwelling flux is expected due to the increasing greenhouse effect, but also in the solar spectral range. Observations suggest that surface solar radiation, after a period of decline from the 1950s to the 1980s ("global dimming"), reversed into a "brightening" since the mid-1980s at widespread locations, often in line with changes in anthropogenic air pollution. These decadal variations observed in both solar and thermal surface radiative fluxes have the potential to affect various aspects of climate change. Discussed here are specifically the evidence for potential effects on global warming, as seen in asymmetries in hemispheric warming rates as well as in differences in the decadal warming rates over land and oceans. These variations in observed warming rates fit well to our conceptual understanding of how aerosol and greenhouse gas-induced changes in the surface radiative fluxes should affect global warming. Specifically, on the Northern Hemisphere, the suppression of warming from the 1950s to the 1980s fits to the concurrent dimming and increasing air pollution, while the accelerated warming from the 1980s to 2000 matches with the brightening and associated reduction in pollution levels. The suppression of warming from the 1950s to the 1980s is even somewhat stronger over oceans than over land, in line with the conceptual idea that aerosol-induced dimming and brightening tendencies may be enhanced through cloud aerosol interactions particularly over the pristine ocean areas. On the Southern Hemisphere, the absence of significant pollution levels as well as trend reversals therein, fit to the observed stable warming rates over the entire 1950 to 2000 period.

  11. Spatio-temporal variation of drought in China during 1961-2012: A climatic perspective

    Science.gov (United States)

    Xu, Kai; Yang, Dawen; Yang, Hanbo; Li, Zhe; Qin, Yue; Shen, Yan

    2015-07-01

    Understanding the spatial and temporal variation of drought is essentially important in drought assessment. In most previous studies, drought event is usually identified in space and time separately, ignoring the nature of the dynamic processes. In order to better understand how drought changes have taken place in China during the past half-century, we carried out a comprehensive analysis of their spatio-temporal variation based on multiple drought indices from a climatic perspective. A 3-dimensional clustering method is developed to identify drought events in China from 1961 to 2012 based on the 0.25° gridded indices of SPI3 (3 months Standardized Precipitation Index), RDI3 (3 months Reconnaissance Drought Index) and SPEI3 (3 months Standardized Precipitation Evapotranspiration Index). Drought events are further characterized by five parameters: duration, affected area, severity, intensity, and centroid. Remotely sensed soil moisture data were used to validate the rationality of identified drought events. The results show that the two most severe drought events in the past half century which occurred in the periods 1962-1963 and 2010-2011 swept more than half of the non-arid regions in China. Large magnitude droughts were usually centered in the region from North China Plain to the downstream of Yangtze River. The western part of North China Plain, Loess Plateau, Sichuan Basin and Yunnan-Guizhou Plateau had a significant drying trend, which is mainly caused by the significant decrease of precipitation. The three drought indices have almost the same performance in the humid regions, while SPI and RDI were found to be more appropriate than SPEI in the arid regions.

  12. Modelling Landscape Dynamics in a Highland Mediterranean Catchment: Establishing the impact of Climate Variation and Human Activity

    Science.gov (United States)

    van Beek, L. P. H.; Feiken, H.; van Asch, T. W. J.; Bierkens, M. F. P.

    2012-04-01

    The close link between human occupancy and the Mediterranean landscape has long been recognized. Through the exploitation of the various but fragmented resources that these landscapes have to offer, man has been able to secure a living. However, these activities are often marginal and small shifts in population pressure, corresponding land use patterns or climatic variability can have large consequences on the redistribution of water and sediment in these areas. The meso-scale landscape dynamics model, CALEROS, has been developed to simulate the interactions between climate, soil production and erosion, vegetation and land use on geomorphological to human time scales in Mediterranean environments. Starting from an initial landscape consisting of a DTM, soil distribution and underlying lithology, the landscape is free to develop in response to the imposed climate variability and seismicity. In addition to changes in soil distribution and bedrock lowering, this includes the establishment of vegetation as conditioned by a selection of plant functional types and, optionally, population and land use dynamics as conditioned by land use scenarios specifying technological and dietary constraints for different periods. As such CALEROS is well-suited to investigate the relative impacts of climate, land cover and human activities on the hydrological catchment response and the associated sediment fluxes due to soil erosion and mass movements. Within the context of a geo-archeological study on the conservation potential of settlement history in the Contrada Maddalena (~14km2, Calabria, Italy), we apply CALEROS to investigate the relative contributions of climate and man from Neolithic times onwards (5000 BP-present). Model results allow to establish when human impacts become significant over natural variations and to discern shifts in catchment functioning as a result of sudden or climatic variations (e.g., Little Ice Age) as reflected in vegetation patterns and water and

  13. Impacts of land use change and climate variations on annual inflow into the Miyun Reservoir, Beijing, China

    Science.gov (United States)

    Zheng, Jiangkun; Sun, Ge; Li, Wenhong; Yu, Xinxiao; Zhang, Chi; Gong, Yuanbo; Tu, Lihua

    2016-04-01

    The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate in the past 4 decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into the Miyun Reservoir during 1961-2008. Different from previous studies on this watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associated environmental variables using the long-term historical hydrometeorology and remote-sensing-based land use records. To effectively quantify the different impacts of the climate variation and land use change on streamflow during different sub-periods, an annual water balance model (AWB), the climate elasticity model (CEM), and a rainfall-runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p 0.1) negative trend in annual precipitation during 1961-2008. We identified two streamflow breakpoints, 1983 and 1999, by the sequential Mann-Kendall test and double-mass curve. Climate variability alone did not explain the decrease in inflow to the Miyun Reservoir. Reduction of water yield was closely related to increase in actual evapotranspiration due to the expansion of forestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. The contribution to the observed streamflow decline from land use change fell from 64-92 % during 1984-1999 to 36-58 % during 2000-2008, whereas the contribution from climate variation climbed from 8-36 % during the 1984-1999 to 42-64 % during 2000-2008. Model uncertainty

  14. Climate, deer, rodents, and acorns as determinants of variation in lyme-disease risk.

    Directory of Open Access Journals (Sweden)

    Richard S Ostfeld

    2006-06-01

    Full Text Available Risk of human exposure to vector-borne zoonotic pathogens is a function of the abundance and infection prevalence of vectors. We assessed the determinants of Lyme-disease risk (density and Borrelia burgdorferi-infection prevalence of nymphal Ixodes scapularis ticks over 13 y on several field plots within eastern deciduous forests in the epicenter of US Lyme disease (Dutchess County, New York. We used a model comparison approach to simultaneously test the importance of ambient growing-season temperature, precipitation, two indices of deer (Odocoileus virginianus abundance, and densities of white-footed mice (Peromyscus leucopus, eastern chipmunks (Tamias striatus, and acorns (Quercus spp., in both simple and multiple regression models, in predicting entomological risk. Indices of deer abundance had no predictive power, and precipitation in the current year and temperature in the prior year had only weak effects on entomological risk. The strongest predictors of a current year's risk were the prior year's abundance of mice and chipmunks and abundance of acorns 2 y previously. In no case did inclusion of deer or climate variables improve the predictive power of models based on rodents, acorns, or both. We conclude that interannual variation in entomological risk of exposure to Lyme disease is correlated positively with prior abundance of key hosts for the immature stages of the tick vector and with critical food resources for those hosts.

  15. Interannual climate variations in Arctic as driven by the Global atmosphere oscillation

    Science.gov (United States)

    Serykh, Ilya; Byshev, Vladimir; Neiman, Victor; Sidorova, Alexandra; Sonechkin, Dmitry

    2015-04-01

    The present-day global climate change affects the Arctic basin substantially more because of the sea ice cover extinction and the permafrost melting. But there are essential variations of these effects from year to year. We believe that these variations might be a regional manifestation of a planetary-scale phenomenon named the Global atmospheric oscillation (GAO). GAO includes the well-known El Niño - Southern Oscillation (ENSO) process and similar processes in equatorial Atlantic and Indian Oceans within itself. The goal of this report is to present some arguments to support this point of view. For this goal, we have studied some interrelations between the above-mentioned Arctic anomalies and GAO as seen in global re-analyses of the sea level pressure (SLP) and near surface temperature (NST) for the period of 1920-2013. The mean global fields of SLP and NST have been computed for all El Niño events falling into this time period, and separately, for all and La Niña events. As a result, two (for SLP and NST as well) global fields of the mean El Niño/La Niña difference were obtained. Statistical significance of the non-zero values of these fields, i.e. the reality of GAO, was evaluated with the t-Student's test. It turned out that the main spatial structures of GAO, presented specifically by El Niño and La Niña events in Pacific region, exist at a very high level (up to 99%, t>4) of the significance. Therefore, one can conclude that the interannual-scale dynamics of GAO is actually reflected in the climate features of different regions of the Earth, including the Russian Arctic. In particular, when the boreal winter season coincides with an El Niño event GAO is indicative by a negative anomaly of NST (about -1°C) and a positive anomaly of SLP over the Arctic basin. In contrary, significant (about +1°C) positive anomaly of NST along with reduced SLP over the whole Arctic region is typical for any La Niña event (up to 95%, t>2). To control the reliability

  16. Large–scale geographical variation confirms that climate change causes birds to lay earlier

    National Research Council Canada - National Science Library

    Christiaan Both; Aleksandr V. Artemyev; Bert Blaauw; Richard J. Cowie; Aarnoud J. Dekhuijzen; Tapio Eeva; Anders Enemar; Lars Gustafsson; Elena V. Ivankina; Antero Järvinen; Neil B. Metcalfe; N. Erik I. Nyholm; Jaime Potti; Pierre-Alain Ravussin; Juan Jose Sanz; Bengt Silverin; Fred M. Slater; Leonid V. Sokolov; János Török; Wolfgang Winkel; Jonathan Wright; Herwig Zang; Marcel E. Visser

    2004-01-01

    Advances in the phenology of organisms are often attributed to climate change, but alternatively, may reflect a publication bias towards advances and may be caused by environmental factors unrelated to climate change...

  17. Seasonality variations in the Central Mediterranean during climate change events in the Late Holocene

    NARCIS (Netherlands)

    Goudeau, M-L. S.; Reichart, G.-J.; Wit, J.C.; de Nooijer, L.J.; Grauel, A.-L.; Bernasconi, S.M.; de Lange, G.J.

    2015-01-01

    Abstract Holocene rapid climate change (RCC) events, such as the Little Ice Age (LIA), are thought to have influenced average annual temperatures only marginally, but to have affected winter temperatures relatively strongly. With summer temperatures relatively unaffected, reconstructing climate chan

  18. Population dynamics of Norwegian red deer: density–dependence and climatic variation

    National Research Council Canada - National Science Library

    M.C. Forchhammer; N.C. Stenseth; E. Post; R. Landvatn

    1998-01-01

    We present a model on plant—deer—climate interactions developed for improving our understanding of the temporal dynamics of deer abundance and, in particular, how intrinsic (density–dependent) and extrinsic (plants, climate...

  19. Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil

    Science.gov (United States)

    Yang, Xian; Chi, Xiulian; Ji, Chengjun; Liu, Hongyan; Ma, Wenhong; Mohhammat, Anwar; Shi, Zhaoyong; Wang, Xiangping; Yu, Shunli; Yue, Ming; Tang, Zhiyao

    2016-08-01

    Concentrations of leaf nitrogen (N) and phosphorus (P) are two key traits of plants for ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on the stoichiometric patterns of trees and grasses, leaving a significant knowledge gap for shrubs. In this study, we explored the intraspecific and interspecific variations of leaf N and P concentrations in response to the changes in climate, soil property, and evolutionary history. We analysed 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China encompassing 46.1° (86.7-132.8° E) in longitude and 19.8° (32.6-52.4° N) in latitude. Leaf N concentrations decreased with precipitation, while leaf P concentrations decreased with temperature and increased with precipitation and soil total P concentrations. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentrations were less conserved than leaf N concentrations. At the community level, climate explained more interspecific variation of leaf nutrient concentrations, while soil nutrients explained most of the intraspecific variation. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits. New patterns were discovered using our observations on specific regions and vegetation types, which improved our knowledge of broad biogeographic patterns of leaf chemical traits.

  20. A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations

    Science.gov (United States)

    Franke, Jörg; Brönnimann, Stefan; Bhend, Jonas; Brugnara, Yuri

    2017-06-01

    Climatic variations at decadal scales such as phases of accelerated warming or weak monsoons have profound effects on society and economy. Studying these variations requires insights from the past. However, most current reconstructions provide either time series or fields of regional surface climate, which limit our understanding of the underlying dynamics. Here, we present the first monthly paleo-reanalysis covering the period 1600 to 2005. Over land, instrumental temperature and surface pressure observations, temperature indices derived from historical documents and climate sensitive tree-ring measurements were assimilated into an atmospheric general circulation model ensemble using a Kalman filtering technique. This data set combines the advantage of traditional reconstruction methods of being as close as possible to observations with the advantage of climate models of being physically consistent and having 3-dimensional information about the state of the atmosphere for various variables and at all points in time. In contrast to most statistical reconstructions, centennial variability stems from the climate model and its forcings, no stationarity assumptions are made and error estimates are provided.

  1. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    Science.gov (United States)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2016-12-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  2. Urban Heat Island Variation across a Dramatic Coastal to Desert Climate Zone: An Application to Los Angeles, CA Metropolitan Area

    Science.gov (United States)

    Tayyebi, A.; Jenerette, D.

    2015-12-01

    Urbanization is occurring at an unprecedented rate across the globe. The resulting urban heat island (UHI), which is a well-known phenomenon in urban areas due to the increasing number and density of buildings, leads to higher temperature in urban areas than surrounding sub-urban or rural areas. Understanding the effects of landscape pattern on UHI is crucial for improving the sustainability of cities and reducing heat vulnerability. Although a variety of studies have quantified UHI, there are a lack of studies to 1) understand UHI variation at the micro-scale (e.g., neighborhood effect) for large urban areas and 2) identify variation in the sensitivity of the UHI to environmental drivers across a megacity with a pronounced climate zone (i.e. coastal to desert climates) using advanced analytical tools. In this study, we identified the interacting relationship among various environmental and socio-economic factors to better identify UHI over the Los Angeles, CA metropolitan area. We used structural equation modeling (SEM) to quantify the interacting relationships among land surface temperature (LST), land cover (NDVI), distance to ocean, elevation, and socio-economic status (neighborhood income). LST-NDVI slopes were negative across the climate zones and became progressively stronger with increasing distance from the coast. Results also showed that slopes between NDVI and neighborhood income were positive throughout the climate zone with a maximum in the relationship occurring near 25km from the coast. Because of these income-NDVI and NDVI-LST relationships we also found that slopes between LST and neighborhood income were negative throughout the climate zones and peaked at about 30km from the coast. These findings suggest assessments of urban heat vulnerability need to consider not only variation in the indicators but also variation in how the indicators influence vulnerability.

  3. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China

    Directory of Open Access Journals (Sweden)

    Wenjuan Hou

    2015-08-01

    Full Text Available In this study, the updated Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI dataset for growing season (April to October, which can better reflect the vegetation vigor, was used to investigate the interannual variations in NDVI and its relationship with climatic factors, in order to preliminarily understand the climate impact on vegetation and provide theoretical basis for the response of ecosystem to climate change. Multivariate linear regression models, including the Ordinary Least Squares (OLS and Geographically Weighted Regression (GWR, were adopted to analyze the correlation between NDVI and climatic factors (temperature and precipitation together. Average growing-season NDVI significantly increased at a rate of 0.0015/year from 1982 to 2013, larger than several regions in China. On the whole, its relationship with temperature is positive and also stronger than precipitation, which indicated that temperature may be a limiting factor for the vegetation growth in the Karst region. Moreover, the correlation coefficients between grassland NDVI and climatic factors are the largest. Under the background of NDVI increasing trend from 1982 to 2013, the period of 2009–2012 was chosen to investigate the influencing factors of a sharp decline in NDVI. It can be found that the reduced temperature and solar radiation, caused by the increase in cloud cover and precipitation, may play important roles in the vegetation cover change. All in all, the systematic research on the interannual variations of growing-season NDVI and its relationship with climate revealed the heterogeneity and variability in the complicated climate change in the Karst ecosystem for the study area. It is the Karst characteristics that hinder obtaining more representative conclusions and tendencies in this region. Hence, more attention should be paid to promoting Karst research in the future.

  4. Land-Cover Phenologies and Their Relation to Climatic Variables in an Anthropogenically Impacted Mediterranean Coastal Area

    OpenAIRE

    Hernández, Encarni I.; Magaly Koch; Ignacio Gómez; Jose Navarro-Pedreño; Ignacio Melendez-Pastor

    2010-01-01

    Mediterranean coastal areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Vegetation index time series provide a useful way to monitor vegetation phenological variations. This study quantitatively describes Enhanced Vegetation Index (EVI) temporal changes for Mediterranean land-covers from the perspective of vegetation phenology and its relation with climate. A time series from 2001 to 2007 of the MODIS Enhanced Vegetation Index...

  5. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  6. Variation of Floods Characteristics and Their Responses to Climate and Human Activities in Poyang Lake, China

    Institute of Scientific and Technical Information of China (English)

    LI Xianghu; ZHANG Qi

    2015-01-01

    The Poyang Lake is one of the most frequently flooded areas in China.Understanding the changing characteristics of floods as well as the affecting factors is an important prerequisite of flood disaster prevention and mitigation.The present study identified the characteristics variations of historical floods in the Poyang Lake and their tendencies based on the Mann-Kendall (M-K) test,and also investigated the related affecting factors,both from climate and human activities.The results revealed that the highest flood stages,duration as well as hazard coefficient of floods showed a long-term increasing linear trend during the last 60 years with the M-K statistic of 1.49,1.60 and 1.50,respectively.And,a slightly increasing linear trend in the timing of the highest stages indicated the floods occurred later and later during the last six decades.The rainfall during the flood season and subsequent discharges of the Changjiang (Yangtze) River and runoff from the Poyang Lake Basin were mainly responsible for the severe flood situation in the Poyang Lake in the 1990s.In addition,the intensive human activities,including land reclamation and levee construction,also played a supplementary role in increasing severity of major floods.While,the fewer floods in the Poyang Lake after 2000 can be attributed to not only the less rainfall over the Poyang Lake Basin and low discharges of the Changjiang River during flood periods,but also the stronger influences of human activity which increased the floodwater storage of the Poyang Lake than before.

  7. Late-Quaternary variations in clay minerals along the SW continental margin of India: Evidence of climatic variations

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Sukhija, B.S.; Gujar, A.R.; Nagabhushanam, P.; Paropkari, A.L.

    Down-core variations in illite, chlorite, smectite and kaolinite (the major clays) in two sup(14)C-dated cores collected along the SW continental margin of India show that illite and chlorite have enhanced abundance during 20-17, 12.5, 11-9.5, and 5...

  8. The Effect of Climate, Environment and Man on Variations in Wildlife Population Fluctuations in Greenland Over 200 Years

    DEFF Research Database (Denmark)

    Moshøj, Charlotte Margaret

    2008-01-01

    The Effect of Climate, Environment and Man on Variations in Wildlife Population Fluctuations in Greenland Over 200 Years Moshøj, Charlotte The underlying factors of species fluctuating population dynamics has been the dominant focus of attention in population ecology throughout much of this century...... passed on from Inuit elders all document that the presence of wildlife species and their population sizes have undergone pronounced fluctuations throughout recordable historical time. The most detailed accounts are found for the species that were harvested or had economical value. While several recent...... data, environmental factors and temporal variations in social and demographic parameters in the existing society. The results of this study model future predictions of wildlife populations under changing climate variables and human hunting pressure. View Presentation....

  9. Climate change and skin.

    Science.gov (United States)

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  10. The sensitivity of wood production to seasonal and interannual variations in climate in a lowland Amazonian rainforest.

    Science.gov (United States)

    Rowland, Lucy; Malhi, Y; Silva-Espejo, J E; Farfán-Amézquita, F; Halladay, K; Doughty, C E; Meir, P; Phillips, O L

    2014-01-01

    Understanding climatic controls on tropical forest productivity is key to developing more reliable models for predicting how tropical biomes may respond to climate change. Currently there is no consensus on which factors control seasonal changes in tropical forest tree growth. This study reports the first comprehensive plot-level description of the seasonality of growth in a Peruvian tropical forest. We test whether seasonal and interannual variations in climate are correlated with changes in biomass increment, and whether such relationships differ among trees with different functional traits. We found that biomass increments, measured every 3 months on the two plots, were reduced by between 40 and 55% in the peak dry season (July-September) relative to peak wet season (January-March). The seasonal patterns of biomass accumulation are significantly (p productive in the wet season, but more vulnerable to water limitation in the dry season.

  11. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    Science.gov (United States)

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  12. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis

    Directory of Open Access Journals (Sweden)

    Guo Junqiao

    2008-09-01

    Full Text Available Abstract Background The effects of climate variations on bacillary dysentery incidence have gained more recent concern. However, the multi-collinearity among meteorological factors affects the accuracy of correlation with bacillary dysentery incidence. Methods As a remedy, a modified method to combine ridge regression and hierarchical cluster analysis was proposed for investigating the effects of climate variations on bacillary dysentery incidence in northeast China. Results All weather indicators, temperatures, precipitation, evaporation and relative humidity have shown positive correlation with the monthly incidence of bacillary dysentery, while air pressure had a negative correlation with the incidence. Ridge regression and hierarchical cluster analysis showed that during 1987–1996, relative humidity, temperatures and air pressure affected the transmission of the bacillary dysentery. During this period, all meteorological factors were divided into three categories. Relative humidity and precipitation belonged to one class, temperature indexes and evaporation belonged to another class, and air pressure was the third class. Conclusion Meteorological factors have affected the transmission of bacillary dysentery in northeast China. Bacillary dysentery prevention and control would benefit from by giving more consideration to local climate variations.

  13. North Patagonia climate over the last millennium inferred from variations in tree-ring width and isotopic composition

    Science.gov (United States)

    Lavergne, Aliénor; Villalba, Ricardo; Daux, Valérie

    2014-05-01

    extending from the late 9thcentury to 2011 were developed. Variations in ring widths were compared between species and sites and correlated with climate parameters. The two Fitzroya chronologies show a long-term period of common variations in tree growth (r = 0.7-0.9, p

  14. Global review of human-induced earthquakes.

    OpenAIRE

    Foulger, Gillian R.; Wilson, Miles; Gluyas, Jon; Julian, Bruce R.; Davies, Richard

    2017-01-01

    The Human-induced Earthquake Database, HiQuake, is a comprehensive record of earthquake sequences postulated to be induced by anthropogenic activity. It contains over 700 cases spanning the period 1868–2016. Activities that have been proposed to induce earthquakes include the impoundment of water reservoirs, erecting tall buildings, coastal engineering, quarrying, extraction of groundwater, coal, minerals, gas, oil and geothermal fluids, excavation of tunnels, and adding material to the subsu...

  15. Direct Climatic Effect of Aerosols and Interdecadal Variations over East Asia Investigated by a Regional Coupled Climate-Chemistry/Aerosol Model

    Institute of Scientific and Technical Information of China (English)

    HAN Zhi-Wei; XIONG Zhe; LI Jia-Wei

    2011-01-01

    The direct climatic effect of aerosols for the 1980-2000 period over East Asia was numerically investigated by a regional scale coupled climate-chemistry/ aerosol model, which includes major anthropogenic aerosols (sulfate, black carbon, and organic carbon) and natural aerosols (soil dust and sea salt). Anthropogenic emissions used in model simulation are from a global emission inventory prepared for the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5), whereas natural aerosols are calculated online in the model. The simulated 20-year average direct solar radiative effect due to aerosols at the surface was estimated to be in a range of-9- -33 W m-2 over most areas of China, with maxima over the Gobi desert of West China, and-12 W m-2 to -24 W m-2 over the Sichuan Basin, the middle and lower reaches of the Yellow River and the Yangtze River. Aerosols caused surface cooling in most areas of East Asia, with maxima of-0.8℃ to -1.6℃ over the deserts of West China, the Sichuan Basin, portions of central China, and the middle reaches of the Yangtze River. Aerosols induced a precipitation decrease over almost the entire East China, with maxima of-90 mm/year to -150 mm/year over the Sichuan Basin, the middle reaches of the Yangtze River and the lower reaches of the Yellow River. Interdecadal variation of the climate response to the aerosol direct radiative effect is evident, indicating larger decrease in surface air temperature and stronger per- turbation to precipitation in the 1990s than that in the 1980s, which could be due to the interdecadal variation of anthropogenic emissions.

  16. Variation.

    Science.gov (United States)

    Hamilton City Board of Education (Ontario).

    Suggestions for studying the topic of variation of individuals and objects (balls) to help develop elementary school students' measurement, comparison, classification, evaluation, and data collection and recording skills are made. General suggestions of variables that can be investigated are made for the study of human variation. Twelve specific…

  17. Wood density variations of Norway spruce (Picea abies (L. Karst. under contrasting climate conditions in southwestern Germany

    Directory of Open Access Journals (Sweden)

    Marieke van der Maaten-Theunissen

    2013-07-01

    Full Text Available We analyzed inter-annual variations in ring width and maximum wood density of Norway spruce (Picea abies (L. Karst. at different altitudes in Baden-Württemberg, southwestern Germany, to determine the climate response of these parameters under contrasting climate conditions. In addition, we compared maximum, average and minimum wood density between sites. Bootstrapped correlation coefficients of ring width and maximum wood density with monthly temperature and precipitation, revealed a different climate sensitivity of both parameters. Ring width showed strong correlations with climate variables in the previous year and in the first half of the growing season. Further, a negative relationship with summer temperature was observed at the low-altitude sites. Maximum wood density correlated best with temperature during the growing season, whereby strongest correlations were found between September temperature and maximum wood density at the high-altitude sites. Observed differences in maximum, average and minimum wood density are suggested to relate to the local climate; with lower temperatures and higher water availability having a negative effect on wood density. 

  18. Climate-induced variations in global wildfire danger from 1979 to 2013

    Science.gov (United States)

    W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman

    2015-01-01

    Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have...

  19. Seasonality variations in the Central Mediterranean during climate change events in the Late Holocene

    NARCIS (Netherlands)

    Goudeau, M.-L.S.; Reichart, G.J.; Wit, J.C.; de Nooijer, L.J.; Grauel, A.-L.; Bernasconi, S. M.; de Lange, G.J.

    2015-01-01

    Holocene rapid climate change (RCC) events, such as the Little Ice Age (LIA), are thought to have influenced average annual temperatures only marginally, but to have affected winter temperatures relatively strongly. With summer temperatures relatively unaffected, reconstructing climate change at a s

  20. Large-scale geographical variation confirms that climate change causes birds to lay earlier

    NARCIS (Netherlands)

    Both, C; Artemyev, AV; Blaauw, B; Cowie, RJ; Dekhuijzen, AJ; Eeva, T; Enemar, A; Gustafsson, L; Ivankina, EV; Jarvinen, A; Metcalfe, NB; Nyholm, NEI; Potti, J; Ravussin, PA; Sanz, JJ; Silverin, B; Slater, FM; Sokolov, LV; Torok, J; Winkel, W; Wright, J; Zang, H; Visser, ME

    2004-01-01

    Advances in the phenology of organisms are often attributed to climate change, but alternatively, may reflect a publication bias towards advances and may be caused by environmental factors unrelated to climate change. Both factors are investigated using the breeding dates of 25 long-term studied

  1. Seasonality variations in the Central Mediterranean during climate change events in the Late Holocene

    NARCIS (Netherlands)

    Goudeau, M.-L.S.; Reichart, G.J.; Wit, J.C.; de Nooijer, L.J.; Grauel, A.-L.; Bernasconi, S. M.; de Lange, G.J.

    2015-01-01

    Holocene rapid climate change (RCC) events, such as the Little Ice Age (LIA), are thought to have influenced average annual temperatures only marginally, but to have affected winter temperatures relatively strongly. With summer temperatures relatively unaffected, reconstructing climate change at a s

  2. Seasonality variations in the Central Mediterranean during climate change events in the Late Holocene

    NARCIS (Netherlands)

    Goudeau, M.-L.S.; Reichart, G.J.; Wit, J.C.; de Nooijer, L.J.; Grauel, A.-L.; Bernasconi, S. M.; de Lange, G.J.

    2015-01-01

    Holocene rapid climate change (RCC) events, such as the Little Ice Age (LIA), are thought to have influenced average annual temperatures only marginally, but to have affected winter temperatures relatively strongly. With summer temperatures relatively unaffected, reconstructing climate change at a

  3. Mid-Holocene Climate Variations Recorded by Palaeolake in Marginal Area of East Asian Monsoon: A Multi-proxy Study

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Traditionally, the mid-Holocene in most parts of China was thought to be warmer with higher precipitation,resulting from a strong Asian summer monsoon. However, some recent researches have proposed a mid-Holocene drought interval of millennial-scale in East Asian monsoon margin areas. Thus whether mid-Holocene was dry or humid remains an open issue. Here, Zhuyeze palaeolake, the terminal lake of the Shiyang River Drainage lying in Asian monsoon marginal areas, was selected for reconstructing the details of climate variations during the Holocene, especially mid-Holocene,on the basis ora sedimentological analysis. Qingtu Lake (QTL) section of 6.92m depth was taken from Zhuyeze palaeolake. Multi-proxy analysis of QTL section, including grain size, carbonate, TOC, C/N and δ13C of organic matter, was used to document regional climatic changes during 9-3 cal ka B.P. The record shows a major environmental change at 9.0-7.8 cal ka B.P., attributed to a climate trend towards warmth and humidity. This event was followed by a typical regional drought event which occurred during 7.8-7.5 cal ka B.P. And a warm and humid climate prevailed from 7.5 to 5.0 cal ka B.P., attributed to the warm/humid Holocene Optimum in this region. After that, the climate gradually became drier.Moreover, comparison of the climate record from this paper with the summer insolation at 30°N indicates that the climate pattern reflecting the Asian monsoon changes was caused by insolation change.

  4. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use

    Science.gov (United States)

    Müller Schmied, Hannes; Adam, Linda; Eisner, Stephanie; Fink, Gabriel; Flörke, Martina; Kim, Hyungjun; Oki, Taikan; Portmann, Felix Theodor; Reinecke, Robert; Riedel, Claudia; Song, Qi; Zhang, Jing; Döll, Petra

    2016-07-01

    When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901-2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971-2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non

  5. Groundwater recharge - climatic and vegetation induced variations. Simulations in the Emaan and Aespoe areas in southern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Losjoe, K.; Johansson, Barbro; Bringfelt, B.; Oleskog, I.; Bergstroem, S. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)

    1999-01-01

    Climate change and man-made interference will cause an impact on runoff and groundwater recharge in the future. With the aim to give a conception of seasonal variations and the magnitude of the differences, the HBV model has been used as a tool for simulating five climate alternatives in two areas of south-east Sweden. The climate alternatives include both increased and decreased temperature and precipitation. These are not predictions of a future climate change, and should only be regarded as examples. The purpose has been to exemplify a conceivable magnitude of change during temperate/boreal conditions. It has not been within the scope of this report to evaluate the most probable climate change scenarios. The impacts of different climate scenarios on the total groundwater recharge and the deep groundwater recharge have been calculated as long-term mean values and are presented in comparison with model-simulated values with an actual (recorded) climate sequence. The results show great differences between the climate alternatives. An increase in temperature will decrease snow accumulation and increase the evapotranspiration and can totally extinguish the spring snowmelt peak in runoff and groundwater recharge. A decreased temperature, on the contrary, will imply decreased winter runoff and recharge values and an increase in spring and summer values. Evapotranspiration and soil water content play a key role in the runoff and recharge processes. This report makes a review of some literature about work done within the areas of investigation and calculation of evapotranspiration. Research is in progress, not only on formulating future climate scenarios, but also on distinguishing evapotranspiration from different kinds of vegetation. These are complex questions, but vital ones, as a climate change will also affect the vegetation. Until new research results are presented, well-known methods can be used for simulating the effects of logging on runoff and groundwater

  6. Linking Genetic Variation in Adaptive Plant Traits to Climate in Tetraploid and Octoploid Basin Wildrye [Leymus cinereus (Scribn. & Merr. A. Love] in the Western U.S.

    Directory of Open Access Journals (Sweden)

    R C Johnson

    Full Text Available Few studies have assessed how ploidy type within a species affects genetic variation among populations in relation to source climates. Basin wildrye (Leymus cinereus (Scribn. & Merr. A. Love is a large bunchgrass common in the intermountain Western U.S. found in both octoploid and tetraploid types. In common gardens at two sites over two years differences in both ploidy type and genetic variation within ploidy were observed in phenology, morphology, and production traits on 57 octoploid and 52 tetraploid basin wildrye from the intermountain Western U.S. (P<0.01. Octoploids had larger leaves, longer culms, and greater crown circumference than tetraploids but the numerical ranges of plant traits and their source climates overlapped between ploidy types. Still, among populations octoploids often had greater genetic variation for traits and occupied more diverse climates than tetraploids. Genetic variation for both ploidy types was linked to source climates in canonical correlation analysis, with the first two variates explaining 70% of the variation. Regression of those canonical variates with seed source climate variables produced models that explained 64% and 38% of the variation, respectively, and were used to map 15 seed zones covering 673,258 km2. Utilization of these seed zones will help ensure restoration with adaptive seed sources for both ploidy types. The link between genetic traits and seed source climates suggests climate driven natural selection and adaptive evolution in basin wildrye. The more diverse climates occupied by octoploids and higher trait variation suggests a higher capacity for ecological differentiation than tetraploids in the intermountain Western U.S.

  7. To what extent does climate explain variations in reported malaria cases in early 20th century Uganda?

    Science.gov (United States)

    Tompkins, Adrian M; Larsen, Laragh; McCreesh, Nicky; Taylor, David

    2016-03-31

    Malaria case statistics were analysed for the period 1926 to 1960 to identify inter-annual variations in malaria cases for the Uganda Protectorate. The analysis shows the mid-to-late 1930s to be a period of increased reported cases. After World War II, malaria cases trend down to a relative minimum in the early 1950s, before increasing rapidly after 1953 to the end of the decade. Data for the Western Province confirm these national trends, which at the time were attributed to a wide range of causes, including land development and management schemes, population mobility, interventions and misdiagnosis. Climate was occasionally proposed as a contributor to enhanced case numbers, and unusual precipitation patterns were held responsible; temperature was rarely, if ever, considered. In this study, a dynamical malaria model was driven with available precipitation and temperature data from the period for five stations located across a range of environments in Uganda. In line with the historical data, the simulations produced relatively enhanced transmission in the 1930s, although there is considerable variability between locations. In all locations, malaria transmission was low in the late 1940s and early 1950s, steeply increasing after 1954. Results indicate that past climate variability explains some of the variations in numbers of reported malaria cases. The impact of multiannual variability in temperature, while only on the order of 0.5°C, was sufficient to drive some of the trends observed in the statistics and thus the role of climate was likely underestimated in the contemporary reports. As the elimination campaigns of the 1960s followed this partly climate-driven increase in malaria, this emphasises the need to account for climate when planning and evaluating intervention strategies.

  8. To what extent does climate explain variations in reported malaria cases in early 20th century Uganda?

    Directory of Open Access Journals (Sweden)

    Adrian M. Tompkins

    2016-03-01

    Full Text Available Malaria case statistics were analysed for the period 1926 to 1960 to identify inter-annual variations in malaria cases for the Uganda Protectorate. The analysis shows the mid-to-late 1930s to be a period of increased reported cases. After World War II, malaria cases trend down to a relative minimum in the early 1950s, before increasing rapidly after 1953 to the end of the decade. Data for the Western Province confirm these national trends, which at the time were attributed to a wide range of causes, including land development and management schemes, population mobility, interventions and misdiagnosis. Climate was occasionally proposed as a contributor to enhanced case numbers, and unusual precipitation patterns were held responsible; temperature was rarely, if ever, considered. In this study, a dynamical malaria model was driven with available precipitation and temperature data from the period for five stations located across a range of environments in Uganda. In line with the historical data, the simulations produced relatively enhanced transmission in the 1930s, although there is considerable variability between locations. In all locations, malaria transmission was low in the late 1940s and early 1950s, steeply increasing after 1954. Results indicate that past climate variability explains some of the variations in numbers of reported malaria cases. The impact of multiannual variability in temperature, while only on the order of 0.5°C, was sufficient to drive some of the trends observed in the statistics and thus the role of climate was likely underestimated in the contemporary reports. As the elimination campaigns of the 1960s followed this partly climate-driven increase in malaria, this emphasises the need to account for climate when planning and evaluating intervention strategies.

  9. Variations of Soil Microbial Community Structures Beneath Broadleaved Forest Trees in Temperate and Subtropical Climate Zones.

    Science.gov (United States)

    Yang, Sihang; Zhang, Yuguang; Cong, Jing; Wang, Mengmeng; Zhao, Mengxin; Lu, Hui; Xie, Changyi; Yang, Caiyun; Yuan, Tong; Li, Diqiang; Zhou, Jizhong; Gu, Baohua; Yang, Yunfeng

    2017-01-01

    Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate). Although plant species richness decreased with latitudes, the microbial taxonomic α-diversity increased with latitudes, concomitant with increases in soil total and available nitrogen and phosphorus contents. Phylogenetic NRI (Net Relatedness Index) values increased from -0.718 in temperate zone (WLM) to 1.042 in subtropical zone (SNJ), showing a shift from over dispersion to clustering likely caused by environmental filtering such as low pH and nutrients. Similarly, taxonomy-based association networks of subtropical forest samples were larger and tighter, suggesting clustering. In contrast, functional α-diversity was similar among three forests, but functional gene networks of the FNM forest significantly (P < 0.050) differed from the others. A significant correlation (R = 0.616, P < 0.001) between taxonomic and functional β-diversity was observed only in the FNM forest, suggesting low functional redundancy at the border of climate zones. Using a strategy of space-for-time substitution, we predict that poleward climate range shift will lead to decreased microbial taxonomic α-diversities in broadleaved forest.

  10. Peer-created Motivational Climates: Variations in the Perceptions of Collegiate Intramural Sport Participants

    Directory of Open Access Journals (Sweden)

    Evan Webb

    2016-09-01

    Full Text Available Peer motivational climate (task-involved and ego-involved is often examined within youth sport contexts. This research examines this concept in a collegiate intramural sport setting and analyzes how it is affected by participants’ task- and ego-goal orientations in addition to several demographic and participation level variables. Empirical evidence supporting whether or not goal orientations can predict similar motivational climates, a component of achievement goal theory, was sought out in a collegiate recreational sport setting. Immediately following their participation in an intramural sport, students at a Canadian university (N = 315 completed a questionnaire that measured achievement goal orientations and peer motivational climates. MANOVAs revealed significant differences between three levels (high, medium, and low of task-orientation on task-involved climate and ego-orientation on ego-involved climate in addition to both their subscales. Gender was the only demographic variable that showed a significant effect when ego-involvement was the dependent variable. These results support the relationship between achievement goal orientations and similar motivational climates in collegiate intramural sports but do point towards a potential need for a more adult oriented measurement of peer motivational climate.

  11. Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme Project

    Directory of Open Access Journals (Sweden)

    C. Jaedicke

    2008-08-01

    Full Text Available Various types of slope processes, mainly landslides and avalanches (snow, rock, clay and debris pose together with floods the main geohazards in Norway. Landslides and avalanches have caused more than 2000 casualties and considerable damage to infrastructure over the last 150 years. The interdisciplinary research project "GeoExtreme" focuses on investigating the coupling between meteorological factors and landslides and avalanches, extrapolating this into the near future with a changing climate and estimating the socioeconomic implications. The main objective of the project is to predict future geohazard changes in a changing climate. A database consisting of more than 20 000 recorded historical events have been coupled with a meteorological database to assess the predictability of landslides and avalanches caused by meteorological conditions. Present day climate and near future climate scenarios are modelled with a global climate model on a stretched grid, focusing on extreme weather events in Norway. The effects of climate change on landslides and avalanche activity are studied in four selected areas covering the most important climatic regions in Norway. The statistical analysis of historical landslide and avalanche events versus weather observations shows strong regional differences in the country. Avalanches show the best correlation with weather events while landslides and rockfalls are less correlated. The new climate modelling approach applying spectral nudging to achieve a regional downscaling for Norway proves to reproduce extreme events of precipitation much better than conventional modelling approaches. Detailed studies of slope stabilities in one of the selected study area show a high sensitivity of slope stability in a changed precipitation regime. The value of elements at risk was estimated in one study area using a GIS based approach that includes an estimation of the values within given present state hazard zones. The ongoing

  12. Large-scale geographical variation confirms that climate change causes birds to lay earlier.

    Science.gov (United States)

    Both, Christiaan; Artemyev, Aleksandr V; Blaauw, Bert; Cowie, Richard J; Dekhuijzen, Aarnoud J; Eeva, Tapio; Enemar, Anders; Gustafsson, Lars; Ivankina, Elena V; Järvinen, Antero; Metcalfe, Neil B; Nyholm, N Erik I; Potti, Jaime; Ravussin, Pierre-Alain; Sanz, Juan Jose; Silverin, Bengt; Slater, Fred M; Sokolov, Leonid V; Török, János; Winkel, Wolfgang; Wright, Jonathan; Zang, Herwig; Visser, Marcel E

    2004-08-22

    Advances in the phenology of organisms are often attributed to climate change, but alternatively, may reflect a publication bias towards advances and may be caused by environmental factors unrelated to climate change. Both factors are investigated using the breeding dates of 25 long-term studied populations of Ficedula flycatchers across Europe. Trends in spring temperature varied markedly between study sites, and across populations the advancement of laying date was stronger in areas where the spring temperatures increased more, giving support to the theory that climate change causally affects breeding date advancement.

  13. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario.

    Directory of Open Access Journals (Sweden)

    Mathukumalli Srinivasa Rao

    Full Text Available The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM of future data on daily maximum (T.max, minimum (T.min air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1. This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF -2020, Distant future (DF-2050 and Very Distant future (VDF-2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1-2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18-22% over baseline. Analysis of variance (ANOVA was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%, model (1.74% and scenario (0.74%. The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods.

  14. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    Science.gov (United States)

    Jiao, Tong; Williams, Christopher A.; Ghimire, Bardan; Masek, Jeffrey; Gao, Feng; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  15. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xinghui, E-mail: xiaxh@bnu.edu.cn [School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation/Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing 100875 (China); Wu, Qiong; Zhu, Baotong; Zhao, Pujun [School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation/Key Laboratory of Water and Sediment Sciences of Ministry of Education, Beijing 100875 (China); Zhang, Shangwei [Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research — UFZ, Permoserstraße 15, Leipzig 04318 (Germany); Yang, Lingyan [Beijing Municipal Environmental Monitoring Center, Beijing 100048 (China)

    2015-08-01

    We applied a mixing model based on stable isotopic δ{sup 13}C, δ{sup 15}N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two {sup 210}Pb and {sup 137}Cs dated sediment cores. The results showed that during the past 50 years, average contributions of soil and fertilizer, submerged macrophytes, N{sub 2}-fixing phytoplankton, and non-N{sub 2}-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50 years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N{sub 2}-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50 years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N{sub 2}-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment. - Highlights: • A mixing model was built to analyze sediment N sources of lakes/reservoirs. • Fertilizer/soil and macrophytes showed decreasing trends during

  16. Use of GRACE data to monitor climate change-induced variations in water storage availability in the African continent

    Science.gov (United States)

    Ahmed, M. E.; Sultan, M.; Wahr, J. M.; Yan, E.; Milewski, A.; Mohsen, F.; Chouinard, K.

    2011-12-01

    The Gravity Recovery and Climate Experiment (GRACE) data provides direct measurements of temporal mass variations; the latter is largely controlled by variations in water volumes in various reservoirs such as surface water (e.g., lakes and streams), groundwater (e.g., shallow and deep aquifers) and in the soil profile. Climatic changes impact the amounts of precipitation and its partitioning into each of these reservoirs. We explored the use of GRACE data for monitoring climate change-induced variations in water availability in the African continent over a period of nine years and used the identified trends to predict water storage availability across the continent over the next decade. Monthly GRACE gravity field solutions (Center of Space Research [CSR] RL04) in form of Spherical Harmonic Coefficients (SHC's) that span the period from April 2002 through November 2010 were processed (temporal mean was removed, de-striped, smoothed [250 km; Gaussian], and converted to 0.5 x 0.5 deg. equivalent water thicknesses). Several relevant GRACE bi-products (e.g., standard deviation, annual trend) were generated over time periods of six, seven, eight, and nine years and compared (in a GIS environment) with relevant co-registered data sets and derived products (e.g., precipitation, topography, geology, VNIR Landsat, NDVI, stream network distribution, water bodies distribution, watershed boundaries, and Community Climate System Model [CCSM-3] products). Spatial correlations of the co-registered data sets revealed the following: (1) persistent and increasingly pronounced linear annual trends (+ve: increasing mass; -ve: decreasing mass) over periods of six to nine years with the most pronounced trends detected over domains of high signal to noise ratios; (2) +ve trends over the source areas for the Blue Nile basin (4.2 mm/yr) and over the source areas of the Congo basin (7 mm/yr) and over the Zambezi basin (24 mm/yr), whereas -ve trends were detected over Central Africa (-7 mm

  17. Masked millennial-scale climate variations in South West Africa during the last glaciation

    Directory of Open Access Journals (Sweden)

    I. Hessler

    2012-04-01

    Full Text Available To address the connection between tropical African vegetation development and high-latitude climate change we present a high-resolution pollen record from ODP Site 1078 (off Angola covering the period 50–10 ka BP. Although several tropical African vegetation and climate reconstructions indicate an impact of Heinrich Stadials (HSs in Southern Hemisphere Africa, our vegetation record shows no response. Model simulations conducted with an Earth System Model of Intermediate Complexity including a dynamical vegetation component provide one possible explanation. Because both precipitation and evaporation increased during HSs and their effects nearly cancelled each other, there was a negligible change in moisture supply. Consequently, the resulting climatic response to HSs might have been too weak to noticeably affect the vegetation composition in the study area. Our results also show that the response to HSs in southern tropical Africa neither equals nor mirrors the response to abrupt climate change in northern Africa.

  18. Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils

    NARCIS (Netherlands)

    Frenne, De P.; Coomes, D.; Schrijver, De A.; Staelens, J.; Alexander, J.M.; Bernhardt-Romermann, M.; Brunet, J.; Chabrerie, O.; Chiarucci, A.; Ouden, den J.

    2014-01-01

    Most range shift predictions focus on the dispersal phase of the colonization process. Because moving populations experience increasingly dissimilar nonclimatic environmental conditions as they track climate warming, it is also critical to test how individuals originating from contrasting thermal en

  19. Explaining life history variation in a changing climate across a species' range

    DEFF Research Database (Denmark)

    Neuheimer, Anna B.; MacKenzie, Brian R.

    2014-01-01

    Timing of reproduction greatly influences offspring success and resulting population production. Explaining and predicting species' dynamics necessitates disentangling the intrinsic (genotypic) and extrinsic (climatic) factors controlling reproductive timing. Here we explore temporal and spatial ...

  20. High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian Cypress Austrocedrus chilensis.

    Science.gov (United States)

    Arana, María Verónica; Gallo, Leonardo A; Vendramin, Giovanni G; Pastorino, Mario J; Sebastiani, Federico; Marchelli, Paula

    2010-03-01

    Knowledge about current patterns of genetic structure of populations together with the evolutionary history of a species helps to understand and predict the adaptation of populations to future climate change. We assayed variation at nuclear microsatellite markers among peripheral vs. continuous populations of the temperate South American species Austrocedrus chilensis, to investigate the role of historical vs. demographical forces in shaping population genetic structure. This species occurs in continuous populations in the west and central distribution range, but becomes highly fragmented at the eastern limit, which comprised ice-free areas during Quaternary glaciations and has extreme climatic conditions at present times. Bayesian analysis methods identified two contrasting patterns of genetic structure; (I) populations from humid, mesic and peri-glacial regions formed a single deme with relatively low genetic differentiation and high admixture levels whereas (II) a highly heterogeneous genetic structure with low level of admixture was found in the steppe, towards the east and northeast limit of the distribution range. In the steppe, population fragmentation, restricted gene flow and isolation-by-distance were also inferred. In addition, several small steppe populations showed high genetic diversity and divergent gene pools, suggesting that they constitute ancient refuges from pre-Holocene glaciations with just a subgroup of them contributing significantly to post-glacial spread. These results are discussed in relation to patterns of genetic variation found for other temperate species and the contribution of the particular southern Andes topography and climate to post-glacial spread.

  1. Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis.

    OpenAIRE

    Tong, S; Hu, W.

    2001-01-01

    In this study we assessed the impact of climate variability on the Ross River virus (RRv) transmission and validated an epidemic-forecasting model in Cairns, Australia. Data on the RRv cases recorded between 1985 and 1996 were obtained from the Queensland Department of Health. Climate and population data were supplied by the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. The cross-correlation function (CCF) showed that maximum temperature in the curren...

  2. Influences of recent climate change and human activities on water storage variations in Central Asia

    Science.gov (United States)

    Deng, Haijun; Chen, Yaning

    2017-01-01

    Terrestrial water storage (TWS) change is an indicator of climate change. Therefore, it is helpful to understand how climate change impacts water systems. In this study, the influence of climate change on TWS in Central Asia over the past decade was analyzed using the Gravity Recovery and Climate Experiment satellites and Climatic Research Unit datasets. Results indicate that TWS experienced a decreasing trend in Central Asia from 2003 to 2013 at a rate of -4.44 ± 2.2 mm/a, and that the maximum positive anomaly for TWS (46 mm) occurred in July 2005, while the minimum negative anomaly (-32.5 mm) occurred in March 2008-August 2009. The decreasing trend of TWS in northern Central Asia (-3.86 ± 0.63 mm/a) is mainly attributed to soil moisture storage depletion, which is driven primarily by the increase in evapotranspiration. In the mountainous regions, climate change exerted an influence on TWS by affecting glaciers and snow cover change. However, human activities are now the dominant factor driving the decline of TWS in the Aral Sea region and the northern Tarim River Basin.

  3. Variations and trends of terrestrial NPP and its relation to climate change in the 10 CMIP5 models

    Indian Academy of Sciences (India)

    Suosuo Li; Shihua Lü; Yuanpu Liu; Yanhong Gao; Yinhuan Ao

    2015-03-01

    Using global terrestrial ecosystem net primary productivity (NPP) data, we validated the simulated multi-model ensemble (MME) NPP, analyzed the spatial distribution of global NPP and explored the relationship between NPP and climate variations in historical scenarios of 10 CMIP5 models. The results show that the global spatial pattern of simulated terrestrial ecosystem NPP, is consistent with IGBP NPP, but the values have some differences and there is a huge uncertainty. Considering global climate change, near surface temperature is the major factor affecting the terrestrial ecosystem, followed by the precipitation. This means terrestrial ecosystem NPP is more closely related to near surface temperature than precipitation. Between 1976 and 2005, NPP shows an obvious increasing temporal trend, indicating the terrestrial ecosystem has had a positive response to climate change. MME NPP has increased 3.647PgC during historical period, which shows an increasing temporal trend of 3.9 gCm−2∙100 yr−2 in the past 150 years, also indicating that the terrestrial ecosystem has shown a positive response to climate change in past 150 years.

  4. Recent NDVI-Based Variation in Growth of Boreal Intact Forest Landscapes and Its Correlation with Climatic Variables

    Directory of Open Access Journals (Sweden)

    Jiaxin Jin

    2016-04-01

    Full Text Available Intact Forest Landscape (IFL is of great value in protecting biodiversity and supporting core ecological processes. It is important to analyze the spatial variation in the growth dynamics of IFL. This study analyzed the change of the Normalized Difference Vegetation Index (NDVI during the growing season (April–October for boreal (45° N–70° N IFLs and the correlation with climatic variables over the period of 2000–2013. Our results show 85.5% of boreal IFLs did not show a significant change in the NDVI after 2000, and only 10.2% and 4.3% exhibited a statistically significant increase (greening or decrease (browning in NDVI, respectively. About 60.9% of the greening boreal IFLs showed that an increasing NDVI was significantly correlated to climatic variables, especially an increasing growing season temperature (over 47.0%. For browning boreal IFLs, a decrease in temperature or an increase in dormancy period precipitation could be the prime reason for a significant decrease in the NDVI. However, about 64.6% of the browning boreal IFLs were insensitive to any of the climatic variables, indicating other factors, such as fire, had caused the browning. Although it did not show a significant trend, the NDVI of 51.3% of no-change boreal IFLs significantly correlated to climatic variables, especially growing season temperatures (over 37.6%.

  5. Fluorscence signatures of dissolved organic material in an alpine lake ecosystem: responses to interannual climate variation and nutrient cycling

    Science.gov (United States)

    McKnight, Diane; Olivier, Matt; Hell, Katherina

    2016-04-01

    During snowmelt alpine lakes receive lower concentrations of dissolved organic material (DOM) that originates from the surrounding watershed than sub-alpine and montane lakes at lower elevations. Alpine lakes also have a shorter ice-free period that constrains the summer season of phytoplankton growth. Nonetheless, previous study of the reactive transport and production of DOM in an alpine lake in the Colorado Front Range during snowmelt and the summer ice-free season has shown that changes in DOM sources and the influence of biogeochemical processes can be resolved using fluorescence spectroscopy. Here we examine inter-annual variations in DOM fluorescence signatures during the snowmelt and summer periods in comparison to records of climate, residence time and primary production in the lake during the summer. Our analysis shows that variation in chlorophyll a concentration is a driver for variations in the fluorescence index (FI), as well as for specific ultra-violet absorbance. This result supports the predictions from the previous reactive transport modeling. We also conducted mesocosm experiments with nutrient enrichment to explore the role of nitrogen and phosphorus availability in influencing the fluorescence signature of DOM in summer. These results suggest that monitoring of simple spectroscopic properties of DOM can provide a means to track the biogeochemical consequences for alpine lakes of "too much" summer as climate continues to change.

  6. The relationship between female brooding and male nestling provisioning: does climate underlie geographic variation in sex roles?

    Science.gov (United States)

    Yoon, Jongmin; Sofaer, Helen; Sillett, T. Scott; Morrison, Scott A.; Ghalambor, Cameron K.

    2017-01-01

    Comparative studies of populations occupying different environments can provide insights into the ecological conditions affecting differences in parental strategies, including the relative contributions of males and females. Male and female parental strategies reflect the interplay between ecological conditions, the contributions of the social mate, and the needs of offspring. Climate is expected to underlie geographic variation in incubation and brooding behavior, and can thereby affect both the absolute and relative contributions of each sex to other aspects of parental care such as offspring provisioning. However, geographic variation in brooding behavior has received much less attention than variation in incubation attentiveness or provisioning rates. We compared parental behavior during the nestling period in populations of orange-crowned warblers Oreothlypis celata near the northern (64°N) and southern (33°N) boundaries of the breeding range. In Alaska, we found that males were responsible for the majority of food delivery whereas the sexes contributed equally to provisioning in California. Higher male provisioning in Alaska appeared to facilitate a higher proportion of time females spent brooding the nestlings. Surprisingly, differences in brooding between populations could not be explained by variation in ambient temperature, which was similar between populations during the nestling period. While these results represent a single population contrast, they suggest additional hypotheses for the ecological correlates and evolutionary drivers of geographic variation in brooding behavior, and the factors that shape the contributions of each sex.

  7. Spatial-temporal analysis on climate variation in early Qing dynasty (17th -18th century) using China's chronological records

    Science.gov (United States)

    Lin, Kuan-Hui Elaine; Wang, Pao-Kuan; Fan, I.-Chun; Liao, Yi-Chun; Liao, Hsiung-Ming; Pai, Pi-Ling

    2016-04-01

    Global climate change in the form of extreme, variation, and short- or mid-term fluctuation is now widely conceived to challenge the survival of the human beings and the societies. Meanwhile, improving present and future climate modeling needs a comprehensive understanding of the past climate patterns. Although historical climate modeling has gained substantive progress in recent years based on the new findings from dynamical meteorology, phenology, or paleobiology, less known are the mid- to short-term variations or lower-frequency variabilities at different temporal scale and their regional expressions. Enabling accurate historical climate modeling would heavily rely on the robustness of the dataset that could carry specific time, location, and meteorological information in the continuous temporal and spatial chains. This study thus presents an important methodological innovation to reconstruct historical climate modeling at multiple temporal and spatial scales through building a historical climate dataset, based on the Chinese chronicles compiled in a Zhang (2004) edited Compendium of Chinese Meteorological Records of the Last 3,000 Years since Zhou Dynasty (1100BC). The dataset reserves the most delicate meteorological data with accurate time, location, meteorological event, duration, and other phonological, social and economic impact information, and is carefully digitalized, coded, and geo-referenced on the Geographical Information System based maps according to Tan's (1982) historical atlas in China. The research project, beginning in January 2015, is a collaborative work among scholars across meteorology, geography, and historical linguistics disciplines. The present research findings derived from the early 100+ years of the Qing dynasty include the following. First, the analysis is based on the sampling size, denoted as cities/counties, n=1398 across the Mainland China in the observation period. Second, the frequencies of precipitation, cold

  8. A mechanism for inducing climatic variations through ozone destruction: Screening of galactic cosmic rays by solar and terrestrial magnetic fields

    Science.gov (United States)

    Chamberlain, J. W.

    1976-01-01

    A perturbation analysis, allowing for temperature and opacity feedbacks, is developed to calculate depletions in the O3 abundance and reductions of stratospheric solar heating that result from increases in NOx concentration. A pair of perturbation coefficients give the reduction in O3 and temperature through the stratosphere for a specified NOx increase. This type of analysis illustrates the tendency for various levels to self-heal when a perturbation occurs. Physical arguments indicate that the expected sign of the climatic effect is correct, with colder surface temperatures produced by reduced magnetic shielding. In addition, four qualitative reasons are suggested for thinking that significant ozone reductions by cosmic ray influxes will lead to an increased terrestrial albedo from stratospheric condensation. In this view, long-term (approximately 10,000 years) climatic changes have resulted from secular geomagnetic variations while shorter (approximately 100 years) excursions are related to changes in solar activity.

  9. The Effect of Climate, Environment and Man on Variations in Wildlife Population Fluctuations in Greenland Over 200 Years

    DEFF Research Database (Denmark)

    Moshøj, Charlotte Margaret

    2008-01-01

    The Effect of Climate, Environment and Man on Variations in Wildlife Population Fluctuations in Greenland Over 200 Years Moshøj, Charlotte The underlying factors of species fluctuating population dynamics has been the dominant focus of attention in population ecology throughout much of this century....... In arctic regions where a severe climate with high seasonal and annual variability and simplistic ecosystems prevail, species of fish, birds and mammals display distinct population fluctuations of varying temporal and spatial scale. In Greenland, historical records, archaeological findings and oral accounts...... passed on from Inuit elders all document that the presence of wildlife species and their population sizes have undergone pronounced fluctuations throughout recordable historical time. The most detailed accounts are found for the species that were harvested or had economical value. While several recent...

  10. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    NARCIS (Netherlands)

    Engels, S.; van Geel, B.

    2012-01-01

    Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of t

  11. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    NARCIS (Netherlands)

    Engels, S.; van Geel, B.

    2012-01-01

    Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of t

  12. Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes.

    Science.gov (United States)

    Xia, Xinghui; Wu, Qiong; Zhu, Baotong; Zhao, Pujun; Zhang, Shangwei; Yang, Lingyan

    2015-08-01

    We applied a mixing model based on stable isotopic δ(13)C, δ(15)N, and C:N ratios to estimate the contributions of multiple sources to sediment nitrogen. We also developed a conceptual model describing and analyzing the impacts of climate change on nitrogen enrichment. These two models were conducted in Miyun Reservoir to analyze the contribution of climate change to the variations in sediment nitrogen sources based on two (210)Pb and (137)Cs dated sediment cores. The results showed that during the past 50years, average contributions of soil and fertilizer, submerged macrophytes, N2-fixing phytoplankton, and non-N2-fixing phytoplankton were 40.7%, 40.3%, 11.8%, and 7.2%, respectively. In addition, total nitrogen (TN) contents in sediment showed significant increasing trends from 1960 to 2010, and sediment nitrogen of both submerged macrophytes and phytoplankton sources exhibited significant increasing trends during the past 50years. In contrast, soil and fertilizer sources showed a significant decreasing trend from 1990 to 2010. According to the changing trend of N2-fixing phytoplankton, changes of temperature and sunshine duration accounted for at least 43% of the trend in the sediment nitrogen enrichment over the past 50years. Regression analysis of the climatic factors on nitrogen sources showed that the contributions of precipitation, temperature, and sunshine duration to the variations in sediment nitrogen sources ranged from 18.5% to 60.3%. The study demonstrates that the mixing model provides a robust method for calculating the contribution of multiple nitrogen sources in sediment, and this study also suggests that N2-fixing phytoplankton could be regarded as an important response factor for assessing the impacts of climate change on nitrogen enrichment.

  13. Soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China's forest ecosystems

    Directory of Open Access Journals (Sweden)

    Z. H. Zhou

    2015-07-01

    Full Text Available Microbial metabolism plays a key role in regulating the biogeochemical cycle of forest ecosystems, but the mechanisms driving microbial growth are not well understood. Here, we synthesized 689 measurements on soil microbial biomass carbon (Cmic and nitrogen (Nmic and related parameters from 207 independent studies published during the past 15 years across China's forest ecosystems. Our objectives were to (1 examine patterns in Cmic, Nmic, and microbial quotient (i.e., Cmic / Csoil and Nmic / Nsoil rates by climate zones and management regimes for these forests; and (2 identify the factors driving the variability in the Cmic, Nmic, and microbial quotient. There was a large variability in Cmic (390.2 mg kg−1, Nmic (60.1 mg kg−1, Cmic : Nmic ratio (8.25, Cmic / Csoil rate (1.92 %, and Nmic / Nsoil rate (3.43 % across China's forests, with coefficients of variation varying from 61.2 to 95.6 %. The natural forests had significantly greater Cmic and Nmic than the planted forests, but had less Cmic : Nmic ratio and Cmic / Csoil rate. Soil resources and climate together explained 24.4–40.7 % of these variations. The Cmic : Nmic ratio declined slightly with the Csoil : Nsoil ratio, and changed with latitude, mean annual temperature and precipitation, suggesting a plastic homeostasis of microbial carbon-nitrogen stoichiometry. The Cmic / Csoil and Nmic / Nsoil rates were responsive to soil resources and climate differently, suggesting that soil microbial assimilation of carbon and nitrogen be regulated by different mechanisms. We conclude that soil resources and climate jointly drive microbial growth and metabolism, and also emphasize the necessity of appropriate procedures for data compilation and standardization in cross-study syntheses.

  14. Climatic influence on slope dynamics and shoreline variations: examples from Marche region (Central Italy

    Directory of Open Access Journals (Sweden)

    Domenico Aringoli

    2007-12-01

    Full Text Available The present work aims to establish relationships between shoreline historical variations (close to the river mouths and slope dynamics on mountain and hilly areas: these are considered as fundamental physiographic units of the Adriatic central Italy. The study deals about the deltaic system of the Chienti river, which is representative of the deltaic systems of the main Marchean rivers. Goal is to recognize possible geomorphological indicators of climatic variations during late Holocene. Debris flows on the Sibillini Mts were analysed and interpreted. Their activation can be associated with: late Pleistocene-early Holocene deglaciation, with regard to the oldest phenomena; agricultural, forestry and grazing activities during the Late Middle Ages, even though evidence of climatic conditioning is also present. Moreover, some important landslide phenomena on the high hilly areas were examined: historical data demonstrated an intense post-Middle Age activity (XVth-XVIIIth centuries related to the strong rainfall increase as a consequence of climatic worsening.Dans cette note, sont interprétées quelques formes mineures du paysage physique, utilisables en tant qu'indicateurs géomorphologiques des variations climatiques de l'Holocène supérieur. La création et l'évolution de ces formes sont liées à la circulation superficielle et souterraine d'importantes quantités d'eau. Les processus analysés se réfèrent aux zones représentatives de l'organisation géomorphologique des trois unités physiographiques fondamentales de l'Italie centrale adriatique : les régions montagneuses, la bande péri-adriatique des hautes collines et la plaine côtière.La première zone appartient au massif des Monts Sibyllins, dans l'Apennin central d'Ombrie-Marches. Les sommets dépassent fréquemment 2000 mètres d'altitude et atteignent 2476 mètres au Mont Vettore. Le substrat géologique est formé par la célèbre "succession d'Ombrie-Marches" (Trias sup

  15. Temporal response of the tiger salamander (Ambystoma tigrinum to 3,000 years of climatic variation

    Directory of Open Access Journals (Sweden)

    Long Webb

    2005-09-01

    Full Text Available Abstract Background Amphibians are sensitive indicators of environmental conditions and show measurable responses, such as changes in phenology, abundance and range limits to local changes in precipitation and temperature regimes. Amphibians offer unique opportunities to study the important ecological and evolutionary implications of responses in life history characteristics to climatic change. We analyzed a late-Holocene fossil record of the Tiger Salamander (Ambystoma tigrinum for evidence of population-level changes in body size and paedomorphosis to climatic change over the last 3000 years. Results We found a significant difference in body size index between paedomorphic and metamorphic individuals during the time interval dominated by the Medieval Warm Period. There is a consistent ratio of paedomorphic to metamorphic specimens through the entire 3000 years, demonstrating that not all life history characteristics of the population were significantly altered by changes in climate on this timescale. Conclusion The fossil record of Ambystoma tigrinum we used spans an ecologically relevant timescale appropriate for understanding population and community response to projected climatic change. The population-level responses we documented are concordant with expectations based on modern environmental studies, and yield insight into population-level patterns across hundreds of generations, especially the independence of different life history characteristics. These conclusions lead us to offer general predictions about the future response of this species based on likely scenarios of climatic warming in the Rocky Mountain region.

  16. Organisational culture: variation across hospitals and connection to patient safety climate.

    Science.gov (United States)

    Speroff, T; Nwosu, S; Greevy, R; Weinger, M B; Talbot, T R; Wall, R J; Deshpande, J K; France, D J; Ely, E W; Burgess, H; Englebright, J; Williams, M V; Dittus, R S

    2010-12-01

    Bureaucratic organisational culture is less favourable to quality improvement, whereas organisations with group (teamwork) culture are better aligned for quality improvement. To determine if an organisational group culture shows better alignment with patient safety climate. Cross-sectional administration of questionnaires. Setting 40 Hospital Corporation of America hospitals. 1406 nurses, ancillary staff, allied staff and physicians. Competing Values Measure of Organisational Culture, Safety Attitudes Questionnaire (SAQ), Safety Climate Survey (SCSc) and Information and Analysis (IA). The Cronbach alpha was 0.81 for the group culture scale and 0.72 for the hierarchical culture scale. Group culture was positively correlated with SAQ and its subscales (from correlation coefficient r = 0.44 to 0.55, except situational recognition), ScSc (r = 0.47) and IA (r = 0.33). Hierarchical culture was negatively correlated with the SAQ scales, SCSc and IA. Among the 40 hospitals, 37.5% had a hierarchical dominant culture, 37.5% a dominant group culture and 25% a balanced culture. Group culture hospitals had significantly higher safety climate scores than hierarchical culture hospitals. The magnitude of these relationships was not affected after adjusting for provider job type and hospital characteristics. Hospitals vary in organisational culture, and the type of culture relates to the safety climate within the hospital. In combination with prior studies, these results suggest that a healthcare organisation's culture is a critical factor in the development of its patient safety climate and in the successful implementation of quality improvement initiatives.

  17. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years

    Institute of Scientific and Technical Information of China (English)

    ZHANG Geli; XU Xingliang; ZHOU Caiping; ZHANG Hongbin; OUYANG Hua

    2011-01-01

    vegetation growth and precipitation of the month before the current month,were better from May to August,showing a hysteresis response of vegetation growth to rainfall.Grasses get green and begin to grow in April,and the impacts of temperature on grass growth are obvious.The increase of NDVI in April may be due to climatic warming that leads to an advanced growth season.In summary,relationships between monthly-interannual variations of vegetation coverage and climatic factors represent the temporal rhythm controls of temperature and precipitation on grass growth largely.

  18. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau(1981―2006):Impacts of climate changes and human activities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981-2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981―1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990―1998; (3) vegetation cover declined rapidly during 1999―2001; and (4) vegetation cover increased rapidly during 2002―2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation

  19. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981―2006): Impacts of climate changes and human activities

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981-2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981-1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990-1998; (3) vegetation cover declined rapidly during 1999-2001; and (4) vegetation cover increased rapidly during 2002-2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation construction has

  20. Biomarkers in a peat deposit in Northern Spain (Huelga de Bayas, Asturias) as proxy for climate variation.

    Science.gov (United States)

    López-Días, V; Borrego, A G; Blanco, C G; Arboleya, M; López-Sáez, J A; López-Merino, L

    2010-05-21

    Peatlands are peculiar ecosystems in which well-adapted communities grow and develop, recording the variation in climate and hydrological conditions inland. In addition necromass is well preserved and therefore peatlands can be used as palaeo-archives for environmental variation. In this work a peat core of depth 60 cm dated at the bottom of the peat deposit as ca. 250cal AD from Huelga de Bayas (Asturias, Northern Spain) was studied to a resolution of 2-4 cm to investigate the evolution of the environmental conditions in the area. Samples were extracted with a dichloromethane/methanol ratio of 3:1 and studied by means of gas chromatography (GC) and mass spectrometry (GC-MS) in order to identify possible biomarkers of climatic variation during the period of peat formation. Lipid biomarker study allows the identification of periods in which Sphagnum or higher plants preferentially contributed to the peat profile. The absolute dating of the profile combined with the n-alkane record displayed five episodes of wetter conditions around ca. 250 cal AD (Roman Warm Period), 1080 and 1270 cal AD (Medieval Warm Period), 1460 cal AD (Little Ice Age) and 1920 cal AD (Recent warming), which are consistent with climate evolution in the region. Pentacyclic triterpenoids with hopane skeleton derived from microorganisms and with oleanane skeleton derived from higher plants were identified. The presence of their ketone and acetyl-derivatives, along with the presence of unstable hopane configurations indicates a low maturity of the peat profile. A tendency for the functionalised triterpenoids to decrease with depth was observed in the profile.

  1. Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, Northern China.

    Directory of Open Access Journals (Sweden)

    Tian Gao

    Full Text Available Knowledge about grassland biomass and its dynamics is critical for studying regional carbon cycles and for the sustainable use of grassland resources. In this study, we investigated the spatio-temporal variation of biomass in the Xilingol grasslands of northern China. Field-based biomass samples and MODIS time series data sets were used to establish two empirical models based on the relationship of the normalized difference vegetation index (NDVI with above-ground biomass (AGB as well as that of AGB with below-ground biomass (BGB. We further explored the climatic controls of these variations. Our results showed that the biomass averaged 99.01 Tg (1 Tg=10(12 g over a total area of 19.6 × 10(4 km(2 and fluctuated with no significant trend from 2001 to 2012. The mean biomass density was 505.4 g/m(2, with 62.6 g/m(2 in AGB and 442.8 g/m(2 in BGB, which generally decreased from northeast to southwest and exhibited a large spatial heterogeneity. The year-to-year AGB pattern was generally consistent with the inter-annual variation in the growing season precipitation (GSP, showing a robust positive correlation (R(2=0.82, P<0.001, but an opposite coupled pattern was observed with the growing season temperature (GST (R(2=0.61, P=0.003. Climatic factors also affected the spatial distribution of AGB, which increased progressively with the GSP gradient (R(2=0.76, P<0.0001 but decreased with an increasing GST (R(2=0.70, P<0.0001. An improved moisture index that combined the effects of GST and GSP explained more variation in AGB than did precipitation alone (R(2=0.81, P<0.0001. The relationship between AGB and GSP could be fit by a power function. This increasing slope of the GSP-AGB relationships along the GSP gradient may be partly explained by the GST-GSP spatial pattern in Xilingol. Our findings suggest that the relationships between climatic factors and AGB may be scale-dependent and that multi-scale studies and sufficient long-term field data are needed

  2. Spatio-Temporal Variation in Vegetation Biomass and Its Relationships with Climate Factors in the Xilingol Grasslands, Northern China

    Science.gov (United States)

    Gao, Tian; Yang, Xiuchun; Jin, Yunxiang; Ma, Hailong; Li, Jinya; Yu, Haida; Yu, Qiangyi; Zheng, Xiao; Xu, Bin

    2013-01-01

    Knowledge about grassland biomass and its dynamics is critical for studying regional carbon cycles and for the sustainable use of grassland resources. In this study, we investigated the spatio-temporal variation of biomass in the Xilingol grasslands of northern China. Field-based biomass samples and MODIS time series data sets were used to establish two empirical models based on the relationship of the normalized difference vegetation index (NDVI) with above-ground biomass (AGB) as well as that of AGB with below-ground biomass (BGB). We further explored the climatic controls of these variations. Our results showed that the biomass averaged 99.01 Tg (1 Tg=1012 g) over a total area of 19.6×104 km2 and fluctuated with no significant trend from 2001 to 2012. The mean biomass density was 505.4 g/m2, with 62.6 g/m2 in AGB and 442.8 g/m2 in BGB, which generally decreased from northeast to southwest and exhibited a large spatial heterogeneity. The year-to-year AGB pattern was generally consistent with the inter-annual variation in the growing season precipitation (GSP), showing a robust positive correlation (R2=0.82, P<0.001), but an opposite coupled pattern was observed with the growing season temperature (GST) (R2=0.61, P=0.003). Climatic factors also affected the spatial distribution of AGB, which increased progressively with the GSP gradient (R2=0.76, P<0.0001) but decreased with an increasing GST (R2=0.70, P<0.0001). An improved moisture index that combined the effects of GST and GSP explained more variation in AGB than did precipitation alone (R2=0.81, P<0.0001). The relationship between AGB and GSP could be fit by a power function. This increasing slope of the GSP–AGB relationships along the GSP gradient may be partly explained by the GST–GSP spatial pattern in Xilingol. Our findings suggest that the relationships between climatic factors and AGB may be scale-dependent and that multi-scale studies and sufficient long-term field data are needed to examine the

  3. Temporal Variations of Dipole Teleconnections in the Southern Oceans and Their Climatic Impacts

    Science.gov (United States)

    Reischmann, E.; Rial, J. A.

    2015-12-01

    Dipole behavior in ocean-atmosphere variability has been subject to extensive study due to their impacts on regional climates, such as that of the Indian Ocean Dipole. This study uses the results of a combined correlation coefficient and empirical orthogonal function analysis to study sea surface temperature anomaly dipoles with inter-annual periodicity, and explore seasonal variability. Previous work has shown that this dipole behavior has remained stable for at least the last century [Reischmann et al., 2014. Previous work has also shown that polar climate dipoles display a clear transfer function on a millennial scale for the last 80,000 years [Oh et al., 2014]. This transfer function has been rigorously tested, demonstrating the usefulness of the method of spectral deconvolution for linearly related climate systems. Here we present different time scales of dipole behavior, their impacts on local climates, and discuss what methods of connection can allow them to remain sustained on a centennial or millennial scale. Multiple climate proxies are necessary to study these time scales and their impacts, from weekly satellite observations which have been extended to a centennial scale via multiple models, to annual or multi-annual lake sediment and dendrochronology records with larger sampling rates and absolute dating uncertainty. Analysis techniques such as spectral deconvolution will make use of the linear nature of these dipole connections to study the energy transfer functions and their physical implications. The longest scale results of this study may be compared to the work establishing the synchronized nature of the polar climates on the millennial scale.

  4. Stable carbon isotope in tree rings from Huangling, China and climatic variation

    Institute of Scientific and Technical Information of China (English)

    刘禹; 吴祥定; Steven W.Leavitt; Malcolm K.Hughes

    1996-01-01

    By using a single-year discrimination chronology detrended from a δ13C chronology from Chinese pine (Pinus tabulaeformis) tree rings and meteorological data, the δ13C-climatic response is analyzed. The results show that high-frequency δ13C is significantly related to both temperatures of June (with r=-0.65) and the total precipitation of May, June and July (r=-0.46). This suggests that δ13C records reflects some features of the East Asian summer monsoon. In addition, temperature departure for June is reconstructed from a transfer function developed with δ13C-climatic response.

  5. Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems

    Directory of Open Access Journals (Sweden)

    Junjiong Shao

    2016-08-01

    Full Text Available Climatic variables not only directly affect the interannual variability (IAV in net ecosystem exchange of CO2 (NEE but also indirectly drive it by changing the physiological parameters. Identifying these direct and indirect paths can reveal the underlying mechanisms of carbon (C dynamics. In this study, we applied a path analysis using flux data from 65 sites to quantify the direct and indirect climatic effects on IAV in NEE and to evaluate the potential relationships among the climatic variables and physiological parameters that represent physiology and phenology of ecosystems. We found that the maximum photosynthetic rate was the most important factor for the IAV in gross primary productivity (GPP, which was mainly induced by the variation in vapour pressure deficit. For ecosystem respiration (RE, the most important drivers were GPP and the reference respiratory rate. The biome type regulated the direct and indirect paths, with distinctive differences between forests and non-forests, evergreen needleleaf forests and deciduous broadleaf forests, and between grasslands and croplands. Different paths were also found among wet, moist and dry ecosystems. However, the climatic variables can only partly explain the IAV in physiological parameters, suggesting that the latter may also result from other biotic and disturbance factors. In addition, the climatic variables related to NEE were not necessarily the same as those related to GPP and RE, indicating the emerging difficulty encountered when studying the IAV in NEE. Overall, our results highlight the contribution of certain physiological parameters to the IAV in C fluxes and the importance of biome type and multi-year water conditions, which should receive more attention in future experimental and modelling research.

  6. Role of climate anomalies on decadal variation in the occurrence of wintertime haze in the Yangtze River Delta, China.

    Science.gov (United States)

    Xu, Jianming; Chang, Luyu; Yan, Fengxia; He, JinHai

    2017-12-01

    The wintertime haze day (HD) in the Yangtze River Delta (YRD) region of China shows a significant upward trend during the past decades due to the rapid industrialization and urbanization. Besides the enhanced anthropogenic emission, climate change also plays the important role in the long term HD variations. In this study, the significant decadal variation of wintertime HD during the period 1960-2012 in YRD is examined by the empirical orthogonal function (EOF) analysis, featured as less HD occurrence before 1980 and more occurrence after 2000. The numerical simulations by the global transport and chemical model (Model for Ozone and Related chemical Tracers, MOZART) with the same emission inventory suggest 8.4% enhancement of wintertime PM2.5 (particulate matter with the equivalent diameter of air dynamics less than or equal to 2.5μm) mass concentration in YRD during 2001-2009 compared with that during 1971-1979 attributed to meteorological changes, indicating the significant effect of climate anomaly on the decadal variations of wintertime HD. Through the composite analysis on the atmospheric dynamical and thermal conditions based on the reanalysis data, the faster warming in the lower and middle troposphere over the continent in the recent decade is suggested to be important for the out-of-phase decadal HD variation in YRD. The thermal anomaly not only reverses the zonal thermal difference of land-sea to stimulate the anomalous southerlies over YRD leading to reduced prevailing north wind in winter, but also develops the deep inversion below the mid-troposphere to enhance the atmospheric stability. As a result, more frequent and persistent air stagnations in recent decade are expected for the reduction of atmospheric horizontal dispersion and vertical diffusion capacity leading to more occurrence of wintertime HD in YRD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, Northern China.

    Science.gov (United States)

    Gao, Tian; Yang, Xiuchun; Jin, Yunxiang; Ma, Hailong; Li, Jinya; Yu, Haida; Yu, Qiangyi; Zheng, Xiao; Xu, Bin

    2013-01-01

    Knowledge about grassland biomass and its dynamics is critical for studying regional carbon cycles and for the sustainable use of grassland resources. In this study, we investigated the spatio-temporal variation of biomass in the Xilingol grasslands of northern China. Field-based biomass samples and MODIS time series data sets were used to establish two empirical models based on the relationship of the normalized difference vegetation index (NDVI) with above-ground biomass (AGB) as well as that of AGB with below-ground biomass (BGB). We further explored the climatic controls of these variations. Our results showed that the biomass averaged 99.01 Tg (1 Tg=10(12) g) over a total area of 19.6 × 10(4) km(2) and fluctuated with no significant trend from 2001 to 2012. The mean biomass density was 505.4 g/m(2), with 62.6 g/m(2) in AGB and 442.8 g/m(2) in BGB, which generally decreased from northeast to southwest and exhibited a large spatial heterogeneity. The year-to-year AGB pattern was generally consistent with the inter-annual variation in the growing season precipitation (GSP), showing a robust positive correlation (R(2)=0.82, PClimatic factors also affected the spatial distribution of AGB, which increased progressively with the GSP gradient (R(2)=0.76, Pmoisture index that combined the effects of GST and GSP explained more variation in AGB than did precipitation alone (R(2)=0.81, Pclimatic factors and AGB may be scale-dependent and that multi-scale studies and sufficient long-term field data are needed to examine the relationships between AGB and climatic factors.

  8. Population dynamics in the high Arctic: Climate variations in time and space

    DEFF Research Database (Denmark)

    Hendrichsen, Ditte Katrine

    , and to unravel the relative importance of biotic and abiotic factors on ecosystem functioning. This thesis considers how selected vertebrate species in a high Arctic ecosystem respond to climatic variability, using 13 years of data from the monitoring programme at Zackenberg, Northeast Greenland. The main focus...

  9. Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems

    Science.gov (United States)

    The important questions about agriculture, climate, and sustainability have become increasingly complex and require a coordinated, multi-faceted approach for developing new knowledge and understanding. A multi-state, transdisciplinary project was begun in 2011 to study the potential for both mitigat...

  10. Arctic Shrub Growth Response to Climate Variation and Infrastructure Development on the North Slope of Alaska

    Science.gov (United States)

    Ackerman, D.; Finlay, J. C.; Griffin, D.

    2015-12-01

    Woody shrub growth in the arctic tundra is increasing on a circumpolar scale. Shrub expansion alters land-atmosphere carbon fluxes, nutrient cycling, and habitat structure. Despite these ecosystem effects, the drivers of shrub expansion have not been precisely established at the landscape scale. This project examined two proposed anthropogenic drivers: global climate change and local infrastructure development, a press disturbance that generates high levels of dust deposition. Effects of global change were studied using dendrochronology to establish a relationship between climate and annual growth in Betula and Salix shrubs growing in the Alaskan low Arctic. To understand the spatial heterogeneity of shrub expansion, this analysis was replicated in shrub populations across levels of landscape properties including soil moisture and substrate age. Effects of dust deposition on normalized difference vegetation index (NDVI) and photosynthetic rate were measured on transects up to 625 meters from the Dalton Highway. Dust deposition rates decreased exponentially with distance from road, matching previous models of road dust deposition. NDVI tracked deposition rates closely, but photosynthetic rates were not strongly affected by deposition. These results suggest that dust deposition may locally bias remote sensing measurements such as NDVI, without altering internal physiological processes such as photosynthesis in arctic shrubs. Distinguishing between the effects of landscape properties, climate, and disturbance will improve our predictions of the biogeochemical feedbacks of arctic shrub expansion, with potential application in climate change modeling.

  11. Evidences of climatic variations during Late Pleistocene- Holocene in the eastern Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Borole, D.V.; Gujar, A.R.; Mascarenhas, A.; Mislankar, P.G.; Rao, Ch.M.

    (aridity reflector), decrease in characteristic clay mineral suites of humid climate, i.e. smectite and illite and a Iow K/C ratio. The intensity of monsoon between LGM and 15 ky sup(-1) has been cyclic, and enhanced thereafter until the beginning...

  12. Climatic variation and the geographical distribution of sex-determining mechanisms in the housefly

    NARCIS (Netherlands)

    Feldmeyer, B.; Kozielska-Reid, M.A.; Kuijper, A.L.W.; Weissing, F.J.; Beukeboom, L.W.; Pen, I.R.

    2008-01-01

    Questions: (1) Are the geographic clines of sex-determining factors in the housefly of the northern hemisphere mirrored by similar clines on the southern hemisphere? (2) What climatic factors can best explain the geographical distribution of sex-determining factors in the housefly? Data: Frequencies

  13. Spatiotemporal analysis of temperature-variation patterns under climate change in the upper reach of Mekong River basin.

    Science.gov (United States)

    Wu, Feifei; Wang, Xuan; Cai, Yanpeng; Yang, Zhifeng; Li, Chunhui

    2012-06-15

    Occurrence of temperature anomaly has greatly affected natural cycles of water resources in Lancang River basin in China, which is the upper reach of Mekong River. An integrated spatiotemporal decomposition and analysis method was proposed for the identification of temperature-variation patterns under changing climatic conditions in the basin. This method was based on the combination of S-mode empirical orthogonal function analysis, IDW interpolation, liner regression, weighted moving average and Mann Kendall methods. Results indicated that the first two modes extracted nearly 80% of spatiotemporal variations in temperature. Temperature in the whole basin followed the same variation trend through the first mode analysis. Sensitive areas were mainly located in the southwest of the basin, which occupied nearly half of the basin. The associated time series presented that the basin appeared transition from cold periods to warm periods. Temperature increased significantly over the period of 1960 to 2009 at annual and seasonal scales, particularly over 1990s. At the same time, the most significant rising occurred in winter and the least in summer. In the second mode, a west-east inverse phase pattern of temperature variations was a distinct feature in most of the basin. Temporal trend indicated that the increasing trend in the west region was slightly stronger than that in the east. This was particularly the case of edge areas almost vertical juncture with monsoons. This research is not only helpful in improving understanding of temperature response to global warming in the basin but also provides a basis for basin management.

  14. Climatic variations of beryllium-7 activity in the atmosphere of Peshawar basin, Pakistan, during 2001-2006

    Directory of Open Access Journals (Sweden)

    Khan Khalid

    2009-01-01

    Full Text Available In the present study, the climatic variations of 7Be in the Peshawar basin (longitude 71°15' and 72°45' E and latitude 33°45' and 34°30' N of Pakistan was observed during the period of 2001-2006. Under the domain of environmental surveillance programme, air particulate samples were collected from Peshawar basin on fiberglass filters and analyzed for gamma emitting radionuclides using the gamma spectrometry system. The results of the last six years (2001-2006 range between 3.6 to 5 mBq/m3, while the composite average concentration of this radionuclide for the whole period is 4.5 mBq/m3. The measured values were significantly lower than the world average value of 12.5 mBq/m3. The climatic variations in the concentrations of 7Be were also checked by classifying the whole year into four seasons (winter, spring, summer, and fall and a positive correlation between 7Be activity and change in temperature was obtained.

  15. Solar Variation and Global Climate Change%太阳活动与全球气候变化

    Institute of Scientific and Technical Information of China (English)

    张亮; 王赤; 傅绥燕

    2011-01-01

    太阳不断向地球辐射电磁波和粒子,太阳辐射是地球气候系统最主要的能量来源.地球气候系统对太阳活动的响应是一个复杂的过程,包括辐射过程、动力学过程以及微观物理过程等.根据太阳辐射的卫星观测结果和重建结果,例举了古气候、温度、大气环流和云量等方面太阳影响气候的观测证据,论述了太阳影响气候的三种可能机制,即太阳总辐射变化可以影响地表温度,并通过海一气耦合改变大气环流;太阳紫外辐射通过调制平流层的温度和风场影响下面的对流层;太阳通过行星际磁场调制银河宇宙线,而银河宇宙线通过电离大气影响云量,进而改变地球的能量收支.%The Sun continually radiates electromagnetic wave and particles to Earth, and the solar radiation is the main energy resource for the Earth's climate system. The response of climate system to the solar variation is very complex, including radiative process, dynamic process and inicrophysics process. This paper reviews the measurements from satellites and reconstruction results by other proxies of the solar irradiance variation, enumerates some climate observational evidence in the fields of paleoclimate, temperature, atmospheric circulations and clouds affected by the solar activity. The three main possible mechanisms by which the solar variation may influence the global climate include: the variability of total solar irradiance could change the earth surface temperature, and thus change the atmospheric circulation via the ocean-atmosphere couple; the solar ultra violet radiations modulate the stratospheric temperature and wind field by heating ozone, and the stratosphere response could then affect the lower troposphere by stratosphere troposphere coupling; the solar modulates galactic cosmic ray through interplanetary magnetic field, and galactic cosmic ray may change the cloud cover via ionizing the

  16. Vegetation and Climate Variations at Taibai, Qinling Mountains in Central China for the Last 3 500 cal BP

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qiang LI; John DODSON; Jie ZHOU; Su-Min WANG; Qian-Li SUN

    2005-01-01

    Pollen records of two swamp sections, located at Taibai Mountain, the highest peak in the Qinling Mountains of central China, show variations of vegetation and climate for the last 3 500 cal BP. The pollen assemblage at the Foyechi and Sanqingchi sections and the surface soil pollen allowed us to reconstruct a high-altitude vegetation history at Taibai Mountain for the first time. The data indicated that there was a cold-dry climate interval between 3 500 and 3 080 cal BP and a relatively warm and wet period compared with the present from 3 080 to 1 860 cal BP. The warmest period in the late Holocene on Taibai Mountain was from 1 430 to 730 cal BP, with an approximate 2℃ increase in mean annual temperature compared with today.There was a relatively cool-dry climate interval from 730 to 310 cal BP. After 310 cal BP, a mountain tundra vegetation developed again and the position of the modern tree line was established.

  17. East Asian monsoon variation and climate changes in Jeju Island, Korea, during the latest Pleistocene to early Holocene

    Science.gov (United States)

    Lee, Seung Hyoun; Lee, Yong Il; Yoon, Ho Il; Yoo, Kyu-Cheul

    2008-09-01

    A 4.96-m-long sediment core from the Hanon paleo-maar in Jeju Island, Korea was studied to investigate the paleoclimatic change and East Asian monsoon variations during the latest Pleistocene to early Holocene (23,000-9000 cal yr BP). High-resolution TOC content, magnetic susceptibility, and major element composition data indicate that Jeju Island experienced the coldest climate around 18,000 cal yr BP, which corresponds to the last glacial maximum (LGM). Further, these multi-proxy data show an abrupt shift in climatic regime from cold and arid to warm and humid conditions at around 14,000 cal yr BP, which represents the commencement of the last major deglaciation. After the last major deglaciation, the TOC content decreased from 13,300 to 12,000 cal yr BP and from 11,500 to 9800 cal yr BP, thereby reflecting the weakening of the summer monsoon. The LGM in Jeju Island occurred later in comparison with the Chinese Loess Plateau. Such a disparity in climatic change events between central China and Jeju Island appears to be caused by the asynchrony between the coldest temperature event and the minimum precipitation event in central China and by the buffering effect of the Pacific Ocean.

  18. Seasonal variations in aridity and temperature characterize changing climate during the last deglaciation in New Zealand

    Science.gov (United States)

    Sikes, E. L.; Schiraldi, B.; Medeiros, P. M.; Augustinus, P. M.; Wilmshurst, J.; Freeman, K. H.

    2012-12-01

    Variable responses among paleoproxies resulting in different interpretations of past climate change from different proxy records can occur because seasonality effects on ecosystems and their resultant proxies imparts seasonal biased and consequently, differing records of climatic events. Deconvolving the response of multiple climate proxies to different environmental triggers, in different depositional environments requires tight stratigraphic correlation. In Northern New Zealand, frequent, widespread, and well dated, late Quaternary tephra provide a single chronostratigraphy across different depositional environments and means the relative timing among sites can be particularly well constrained. We compare a multi-proxy terrestrial record of temperature and aridity based on biomarkers and pollen in a core from Onepoto, a maar lake from the Auckland region of New Zealand to new sea surface temperature (SST) records based on alkenones and Mg/Ca in Globogerina bulloides from marine core JPC 87 in the nearby Bay of Plenty. Pollen assemblages in New Zealand are most strongly affected by the winter temperature minima and precipitation, foraminifera bloom in early spring, and alkenone producers bloom in early summer. Their temperature estimates can be expected to be weighted by these seasons. The pollen based temperatures and two SST records all document cooler conditions in the glaciation. However, although both SST proxies show a 3 degree C warming from the glaciation to the Holocene, the absolute temperatures are offset by almost 3 C with alkenone glacial SST ~18 C and Holocene, ~21 C whereas foraminifera- based SSTS are ~16 C and ~18 C respectively. Pollen reconstructions suggest glacial T of ~8 C and Holocene 14C with a 6 C change from the last glaciation to the early Holocene in northern New Zealand. Additionally, the marine records initiate warming at ~21ka whereas the terrestrial record warms ~3kyr later at 18ka. Terrestrial biomarker-biomass burning indicators

  19. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013

    Science.gov (United States)

    Liu, Lingling; Zhang, Xiaoyang; Donnelly, Alison; Liu, Xinjie

    2016-10-01

    Land surface phenology has been widely used to evaluate the effects of climate change on terrestrial ecosystems in recent decades. Climate warming on the Tibetan Plateau (1960-2010, 0.2 °C/decade) has been found to be greater than the global average (1951-2012, 0.12 °C/decade), which has had a significant impact on the timing of spring greenup. However, the magnitude and direction of change in spring phenology and its response to warming temperature and precipitation are currently under scientific debate. In an attempt to explore this issue further, we detected the onset of greenup based on the time series of daily two-band enhanced vegetation index (EVI2) from the advanced very high resolution radiometer (AVHRR) long-term data record (LTDR; 1982-1999) and Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG; 2000-2013) using hybrid piecewise logistic models. Further, we examined the temporal trend in greenup onset in both individual pixels and ecoregions across the entire Tibetan Plateau over the following periods: 1982-1999, 2000-2013, and 1982-2013. The interannual variation in greenup onset was linked to the mean temperature and cumulative precipitation in the preceding month, and total precipitation during winter and spring, respectively. Finally, we investigated the relationship between interannual variation in greenup onset dates and temperature and precipitation from 1982 to 2013 at different elevational zones for different ecoregions. The results revealed no significant trend in the onset of greenup from 1982 to 2013 in more than 86 % of the Tibetan Plateau. For each study period, statistically significant earlier greenup trends were observed mainly in the eastern meadow regions while later greenup trends mainly occurred in the southwestern steppe and meadow regions both with areal coverage of less than 8 %. Although spring phenology was negatively correlated with spring temperature and precipitation in the majority of pixels

  20. The Vulnerability of Earth Systems to Human-Induced Global Change and Strategies for Mitigation

    Science.gov (United States)

    Watson, R. T.

    2002-12-01

    Since the IGY, there has been growing evidence that climate is changing in response to human activities. The overwhelming majority of scientific experts, whilst recognizing that scientific uncertainties exist, nonetheless believe that human-induced climate change is inevitable. Indeed, during the last few years, many parts of the world have suffered major heat waves, floods, droughts, fires and extreme weather events leading to significant economic losses and loss of life. While individual events cannot be directly linked to human-induced climate change, the frequency and magnitude of these types of events are predicted to increase in a warmer world. The question is not whether climate will change, but rather how much (magnitude), how fast (the rate of change) and where (regional patterns). It is also clear that climate change and other human-induced modifications to the environment will, in many parts of the world, adversely affect socio-economic sectors, including water resources, agriculture, forestry, fisheries and human settlements, ecological systems (particularly forests and coral reefs), and human health (particularly diseases spread by insects), with developing countries being the most vulnerable. Environmental degradation of all types (i.e., climate change, loss of biodiversity, land degradation, air and water quality) all undermine the challenge of poverty alleviation and sustainable economic growth. One of the major challenges facing humankind is to provide an equitable standard of living for this and future generations: adequate food, water and energy, safe shelter and a healthy environment (e.g., clean air and water). Unfortunately, human-induced climate change, as well as other global environmental issues such as land degradation, loss of biological diversity and stratospheric ozone depletion, threatens our ability to meet these basic human needs. The good news is, however, that the majority of experts believe that significant reductions in net

  1. Temporal and spatial variations in erosion rate in the Sikkim Himalaya as a function of climate and tectonics

    Science.gov (United States)

    Abrahami, Rachel; Huyghe, Pascale; van der Beek, Peter; Carcaillet, Julien

    2014-05-01

    The Tista River is a major tributary of the Brahmaputra drainage system (Eastern Himalaya). Its headwaters are located in the glaciated northernmost parts of the Sikkim and its catchment area amounts to more than 12,000 km2 including a depositional megafan (extending mostly in Bangladesh and West Bengal-India). The Tista has recently incised its megafan at the topographic front of the mountain range by about 30 meters. Neither the timing of deposition/incision of the megafan sediments, nor the erosion rates of the source areas as well as their potential relationships, have been investigated in detail. Comparing these data is essential to distinguish between a climatic and/or tectonic control of the evolution of the Sikkim Himalaya and piedmont. To constrain erosion rates in the hinterland at different temporal scales (respectively millenial and geological timescales), we report cosmogenic nuclide (10Be) and thermochronological (apatite fission-tracks) data on modern river sands. Results were mapped to evidence spatial variations of erosion/exhumation rates in the Tista catchment. Cosmogenic nuclides were also used to date the onset of incision of the megafan and relate it to potential changes in hinterland erosion. In addition, isotope geochemistry (ɛNd and 87Sr/86Sr) performed on modern river sands and Late-Quaternary megafan sediments allows characterizing the isotopic signature of the different source areas and constraining variations in provenance of the Tista megafan deposits through time in response to changing climatic conditions. Results show that the Tista fan deposits are mainly sourced from the High Himalayan Crystalline domain with excursions more influenced by the Lesser Himalaya domain. These data provide a new comprehensive view on modern erosion and long-term exhumation of the Sikkim Himalaya. This study of a "closed system" will help our knowledge and understanding of erosional processes and sediment fluxes in mountainous environments as a

  2. On the Variation of NDVI with the Principal Climatic Elements in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yunchuan Yang

    2013-04-01

    Full Text Available Temperature and precipitation have been separately reported to be the main factors affecting the Normalized Difference Vegetation Index (NDVI in the Tibetan Plateau. The effects of the main climatic factors on the yearly maximum NDVI (MNDVI in the Tibetan Plateau were examined on different scales. The result underscored the observation that both precipitation and temperature affect MNDVI based on weather stations or physico-geographical regions. Precipitation is the main climatic factor that affects the vegetation cover in the entire Tibetan Plateau. Both annual mean precipitation and annual mean precipitation of the growing period are related with MNDVI, and the positive correlations are manifested in a linear manner. By comparison, the weakly correlated current between MNDVI and all the temperature indexes is observed in the study area.

  3. The enhanced greenhouse signal versus natural variations in observed climate time series: a statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwiese, C.D. [J.W. Goethe Univ., Frankfurt (Germany). Inst. for Meteorology and Geophysics

    1995-12-31

    It is a well-known fact that human activities lead to an atmospheric concentration increase of some IR-active trace gases (greenhouse gases GHG) and that this influence enhances the `greenhouse effect`. However, there are major quantitative and regional uncertainties in the related climate model projections and the observational data reflect the whole complex of both anthropogenic and natural forcing of the climate system. This contribution aims at the separation of the anthropogenic enhanced greenhouse signal in observed global surface air temperature data versus other forcing using statistical methods such as multiple (multiforced) regressions and neural networks. The competitive natural forcing considered are volcanic and solar activity, in addition the ENSO (El Nino/Southern Oscillation) mechanism. This analysis will be extended also to the NAO (North Atlantic Oscillation) and anthropogenic sulfate formation in the troposphere

  4. Regional variations in the health, environmental, and climate benefits of wind and solar generation.

    Science.gov (United States)

    Siler-Evans, Kyle; Azevedo, Inês Lima; Morgan, M Granger; Apt, Jay

    2013-07-16

    When wind or solar energy displace conventional generation, the reduction in emissions varies dramatically across the United States. Although the Southwest has the greatest solar resource, a solar panel in New Jersey displaces significantly more sulfur dioxide, nitrogen oxides, and particulate matter than a panel in Arizona, resulting in 15 times more health and environmental benefits. A wind turbine in West Virginia displaces twice as much carbon dioxide as the same turbine in California. Depending on location, we estimate that the combined health, environmental, and climate benefits from wind or solar range from $10/MWh to $100/MWh, and the sites with the highest energy output do not yield the greatest social benefits in many cases. We estimate that the social benefits from existing wind farms are roughly 60% higher than the cost of the Production Tax Credit, an important federal subsidy for wind energy. However, that same investment could achieve greater health, environmental, and climate benefits if it were differentiated by region.

  5. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    Science.gov (United States)

    Quesada, C. A.; Phillips, O. L.; Schwarz, M.; Czimczik, C. I.; Baker, T. R.; Patiño, S.; Fyllas, N. M.; Hodnett, M. G.; Herrera, R.; Almeida, S.; Alvarez Dávila, E.; Arneth, A.; Arroyo, L.; Chao, K. J.; Dezzeo, N.; Erwin, T.; di Fiore, A.; Higuchi, N.; Honorio Coronado, E.; Jimenez, E. M.; Killeen, T.; Lezama, A. T.; Lloyd, G.; López-González, G.; Luizão, F. J.; Malhi, Y.; Monteagudo, A.; Neill, D. A.; Núñez Vargas, P.; Paiva, R.; Peacock, J.; Peñuela, M. C.; Peña Cruz, A.; Pitman, N.; Priante Filho, N.; Prieto, A.; Ramírez, H.; Rudas, A.; Salomão, R.; Santos, A. J. B.; Schmerler, J.; Silva, N.; Silveira, M.; Vásquez, R.; Vieira, I.; Terborgh, J.; Lloyd, J.

    2012-06-01

    Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the

  6. Environmental effects on molecular and phenotypic variation in populations of Eruca sativa across a steep climatic gradient.

    Science.gov (United States)

    Westberg, Erik; Ohali, Shachar; Shevelevich, Anatoly; Fine, Pinchas; Barazani, Oz

    2013-08-01

    In Israel Eruca sativa has a geographically narrow distribution across a steep climatic gradient that ranges from mesic Mediterranean to hot desert environments. These conditions offer an opportunity to study the influence of the environment on intraspecific genetic variation. For this, we combined an analysis of neutral genetic markers with a phenotypic evaluation in common-garden experiments, and environmental characterization of populations that included climatic and edaphic parameters, as well as geographic distribution. A Bayesian clustering of individuals from nine representative populations based on amplified fragment length polymorphism (AFLP) divided the populations into a southern and a northern geographic cluster, with one admixed population at the geographic border between them. Linear mixed models, with cluster added as a grouping factor, revealed no clear effects of environment or geography on genetic distances, but this may be due to a strong association of geography and environment with genetic clusters. However, environmental factors accounted for part of the phenotypic variation observed in the common-garden experiments. In addition, candidate loci for selection were identified by association with environmental parameters and by two outlier methods. One locus, identified by all three methods, also showed an association with trichome density and herbivore damage, in net-house and field experiments, respectively. Accordingly, we propose that because trichomes are directly linked to defense against both herbivores and excess radiation, they could potentially be related to adaptive variation in these populations. These results demonstrate the value of combining environmental and phenotypic data with a detailed genetic survey when studying adaptation in plant populations. This article describes the use of several types of data to estimate the influence of the environment on intraspecific genetic variation in populations originating from a steep

  7. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    Directory of Open Access Journals (Sweden)

    C. A. Quesada

    2012-06-01

    Full Text Available Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates.

    Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset.

    Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales.

    A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the

  8. MEP solution for a minimal climate model: success and limitation of a variational problem

    Directory of Open Access Journals (Sweden)

    S. Pascale

    2011-05-01

    Full Text Available Maximum Entropy Production conjecture (MEP is applied to a minimal four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its number of degrees of freedom, and test its realism by comparing it with a GCM output. An order-of-magnitude evaluation of contributions to the material entropy production (≈50 mW m−2 K−1 due to horizontal and vertical processes within the climate system is carried out by using ad hoc temperature fields. It turns out that approximately 40 mW m−2 K−1 is the entropy production due to vertical heat transport and 5–7 mW m−2 K−1 to horizontal heat transport. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the surface climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. Finally a more general problem is investigated in which the longwave transmissivity is varied simultaneously with the temperature. This leads to a MEP solution characterised by a much warmer climate, with very vigorous vertical heat fluxes, in which the atmosphere is opaque to longwave radiation. A critical discussion about how to interpret MEP and how to apply it in a physically correct way concludes the paper.

  9. Temporal Variation of NDVI and the Drivers of Climate Variables in the Arctic Tundra Transition Zone

    Science.gov (United States)

    Lee, J.; Ryu, Y.; Lee, Y. K.

    2016-12-01

    The Arctic is a sensitive region to temperature, which is drastically increasing with climate change. Vegetation in transition zones of the sub-arctic tundra biome are most sensitive to the warming climate, as temperature in the Arctic ecosystem is one of important limiting factors of vegetation growth and decomposition. Previous research in the transition zone show that there is a difference of sensible heat flux (21 Wm-2), Leaf Area Index increase from 0.58 - 2.76 and canopy height from 0.1 - 6.1m across dwarf and tall shrubs to forest, however, we lack understanding of NDVI trend of this zone. To better understand the vegetation in transition zones of the arctic ecosystem, we analyze the long-term trend of NDVI (AVHRR 3g GIMMs data), temperature and precipitation (Climate Research Unit data) trend from 1982 - 2010 in Council, Alaska that is a region where arctic tundra is transitioning to boreal forest. We also analyze how the climatic factors, temperature or precipitation, affect NDVI. Annual precipitation had the highest interannual variability compared to temperature and NDVI. There was an overall decreasing trend of annual maximum NDVI (y = -0.0019x+4.7). During 1982 to 2003, NDVI and temperature had a similar pattern, but when temperature suddenly jumped to 13.2°C in 2004, NDVI and precipitation declined. This study highlights that temperature increase does not always lead to greening, but after a certain threshold they may cause damage to sub-arctic tundra vegetation.

  10. Climatic variations on longest tree-ring chronologies for Kola Peninsula and Finnish Lapland

    Science.gov (United States)

    Kasatkina, E. A.; Shumilov, O. I.; Timonen, M.; Mielikainen, K.; Helama, S.; Kanatjev, A. G.; Kirtsideli, I. Yu.

    2010-05-01

    We investigated the external factor (solar activity, volcanic eruptions) influence on tree growth at high latitudes. We analysed a 561-year tree-ring record of pine (Pinus sylvestris L.) and a 676-year juniper (Juniperus Sibirica Burgst.) tree-ring chronology collected nearby the northern timberline (67.77-68.63N; 33.25-36.52 E) at the Kola Peninsula, northwestern Russia. As well known the climatic impacts of solar and volcanic activity vary regionally, and major volcanic eruptions do not always result in regional cooling. A response of tree growth at the Kola Peninsula to climatic changes due to solar variability and volcanic eruptions was revealed. For example, Dalton minimum of solar activity (1801-1816 AD) and Laki (1783 AD) and Tambora (1815 AD) volcanic eruptions appeared to cause the greatest ring-width reduction and cooling. The minima of solar activity Sporer (1416-1534 AD) and Maunder (1645-1715 AD) were as well accompanied by temperature decreases. Intervals with an absence of significant volcanic eruptions correspond to intervals of increased ring-width values. A superposed epoch analysis of 19 large (Volcanic Explosivity Index, VEI>5) volcanic events revealed a significant suppression of tree growth for up to 8 years following volcanic eruptions. The similar effect (supression of tree growth after powerful volcanic eruptions) was obtained under analysis of the 7641-year supra-long pine tree-ring chronology for Finnish Lapland. Our results documenting the regional climatic impacts of solar and volcanic activity permit us to understand the dynamics of the climate system and its response to external forcing. This work is financially supported by grant from Russian Foundation for Basic Research (grant No. 09-04-98801), by the Program of the Russian Academy and by the Regional Scientific Program of Murmansk region.

  11. Long-term evolution of the Lower Danube discharge and corresponding climate variations: solar signature imprint

    Science.gov (United States)

    Dobrica, Venera; Demetrescu, Crisan; Mares, Ileana; Mares, Constantin

    2017-07-01

    The possible changes in temperature and precipitation regime are expected to lead to changes in the water regime of rivers. In this study, we investigate the long-term evolution of Lower Danube discharge in connection to variations in the precipitation in the Upper-Middle and Lower Danube Basins. The analysis is given by using annual means data from four gauges along the river, on the Romanian territory, namely, Orsova, Ceatal, Sulina, and Sf. Gheorghe, and from 27 weather stations in the Danube Basin. The comparison of the average precipitation in the Upper and Middle Danube Basin, as calculated from the records of 17 weather stations, with the discharge at Orsova, at the entry in the Lower Danube segment, shows correlated interannual and multi-decadal variations. The variations in precipitation in the Lower Danube Basin, recorded at ten weather stations, show up to a certain degree in variations of the tributary rivers discharge and in the discharge difference between the upstream station Orsova and the downstream station Ceatal. The precipitation and discharge data from the two sub-basins have been examined from the viewpoint of multi-decadal variability associated with Atlantic variability and with solar variability at decadal and multi-decadal timescales. Significant variations at the two timescales have been found.

  12. Nonlinear Variations of Net Primary Productivity and Its Relationship with Climate and Vegetation Phenology, China

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2017-09-01

    Full Text Available Net primary productivity (NPP is an important component of the terrestrial carbon cycle. In this study, NPP was estimated based on two models and Moderate Resolution Imaging Spaectroradiometer (MODIS data. The spatiotemporal patterns of NPP and the correlations with climate factors and vegetation phenology were then analyzed. Our results showed that NPP derived from MODIS performed well in China. Spatially, NPP decreased from the southeast toward the northwest. Temporally, NPP showed a nonlinear increasing trend at a national scale, but the magnitude became slow after 2004. At a regional scale, NPP in Northern China and the Tibetan Plateau showed a nonlinear increasing trend, while the NPP decreased in most areas of Southern China. The decreases in NPP were more than offset by the increases. At the biome level, all vegetation types displayed an increasing trend, except for shrub and evergreen broad forests (EBF. Moreover, a turning point year occurred for all vegetation types, except for EBF. Generally, climatic factors and Length of Season were all positively correlated with the NPP, while the relationships were much more diverse at a regional level. The direct effect of solar radiation on the NPP was larger (0.31 than precipitation (0.25 and temperature (0.07. Our results indicated that China could mitigate climate warming at a regional and/or global scale to some extent during the time period of 2001–2014.

  13. Annual variations in wet-deposition chemistry related to changes in climate

    Science.gov (United States)

    Wetherbee, Gregory A.; Mast, M. Alisa

    2016-02-01

    National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979-2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°-48.782° north latitude and 124°-68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4-6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10-21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2-35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.

  14. Variation in the Distribution of Four Cacti Species Due to Climate Change in Chihuahua, Mexico

    Directory of Open Access Journals (Sweden)

    Leonor Cortes

    2013-12-01

    Full Text Available This study is about four cacti species in the state of Chihuahua, (Coryphantha macromeris, Mammillaria lasiacantha, Echinocereus dasyacanthus and Ferocactus wislizenii. Geographic distribution was inferred with MaxEnt. Projection was estimated under three scenarios simulated from IPCC (A2, B1 and A1B and four periods (2000, 2020, 2050 and 2080 with 19 climatic variables. MaxEnt projects a species decrease in 2020 under scenario A2, increasing in the following years. In 2080 all species, except E. dasyacanthus, will occupy a larger area than their current one. Scenario B1 projected for 2050 a decrease for all species, and in 2080 all species except E. dasyacanthus will increase their area. With A1B, C. macromeris decreases 27% from 2020 to 2050. E. dasyacanthus increases from 2020 to 2050 and decreases 73% from 2020 to 2080. M. lasiacantha decreases 13% from 2020 to 2080 and F. wislizenii will increase 13% from 2020 to 2080. Some species will remain stable on their areas despite climate changes, and other species may be affected under the conditions of the A1B scenario. It is important to continue with studies which give a broader perspective about the consequences of climate change, thus enabling decision-making about resource management.

  15. Variation in the distribution of four cacti species due to climate change in Chihuahua, Mexico.

    Science.gov (United States)

    Cortes, Leonor; Domínguez, Irma; Lebgue, Toutcha; Viramontes, Oscar; Melgoza, Alicia; Pinedo, Carmelo; Camarillo, Javier

    2013-12-24

    This study is about four cacti species in the state of Chihuahua, (Coryphantha macromeris, Mammillaria lasiacantha, Echinocereus dasyacanthus and Ferocactus wislizenii). Geographic distribution was inferred with MaxEnt. Projection was estimated under three scenarios simulated from IPCC (A2, B1 and A1B) and four periods (2000, 2020, 2050 and 2080) with 19 climatic variables. MaxEnt projects a species decrease in 2020 under scenario A2, increasing in the following years. In 2080 all species, except E. dasyacanthus, will occupy a larger area than their current one. Scenario B1 projected for 2050 a decrease for all species, and in 2080 all species except E. dasyacanthus will increase their area. With A1B, C. macromeris decreases 27% from 2020 to 2050. E. dasyacanthus increases from 2020 to 2050 and decreases 73% from 2020 to 2080. M. lasiacantha decreases 13% from 2020 to 2080 and F. wislizenii will increase 13% from 2020 to 2080. Some species will remain stable on their areas despite climate changes, and other species may be affected under the conditions of the A1B scenario. It is important to continue with studies which give a broader perspective about the consequences of climate change, thus enabling decision-making about resource management.

  16. The effects of changing solar activity on climate: contributions from palaeoclimatological studies

    Directory of Open Access Journals (Sweden)

    Engels Stefan

    2012-07-01

    Full Text Available Natural climate change currently acts in concert with human-induced changes in the climate system. To disentangle the natural variability in the climate system and the human-induced effects on the global climate, a critical analysis of climate change in the past may offer a better understanding of the processes that drive the global climate system. In this review paper, we present palaeoclimatological evidence for the past influence of solar variability on Earth’s climate, highlighting the effects of solar forcing on a range of timescales. On a decadal timescale, instrumental measurements as well as historical records show the effects of the 11-year Schwabe cycle on climate. The variation in total solar irradiance that is associated with a Schwabe cycle is only ~1 W m−2 between a solar minimum and a maximum, but winter and spring temperatures on the Northern Hemisphere show a response even to this small-scale variability. There is a large body of evidence from palaeoclimatic reconstructions that shows the influence of solar activity on a centennial to millennial timescale. We highlight a period of low solar activity starting at 2800 years before present when Europe experienced a shift to colder and wetter climate conditions. The spatial pattern of climate change that can be recognized in the palaeoclimatological data is in line with the suggested pattern of climate change as simulated by climate models. Millennial-scale climate oscillations can be recognized in sediment records from the Atlantic Ocean as well as in records of lake-level fluctuations in southeastern France. These oscillations coincide with variation in 14C production as recognized in the atmospheric 14C record (which is a proxy-record for solar activity, suggesting that Earth’s climate is sensitive to changes in solar activity on a millennial timescale as well.

  17. The Variations of Land Surface Phenology in Northeast China and Its Responses to Climate Change from 1982 to 2013

    Directory of Open Access Journals (Sweden)

    Jianjun Zhao

    2016-05-01

    Full Text Available Northeast China is located at high northern latitudes and is a typical region of relatively high sensitivity to global climate change. Studies of the land surface phenology in Northeast China and its response to climate change are important for understanding global climate change. In this study, the land surface phenology parameters were calculated using the third generation dataset from the Global Inventory Modeling and Mapping Studies (GIMMS 3g that was collected from 1982 to 2013 were estimated to analyze the variations of the land surface phenology in Northeast China at different scales and to discuss the internal relationships between phenology and climate change. We examined the phonological changes of all ecoregions. The average start of the growing season (SOS did not exhibit a significant trend throughout the study area; however, the end of the growing season (EOS was significantly delayed by 4.1 days or 0.13 days/year (p < 0.05 over the past 32 years. The SOS for the Hulunbuir Plain, Greater Khingan Mountains and Lesser Khingan Mountains was earlier, and the SOS for the Sanjing, Songnen and Liaohe Plains was later. In addition, the EOS of the Greater Khingan Mountains, Lesser Khingan Mountains and Changbai Mountains was later than the EOS of the Liaohe Plain. The spring temperature had the greatest impact on the SOS. Precipitation had an insignificant impact on forest SOS and a relatively large impact on grassland SOS. The EOS was affected by both temperature and precipitation. Furthermore, although temperature had a lag effect on the EOS, no significant lag effect was observed for the SOS.

  18. Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau

    Science.gov (United States)

    Li, Jingmin; Ehlers, Todd A.; Werner, Martin; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko

    2017-01-01

    The Himalaya-Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O (δO18p) over the Himalaya-Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼ 2.0- 4.0 °C lower across the Himalaya and Tibet, and >5.0 °C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200-600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4 ‰ /km larger during the MH and 0.2 ‰ /km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70°E-110°E and 10°N-30°N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of

  19. Holocene vegetation and climatic variations in Central India: A study based on multiproxy evidences

    Science.gov (United States)

    Chauhan, M. S.; Sharma, Anupam; Phartiyal, Binita; Kumar, Kamlesh

    2013-11-01

    Palynology, texture, mineralogy, geochemistry, and magnetic susceptibility analysis of a 2 m deep sediment core from Padauna Swamp, southeastern Madhya Pradesh infers that between 8600 and 7500 cal yr BP a warm and relatively less-humid climate prevailed with open tree-savannahs dominated by grasses followed by sedges, Artemisia and members of Chenopodiaceae/Amaranthaceae with scanty trees viz., Schrebera, Aegle marmelos and Sterculia urens. This is well supported by lower organic to carbonate carbon ratio, coarser texture having relatively low CIA and magnetic susceptibility values and presence of some primary minerals. Between 7500 and 6250 cal yr BP the tree-savannahs were succeeded by open mixed deciduous forests with the invasion of a few more trees viz., Madhuca indica, Holoptelea, Emblica officinalis, Mitragyna parvifolia and members of Anacardiaceae in response to onset of a warm and humid climate. A considerable rise in organic carbon generated from the degradation of plentiful biomass along with increase in clay content with signs of kaolinite and increase in immobile over mobile elements with slightly higher CIA and magnetic susceptibility values also suggest climatic amelioration. The presence of ruderal plants such as Artemisia, Cannabis sativa and Cheno/Am further infers initiation of human activities in the region. Between 6250 and 2800 cal yr BP, the mixed deciduous forests became more diverse and dense, subduing grasses and other herbaceous elements. Sporadic incursion of Shorea robusta (Sal) in forest floristic was recorded around 5000 cal yr BP. The overall change in the vegetation mosaic reflects that a warm and more-humid climate prevailed in the region, probably on account of invigoration of southwest monsoon. This observation is further corroborated by other proxy data showing a spurt in organic/inorganic carbon ratio, increase in clay content with matured mineralogy, significantly higher CIA and magnetic susceptibility values. Since 2800 cal

  20. Decadal Variation in Surface Characteristics over Xinjiang, Western China, from T/P Altimetry Backscatter Coefficients: Evidence of Climate Change

    Directory of Open Access Journals (Sweden)

    Jinyun Guo

    2013-01-01

    Full Text Available The backscatter coefficient, known as sigma0, is an important measurement of satellite radar altimetry and a key parameter for land altimetry because of its close relationship with the physical properties and geometric features of land coverage under global/regional climate change effects. Using the TOPEX/Poseidon GDR-M dataset from January 1993 to December 2004, we study the spatial and temporal distribution of sigma0 at bands Ku and C over Xinjiang, western China. The results show that the sigma0 is influenced by the water distribution over land and the time evolution of sigma0 has clear seasonal changes. River basins or deserts are classified over the spatial distribution based on different sigma0 values. For example, high sigma0 values are found in the Tarim River Basin and low values are found in the Taklimakan Desert. The periodic components of sigma0 time series are determined using the fast Fourier transformation method. The annual variation is the dominating cycle and the semi-annual variation is the secondary signal. The amplitudes of sigma0 time series at bands Ku and C are also given and most areas have quite low amplitudes except for the Tarim River Basin. Several areas including the Tarim River Basin, Tianshan Mountain and Taklimakan Desert are selected for sigma0 time series spacial analysis to discuss the reasons for variations in sigma0. The main factors are precipitation and vegetation growth, which are affected by the global/regional climate change. The correlation between the brightness temperature, which is related to the water-vapor content in the atmosphere measured by TMR at the 21 GHz channel and sigma0 at two bands, is analyzed.

  1. Habitat area and climate stability determine geographical variation in plant species range sizes

    DEFF Research Database (Denmark)

    Morueta-Holme, Naia; Enquist, Brian J.; McGill, Brian J.

    2013-01-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~85...

  2. Prediction of seasonal climate-induced variations in global food production

    DEFF Research Database (Denmark)

    Iizumi, Toshichika; Sakuma, Hirofumi; Yokozawa, Masayuki

    2013-01-01

    Consumers, including the poor in many countries, are increasingly dependent on food imports(1) and are thus exposed to variations in yields, production and export prices in the major food-producing regions of the world. National governments and commercial entities are therefore paying increased a...

  3. Optimisation of product quality and minimisation of its variation in climate controlled operations

    NARCIS (Netherlands)

    Verdijck, G.J.C.; Straten, van G.; Preisig, H.A.

    2005-01-01

    An optimisation procedure is presented for direct control of product quality of agro-material and minimisation of its quality variation. The procedure builds on a previously presented model structure, which is briefly reviewed, together forming a methodological framework for direct product quality c

  4. Optimisation of product quality and minimisation of its variation in climate controlled operations

    NARCIS (Netherlands)

    Verdijck, G.J.C.; Straten, van G.; Preisig, H.A.

    2005-01-01

    An optimisation procedure is presented for direct control of product quality of agro-material and minimisation of its quality variation. The procedure builds on a previously presented model structure, which is briefly reviewed, together forming a methodological framework for direct product quality

  5. Microgeographical Variations in Coloration of Male Iberian Wall Lizards May Be Related to Habitat and Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Marianne Gabirot

    2014-01-01

    Full Text Available Intraspecific variations in coloration may represent a compromise between selection for intraspecific communication and selection for thermoregulation and predator avoidance. Iberian wall lizards, Podarcis hispanica, exhibit substantial levels of intraspecific variation that cannot be necessarily attributed to genetic differences. We compared variations in coloration and habitat use of three phenotypically distinct populations of P. hispanica in Central Spain. Results suggested that differences in coloration may be related to habitat characteristics and climatic conditions. Thus, lizards from populations with colder temperatures were darker and larger, which may favor thermoregulation. Lizards that lived in habitats with more vegetation and darker granite rocks showed a dark brown to black dorsal coloration. In contrast, lizards from habitats with gypsum and light sandy soil without vegetation or large rocks had a brighter yellow to green dorsal coloration. These differences may increase crypsis to predators in each habitat. There were also differences in the characteristics and relative importance of sexual visual signals (i.e., ventrolateral coloration and number of lateral blue spots and chemical signals (i.e., number of femoral pores that might increase efficiency of communication in each environment. Natural selection for traits that allow a better thermoregulation, predator avoidance, and communication might lead to population divergence.

  6. Trace metal concentrations in acidic, headwater streams in Sweden explained by chemical, climatic, and land use variations

    Directory of Open Access Journals (Sweden)

    B. J. Huser

    2012-02-01

    Full Text Available Long term data series (1996–2009 for eleven acidic, headwater streams (<10 km2 in Sweden were analyzed to determine factors controlling concentrations of trace metals. In-stream chemical data as well climatic, flow, and deposition chemistry data were used to develop models predicting concentrations of chromium (Cr, lead (Pb, and zinc (Zn. Data were initially analyzed using partial least squares to determine a set of variables that could predict metal concentrations across all sites. Organic matter (as absorbance and iron related positively to Pb and Cr while pH related negatively to Pb and Zn. Other variables such as conductivity, manganese, and temperature were important as well. Multiple linear regression was then used to determine minimally adequate prediction models which explained an average of 35% (Cr, 52% (Zn, and 72% (Pb of metal variation across all sites. While models explained at least 50% of variation in the majority of sites for Pb (10 and Zn (8, only three sites met this criterion for Cr. Investigation of variation between site models for each metal revealed geographical (altitude, chemical (sulfate, and land use (silvaculture influences on predictive power of the models. Residual analysis revealed seasonal differences in the ability of the models to predict metal concentrations as well. Expected future changes in model variables were applied and results showed the potential for long term increases (Pb or decreases (Zn for trace metal concentrations at these sites.

  7. Lead, zinc, and chromium concentrations in acidic headwater streams in Sweden explained by chemical, climatic, and land-use variations

    Directory of Open Access Journals (Sweden)

    B. J. Huser

    2012-11-01

    Full Text Available Long-term data series (1996–2009 for eleven acidic headwater streams (< 10 km2 in Sweden were analyzed to determine factors controlling concentrations of trace metals. In-stream chemical data as well climatic, flow, and deposition chemistry data were used to develop models predicting concentrations of chromium (Cr, lead (Pb, and zinc (Zn. Data were initially analyzed using partial least squares to determine a set of variables that could predict metal concentrations across all sites. Organic matter (as absorbance and iron related positively to Pb and Cr, while pH related negatively to Pb and Zn. Other variables such as conductivity, manganese, and temperature were important as well. Multiple linear regression was then used to determine minimally adequate prediction models which explained an average of 35% (Cr, 52% (Zn, and 72% (Pb of metal variation across all sites. While models explained at least 50% of variation in the majority of sites for Pb (10 and Zn (8, only three sites met this criterion for Cr. Investigation of variation between site models for each metal revealed geographical (altitude, chemical (sulfate, and land-use (silvaculture influences on predictive power of the models. Residual analysis revealed seasonal differences in the ability of the models to predict metal concentrations as well. Expected future changes in model variables were applied and results showed the potential for long-term increases (Pb or decreases (Zn for trace metal concentrations at these sites.

  8. Variation in Soil-Catena Characteristics of Moraines with Time and Climate, South Island, New Zealand

    Science.gov (United States)

    Birkeland, Peter W.

    1994-07-01

    Soil catenas on three moraines in each of two areas with different climate were studied to determine (a) downcatena soil differentiation with climate and time and (b) their usefulness in estimating the relative ages of the underlying deposits. In the dry area (mean annual precipitation (MAP), ca. 0.5 m) all soils have A/Bw/C profiles formed in loess/till. Their similarity in morphology and in most chemical characteristics with catena position and age suggests that the low MAP does not result in much redistribution of water, elements, or sediment downcatena. This similarity also suggests ages close to each other and correlation with the Otiran Glaciation (oxygen-isotope stages 2 and 4). In the wet area (MAP ca. 3 m) the soils also formed in loess/till and with time (a) soil morphology progresses from A/Bw/C to A/E/B/C, (h) reduced properties intensify, especially in the downcatena profiles, (c) citrate-bicarbonate-dithionite-extractable Fe displays accumulation in the youngest catena followed by loss in the older catenas, and (d) downcatena trends in total chemical data display marked losses of the more mobile elements. These data demonstrate that although catena development is rapid in a wet climate, the downcatena contrast can be muted with time due to a change from processes dominated by oxidation to those dominated by reduction. Soil catena properties in the wet area are sufficiently different to not refute age estimations suggested by Suggate (1990): youngest moraine, oxygen-isotope stage 2; intermediate moraine, isotope stage 4; and oldest moraine, isotope stage 10. An unresolved problem in both areas is the possibility of soil erosion to foul soil-age relations.

  9. Allelic variation in a willow warbler genomic region is associated with climate clines.

    Directory of Open Access Journals (Sweden)

    Keith W Larson

    Full Text Available Local adaptation is an important process contributing to population differentiation which can occur in continuous or isolated populations connected by various amounts of gene flow. The willow warbler (Phylloscopus trochilus is one of the most common songbirds in Fennoscandia. It has a continuous breeding distribution where it is found in all forested habitats from sea level to the tree line and therefore constitutes an ideal species for the study of locally adapted genes associated with environmental gradients. Previous studies in this species identified a genetic marker (AFLP-WW1 that showed a steep north-south cline in central Sweden with one allele associated with coastal lowland habitats and the other with mountainous habitats. It was further demonstrated that this marker is embedded in a highly differentiated chromosome region that spans several megabases. In the present study, we sampled 2,355 individuals at 128 sites across all of Fennoscandia to study the geographic and climatic variables associated with the allele frequency distributions of WW1. Our results demonstrate that 1 allele frequency patterns significantly differ between mountain and lowland populations, 2 these allele differences coincide with extreme temperature conditions and the short growing season in the mountains, and milder conditions in coastal areas, and 3 the northern-allele or "altitude variant" of WW1 occurs in willow warblers that occupy mountainous habitat regardless of subspecies. Finally these results suggest that climate may exert selection on the genomic region associated with these alleles and would allow us to develop testable predictions for the distribution of the genetic marker based on climate change scenarios.

  10. Elevational variation in the biotic response to repeated climate changes in the Carpathians

    Directory of Open Access Journals (Sweden)

    Angelica FEURDEAN

    2014-11-01

    Full Text Available Alarming predictions and contrasting results regarding species loss consequence of climate change are offered by the coarse-scale vs. fine scale models. In this work fossil records were used to explore patterns of change in vegetation composition, turnover, and diversity along an elevation gradient during the Lateglacial - early Holocene, and to locate the most sensitive elevations to past climate changes. Compositional change appears to be strongest at the Lateglacial/Holocene transition (c. 11,500 cal. yr BP, but significant shifts also occur approximately at ~14,700 cal. yr BP, 13,800 cal yr BP and 12,700 cal. yr BP. Turnover is greater at sequences from mid elevation (730-1100 m than at low and high elevations. Intervals of greater palynological richness are recorded approximately from 11,500 cal. yr BP, and between 13,800 and 12,500 cal. yr BP; intervals of lower pollen richness occur between 12,900 and 11,500 cal. yr BP, and before 14,000 cal. yr BP. However, given that pollen can travel long distances our results were likely affected by long distance transported pollen. Moisture availability and winter temperature appear to have driven the most sustained compositional changes in the region. Comparison with modelling results reveals that our finding concurs with other palaeoecological and local-scale model studies in reporting the small-scale species survival in microrefugia within larger unsuitable areas, features not captured by wide-scale model predictions. It also demonstrates the need of an integrated approach (palaeo-data, observation, modeling in order probably better prepare to handle the future impact of climate change. 

  11. The anatomy of Last Glacial Maximum climate variations in south Westland, New Zealand, derived from pollen records

    Science.gov (United States)

    Vandergoes, Marcus J.; Newnham, Rewi M.; Denton, George H.; Blaauw, Maarten; Barrell, David J. A.

    2013-08-01

    Westland occurred sometime between ca 18,490 and ca 17,370 cal. yr BP. A similar general pattern of stadials and interstadials is seen, to varying degrees of resolution but generally with lesser chronological control, in many other paleoclimate proxy records from the New Zealand region. This highly resolved chronology of vegetation changes from southwestern New Zealand contributes to the examination of past climate variations in the southwest Pacific region. The stadial and interstadial episodes defined by south Westland pollen records represent notable climate variability during the latter part of the Last Glaciation. Similar climatic patterns recorded farther afield, for example from Antarctica and the Southern Ocean, imply that climate variations during the latter part of the Last Glaciation and the transition to the Holocene interglacial were inter-regionally extensive in the Southern Hemisphere and thus important to understand in detail and to place into a global context.

  12. Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis.

    Science.gov (United States)

    Tong, S; Hu, W

    2001-12-01

    In this study we assessed the impact of climate variability on the Ross River virus (RRv) transmission and validated an epidemic-forecasting model in Cairns, Australia. Data on the RRv cases recorded between 1985 and 1996 were obtained from the Queensland Department of Health. Climate and population data were supplied by the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. The cross-correlation function (CCF) showed that maximum temperature in the current month and rainfall and relative humidity at a lag of 2 months were positively and significantly associated with the monthly incidence of RRv, whereas relative humidity at a lag of 5 months was inversely associated with the RRv transmission. We developed autoregressive integrated moving average (ARIMA) models on the data collected between 1985 to 1994, and then validated the models using the data collected between 1995 and 1996. The results show that the relative humidity at a lag of 5 months (p rainfall at a lag of 2 months (p < 0.05) appeared to play significant roles in the transmission of RRv disease in Cairns. Furthermore, the regressive forecast curves were consistent with the pattern of actual values.

  13. Large-scale variation in boreal and temperate forest carbon turnover rate related to climate

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-05-01

    Vegetation carbon turnover processes in forest ecosystems and their dominant drivers are far from being understood at a broader scale. Many of these turnover processes act on long timescales and include a lateral dimension and thus can hardly be investigated by plot-level studies alone. Making use of remote sensing-based products of net primary production (NPP) and biomass, here we show that spatial gradients of carbon turnover rate (k) in Northern Hemisphere boreal and temperate forests are explained by different climate-related processes depending on the ecosystem. k is related to frost damage effects and the trade-off between growth and frost adaptation in boreal forests, while drought stress and climate effects on insects and pathogens can explain an elevated k in temperate forests. By identifying relevant processes underlying broadscale patterns in k, we provide the basis for a detailed exploration of these mechanisms in field studies, and ultimately the improvement of their representations in global vegetation models (GVMs).

  14. Variation in the Carbon Isotope Compositions of Phytoliths Across a Climate Gradient

    Science.gov (United States)

    Webb, E. A.; Longstaffe, F. J.

    2008-12-01

    The carbon isotope composition of plant organic matter within a single species may vary in response to changes in temperature, relative humidity, precipitation amount, altitude, nutrient availability, light levels and amount of canopy. All of these factors affect the rate of carbon assimilation during photosynthesis. Silica phytoliths, which form in the cells and intercellular spaces of terrestrial plants, occlude some of the plant's organic matrix. Carbon sequestered in phytoliths is protected from decay and may therefore be preserved in soils after most other plant material has decomposed. The carbon isotope composition of phytoliths may therefore have potential as an archive of climatic conditions during soil accumulation. In this study, the carbon isotope compositions of modern plant tissues and their phytoliths are compared for the C4 grass species Calamovilfa longifolia across the climate gradient of the North American prairies. The carbon isotope compositions of C. longifolia tissues ranged from -15 to -10 permil, with lower values being most typical of leaf tissues and with greater variability occurring in samples from lower latitudes. Carbonaceous compounds occluded in the phytoliths, by comparison, were depleted of carbon-13 by 5 to 15 permil relative to the tissues from the same plant. Understanding the causes of this offset, which is significantly larger and more variable than reported in previous studies, is necessary before the full potential of the carbon-isotope phytolith proxy can be realized.

  15. MARIOLA: A model for calculating the response of mediterranean bush ecosystem to climatic variations

    Energy Technology Data Exchange (ETDEWEB)

    Uso-Domenech, J.L.; Ramo, M.P. [Department of Mathematics, Campus de Penyeta Roja, University Jaume I, Castellon (Spain); Villacampa-Esteve, Y. [Department of Analysis and Applied Mathematics, University of Alicante (Spain); Stuebing-Martinez, G. [Department of Botany, University of Valencia (Spain); Karjalainen, T. [Faculty of Forestry, University of Joensuu (Finland)

    1995-07-01

    The paper summarizes the bush ecosystem model developed for assessing the effects of climatic change on the behaviour of mediterranean bushes assuming that temperature, humidity and rain-fall are the basic dimensions of the niche occupied by shrub species. In this context, changes in the monthly weather pattern serve only to outline the growth conditions due to the nonlinearity of response of shrubs to climatic factors. The plant-soil-atmosphere system is described by means of ordinary non-linear differential equations for the state variables: green biomass, woody biomass, the residues of green and woody biomasses, faecal detritus of mammals on the soil, and the total organic matter of the soil. The behaviour of the flow variables is described by means of equations obtained from non-linear multiple regressions from the state variables and the input variables. The model has been applied with success to the behaviour of Cistus albidus in two zones of the Province of Alicante (Spain). The data base for the parametrical locations (zone 1) and validation (zone 2) is based upon measurements taken weekly over a 2-year period. The model is used to simulate the response of this shrub to a decreasing tendency in precipitation combined with a simultaneous rise in temperature. A period of 10 years is simulated and it is observed that plants with woody biomass smaller than 85 g die between the first and the third month and other plants` biomass decreases during this period, and strongly thereafter

  16. Spatiotemporal climatic, hydrological, and environmental variations based on records of annually laminated lake sediments from northern Poland

    Science.gov (United States)

    Tylmann, W.; Blanke, L.; Kinder, M.; Loewe, T.; Mayr, C.; Ohlendorf, C.; Zolitschka, B.

    2009-12-01

    In northern Poland there is the unique opportunity to compare varved lake sediment records with distinct climatic trends along a 700 km long W-E transect. Annually laminated Holocene sediment sequences from Lake Lubinskie, Lake Suminko, Lake Lazduny, and Lake Szurpily were cored for high-resolution multiproxy climate and environmental reconstruction in the framework of the Polish-German project “Northern Polish Lake Research” (NORPOLAR). First results from a 139 cm long gravity core of Lake Lazduny (53°51.4’N, 21°57.3’E) document deposition of an organic (mean organic matter: 13.9%; mean biogenic opal: 9.8%) and highly carbonaceous gyttja (mean calcite content: 61.6%). The finely laminated sediment consists of biochemical varves. Pale spring/summer layers composed of autochthonous carbonates alternate with dark fall/winter layers made of organic and minerogenic detritus. The established chronology for the last 1500 calendar-years is based on thin section analysis supported by independent radiometric dating (C-14, Pb-210). Sedimentological, geochemical and stable isotope analyses were carried out with a decadal temporal resolution. Additionally, non-destructive and high-resolution XRF scanning data reveal a rhythmic variation in the Ca content that reflects seasonal calcite deposition. Redox-sensitive elements like Fe, Mn and S are interpreted to be the response to mean winter temperatures: colder winter temperatures → extended lake ice cover → intensification of meromixis → increased Fe/Mn ratio. In turn, these parameters can be linked to NAO (North Atlantic Oscillation) variability, because a negative NAO is related to colder and drier conditions in northeastern Europe. Climate variability is also mirrored by the δ13C record of the endogenic calcite fraction. In mid-latitude lakes calcite precipitation is dominated by productivity-controlled consumption of the dissolved inorganic carbon (DIC) pool. Thus the δ13C record potentially provides a

  17. Recent variations in NDVI-based plant growth and their relationship with climate in boreal intact forest landscapes

    Science.gov (United States)

    Jin, J.; Jiang, H.; Lu, X.; Zhang, X.

    2015-12-01

    Intact Forest Landscapes (IFLs), defined as large unbroken expanses of forest landscape without signs of significant human activity, have significant ecological values. Previous studies suggest a reversal in the greening of boreal plants was exhibited in the late 1990s. In this study, we focus on variations in plant growth of boreal IFLs from 2000 to 2014 and their correlation with local climatic factors between 45°N and 70°N. The average Normalized Difference Vegetation Index (NDVI) during the growing season (GS, which is from April to October) derived from MOD13C2, is used as a proxy of plant growth. Compared to a significant increase in GS NDVI of boreal plants during the 1980s and early 1990s, GS NDVI of ca. 85.7% of total IFLs in the study area exhibited insignificant change after 2000. About 10.2% of total boreal IFLs exhibited significant greening (an increase in GS NDVI), and only 4.1% of the total showed significant browning (a decrease in GS NDVI) during the study period. For greening boreal IFLs, ca. 46.0% of these showed a significant correlation between GS temperature and NDVI. For browning IFLs, an increase in precipitation during the non-growing season (NGS, which is from previous November to current March) and cooling in GS and NGS were the main climatic causes for decreases of GS NDVI. However, over 65% of browning boreal IFLs did not correlate with any climatic factor, and the browning may be associated with artificial activities. About 49.4% of no-change boreal IFLs showed significant correlation between GS NDVI and climatic factors, and 72.5% of these sensitive plants exhibited a significant positive correlation between GS temperature and NDVI. On the whole, an increase in GS and NGS temperature could promote plant growth of boreal IFLs, while an increase of NGS precipitation mainly inhibited plant growth. However, nearly half of total boreal IFLs displayed no sensitivity to any climatic factors chosen in our present work.

  18. Modeling and remote sensing of human induced water cycle change

    Science.gov (United States)

    Pokhrel, Yadu N.

    2016-04-01

    The global water cycle has been profoundly affected by human land-water management especially during the last century. Since the changes in water cycle can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to account for human land-water management in land surface models (LSMs) which are used for water resources assessment and to simulate the land surface hydrologic processes within Earth system models (ESMs). During the last two decades, noteworthy progress has been made in modeling human impacts on the water cycle but sufficient advancements have not yet been made, especially in representing human factors in large-scale LSMs toward integrating them into ESMs. In this study, an integrated modeling framework of continental-scale water cycle, with explicit representation of climate and human induced forces (e.g., irrigation, groundwater pumping) is developed and used to reconstruct the observed water cycle changes in the past and to attribute the observed changes to climatic and human factors. The new model builds upon two different previously developed models: a global LSM called the Human Impacts and GroundWater in the MATSIRO (HiGW-MAT) and a high-resolution regional groundwater model called the LEAF-Hydro-Flood. The model is used to retro-simulate the hydrologic stores and fluxes in close dialogue with in-situ and GRACE satellite based observations at a wide range of river basin scales around the world, with a particular focus on the changes in groundwater dynamics in northwest India, Pakistan, and the High Plains and Central Valley aquifers in the US.

  19. Community patterns of tropical tree phenology derived from Unmanned Aerial Vehicle images: intra- and interspecific variation, association with species plant traits, and response to interannual climate variation

    Science.gov (United States)

    Bohlman, Stephanie; Rifai, Sami; Park, John; Dandois, Jonathan; Muller-Landau, Helene

    2017-04-01

    Phenology is a key life history trait of plant species and critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical forest phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns, which makes it difficult to collect sufficient ground-based field data to characterize individual tropical tree species phenologies. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. The objective of this study is to quantify inter- and intra-specific responses of tropical tree leaf phenology to environmental variation over large spatial scales and identify key environmental variables and physiological mechanisms underpinning phenological variation. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. UAV imagery was corrected for exposure, orthorectified, and then processed to extract spectral, texture, and image information for individual tree crowns, which was then used as inputs for a machine learning algorithm that successfully predicted the percentages of leaf, branch, and flower cover for each tree crown (r2=0.76 between observed and predicted percent branch cover for individual tree crowns). We then quantified cumulative annual deciduousness for each crown by fitting a non-parametric curve of flexible shape to its predicted percent branch time series and calculated the area under the curve. We obtained the species

  20. Climatic variation modulates the indirect effects of large herbivores on small-mammal habitat use.

    Science.gov (United States)

    Long, Ryan A; Wambua, Alois; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2017-07-01

    Large mammalian herbivores (LMH) strongly shape the composition and architecture of plant communities. A growing literature shows that negative direct effects of LMH on vegetation frequently propagate to suppress the abundance of smaller consumers. Indirect effects of LMH on the behaviour of these consumers, however, have received comparatively little attention despite their potential ecological significance. We sought to understand (i) how LMH indirectly shape small-mammal habitat use by altering the density and distribution of understorey plants; (ii) how these effects vary with climatic context (here, seasonality in rainfall); and (iii) the extent to which behavioural responses of small mammals are contingent upon small-mammal density. We tested the effects of a diverse LMH community on small-mammal habitat use using 4 years of spatially explicit small-mammal trapping and vegetation data from the UHURU Experiment, a replicated set of LMH exclosures in semi-arid Kenyan savanna. Small-mammal habitat use was positively associated with tree density and negatively associated with bare (unvegetated) patches in all plots and seasons. In the presence of LMH, and especially during the dry season, small mammals consistently selected tree cover and avoided bare patches. In contrast, when LMH were excluded, small mammals were weakly associated with tree cover and did not avoid bare patches as strongly. These behavioural responses of small mammals were largely unaffected by changes in small-mammal density associated with LMH exclusion. Our results show that LMH indirectly affect small-mammal behaviour, and that these effects are influenced by climate and can arise via density-independent mechanisms. This raises the possibility that anthropogenic LMH declines might interact with changing patterns of rainfall to alter small-mammal distribution and behaviour, independent of numerical responses by small mammals to these perturbations. For example, increased rainfall in East

  1. Comparison of Regression Techniques to Predict Response of Oilseed Rape Yield to Variation in Climatic Conditions in Denmark

    DEFF Research Database (Denmark)

    Sharif, Behzad; Makowski, David; Plauborg, Finn;

    2017-01-01

    -validation. The regression methods leading to the most accurate yield predictions were Lasso and Elastic Net, and the least accurate methods were ordinary least squares and stepwise regression. Partial least squares and ridge regression methods gave intermediate results. The estimated relative yield change for a +1°C......Statistical regression models represent alternatives to process-based dynamic models for predicting the response of crop yields to variation in climatic conditions. Regression models can be used to quantify the effect of change in temperature and precipitation on yields. However, it is difficult...... to identify the most relevant input variables that should be included in regression models due to the high number of candidate variables and to their correlations. This paper compares several regression techniques for modeling response of winter oilseed rape yield to a high number of correlated input...

  2. Climate variability and change on the Mongolian Plateau: historical variation and future predictions

    DEFF Research Database (Denmark)

    Jiang, Liguang; Yao, Zhijun; Huang, He Qing

    2016-01-01

    participating in the Coupled Model Intercomparison Project Phase 5 under 2 different representative concentration pathway (RCP) emissions scenarios (RCP4.5 and RCP8.5). In the process, changes in the climate normals of 1961-1990 and 2061-2090 are compared. The following results were obtained: (1) Over the past......, although these variables exhibited different patterns. (2) During the coming century, increases in precipitation and temperature can be seen under RCP4.5 and RCP8.5, with pronounced larger amplitude changes under RCP8.5. By 2100, the increases in precipitation are 13.3 and 16.1% for RCP4.5 and RCP8...

  3. Glacier variations and climate warming and drying in the central Himalayas

    Institute of Scientific and Technical Information of China (English)

    REN Jiawen; QIN Dahe; KANG Shichang; HOU Shugui; PU Jianchen; JING Zhefan

    2004-01-01

    Repeat measurements of glacier terminus positions show that glaciers in the central Himalayas have been in a continuous retreat situation in the past decades. The average retreat rate is 5.5-8.7 m/a in Mt. Qomolangma (Everest) since the 1960s and 6.4 m/a in Mt. Xixiabangma since the 1980s. In recent years, the retreat rate is increasing. Ice core studies revealed that the accumulation rate of glaciers has a fluctuating decrease trend in the last century with a rapid decrease in the 1960s and a relatively steady low value afterwards. Meteorological station record indicates that the annual mean temperature has a slow increase trend but summer temperature had a larger increase in the past 30 a. All these suggest that the glacier retreat results from precipitation decrease in combination with temperature increase, and hence glacier shrinkage in this region will speed up if the climatic warming and drying continues.

  4. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate

    Science.gov (United States)

    Kudryavtseva, Nadezhda; Soomere, Tarmo

    2017-08-01

    The main properties of the climate of waves in the seasonally ice-covered Baltic Sea and its decadal changes since 1990 are estimated from satellite altimetry data. The data set of significant wave heights (SWHs) from all existing nine satellites, cleaned and cross-validated against in situ measurements, shows overall a very consistent picture. A comparison with visual observations shows a good correspondence with correlation coefficients of 0.6-0.8. The annual mean SWH reveals a tentative increase of 0.005 m yr-1, but higher quantiles behave in a cyclic manner with a timescale of 10-15 years. Changes in the basin-wide average SWH have a strong meridional pattern: an increase in the central and western parts of the sea and a decrease in the east. This pattern is likely caused by a rotation of wind directions rather than by an increase in the wind speed.

  5. Assessment of climate variations in temperature and precipitation extreme events over Iran

    Science.gov (United States)

    Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M. M.; Molanejad, M.; Sabziparvar, A. A.; Ranjbar SaadatAbadi, A.; Ranjbar, F.; Rousta, I.; Zawar-Reza, P.; Khoshakhlagh, F.; Soltanzadeh, I.; Babu, C. A.; Azizi, G. H.; Martin, M. V.

    2016-11-01

    In this study, changes in the spatial and temporal patterns of climate extreme indices were analyzed. Daily maximum and minimum air temperature, precipitation, and their association with climate change were used as the basis for tracking changes at 50 meteorological stations in Iran over the period 1975-2010. Sixteen indices of extreme temperature and 11 indices of extreme precipitation, which have been quality controlled and tested for homogeneity and missing data, are examined. Temperature extremes show a warming trend, with a large proportion of stations having statistically significant trends for all temperature indices. Over the last 15 years (1995-2010), the annual frequency of warm days and nights has increased by 12 and 14 days/decade, respectively. The number of cold days and nights has decreased by 4 and 3 days/decade, respectively. The annual mean maximum and minimum temperatures averaged across Iran both increased by 0.031 and 0.059 °C/decade. The probability of cold nights has gradually decreased from more than 20 % in 1975-1986 to less than 15 % in 1999-2010, whereas the mean frequency of warm days has increased abruptly between the first 12-year period (1975-1986) and the recent 12-year period (1999-2010) from 18 to 40 %, respectively. There are no systematic regional trends over the study period in total precipitation or in the frequency and duration of extreme precipitation events. Statistically significant trends in extreme precipitation events are observed at less than 15 % of all weather stations, with no spatially coherent pattern of change, whereas statistically significant changes in extreme temperature events have occurred at more than 85 % of all weather stations, forming strongly coherent spatial patterns.

  6. Assessing the Response of Seasonal Variation of Net Primary Productivity to Climate Using Remote Sensing Data and Geographic Information System Techniques in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    Dai-Liang Peng; Jing-Feng Huang; Cheng-Xia Cai; Rui Deng; Jun-Feng Xu

    2008-01-01

    Net pdmary productivity (NPP) is a key component of energy and matter transformation in the terrestrial ecosystem, and the responses of NPP to global change locally and regionally have been one of the most important aspects in climate-vegetation relationship studies. In order to isolate causal climatic factors, it is very important to assess the response of seasonal variation of NPP to climate. In this paper, NPP in Xinjiang was estimated by NOAA/AVHRR Normalized Difference Vegetation Index (NDVI) data and geographic information system (GIS) techniques. The impact of climatic factors (air temperature, precipitation and sunshine percentage) on seasonal variations of NPP was studied by time lag and serial correlation ageing analysis. The results showed that the NPP for different land cover types have a similar correlation with any one of the three climatic factors, and precipitation is the major climatic factor influencing the seasonal variation of NPP in Xinjiang. It was found that the positive correlation at 0 lag appeared between NPP and precipitation and the serial correlation ageing was 0 d in most areas of Xinjiang, which indicated that the response of NPP to precipitation was immediate. However, NPP of different land cover types showed significant positive correlation at 2 month lag with air temperature, and the impact of which could persist 1 month as a whole. No correlation was found between NPP and sunshine percentage.

  7. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  8. Elevated temperature is more effective than elevated [CO2 ] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change.

    Science.gov (United States)

    Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T

    2015-10-01

    Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes.

  9. Tectonic drift versus climatic variations: rhodoliths as indicators of limits between tropical and nontropical sedimentary conditions: examples from Pacific Miocene

    Energy Technology Data Exchange (ETDEWEB)

    Bourrouilh-le Jan, F.G.

    1986-05-01

    Modern examples show that rhodoliths or red algal nodules are forming around the 18/sup 0/C winter isocline and that huge amounts of these red coralline algae are living and accumulating in the subtidal zones, from -60 m to sea level, of temperate seas, such as the English Channel and Rockall. In the Pacific Ocean, several high carbonate platforms, so-called uplifted atolls, show uniform, extended, and thick accumulation of rhodoliths. These accumulations have been recognized in the Solomon Islands (Rennell) and in the Loyalty Islands (Mare and Lifu, New Caledonia), but also in the Vanuatu (Vila), in the Austral Archipelago (Rurutu), where their age can be proved or estimated as middle Miocene. They are also mentioned in the literature on the Emperor Rise (northwest Pacific). On other high carbonate islands, such as Makatea (Tuamotu), red algae and rhodolith formations appear at the top of a sedimentary pile of lower Miocene coral accumulation. The same observations and perhaps the same age can be said for Nauru (central Pacific). Such a wide distribution, from the east to the west part of the Pacific Ocean and between the tropics, seems to be due to climate variations during the Miocene, more than tectonic drift due to oceanic spreading. Temperate conditions shown by this shallow platform sedimentation, just under the coral growth conditions, seem to be confirmed by isotopic studies on pelagic and benthic Foraminifera and could confirm the existence of climate variations affecting the surface water of the Pacific in an extensive area that does not consider the presence of trenches, arcs, and ridges.

  10. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.

    Science.gov (United States)

    Stitt, Bradley C; Burness, Gary; Burgomaster, Kirsten A; Currie, Suzanne; McDermid, Jenni L; Wilson, Chris C

    2014-01-01

    Cold-water fishes are becoming increasingly vulnerable as changing thermal conditions threaten their future sustainability. Thermal stress and habitat loss from increasing water temperatures are expected to impact population viability, particularly for inland populations with limited adaptive resources. Although the long-term persistence of cold-adapted species will depend on their ability to cope with and adapt to changing thermal conditions, very little is known about the scope and variation of thermal tolerance within and among conspecific populations and evolutionary lineages. We studied the upper thermal tolerance and capacity for acclimation in three captive populations of brook trout (Salvelinus fontinalis) from different ancestral thermal environments. Populations differed in their upper thermal tolerance and capacity for acclimation, consistent with their ancestry: the northernmost strain (Lake Nipigon) had the lowest thermal tolerance, while the strain with the most southern ancestry (Hill's Lake) had the highest thermal tolerance. Standard metabolic rate increased following acclimation to warm temperatures, but the response to acclimation varied among strains, suggesting that climatic warming may have differential effects across populations. Swimming performance varied among strains and among acclimation temperatures, but strains responded in a similar way to temperature acclimation. To explore potential physiological mechanisms underlying intraspecific differences in thermal tolerance, we quantified inducible and constitutive heat shock proteins (HSP70 and HSC70, respectively). HSPs were associated with variation in thermal tolerance among strains and acclimation temperatures; HSP70 in cardiac and white muscle tissues exhibited similar patterns, whereas expression in hepatic tissue varied among acclimation temperatures but not strains. Taken together, these results suggest that populations of brook trout will vary in their ability to cope with a

  11. Recent Research toward Understanding Spatial, Temporal, and Climatic Variation in Stream Temperatures across the Northwest U.S.

    Science.gov (United States)

    Isaak, D.; Roper, B.; Luce, C.; Holden, Z.

    2012-12-01

    Global air temperature increases raise concerns about effects on thermal regimes of the Earth's rivers and streams. These concerns are acute in the Northwest U.S. due to legislatively mandated water quality standards and the importance of recreational and commercial fisheries for cold-water species such as salmon and trout. Efforts to study climate effects on stream thermal regimes are limited by sparse long-term monitoring records, resulting in a lack of information on historical spatial and temporal variation from which to measure departure. We present research from the last five years that begins to address these shortcomings, including: 1) estimation of stream warming rates in recent decades associated with long-term climate change (+0.11 °C/decade for mean annual temperatures; +0.22 °C/decade for summer temperatures), 2) development of an inexpensive protocol for monitoring full-year temperatures in dynamic mountain streams, 3) rapid expansion of an informal regional monitoring network from 3,000 sites in the last three years, 4) development and use of high-resolution (i.e., 100's of meters) air temperature microclimate models to understand variation in stream temperatures, 5) development of NorWeST, a comprehensive stream temperature database consisting of > 45,000 summers of temperature measurement at > 15,000 unique stream sites, and 6) use of new spatial statistical stream network models with NorWeST to krige predictions at unsampled locations and develop thermal information for most of the region's 350,000 stream kilometers. There is much yet to be learned regarding thermal regimes in rivers and streams but the accelerating pace of knowledge discovery driven by inexpensive sensors, computational improvements, geospatial technologies, and new analyses suggests that many important remaining unknowns will be resolved in the next five years.

  12. Impacts of climatic and marine environmental variations on the spatial distribution of Ommastrephes bartramii in the Northwest Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    YU Wei; CHEN Xinjun; YI Qian; GAO Guoping; CHEN Yong

    2016-01-01

    Ommastrephes bartramii is an ecologically dependent species and has great commercial values among the Asia-Pacific countries. This squid widely inhabits the North Pacific, one of the most dynamic marine environments in the world, subjecting to multi-scale climatic events such as the Pacific Decadal Oscillation (PDO). Commercial fishery data from the Chinese squid-jigging fleets during 1995-2011 are used to evaluate the influences of climatic and oceanic environmental variations on the spatial distribution of O. bartramii. Significant interannual and seasonal variability are observed in the longitudinal and latitudinal gravity centers (LONG and LATG) of fishing ground of O. bartramii. The LATG mainly occurred in the waters with the suitable ranges of environmental variables estimated by the generalized additive model. The apparent north-south spatial shift in the annual LATG appeares to be associated with the PDO phenomenon and is closely related to the sea surface temperature (SST) and sea surface height (SSH) on the fishing ground, whereas the mixed layer depth (MLD) might contribute limited impacts to the distribution pattern of O. bartramii. The warm PDO regimes tend to yield cold SST and low SSH, resulting in a southward shift of LATG, while the cold PDO phases provid warm SST and elevated SSH, resulting in a northward shift of LATG. A regression model is developed to help understand and predict the fishing ground distributions of O. bartramii and improve the fishery management.

  13. Corticosterone responses and personality in birds: Individual variation and the ability to cope with environmental changes due to climate change.

    Science.gov (United States)

    Cockrem, John F

    2013-09-01

    Birds can respond to an internal or external stimulus with activation of the HPA axis and secretion of corticosterone. There is considerable individual variation in corticosterone responses, and individual responses can be very different from the mean response for a group of birds. Corticosterone responses and behavioural responses to environmental stimuli are determined by individual characteristics called personality. It is proposed that birds with low corticosterone responses and proactive personalities are likely to be more successful (have greater fitness) in constant or predictable conditions, whilst birds with reactive personalities and high corticosterone responses will be more successful in changing or unpredictable conditions. The relationship between corticosterone responses and fitness thus depends on the prevailing environmental conditions, so birds with either low or high corticosterone responses can have the greatest fitness and be most successful, but in different situations. It is also proposed that birds with reactive personalities and high corticosterone responses will be better able to cope with environmental changes due to climate change than birds with proactive personalities and relatively low corticosterone responses. Phenotypic plasticity in corticosterone responses can be quantified using a reaction norm approach, and reaction norms can be used to determine the degree of plasticity in corticosterone responses of individual birds, and mean levels of plasticity in responses of species of birds. Individual corticosterone responses and personality, and reaction norms for corticosterone responses, can in future be used to predict the ability of birds to cope with environmental changes due to climate change.

  14. Multi-scale analysis on last millennium climate variations in Greenland by its ice core oxygen isotope

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The empirical mode decomposition method is used for analyzing the paleoclimate proxy δ18O from Greenland GISP2 ice core.The results show that millennium climate change trends in Greenland record the Medieval Warm Period (MWP) from 860AD-1350AD lasting for about 490 years,and the Little Ice Age (LIA) from 1350AD-1920AD lasting about 570 years.During these events,sub cooling-warming variations occurred.Its multi-scale oscillations changed with quasi-period of 3-year,6.5-year,12-year,24-year,49-year,96-year,213-year and 468-year,and are not only affected by ENSO but also by solar activity.The oscillation of intrinsic mode function IMF7,IMF8 and their tendency obviously appear in 1350AD which is considered as the key stage of transformation between MWP and LIA.The results give more detailed changes and their stages of millennium climate change in high latitude areas of the Northern Hemisphere.

  15. Temporal and Spatial Variations of Vegetation Cover in Xinjiang from 2002 to 2015 and Their Response to Climate

    Science.gov (United States)

    Liu, S. S.; Zhang, Q.; Li, X. C.; Song, W. J.; Yang, J. N.; Liu, X. J.

    2017-07-01

    In this paper, the dataset of normalized difference vegetation indexes (NDVIs) in the arid region in Xinjiang from 2002 to 2015 as well as the climate data from 52 meteorological stations are utilized and the temporal and spatial variations of NDVI in recent years and their response to temperature and precipitation are analyzed in combination with various methods such as the maximum value analysis, correlation analysis and spatial analysis. It is concluded that in the past 14 years, the annual maximum NDVIs of Xinjiang presented a moderate rising tendency; Under the influence of the global background, the temperature and precipitation also showed different degrees of increase, which showed a significant increase in temperature. The annual maximum NDVI had a significant correlation with the annual precipitation (correlation coefficient: 0.634), but no obvious correlation was identified between the annual maximum NDVI and the annual average temperature (correlation coefficient: 0.279). To this end, regarding to the climatic factors, the influence of precipitation on the vegetation cover is higher than that of temperature.

  16. An elevational trend of body size variation in a cold-climate agamid lizard,Phrynocephalus theobaldi

    Institute of Scientific and Technical Information of China (English)

    Yuanting JIN; Pinghu LIAO

    2015-01-01

    The pattern that many ectotherms have smaller body sizes in cold environments follows the converse to Bergmann’s rule and is most frequently found in lizards. Allen’s rule predicts animals from warm climates usually have longer tails and limbs, while these traits tend to be shorter in individuals from cold climates. We examined body size variation in an endemic Chinese lizardPhrynocephalus theobaldi along a broad elevational gradient (3,600–5,000 m on the Qinghai-Tibetan Plateau). Female body size showed a U-shaped cline, decreasing with increased elevation within the range 3,600–4,200 m, but increasing at eleva-tions > 4200 m. Male body size continued to increase with increasing elevations. Both sexes showed an increased pattern of ex-tremity length with elevation that does not conform to Allen’s rule. Limb length and tail length increased along the elevational gradients. In terms of color pattern, an abdominal black speckled area appears at elevations >4,200 m. This trait increases in size with increased elevation. Unlike most studies, our results indicated that annual sunshine hours corresponding to the activity pe-riod of the lizards could play an important role on the positive body size cline in environments at very high elevations > 4200 m [Current Zoology 61 (3): 444–453, 2015].

  17. Leaf nitrogen from first principles: field evidence for adaptive variation with climate

    Science.gov (United States)

    Dong, Ning; Prentice, Iain Colin; Evans, Bradley J.; Caddy-Retalic, Stefan; Lowe, Andrew J.; Wright, Ian J.

    2017-01-01

    Nitrogen content per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. Narea comprises a structural component, which scales with leaf mass per area (LMA), and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be directly proportional to irradiance but should decrease with increases in ci : ca and temperature because the amount of Rubisco required to achieve a given assimilation rate declines with increases in both. We tested these predictions using LMA, leaf δ13C, and leaf N measurements on complete species assemblages sampled at sites on a north-south transect from tropical to temperate Australia. Partial effects of mean canopy irradiance, mean annual temperature, and ci : ca (from δ13C) on Narea were all significant and their directions and magnitudes were in line with predictions. Over 80 % of the variance in community-mean (ln) Narea was accounted for by these predictors plus LMA. Moreover, Narea could be decomposed into two components, one proportional to LMA (slightly steeper in N-fixers), and the other to Rubisco capacity as predicted by the co-ordination hypothesis. Trait gradient analysis revealed ci : ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea. Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in order to improve ecosystem models. Coupled carbon-nitrogen models require a method to predict Narea that is more realistic than the widespread assumptions that Narea is proportional to photosynthetic capacity, and/or that Narea (and photosynthetic capacity) are determined by N supply from the soil. Our results indicate that Narea has a useful degree of predictability, from a combination of LMA and ci : ca - themselves in part environmentally determined - with Rubisco activity

  18. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.

    Science.gov (United States)

    Liu, Lingling; Zhang, Xiaoyang; Donnelly, Alison; Liu, Xinjie

    2016-10-01

    Land surface phenology has been widely used to evaluate the effects of climate change on terrestrial ecosystems in recent decades. Climate warming on the Tibetan Plateau (1960-2010, 0.2 °C/decade) has been found to be greater than the global average (1951-2012, 0.12 °C/decade), which has had a significant impact on the timing of spring greenup. However, the magnitude and direction of change in spring phenology and its response to warming temperature and precipitation are currently under scientific debate. In an attempt to explore this issue further, we detected the onset of greenup based on the time series of daily two-band enhanced vegetation index (EVI2) from the advanced very high resolution radiometer (AVHRR) long-term data record (LTDR; 1982-1999) and Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG; 2000-2013) using hybrid piecewise logistic models. Further, we examined the temporal trend in greenup onset in both individual pixels and ecoregions across the entire Tibetan Plateau over the following periods: 1982-1999, 2000-2013, and 1982-2013. The interannual variation in greenup onset was linked to the mean temperature and cumulative precipitation in the preceding month, and total precipitation during winter and spring, respectively. Finally, we investigated the relationship between interannual variation in greenup onset dates and temperature and precipitation from 1982 to 2013 at different elevational zones for different ecoregions. The results revealed no significant trend in the onset of greenup from 1982 to 2013 in more than 86 % of the Tibetan Plateau. For each study period, statistically significant earlier greenup trends were observed mainly in the eastern meadow regions while later greenup trends mainly occurred in the southwestern steppe and meadow regions both with areal coverage of less than 8 %. Although spring phenology was negatively correlated with spring temperature and precipitation in the majority of

  19. Vegetation Response to Climatic Variations in the southern African tropics during the Late- Pleistocene and Holocene

    Science.gov (United States)

    Beuning, K. R.; Zimmerman, K. A.; Ivory, S. J.; Cohen, A. S.

    2007-12-01

    Pollen records from Lake Malawi, Africa spanning the last 135 kyr show substantial and abrupt vegetation response to multiple episodes of extreme aridity during the mega-drought period (130-90 ka). In contrast, vegetation composition and relative abundance remained fairly constant throughout the last 75 ka with no significant change during the Last Glacial Maxima (LGM) (35-15 ka). During the extremely arid mega-drought time period, fluctuations in pollen production define three distinct zones. The first zone, from 123-117 ka, is characterized by increasing amounts of grass, and decreasing amounts of both Podocarpus and evergreen forest taxa (i.e. Celtis, Ixora, Myrica, Macaranga), which, when matched with charcoal data, suggests a short period of extreme aridity. The disappearance of Brachystegia in this interval in conjunction with a peak in Amaranthaceae suggests conversion of the surrounding miombo woodland to an open grassland community probably caused by increased seasonality with a more prolonged and arid dry season. Peak amounts of Podocarpus (30-40%) along with diminishing levels of grass distinguish zone two (117-105 ka). This assemblage defines zone 2 as a period marked by a cool, dry climate resulting in expansion of montane forest taxa to lower elevations. Marine palynological records from the Angola Margin and Congo Fan show similar peak Podocarpus percentages at this time (oxygen isotope stage 5d) indicating similar latitudinal climates across the African continent. Zone three (105-75 ka) shows the highest and most consistent levels of Poaceae. This evidence, along with markedly low levels of most other taxa, indicates that this period contained the most sustained long-lasting dry spells during the past 135 ka. This episode in African history was severe enough as to cause the disappearance of forest taxa such as Uapaca and Brachystegia as well as montane taxa ( Podocarpus, Olea spp. and Ericaceae) within the pollen source area of Lake Malawi. The

  20. Variations of climate and streamflow over the Saint John Basin since 1872

    Energy Technology Data Exchange (ETDEWEB)

    Hare, F.K. [Toronto Univ., Toronto, ON (Canada). Dept. of Geography; Dickison, R.B.B. [Atlantic Weather and Environment Consultants Ltd., Fredericton, NB (Canada); Ismail, S. [New Brunswick Power, NB (Canada)

    1997-12-31

    Long-term climate and streamflow records for the Saint John River Basin of Quebec, Maine and New Brunswick were examined in order to determine what may happen in the Basin`s future and to understand to what extent the Basin`s experience reflects broader-scale changes over North America and the rest of the world. The physical characteristics of the Basin were described, including a list of the main dams and hydraulic stations above the Mactaquac. The Saint John River appears to have changed its habits in the past four decades. The spring freshet has tended to come earlier and has increased in volume since 1972. There is no evidence, however, that this change has been caused by the greenhouse effect. No enduring changes in mean annual precipitation and streamflow were detected. The mean annual temperature has risen 1.3 degrees C since 1871, or about 1 degrees C per century. Snowy or wet winters with high interannual variability have resulted in earlier thaws and several major flood and ice-jam events. The risk of severe rainstorms at the time of freshet can lead to higher flows than have been recorded in the past. 19 refs., 3 tabs., 10 figs.

  1. Geographic variation of surface energy partitioning in the climatic mean predicted from the maximum power limit

    CERN Document Server

    Dhara, Chirag; Kleidon, Axel

    2015-01-01

    Convective and radiative cooling are the two principle mechanisms by which the Earth's surface transfers heat into the atmosphere and that shape surface temperature. However, this partitioning is not sufficiently constrained by energy and mass balances alone. We use a simple energy balance model in which convective fluxes and surface temperatures are determined with the additional thermodynamic limit of maximum convective power. We then show that the broad geographic variation of heat fluxes and surface temperatures in the climatological mean compare very well with the ERA-Interim reanalysis over land and ocean. We also show that the estimates depend considerably on the formulation of longwave radiative transfer and that a spatially uniform offset is related to the assumed cold temperature sink at which the heat engine operates.

  2. Simulation of Asian Monsoon Seasonal Variations with Climate Model R42L9/LASG

    Institute of Scientific and Technical Information of China (English)

    王在志; 吴国雄; 吴统文; 宇如聪

    2004-01-01

    The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model's performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exist in this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.

  3. Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate

    Science.gov (United States)

    Xiao, Qitao; Zhang, Mi; Hu, Zhenghua; Gao, Yunqiu; Hu, Cheng; Liu, Cheng; Liu, Shoudong; Zhang, Zhen; Zhao, Jiayu; Xiao, Wei; Lee, X.

    2017-07-01

    Subtropical lakes are important source of atmospheric methane (CH4). This study aims to investigate spatial variations of CH4 flux in Lake Taihu, a large (area 2400 km2) and shallow (mean depth 1.9 m) eutrophic lake in Eastern China. The lake exhibited high spatial variations in pollution level, macrophyte vegetation abundance, and algal growth. We measured the diffusion CH4 flux via the transfer coefficient method across the whole lake. In addition, data obtained with the flux gradient and the eddy covariance methods were used in conjunction with the data on the diffusion flux to estimate the contribution by ebullition. Results from 3 years' measurements indicated high spatial variabilities in the diffusion CH4 flux. The spatial pattern of the diffusion CH4 emission was correlated with water clarity, dissolved oxygen concentration, and the spatial distributions of algal and submerged vegetation. In comparison to the transfer coefficient method, the eddy covariance and the flux gradient method observed a lake CH4 flux that was 3.39 ± 0.58 (mean ± 1 standard deviation) and 1.95 ± 0.36 times higher in an open-water eutrophic zone and in a habitat of submerged macrophytes, respectively. The result implied an average of 71% and 49% ebullition contribution to the total CH4 flux in the two zones. The annual mean diffusion CH4 flux of the whole lake was 0.54 ± 0.30 g m-2 yr-1. Our CH4 emission data suggest that the average CH4 emission reported previously for lakes in Eastern China was overestimated.

  4. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate

    Science.gov (United States)

    Fyllas, N. M.; Patiño, S.; Baker, T. R.; Bielefeld Nardoto, G.; Martinelli, L. A.; Quesada, C. A.; Paiva, R.; Schwarz, M.; Horna, V.; Mercado, L. M.; Santos, A.; Arroyo, L.; Jiménez, E. M.; Luizão, F. J.; Neill, D. A.; Silva, N.; Prieto, A.; Rudas, A.; Silviera, M.; Vieira, I. C. G.; Lopez-Gonzalez, G.; Malhi, Y.; Phillips, O. L.; Lloyd, J.

    2009-11-01

    We analysed 1040 individual trees, located in 62 plots across the Amazon Basin for leaf mass per unit area (MA), foliar carbon isotopic composition (δ13C) and leaf level concentrations of C, N, P, Ca, Mg, K and Al. All trees were identified to the species level with the dataset containing 58 families, 236 genera and 508 species, distributed across a wide range of soil types and precipitation regimes. Some foliar characteristics such as MA, [C], [N] and [Mg] emerge as highly constrained by the taxonomic affiliation of tree species, but with others such as [P], [K], [Ca] and δ13C also strongly influenced by site growing conditions. By removing the environmental contribution to trait variation, we find that intrinsic values of most trait pairs coordinate, although different species (characterised by different trait suites) are found at discrete locations along a common axis of coordination. Species that tend to occupy higher fertility soils are characterised by a lower MA and have a higher intrinsic [N], [P], [K], [Mg] and δ13C than their lower fertility counterparts. Despite this consistency, different scaling patterns were observed between low and high fertility sites. Inter-relationships are thus substantially modified by growth environment. Analysing the environmental component of trait variation, we found soil fertility to be the most important predictor, influencing all leaf nutrient concentrations and δ13C and reducing MA. Mean annual temperature was negatively associated with leaf level [N], [P] and [K] concentrations. Total annual precipitation positively influences MA, [C] and δ13C, but with a negative impact on [Mg]. These results provide a first basis for understanding the relationship between the physiological functioning and distribution of tree species across Amazonia.

  5. Diversity of precipitation characteristics in contiguous United States: climatology, interannual variation, and change in the warming climate

    Science.gov (United States)

    Chen, Chen; Chang, Won; Kong, Wenwen; Wang, Jiali; Rao Kotamarthi, V.; Stein, Michael L.; Moyer, Elisabeth J.

    2017-04-01

    Individual precipitation events induce different levels of hydrological impacts given their diverse characteristics, not only in precipitation amount but also in precipitation rate, duration, and size. It thus calls for an understanding of the diversity in precipitation characteristics and its influence on the total precipitation in contiguous United States. The framework we use to look into the precipitation diversity includes three steps: 1. we analyze the precipitation in observations (StageIV, 4kmx4km, 1h) and regional climate models (CCSM4-WRF downscaling,12kmx12km, 3h), in which the high spatio-temporal resolution enables us to "see" individual precipitation events. 2. switching from the Eulerian to Lagrangian perspective, we track individual rainstorms using Chang et al. (2016), in which algorithm both small and big events are identified to ensure the full spectrum diversity. 3. we use a set of metrics to characterize varying aspects of diversity and decompose their contributions to the total precipitation in CONUS. We also measure the variation and change in event frequency. The overall understandings are the following: 1. as to the climatology, though certain rainstorms with longer duration or larger size have better abilities to produce precipitation, the scarcity limits their overall contributions to the seasonal precipitation in CONUS. 2. as to the interannual variation, for a wetter year when the total precipitation is larger than normal and events are more frequent, the averaged rainstorm size is larger though the intensified precipitation rate shortens the rainstorm duration. 3. as to the change in a warming climate (as in Chang et al. 2016), CCSM4-WRF projection under RCP8.5 scenario suggests that, along with the increasing precipitation amount and intensity, the averaged rainstorm duration become longer but the size becomes overall smaller. The total number of events does not change much. 4. different relations governing the interannual variation

  6. Orbitally-paced variations of water availability in the SE Asian Monsoon region following the Miocene Climate Transition

    Science.gov (United States)

    Heitmann, Emma O.; Ji, Shunchuan; Nie, Junsheng; Breecker, Daniel O.

    2017-09-01

    Middle Miocene Earth had several boundary conditions similar to those predicted for future Earth including similar atmospheric pCO2 and substantial Antarctic ice cover but no northern hemisphere ice sheets. We describe a 12 m outcrop of the terrestrial Yanwan Section in the Tianshui Basin, Gansu, China, following the Miocene Climate Transition (13.9-13.7 Ma). It consists of ∼25 cm thick CaCO3-cemented horizons that overprint siltstones every ∼1 m. We suggest that stacked soils developed in siltstones under a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13 C and δ18 O profiles that mimic modern soils. We suggest that the CaCO3-cemented horizons are capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration rates (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The CaCO3 of the cemented horizons and the carbonate nodules have similar mean δ18 O and δ13 C values but the cements have significantly smaller variance in δ13 C and δ18 O values and a different δ18 O versus δ13 C slope, supporting the conclusion that these carbonates are from different populations. The magneto-stratigraphic age model indicates obliquity pacing of the arid conditions required to form the CaCO3-cemented horizons suggesting an orbital control on water availability. We suggest two possible drivers for the obliquity pacing of arid conditions: 1) variability in the cross-equatorial pressure gradient that controls summer monsoon (ASM) strength and is influenced by obliquity-paced variations of Antarctic ice volume and 2) variability in Western Pacific Ocean-East Asian continent pressure gradient controlled by the 25-45°N meridional insolation gradient. We also suggest that variations in aridity were influenced by variations in PET and sensible heating of the regional land

  7. Pacific Northwest Regional and Ecozone-scale Carbon Cycle Responses to 25 Years of Variation in Climate and Disturbance

    Science.gov (United States)

    Turner, D. P.; Ritts, W. D.; Kennedy, R. E.; Gray, A. N.; Yang, Z.

    2015-12-01

    Spatial variation in climate, soils, disturbance regime, and forest management - as well as temporal variation in weather - all influence terrestrial carbon sources and sinks. Spatially-distributed, process-based, carbon cycle simulation models provide a means to integrate information from these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the 4 state (OR, WA, ID, Western MT) Northwest U.S. region for the interval from 1986-2010. Landsat data was used to characterize disturbances and revealed that the overall disturbance rate on forest land across the region was 0.8 % yr-1, with 49 % as harvests, 28 % as fire, and 23 % as pest/pathogen. A large proportion of the harvested area was on private forestland (62 %) and a large proportion of total burned area was on public forestland (89 %). Net ecosystem production (NEP) for the 2006-2010 interval on forestland was predominantly positive (a carbon sink) throughout the region, with maximum values in the Coast Range, intermediate values in the Cascade Mountains, and relatively low values in the Inland Rocky Mountain ecoregions. Croplands throughout the region had consistently high NEP. Localized negative NEPs were mostly associated with recent disturbances. There was large interannual variation in regional NEP, with notably low values across the region in 2003. In all ecoregions there was a downward trend in NEP over the 25 year study period. The net ecosystem carbon balance was positive in OR, near neutral in ID and WA, and negative (a carbon source) MT. The Northwest region as a whole was a carbon sink in the 2006-2010 period.

  8. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop

  9. The influence of climatically-driven surface loading variations on continental strain and seismicity

    Science.gov (United States)

    Craig, Tim; Calais, Eric; Fleitout, Luce; Bollinger, Laurent; Scotti, Oona

    2016-04-01

    In slowly deforming regions of plate interiors, secondary sources of stress and strain can result in transient deformation rates comparable to, or greater than, the background tectonic rates. Highly variable in space and time, these transients have the potential to influence the spatio-temporal distribution of seismicity, interfering with any background tectonic effects to either promote or inhibit the failure of pre-existing faults, and potentially leading to a clustered, or 'pulse-like', seismic history. Here, we investigate the ways in which the large-scale deformation field resulting from climatically-controlled changes in surface ice mass over the Pleistocene and Holocene may have influenced not only the seismicity of glaciated regions, but also the wider seismicity around the ice periphery. We first use a set of geodynamic models to demonstrate that a major pulse of seismic activity occurring in Fennoscandia, coincident with the time of end-glaciation, occurred in a setting where the contemporaneous horizontal strain-rate resulting from the changing ice mass, was extensional - opposite to the reverse sense of coseismic displacement accommodated on these faults. Therefore, faulting did not release extensional elastic strain that was building up at the time of failure, but compressional elastic strain that had accumulated in the lithosphere on timescales longer than the glacial cycle, illustrating the potential for a non-tectonic trigger to tap in to the background tectonic stress-state. We then move on to investigate the more distal influence that changing ice (and ocean) volumes may have had on the evolving strain field across intraplate Europe, how this is reflected in the seismicity across intraplate Europe, and what impact this might have on the paleoseismic record.

  10. Large-scale climate variation modifies the winter grouping behavior of endangered Indiana bats

    Science.gov (United States)

    Thogmartin, Wayne E.; McKann, Patrick C.

    2014-01-01

    Power laws describe the functional relationship between 2 quantities, such as the frequency of a group as the multiplicative power of group size. We examined whether the annual size of well-surveyed wintering populations of endangered Indiana bats (Myotis sodalis) followed a power law, and then leveraged this relationship to predict whether the aggregation of Indiana bats in winter was influenced by global climate processes. We determined that Indiana bat wintering populations were distributed according to a power law (mean scaling coefficient α = −0.44 [95% confidence interval {95% CI} = −0.61, −0.28). The antilog of these annual scaling coefficients ranged between 0.67 and 0.81, coincident with the three-fourths power found in many other biological phenomena. We associated temporal patterns in the annual (1983–2011) scaling coefficient with the North Atlantic Oscillation (NAO) index in August (βNAOAugust = −0.017 [90% CI = −0.032, −0.002]), when Indiana bats are deciding when and where to hibernate. After accounting for the strong effect of philopatry to habitual wintering locations, Indiana bats aggregated in larger wintering populations during periods of severe winter and in smaller populations in milder winters. The association with August values of the NAO indicates that bats anticipate future winter weather conditions when deciding where to roost, a heretofore unrecognized role for prehibernation swarming behavior. Future research is needed to understand whether the three-fourths–scaling patterns we observed are related to scaling in metabolism.

  11. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate

    Directory of Open Access Journals (Sweden)

    N. M. Fyllas

    2009-04-01

    Full Text Available We analysed 1040 individual trees, positioned in sixty three plots across the Amazon Basin for leaf mass per area (MA, leaf carbon isotope composition (δ13C and leaf level concentrations of C, N, P, Ca, Mg, K and Al. All trees were identified to the species with the dataset containing 58 families, 236 genera and 508 species, distributed across a wide range of soil types and precipitation regimes. Some foliar characters such as MA, [C], [N] and [Mg] emerge as highly constrained by the taxonomic affiliation of tree species, but with others such as [P], [K], [Ca] and δ13C also strongly influenced by site growing conditions. By removing the environmental contribution to trait variation, we find that intrinsic values of most trait pairs coordinate, although different species (characterised by different trait suites are found at discrete locations along a common axis of coordination. Species that tend to occupy higher fertility soils are characterised by a lower MA and have a higher intrinsic [N], [P], [K], [Mg] and δ13C than their lower fertility counterparts. Despite this consistency, different scaling patterns were observed between low and high fertility sites. Inter-relationships are thus substantially modified by growth environment. Analysing the environmental component of trait variation, we found soil fertility to be the most important predictor, influencing all leaf nutrient concentrations and δ13C composition and reducing MA. Mean annual temperature was negatively associated with leaf level [N], [P] and [K] concentrations. Total annual precipitation positively influences MA, [C] and δ13C, but with a negative impact on [Mg]. These results provide a first basis for understanding the relationship between the physiological functioning and distribution of tree species across Amazonia.

  12. Climate-Related Variation in Body Dimensions within Four Lacertid Species

    Directory of Open Access Journals (Sweden)

    Stanislav Volynchik

    2014-01-01

    Full Text Available A close relationship between habitat and external morphology is widespread among many animals, including reptiles. Here, I studied the relationship between abiotic environmental conditions and body size of four lacertid species (Phoenicolacerta laevis, Ophisops elegans, Acanthodactylus boskianus, and Mesalina guttulata occurring in Israel. I examined the effect of average annual temperature and average annual precipitation on body and limb dimensions, using linear statistical models. Temperature- and precipitation-related geographic clines in body size showed the same trend among all species. Females displayed stronger phenotypic response to temperature gradient than conspecific males, suggesting a sex-specific effect of natural selection. Snout-vent length (SVL was negatively correlated with temperature, supporting Bergmann’s rule in O. elegans and in female P. laevis and A. boskianus, but not in M. guttulata. Precipitation was positively related to SVL in O. elegans and M. guttulata, and in female P. laevis and A. boskianus. The relative extremity lengths, especially hind limb segments, generally increase towards hot and dry locations, following Allen’s rule. Among the Mediterranean region species (P. laevis, O. elegans the morphological-environmental link with temperature was stronger than in desert dwellers (A. boskianus, M. guttulata, for which precipitation was the major determinant of spatial variation.

  13. Diffusion Filters for Variational Data Assimilation of Sea Surface Temperature in an Intermediate Climate Model

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2015-01-01

    Full Text Available Sequential, adaptive, and gradient diffusion filters are implemented into spatial multiscale three-dimensional variational data assimilation (3DVAR as alternative schemes to model background error covariance matrix for the commonly used correction scale method, recursive filter method, and sequential 3DVAR. The gradient diffusion filter (GDF is verified by a two-dimensional sea surface temperature (SST assimilation experiment. Compared to the existing DF, the new GDF scheme shows a superior performance in the assimilation experiment due to its success in extracting the spatial multiscale information. The GDF can retrieve successfully the longwave information over the whole analysis domain and the shortwave information over data-dense regions. After that, a perfect twin data assimilation experiment framework is designed to study the effect of the GDF on the state estimation based on an intermediate coupled model. In this framework, the assimilation model is subject to “biased” initial fields from the “truth” model. While the GDF reduces the model bias in general, it can enhance the accuracy of the state estimation in the region that the observations are removed, especially in the South Ocean. In addition, the higher forecast skill can be obtained through the better initial state fields produced by the GDF.

  14. Climatic Variation and River Flows in Himalayan Basins Upstream of Large Dams

    Science.gov (United States)

    Eaton, D.; Collins, D. N.

    2014-12-01

    High specific discharges from Himalayan headwater basins feed major reservoirs generating hydropower and supplying water to irrigation schemes across the Punjab plains of north-west India and Pakistan. Flow arises from seasonal winter snow cover, summer monsoon precipitation and melting glacier ice in varying proportions and differing absolute quantities along west -east axes of the Karakoram and western Himalaya. Discharge records for stations above Tarbela (Indus), Mangla (Jhelum), Marala (Chenab) and Bhakra (Sutlej) dams have been examined for periods between 1920 and 2009, together with precipitation and air temperature data for stations with long records (within the period 1893 to 2013) at elevations between 234 and 3015 m a.s.l. Ice-cover age in the basins above the dams was between 1 and 12 %. Flows in the Sutlej, Chenab and Jhelum reached maxima in the 1950s before declining to the 1970s. Flow in the Chenab and Jhelum increased to 1950s levels in the 1990s, before falling steeply into the 2000s mimicking variations in winter and monsoon precipitation. Discharge in the Indus at Tarbela increased from the 1970s, reaching a maximum in the late 1980s/early 1990s, before declining back to 1970s levels in the 2000s, flow being influenced not only by precipitation fluctuations but also by changes in air temperature affecting glacier melt in headwater basins. Runoff at Bhakra was augmented by flow from the Beas-Sutlej link canal after 1977, but natural flow in the Sutlej above Luhri reduced considerably from the 1990s influenced by declining flows in the relatively dry but large Tibetan portion of the basin area. Large year-to-year fluctuations of reservoir inflows are nonetheless based on significant sustained underlying discharge levels at all four reservoirs.

  15. Climate-vegetation control on the diurnal and seasonal variations of surface urban heat islands in China

    Science.gov (United States)

    Zhou, Decheng; Zhang, Liangxia; Li, Dan; Huang, Dian; Zhu, Chao

    2016-07-01

    Remotely sensed surface urban heat islands (UHIs) have gained considerable interest in recent decades due to the easy access and the wall-to-wall coverage of satellite products. The magnitude or intensity of surface UHIs have been well documented at regional and global scales, yet a systematic evaluation of the temporal variability over large areas is still lacking. In this study, the diurnal and seasonal cycles of surface UHI intensities (SUHIIs) in China are examined using Aqua/Terra MODIS data from 2008 to 2012. Results show that the mean annual SUHIIs varied greatly in a diurnal cycle, characterized by a positive day-night difference (DND) in Southeast China and the opposite in Northeast and Northwest China. Also, the SUHIIs differed dramatically in a seasonal cycle, indicated by a positive summer-winter difference (SWD) in the day and a negative SWD at night, accompanied by the highly diverse DNDs across seasons and geographic regions. Northwest and Northeast China overall showed the largest DND and SWD (>3 °C), respectively. These diurnal and seasonal variations depend strongly on local climate-vegetation regimes, as indicated by a strong positive correlation between DND and precipitation (and air temperature) and a negative relationship between DND and vegetation activity across cities and seasons. In particular, SHUIIs were quadratically correlated with the mean annual precipitation across space, suggesting that there might be a threshold in terms of the effects induced by local background climate. Our findings highlight the importance of considering the temporal variability of UHIs for more accurate characterization of the associated ecological and social-economic consequences.

  16. Phenology and abundance in relation to climatic variation in a sub-arctic insect herbivore-mountain birch system.

    Science.gov (United States)

    Mjaaseth, Ragnhild R; Hagen, Snorre B; Yoccoz, Nigel G; Ims, Rolf A

    2005-08-01

    The two forest-defoliating geometrid moth species Operophtera brumata and Epirrita autumnata are known to exhibit different altitudinal distribution patterns in northern birch forests. One possible explanation for this is that altitudinal climatic variation differentially affects the performance of two species through mismatching larval and host plant phenology. We explored this hypothesis by investigating the relationship between larval phenology and leaf phenology of Betula pubescens, which is the main host plant of both moth species, along ten replicate altitudinal transects during two springs with contrasting climate in northern Norway. There was a distinct monotonous cline in host plant phenology with increasing altitude in both years of the study, but the development of the leaves were generally 14 days later in the first of the 2 years due to cold spring weather. We found that larval development of both species closely tracked host plant leaf phenology independent of altitude and year. However, at the time of sampling, E. autumnata was approximately one instar ahead of O. brumata at all altitudes, probably reflecting that E. autumnata has faster early instar growth than O. brumata. The abundance of O. brumata was lowest at the altitudinal forest-line, while E. autumnata was lowest near sea level. Our results do not indicate that the altitudinal distribution patterns of the two moth species is due to any phenological mismatch between larval and host plant phenology. We suggest rather that natural enemies at low altitudes limit larval survival and thus abundance of E. autumnata, while an early onset of winter at the forest limit reduces survival of late eclosing adults of O. brumata.

  17. Phenological, but not social, variation associated with climate differences in a eusocial sweat bee, Halictus ligatus, nesting in southern Ontario

    Directory of Open Access Journals (Sweden)

    Miriam H. Richards

    2015-03-01

    Full Text Available Studies of annual and geographic variation in eusocial bee populations suggest that more stringent environmental conditions result in stronger reproductive skew favouring queens, while moderate conditions favour increasing worker reproduction. To test these predictions, we compared the phenology and colony development of H. ligatus nesting in St. Catharines, Ontario, Canada to a previously studied aggregation 90 km north of St. Catharines, in Victoria, Ontario. Despite the close proximity of these two locations, St. Catharines has markedly shorter winters and longer summers. Comparisons between St. Catharines in 2006 and Victoria in the 1980s and 1990s incorporate both geographic differences in climate and temporal differences due to climate change. We predicted that St. Catharines foundress queens should emerge from hibernation and initiate nests earlier in spring, giving them time to produce more workers. Since earlier studies indicated that queens have difficulty suppressing worker reproduction in larger colonies, we also predicted higher rates of worker ovarian development in St. Catharines. In spring and summer 2006, we excavated 65 H. ligatus nests, comparing their contents to 713 specimens collected in pan traps. As predicted, nests were initiated about a month earlier in St. Catharines than in Victoria, but contrary to prediction, fewer workers were produced in St. Catharines. St. Catharines workers were just as likely to have developed ovaries as Victoria workers. About 40% of St. Catharines workers were classified as reproductive, and larger reproductive workers tended to have higher ovarian scores. Early queen mortality in the longer nest cycle of St. Catharines bees may have enhanced opportunities for worker reproduction despite their smaller numbers. Novel features of H. ligatus sociobiology in St. Catharines included evidence that queens can initiate new nests following the loss of their first brood, overlap between worker and gyne

  18. Effect of climate change on human health and some adaptive ...

    African Journals Online (AJOL)

    Effect of climate change on human health and some adaptive strategies – a review. ... The impact of human-induced climate change and ozone depletion are now ... and death that is more premature and disease related to air pollution.

  19. Living with a Star: New Opportunities in Sun-Climate Research

    Science.gov (United States)

    Eddy, John Allen

    2003-01-01

    Enormous advances have been made in the last quarter century in all of these needed areas, covering the two essential halves of the Sun-Climate question: in what we know of solar variations and, equally important, in what we know of the climate system and of climatic changes. These research achievements allow us to examine all aspects of the question more directly and quantitatively than was ever possible before, and in the brighter light and more objective context of other known or suspected climate change mechanisms, including human-induced global greenhouse warming. Brief summaries of present status and current understanding are given below for nine facets of Sun-Climate science in which major progress has been made in recent years. At the same time it will be seen that in every instance, significant elements of uncertainty still remain, Some of the most important of these unanswered questions are considered later, in Section IV.

  20. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  1. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Science.gov (United States)

    Austin, J.; Hood, L. L.; Soukharev, B. E.

    2007-03-01

    The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean) and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  2. Study on Climatic Variation and Its Effect on Vegetable Type Soybean Genotypes at Khumaltar, Lalitpur in the Last Ten Years

    Directory of Open Access Journals (Sweden)

    Santosh Raj Tripathi

    2015-03-01

    Full Text Available Soybean (Glycine max L. Merril is widely grown in the mid hills as intercrop with maize or in paddy bunds, while it is gaining popularity as sole crop in terai and inner terai. Mean temperature at Khumaltar during soybean growing period was mostly fluctuating; but we observed an increasing trend in temperature. Amount of rainfall was not changed dramatically but number of rainy days was decreased during study period. Rainfall during germination time increase soil moisture which also increase germination and found higher early stand. Days from sowing to 50% flowering and 90% maturity were short in the case of higher minimum temperature and low rainfall. Among the genotypes, AGS-377, AGS-378, AGS-379 and Tarkari Bhattmas-1 were more sensitive. However, seed yield decreased in the case of higher temperatures and low rainfall. Cool night temperatures and high moisture increased disease incidence in soybean which, eventually reduced yield. In last three years, plant suffered from moisture stress during early vegetative stage and high moisture during late vegetative stage which reduced seed yield and seed weight. In conclusion, we found that genotypes like AGS- 360, Sathiya and Tarkari Bhatmas-1 are very sensitive to climatic variation.

  3. RNA Sequencing Analysis Reveals Transcriptomic Variations in Tobacco (Nicotiana tabacum Leaves Affected by Climate, Soil, and Tillage Factors

    Directory of Open Access Journals (Sweden)

    Bo Lei

    2014-04-01

    Full Text Available The growth and development of plants are sensitive to their surroundings. Although numerous studies have analyzed plant transcriptomic variation, few have quantified the effect of combinations of factors or identified factor-specific effects. In this study, we performed RNA sequencing (RNA-seq analysis on tobacco leaves derived from 10 treatment combinations of three groups of ecological factors, i.e., climate factors (CFs, soil factors (SFs, and tillage factors (TFs. We detected 4980, 2916, and 1605 differentially expressed genes (DEGs that were affected by CFs, SFs, and TFs, which included 2703, 768, and 507 specific and 703 common DEGs (simultaneously regulated by CFs, SFs, and TFs, respectively. GO and KEGG enrichment analyses showed that genes involved in abiotic stress responses and secondary metabolic pathways were overrepresented in the common and CF-specific DEGs. In addition, we noted enrichment in CF-specific DEGs related to the circadian rhythm, SF-specific DEGs involved in mineral nutrient absorption and transport, and SF- and TF-specific DEGs associated with photosynthesis. Based on these results, we propose a model that explains how plants adapt to various ecological factors at the transcriptomic level. Additionally, the identified DEGs lay the foundation for future investigations of stress resistance, circadian rhythm and photosynthesis in tobacco.

  4. The vine; an emblematic plant bio-indicatrice of the climatic variations, presentation of project ADVICLIM / La vigne ; une plante bio-indicatrice emblématique des variations climatiques, présentation du projet ADVICLIM

    Directory of Open Access Journals (Sweden)

    Rochard Joël

    2016-01-01

    Full Text Available The probable evolution of the climate, grows rich by a historical wine glance. The vine could illuminate this major challenges linked to climate change in particular thanks to the historical analysis of “ban des vendanges” de (grape harvest data as well as the physiological and phenologic observations in the various wine-producing areas, the last and future evolution of the climate. The wine historians and experts studied the variability of the round of applause of vintage during the last five centuries. The precocity observed since the end of 1980 is from 10 to 20 days comparatively in the middle of the 20th century. In complement the recent historical data make it possible to apprehend in a simple way the influence of the climate change on the dates of grape harvest (10 days average precocity per additional degree Celsius. An European LIFE project ADVICLIM (www.adviclim.eu, coordinated by CNRS aims to set up a network of international measurements and a Web platform which will make it possible to the wine growers to evaluate the impacts of the climate change on their pieces. The objective of the communication is to present the historical aspects of the dates of grape harvest in link with the variations of the climate and to determine the future trends to be planned to adapt to the various scenarios during the 21st century.

  5. The role of demography, intra-species variation, and species distribution models in species’ projections under climate change

    DEFF Research Database (Denmark)

    Swab, Rebecca Marie; Regan, Helen M.; Matthies, Diethart

    2015-01-01

    Organisms are projected to shift their distribution ranges under climate change. The typical way to assess range shifts is by species distribution models (SDMs), which predict species’ responses to climate based solely on projected climatic suitability. However, life history traits can impact spe...

  6. Possible explanation linking 18.6-year period nodal tidal cycle with bi-decadal variations of ocean and climate in the North Pacific

    Science.gov (United States)

    Yasuda, Ichiro; Osafune, Satoshi; Tatebe, Hiroaki

    2006-04-01

    Bi-decadal climate variation is dominant over the North Pacific on inter-decadal timescale; however the mechanism has not been fully understood. We here find that the bi-decadal variations in the North Pacific climate and intermediate waters possibly relate to the 18.6-year period modulation of diurnal tide. In the period of strong diurnal tide, tide-induced diapycnal mixing makes surface salinity and density higher and the upper-layer shallower along the Kuril Islands and the east coast of Japan. Simple model results suggest that the coastal depth adjustment by baroclinic Kelvin waves enhances the thermohaline circulation, the upper-layer poleward western boundary current and associated heat transport by about 0.05PW. This could also explain the warmer SST in the Kuroshio-Oyashio Extension regions, where positive feedback with Aleutian Low might amplify the bidecadal variations. The 18.6-year tidal cycle hence could play a role as a basic forcing for the bi-decadal ocean and climate variations.

  7. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  8. Influence of anthropogenic alterations on geomorphic response to climate variations and change in San Francisco Bay-Delta and watershed

    Science.gov (United States)

    Florsheim, J.L.; Dettinger, M.D.

    2004-01-01

    subsided Delta Islands to levee failure during floods and increase upstream backwater flooding. Thus, geomorphic responses to future climate variation and change will be closely tied to infrastructure and reservoir management, with survivability of infrastructure and decisions about timing, magnitude, and duration of flow releases from upstream reservoirs likely to determine the nature of those geomorphic responses.

  9. Carbon footprint and land requirement for dairy herd rations: impacts of feed production practices and regional climate variations.

    Science.gov (United States)

    Henriksson, M; Cederberg, C; Swensson, C

    2014-08-01

    Feed production is a significant source of greenhouse gas (GHG) emissions from dairy production and demands large arable and pasture acreage. This study analysed how regional conditions influence GHG emissions of dairy feed rations in a life cycle perspective, that is the carbon footprint (CF) and the land area required. Factors assessed included regional climate variations, grass/clover silage nutrient quality, feedstuff availability, crop yield and feed losses. Using the Nordic feed evaluation model NorFor, rations were optimised for different phases of lactation, dry and growing periods for older cows, first calvers and heifers by regional feed advisors and combined to annual herd rations. Feed production data at farm level were based on national statistics and studies. CF estimates followed standards for life cycle assessment and used emissions factors provided by IPCC. The functional unit was 'feed consumption to produce 1 kg energy corrected milk (ECM) from a cow with annual milk yield of 9 900 kg ECM including replacement animals and feed losses'. Feed ration CF varied from 417 to 531 g CO2 e/kg ECM. Grass/clover silage contributed more than 50% of total GHG emissions. Use of higher quality silage increased ration CF by up to 5% as a result of an additional cut and increased rates of synthetic N-fertiliser. Domestically produced horse bean (Vicia faba), by-products from the sugar industry and maize silage were included in the rations with the lowest CF, but horse bean significantly increased ration land requirement. Rations required between 1.4 to 2 m2 cropland and 0.1 to 0.2 m2/kg semi-natural grassland per kg ECM and year. Higher yield levels reduced ration total CF. Inclusion of GHG emissions from land use change associated with Brazilian soya feed significantly increased ration CF. Ration CF and land use depended on ration composition, which was highly influenced by the regional availability and production of feedstuffs. The impact of individual

  10. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years

    Science.gov (United States)

    A, Duo; Zhao, Wenji; Qu, Xinyuan; Jing, Ran; Xiong, Kai

    2016-12-01

    Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) - NDVI data and climate data, during 1981-2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P rise of spring temperature. At the same time, precipitation showed a significant reduction trend (-1.75 mm/10a, P > 0.05). The climate mutation period was during 1991-1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation

  11. Penultimate and last glacial oceanographic variations in the Bering Sea on millennial timescales: Links to North Atlantic climate

    Science.gov (United States)

    Ovsepyan, E. A.; Ivanova, E. V.; Lembke-Jene, L.; Max, L.; Tiedemann, R.; Nürnberg, D.

    2017-05-01

    We present high-resolution multi-proxy records from a marine sediment core (SO201-2-85KL) from the western Bering Sea to assess orbital- and millennial-scale paleoceanographic conditions during two last glacial intervals, including both terminations. Based on changes in foraminiferal assemblages, grain-size content and previously published TOC and δ13C records, we reconstruct variations in sea-surface biological productivity, intermediate-water oxygenation and sea-ice conditions during the last 180 kyr. Our data demonstrate remarkable differences between the penultimate (MIS 6) and last (MIS 4-2) glacial. Relatively high sea surface bioproductivity and reduced sea-ice cover are reconstructed for the penultimate glacial interval, whereas low bioproductivity and expanded sea-ice cover appear to be typical for the last glacial. Millennial-scale changes in intermediate water ventilation are inferred from faunal records for the middle part of the penultimate glacial. High-amplitude environmental variability during the penultimate glacial time in the Bering Sea resembles the well-known Dansgaard-Oeschger oscillations, and roughly corresponds to similar rapid climatic fluctuations found in North Atlantic records. The Termination II and I intervals display a similar succession of high-bioproductivity events, being more pronounced during the penultimate glacial-interglacial transition, probably due to the different orbital configuration. During the late phase of Termination II, two short intervals, characterized by high sea surface bioproductivity and low oxygen content of bottom waters, resemble the Bølling and Allerød warmings, whereas an episode with low bioproductivity occurs in between, similar to the Older Dryas. Our results provide support for a close circumpolar coupling between high-latitude environments on millennial timescales at least since the penultimate glacial.

  12. Simulating the impacts of climate variation and land-cover changes on basin hydrology: A case study of the Suomo basin

    Institute of Scientific and Technical Information of China (English)

    CHEN; Junfeng; LI; Xiubin

    2005-01-01

    Impacts of land cover changes on watershed hydrology have been a long-term academic concern with acute dispute. But little attention has been paid to such effects on mesoscale river basins, where the society has a closer link to river hydrology. The present study focuses on a mesoscale river basin, the Suomo Basin that is located on the upper reaches of the Yangtze River. Land covers in the basin in the years 1970, 1986 and 1999 were mapped. A lumped hydrologic model, CHARM, and a distributed hydrologic model, SWAT, were used to model the impacts of both land-cover change and climate variation on river runoff during the past four decades. The results show that the contribution of climate variation to the change of runoff regime makes up 60%-80%, while that of land cover changes only 20%.

  13. Relative Contributions of Land Use and Climate Change to Water Supply Variations over Yellow River Source Area in Tibetan Plateau during the Past Three Decades.

    Science.gov (United States)

    Pan, Tao; Wu, Shaohong; Liu, Yujie

    2015-01-01

    There is increasing evidence of environmental change impacts on ecosystem processes and services, yet poor understanding of the relative contributions of land use and climate change to ecosystem services variations. Based on detailed meteorological, hydrological records and satellite data over the Yellow River Source Area (YRSA) in Tibetan Plateau from 1980s to 2008, together with a water-yield module of Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and also a Residual Trends (RESTREND) method, we assessed the water supply variations in YRSA during the past three decades and disentangled the relative contributions of land use and climate change. Results show that water supply significantly decreased from 1980 to 2005 and then increased from 2005 to 2008. The quantity slightly decreased from 283.01 mm in 1980 to 276.95 mm in 1995, 270.12 mm in 2000 and 267.97 mm in 2005, and it then rebounded slightly to 275.26 mm in 2008. The water supply variation ranged from 283.01 mm to 267.97 mm. Climate change contributed dominantly to water supply decrease from 1980 to 1995, which accounts for approximately 64% of the decrease. During 1995 to 2000, land use contributed more and about 58% to the water supply decrease as the intense human activities. From 2000 to 2005, climate change became a positive contribution to the water supply as the increased precipitation, but the land use still contributed negatively. From 2005 to 2008, both climate and land use have positive impacts, but land use contributed about 61% to the water supply increase. The implementation of the Three Rivers Source Area Ecological Protection Project has greatly improved the vegetation coverage conditions and the water retention ability during this period. We recommend that the implementation of ecological projects, grazing policies and artificial improvement of degraded grassland would help to conserve the water retention ability and increase water supply.

  14. The Nonlinear Response of the Equatorial Pacific Ocean-Atmosphere System to Periodic Variations in Insolation and its Association with the Abrupt Climate Transitions during the Quaternary.

    Science.gov (United States)

    Lopes, P. G.

    2015-12-01

    The evidences of climate changes during the Quaternary are abundant but the physical mechanisms behind the climate transitions are controversial. The theory of Milankovitch takes into account the periodic orbital variations and the solar radiation received by the Earth as the main explanation for the glacial-interglacial cycles. However, some gaps in the theory still remain. In this study, we propose elucidating some of these gaps by approaching the Equatorial Pacific Ocean as a large oscillator, capable of triggering climate changes in different temporal scales. A mathematical model representing El Ninõ-like phenomena, based on Duffing equation and modulated by the astronomical cycle of 100 ka, was used to simulate the variability of the equatorial Pacific climate system over the last 2 Ma. The physical configuration of the Pacific Ocean, expressed in the equation, explains the temporal limit of the glacial-interglacial cycles. According to the simulation results, consistent with paleoclimate records, the amplification of the effects of the gradual variation of the Earth's orbit eccentricity - another unclear question - is due to the feedback mechanism of the Pacific ocean-atmosphere system, which responds non-linearly to small variations in insolation forcing and determines the ENSO-like phase (warm or cold) at different time scales and different intensities. The approach proposed here takes into account that the abrupt transitions between the ENSO-like phases, and the consequent changes in the sea surface temperature (SST) along the Equatorial Pacific Ocean, produce reactions that act as secondary causes of the temperature fluctuations that result in a glaciation (or deglaciation) - as the drastic change on the rate of evaporation/precipitation around the globe, and the increase (or decrease) of the atmospheric CO2 absorption by the phytoplankton. The transitional behavior between the warm and the cold phases, according to the presented model, is enhanced as

  15. Interannual variation in leaf photosynthetic capacity during summer in relation to nitrogen, leaf mass per area and climate within a Fagus crenata crown on Naeba Mountain, Japan.

    Science.gov (United States)

    Iio, Atsuhiro; Yokoyama, Akira; Takano, Masamitsu; Nakamura, Tetsurou; Fukasawa, Hisakazu; Nose, Yachiho; Kakubari, Yoshitaka

    2008-09-01

    During the summers (July and August) of 2002-2005, we measured interannual variation in maximum carboxylation rate (V(cmax)) within a Fagus crenata Blume crown in relation to climate variables such as air temperature, daytime vapor pressure deficit (VPD) and daily photosynthetic photon flux, leaf nitrogen per unit area (N(a)) and leaf mass per unit area (LMA). Climatic conditions in the summers of 2002-2004 differed markedly, with warm and dry atmospheric conditions in 2002, cool, humid and cloudy conditions in 2003, and warm clear conditions in 2004. Conditions in summer 2005 were intermediate between those of summers 2002 and 2003, and similar to recent (8-year) means. In July, marked interannual variation in V(cmax) was mainly observed in leaves in the high-light environment (relative photon flux > 50%) within the crown. At the crown top, V(cmax) was about twofold higher in 2002 than in 2003, and V(cmax) values in 2004 and 2005 were intermediate between those in 2002 and 2003. In August, although interannual variation in V(cmax) among the years 2003, 2004 and 2005 was less, marked variation between 2002 and the other study years was evident. Multiple regression analysis of V(cmax) against the climate variables revealed that VPD of the previous 10-30 days had a significant influence on variability in V(cmax). Neither N(a), LMA nor leaf CO(2) conductance from the stomata to the carboxylation site explained the variability in V(cmax). Our results indicate that the long-term climatic response of V(cmax) should be considered when estimating forest carbon gain across the year.

  16. Will Climate Change, Genetic and Demographic Variation or Rat Predation Pose the Greatest Risk for Persistence of an Altitudinally Distributed Island Endemic?

    Directory of Open Access Journals (Sweden)

    Alison Shapcott

    2012-11-01

    Full Text Available Species endemic to mountains on oceanic islands are subject to a number of existing threats (in particular, invasive species along with the impacts of a rapidly changing climate. The Lord Howe Island endemic palm Hedyscepe canterburyana is restricted to two mountains above 300 m altitude. Predation by the introduced Black Rat (Rattus rattus is known to significantly reduce seedling recruitment. We examined the variation in Hedyscepe in terms of genetic variation, morphology, reproductive output and demographic structure, across an altitudinal gradient. We used demographic data to model population persistence under climate change predictions of upward range contraction incorporating long-term climatic records for Lord Howe Island. We also accounted for alternative levels of rat predation into the model to reflect management options for control. We found that Lord Howe Island is getting warmer and drier and quantified the degree of temperature change with altitude (0.9 °C per 100 m. For H. canterburyana, differences in development rates, population structure, reproductive output and population growth rate were identified between altitudes. In contrast, genetic variation was high and did not vary with altitude. There is no evidence of an upward range contraction as was predicted and recruitment was greatest at lower altitudes. Our models predicted slow population decline in the species and that the highest altitude populations are under greatest threat of extinction. Removal of rat predation would significantly enhance future persistence of this species.

  17. The Climate Change Dynamics and its Impact on the Wheat Productivity in Pakistan:

    Directory of Open Access Journals (Sweden)

    Naveed Mehmood

    2013-08-01

    Full Text Available The protracted change in climatic conditions because of the natural or anthropogenic activities is termed as climate change. It is mainly caused by human induced emission of greenhouse gases like Carbon dioxide CO2, Methane CH4, Nitrous oxide NO2. These gases trap the sunlight, rising the earth’s temperature and altering the pattern of precipitation, humidity across countries and causing some sever damages to the economies. Yearly data (from 1971 to 2009 published by the Metrological Department of Pakistan and Agriculture Statistics of Pakistan is being used. Vector Autoregressive Modeling is applied to study the impact of the climate change on wheat productivity. The result of the model shows that the rising temperature leads to reduction in output as the variation in the wheat productivity has been brought mainly by the variation in the temperature that is 25 percent in the tenth period as shown by the variance decomposition.

  18. Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico

    Science.gov (United States)

    Pompa-García, Marín; Venegas-González, Alejandro

    2016-01-01

    Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries. PMID:27272519

  19. Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico.

    Directory of Open Access Journals (Sweden)

    Marín Pompa-García

    Full Text Available Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass was estimated from a specific allometric equation for this species based on: (i variation of intra-annual wood density and (ii diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.

  20. Temporal Variation of Wood Density and Carbon in Two Elevational Sites of Pinus cooperi in Relation to Climate Response in Northern Mexico.

    Science.gov (United States)

    Pompa-García, Marín; Venegas-González, Alejandro

    2016-01-01

    Forest ecosystems play an important role in the global carbon cycle. Therefore, understanding the dynamics of carbon uptake in forest ecosystems is much needed. Pinus cooperi is a widely distributed species in the Sierra Madre Occidental in northern Mexico and future climatic variations could impact these ecosystems. Here, we analyze the variations of trunk carbon in two populations of P. cooperi situated at different elevational gradients, combining dendrochronological techniques and allometry. Carbon sequestration (50% biomass) was estimated from a specific allometric equation for this species based on: (i) variation of intra-annual wood density and (ii) diameter reconstruction. The results show that the population at a higher elevation had greater wood density, basal area, and hence, carbon accumulation. This finding can be explained by an ecological response of trees to adverse weather conditions, which would cause a change in the cellular structure affecting the within-ring wood density profile. The influence of variations in climate on the maximum density of chronologies showed a positive correlation with precipitation and the Multivariate El Niño Southern Oscillation Index during the winter season, and a negative correlation with maximum temperature during the spring season. Monitoring previous conditions to growth is crucial due to the increased vulnerability to extreme climatic variations on higher elevational sites. We concluded that temporal variability of wood density contributes to a better understanding of environmental historical changes and forest carbon dynamics in Northern Mexico, representing a significant improvement over previous studies on carbon sequestration. Assuming a uniform density according to tree age is incorrect, so this method can be used for environmental mitigation strategies, such as for managing P. cooperi, a dominant species of great ecological amplitude and widely used in forest industries.

  1. Climatically driven variations in glacier extent as documented by the laminated proglacial sediment record from Lago del Desierto (Southern Patagonia, Argentina)

    Science.gov (United States)

    Enters, D.; Kastner, S.; Ohlendorf, C.; Haberzettl, T.; Kuhn, G.; Lücke, A.; Mayr, C.; Reyss, J.; Wastegard, S.

    2009-12-01

    The climate of southernmost South America is strongly affected by shifts in polar and mid-latitude pressure fields which are expressed in variations of the Southern Hemispheric Westerlies and the Antarctic Oscillation. Next to marine records and Antarctic ice cores this continental area is important to reveal hemispheric and global climate trends. As instrumental climate records from this region are generally short and scarce, environmental archives are the only source of providing long-term records of climate variations. In the northern hemisphere, proglacial lakes have shown to be excellent sources of palaeoenvironmental and palaeoclimatic information. In this study, we evaluate the potential of the laminated proglacial sediment sequence from Lago del Desierto (49°02’S, 72°51’W) as a palaeoclimate archive. Lago del Desierto is situated in the climatically sensitive area of Southern Patagonia close to the South Patagonian Ice Field. Two parallel gravity cores (max. length 283 cm) were analysed using a multi-proxy approach. Radiometric dating (14C, 210Pb and 137Cs) and tephrochronology document that the recovered sediments cover the last 2000 years. After exclusion of numerous event layers, the sedimentological, mineralogical, and geochemical datasets reveal a long-term trend of runoff variations and sediment accessibility controlled by changes in temperature and precipitation. An abrupt lithological change visible in sediments mineralogy and geochemistry occurred around AD 850 and is interpreted as a rearrangement in sediment availability and transfer rates related to the beginning exposure of formerly glaciated areas. Thereafter, the Medieval Climate Anomaly (MCA) period, the Little Ice Age (LIA) cooling and the subsequent 20th century warming can be traced in the sediment record corresponding to the overall trend observed for southern South America. The increased minerogenic input and a higher frequency of event layers mirror the onset of warmer climate

  2. Spatial and temporal Teleconnections of Sea Surface Temperature and Ocean Indices to regional Climate Variations across Thailand - a Pathway to understanding the Impact of Climate Change on Water Resources

    Science.gov (United States)

    Bejranonda, Werapol; Koch, Manfred

    2010-05-01

    Thailand has a long coastline with the Pacific Ocean, as part of the Gulf of Thailand, as well as with the Indian Ocean, as part of the Andaman Sea. Because of this peculiar location, Thailand's local climate and, in particular, its water resources are strongly influenced by the mix of tropical wet, tropical dry and tropical monsoon seasons. Because of the large seasonal and interannual variations and irregularities of these, mainly ocean-driven weather patterns, particularly in recent times, large-scale water storage in huge river-fed reservoirs has a long tradition in Thailand, providing water for urban, industrial and agricultural use during long dry seasonal periods. These reservoirs which are located all over Thailand gather water primarily from monsoon-driven rainfall during the wet season which, usually, lasts from May to October. During the dry season, November to April, when the monsoon winds move northward, the air masses are drier in central and northern Thailand, with rain falling here only a few days in a month. Southern Thailand, on the other hand, which is constituted mostly by the isthmus between the two oceans, stays even hot and humid during that time period. Because of this tropical climate pattern, the surface water resources in most of Thailand strongly hinge on the monsoon movements which, in turn, depend themselves upon the thermal states of the Pacific and Indian Oceans. Therefore, the understanding of the recent strong seasonal and interannual climate variations with their detrimental effects on the availability of hydrological water resources in most parts of Thailand, must include the analysis of changes of various sea-state indices in the adjacent oceans and of their possible teleconnections with regional climate indices across this country. With the modern coupled atmospheric-ocean models being able to predict the variations of many ocean indices over a period of several months, namely, those driven by El Nino- Southern Oscillations

  3. Variation of karst spring discharge in the recent five decades as an indicator of global climate change: A case study at Shanxi, northern China

    Institute of Scientific and Technical Information of China (English)

    GUO; Qinghai; WANG; Yanxin; MA; Teng; LI; Luxiu

    2005-01-01

    Karst in Shanxi Province is representative of that in northern China, and karst water systems discharge in the form of springs that are among the most important sources for local water supply. Since the 1950s, attenuation has been the major trend of discharge variation of most karst springs at Shanxi. Based on the case study of 7 karst springs including Niangziguan, Xin'an, Guozhuang, Shentou, Jinci, Lancun, and Hongshan springs, the discharge variation process of karst springs was divided into natural fluctuation phase and anthropogenic impact phase. Discharge attenuation of the 7 karst springs was controlled mainly by climate and human activities, with their contributions being respectively about 60% and 40%. According to the difference of the effect of climate and human activities for each spring, attenuation modes of spring discharge fall into three types: natural process dominated attenuation type, exploitation induced process dominated attenuation type, and mixed attenuation type. The total restored discharge variation of 7 karst springs matched well with the global air temperature change in 1956―2000, clearly indicating the trend of global warming and aridity in the last several decades, and the analysis of discharge variation processes of karst springs can be used as a new tool for global change studies.

  4. Estimating gas escape through taliks in relict submarine permafrost and methane hydrate deposits under natural climate variation

    Science.gov (United States)

    Frederick, J. M.; Buffett, B. A.

    2013-12-01

    predictions of gas flux to the water column as a result of relict permafrost-associated gas hydrate dissociation due to natural climate variations. Several hydrate saturation values (20%, 50%, 80% pore volume within hydrate layers) and talik widths (0.5 km, 1.0 km, 1.5 km, 2.0 km) are explored for model parameters representative of the 20 m isobath at the North American Beaufort and East Siberian Arctic Seas (ESAS). Preliminary results estimate the maximum present-day gas flux at the North American Beaufort is 0.229 kg/yr/m2 (average 0.005 kg/yr/m2), which produces a methane concentration of 75 nM in the overlying water column for a representative ocean current of 4 cm/s. For the ESAS, preliminary results estimate the maximum present-day gas flux is 0.277 kg/yr/m2 (average 0.030 kg/yr/m2), which produces a methane concentration of 452 nM in the overlying water column. A desired outcome of this study is to provide a framework for discussion on the potential magnitude of methane release that might be attributed to relict permafrost-associated hydrate deposits in regions where the submarine permafrost has been compromised.

  5. Isolating the effects of climate change in the variation of secondary inorganic aerosols (SIA) in Europe for the 21st century (1991-2100)

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Jose Gomez-Navarro, Juan; Jerez, Sonia; Lorente-Plazas, Raquel; Garcia-Valero, Juan Andres; Montavez, Juan Pedro

    2011-02-01

    The analysis of the influence of future climatic variations on air quality needs of methods that give a space-time display of large atmospheric data related to air pollution. Here a new approach in order to assess the impacts of climate change on the patterns of variation of secondary inorganic aerosols (SIA) over Europe is presented. The most widely used method of analysis (selected time-slices, future-minus-present method) is very sensitive to the chosen control and future periods because of the internal variability of the climate system. In order to overcome this limitation, full transient simulations for the period 1991-2100 under the SRES A2 scenario are analysed by the Empirical Orthogonal Functions (EOFs) methodology in order minimise the uncertainty associated to the internal variability due to the longer time series obtained. The results indicate that the EOF1 accounts for around 30-45% of the total variance for the SIA levels and points out a general increase of its trend over the entire domain ( p 0.1). The correlation between SIA and meteorological parameters indicates that the trends and patterns of variation of aerosols are related to the higher temperature projected for the future climate. It favours the formation of sulphates and ammonium (increasing the concentrations of atmospheric oxidants) and the decomposition of ammonium nitrate, remaining in the gas phase. Further, the decreases in precipitation have a strong effect on the frequency of the washout and therefore in the levels of aerosols. The concentrations of aerosols decrease with increasing precipitation as wet deposition provides the main aerosol sink. The trend from a decreasing mixing height found in several areas of Europe is frequently related to a decrease in precipitation, representing an adding effect for the enhanced future SIA concentrations.

  6. Variation characteristics and influences of climate factors on aridity index and its association with AO and ENSO in northern China from 1961 to 2012

    Science.gov (United States)

    Zhang, Kexin; Qian, Xiaoqing; Liu, Puxing; Xu, Yihong; Cao, Liguo; Hao, Yongpei; Dai, Shengpei

    2016-08-01

    Analyses of the variation characteristics for aridity index (AI) can further enhance the understanding of climate change and have effect on hydrology and agriculture. In this paper, based on the data of 283 standard meteorological stations, the temporal-spatial variations and the influences of climate factors on AI were investigated and the relationship between AI and two climate indices (the Arctic Oscillation (AO); El Nino-Southern Oscillation (ENSO)) were also assessed in northern China (NC) during the period from 1961 to 2012. The results revealed that the annual mean AI decreased at the rate of -0.031 per decade in the past 52 years and the trend was statistically significant at the 0.01 level. The Mann-Kendall (M-K) test presented that the percentages of stations with positive trends and negative trends for AI were 10 and 81.9 % (22.6 % statistically significant), respectively. Spatially, in the western part of 100° E, the extremely dry area declined and the climate tended to become wet obviously. In the eastern part of 100° E, dry area moved toward the east and the south, which resulted in the enhancement of semiarid area and the shrinkage of subhumid area. The contributions of sunshine duration and precipitation to the decline of AI are more than those of other meteorological variables in NC. Moreover, the average temperature has risen significantly and AI decreased in NC, which indicated the existence of "paradox." Relationship between climate indices (AO and ENSO) and AI demonstrated that the influence of ENSO on AI overweight the AO on AI in NC.

  7. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period

    National Research Council Canada - National Science Library

    Capron, E; Landais, A; Chappellaz, J; Schilt, A; Buiron, D; Dahl-Jensen, D; Johnsen, S. J; Jouzel, J; Lemieux-Dudon, B; Loulergue, L; Leuenberger, M; Masson-Delmotte, V; Meyer, H; Oerter, H; Stenni, B

    2010-01-01

    Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3...

  8. Regional variations in the female age at marriage in India: an analysis by agro-climatic zones.

    Science.gov (United States)

    Mishra, V; Singh, V

    1992-01-01

    "The effect of agro-climatic factors on female age at marriage [in India] is studied by carrying out areal analysis of the 1981 Census data. The study found a close association between agricultural and climatic conditions in an area and corresponding female age at marriage. In general, women in Himalayan regions and coastal areas have higher age at marriage than most hinterland regions. Rainfall, altitude, forest area, land availability and productivity are observed to be associated with female age at marriage. In addition, female age at marriage in rural areas is found to be more sensitive to the agro-climatic conditions. It is hypothesized that with socio-economic and technological development, the agricultural and climatic factors are losing their grip on female age at marriage in India."

  9. Phenotypic plasticity and variation in morphological and life-history traits of antlion adults across a climatic gradient.

    Science.gov (United States)

    Scharf, Inon; Filin, Ido; Ben-Yehoshua, Dafna; Ovadia, Ofer

    2009-01-01

    We report here on two complementary experiments examining the effect of climate on morphological and life-history traits of antlion adults. We first examined whether body size and wing loading of emerging adults are plastic by raising larvae, collected from five antlion populations along Israel's sharp climatic gradient, in two environmental chambers simulating temperature and humidity of desert and Mediterranean climates. The variance in adult morphology was mostly related to body size, with adults of Mediterranean populations being larger than those of desert populations. Wing-to-thorax ratio was negatively correlated with temperature, compensating for the decrease in wing-beat frequency in colder environments. Differences between climatic treatments were significant for body size but not for the wing-to-thorax ratio, suggesting that body size is more plastic than the ratio between different body components. We next investigated how the exposure of antlion pupae to different climatic conditions influences the emerging adults. Adult body mass increased with final larval body mass at a faster rate when exposed to Mediterranean rather than desert conditions. Duration of the pupa stage was positively correlated with final larval mass, but only under Mediterranean conditions. Adult survival increased with initial mass (after eclosion), but was lower under desert conditions. Similarly, adults lost mass at a faster rate when exposed to desert conditions. Notably, the exposure of the pupae to varying climatic conditions had no effect on adult morphology. Climate is a major factor affecting insect life span and body size. Since body size is strongly linked to fecundity and survival, climate thus has a twofold effect on fitness: directly, and indirectly through body size.

  10. Seasonal variations of soil erosion in UK under climate change: simulations with the use of high-resolution regional climatic models

    Science.gov (United States)

    Ciampalini, Rossano; Kendon, Elizabeth; Constantine, José Antonio; Schindewolf, Marcus; Hall, Ian

    2017-04-01

    Climate change is expected to have a significant impact on the hydrological cycle, twenty-first century climate change simulations for Great Britain forecast an increase of surface runoff and flooding frequency. Once quality and resolution of the simulated rainfall deeply influence the results, we adopted rainfall simulations issued of a high-resolution climate model recently carried out for extended periods (13 years for present-day and future periods 2100) at 1.5 km grid scale over the south of the United Kingdom (simulations, which for the future period use the Intergovernmental Panel on Climate Change RCP 8.5 scenario, Kendon et al., 2014). We simulated soil erosion with 3D soil erosion model Schmidt (1990) on two catchments of Great Britain: the Rother catchment (350 km2) in West Sussex, England, because it has reported some of the most erosive events observed during the last 50 years in the UK, and the Conwy catchment (628 Km2) in North Wales, which is extremely resilient to soil erosion because of the abundant natural vegetation. Estimation of changes in soil moisture, saturation deficit as well as vegetation cover at daily time step have been done with the Joint UK Land Environment Simulator (JULES) (Best et al, 2011). Our results confirm the Rother catchment is the most erosive, while the Conwy catchment is the more resilient to soil erosion. Sediment production is perceived increase in both cases for the end of the century (27% and 50%, respectively). Seasonal disaggregation of the results revels that, while the most part of soil erosion is produced in winter months (DJF), the higher soil erosion variability for future periods is observed in summer (JJA). This behaviour is supported by the rainfall simulation analyse which highlighted this dual behaviour in precipitations.

  11. Pronounced differences between observed and CMIP5-simulated multidecadal climate variability in the twentieth century

    Science.gov (United States)

    Kravtsov, Sergey

    2017-06-01

    Identification and dynamical attribution of multidecadal climate undulations to either variations in external forcings or to internal sources is one of the most important topics of modern climate science, especially in conjunction with the issue of human-induced global warming. Here we utilize ensembles of twentieth century climate simulations to isolate the forced signal and residual internal variability in a network of observed and modeled climate indices. The observed internal variability so estimated exhibits a pronounced multidecadal mode with a distinctive spatiotemporal signature, which is altogether absent in model simulations. This single mode explains a major fraction of model-data differences over the entire climate index network considered; it may reflect either biases in the models' forced response or models' lack of requisite internal dynamics, or a combination of both.Plain Language SummaryGlobal and regional warming trends over the course of the twentieth century have been nonuniform, with decadal and longer periods of faster or slower warming, or even cooling. Here we show that state-of-the-art global models used to predict climate fail to adequately reproduce such multidecadal climate variations. In particular, the models underestimate the magnitude of the observed variability and misrepresent its spatial pattern. Therefore, our ability to interpret the observed climate change using these models is limited.

  12. Combined effects of elevated CO{sub 2} and natural climatic variation on leaf spot diseases of redbud and sweetgum trees

    Energy Technology Data Exchange (ETDEWEB)

    McElrone, Andrew J., E-mail: ajmcelrone@ucdavis.ed [USDA-ARS, Crops Pathology and Genetics Research Unit, 2154 RMI North, Davis, CA 95616 (United States); Department of Viticulture and Enology, University of California, Davis, CA 95616 (United States); Hamilton, Jason G. [Department of Biology, Ithaca College, Ithaca, NY 14850 (United States); Krafnick, Anthony J. [Department of Biology, Saint Joseph' s University, Philadelphia, PA 19131 (United States); Aldea, Mihai; Knepp, Rachel G.; DeLucia, Evan H. [Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana-Champaign, IL 61801 (United States)

    2010-01-15

    Atmospheric CO{sub 2} concentrations are predicted to double within the next century and alter climate regimes, yet the extent that these changes will affect plant diseases remains unclear. In this study conducted over five years, we assessed how elevated CO{sub 2} and interannual climatic variability affect Cercospora leaf spot diseases of two deciduous trees. Climatic data varied considerably between the five years and altered disease expression. Disease incidence and severity for both species were greater in years with above average rainfall. In years with above average temperatures, disease incidence for Liquidambar styraciflua was decreased significantly. When significant changes did occur, disease incidence and severity always increased under elevated CO{sub 2}. Chlorophyll fluorescence imaging of leaves revealed that any visible increase in disease severity induced by elevated CO{sub 2} was mitigated by higher photosynthetic efficiency in the remaining undamaged leaf tissue and in a halo surrounding lesions. - Climatic variation had a greater impact than elevated CO{sub 2} on Cercospora diseases, especially since leaf photosynthetic efficiency increased under elevated CO{sub 2}.

  13. Modeling high resolution space-time variations in energy demand/CO2 emissions of human inhabited landscapes in the United States under a changing climate

    Science.gov (United States)

    Godbole, A. V.; Gurney, K. R.

    2010-12-01

    components of the human-climate system must be coupled in climate modeling efforts to better understand the impacts and feedbacks. To implement modeling strategies for coupling the human and climate systems, their interactions must first be examined in greater detail at high spatial and temporal resolutions. This work attempts to quantify the impact of high resolution variations in projected climate change on energy use/emissions in the United States. We develop a predictive model for the space heating component of residential and commercial energy demand by leveraging results from the high resolution fossil fuel CO2 inventory of the Vulcan Project (Gurney et al., 2009). This predictive model is driven by high resolution temperature data from the RegCM3 model obtained by implementing a downscaling algorithm (Chow and Levermore, 2007). We will present the energy use/emissions in both the space and time domain from two different predictive models highlighting strengths and weaknesses in both. Furthermore, we will explore high frequency variations in the projected temperature field and how these might place potentially large burdens on energy supply and delivery.

  14. Multi-proxy sedimentary record from Lake Ghirla (N-Italy) reveals hydro-climatic variations and periods of anthropogenic activities during the past 13 kyrs

    Science.gov (United States)

    Wirth, Stefanie B.; Gilli, Adrian; Sessions, Alex L.

    2016-04-01

    Lake Ghirla is a small lake that lies in the southern foothills of the Central Alps near the Swiss-Italian border. Climatically, the region is influenced by North Atlantic and Mediterranean weather systems and is frequently affected by severe storm tracks causing heavy precipitation. The catchment with Permian granites and gneisses contains Pb in amounts significant for mining as well as less important concentrations of Cu, As and U. This sensitive setting makes Lake Ghirla a promising site to reconstruct hydro-climatic variations and to track human activity by means of elevated heavy metal concentrations in the lake sediments. The recovered sediment core comprises the entire Younger Dryas-Holocene time period and was analyzed for (i) sedimentological changes to identify flood deposits, for (ii) the hydrogen isotopic composition of terrestrial plant waxes (plant-wax D/H) to constrain hydro-climatic changes, and for (iii) variations of the elemental composition (XRF core scanning, ICP-MS) to understand anthropogenic impacts. During the past 13 kyrs, we observe a high variability of floods with peak periods appearing at ~11, 10.6-8.2, 6-4.9, 2.8-2.7, 2.6-2.4, 1.2-1 and 0.4-0.1 (LIA) cal kyr BP. From a hydro-climatic perspective, the most remarkable result from the plant-wax D/H data is that the Younger Dryas is characterized by no significant change and that the 2.8-2.7 kyr BP and LIA intervals show an increase of plant-wax D/H values. Hence, during these three cool climatic periods temperature effects cannot be solely responsible for plant-wax D/H variation. The southward migration of the westerly storm tracks above the North Atlantic due to climate cooling must have led to a more southern and thus isotopically enriched moisture source for the southern Alps. This moisture-source change likely counter-balanced or even over-rode the temperature-driven isotope effect. Increased sedimentary Cu concentrations at 3.8-3.3 kyr BP are the first evidence for the presence of

  15. Long-term variations in the flux of cosmogenic isotope 10Be over the last 10000 years: Variations in the geomagnetic field and climate

    Science.gov (United States)

    Vasiliev, S. S.; Dergachev, V. A.; Raspopov, O. M.; Jungner, H.

    2012-02-01

    A spectral analysis of data on the flux of cosmogenic 10Be in ice core samples from the Central Greenland (project GRIP) over the last 10 thousand years have been carried out. It has been shown that the 10Be flux varies cyclically; the most significant cycle is of about 2300 years. Variations in the position of the virtual geomagnetic pole over 8000 years have been analyzed. Significant components, pointing to the cyclic variation in the position of the geomagnetic pole with a period of about 2300 years, have been revealed in a periodogram of the virtual geomagnetic pole longitude. In addition to the nearly 2300-year-long cycle, some lines are observable in the 10Be flux periodogram, which can be considered as a manifestation of the 1000-year-long cycle of the 10Be deposition rate on the ice surface. The relationship between the cyclicity of the geomagnetic pole position and the 10Be flux is discussed.

  16. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    Science.gov (United States)

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  17. Contributions of Climate Variability and Human Activities to the Variation of Runoff in the Wei River Basin, China

    Science.gov (United States)

    Huang, Q.

    2014-12-01

    The Wei River Basin is a typical arid and semi-arid area of the Yellow River Basin. The heuristic segmentation method was used to detect the inflection points of the annual runoff. The slope change ratio of accumulative quantity (SCRAQ) method was applied to computing the relative contribution of human activities and climate changes to the decreasing runoff in the whole basin and the basin above Linjiacun. For the whole basin, when 1960-1969 is selected as the baseline, the contributions of climate changes and human activities in 1970-1993 are 26.47% and 73.53%, respectively, those in 1993-2005 are 23.33% and 76.67%, respectively. When 1970-1993 is selected as the baseline, the contribution of climate and human impacts in 1994-2005 are 18.88% and 81.12%, respectively. The results imply that human activities are the dominant driving factors on runoff reduction, whose effect is increasingly intensifying. Furthermore, in order to verify the contribution of human activities and climate changes based on the SCRAQ method, a method based on the Budyko hypothesis was used in this paper. The results indicate that the contribution of human activities and climate change based on the SCRAQ method is consistent with that based on the sensitivity-based method.

  18. Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history

    Science.gov (United States)

    Xiao, Jule; Xu, Qinghai; Nakamura, Toshio; Yang, Xiaolan; Liang, Wendong; Inouchi, Yoshio

    2004-07-01

    relative recovery of the woody plants occurring between ca 1700 and 1350 cal yr BP may denote an increase both in temperature and in precipitation. Fluctuations in the climatic condition of the Daihai Lake region were not only related to changes in the seasonal distribution of solar insolation and in the axis and intensity of the ocean current in the western North Pacific but were also closely linked to variations in the position and strength of polar high-pressure systems and in the pattern and intensity of the Westerly winds.

  19. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years.

    Science.gov (United States)

    Flockhart, D T Tyler; Brower, Lincoln P; Ramirez, M Isabel; Hobson, Keith A; Wassenaar, Leonard I; Altizer, Sonia; Norris, D Ryan

    2017-01-03

    Addressing population declines of migratory insects requires linking populations across different portions of the annual cycle and understanding the effects of variation in weather and climate on productivity, recruitment, and patterns of long-distance movement. We used stable H and C isotopes and geospatial modeling to estimate the natal origin of monarch butterflies (Danaus plexippus) in eastern North America using over 1000 monarchs collected over almost four decades at Mexican overwintering colonies. Multinomial regression was used to ascertain which climate-related factors best-predicted temporal variation in natal origin across six breeding regions. The region producing the largest proportion of overwintering monarchs was the US Midwest (mean annual proportion = 0.38; 95% CI: 0.36-0.41) followed by the north-central (0.17; 0.14-0.18), northeast (0.15; 0.11-0.16), northwest (0.12; 0.12-0.16), southwest (0.11; 0.08-0.12), and southeast (0.08; 0.07-0.11) regions. There was no evidence of directional shifts in the relative contributions of different natal regions over time, which suggests these regions are comprising the same relative proportion of the overwintering population in recent years as in the mid-1970s. Instead, interannual variation in the proportion of monarchs from each region covaried with climate, as measured by the Southern Oscillation Index and regional-specific daily maximum temperature and precipitation, which together likely dictate larval development rates and food plant condition. Our results provide the first robust long-term analysis of predictors of the natal origins of monarchs overwintering in Mexico. Conservation efforts on the breeding grounds focused on the Midwest region will likely have the greatest benefit to eastern North American migratory monarchs, but the population will likely remain sensitive to regional and stochastic weather patterns.

  20. Climate-related large-scale variation in forest carbon turnover rate - Evaluating global vegetation models using remote sensing products of biomass and NPP

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Ciais, Philippe; Forkel, Matthias; Friend, Andrew; Ito, Akihiko; Kleidon, Axel; Lomas, Mark; Quegan, Shaun; Tito Rademacher, Tim; Santoro, Maurizio; Schaphoff, Sibyll; Schmullius, Christiane; Tum, Markus; Wiltshire, Andy

    2017-04-01

    Vegetation carbon turnover, in terms of its spatial variation and its response to climate change, is one of the most important, but also most uncertain carbon fluxes in terrestrial ecosystems. Its measurement is hardly possible by inventory studies alone, due to several reasons: First, vegetation carbon turnover involves a variety of processes, including litterfall, background mortality, and mortality by all kinds of disturbances, affecting single biomass compartments, individual trees or even whole ecosystems. Second, these processes act on very different timescales, involving short-term extreme events and long-term responses, and spatial scales, from local extremes to global impacts. In order to capture this variety of processes, spatial scales and timescales, here we estimate forest carbon turnover rate from novel remote sensing products of NPP and biomass. These products allow investigating the spatial variation in long-term mean turnover rate at 0.5° resolution across northern boreal and temperate forest ecosystems and its relation to climate variables. We observe an increase in turnover rate with colder and longer winters in boreal forests, whereas in temperate forests the spatial gradients in turnover rate are related to the length of both warm and dry periods. Thus, we hypothesize that the spatial variation in turnover rate can be explained by direct and indirect frost damage effects on mortality in boreal forests but drought and insect outbreaks in temperate forests. An evaluation of a set of global vegetation models (GVMs) participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, VISIT) shows that those models are able to reproduce the observation-based spatial relationships only to a limited extent. Deviations from the observation-based turnover rates can be mostly attributed to severe overestimations of biomass, however also important differences in the simulated spatial

  1. Low- and Mid-High Latitude Components of the East Asian Winter Monsoon and Their Reflecting Variations in Winter Climate over Eastern China

    Institute of Scientific and Technical Information of China (English)

    LIU Ge; JI Li-Ren; SUN Shu-Qing; XIN Yu-Fei

    2012-01-01

    The present study defines a low-latitude component (regionally averaged winter 1000-hPa V-winds over 10 25°N, 105 135°E) and a mid-high-latitude component (regionally averaged winter 1000-hPa V-winds over 30 50°N, 110 125°E) of the East Asian winter monsoon (EAWM), which are denoted as EAWM-L and EAWM-M, respectively. The study examines the variation characteristics, reflecting variations in winter climate over eastern China, and associated atmospheric circulations corresponding to the two components. The main results are as follows: 1) the EAWM-L and EAWM-M have consistent variation in some years but opposite variations in other years; 2) the EAWM-M index mainly reflects the extensive temperature variability over eastern China, while the EAWM-L index better reflects the variation in winter precipitation over most parts of eastern China; and 3) corresponding to the variation in the EAWM-M index, anomalous winds over the mid-high latitudes of East Asia modulate the southward invasion of cold air from the high latitudes and accordingly affect temperatures over eastern China. In combination with the variation in the EAWM-L index, anomalous low-latitudinal winds regulate the water vapor transport from tropical oceans to eastern China, resulting in anomalous winter precipitation. These pronounced differences between the EAWM-L and the EAWM-M suggest that it is necessary to explore the monsoons' individual features and effects in the EAWM study.

  2. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Mouri, Goro, E-mail: mouri@rainbow.iis.u-tokyo.ac.jp

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity

  3. Siliceous microplankton fluxes and seasonal variations in the central South China Sea during 1993-1995:monsoon climate and El Ni(n)o responses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Seasonal variations of radiolarian and diatom fluxes in the central South China Sea during 1993-1995 were overwhelmingly controlled by monsoon climate. Radiolarian and diatom increased obviously during the Northeast (from November to February) and Southwest (from June to September) monsoons and decreased during the periods between the monsoons. The change of circulation driven by the monsoons improved water exchange in the different areas that brought rich nutrient materials for the surface microplankton, thereby enhancing radiolarian and diatom fluxes. Variation of radiolarian flux coincided with organic carbon flux, surface primary and export productivities. High radiolarian flux corresponded to high surface primary productivity. Radiolarian and diatom fluxes raised abnormally during 1994-1995 could be attributed to the El Ni(n)o event during the period.

  4. The intertidal community in West Greenland: Large-scale patterns and small-scale variation on ecosystem dynamics along a climate gradient

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Blicher, Martin; Sejr, Mikael Kristian

    are largely unknown. The West Greenland coast is north - south orientated. This provides an ideal setting to study the impact of climate change on marine species population dynamics and distribution. We investigated the latitudinal changes in the rocky intertidal community along 18° latitudes (59-77°N......) in West Greenland. Using cleared quadrats we quantified patterns in abundance, biomass and species richness in the intertidal zone. We use this data to disentangle patterns in Arctic intertidal communities at different scales. We describe the effects of different environmental drivers and species...... interactions on distribution and dynamics of intertidal species. Our results indicate that changes in distribution and abundance of foundation species can have large effects on the ecosystem. We also show that the importance of small-scale variation may be of same magnitude as large- scale variation. Only...

  5. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  6. Impacts of climate variation on the length of the rainfall season: an analysis of spatial patterns in North-East South Africa

    Science.gov (United States)

    Kabanda, Tibangayuka; Nenwiini, Shandukani

    2016-07-01

    This study examines the impacts of climate variation on the length of the rainfall season in the north-east South Africa (Vhembe District). We first demarcated the area into two major homogeneous rainfall zones namely humid and semi-arid using Principal Component Analysis (PCA). Then we determined the rainfall climatology of each zone in terms of rainfall onset and cessation in view of the emerging climate variation. Sixty years of rainfall data were examined, and a significant decreasing trend in rainfall was observed starting in the 1990s. Generally, the seasonal rainfall onset and cessation are changing, making the rainfall season length shorter. The rainfall characteristics are changing gradually in the humid zone, where it was found that there is a marked change in the onset dates between what it used to be before the 1990s and how it has been since. The rainfall season length has decreased by 50 days. Rainfall characteristics in the semi-arid zone are highly variable with a coefficient of variation (CV) of up to 39 %. Continuous significant decline (at the ≥95 % level) since the mid-1990 suggests that the humid areas will continue to dry while the semi-arid might develop into arid zone. Significant changes were also detected in the cessation of rainfall. In general, the uncertainties and changes in rainfall characteristics add strain on farmers who are faced with the season of inconsistent rain and uncertainties in when to plant their crops. Under these circumstances, it is easy to see how rainfall variation can lead to crop failure and cause food insecurity in the district.

  7. An Assessment on the Performance of IPCC AR4 Climate Models in Simulating Interdecadal Variations of the East Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    SUN Ying; DING Yihui

    2008-01-01

    Observations from several data centers together with a categorization method are used to evaluate the IPCC AR4 (Intergovernmental Panel on Climate Change, the Fourth Assessment Report) climate models' performance in simulating the interdecadal variations of summer precipitation and monsoon circulation in East Asia. Out of 19 models under examination, 9 models can relatively well reproduce the 1979-1999 mean June-July-August (JJA) precipitation in East Asia, but only 3 models (Category-1 models) can capture the interdecadal variation of precipitation in East Asia. These 3 models are: GFDL-CM2.0, MIROC3.2 (hires), and MIROC3.2 (medres), among which the GFDL-CM2.0 gives the best performance. The reason for the poor performance of most models in simulating the East Asian summer monsoon interdecadal variation lies in that the key dynamic and thermal-dynamic mechanisms behind the East Asian monsoon change are missed by the models, e.g., the large-scale tropospheric cooling and drying over East Asia. In contrast, the Category-1 models relatively well reproduce the variations in vertical velocity and water vapor over East Asia and thus show a better agreement with observations in simulating the pattern of "wet south and dry north" in China in the past 20 years.It is assessed that a single model's performance in simulating a particular variable has great impacts on the ensemble results. More realistic outputs can be obtained when the multi-model ensemble is carried out using a suite of well-performing models for a specific variable, rather than using all available models. This indicates that although a multi-model ensemble is in general better than a single model, the best ensemble mean cannot be achieved without looking into each member model's performance.

  8. Climate projections of spatial variations in coastal storm surges along the Gulf of Mexico and U.S. east coast

    Science.gov (United States)

    Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Xie, Jun; Ge, Qian

    2017-02-01

    Using statistically downscaled atmospheric forcing, we performed a numerical investigation to evaluate future climate's impact on storm surges along the Gulf of Mexico and U.S. east coast. The focus is on the impact of climatic changes in wind pattern and surface pressure while neglecting sea level rise and other factors. We adapted the regional ocean model system (ROMS) to the study region with a mesh grid size of 7-10 km in horizontal and 18 vertical layers. The model was validated by a hindcast of the coastal sea levels in the winter of 2008. Model's robustness was confirmed by the good agreement between model-simulated and observed sea levels at 37 tidal gages. Two 10-year forecasts, one for the IPCC Pre-Industry (PI) and the other for the A1FI scenario, were conducted. The differences in model-simulated surge heights under the two climate scenarios were analyzed. We identified three types of responses in extreme surge heights to future climate: a clear decrease in Middle Atlantic Bight, an increase in the western Gulf of Mexico, and non-significant response for the remaining area. Such spatial pattern is also consistent with previous projections of sea surface winds and ocean wave heights.

  9. The collapse of the Maya: Effects of natural and human-induced drought

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Robert J [ORNL; Erickson III, David J [ORNL

    2010-02-01

    The collapse of the Maya civilization during the ninth century A.D. is a major conundrum in the history of mankind. This civilization reached a spectacular peak but then almost completely collapsed in the space of a few decades. While numerous explanations have been put forth to explain this collapse, in recent years, drought has gained favor. This is because water resources were a key for the Maya, especially to ensure their survival during the lengthy dry season that occurs where they lived. Natural drought is a known, recurring feature of this region, as evidenced by observational data, reconstructions of past times, and global climate model output. Results from simulations with a regional climate model demonstrate that deforestation by the Maya also likely induced warmer, drier, drought-like conditions. It is therefore hypothesized that the drought conditions devastating the Maya resulted from a combination of natural variability and human activities. Neither the natural drought or the human-induced effects alone were sufficient to cause the collapse, but the combination created a situation the Maya could not recover from. These results may have sobering implications for the present and future state of climate and water resources in Mesoamerica as ongoing massive deforestation is again occurring.

  10. Variation of Surface Temperature during the Last Millennium in a Simulation with the FGOALS-g1 Climate System Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; Laurent LI; ZHOU Tianjun; XIN Xiaoge

    2013-01-01

    A reasonable past millennial climate simulation relies heavily on the specified external forcings,including both natural and anthropogenic forcing agents.In this paper,we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics (LASG/IAP).The model presents a reasonable performance in comparison with reconstructions of surface temperature.Differentiated from significant changes in the 20th century at the global scale,changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere.Seasonally,modeled significant changes are more pronounced during the wintertime at higher latitudes.This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback.The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period,especially at decadal timescales.Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability.The model response to specified external forcings is modulated by cloud radiative forcing (CRF).The CRF acts against the fluctuations of external forcings.Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period,but mainly in longwave radiation by a decrease in cloud amount in the anthropogenic-forcing-dominant period.

  11. Variation and uncertainty in the predicted flowering dates of cherry blossoms using the CMIP5 climate change scenario

    Science.gov (United States)

    Chung, Uran; Kim, Jin-Hee; Kim, Kwang-Hyung

    2016-11-01

    In this study, we analyzed changes in the predicted flowering date (PFD) for cherry blossom trees under changing climate conditions by simulating the PFDs for six sites on the Korean Peninsula between 1981 and 2010. The spatial downscaled climate data from the Representative Concentration Pathways (RCP) 8.5 scenarios of 30 global climate models (GCMs) were used in the analysis. Here, we present the range of uncertainty in the PFDs, which were calculated by comparing the simulated PFDs to the observed flowering dates. We determined that the root-mean-square errors (RMSEs) of PFDs from individual GCMs, at 7-15 days, were greater in range than those of the mean PFDs from multiple GCMs, at 7-8 days. During three future periods of 2011-2040, 2041-2070, and 2071-2100, the standard deviations (SD), the interquartile ranges (IQRs), and the relative changes in the mean predicted flowering dates (MPFDs) were calculated to quantify the uncertainty levels inherent from the climate scenarios of multiple GCMs. Distinctive changes in the SDs and IQRs of MPFD were found among the analyzed sites. The SDs increased with time between each future period in Seoul, Incheon, and Jeonju, whereas those in Daegu, Busan, and Mokpo decreased with time. In addition, the IQRs increased with time at Seoul, Incheon, Jeonju, and Daegu but not at Busan and Mokpo. The relative changes in the MPFDs at all six sites became greater with time toward the year 2100. Therefore, combining multiple GCM scenarios may not contribute largely to reduce the uncertainty in the PFDs under changing climate conditions, although it may be useful in quantifying the uncertainty in order to make better decisions based on more accurate information.

  12. Climate Change Effects and Impacts Assessment. A guidance manual for Local Government in New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Wratt, D.; Mullan, B.; Salinger, J. [National Institute of Water and Atmospheric Research NIWA, Newmarket, Auckland (New Zealand); Allan, S.; Morgan, T. [MWH New Zealand, Christchurch (New Zealand); Kenny, G. [Earthwise Consulting, Hastings (New Zealand)

    2004-05-15

    Climate change is a real and internationally recognised outcome of increased amounts of greenhouse gases in the atmosphere. It will have effects over the next decades that are predictable with some level of certainty, but which will vary from place to place throughout New Zealand. The climate will also change from year to year and decade to decade due to natural processes. For example, some parts of the country often have dry summers and autumns when an El Nino climate pattern is present. Both natural fluctuations and human-induced climate changes need to be considered when developing adaptation plans and policies, rather than just 'greenhouse warming' effects on their own. Councils already address extreme weather events and climate variations as they develop plans and provide services. Climate change effects need also to be considered as part of these regulatory, assessment and planning activities. It is not necessary to develop a set of procedures for dealing separately with effects and impacts of climate change - they can be built into existing practices. Over time, climate change responses will involve iterative planning processes, keeping up-to-date with new information, monitoring changes, and reviewing the effectiveness of responses. The response to climate change involves international, national, regional, district and community consideration and action. The Guidance Manual aims to assist local government in working with its communities and making appropriate decisions.

  13. Intraspecific variation of a dominant grass and local adaptation in reciprocal garden communities along a US Great Plains' precipitation gradient: implications for grassland restoration with climate change.

    Science.gov (United States)

    Johnson, Loretta C; Olsen, Jacob T; Tetreault, Hannah; DeLaCruz, Angel; Bryant, Johnny; Morgan, Theodore J; Knapp, Mary; Bello, Nora M; Baer, Sara G; Maricle, Brian R

    2015-08-01

    Identifying suitable genetic stock for restoration often employs a 'best guess' approach. Without adaptive variation studies, restoration may be misguided. We test the extent to which climate in central US grasslands exerts selection pressure on a foundation grass big bluestem (Andropogon gerardii), widely used in restorations, and resulting in local adaptation. We seeded three regional ecotypes of A. gerardii in reciprocal transplant garden communities across 1150 km precipitation gradient. We measured ecological responses over several timescales (instantaneous gas exchange, medium-term chlorophyll absorbance, and long-term responses of establishment and cover) in response to climate and biotic factors and tested if ecotypes could expand range. The ecotype from the driest region exhibited greatest cover under low rainfall, suggesting local adaptation under abiotic stress. Unexpectedly, no evidence for cover differences between ecotypes exists at mesic sites where establishment and cover of all ecotypes were low, perhaps due to strong biotic pressures. Expression of adaptive differences is strongly environment specific. Given observed adaptive variation, the most conservative restoration strategy would be to plant the local ecotype, especially in drier locations. With superior performance of the most xeric ecotype under dry conditions and predicted drought, this ecotype may migrate eastward, naturally or with assistance in restorations.

  14. Forest vegetation dynamics and its response to climate changes

    Science.gov (United States)

    Zoran, Maria A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2016-10-01

    Forest areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Satellite remote sensing provides a useful tool to capture the temporal dynamics of forest vegetation change in response to climate shifts, at spatial resolutions fine enough to capture the spatial heterogeneity. Frequent satellite data products, for example, can provide the basis for studying time-series of biophysical parameters related to vegetation dynamics. Vegetation index time series provide a useful way to monitor forest vegetation phenological variations. In this study, we used MODIS Terra/Aqua time-series data, along with yearly and monthly net radiation, air temperature, and precipitation data to examine the feedback mechanisms between climate and forest vegetation. Have been quantitatively described Normalized Difference Vegetation Index(NDVI) /Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), Evapotranspiration (ET) and Gross Primary Production (GPP) temporal changes for Cernica- Branesti forest area, a periurban zone of Bucharest city in Romania, from the perspective of vegetation phenology and its relation with climate changes and extreme climate events (summer heat waves). A time series from 2000 to 2016 of the MODIS Terra was analyzed to extract forest biophysical parameters anomalies. Forest vegetation phenology analyses were developed for diverse forest land-covers providing a useful way to analyze and understand the phenology associated to those landcovers. Correlations between NDVI/EVI , LAI, ET and GPP time series and climatic variables have been computed.

  15. Reconstruction of Pleistocene Paleo-Hydrology and Climate Variations in Western Asia as Recorded in Speleothems from West-Central Iran

    Science.gov (United States)

    Mehterian, S.; Pourmand, A.; Sharifi, A.; Lahijani, H. A. K.; Naderi, M.; Swart, P. K.

    2014-12-01

    Extending from the eastern Mediterranean Sea to the northwest Indian Ocean and modern Iran, West Asia represents one of the most climatically dynamic regions in the northern hemisphere. The regional climate of West Asia is governed by interactions between the mid-latitude Westerlies, the Siberian Anticyclone and the Indian Ocean Summer Monsoon. In recent years, sparse records of Pleistocene climate variability have emerged from cave deposits (speleothems) in East Asia, the Arabian Peninsula and eastern Mediterranean. However, there remains a large gap in our understanding of abrupt and long-term climate variability in this region. We present for the first time δ18O data from speleothem and water samples that were collected from two cave systems in west-central Iran at similar latitudes, 60km apart: Qaleh Kord Cave (QKC, 35°47'50"N, 48°51'25"E) and Kataleh Khor Cave (KKC, 35°50'09"N, 48°09'41"E). U-Th geochronometry in two stalagmites from QKC yielded ages that range from 73,000 to 118,000 years B.P. Likewise, two stalagmites dated from KKC yielded ages 214,000-260,000 years B.P. and 300,000-500,000 years B.P. The analysis of additional speleothems from these caves should help to establish a continuous half million year multi-proxy record of δ18O variations, trace metal composition (Mg/Ca, Sr/Ca), and radiogenic Sr isotopes in these cave systems. High-resolution δ18O analyses of QKC stalagmites show patterns of variation that can be attributed to Marine Isotope Stage (MIS) 5a and 5b. Since both these caves sit at relatively high elevations (QKC: 2,160 masl, KKC: 1,695 masl) far from major seas (1,100km from Mediterranean Sea, 1,500km from North Indian Ocean), this record potentially reflects the synoptic interactions between the Westerlies and the Siberian Anticyclone during this time interval, as opposed to direct variations caused by sea level fluctuations. Measurements of drip water composition and modern environmental parameters (temperature, relative

  16. Effects of cumulative stressful and acute variation episodes of farm climate conditions on late embryo/early fetal loss in high producing dairy cows

    Science.gov (United States)

    Santolaria, Pilar; López-Gatius, Fernando; García-Ispierto, Irina; Bech-Sàbat, Gregori; Angulo, Eduardo; Carretero, Teresa; Sánchez-Nadal, Jóse Antonio; Yániz, Jesus

    2010-01-01

    The aim of this study was to determine possible relationships between farm climate conditions, recorded from day 0 to day 40 post-artificial insemination (AI), and late embryo/early fetal loss in high producing dairy cows. Pregnancy was diagnosed by rectal ultrasonography between 28 and 34 days post-AI. Fetal loss was registered when a further 80- to 86-day diagnosis proved negative. Climate variables such as air temperature and relative humidity (RH) were monitored in the cubicles area for each 30-min period. Temperature-humidity indices (THI); cumulative stressful values and episodes of acute change (defined as the mean daily value 1.2 times higher or lower than the mean daily values of the 10 previous days) of the climate variables were calculated. The data were derived from 759 cows in one herd. A total of 692 pregnancies (91.2%) carried singletons and 67 (8.8%) carried twins. No triplets were recorded. Pregnancy loss was recorded in 6.7% (51/759) of pregnancies: 5.6% (39/692) in single and 17.9% (12/67) in twin pregnancies. Using logistic regression procedures, a one-unit increase in the daily cumulative number of hours for the THI values higher than 85 during days 11-20 of gestation caused a 1.57-fold increase in the pregnancy loss, whereas the likelihood of fetal loss increased by a factor of 1.16 for each additional episode of acute variation for the maximum THI values during gestation days 0-40. THI values higher than 85 and episodes of acute variation for the maximum THI values were only recorded during the warm and cool periods, respectively. The presence of twins led to a 3.98-fold increase in pregnancy loss. In conclusion, our findings show that cumulative stressful and episodes of acute variation of climatic conditions can compromise the success of gestation during both the cool and warm periods of the year. Twin pregnancy was confirmed as a main factor associated with pregnancy loss.

  17. Spatial and temporal variation in size of polar bear (Ursus maritimus) sexual organs and its use in pollution and climate change studies.

    Science.gov (United States)

    Sonne, Christian; Dietz, Rune; Born, Erik W; Riget, Frank F; Leifsson, Pall S; Bechshøft, Thea Ø; Kirkegaard, Maja

    2007-11-15

    Sexual organs and their development are susceptible to atmospheric transported environmental xenoendocrine pollutants and climate change (food availability). We therefore investigated sexual organs from 55 male and 44 female East Greenland polar bears (Ursus maritimus) to obtain information about growth/size and sexual maturity. Then, the genitalia size was compared with those previously reported from Canadian and Svalbard polar bears. Growth models showed that East Greenland male polar bears reached sexual maturity around 7 years of age and females around 4 years of age. When comparing East Greenland and Svalbard polar bears, the size of baculum and uterus were significantly lower in the East Greenland polar bears (ANOVA: all p baculum mean values from Canadian polar bears, a similar baculum pattern was found for East Greenland vs. Canadian polar bears. It is speculated whether this could be a result of the general high variation in polar bear body size, temporal distribution patterns of anthropogenic long-range transported persistent organic pollutants or climate change (decreasing food availability). The present investigation represents conservation and background data for future spatial and temporal assessments of hunting, pollution and climate change scenarios.

  18. Quantitative Impacts of Climate Change and Human Activities on Water-Surface Area Variations from the 1990s to 2013 in Honghu Lake, China

    Directory of Open Access Journals (Sweden)

    Bianrong Chang

    2015-06-01

    Full Text Available The water-surface areas of the lakes in the mid-lower reaches of the Yangtze River, China, have undergone significant changes under the combined impacts of global climate change and local anthropogenic stress. As a typical lake in this region, the Honghu Lake features water-surface area variations that are documented in this study based on high–resolution remote sensing images from the 1990s to 2013. The impact of human activities is analyzed by a novel method based on land use data. The relative impacts of each driving force are further distinguished by the statistical analysis method. Results show that the water-surface area has significant inter-annual and seasonal variabilities, and the minimum of which generally occurs in spring. The degree to which climate factors and land use structure affect the water-surface area varies between different stages. In the April-May period, the sum of the water demands of paddies and aquaculture has a negative effect that is greater than the positive effect of the difference between the monthly precipitation and monthly evaporation. In the June–October period, the precipitation features a positive impact that is greater than the negative effect of the water demand of agriculture. Meanwhile, climate factors and human activities have no influence on the lake area in the November–March period. With the land use being altered when annual precipitations are close in value, paddy field areas decrease, ponds areas increase, and the water demand of agriculture rises in both flood and drought years. These findings provide scientific foundation for understanding the causes of water-surface area variations and for effectively maintaining the stability of the Honghu Lake area through adjustments in land use structure.

  19. Millennial and sub-millennial scale climatic variations recorded in polar ice cores over the last glacial period

    DEFF Research Database (Denmark)

    Capron, E.; Landais, A.; Chappellaz, J.

    2010-01-01

    Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized...... a succession of abrupt events associated with long Greenland InterStadial phases (GIS) enabling us to highlight a sub-millennial scale climatic variability depicted by (i) short-lived and abrupt warming events preceding some GIS (precursor-type events) and (ii) abrupt warming events at the end of some GIS...... (rebound-type events). The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML) common timescale over MIS 5, the bipolar sequence...

  20. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    Science.gov (United States)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2016-04-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  1. Climate variations in the late Miocene - early Pliocene in the Black Sea region (Taman peninsula) inferred from palynological analyses.

    Science.gov (United States)

    Grundan, Ekaterina; Kürschner, Wolfram; Krijgsman, Wout

    2017-04-01

    A palynological study of Neogene sediments from the cape "Zhelezny Rog" (Taman peninsula, the Black Sea area) was carried out as part of integrated micropaleontological, lithological and paleomagnetic research. The Neogene section of the cape "Zhelezny Rog" (the Zhelezny Rog section) is one of the most representative Upper Miocene to Lower Pliocene succession of Eastern Paratethys. The section covers the Sarmatian, Maeotian, Pontian (upper Miocene) and Kimmerian (lower Pliocene) local stages. One hundred and eighteen samples were selected from the Zhelezny rog section for quantitative palynological analysis. Using PCA analysis and additional proxy such as "steppe index", art/chen and poa/ast ratios the regional climate history was reconstructed. The Early Maeotian is characterized by a warm, warm-temperate climate on the background of relatively high humidity. During the Late Maeotian it became colder and dryer. The coldest and driest conditions during the Maeotian correspond to the middle part of the Late Maeotian. There were a high number of steppe elements (as Artemisia) and low amount of thermophilous ones. Climate of the end of the Maeotian was characterized by warmer and wetter conditions. In the beginning of the Pontian there was a cooling trend, as evidenced by the decreasing thermophilous elements and the increasing high-latitude trees. Most significant changes were found within the Pontian-Kimmerian boundary beds. This level is characterized by decreasing of thermophilous elements, increasing of cool-temperate pollen and Sphagnum spores that are considered as an evidence of a temperature decrease in the background of high humidity conditions. The results will be discussed and correlated to Neogene global climate trends.

  2. Modelling Landscape Dynamics in a Highland Mediterranean Catchment: Establishing the impact of Climate Variation and Human Activity

    OpenAIRE

    L. P. H. van Beek; (Rik) Feiken, H.; Asch, Th. W. J. van; Bierkens, M.F.P.

    2012-01-01

    The close link between human occupancy and the Mediterranean landscape has long been recognized. Through the exploitation of the various but fragmented resources that these landscapes have to offer, man has been able to secure a living. However, these activities are often marginal and small shifts in population pressure, corresponding land use patterns or climatic variability can have large consequences on the redistribution of water and sediment in these areas.

  3. Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River Basin

    Science.gov (United States)

    Ahiablame, Laurent; Sheshukov, Aleksey Y.; Rahmani, Vahid; Moriasi, Daniel

    2017-08-01

    The Missouri River system has a large water storage capacity, where baseflow plays an important role. Understanding historical baseflow characteristics with respect to climate and land use impacts is essential for effective planning and management of water resources in the Missouri River Basin (MORB). This study evaluated statistical trends in baseflow and precipitation for 99 MORB minimally disturbed watersheds during 1950-2014. Elasticity of baseflow to climate variability and agricultural land use change were quantified for the 99 studied watersheds. Baseflow was derived from daily streamflow records with a recursive digital filter method. The results showed that baseflow varied between 38 and 80% (0 and 331 mm/year) of total streamflow with an average of 60%, indicating that more than half of streamflow in the MORB is derived from baseflow. The trend analysis revealed that precipitation increased during the study period in 78 out of 99 watersheds, leading to 1-3.9% noticeable increase in baseflow for 68 of 99 watersheds. Although the changes in baseflow obtained in this study were a result of the combined effects of climate and land use change across the basin, upward trends in baseflow generally coincide with increased precipitation and agricultural land use trends in the basin. Agricultural land use increase mostly led to a 0-5.7% decrease in annual baseflow in the basin, except toward east of the basin where baseflow mostly increased with agricultural land use increase (0.1-2.0%). In general, a 1% increase in precipitation and a 1% increase in agricultural land use resulted in 1.5% increase and 0.2% decrease in baseflow, respectively, during the study period. These results are entirely dependent on the quality of data used; however, they provide useful insight into the relative influence of climate and land use change on baseflow conditions in the Great Plains region of the USA.

  4. Holocene multidecadal- to millennial-scale variations in Iceland-Scotland overflow and their relationship to climate

    Science.gov (United States)

    Mjell, Tor Lien; Ninnemann, Ulysses S.; Eldevik, Tor; Kleiven, Helga Kikki F.

    2015-05-01

    The Nordic Seas overflows are an important part of the Atlantic thermohaline circulation. While there is growing evidence that the overflow of dense water changed on orbital time scales during the Holocene, less is known about the variability on shorter time scales beyond the instrumental record. Here we reconstruct the relative changes in flow strength of Iceland-Scotland Overflow Water (ISOW), the eastern branch of the overflows, on multidecadal-millennial time scales. The reconstruction is based on mean sortable silt (SS>¯) from a sediment core on the Gardar Drift (60°19'N, 23°58'W, 2081 m). Our SS>¯ record reveals that the main variance in ISOW vigor occurred on millennial time scales (1-2 kyr) with particularly prominent fluctuations after 8 kyr. Superimposed on the millennial variability, there were multidecadal-centennial flow speed fluctuations during the early Holocene (10-9 kyr) and one prominent minimum at 0.9 kyr. We find a broad agreement between reconstructed ISOW and regional North Atlantic climate, where a strong (weak) ISOW is generally associated with warm (cold) climate. We further identify the possible contribution of anomalous heat and freshwater forcing, respectively, related to reconstructed overflow variability. We infer that ocean poleward heat transport can explain the relationship between regional climate and ISOW during the middle to late Holocene, whereas freshwater input provides a possible explanation for the reduced overflow during early Holocene (8-10 kyr).

  5. Groundwater recharge variation under climatic variability in Ajlun area and the recharge zone of Wadi Arab well field - Jordan

    Science.gov (United States)

    Raggad, Marwan Al; Alqadi, Mohammad; Magri, Fabien; Disse, Markus; Chiogna, Gabriele

    2017-04-01

    Pumping of 75 MCM/yr from Ajlun area and Wadi Arab well field has led to diminished groundwater levels in North Jordan and dramatically affects ecosystem services. Climate change compounds these issues by reducing recharge and increasing the ecosystem's hydrological demand. This paper investigates groundwater recharge response to climatic changes in North Jordan by modeling climatic parameters for the time frame 2015 - 2050. Water budget components were modeled through the J2000 hydrological model considering a groundwater recharge of 47 MCM/yr. Statistical downscaling of global circulation models indicated a decline in precipitation of around 30% by the year 2050 with 2.5 and 2 °C increases in maximum and minimum temperature, respectively. Recharge for the year 2050 was recalculated based on the downscaling results to be 27% less than current recharge. Continuous over-pumping with recharge reduction will cause a 30-70% reduction in saturated thickness by the same year. Modeling groundwater resilience under the new conditions showed a severe impact on the study area especially in the central parts which are expected to comprise a semi dry aquifer by 2050.

  6. Zoning vulnerability of climate change in variation of amount and trend of precipitation - Case Study: Great Khorasan province

    Science.gov (United States)

    Modiri, Ehsan; Modiri, Sadegh

    2015-04-01

    Climatic hazards have complex nature that many of them are beyond human control. Earth's climate is constantly fluctuating and trying to balance itself. More than 75% of Iran has arid and semi-arid climate thus assessment of climate change induced threats and vulnerabilities is essential. In order to investigate the reason for the changes in amount and trend of precipitation parameter, 17 synoptic stations have been selected in the interval of the establishment time of the station until 2013. These stations are located in three regions: Northern, Razavi and Southern Khorasan. For quality control of data in Monthly, quarterly and annual total precipitation of data were tested and checked by run test. Then probable trends in each of the areas was assessed by Kendall-tau test. Total annual precipitation of each station is the important factor that increase the sensitivity of vulnerability in the area with low rainfall. Annual amount of precipitation moving from north to south has been declining, though in different fields that they have different geomorphologic characteristics controversies occur. But clearly can be observed average of precipitation decline with decreasing latitude. There were positive trends in the annual precipitation in 6 stations, negative trends in 10 stations, as well as one station, has no trend. The remarkable notice is that all stations have a positive trend were in the northern region in the case study. These stations had been in ranging from none to Moderate classification of threats and vulnerability. After the initialization parameters to classify levels of risks and vulnerability, the two measures of mean annual precipitation and the trends of this fluctuation were combined together. This classification was created in five level for stations. Accordingly Golmakan, Ghochan, Torbate heydarieh, Bojnord and Mashhad were in none threat level. Khoor of Birjand and Boshruyeh have had complete stage of the threat level and had the greatest

  7. Morpho-physiological variation of white spruce seedlings from various seed sources and implications for deployment under climate change

    Directory of Open Access Journals (Sweden)

    Isabelle Villeneuve

    2016-09-01

    Full Text Available Because of changes in climatic conditions, tree seeds originating from breeding programs may no longer be suited to sites where they are currently sent. As a consequence, new seed zones may have to be delineated. Assisted migration consists of transferring seed sources that match the future climatic conditions to which they are currently adapted. It represents a strategy that could be used to mitigate the potential negative consequences of climate change on forest productivity. Decisions with regard to the choice of the most appropriate seed sources have to rely on appropriate knowledge of morpho-physiological responses of trees. To meet this goal, white spruce (Picea glauca [Moench] Voss seedlings from eight seed orchards were evaluated during two years in a forest nursery, and at the end of the first growing season on three plantation sites located in different bioclimatic domains in Quebec.The morpho-physiological responses obtained at the end of the second growing season (2+0 in the nursery made it possible to cluster the orchards into three distinct groups. Modelling growth curves of these different groups showed that the height growth of seedlings from the second-generation and southern first-generation seed orchards was significantly higher than that of those from other orchards, by at least 6%. A multiple regression model with three climatic variables (average growing season temperature, average July temperature, length of the growing season showed that the final height of seedlings (2+0 from the first-generation seed orchards was significantly related to the local climatic conditions at the orchard sites of origin where parental trees from surrounding natural populations were sampled to provide grafts for orchard establishment. Seedling height growth was significantly affected by both seed source origins and planting sites, but the relative ranking of the different seed sources was maintained regardless of reforestation site. This

  8. Contribution of Livestock Production to Climate Change and ...

    African Journals Online (AJOL)

    Contribution of Livestock Production to Climate Change and Mitigation ... 18%, or nearly one-fifth of human induced greenhouse gas (GHG) emissions. ... states in Nigeria to have a sequel structure to safe disposal of organic matter from cattle.

  9. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating

    Science.gov (United States)

    Ghosh, Rohit; Müller, Wolfgang A.; Baehr, Johanna; Bader, Jürgen

    2017-06-01

    The observed prominent multidecadal variations in the central to eastern (C-E) European summer temperature are closely related to the Atlantic multidecadal variability (AMV). Using the Twentieth Century Reanalysis project version 2 data for the period of 1930-2012, we present a mechanism by which the multidecadal variations in the C-E European summer temperature are associated to a linear baroclinic atmospheric response to the AMV-related surface heat flux. Our results suggest that over the north-western Atlantic, the positive heat flux anomaly triggers a surface baroclinic pressure response to diabatic heating with a negative surface pressure anomaly to the east of the heat source. Further downstream, this response induces an east-west wave-like pressure anomaly. The east-west wave-like response in the sea level pressure structure, to which we refer as North-Atlantic-European East West (NEW) mode, is independent of the summer North Atlantic Oscillation and is the principal mode of variations during summer over the Euro-Atlantic regio